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An introductory survey of the global energy balance climate models is presented with an emphasis on 
analytical results. A sequence of increasingly complicated models involving ice cap and radiative feed- 
back processes are solved, and the solutions and parameter sensitivities are studied. The model parame- 
terizations are examined critically in light of many current uncertainties. A simple seasonal model is used 
to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and 
a complete nonlinear stability analysis for the models are developed. Analytical solutions are also ob- 
tained for the linearized models driven by stochastic forcing elements. In this context the relation be- 
tween natural fluctuation statistics and climate sensitivity is stressed. 
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1. INTRODUCTION 

The theory of climate has received much attention in the 
last few years. The evolution of high-speed computers and the 
development of numerical weather prediction models have 
made the simulation of climate at least ponderable. The 
global scale collection and analysis of observations have pro- 
vided a base for developing and verifying models. In addition, 
the extraction of palcoclimatic information from various 
sources is beginning to produce a legible record of climatic 
history. Preliminary studies of the earth's climate suggest that 
the present state may be a delicate one possibly vulnerable to 
unintentional adverse changes by man's activities. As it de- 
mands more and more from the earth's dwindling resources, 
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the growing human population becomes less able to cope with 
climatic change. As a result the forecasting of future climates 
becomes increasingly important. Evidently, the time has come 
to develop mathematical models of the climate. 

The purpose of this review is to present an introductory sur- 
vey of simple climate models based upon elementary heat bal- 
ance considerations. The paper is intended to be pedagogical, 
introducing complicated subjects by way of solvable ex- 
amples. The review begins with the fundamental principles 
that govern planetary climates and proceeds to develop a the- 
ory for one-dimensional climate models. 

Schneider and Dickinson [1974] have surveyed many ap- 
proaches to climate modeling. Foremost in their discussion is 
the hierarchy of climate models. A wide range of models may 
be constructed, based upon the choice and number of degrees 
of freedom to be included. General circulation models 

(GCM's) can have up to a million degrees of freedom, while 
the simplest models have only a few. Although, in principle, 
GCM's could become physically realistic, they are expensive 
and cumbersome. The artificial climates generated by these 
models are typically as complicated and inscrutable as the. 
earth's climate. Their major advantage (once perfected) will 
be their controllability, that is, the possibility of testing hy- 
potheses by changing boundary conditions, a luxury not af- 
forded by the real climate. 

Because of the expense and complicated output of large 
GCM's a variety of simplified initial value models are pres- 
ently under construction for use in sensitivity experiments 
[e.g., Held and Suarez, 1978; Gates and Schlesinger, 1977]. It is 
hoped that these models will produce climates and climate 
change responses similar to those of their larger counterparts. 

Since the climate is represented by the long-term averages 
of atmospheric variables, one promising approach is to con- 
struct equations in terms of these averaged quantities. Re- 
cently, there have been many attempts to construct and study 
such equations. The resulting models are referred to as 'statis- 
tical dynamical models' (SDM's) and were reviewed by Saltz- 
man [1978]. 

Among the SDM's are the few variable models. If only the 
vertical dimension is retained, one obtains the radiative-con- 
vective models reviewed by Ramanathan and Coakley [1978]. 
The advantage of these models is that they can be used to 
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compute radiative transfer in detail and therefore any climatic 
feedback mechanisms associated with radiation may be care- 
fully studied. 

If we characterize a column of the earth-atmosphere system 
by a single number, say, the sea level temperature, we develop 
models with only horizontal dimensions. Zonal averaging of 
such models leads us to the one-dimensional climate models. 

Models of this type have been studied for some years [Jngst- 
rdm, 1928; Fritz, 1960; Opik, 1965; Eriksson, 1968]. Renewed 
interest in these models was stimulated by Budyko [1968, 
1969, 1972] and Sellers [1969]. These two investigators inde- 
pendently derived one-dimensional models based upon the 
thermodynamic equation. Each term in the equation was writ- 
ten in terms of the sea level temperature field. In doing so they 
distilled the climate problem into a one-dimensional, steady 
state, boundary value problem that was solved for the temper- 
ature field. Although the equations were nonlinear, solutions 
could be extracted by either analytical or reliable numerical 
procedures. One was then in a position to vary such 'given' 
parameters as the solar constant to study the model response. 

Budyko and Sellers arrived at the surface temperature de- 
pendence of the individual terms in the energy balance equa- 
tions through independent studies of the observed heat fluxes. 
Not surprisingly, the functional forms were rather different 
from each other. Nevertheless, both models yielded the pres- 
ent climate as solutions. Furthermore, both predicted the 
same high sensitivity to changes in the solar constant. They 
predicted that if the solar constant were lowered by only a few 
percent, the polar ice caps would expand catastrophically un- 
til the globe became completely covered by ice. The Budyko- 
Sellers models form the basis for this review. 

A number of questions immediately arise from the pioneer- 
ing studies just mentioned. For instance, to what extent are 
the models equivalent to each other, and, for that matter, do 
they behave like more sophisticated models possibly imitating 
the earth's climate? To what extent is the extreme climate sen- 

sitivity of these models dependent upon the parameterizations 
used to relate the surface temperature to the heat fluxes? What 
is the nature of the model climate solutions; for instance, is the 
model solution unique; is it stable to small perturbations? Are 
the models consistent with the history of the solar system? 
What is the range of space and time scales for which the mod- 
els are valid? Can the models suggest new measurements or 
data reduction methods that would further the development 
of a climate theory? Are there any ways to test the validity of 
the models; for instance, would they apply to the other plan- 
ets? Can the models be extended to include seasonal and re- 

gional effects? Can the models test various theories of the ice 
ages? Finally, can the models be used to define research prob- 
lems for the more comprehensive models? Some of these 
questions have been answered in the last few years, while oth- 
ers remain open. 

One appealing feature of the Budyko-Sellers models is their 
simplicity. This simplicity facilitates the use of the models as 
teaching tools. It therefore seems appropriate in this review to 
use elementary analytical methods whenever possible. In this 
way we can keep the physical mechanisms before us at all 
times. As a result the inevitable fudge factors will be explicit. 
More emphasis will be placed upon theoretical rather than 
numerical results because the latter are subject to change with 
new observations and new developments in paramete 'nzation 
theory. Although the theory of energy balance models has had 
many contributors with varied approaches, we have attempted 

to develop the theory whenever possible in a simple, uniform 
manner, often drawing upon the work of others. 

The review is divided into nine sections. After reading sec- 
tion 2 most of the other sections can be read independently of 
each other. 

2. INTRODUCTION TO HEAT BALANCE MODELS 

To begin, we introduce the concept of global radiative heat 
balance. For simplicity we assume that the earth emits radia- 
tion as a blackbody. In radiative equilibrium the rate at which 
solar radiation is absorbed matches the rate at which infrared 

radiation is emitted. The condition of radiative equilibrium is 
given by 

4vrR2oTR 4 = Oo(1 - a•,)vrR • (1) 

where TR is the effective radiatMg temperature of the planet; 
R is the radius of the planet; Oo is the •lar constant, taken M 
th• section to • 1340 W m-2; o is the Stefan-Boltzmann con- 
stant, 0.56687 x 10 -7 W m -: K-n; and a• is the planeta• al- 
•do de•ed as 

a, = • dx S(x)a(x) (2) 

where x is the sMe of latitude; a(x) is the al•do at latitude x; 
and S(X) is the mean annual distribution of radiation reachMg 
the top of the atmosphere, noma•ed so that the Mtegral of 
S(x) from 0 to I is unity. S(x) and its seasonal analog S(x, 0 
may be computed exactly [Sellers, 1965], but for this dis- 
cussion we may use the approx•ate fore [North, 1975a; 
North and Coakley, 1979] 

S(x) + &P:(x) (3) 

with S2 = -0.477 and P2(x) the se•nd Legendre polynomial, 
P2(x) = •(3x: - 1). With this approx•ation, S(x) • a para- 
bola M x, havMg zero derivative at the equator (x = 0) and 
fang to a value of 0.523 at the pole (x = 1). We note M pass- 
Mg that x is a convenient variable to use M zonal average ap- 
p•cations because dx is propo•ional to the area of a latitude 
strip and therefore the area average of q(x) for the region 
spa•ed by • is given by 

q = f• q(x) •/• (4) 
UsMg a value of 0.30 for a• [Ellis et al., 1978], we compute 

T• = 254.6 K for the earth's radiative tem•rature. Clearly, 
this is much colder than the obse•ed sea level average tem- 
perature, which (for the whole globe) • 287.4 K. The major 
pan of this difference is, of course, due to the so-caBed green- 
house effect of the atmosphere, to • discu•ed later. 

Let us now compute the fundamental sensitivRy parameter 
rio, de•ed by 

Oo dTo 
Bø= doo (5) 

where the subscript 0 on T refers to the global average value. 
The parameter rio is a measure of the change M global average 
temperature due to a 1% change M the solar constant. For aB 
c•ate models, rio is the first quantity to compute •cause the 
sensitivity of the model to any perturbation • rou•ly propor- 
tional to rio (cf. sections 7 and 8). 

With a• constant the s•ple model de•ed by (1) gives 

rio(black radiato0 = T•/4• = 0.63 K (6) 
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This number represents the sensitivity of a system with no 
feedbacks, and it is a standard for comparison with all climate 
models. 

The sensitivity of the actual climate is influenced by a my- 
riad of feedback processes [Schneider and Dickinson, 1974]. 
For example, changes in planetary temperature might change 
the emissivity or reflectivity and thereby modify the sensitiv- 
ity. Many of these agents and linkages have yet to be identi- 
fied. Many of the details of the known and suspected feed- 
backs remain a mystery. Some of these uncertainties are 
discussed in section 4. Here we introduce some simple models 
to illustrate the potential impact of known feedbacks on cli- 
mate. 

It is well to note that the value taken here for the solar con- 

stant Oo (1340 W m -2) is different from that used in section 4 
(1360 W m -2) so that we do not have to repeat published cal- 
culations. In fact, various modelers have used different values 
for this parameter in their sensitivity studies. Generally, the 
sensitivity results are not sensitive to the present value of the 
solar constant. Errors introduced in this way tend to be par- 
tially compensated for in adjusting other unknown parame- 
ters to force the model's unperturbed climate to fit the present 
climate, a process sometimes referred to as 'tuning.' In- 
cidentally, the exact value of the solar constant and its con- 
stancy in time are the subject of considerable experimental ac- 
tivity in both rocket measurements [Willson et al., 1980] and 
satellite measurements [Hickey et al., 1980]. The best current 
value from the Nimbus 7 satellite is 1376 W m -2. 

Global Models With Feedback 

Feedbacks affect the sensitivity through their influence on 
the radiative fluxes absorbed and emitted. Often the net effect 

of the feedbacks is inferred from empirical data. We begin 
with the flux of infrared radiation emitted by the earth. 

Budyko [1969] suggested that the infrared radiation to space 
can be represented as a linear function of the surface temper- 
ature T (in degrees Celsius): 

= + (7) 

where A and B are constants deduced from observations. On 

the basis of data from the northern hemisphere [North and 
Coakley, 1979] we find that A = 203.3 W m -: and B -- 2.09 W 
m -: øC-• gives the best fit between the fluxes calculated using 
(7) and those observed. The energy balance may be written as 

A + BTo = Q(1 - %) (8) 

where • is Oo/4. Using (1 - %) = 0.70, we arrive at To = 
14.97øC, which agrees with the northern hemisphere value 
(14.9øC). The coefficients A and B take into account average 
cloudiness conditions, the effects of infrared absorbing gases, 
and the variability of water vapor. For comparison a linear 
expansion of o(273 + T) 4 would lead to 'black radiator' coeffi- 
cients A• = 314.9 W m -2 and B• = 4.61 W m -2 øC-'. 

For constant albedo the sensitivity of this 'greenhouse 
model' is 

rio(greenhouse)- (A + BTo)/lOOB-- 1.12øC (9) 

We deduce that the presence of an atmosphere increases the 
sensitivity of the climate. This effect is referred to as a 'posi- 
tive feedback,' since it increases the sensitivity over that of a 
blackbody radiator. 

Let us exam'me the reasons for this positive feedback. Con- 

sider a planet surrounded by a shield at temperature T•. We 
will assume that this 'atmosphere' does not absorb solar radia- 
tion but perfectly absorbs infrared radiation. We imagine the 
shield to be in equilibrium so that it radiates (net up and 
down) at a rate equal to the rate at which it absorbs. As a re- 
suit, T• is related to To by 

oTo 4•-- 20T, 4 (10) 

Similarly, if the surface is in radiative equilibrium, then To is 
given by 

oTo 4 = oT, 4 + Q(1 - %) (11) 

From (10) we deduce that To is greater than Tl by a factor of 
21/4 (-• 1.19). Furthermore, by combining (10) and (11) we see 
that Tl is the effective radiating temperature of the planet. For 
Tl ---- 254 K we compute To = 302 K. Thus a single black 
shield approximates the greenhouse correction of the earth's 
atmosphere. Combining (10) and (11) and differentiating with 
respect to Q, keeping the albedo constant, we obtain 

rio(black shield) = To/400 = 0.76 K (12) 

Although the black shield approximates the atmosphere's 
greenhouse effect, it fails to account for the increased sensitiv- 
ity when the atmosphere is present. 

The most probable reason for the enhancement is the vari- 
able concentration of water vapor. Water vapor is a signifi- 
cant absorber in the infrared. On the average the amount of 
water vapor in the atmosphere increases as the temperature 
increases [Manabe and Wetheraid, 1967]. To allow for this in- 
crease, we should allow the number of black shields to in- 
crease with temperature. The empirical coefficients in Bu- 
dyko's formula presumably take this effect into account. 
There are, of course, other feedbacks that affec t emission, and 
their influence is also reflected in the coefficients. In the next 

section we shall return to the Budyko formula and discuss its 
validity. 

Let us now examine the ice cap albedo feedback. If the 
earth had no ice or snow but it had 50% cloudiness, the local 
co-albedo (1 - albedo) would be approximately af(x) = 0.70; 
similarly, an ice-covered planet would have co-albedo a,(x) -- 
0.38. Using (8), we compute To = i5.0øC for .the ice-free 
planet and To -- -36.4øC for the ice-covered planet. Of 
course, the earth lies between these extremes. 

Let us propose a crude model for the ice cap size. Suppose 
that the edge of the ice cap is denoted by x = x s. Then sup- 
posexs-- 1 for To> 15 ø ,x•=0for To<-15 ø , and in be- 
tween, xs -- 1 + (To - 15)/30. We may then use a/for 0 < x < 
x, and ai for xs < x < 1. From (3) the planetary co-albedo 
would then be given by 

= ai + (a/- ai)[x• + « S2(x•- x•3)] = Ho[x•(To)] (13) 

The notation Ho for the planetary co-albedo will prove useful 
later. Ho[xs(To)] is represented by the solid curve in Figure 1. 
To find solutions for (8), we plot the outgoing IR divided by 
Q, represented by the dashed curve in Figure 1. For the pres- 
ent solar constant we obtain three roots. The root labeled I 

corresponds to the present climate, root II to an intermediate 
climate with the planet having about 30% of its area covered 
by ice, and root III to an ice-covered planet. Such multiple so- 
lutions of zero-dimensional models were noted by Sellers 
[1974], Crafoord and Kiill•n [1978], and Fraedrich [1978]. 
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Fig. 1. Fraction of solar radiation absorbed (solid curve), 
Ho[xs(To)] (equation (13)), for the zero-dimensional global climate 
model with variable ice cap. The dashed curve shows the outgoing in- 
frared energy per unit area per unit time divided by the present solar 
constant (divided by 4). Intersections of these curves are roots corre- 
sponding to steady state climates: root I corresponds to the present cli- 
mate, root II to a large ice cap solution, and root III to a totally ice- 
covered planet. 

In Figure 1 we have a qualitative picture of the model cli- 
mates. If Q is decreased, the dashed curve is scaled upward, 
and roots II and III merge together and then disappear, leav- 
ing only the deep freeze, root III. If the solar constant is in- 
creased, roots II and III coalesce, and we are left only with an 
ice-free earth, Root I. Figure 2 shows To as a function of Q. 

The example just given illustrates the rich structure of even 
the simplest ice feedback model. The multiple branch struc- 
ture shown in Figure 2 persists in models with latitude depen- 
dence and even exists in GCM's [Wetheraid and Manabe, 
1975]. 

One-Dimensional Models and Transport 

After the zero-dimensional models, the next models to be 
studied include latitude dependence. This additional degree of 
freedom forces us to consider the horizontal transport of heat 
by the geophysical fluid system. In the treatment of this trans- 
port we will have to make drastic idealizations to keep the 
mathematics manageable. 

In the latitude-dependent models we assume that the rate at 
which heat enters each infinitesimal latitude belt during the 
year is exactly balanced by the loss rate. The individual terms 
considered are schematically represented for the ith strip by 

(net horizontal transport out)i + (infrared out), 
-- (solar absorbed)i (14) 

A common factor, the area of the strip, may be .canceled 
throughout, so that the remaining terms have units of energy 
per unit area per unit time (watts per square meter). 

We proceed with the crucial simplifying assumption that 
each term in (14) may be represented as a function of the zo- 
nally averaged sea level (1000 mbar) temperature field T(x,). 
Once the parameterization formulae for the individual terms 
in (14) are found, we solve the system of equations repre- 
sented by (14) for all indices i simultaneously. It is usually 
necessary to impose a boundary condition at the poles, since 

mathematical systems like (14) often have an unphysical solu- 
tion (irregular solution) that diverges at the poles. By impos- 
ing the condition that the flux of horizontal heat into the pole 
vanishes, we systematically eliminate such spurious model cli- 
mates. 

To see how the model behaves, let us examine a few ex- 
treme cases. We adopt the Budyko formula (?) for infrared ra- 
diation at each latitude, and we adopt an ice cap parameter- 
ization that is also due to Budyko [1969], namely, that the ice 
cap edge extends to the mean annual isotherm 

T(x,) = T, =-10øC (15) 

For simplicity we take the co-albedo a(x, xs) to be discontin- 
uous at the ice cap edge. Note that xs must come somehow 
from (15) rather than from the linear relation with To that was 
adopted in the global average model. 

For the case that the horizontal transport is infinite, the 
planetary surface must be isothermal. This model is similar to 
the global average model except that the span between -15 ø 
and 15øC shown in Figure 1 is compressed to a vertical line 
centered at -10øC. The solution branches are easily shown to 
be given by the dashed lines in Figure 2. The physical inter- 
pretation is obtained by following a quasi-static change in Q 
down branch I of the solution. When the dark (isothermal) 
planet's temperature reaches -10øC, the planet suddenly 
turns white, and its new equilibrium temperature must be 
about -44øC. 

For the case with no transport the energy balance equation 
becomes 

A + BT(x)-- QS(x)a(x, (16) 

i I . i i i I 

30øC _ •,a• _ 

2o - OLUT!ON FOR - 

l O-DIMENSIONAL MODEL lO - ii - 
ii •r•11 

To 0 - fil l/ • - 
- 10 - I •,,,,• - 
- 20 - - 

- 30 - - 

- 40 - - 

I I • I I I 0.90 1.00 1. 0 1.20 1.30 1.40 
Q/Q0 

Fiõ. 2. Steady-state temperatures correspondsõ to the climate so- 
lutions for the zero-dimensional climate model with variable ice cap 
as a function oœ solar constant in units oœ its present value (solid 
curve). The roots !, !!, and !!! correspond to those • Fiõurc I. The 
dashed cu•cs show the so]mJons that would • obta•cd • the •sc 
of i•te ho•ontal heat transpo• • wMch the planet is iso•e•al. 
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at each latitude. We assume further that at x -- x, the co-al- 
bedo a(x, x,) becomes the average of a, and 

Applying (16) at x = x• and using (15), we obtain 

Q(x,) -- (A + BT,)/S(x,)• (17) 

with • -- (a• + af)/2. Expression (17) gives the solar constant 
Q needed to maintain the ice line at a particular latitude given 
by x,. The curved line in Figure 3 is computed by using (17). 
The lower fiat line (x, = 0) is obtained by starting with com- 
plete ice cover (Q/Qo << 0.8) and raising the solar constant 
quasi-statically until the equatorial temperature reaches 
-10øC, which occurs at Q/Qo = 1.17). Similarly, the upper 
fiat portion is obtained by lowering the solar constant from 
Q/Qo >> 2.0 on the ice-free planet until the pole reaches 
-10øC. The peculiar solution lines emanating from the curve 
in Figure 3 are called 'twigs' by mathematicians. We shah re- 
turn to the structure of these solutions later. 

The models discussed thus far present a paradox. If the 
sun's luminosity has risen from a value of 20-40% lower than 
its current level, as virtually all solar evolution theories in- 
dicate [Newman and Rood, 1977], then why is the earth not 
covered with ice? The models indicate that if the solar con- 

stant is raised quasi-statically from, say, three quarters of its 
present value up to its present value, the model stays on the 
lower branch of the solution curve whether the transport is in- 
finite or zero. Furthermore, we shall see that this result holds 
in every model studied in this paper. We are not in a position 
to resolve this solar evolution-climate model contradiction, 
but conjectures have been ventured: not enough moisture is 
available at the right places to generate total ice cover; other 
negative feedbacks are present, perhaps related to cloudiness 
change (our calculations are based on present cloud cover); 
and the composition of the atmosphere was different in the 
past such that a larger greenhouse effect prevented the ice 
cover [Sagan and Mullen, 1972; Owen et al., 1979; Hart, 1978; 
Budyko, 1977]. 

Clearly, the no-transport model bears little resemblance to 
the earth, since a solar constant 70% greater than the present 
value is required to push the ice cap back to x, -- 0.95 (its 
present location). With a Q of 1.7 times its present value and 
x, = 0.95 the planetary average temperature becomes To -- 
93øC. Aside from the unrealistic values obtained for To and 
x,, (16) suggests that T(x) has a discontinuity of the order of 
50øC at x = x,. Transport, of course, tends to smooth this dis- 
continuity. 
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Fig. 3. Sine of steady state ice cap edge latitude x, versus solar 
constant in units of its present value for a one-dimensional climate 
model with no horizontal heat transports (cf. equation (17)). 
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Fig. 4. Temperature (degrees Celsius) versus sine of latitude for the 
cases of no transport, infinite transport, and earth (schematic). 

Before proceeding with a finite transport model, let us look 
at the zonal average temperatures obtained for the extreme 
cases of infinite and zero transport. For the absorption we 
take observed (northern hemisphere) mean annual values 
which are reasonably well represented by 

a(x) -- ao + a?P?(x) (18) 

with ao -- 0.681 and a2 -- -0.202 [North and Coakley, 1979]. 
The planetary average temperature is obtained by integrating 
(16) over x: 

•o ! A + BTo-- Q dx S(x)a(x) (19) 

Using the constants specified earlier, we obtain To -- 14.97øC. 
Figure 4 shows T(x) (solid curve) for the no-transport, no-ice- 
feedback case computed directly from (16). For comparison 
the figure also shows the infinite transport case (dashed line), 
which yields an isothermal 14.97øC planet, and the temper- 
ature observed for the earth. The transport has the obvious ef- 
fect of warming the pole and cooling the equator. It main- 
tains, however, the roughly parabolic shape of the no- 
transport case. 

Consider the addition of a transport term to the heat bal- 
ance equation. The geophysical fluids transport heat through 
their mean and transitory (eddy) motions. If we were to aver- 
age the atmospheric velocity field through, say, a month and 
around a latitude circle, we would sample many statistically 
uncorrelated eddy processes. A first model for the atmosphere 
is a geophysical fluid having a random velocity field. We 
might take the heat content as a passive scalar being carried 
by the fluid. Equal amounts of fluid are directed north and 
south across a latitude circle in any interval. On the average, 
heat is carried from warm areas to cool by an amount propor- 
tional to the gradient of the temperature: 

heat flux oc-C(1 - x?) w? dT(x)/dx (20) 
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Fig. 5. Mean annual northern hemisphere zonally averaged tem- 
perature (degrees Celsius) versus sine of latitude for the two-mode ap- 
proximation to the diffusive model (solid curve), the observations (cir- 
cled dots), and a fit including P4(x) (dashed curve) [from North, 
1975b] (cf. (32)). 

where C is the heat capacity per unit area. The proportionality 
coefficient in this simple model would be a diffusion coeffi- 
cient. 

The amount of heat per unit time per unit area leaving a 
strip is the divergence of the flux which is proportional to 
-V2T, or in our notation, 

dT(x) d D(1 - x •) (21) 
dx dx 

where D may be a function of x and must be thought of as a 
free parameter to be adjusted empirically. 

Obviously, (21) represents a gross oversimplification of the 
transport process. The most evident omission is the mean cir- 
culation in both atmosphere and oceans. We shah consider 
more general models after first studying the model defined by 
(21). One advantage of the form (21) is that it corresponds to a 
physical analog, namely, heat conduction, and therefore phys- 
ically realizable solutions are guaranteed. With transport the 
energy balance equation becomes 

dT(x) d D(1 - x 2) +/1 + Br(x) - QS(x)a(x, xs) (22) 
dx dx 

The boundary conditions for symmetric solutions are given by 

--D(1 -- x2) 1/2 dT(x) I --- 0 (23) dx x==O, 1 

Note that the system is nonlinear because of the ice-albedo 
feedback. The nonlinearity leads to the multiple solutions that 
we have already encountered with the simpler models. 

Before solving the nonlinear system, let us insert observed 
values of the co-albedo a(x) in (22) and see how the computed 
temperature field compares with the fields shown in Figure 4. 
First, take D to be a constant independent of x. Since the Le- 
gendre polynomials are eigenfunctions of the diffusion oper- 
ator, 

d den(x) _- n(n + 1)Pn(X) (24) t•x '(1 -- x2) dx 

and since, individually, they satisfy the boundary conditions 
(23), the even-numbered Pn(X) form a convenient basis set for 
expansions. Consequently, we expand the surface temperature 

T(x)-- •, TnPn(x) (25) 
n(cvcn) 

and insert the expansion into the energy balance equation 
(22); multiply by Pn(X) and integrate over aH values of x from 
0 to 1. Making use of the orthogonality relation 

we have 

where 

and 

dx Pn(X)Pm(X) -- 2n + 1 m, n (even) (26) 

LnTn + •onA ---- QHn (27) 

Ln---- n(n + 1)D + B (28) 

fo Hn(xs) = (2n + 1) Pn(x)S(x)a(x, x•) dx (29) 

Even though we intend to use the observed a(x), we have re- 
tained x• in (29) for later applications. Since the a(x) are given 
by (18), the Hn are determined, and as a result, (27) is easily 
solved: 

For n -- 0, 

Tn --- QHn/Ln - tlon•/B (30) 

To = (QHo -/I)/B (31) 

which is equivalent to (19). As before, To is the planetary av- 
erage temperature. The form of (31) holds not only for the dif- 
fusive transport (21) but also for any term that is the diverg- 
ence of a flux which itself satisfies a zero condition at the 

endpoints (equator and pole). Using the coefficients specified 
earlier, we obtain, as before, To --- 14.97øC. 

We turn now to n = 2. From (3) and (18) we compute H2 
• -0.500. In order to compute T: we must know D, which 
was left as an adjustable parameter. By taking the observed 
value for T,_ (-28.0øC) we compute D = 0.649 W m-'- øC-I, 
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Fig. 6. Sine of steady state ice edge latitude x, versus solar con- 
stant in units of its present value for the Budyko model; that is, the 
divergence of the horizontal heat flux is given by (33). The solution is 
given by (34). 
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or, in dimensionless form, D/B = 0.310. This approximation 
is called the two-mode or parabolic approximation to T(x) 
[Jngstr6m, 1928]: 

T(x) -• To + T2P2(x) (32) 

It is plotted as the solid curve in Figure 5 along with the ob- 
servations. Of course, the agreement shown in the figure does 
not confirm the model but rather illustrates how well a para- 
bola fits the data. 

Let us now consider n --- 4. From observations [Ellis et al., 
1978] we obtain H4 -- 0.022, and using the previously com- 
puted value of D, we compute T4 -- 0.5øC. The observed value 
is T4 -- -3.5øC. The model gives a value that is almost an or- 
der of magnitude too small and has the wrong sign. In fact, 
the higher-mode amplitudes in the model are so small that the 
two-mode solution is close to the exact solution [North, 
1975b]. Perhaps the most prominent feature of the observa- 
tions that is not reproduced by the model is the flattening of 
T(x) into a nearly isothermal band in the tropics. This fiat- 
tening is probably due to mean motions in the tropical atmo- 
sphere (Hadley cell). The mean motions are more efficient 
than random motions at suppressing temperature deviations. 
Lindzen and Farrell [1977] have discussed methods of allowing 
for the tropical mean motions. Their motivation was based 
upon results derived from a more comprehensive model 
[Schneider and Lindzen, 1977] in which it was found that near 
the equator, T(0) - T(x) oc x 4. In terms of the Legendre ex- 
pansion, temperatures near the equator require contributions 
from T4P4(x). In an ad hoc way we can imitate the efficiency 
of thermal conduction in the tropics by allowing the diffusion 
coefficient to depend on x; for example, D(x) -- Do + D2P2(x). 
There are then two free parameters, Do and D2, that can be 
adjusted to give the observed values of T2 and T4. In agree- 
ment with Lindzen and Farrell we find D(x) large near the 
equator and small near the pole [North et al., 1977]. Although 
such tricks suffice to correct the value of T4, other processes 
(such as varying relative humidity, lapse rates, and cloudiness) 
that would affect the infrared emission could also contribute 

to T4. Further discussion of the limitations of the diffusive ap- 
proximation are postponed to section 4. 

Let us interpret the expansion (25). Each succeeding term in 
(25) contains information pertaining to smaller and smaller 
spatial scales. The first few terms give us the gross features of 
the planetary climate. To is the planetary average; «T2 is a 
rough measure of the pole-to-equator temperature difference; 
higher-order terms reveal features at finer spatial scales. 
Hence the spectral method of solving climate models provides 
a framework in which mathematical (or numerical) technique 
goes hand in hand with the concept of a model hierarchy dis- 
cussed earlier. 

The two-mode approximation just discussed was derived 
for diffusive heat transport with constant coefficient. The form 
of the transport, however, need not be restricted if (25) is trun- 
cated at n -- 2. For example, instead of using the diffusive 
term (21), Budyko [1969] used 

¾[T(x)- Tol (33) 

where ¾ is an empirical coefficient similar to D. Budyko's 
model is thus given by (22), with (33) replacing the first term. 
In the two-mode approximation the models are identical. By 
substituting (32) into (21) we obtain 

6DT2P2(x) -- 6D[T(x) - Tol 

which is identical to (33) with ¾ = 6D. While the two models 
are identical in the two-mode approximation, they differ in 
higher modes. 

Budyko's model can be solved analytically [Ch)Slek and 
Coakley, 1974] by roughly the same method we used for the 
no-transport model. After some straightforward algebra we 
obtain 

A + (B + ¾)Ts + ¾A/B 
Q(xs) = S(x,)a, + ¾Ho(x,)/B (34) 

Note that if ¾ = 0, (34) becomes the solution for the no-trans- 
port model (17). The solution curve for this version of the Bu- 
dyko model is shown in Figure 6. The twigs at Q/Qo = 0.99 
and 1.13 come about in the same way as in the no-transport 
model (Figure 3). 

Although there is a closed form solution to Budyko's model, 
(34), it is instructive to investigate the spectral properties of 
the model. Expanding the temperature field as in (25) and in- 
serting the expansion into the energy balance equation, we 
obtain again (27), but with Ln given by 

Ln •s = ¾ '4- B- 8nO ¾ 

In the diffusive model, Tn oc 1/Ln, and thus if D > 0, the 
higher modes (n > 2) are strongly suppressed. In the Budyko 
model, on the other hand, the higher modes are not sup- 
pressed. As a result a discontinuity in a(x, x,) leads to a dis- 
continuous temperature field in the Budyko model but not in 
the diffusive model. 

The time dependence of these models also differs. If we add 
heat storage C OT/Ot to the energy balance equation and ex- 
pand the temperature fields, then we obtain (27) with the ad- 
ditional term CJ'n on the left-hand side. If the solar constant is 
suddenly switched off', the individual mode amplitudes decay 
exponentially with time constant C/Ln. In diffusive models, 
features or anomalies that have small spatial scales decay rap- 
idly, whereas in Budyko-type models, small space scale fea- 
tures decay at the rate of the planetary scale features (n -- 2). 

Let us now consider some generalizations of the diffusive 
model in the two-mode approximation. Suppose D depends 
on latitude, D(x) = ,tw(x). The n = 0 relation (31) is unaltered, 
and the n -- 2 version of (30) is also unaltered provided we re- 
place D in (28) by Dn', which for n -- 2 is given by 

' a f aP(x) D2 '= -5,1 dx P2(x) •xx (1 - x2)w(x) dx I (35) 
Since the integral in (35) is a constant, to be computed once 
and for all, it may be absorbed into the phenomenological 
constant *t. The constant •1 is to be determined as before, so 
that in the two-mode approximation, D(x) -- ,tw(x) is formally 
equivalent to constant D [North, 1975b]. 

This formal equivalence is also retained for other transport 
models. For example, Sellers [1969] included a mean circula- 
tion term given by 

V(x) ,/2dT(x) (36) R (1 - x2) • 

where V(x) is an emp•caHy derembed advective velocity 
field. As above, • the two-mode approx•ation this tern may 
be absorbed •to the constant D. Another fore of •terest is 

•4•x), which could occur as an added tern • a turbulent 
(random) atmosphere model [North, 1976; Kells, 1976]. Be- 
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I I • 
SINE OF THE LATITUDE 

Fig. 7. The Green's function Go(x, Xo), defined by (40), (41), and 
(44), for the constant diffusion model versus sine of latitude x and for 
which a heat source is located at sine of latitude Xo. Note that smaller 
values of the diffusion coefficient D lead to a more localized response. 

cause V4pn(x) -- [n(n + 1)]2pn(x), the formal equivalence to 
constant diffusion in the two-mode approximations is main- 
tained. 

The formal equivalence of so many different models in the 
two-mode approximation explains why various published 
models give the same qualitative results. Of course, it is neces- 
sary that the two modes represent a suitable fit to observa- 
tions. It is also necessary that the two-mode solution approxi- 
mate the exact solution when the nonlinear ice-albedo 

feedback is included. To obtain an exact solution, we may 
solve the system (22) analytically. Here we retain the xs de- 
pendence in Hn(xs) (equation (27)). Dividing (27) through by 
Ln, multiplying by Pn(X,), summing over n, and using (15), we 
obtain 

A/B + T, = Q • [H,•(xs)P,•(Xs)/L.] 
n(½vcn) 

or 

Q(x•) = (,4 + BT•) B •,, [Hn(xs)Pn(xs)lLn ] (37) 
n(even) 

These solutions have been given by Held and Suarez [1974] 
and by North [1975a, hi. 

Note that the formal solution (37) also holds for the Budyko 
model or even a KVnT model if the Ln are appropriately mod- 
ified. Since it is formally correct for any a(x, x,), the solution 
is not restricted to a discontinuous albedo. We could use a 
smoothed albedo at the ice cap edge such as 

a(x, x•) = Co + c, tanh [(x - x•)/w] (38) 

as will be discussed later. 

Generalized Treatment of Transport 

To generalize (23), let the energy balance equation be given 
by 

L[T] + A(x) = QS(x)a(x, xs) (39) 

where L is a linear operator [Cahalan and North, 1979]. The 
model is completed by the ice line condition (15) and bound- 
ary conditions similar to (23). For constant diffusion, 

d d 

L -- -D •xx(1 - x 2) • + B (40) 

In general, however, L might include other integral or differ- 
ential operators. 

We shall assume that the arden's function Go(x, x') for L 
exists, so that 

L,,Go(x, x') -- 8(x - x') (41) 

where 8(x - x') is the Dirac delta function and the subscript x 
on L indicates that only the x variable is affected by L. The 
solution J(x) to the linear inhomogeneous problem 

L,,J(x) = p(x) (42) 

where p(x) is a known function, is uniquely given by 

f0 I J(x) = ao(X, x')p(x') (43) 

provided L and the associated boundary conditions lead to a 
unique inverse. (For properties of L necessary for the exis- 
tence and uniqueness of Go, see, for example, Courant and 
Hilbert [1953].) The Green's function for constant diffusion is 
given by 

Go•>(x, x,) = y, (2n+ 1)Pn(x) Pn(x' ) n( .... ) Ln (44) 
(A closed form expression for (44) is derived in Appendix A.) 

For latitude-dependent diffusion 

d d 

L•>(x) = - •xx D(x)(1 - x 2) •xx + B (45) 
we use the eigenfunctions fn(X), defined by 

dx = •nfn(X) (46) 
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Fig. 8. Same as Figures 3, 5, and 6 except that the model employs 
diffusive heat transport. The model is defined by (15), (22), and (23) 
with the analytical solution given by (37). 
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where the •n are eigenvalues. The system (46) forms a Sturm- 
Liouville system [Courant and Hilbert, 1953], provided D(x) > 
0 and is well behaved. The fn(X) are proportional to Pn(X) for 
D -- const. The fn(X) also are orthogonal and can be normal- 
ized such that 

' dx fm(X) fn(X) ----' •rnn (47) 

Furthermore, the lowest eigenvalue/,to -- 0 and fo(x) = I and, 
for n --) oo, •n OC n 2. The Green's function for the system is 
given by 

GoO(X)(x, X') ----' •, fn(X)fn(X')/ln (48) 

where In = •n + B. 
The Green's function Go(x, Xo) may be interpreted as the 

thermal response of the model to a localized heat source at x 
= Xo. Figure 7 shows a graph of this function for the constant 
D diffusion model. For large D the heat is smeared out; for D 
tending to zero the response tends to a spike at x = Xo. One 
important feature, to be used later, is that Go(x, Xo) is positive 
definite. 

The formal solution of any model possessing a Green's 
function is straightforward. Using (42) and (43), we convert 
(39) to the integral equation 

T(x) = f Go(x, x')[QS(x')a(x', x•) - A(x')] dx' (49) 
As before, we satisfy the ice line condition (15) by setting x = 
x, in (49). Solving for Q, we obtain 

fo I + Go(x, x'),4(x') dx' 
Q(x•) -- • (50) 

fo Go(x,, x')S(x')a(x', x,) dx' 
This solution reduces to the special cases (34) and (37) when 
the appropriate substitutions are made. 

Figure 8 shows the Q(x•) versus x• curve for the constant D 
diffusion model, computed by using (37) with terms through n 
= 6. (-Note that in Figure 8, Q is normalized to Qo.) The exact 
solution [North, 1975a] differs little from that shown in Figure 
8. The most striking difference between the diffusive model 
and the Budyko model is that the twigs in the Budyko model 
split open into two branches in the diffusive model. Just below 
x, -- 1 the slope changes sign, and dx,/dQ tends to zero at the 
cusp where the two branches meet [Drazin and Griffel, 1977; 
Cahalan and North, 1979]. If Q is increased quasi-statically 
from Qo, Figure 8 indicates that the ice cap first shrinks to the 
point where the slope changes sign, and beyond that presum- 
ably a jump to an i•:e-free earth occurs. Let us examine 
whether this sign change and the associated cusp are phys- 
ically realistic. Lin [1978] and North [1975b] noted that be- 
cause series (25) converges rapidly, models with nonlinear dif- 
fusion coefficient (D oc dT/dx) are easily solved. The two- 
mode results for the nonlinear model are virtually identical 
with those for the linear model, but retention of the higher 
modes in the nonlinear model removes the cusp at x• -- 1 
shown in Figure 8. A picture more like Figure 6 emerges. 

The cusp can also be removed by smoothing the albedo at 
the ice line. Cahalan and North [1979] have experimented with 
the smoothed form (38), choosing Cl and C2 to match the val- 

ues of the corresponding step albedo but allowing w, a mea- 
sure of the smoothing width, to differ from zero. As the width 
of the smoothing increases, the cusp disappears, and even- 
tually, the slope becomes positive near xs -- 1. Coakley [1979] 
also mentions this effect. For smooth albedo the twig in the 
Budyko model at xs = 1.0 is also removed. Cahalan and North 
have shown that such behavior follows generally from (49) 
and (50). We must conclude that the appearance of the twig or 
cusp near x•-- 1 in the simple models is probably unphysical 
and merely an artifact of the mathematically convenient but 
physically unrealistic step function albedo. 

3. SEASONAL MODELS 

In extending the one-dimensional climate model to include 
seasonal cycles we wish to study the sensitivity of the model to 
see if it differs from that of the corresponding mean annual 
model. In other words, do seasonal changes affect the mean 
annual climate? 

There have been several attempts at developing seasonal 
models, notably the energy balance models developed by 
Adem [1962] and Sellers [1973] and the general circulation 
models developed by Manabe and his co-workers [Wetheraid 
and Manabe, 1972; Manabe et al., 1979]. More recently, there 
have been studies by Thompson and Schneider [1979], who 
seasonalized the Gal-Chen/Schneider version of the Sellers 
model [Schneider and Gal-Chen, 1973; Gal-Chen and Schnei- 
der, 1976]; Ramanathan et al. [1979], who seasonalized the Bu- 
dyko model; and North and Coakley [1978, 1979], who season- 
alized the simple diffusive model [North, 1975a, b]. The model 
studies so far have similar qualitative conclusions, so that it 
will suffice here to study the diffusive model as an example. 

As before, the method of solution (Legendre polynomial ex- 
pansion) is intimately connected with the philosophy of the 
model hierarchy approach. The development of the diffusive 
seasonal model is similar in spirit to the approach taken some 
time ago by Fritz [1960]. Our emphasis here will be on using 
the model to understand the main features of the seasonal 

cycle. As far as possible we will use analytical methods. 
We begin by examining seasonal data for the zonally aver- 

aged temperature T(x, t), the infrared flux I(x, t), the co-al- 
bedo a(x, t), and the heat per unit area reaching the top of the 
atmosphere, QS(x, t). North and Coakley [1978, 1979] have 
shown that a convenient representation of the fields is first to 
symmetrize them so that data from only one hemisphere is 
used; the other hemisphere is given the same data but lagged 
by 6 months. After symmetrization the data are fitted to 
simple formulae 

F(x, t) -- Fo + (A,, cos 2•rt + B•, sin 2•rt)Pl(X) + F2P•(x) 
(51) 

where F(x, t) can be any of the four fields. Each field is then 
characterized by the four coefficients in (51). Note that the 
mean annual fields are characterized by Fo and F•, while the 
amplitude and phase of the seasonal cycle may be computed 
from •4• and B•. Fits for the four fields using the symme- 
trized northern hemisphere (SN), symmetrized southern hem- 
isphere (SS), and global data have been performed by North 
and Coakley [1979]; results for SN are listed in Table 1. F, ig- 
ures 9-12 show examples of the curves for various seasons 
along with observations. From the curves we see that (51) cap- 
tures the gross features of the fields but misses the fine struc- 
ture, which is particularly noticeable at low latitudes. In keep- 
ing with the approach taken so far in this review we would not 
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TABLE 1. Expansion Coefficients for Equation (52) for the 
Symmetrized Northern Hemisphere Fields 

Field Fo A • B• F•_ Erm s 

T(x, t) 14.9 -13.2 -8.1 -28.0 2.0 
l(x, t) 234.4 -33.7 -17.7 -55.6 9.5 
a(x, t) 31.9 7.2 5.4 20.2 2.6 
S(x, t) 1.000 -0.796 0.006 -0.477 0.056 

T(x, t) is sea level temperature (degrees Celsius), l(x, t) is infrared 
radiation to space (watts per square meter), and a(x, t) is albedo (per- 
cent). Also shown is S(x, t), the normalized calculated solar energy 
reaching the top of the atmosphere. Erm s is the rms error associated 
with the fit [North and Coakley, 1979]. 

expect simple models to work on scales beyond P•_(x) in (51). 
Indeed, attempts by North and Coakley to go beyond this 
mode failed. 

As in the mean annual models, we adopt the Budyko form 
for the emitted infrared radiative flux, 

I(x, t) -- A + BT(x, t) (52) 

With A -- 203.3 and B -- 2.09 W m -•- øC-• [North and 
Coakley, 1979], (52) gives the best fit to the mode amplitudes 
listed in Table 1 for the emitted fluxes and temperatures of the 
northern hemisphere. The fit to observations is shown in Fig- 
ure 10. 

We construct the seasonal model along the lines of previous 
sections. In the seasonal model, however, a storage term C(x, 
4p) •T/•t, must be added; C(x, q•) is a latitude- and longitude- 
dependent heat capacity per unit area. The forcing is given by 
the four amplitudes in the mode expansion of S(x, t). The sea- 
sonal response is represented by the four amplitudes in the 
mode expansion of T(x, t). A linear climate model would con- 
nect these two fields with a four-by-four response matrix. Lin- 
earity is suggested by the absence of higher harmonics in both 
the forcing and the response fields [North and Coakley, 1979]. 
The most general linear model with four components consists 
of a response matrix with 16 independent components. We 
shah see that most of these elements may be taken to be zero. 

With the storage term added the energy balance model be- 
comes 

C(x, rb)(&T/&O - DV:T + A + BT-- QS(x, Oa(x, 0 (53) 

As an idealization of the northern hemisphere we take a single 
continent with coastlines running along meridians and with 
an area spanning 40% of each latitude belt. We separate the 
continent from the oceans because C(x, 4p) is only about 0.16B 
years (C,) over land and about 4.7B years (Cw) over the ocean 
mixed layer (75 m). 

If (53) is integrated around'a latitude belt, we obtain for the 
landmass (after dividing through by f,., the fraction of land 
area) 

OTl.(X,t)_DO • Do •l left CL 0-•• •X (l- X 2) •X TL- f--• --right 

+ A + bTL = QS(x, t)aL(x, t) (54) 

where T,. is defined as the average temperature over land in a 
latitude belt. The gradient term is the difference between land 
and water temperatures divided by an effective angular dis- 
tance over which the temperature change effectively occurs. 
The whole term may be written as 

- > 0 (55) 

where v is a new adjustable parameter that accounts for the 
land-sea interaction. 

An equation analogous to (54) can be derived for Tw(x, t), 
the temperature over oceans. The zonal average field is the 
weighted average given by 

T(x, 0 = fLTL + fwT• (56) 

This kind of decomposition was first used by Sellers [1973]. 
If we substitute the truncated Fourier-Legendre series (51) 

for T,. and T• into the resulting equations, we obtain 

dt 

A + BTo--QHo (57) 

__• 
+ (2D + B)T,L,'• + f,.,• (T, •,'•- T, '•,t-) -- QH, 

(58) 

(6D + B)T: = QH: (59) 

SYMMETRIZED NORTHERN HEMISPHERE 
SURFACE TEMPERATURE 
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Fig. 9. Observed surface temperature of the symmetrized northern hemisphere (circles) and the representation of the 
surface temperatures obtained with the 00, 11, and 20 modes listed in Table 1 (solid curves). The surface temperatures are 
for northern hemisphere winter (December, January, and February (DJF)) and spring (March, April, and May (MAM)), 
but because the temperature fields have been symmetrized, the temperatures for summer and fall are obtained by reversing 
the abscissas [North and Coakley, 1979]. 
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SYMMETRIZED NORTHERN HEMISPHERE 
INFRARED FLUX 
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Fig. 10. Observed infrared fluxes emitted by symmetrized northern hemisphere (circles) and the representation ob- 
tained with the 00, 11, and 20 modes listed in Table I (solid curves). The dashed curves show the fit obtained by using the 
00, 11, and 20 modes of the temperature field (Table 1) in (53) [North and Coakley, 1979]. 

where 

Ho(t)-- •{2ao + a,(t)S,(t)Go,• + a2S2Go2: + '"} (60) 

H,(t) -- • {aoS,(t)G,o, + a,(t)G,,o 

+ a:S,(t)G,:, + a,(t)S:G,,: + -.-} (61) 

H:(t) -- • {a:G::o + aoS:G:o: + 

+ a•(t)S•it)G:• + ..-} (62) 
and 

Go.•, = P,(x)P•(x)P•,(x) Sx (63) 
! 

The relevant coupling coefficients G,•k are Go• -- ], Go:: = ], 
G!21 4 -- •, and G::: -- •-. In (60)-(62), $o 1; a,(t) and $,(t) 
represent the first-harmonic contributions to the coefficients of 
P,(x) in the expansions of a(x, t) and $(x, t). For simplicity we 
have assumed the co-albedos for land and ocean areas to be 

the same. Also for simplicity we take Ho and H: to be inde- 
pendent of time. We do so by replacing a,(t)S,(t) by its annual 
average and by neglecting second-harmonic contributions. 

We see that (57) and (59) are just the equations for the two- 
mode approximation to the mean annual model. The only 
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new contributions to these equations are the terms propor- 
tional to a•(t)S•(t). These terms are called 'residuals.' In To 
this term causes a warming of about 2øC that is not present 
in the mean annual models. The residual occurs because the 

northern hemisphere is more reflective in winter than in sum- 
mer (making the seasonal amplitude larger), but the impact of 
absorption in summer is greater because the sun is low in the 
sky during winter. This residual was noted by WetheraM and 
Manabe [1972] in their study of the seasonal cycle with a 
GCM. 

The seasonal amplitude of the zonal average surface tem- 
perature may be obtained by solving (58) for land and ocean 
masses and reconstructing T•(t) from (57). The amplitude of 
T•(t) for the northern hemisphere is 15.5øC; the phase lags the 
solar heating by 32 days. For reasonable values of the param- 
eters [North and Coakley, 1978, 1979] (that is, D taken from 
the mean annual model; v very nearly zero; C,•, Cw computed 
heat capacities for a column of air and a column of ocean 
mixed layer (75 m); and f,• = 0.40)-the model yields the cor- 
rect phase and amplitude for the seasonal mode. (Note that in 
this section, as in the work by North and Coakley [1979], we 
have used Q = 340 W m-:, whereas in section 2 we used 335 
W m-:.) 

SYMMETRIZED NORTHERN HEMISPHERE 
ALBEDO 
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Fig. 11. Observed albedo of the symmetrized northern hemisphere (circles) and the representation of the albedo obtained 
with the 00, 11, and 20 modes listed in Table I (solid curves) [North and Coakley. 1979]. 
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Fig. 12. Distribution of incident solar radiation (circles) and the representation of the distribution obtained with the 00, 
11, and 20 modes listed in Table I (solid curves) [North and Coakley, 1979]. 

Simple experiments with the solutions show that the ampli- 
tude and phase are rather sensitive to the fraction of land, fL. 
For instance, if fL is reduced to 0.20 (southern hemisphere), 
then the seasonal amplitude is reduced to about 8ø(2, in rough 
agreement with the symmetrized southern hemisphere data. 

It is possible to parameterize a(x, 0 in the model in terms of 
a snow line (or clou.d line) attached to an isotherm and 
thereby produce a serf-consistent feedback scheme. In order to 
study climate change or sensitivity, North and Coakley [1979] 
have considered an ice cap whose edge is at the mean annual 
-10øC isotherm and a seasonally moving snow line on land 
whose edge is at the instantaneous 0øC isotherm. The result- 
ing energy balance model is slightly nonlinear, and the four 
coefficients in (51) for T(x, t) are obtained by iterating a sys- 
tem similar to (57)-(59). The results indicate that this model 
has about the same sensitivity to solar constant changes as the 
corresponding mean annual model. The small (few percent) 
differences can be explained in terms of changes in the residu- 
als discussed earlier. 

4. SENSITIVITY AND THE PARAMETERIZATIONS 

In the preceding sections we introduced simple climate 
models and gave a short survey of solvable examples. The pri- 
mary purpose of these models is to guide our understanding of 
climate feedback mechanisms. We must view with skepticism, 
however, the numerical results obtained with the simple mod- 
els. These results are bound to be sensitive to the various pa- 
rameterizations used to link the energy fluxes to surface tem- 
peratures. In this section we discuss the most commonly used 
parameterizations, how they were developed, how reliably 
they reproduce the relationships between the fluxes and the 
surface temperatures, and, finally, how they influence the fun- 
damental sensitivity of the model as given by the sensitivity 
parameter flo. 

To understand how the parameterizations affect flo, we note 
that the sensitivity for a global model may be derived directly 
from the condition of global energy balance [Cess, 1976; Lian 
and Cess, 1977]: 

Io-- QHo(To) (64) 

Differentiating (64), we obtain 

dTo Io 

rio-- Q d-•--- (dlo/dTo)- Q(dHo/dTo) (65) 

Obviously, rio is influenced by the sensitivity of the infrared 
radiative flux to changes in the surface temperature, clio/alTo; 
it is also influenced by the sensitivity of the planetary albedo 
to changes in surface temperature, Q dHo/dTo, the albedo- 
temperature feedback. Less obvious, however, is the influence 
of the meridional transport on rio. The meridional transport 
affects rio primarily through its influence on the albedo-tem- 
perature feedback. If, for example, the surface albedo is taken 
to be a function of the local surface temperature, then Ho will 
be a function of the latitudinal distribution of temperature, 
which in turn is governed by the meridional transport. As a 
result the albedo-temperature feedback is subject to both the 
albedo parameterization and the transport parameterization. 

Note that here we are considering only the uncertainty in 
the sensitivity due to a small global change in solar input. As 
we have seen, for larger changes a critical solar constant is 
reached beyond which only ice-free or ice-covered steady 
states exist. As was emphasized by Warren and Schneider 
[1979], uncertainties in rio lead to large uncertainties in this 
critical value. In simple models, reductions in flo tend to be as- 
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Fig. 13. Isopleths of the decrease in global average temperature cal- 
culated for a 1% decrease in the solar constant [Coakley, 1979]. 
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sociated with lower critical points, as is illustrated in Figures 
13 and 14, but even this correlation could be reversed by ne- 

I.O 
glected nonlinear effects. In section 7 we consider small local 
changes in heating and an associated latitude-dependent sen- 
sitivity. Again, any uncertainty in rio contributes to a large un- 
certainty in this spatial sensitivity. In the following discussion 
we consider uncertainties in the infrared, co-albedo, and o >•o.5 
transport parameterizations and theft effect on rio. _9_0 

Infrared Parameterization 

A method of parameterization commonly used in energy 
balance climate modeling was first applied by Budyko [1969] 
to obtain the emitted flux in terms of the surface temperature. 
He hypothesized that the way meteorological variables influ- 
ence the flux is exhibited in latitudinal and seasonal climato- 

logical data. To obtain the relationship, he collected meteor- 
ological records from a variety of stations in the northern 
hemisphere, and with these records he calculated the emitted 
IR flux at the top of the atmosphere. From the results of these 
calculations he deduced that the emitted flux is given by 

I = A, -•' A2•c -•' (B 1 -•- B2Ac)T (66) 

where Al, A2, and B•, and B2 are constants, Ac is the cloud 
cover fraction, and T is the surface temperature. Cess [1976] 
applied (66) to climatological records of zonal mean surface 
temperatures, cloud cover, and satellite-observed emitted 
fluxes. He found that (66) indeed provided an excellent fit to 
the climatological data. For each 10 ø latitude zone, with Al = 
257 W m -2, A2 '" -91 W m -2, Bl = 1.63 W m -2 oc--l, and B2 
= -0.11 W m -2 øC-I the parameterization fits the northern 
hemisphere data with a maximum error of 1.2% of the emitted 
flux. With A• = 262 W m -2, •q2 -- --81 W m -2, B• --- 1.64 W 
m -2 øC-•, and B2 = -0.09 W m -2 øC-• the parameterization 
fits the southern hemisphere data with a maximum error of 
2.3%. 

Despite the different climates exhibited by the hemispheres 
the parameterization proved successful at fitting the observa- 
tions, the constants changing only slightly from one hemi- 
sphere to the other. Such results argue for the universality of 
the parameterization. Most remarkable is that because B2Ac 
<< B! for both hemispheres, Bl = dlo/dTo is the only parame- 
ter, according to (65), that would affect rio, and it is the same 
(1.6 W m -2 øC-l) for both hemispheres. The somewhat larger 
value of B = 2.09 W m -2 øC-I used in earlier sections for illus- 

trative purposes arises from applying I = A + BT to the zonal 
climatological data and ignoring cloud cover. Also ignoring 
cloud cover, Oerlemans and Van den Dool [1978] obtained 
2.23 W m -2 oC-l. 

Sellers [1969] developed another parameterization for the 
emitted flux. It is nonlinear in surface temperature. North 
[1975b], however, showed that when the parameterization is 
linearized, it resembles the Budyko parameterization with 
constants that differ only slightly from those given by Budyko. 

That the emitted IR flux is so simply related to surface tem- 
peratures seems miraculous when we consider that the earth's 
surface and each segment of the atmosphere contributes to the 
emitted flux. The contribution made by a segment of the at- 
mosphere depends on its temperature and concentration of 
emitters. Water vapor and clouds are the major emitters. As 
clouds and water vapor are confined to the troposphere and as 
tropospheric temperatures are sufficiently high, most of the IR 
flux emanating from the atmosphere is emitted by the tropo- 
sphere. Thus any feedbacks that link surface temperature to 
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Fig. 14. Equilibrium position of the ice line (-10øC isotherm) as 
a function of the solar constant. Results obtained with radiation pa- 
rameterizations adopted by North [1975b] (solid curve) and by 
Coakley [1979] (dashed curve). For comparison the positions of the 
-10øC isotherm of the lowest GCM level from calculations per- 
formed by WetheraM and Manabe [1975] are represented by circles 
[Coakley, 1979]. 

tropospheric temperature profiles, humidity, or cloud cover 
are likely to influence the sensitivity of the outgoing flux to 
changes in surface temperature. 

To illustrate how various feedbacks might affect rio, we take 
dlo/dTo to be given by [Coakley, 1977] 

dlo alo alo dAc alo dTc alo dl' 
dTo- aTo I aAc dTo I aTc dTo + oF dTo (67) 

In (67) dAc/dTo represents the rate of cloud amount change 
with surface temperature change, the cloud amount feedback; 
dTc/dTo the cloud top temperature feedback; and dl'/dTo the 
tropospheric lapse rate feedback. The partial derivatives in 
(67) are evaluated while keeping the remaining variables 
fixed. 

Feedbacks with the largest potential influence on dlo/dTo 
are those related to cloud cover. Cess and Ramanathan [1978] 
report that -91 < OIo/OAc < -34 W m -2, depending on how 
the vertical profile of cloud cover changes as the total amount 
of cloud cover changes. We note then that a cloud amount 
feedback dAc/dTo = 0.02øC -l would contribute as much as 
1.8 W m -2 øC-l to dlo/dTo. That is, its contribution would be 
as large as the value deduced for dlo/dTo from climatological 
records. Clearly, cloud amount feedbacks could greatly influ- 
ence the sensitivity of the climate. 

Another cloud-related feedback is the cloud top temper- 
ature feedback. Calculations made with globally averaged 
vertical column models of the earth's atmosphere [Ramana- 
than and Coakley, 1978] indicate that for fixed cloud top tem- 
peratures, OIo/OTo = 2.16 - 1.75Ac, or 1.29 W m -2 øC-! for A½ 
= 0.5, while for fixed cloud top altitude and constant tropo- 
spheric lapse rate (dTc/dTo = 1.0), OIo/OTo + OIo/OTc(dT½/dTo) 
= 2.16 + 0.19Ac, or 2.26 W m -2 øC-' for Ac = 0.5. Thus dlo/ 
dTo could change by 1.0 W m-'- øC-l if the cloud tops change 
from maintaining constant cloud top temperatures to main- 
taining constant cloud top altitudes. How the clouds might 
change during a climate change, however, remains a mystery. 

The preceding values for dlo/dTo were computed by assum- 
ing that the atmosphere maintains constant profiles of relative 
humidity. Thus as the tropospheric temperature increases, the 
concentration of water vapor is assumed to increase. The as- 
sumption is based on the observation that the earth's atmo- 
sphere appears to conserve relative humidity [Manabe and 
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Wetheraid, 1967]. Global circulation models of the earth's at- 
mosphere also seem to conserve relative humidity [Manabe 
and Wetheraid, 1975; Wetheraid and Manabe, 1975]. If, on the 
other hand, the atmosphere maintained profiles of constant 
absolute humidity, dlo/dTo -- 3.7 W m -2 øC-• under the con- 
ditions of fixed cloud top altitude [Rarnanathan and Coakley, 
1978]. We note then that without the observed moisture feed- 
back affecting the opacity of the atmosphere, the emitted radi- 
ation exhibits the sensitivity of a blackbody at the earth's 
equivalent temperature Te -- 254 K. 

Finally, as with the moisture and the cloud cover feedbacks, 
lapse rate feedbacks are also expected to influence dlo/dTo. 
Rarnanathan [1977] noted that in the 0-2% solar constant 
change experiments performed with a GCM [Wetheraid and 
Manabe, 1975], dI/dT with fixed cloud top altitude ranged 
from 2.4 + 1.45Ac near the equator to 1.7 - 0.81At near the 
pole. He attributed the range to differences in lapse rate 
changes. Near the equator, moist adiabatic adjustment gov- 
erned the lapse rate changes, while near the pole a mixture of 
radiative and advective processes governed the lapse rate 
changes. 

Obviously, the feedbacks mentioned thus far could have a 
profound influence on dlo/dTo and thereby on •o. How these 
feedbacks work and what other feedbacks might affect the cli- 
mate sensitivity represent the focus of much ongoing research. 
Given the range of possibilities illustrated thus far, it is diffi- 
cult to specify a probable range for rio/alTo. Barring cloud 
amount changes, however, we might accept the range from 1.3 
W m -2 øC-•, obtained with fixed relative humidity, lapse rate, 
and cloud top temperature, to 3.1 W m -2 øC-•, obtained with 
fixed relative humidity, cloud top altitude, and moist adia- 
batic adjustment exhibited in the tropical region by the GCM. 

In accepting this range we should note that contrary to the 
finding by Budyko and Cess of a universal constant for B•, ex- 
periments with a GCM indicate that dI/dT changes with lati- 
tude. Oddly enough, the Budyko parameterization fits the 
zonal climatology of the GCM about as well as it does the 
earth's [Coakley and Wielicki, 1979]. The apparent discrep- 
ancy is resolved when we recognize that the feedbacks that in- 
fluence the climate change exhibited by the GCM are not re- 
vealed by applying (66) to the zonal fields. In a similar way we 
might expect that application of (66) to the earth's fields 
would also miss the feedbacks that could significantly affect 
climate change. 

Albedo Parameterization 

As the earth cools, we expect the extent of permanent ice 
and snow cover to increase, thereby increasing the earth's al- 
bedo. To simulate this effect, Budyko [1969] proposed the 
simple mechanism introduced in section 2. Poleward of the 
-10øC mean annual isotherm the surface is to be covered 

with ice; equatorward it is to be ice free. The -10øC isotherm 
represents the boundary of permanent ice and snow cover for 
the northern hemisphere. Budyko assigned albedos of 0.62 for 
ice-covered regions and 0.32 for ice-free regions. Hence the al- 
bedo change is 0.3 when the surface changes from being ice 
covered to ice free. As is indicated in Figures 13 and 14, such 

bedos of the ice-free regions will be high at high latitudes be- 
cause of large zenith angles and low at low latitudes. As a 
result the change in albedo as the surface changes from ice- 
free to ice-covered conditions will be large at low latitudes but 
small at high latitudes, where the ice cover changes take place. 
Allowing for the zenith angle-dependent refiectivities referred 
to by Lian and Cess, Coakley [1979] finds that the change in 
albedo at the ice line is reduced to 0.15, for which Q dHo/dTo 
----- 0.4 W m -2 øC-• under the current climatic conditions. 

Instead of an ice line, Sellers [1969] allowed for the change 
in albedo by taking 

a -- b + cT T< 283.16 

(68) 
a = b- 2.55 T _> 283.16 

From albedos and temperatures in the same latitude zones of 
the two hemispheres he deduced that c -- -0.009 K -•. He then 
made b a function of latitude so that (68) matched observed 
albedos. 

Because of the zenith angle-dependent reflectivities noted 
by Lian and Cess, however, we would expect c to be a func- 
tion of latitude and not a constant. From climatological obser- 
vations of zonal albedos and surface temperatures, they de- 
duce that c ranges from 0.0 K -• for latitudes equatorward of 
40øN (near the position of the + 10øC isotherm and in agree- 
ment with (68)) to -0.0145 K -• at 85øN. Using the latitude- 
dependent c, they obtain Q dHo/dTo -- 0.3 W m -2 øC-•, while 
using the same model but with c = -0.009 K -• at all latitudes, 
they obtain Q dHo/dTo -- 1.0 W m -2 øC-•. This difference 
more than doubles the sensitivity of the model. 

As with the emitted radiation, water vapor strongly influ- 
ences the absorbed solar radiative flux. For fixed relative hu- 

midity, absorption by water vapor increases as the tropo- 
spheric temperature increases. Coakley and Wielicki [1979] 
estimate that for fixed relative humidity the change in absorp- 
tion by water vapor contributes 0.2 W m -•- øC-• to Q dHo/ 
dTo. 

Of the solar radiation reflected by the earth, clouds reflect 
between 70 and 80%. We would expect therefore that cloud 
amount feedbacks would strongly affect the sensitivity of the 
absorbed solar radiative flux to changes in surface temper- 
ature. For global average conditions [Cess, 1976], 

Q OHo/OA• = Q(a,- aO (69) 

where a, = 0.18 is the albedo for cloud-free regions and a• -- 
0.43 is the albedo for cloud-covered regions. Hence Q OHo/OA• 
= -85 W m -2, and thus dAc/dT-- 0.01øC -' is sufficient to 
swamp the feedbacks examined so far. 

Clearly, the cloud amount feedback could strongly influ- 
ence the sensitivity of the albedo to changes in surface tem- 
perature, just as it could strongly influence the sensitivity of 
the emitted IR flux. We note, however, that the change in the 
absorbed solar radiative flux caused by a change in cloud 
cover is somewhat compensated for by the change in the emit- 
ted IR flux. That is, the term in the denominator of (65) con- 
tributed by a cloud amount feedback, (0Io/OA• - Q OHo/OAO 
dA•/dTo, is smaller than either OIo/OA•(dAc/dTo) or Q OHo/ 

a large change in the albedo at the ice line makes the model OA•(dA•/dTo). In fact, it may be negligible [Cess, 1976]. Its 
highly sensitive to solar constant changes and causes it to pro- magnitude, however, is the focus of considerable debate [Cess 
duce the completely ice-covered solution when the solar con- and Ramanathan, 1978; Ohring and Clapp, 1980; Hartmann 
stant is only slightly reduced. and Short, 1980]. 

Lian and Cess [1977] noted, however, that because of the ze- Barring again cloud amount feedbacks, we might accept a 
nith angle-dependent reflectivities of clouds and surfaces, al- range from Q dHo/dTo -- 0.2 W m -2 øC-• for fixed relative 
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humidity and no ice-albedo feedback to 0.6 W m -2 øC-• for 
fixed relative humidity with ice-albedo feedback. The larger 
values obtained with the Budyko and Sellers parameter- 
izations appear unwarranted in view of the zenith angle-de- 
pendent reflectivity corrections which they neglect. 

Transport 

In the two-mode approximation the sensitivity of simple 
models was shown in section 2 to be unaffected by the model 
used for the meridional transport. Held and Suarez [1974], 
North [1975b], and Lin [1978] have also shown that various 
diffusion parameterizations that are nonlinear in the meri- 
dional temperature gradient, such as the parameterization 
suggested by Stone [1973], also have relatively little effect on 
sensitivity. If a third mode is added, then corrections to •o of 
the order of T4/T2 '• 10% are to be expected. Allowing for a 
Hadley cell along the lines suggested by Lindzen and Farrell 
[ 1977], for example, might be expected to make such a correc- 
tion. 

Remember that in the simple models the transport only af- 
fects •o indirectly. The transport enters the energy balance as 
the divergence of a heat flux, and integrals over the globe to 
obtain the global energy budget cause the transport term 
(-R2DV2T or ¾(T- To)) to disappear from the global energy 
balance (64); consequently, because dlo/dTo is usually taken 
to be constant, the transport can influence the sensitivity only 
through its impact on the albedo-temperature feedback 
Q dHo/dTo. Without albedo-temperature feedback the meri- 
dional transport could have no influence on the sensitivity of 
these simple models. 

A realistic model for the transport has yet to be constimcted. 
In an attempt to check the diffusion mechanism, Lorenz 
[ 1979] has recently made a study of sensible heat transport in 
the real atmosphere. He finds that diffusion parameterizations 
may work for the largest scales (Legendre index n - 0, 1, 2) 
but surely fail for smaller scales (flux and temperature gradi- 
ent are improperly correlated). 

Despite the omnipresence of diffusive transport models, the 
results of the GCM referred to earlier suggest that its trans- 
port remains constant independent of surface temperature 
and regardless of external forcing [Manabe and Wetheraid, 
1975; Wetheraldand Manabe, 1975; Stone, 1978]. This surpris- 
ingly simple relationship exhibited by the GCM is, however, 
due to the large changes in the transport of latent heat being 
canceled by changes in the transport of dry static energy. This 
cancelation is apparently subject to the equilibrium climate of 
the model (S. Manabe, private communication, 1980) and 
may not hold for drastically altered equilibrium states. Recent 
studies of an intermediate-sized model by Held [1978] seem to 
bear this out. 

With the ranges obtained for B -- dlo/dTo, 1.3 < B < 3.1 W 
m -2 øC-•, and for Q dHo/dTo, 0.2 < Q dHo/dTo < 0.6 W m -2 
øC, we obtain a range 0.8øC < rio < 3.4øC. Although difficult 
to verify, this range probably brackets the actual sensitivity of 
the climate. It encompasses the sensitivities of most climate 
models--energy balance models (aside from those with the 
large albedo-temperature feedbacks), radiative-convective 
models [Rarnanathan and Coakley, 1978], and general circula- 
tion climate models [Lian and Cess, 1977]. It is also consistent 
with the short-term response of the climate to increases in 
stratospheric aerosols as a result of volcanic eruptions [Schnei- 
der and Mass, 1975; Mass and Schneider, 1977; Hansen et al., 

1978]. It should be remembered, however, that the effect of at 
least one potentially significant feedback, cloud feedback, has 
not been included in the above estimates of •o. As was men- 
tioned before, what cloud cover changes will accompany cli- 
mate changes and how they will influence the changes are 
subjects of current research. 

5. SENSITIVITY TO CHANGES 

IN ORBITAL PARAMETERS 

Over periods of 104-105 years the earth's orbit about the sun 
changes. Milankovitch [1941], among others, argued that these 
changes cause variations in the amount and distribution of so- 
lar radiation received by the earth, thereby influencing the cli- 
mate. Milankovitch suggested that the orbital changes force 
the advance and retreat of glaciers. Indeed, evidence that the 
climate is so forced has been found in geological records. By 
examining sediments taken from deep ocean cores, Hays et al. 
[ 1976] have shown that the principal periods of climatic varia- 
tion (100,000, 42,000, and 23,000 years) match those for 
changes in the eccentricity (105,000 years), the obliquity 
(41,000 years), and the longitude of perihelion (23,000 and 
19,000 years). Many have used simple energy balance models 
in efforts to explain the glacial cycles as the result of orbital 
changes. 

How energy balance models respond to orbital per- 
turbations is understood through the effect of the per- 
turbations on the forcing--the incident solar radiation. To 
start, we note that fractional changes in global average mean 
annual incident solar radiation are approximately given by 
«Ae: [Berger, 1978], where e is the ecc. entricity of the earth's or- 
bit. Because the eccentricity has always been small (e < 0.07), 
the resulting changes in the solar constant have always been 
less than 0.2%. A 0.2% change in solar constant causes, ac- 
cording to the energy balance models, about a 0.4øC change 
in the global mean surface temperature. Such a change is an 
order of magnitude smaller than the changes that seem to 
have taken place [Hays et al., 1976]. Owing to their in- 
significant magnitude, changes in energy balance models 
brought about by variations in the eccentricity will be ne- 
glected in the following discussion. 

More important than changes in the mean annual solar ra- 
diation, however, are the variations in its latitudinal and sea- 
sonal distribution. These variations result from changes in the 
obliquity and longitude of perihelion. The seasonal variations 
are clearly represented by changes in the incident solar radia- 
tion for summer and winter caloric half years, as defined by 
Milankovitch [1941] [Berger, 1978]. We may derive these 
changes from the expression for S(x, t), 

S(x, t) = So(t) + Sl(t)P,(x) + S•_(t)P•_(x) (70) 

where to first order in e, 

So(t) = 1 + 2e cos (2•rt- H) 

S,(t) = Sl(COS 2•rt + 2e sin II sin 2•rt) 

S2(t) = S211 + 2e cos (2•rt - II)] 

Here t = 0 at the northern hemisphere's winter solstice, H is 
the longitude of perihelion measured from the longitude of 
the winter solstice, and in the derivation of S2(t) we have ne- 
glected the first harmonic terms proportional to e that arise 
from the second harmonic, which results from the sun cross- 
ing the equator twice each year. The derivation of the terms in 
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Fig. 15. Stability of northern hemisphere ice sheet as a function of its latitudinal extent for various combinations of 
obliquity, eccentricity, and precession (longitude of perihelion measured from the position of the northern hemisphere 
winter solstice). To the right of the 'zero-regime' axis, mean accumulation exceeds ablation, and the ice sheet grows; to the 
left, ablation dominates, and the ice sheet shrinks. S denotes a stable equilibrium; U an unstable equilibrium [from Pol- 
lard, 1978]. 

(70) is outlined by North and Coakley [1979]. Averaging S(x, 
t) over the summer and winter half years, we obtain 

S, = 1 - 2-S,P,(x)+ SzPz(x) 4e sin FI [1 + SzPz(x)] (71) 

2 S 4e S, = 1 + ,P,(x) + S:P:(x) + --sin H [1 + S:P:(x)] 

Changes in the incident radiation are thus given by 

ASs = - 2AS,P,(x) + AS2P2(x) - •a(e sin H)[I 
(72) 

AS, = 2AS,P,(x) + AS2P2(x) + •A(e sin H)[1 + S2P2(x)] 
The above expressions are the three-mode representations of 
the Milankovitch forcing as it has traditionally been calcu- 
lated [Milankovitch, 1941; Vernekar, 1971; Berger, 1978]. 

From (72) we see that the change in the mean annual distri- 
bution of incident radiation is given by 

AS(x) = «(ASs + ASw) = AS2P2(x) (73) 

S: is easily shown to depend only on the obliquity/lo. Because 
the range of obliquities remains small, 22.10 ø _</lo -< 24.51 o 
[Vernekar, 1971], we may take AS: = 0.0115 A/lo, where A/lo is 
in degrees of arc. 

Currently,/lo = 23.45 ø, but 25,000 years ago,/lo was about 
22.2 ø . This change in obliquity caused there to be less radia- 
tion incident at the poles and more incident at the equator. 
The change is thought to have spurred the glacial maximum 
18,000 years ago. Inserting the altered distribution into a 
mean annual model, however, gives only a 1 ø-2ø equatorward 
shift in the latitude of the ice line and a warming in low lati- 
tudes [Budyko, 1969; Sellers, 1970; Saltzman and Vernekar, 
1971;' Coakley, 1979]. These results clearly disagree with the 
ice line shift of approximately 15 o and a cooling of several de- 
grees at all latitudes deduced for the glacial maximum [Cli- 
map Project Members, 1976]. 

The small changes in the mean annual distribution of in- 
cident radiation and the disappointingly small response of 
mean annual models have led some to suggest that seasonal 
variations need to be considered when estimating the effect of 
Milankovitch forcing. Obviously, (72) indicates that variations 
for each season will be larger than those for the annual mean. 
Results of seasonal models that allow for these variations, 
however, fail to differ significantly from those of the mean an- 
nual models [Suarez and Held, 1976, 1979; North and Coakley, 
1979]. S•, to first order in e, is easily shown to depend only on 
/•o, and thus, like S2, we find AS• = -0.016 A/•o. Because S• 
contributes only a small increment to To and T2, AS• raises the 
response of a seasonal model only slightly over that of a mean 
annual model. Likewise, by considering as in section 3 the 
mean annual residuals contributed by the terms proportional 
to e in (72) we find that for the last 25,000 years these terms 
contribute, at most, variations of the order of 0.1øC in To and 
T:. Also, if we allow for differences between the annual mean 
temperatures of the two hemispheres, the terms that couple 
the seasonal variation of albedo with changes in the longitude 
of perihelion contribute, at most, 0.2øC to the annual mean 
component of T,. Thus neither mean annual nor seasonal 
models give responses that would support the Milankovitch 
theory. 

Of course, as was mentioned in the two previous sections, 
simplicity and questionable parameterizations may be the rea- 
son that energy balance models fail to give large responses. 
Perhaps if more physical processes were modeled, more feed- 
backs included, and more realism added, the models would 
become more sensitive. 

Some additional features have been added recently. Pollard 
[1978] added Weertman's glacier model [Weertman, 1976] to a 
simple three-mode seasonal model. Because it allows for the 
ablation of snow and ice by incident solar radiation, the gla- 
cier model contributes far more to the sensitivity of the sea- 
sonal model than to that of the mean annual model. The en- 

hanced sensitivity is indicated by the sensitivity of the model 
to changes in perihelion as shown in Figure 15. Nevertheless, 
if we scale the results shown in Figure 15, we find that the 
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model, even with enhanced sensitivity, would predict only a 
4o_5 o shift in the ice line for the obliquity change connected 
with the 18,000 years B.P. glacial maximum. The addition of a 
glacier model by itself has so far proven insufficient to obtain 
the desired results. 

Another factor to consider is the zonal asymmetry of ice age 
climates. Most of the models mentioned so far have been zo- 

nally symmetric. Reconstructions of the last glacial maximum 
indicate, however, that in the northern hemisphere, ice ex- 
tended much further equatorward over continents than over 
oceans [Climaœ Project Members, 1976]. Hartmann and Short 
[1979] have argued that the glacial maximum and its evident 
asymmetry may have been the response to a zonally asymmet- 
ric wave in the surface temperature. Using an energy balance 
model that contains a prescribed asymmetry in the surface 
temperature, they obtain an ice-age-like response when they 
insert reasonable amplitudes for the asymmetric term. With 
this additional component, however, the model appears to be 
no more sensitive to changes in the incident radiation. In Fig- 
ure 16 the global mean temperature is plotted as a function of 
solar constant for different amplitudes of the zonally asym- 
metric component. The nearly identical slopes of the curves 
indicate a common sensitivity. From this result we expect that 
allowing for the asymmetry would not greatly enhance the 
sensitivity of the model to orbital changes. In fact, by allowing 
temperatures over continents to differ from those over oceans, 
Suarez and Held [1976, 1979] incorporated a degree of asym- 
metry into their model. The results of their model, however, 
are not significantly different from those of zonally symmetric 
models. 

Still, failures to support the Milankovitch theory may only 
reflect the inadequacies of the models. Most models that have 
been used to test the theory have included only one feedback 
that could amplify the response--the albedo-temperature 
feedback. Experience with these models, however, leads us to 
search for additional feedbacks that either by themselves or 
working together could amplify the response [Cess and 
Wronka, 1979; Cess, 1978]. An especially new and interesting 
approach involves coupling various nonlinear components of 
the internal climate system in such a way that self-oscillations 
can occur. In some cases, ice age time scales have been gener- 
ated [cf. Kiill•n et al., 1979; Ghil, 1981]. 

6. STABILITY THEORY 

When a model, such as the models discussed in section 2, 
has been solved and several solutions found for the same ex- 

ternal conditions, we should study the stability of each solu- 
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Fig. 16b. Sine of the latitude of the -10øC isotherm as a function 
of longitude for the five values of asymmetric forcing [from Hartmann 
and Short, 1979]. 

tion. Schneider and Gal-Chen [1973] were the first to study the 
effect of various perturbations on a Sellers-type model at fixed 
solar constant. They found that the present climate was stable 
but that if a large enough cold perturbation (-•20øC) was ap- 
plied at all latitudes, the solution failed to return to the pres- 
ent climate but instead plunged to the ice-covered earth solu- 
tion. Subsequently, linear stability results were obtained for 
the Budyko model by Held and Suarez [1974] and Su and 
Hsieh [1976]; other analyses for diffusive models were per- 
formed by North [1975a], Ghil [1976], Frederiksen [1976], and 
Drazin and Griffel [1977]. The most general linear stability 
analysis for a wide class of models was performed by Cahalan 
and North [1979]. An approach for a finite amplitude stability 
analysis was suggested by Ghil [1976], and a complete study 
along the same lines based upon a variational principle was 
given by North et al. [1979]. Incorporating ideas taken from 
all of the above mentioned studies, we shall now discuss the 
stability of the model solutions. 

In performing a stability analysis we study the time-depen- 
dent response of the model to perturbations from its equilib- 
rium state. We shall restrict the discussion here to mean an- 

nual models. A climatic state not in equilibrium must have a 
heat storage term added to the energy balance equation, C 
OT(x, t)/Ot, where C is the heat capacity per unit area for a 
column of the earth-atmosphere system. As was mentioned in 
section 3, the vast difference in C over land and ocean leads to 
some error associated with simply taking a zonally averaged 
C, but we shall ignore this complication in the present section. 
It is easily seen that C merely scales the time in our present 
discussion, and since we are only asking whether or not a 
given solution is stable, regardless of time scale, we may set C 
equal to unity. 

Linear Stability of Global Models 

To illustrate the concept of stability, consider a model with 
no ice cap feedback. Its time behavior may be studied by add- 
ing the storage term to (8): 

(OTo(O/00 + A + BTo(t) - Q(1 - a•,) = QHo (74) 

It is easily shown that any deviation from the equilibrium so- 
lution given by (8) decays back to equilibrium exponentially 
with a time constant equal to 1lB (times the heat capacity per 
unit area, C, which we have set to unity). The outgoing radia- 
tion therefore damps the solution back to equilibrium. For a 
column of atmosphere only, this relaxation time is about 58 
days. Larger values of B (increased negative feedback) lead to 
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Fig. 17. Potential function for the finite amplitude stability analy- 
sis of the zero-dimensional climate model defined by (8), (13), (75), 
and (82). The extrema are labeled as in Figures I and 2. 

increased damping. With no albedo feedback the model is lin- 
ear, and it has only one solution that is always stable. 

The next model of 'interest allows some temperature depen- 
dence in the planetary albedo; it is the zero-dimensional ice 
cap model discussed earlier (cf. (13)). In this case, 

(OTo(t)/Ot) + A + BTo(t) = QHo[xs(To)] (75) 

and the model may be linearized for small deviations from a 
steady state solution, say, To O . Then if we let 

To(t) = To O + ST(t) (76) 

we may write 

tiT(t) + BtJT(t) = Q(dHo/dTo)tJT(t) (77) 

where we have made use of the steady state condition given 
by 

A + Bro ø= QHo(ro ø) (78) 

Taking a derivative along the curve given by (78), we obtain 

B dToø Q dHo dTo ø 
dQ - Hø + dToO dQ (79) 

which in turn may be used to simplify (77), giving 

_ IdToøl -l 

/J•'(/) + Ho[-•- I /iT(/) = 0 (80) 
Equation (80) establishes a theorem which may be generalized 
to a very large class of climate models: If the steady state solu- 
tion is on a branch with dTo/dQ positive, the solution will be 
stable; if this is not so, the positive albedo-temperature feed- 
back Q dHo/dTo is larger than the IR radiative damping B, 
and the solution will be unstable. To summarize for the sim- 

plified global model: 

dTo/dQ > 0 <=} stability 

dTo/dQ < 0 <=• instability 
(81) 

Potential Function for Global Models 

It is also fairly easy to examine qualitatively the response of 
the simplified global model to large (nonlinear) perturbations. 
We present the analysis here, as it will prove useful in the 
more complicated examples to follow. Our method will be to 
construct a potential function (sometimes called the Lyapu- 
nov function [cf. North et al., 1979])that will completely de- 
scribe the model and its behavior away from steady state. 

Consider the function 

F(To) = ATo + «BTo 2- QJo(To) (82) 

where 

J(To) = Ho(To') dTo' (83) 

is determined from the temperature-dependent co-albedo 
shown in Figure 1. A graph of the potential F(To) is shown in 
Figure 17. Note that the extrema of F (points where dF/dTo = 
0) are given by the energy balance equation (78); therefore 
these extrema correspond to the roots I, II, and III of Figure 
1. Note also that in terms of F(To), (75) becomes 

To = -dF/dTo (84) 

Furthermore, 

dF/dt = (dF/dTo) To = -(To) 2 < 0 (85) 

Thus the time derivative of To is proportional to the slope of F 
at To, and F always decreases with time. The implication is 
that the shallow local minimum I (the present climate) is 
stable, the maximum II is unstable, and the ice-covered planet 
III is stable. Figure 17 makes it entirely plausible that a uni- 
form -20øC perturbation applied to the latitude-dependent 
models would probably take the solution 'over the hill' and 
into the ice-covered planet valley, as was discovered numeri- 
cally by Schneider and Gal- Chen [ 1973]. 

Note that the 'slope-stability' theorem (81) and the exis- 
tence and qualitative form of a potential function (82) are in- 
dependent of the exact parameterizations used for the albedo 
and IR radiative flux. As was noted in sections 2, 3, and 4, 
much remains to be done in the area of parameterization the- 
ory, so that results independent of details or numerical values 
of constants are of special interest. In the remainder of this 
section we will illustrate how the slope-stability theorem and 
the potential function may be generalized to the class of one- 
dimensional models. We begin with the linear stability analy- 
sis. 

Linear Stability of One-Dimensional Models 

The time-dependent energy balance equation is given by 

OI(x, t) O O 
at Ox D(x)(1 - x 2) •xx I(x, t) + I(x, t) = QS(x)a(x, Xs) 

(86) 
and the ice line condition by 

I(xs, t) = I• (87) 

In these equations we have used I = A + BT rather than T as 
the dependent variable. The time in OI/Ot has been scaled by 
C/B, where C is the heat capacity per unit area. Expanding I 
in terms of the eigenfunctions of the diffusion operator, f,x), 
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we may use the orthogonality condition (47) to determine the 
coefficients. From (86) we obtain 

]• + lnI• = Qhn(xs) (88) 

where we have defined expansion coefficients for L 

/o ! I•(t) = fn(x)I(x, t) dx (89) 

and for the solar heating, 

/o ! hn(xs) = fn(x)S(x)a(x, xs) dx (90) 

and/• =pn + I _> 1. 
To linearize about the present climate, let 

In(t) -- In ø + 8In(t) (91) 

and 

xs(t) = Xo + 8Xo(t) (92) 

with the steady state given by 

l,,Iff = Qhn(xo) (93) 

and the ice line condition by 

• I•øfn(xo)= Is (94) 
n 

These latter equations define the equilibrium state denoted by 
(x0, Iff) whose stability is to be tested. Linearizing (88), we ob- 
tain 

8in + ln8In ---- QhJ(xo) 8Xo (95) 

The perturbed ice line 8Xo can be related to the 8In through 
(94): 

8Xo =- • f1811 E fm'Im ø (96) rn 

In (96) and in what follows we suppress the argument x0 in fn, 
fn', hn, and hn'. Substituting (96) in (95) leads to an infinite set 
of simultaneous, homogeneous, linear, first-order differential 
equations for the 8In(t). By substituting 8In(t) = 8Ine -x' we 
may find the set of values of 3, for which the equations are sat- 
isfied. This turns out to be the eigenvalue problem 

where 

• mnm 81 m = 3`8• (97) 
m 

Mnm = l n 8nm '4- 'Yfnfm (98) 

¾ = QAaS(xo) ImOfm ' (99a) 

To obtain (99a), we assumed the albedo to be a step function 
in x. For this case the integral (90) can be differentiated, giv- 
ing a delta function under the integral sign leading to the re- 
sult 

hn '= aaS(xo)fn (99b) 

where Aa > 0 is the discontinuity in a(x, 
The stability-of the system with steady state (x0, Iff) is de- 

termined by the sign of the eigenvalues 3,. Because Mnm is 
real and symmetric, all eigenvalues are real and bounded 
from below. If the lowest eigenvalue is negative, the system is 
unstable; 81 grows exponentially with time. If the lowest ei- 
genvalue is positive, the solution is stable; 81 decays ex- 
ponentially with time. By casting the eigenvalue problem into 
a different form we can determine the sign of the lowest root. 

To determine the sign, we rearrange (97) and use (98) to ob- 
tain 

(In - 3,) 81• = - 'Yfn • fm 8gn (100) 
m 

Dividing this expression by In- 3`, multiplying by fn, and sum- 
ming over n, we obtain 

This relation is a transcendental equation that is satisfied for 
certain discrete values of 3`, the stability eigenvalues. By fur- 
ther rearrangement we arrive at the sign of the lowest eigen- 
value. With (99a), (101) becomes 

fn 2 + 
l• - 3` QbS(xo) 

which with (93) becomes 

Since 

=0 

bS(xo)fn 2 hnfn' I 
ln-•-• --+ In j=0 (102) 

d 

dx0 d I hnfn• e 

• hnfn' I d•o hn'fn L - Q /•- • b (1o3) 
Substituting (103) and (99b) into (102), we obtain 

Q2 bS(xo)f n 2 d__•Q _ 3` (104) xo- 
As a function of 3` the right-hand side of (104) has a zero at 3` 
= 0 and a sequence of poles with positive residue at the points 
3` - In (ln > 1). This is sufficient for us to make the schematic 
plot shown in Figure 18. If the horizontal line corresponding 
to the constant dQ/dxo is also plotted on the graph, the roots 
3`o) are at the intersections of these curves. Clearly, if dQ/dxo 
is positive, all roots are positive, and the solution is stable. If 
dQ/dxo is negative, the lowest root becomes negative, and the 
solution becomes unstable. These results constitute the slope- 
stability theorem for the simple one-dimensional models. 

The proof sketched above can be generalized and made rig- 
orous for all models that have positive Green's functions (cf. 
(49)) [Cahalan and North, 1979]. Note that the slope-stability 
theorem holds only for north-south symmetric solutions and 
for models with ice caps that follow isotherms; that is, the co- 
albedo may be written as a(x, xs). Models possessing an al- 
bedo with the functional form a(T) may have solutions that 
are unsymmetrical [Drazin and Griffel, 1977]; in such cases the 
proof of the theorem fails. The proof of the theorem requires 
the existence of the single index x0 that picks out which of the 
several solutions one is examining for a given Q. 
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d4 c['X0 •. 
Fig. 18. Schematic graph of the right-hand side of (105) (denoted 

by f(h) in the figure) versus the stability parameter h. Intersections 
with the (flat) dQ/dxo graph indicate discrete eigenvalues h o) of the 
system. Note that if dQ/dxo is negative, the lowest eigenvalue must be 
negative, implying instability. 

It should be noted that the slope-stability theorem for the 
one-dimensional models differs slightly from that for the 
global model (81). The sign of dTo/dQ and dxo/dQ may differ 
near a cusp at which dxo/dQ = 0. To see how this may hap- 
pen, we differentiate (93) for n = 0, A + BTo = Qho, to obtain 

B dTo dho dxo 

dQ - hø + Q dxo dQ (105) 
Both ho and dho/dxo are positive. Therefore dTo/dQ remains 
positive near a cusp where dxo/dQ is small and negative. In 
that case the solution is unstable even though rio is positive. 
On the other hand, near a bifurcation the magnitudes of dxo/ 
dQ and dTo/dQ are large and of the same sign. So the positi- 
vity of rio is always necessary for stability, and if we exclude 
cusps, then it is sufficient as well. 

l•T(x) in the temperature field, the corresponding energy bal- 
ance equation must be satisfied (steady state solution). North 
et al. [1979] also show that these solutions are stable if the ex- 
tremum is a local minimum and unstable if the extremum is 

either a saddle point or a local maximum. 
Here we shall illustrate the procedure for the model just 

used to prove the slope-stability theorem. The co-albedo, 
however, will be given by 

a(1) = aoO(I- Is) + a,O(Is- 1) (109) 

where 0(Z) is the unit step function, 0 -- 0 for Z < 0, and 0 = 1 
for Z > 0. Note that the step function albedo (109) is the one 
case where models having the co-albedo functional depen- 
dence a(T) and models having the functional dependence a(x, 
xs) are identical. It is easier to visualize the functional F[A + 
BT] = F[I] in spectral form, I = •,I,f,(x). In spectral form, F 
may be thought of as a function of the variables Io, 12, 14, ..., 
where for symmetric models we use only even indices. An ex- 
tremum of F(Io, 12, "- ) may be expressed as OF/0I, = 0 for all 
n. 

Substituting (109) into (106) and using the orthogonality 
condition (47) for the f,, we obtain 

F(Io, 12,-'- ) = • « l,,I,, 2 - M(Io, 12, -" ) (110) 
n 

where 

M(Io, 12, "') -- Q S(x)(I- L)[aoO(I- L) + a,O(L- I)] dx 
l 

(111) 

Potential Functional for 
One-Dimensional Models 

We consider now the finite amplitude stability analysis of 
the one-dimensional a(T) models. Our aim is to construct a 
potential function analogous to (83). In the zero-dimensional 
case the potential (Lyapunov function) F(To) was a function 
of only one variable; its local extrema gave the steady state so- 
lutions to the energy balance equation. If the solution was 
perturbed, To changed in time according to the negative slope 
of F(To), which itself continually decreased in time until a 
(steady state) extremum was reached. Clearly, a local mini- 
mum corresponded to a stable solution, while a local maxi- 
mum corresponded to an unstable solution. 

The analogous procedure for one-dimensional models is 
more complicated. The potential must be a function of T(x) at 
each local point x. That is, it must be a functional F[T]. The 
nature of this kind of mathematical object is most easily de- 
scribed by example. We shall therefore present a functional 
and show that it has the desired properties [North et al., 1979]; 
a similar method was suggested by Ghil [1976]. We take the 
functio•nal to be given by 

F[T] = • dx [« D(1 - x2)Tx 2 + R(T) - QS(x)C(T)] 

where T,• = dT/dx, 

(106) 

R(T) = fr I(T') dT' (107) 

and 

C(T) -- fr a(T') dT' (108) 

It is relatively straightforward [North et aL, 1979] to show that 
if/•F is to vanish (local extremum) for an arbitrary variation 

It is understood that •,f,(x)I• is to be substituted for I in 
(111). The condition that the OF/0I• vanish simultaneously 
leads to 

l•I• = Qf S(x)fn(x)[aoO(I- I•) + a,O(L- /)] dx 

l•I•---- Qhn(xs) 

(112) 

(113) 

where we have used (29). Note that (113) represents the de- 
composition of the energy balance equation (27). 

In the neighborhood of an extremum, let the radiation field 
corresponding to a particular extremum (steady state) be 
given by/•ø)(x) or, equivalently, by Io (ø), I2 (ø), ---. Near by (in 
function space) we may write I(x) =/•ø•(x) + q•(x), or the de- 

-o. o5 - ';73/' ;•, 6.ø..-'•.." .." z ; , , 
o '%:?% •5_•/..,:?•_ ':• ',• .... v"/ 

0.25 0.35 0.45 0.55 0.65 0.75 0.85 

I o/0 

Fig. 19. Contoum of the potential function (111) for a two-mode 
one-dimensional climate model plotted • the Io, I2 plane, the two- 
mode amplitudes. The states I, II, and III co•espond to notation in 
the previous figures [from North et al., 1979]. 
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viation may be written in terms of its spectral components q•o, 
•, .... Expanding F[I] about the local extremum, we obtain 

) 1 02F I OF ?" + .. 
" ' (114) 

where the subscript zero denotes evaluation at the extremum. 
The terms linear in q•, vanish because OF/0I, vanishes at the 
extremum. Up to the terms considered, F is locally a quad- 
ratic in q•,. The matrix elements 

N,m = (•F/OI, OIm)o (115) 

are the structure constants for the geometrical surface, F(Io, 
12, "-). If all eigenvalues of N,m are positive, the surface is 
concave upward; if one or more of the eigenvalues are nega- 
tive, the surface is locally a saddle point. We proceed to show 
that these eigenvalues are the stability eigenvalues studied 
earlier. 

First note that if the temperature field is allowed to be a 
function of time, then by following the approach for the zero- 
dimensional models we have 

in = -(OF/Oln)(Io, 12, --' ) (116) 

that is, the time derivative is given by the gradient in this mul- 
tidimensional space. For infinitesimal departures from steady 
state we set [In(t) ---- In ø + •ne -xt] in (116), expand about q•n = 0, 
and obtain 

ø•F )o•m (117) m 

-hq•, -- - •] N..½. (118) 
m 

The latter equation concludes the proof that the local geomet- 
rical structure constants of F(Io, 12, '-' ) at a steady state solu- 
tion yield the stability eigenvalues for that particular steady 
state. Equation (118) is the analog of the simple equation (80) 
or, in the one-dimensional case, equation (97). 

Finally, as a conclusion to this section, consider the time be- 
havior of the value of F(Io, 12, -'- ) when the point (Io, 12, "' ) 
is governed by the time-dependent equation (89): 

dF OF 

-•-•-= n• •nin (119) 
dF 

-- Y, (in) 2 (120) 
dt , 

where we have used (116). This latter result is the multi- 
dimensional analog of (85). It has a corresponding inter- 
pretation: initial departures of the state (Io, 12, -.- ) from a lo- 
cal extremum of F lead to a trajectory of the point such that F 
decreases. The point will continue down the gradient of F un- 
til a local extremum is found. Clearly, local maxima and 
saddle points are unstable. 

It was shown in section 2 that a two-mode truncation of the 

spectral representation gives a good approximation in many 
cases. In this case we can actually plot a contour map of F in 
the Io, I,_ plane. This is shown in Figure 19; the example is for 
constant diffusion so that f,(x) oc P,(x). Note that the scales of 
Io and 12 are different in the text, since the Pn(x) are not ortho- 
normal. This two-dimensional map is to be compared with its 
one-dimensional analog (zero-dimensional model) in Figure 
17. The labels I, II, and III correspond to the analogous label- 

ing of earlier figures. Physical interpretation of the figure fol- 
lows directly from the previous discussion. 

Before leaving this subject we note that the Lyapunov func- 
tional F[T] gives rise to a variational principle for the Budyko- 
Sellers climate models. Although the functional developed 
here was strictly a mathematical construction, it is tempting to 
speculate that there is an underlying physical principle analo- 
gous to extremum conditions in thermodynamics. If F[T] can 
be related to the rate at which entropy is dissipated in the sys- 
tem, then the extremum principle would be in line with Prigo- 
gine's theory of nonequilibrium thermodynamic states [Prigo- 
gine, 1968]. Golitsyn and Mokhov [1978] have shown that the 
linear climate models (no ice-albedo feedback) can be formu- 
lated so that they satisfy Prigogine's condition. Unfortunately, 
such models have but one stable solution and therefore fail to 

test the general applicability of the extremum condition. Pal- 
tridge [1975, 1978] has suggested on the basis of energy budget 
observations that the climate system is governed by a some- 
what different, but equally simple, extremum principle. 
Whether the behavior of such a complex system can be so 
simply characterized is a tantalizing but open question. 

7. STATIONARY PERTURBATION THEORY 

The sensitivity of climate models to stationary per- 
turbations has received considerable attention. Many recent 
papers have offered estimates of the change in surface temper- 
ature caused by changes in the concentrations of various radi- 
atively active trace gases in the atmosphere, by changes in the 
surface albedo as a result of man's activities, by changes in the 
aerosol content of the atmosphere, by additions of waste heat 
from energy consumption, and by many other changes. In this 
section we shah derive a formula for the infinitesimal change 
in climate as the result of small perturbations added to the en- 
ergy balance equation. The formula has little practical utility; 
nevertheless, it offers insight into the qualitative response of a 
large class of models. For simplicity we shall study per- 
turbations which are sufficiently small that linear approxima- 
tions can be applied. Analytic solutions to nonlinear systems 
with large perturbations have been obtained by Salmfin [Sal- 
m•in, 1979; Salmt•n et al., 1980]. 

Consider the class of energy balance models discussed in 
section 2. There we derived a Green's function Go, given in 
(48), that describes the response to a ring of heat added at a 
given latitude, the ice line being held fixed. If Go is known, the 
ice line latitude is determined for any Q through (50). In turn, 
the temperature field given by (49) is completely determined. 
Now we shah hold Q = Qo fixed and add an amount of heat g 
with some given latitudinal distribution u(x) (hemispherically 
symmetric, positive, and normalized to unit integral). To add 
this heat, (39) is replaced by 

L[Ts] + A(x) -- QoS(x)a(x, xs) + gu(x) (121) 

and the integral equation analogous to (49) becomes 

fo Ts(x ) = dy Go(x, y)[Qo$O')aO', xs) - AO, ) + gu(y)] (122) 

Setting Ts(x, ) = T, in (122) gives an expression which deter- 
mines the ice line latitude for a given g. By equating this ex- 
pression to the previous Ts expression, (49) evaluated at x -- 
x•, we find that the terms involving A cancel, giving 

(Sa)•,Q(x•,) -- (Sa)•,Qo + (u)sg(x,) (123) 

where 
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Fig. 20. Latitude-dependent sensitivity (i.e., stationary response 
function) G(x, Xl) computed with diffusive transport, Budyko's in- 
frared rule, and an isothermal ice cap edge at Xo -- 0.9. The two cases 
shown are for perturbations at 23.5 ø latitude (Xl -- 0.4) and at 45 ø lat- 
itude (Xl -- 0.7). In both cases, additional heat is absorbed in the ice 
edge region, and the effect increases with the global temperature sen- 
sitivity (here rio -- 1.6øC per 1% change in solar constant) as well as 
with the proximity of the perturbation to the ice edge. 

•o ! (Sa)s : dy Go(x•, y)S(y)a(y, xs) (124) 

and 

fO ! (u)•: ay Go(x•, y)u(y) (125) 

This result allows us to determine x•(Qo, g) from the unper- 
turbed result x•(Q, 0). 

We now assume that g is small, so that the temperature field 
will be nearly equal to the g: 0 value. That is, 

Tg = To + &T (126) 

where To is given by (49) with Q: Qo and &T is small. Corre- 
spondingly, the ice line latitude is given by 

xs: Xo + &x• (127) 

where Xo is the unperturbed ice line and •x• is small. By ex- 
panding a(y, x•) in (122) and Q(x•) in (123) to first order in •xs 
we may eliminate To and Qo to obtain 

Z ! [ Oa ] aT(x) = ay Go(x, y) QoS(y) a-•o (y' Xo)aX• + gu(y) 
+ O(axfi) (128) 

and 

dxo (U)o 
8x, = dQ (Sa)o g + O(g•) (129) 

According to (129) the shift in the ice line for a given g is di- 
rectly proportional to the ice edge sensitivity dxo/dQ. By sub- 
stituting this shift into (128) we obtain the final result 

/o l aT(x) = g dz G(x, z)u(z) + O(g •) (130) 

where 

G(x, z) -- Go(X, z) 

+ dQ (Sa)o dy Go(x, y)S(y) • (y, Xo) Go(xo, z) (131) 

Setting u(z): &(z - Zo) in (130) shows that G(x, Zo) repre- 
sents the temperature response to a ting of heat added at a 
given latitude. The response includes to first order the effect of 
the ice line shift. Since the problem has been linearized, the 
response to an arbitrary distribution is given by the appropri- 
ate superposition of localized sources, as is indicated by (130). 

We should recognize that the first term in (131) is the re- 
sponse when there is no ice-albedo feedback. The second term 
is the response due to the albedo feedback. Note that the feed- 
back term is multiplied by dxo/dQ, the slope of the ice line so- 
lar constant curve. Thus for small perturbations the slope of 
the ice line curve governs the thermal response of a climate 
model to any perturbation. As a result the fundamental sensi- 
tivity •o - (Q/100) dTo/dQ of a model is an indicator of its 
sensitivity to any perturbation. 

For the step function albedo, •o and dxo/dQ may be related 
by differentiating (31): 

•o = 1•--0-• A + BTo + Q2S(xo)Aa dxo• (132) dQl 

where Aa is the change in albedo at x = x,. (This is a particu- 
lar case of (105).) As a numerical example, consider the case 
of a step function albedo for which the expression for G sim- 
plifies to 

•o- 1.12øC 
G(x, Xl) = Go(x, x,) + 0.42oc Go(x, xo)Go(xo, Xl) (133) 

where (132) has been used. (Recall from (9) that 1.12øC is the 
sensitivity when the albedo remains constant.) Since Go(x, x,) 
peaks at x = Xl (see Figure 7, for example), the feedback term 
tends to increase the response near the ice line, x = Xo, and 
this effect is largest when the added heat is closest to the ice 
line, x, = Xo. Figure 20 illustrates these features for a tropical 
source (Xl - 0.4) and a mid-latitude source (Xl = 0.7), where 
we have used the diffusive Go, •o = 1.6øC, and Xo - 0.9. For a 
source which is broadly distributed, only the peak at the ice 
edge appears. This kind of effect has also been observed in de- 
tailed models having many feedbacks [Manabe and Weth- 
eraid, 1975]. 

Plots of g(xs) show that the range of g for which the linear 
approximation is valid tends to be smaller when heat is added 
closer to Xo. This range also depends upon the Q(x,) curve 
characteristics [Salm•in, 1979; Salm•in et al., 1980]. For a range 
of large negative g the slope dx,/dg usually changes sign, and 
it can be shown by arguments analogous to those in section 6 
that a negative slope is necessary and sufficient for instability. 

8. FLUCTUATIONS 

In previous sections we have focused on quasi-periodic 
changes associated with seasonal and orbital effects. However, 
typical climatic time series also exhibit large amounts of non- 
periodic variability. In this section we shall extend the models 
considered so far by including this broad distribution of vari- 
ance having periods that range from seasons to centuries. The 
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low-frequency part of this range, say, periods from decades to 
centuries, is particularly difficult to observe because instru- 
mental records tend to be too short and proxy records are dif- 
ficult to interpret. Nevertheless, such low-frequency natural 
variability may contain information on the true sensitivity of 
the climate. That is, the effects of possible future perturbations 
of the climate due to various external causes may be estimated 
from past responses to natural fluctuations associated with in- 
ternal degrees of freedom. In sections 2 and 6 the stability of a 
given steady state was related to the sensitivity. One of the 
goals in this section is to show how the natural variability may 
be related to the sensitivity. Such a relationship was suggested 
by Leith [1975, 1978] and is known in statistical mechanics as 
the 'fluctuation-dissipation theorem.' 

In long-term climatic records, slower fluctuations generally 
have larger amplitudes. This feature is also a characteristic of 
BrownJan motion, the random movement of small particles 
suspended in a liquid. Over short time periods, only a few 
molecules collide with a given particle, and its displacement 
from its original location is small, but over long periods there 
is some chance that many collisions drive the particle far from 
its original position. The fluid has two components: the mole- 
cules, which move and change direction rapidly, and the par- 
ticles, which move slowly. A similar scale separation is ex- 
pected to exist between the relatively rapid evolution of 
synoptic weather systems and the more sluggish climatic com- 
ponents such as the global average temperature and the pole- 
to-equator temperature gradient. 

The suggestion that broadband climatic fluctuations may be 
a cumulative effect due to variations on much shorter time 

scales was made by Mitchell [1966] in connection with sea sur- 
face temperature anomalies. The two-time-scale approxima- 
tion was given a general formulation by Hasselmann [1976], 
who emphasized the role of negative feedback processes in 
limiting climatic variability. This approach was applied to 
simple ocean models by Frankignoul and Hasselmann [1977] 
and Frankignoul and Miiller [1979], to Budyko's energy bal- 
ance model by Lemke [1977], and to a global energy balance 
model by Fraedrich [1978]. Robock [1978] has performed nu- 
merical computations of effects of fluctuations in energy bal- 
ance models. 

Preliminaries 

We shall think of the complete time history of the global 
average temperature, for example, as a single 'realization' of a 
random phenomenon. If we imagine an infinite population of 
essentially identical planets in the same orbit around the sun, 
the collection or 'ensemble' of all the time series of global 
temperatures constitutes a 'stochastic process,' generally de- 
fined as any ordered (by time in this case) set of random vari- 
ables [Jenkins and Watts, 1968]. The probability that the tem- 
perature is in a given range may be estimated from a sample 
of the population by determining the fraction of planets 
within the sample having temperatures in that range. Such a 
result generally depends on when the count is taken, particu- 
larly if there are changes in external forcing. We shah assume 
that such dependence may be removed by subtracting the ef- 
fects of external forcing. In our example of an ensemble of 
planets this might be done by considering only the deviations 
from a time-dependent ensemble average temperature. The 
associated stochastic process is said to be 'stationary.' 

Since no such ensemble of planets is available, we are 
forced to try to determine the statistics of any stochastic com- 

ponents of the climate from a single realization. This might be 
possible if the values of climatic quantities at a given time are 
uncorrelated with the values at a much later time, so that the 
complete record may be treated as an ensemble of independ- 
ent records. We shall assume that this is the case and that any 
quantity determined by time averaging over a sufficient length 
of a single record will equal its corresponding ensemble aver- 
age value. The stationary stochastic process is then said to be 
'ergodic.' 

A general stochastic process, then, is an ensemble of func- 
tions that depend on time. Each function represents a point in 
a 'sample space' of possible experimental outcomes (different 
planets in the above example), which we may label by the pa- 
rameter e. We use the notation To(t, e) to represent a different 
function of time for each value of e. Note that To(t, e) is also a 
random variable in ß at any given three. We •-•" •t•t• use 

brackets to denote an average over the ensemble. The mean, 
for example, is given by 

1 

< To(t) > • lim •, To(t, e) (134) 
and the autocovariance function is given by 

1 

(lJTo(t)lJTo(t + •)) -- lim •, lJTo(t, e)t•To(t + •, •) (135) 
where/JTo is the deviation from the mean. Presuming that the 
effects of external forcing have been subtracted, these quan- 
tities will be stationary, that is, independent of t. 

There are two related techniques for determining the statis- 
tical properties of a stochastic process, namely, the Fokker- 
Planck and the Langevin methods. The Fokker-Planck 
method deals directly with the probabilities of various events 
and characterizes the type of process through relations be- 
tween these probabilities. The Langevin method begins with a 
deterministic equation for the mean motion, adds a stochastic 
forcing with assumed statistical properties, and uses the result- 
ing stochastic equation to derive the statistical properties of 
the motion. We shall employ the Langevin method, since it 
requires only a simple extension of our models for the mean 
climate. 

Global Climate Model With 

Stochastic Forcing 

To the extent that the various model parameters fluctuate 
on time scales typical of 'weather,' that is, well separated from 
climatic response times, we shall assume that their collective 
effect is that of a random forcing. Of course, the statistics of 
such forcing should be determined from detailed models such 
as general circulation models or from meteorological data. As 
a first guess, however, we shall take the amplitudes of the forc- 
ing to be distributed according to a Gaussian distribution. 

The stochastic version of the simple global model discussed 
in sections 2 and 6 has the form 

C(dTo/dt) + A + BTo = QHo(To) + lJH(t, •) (136) 

where •H represents the random forcing, measured in relation 
to the mean forcing, so that (/JH) = 0. The expression (136) 
represents a different equation for each member of the en- 
semble, that is, for each e. The ensemble average of all these 
equations gives an expression for (To), and we shall assume 
that (To) is one of the stable steady states considered in pre- 
ceding sections. 
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Fig. 21. Schematic illustration of the fluctuation-dissipation theo- 
rem in the weak form. (a) A typical time series of global temperature 
with a shift in the mean due to a step change in forcing at t -- 0. (b) 
An average of many sample functions similar to the function in Fig- 
ure 2 la. Averaging eliminates the fluctuations, leaving only the mean, 
which changes from one stationary value to another during a time 
the climatic response time, proportional to the sensitivity rio. (c) Auto- 
covariance of 6To -- To - (To). This function decreases over a charac- 
teristic lag time ?o the autocorrelation time for fluctuations in To. If 
the fluctuation-dissipation theorem holds, 

If the fluctuations in To are sufficiently small, we may lin- 
earize (136) about a steady state. Upon linearizing (136) we 
obtain 

C(d/dt)l•To + hol•To-- l•H(t, e) (137) 

where/•To -- To- (To) and ho is given by 

ho -- QHo/flo -- B with fixed albedo 
(138) 

ho = QHo/fio = B- Q(dHo/dTo) with albedo feedback 

where flo -- Q dTo/dQ is the sensitivity. According to section 
6, ho may be interpreted as the stability eigenvalue of the 
mean climate (To). It is given by the curvature at the associ- 
ated minimum of the global model potential shown in Figure 
17. The formal solution to (137) is given by 

8To(t, E) = go(t- t') 8H(t', •) (139) 

where 

goO') = -•O(•)e -xø'/ c (140) 
is the retarded Green's function for the linearized equation. 
The unit step function 0(•) in (140) vanishes when ß < 0. As a 
result the response at time t depends only on the forcing at 
earlier times t' < t. 

Note that the linearization requires only that /•To remain 
small. The forcing can be quite general. Thus we may apply 

(139) to determine the response to deterministic changes in ex- 
ternal heat sources as well as the response to fluctuating inter- 
nal heat sources. For example, substituting a Dirac delta func- 
tion for/•H shows that go(*) may be interpreted as the effect of 
a heat impulse at time t' on the temperature at time t' + •. For 
a constant change in heating beginning at t' -- 0 the temper- 
ature response at time t is the integral over go(*) for ß _< t. This 
integral grows to a final value proportional to ho -l • flo after a 
characteristic response time given by 

ß = C/Xo = (C/Qlto)#o (141) 

So both the response time and the shift in the mean temper- 
ature are determined by the sensitivity. 

The statistical properties of random variables may be deter- 
mined either by specifying their 'probability distribution' or 
by specifying their 'moments' (see, for example, Papoulis 
[ 1965, section 5-4]). If/JH assumes a Gaussian distribution, its 
odd moments will be zero, 

(•H(tl) /JH(t2) '" •H(t2n+l)) ---- 0 (142) 

and its even moments will be given by a sum of second-mo- 
ment products, 

(•H(tl) •/'/(t2) "' •/'/(t2n ) ) 

= • (8H(ti) 8H(tj) ) (SH(tk) 8H(h) ) ." (143) 
all pairs 

As a result the statistics of 8H are completely described by the 
second moment, or autocovariance, which we denote by I TM. 
We shall assume that the autocorrelation time of the forc•g 
may be neglected • relation to the response t•e of the tem- 
perature so that we may write 

where • is a constant. This is cared 'whte noise' • analogy to 
fi•t because the co•espond•g spectrum, which is given by 

sn() f_ 2 d, e-•'•n(,)= T (145) 
is Mdependent of w, the angular frequency. 

UsMg the •ear expression (139) and remembe•g that go 
can be factored from any ensemble average, one can show 
that the moments of •To also satisfy (142) and (143). Thus •To 
is also Gaussian, and its stat•tics are described by its auto- 
covafiance, which we denote by r• r. Apply•g (139) gives 
F• r as a double •tegral over r n. Us•g (1•), we obta• 

r•r(*) m (STo(O 8To(t + ,)) = (•/2&Qe-%t,t/c (146) 

Note that the characteristic decay t•e of the autocovafiance, 
which • the autoco,elation t•e %, • identical to the re- 
sponse t•e for a step change • forc•g, 

% = C/• = ,• (147) 

The autoco,elation t•e • thus also determed by the sensi- 
tivity. The relation (147) is a special case of the more general 
fiuctuation-d•sipation relation given by 

P•r(•)/P•r(O) = Cgo(•) • > 0 (148) 

The left side of (148) • potentially measurable from c•mic 
records. Throu• (139) the result•g •owledge of go would 
allow the est•ation of global tem•rature changes that might 
result from any contemplated change • global heat•g pro- 
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vided we could estimate the thermal inertia C. For a step 
change in heating we have seen that the response approaches 
the integral of go over all ß and, since both sides of (148) are 
exponentials in ,, the integral of (148) reduces to (147). We re- 
fer to (148) as the 'strong' form of the fluctuation-dissipation 
relation. It determines the response at any time ß to any given 
forcing. We refer to the integrated version (equality of the in- 
tegral of left- and fight-hand sides of (148)) as the 'weak' 
form. It determines the response at large times to a step func- 
tion in forcing. The weak form may remain a good approxi- 
mation in forced dissipative systems even if the strong form 
does not hold at all, [Bell, 1980]. 

Figure 21 provides an illustration of the fluctuation-dis- 
sipation relation. Shown in Figure 21a is a typical time series 
of To. The time series could be either measured or model gen- 
erated. It contains both spontaneous fluctuations and a shift in 
the mean at t -- 0. Figure 2lb shows the mean temperature. 
The mean may be extracted by time averaging segments of 
the record shown in Figure 2 la. If the record were model gen- 
erated, the mean would be obtained by averaging an en- 
semble of model runs. In time *R the mean temperature re- 
sponds to a change in mean heating. Subtracting Figure 2lb 
from Figure 2 la produces a stationary time series for 8To -- To 
- (To) that has zero mean and an autocovariance with ex- 
ponential form as is shown in Figure 21c. As is suggested by 
the fluctuation-dissipation relation, the autocorrelation time 
(indicated in the figure by *c) is identical to the response time 
'r R . 

The above results may be reexpressed in the frequency do- 
mam by Fourier transforming. Transforming (140) gives 

go(w) = 1/(iwC + ho) (149) 

and transforming (146) gives the variance spectrum for the 
global temperature, 

Soo•½0)--Igo½0)l'-•--•?½0'-C • + Xo') (150) 

Again w is the angular frequency. This spectrum is schemati- 
cally illustrated in Figure 22. The figure exhibits a feature 
common to many climatic time series, namely, the variance 
increases as the frequency decreases. This concentration of 
variance at low frequencies is termed 'red noise.' According to 
the linearized feedback models, the spectrum grows as w -2 
and flattens below a frequency proportional to *c-' -- Xo/C. 
Note that this frequency is inversely proportional to the sensi- 
tivity. 

The uncertainties in climate sensitivity discussed in section 
4 imply uncertainties in the autocorrelation time of the global 
temperature and in the corresponding frequency dependence 
of the temperature spectrum. According to (138) and (147), *c 
would be equal to the radiative relaxation time C/B if albedo 
feedback were negligible. If this were the case, the spectrum of 
the global temperature would increase as w -2 down to fre- 
quencies near B/C--a few tenths of a cycle per year. On the 
other hand, if albedo feedback is large, the stability parameter 
Xo becomes small. If the present climate is only marginally 
stable (such as the state labeled I in Figure 1, corresponding to 
the shallow minimum in Figure 17), then the autocorrelation 
time may be much longer than C/B, and the w -2 behavior 
may persist to much lower frequencies. According to (150) our 
ability to reduce uncertainties in climate sensitivity will de- 
pend on our ability to estimate climate spectra at low frequen- 
cies. 

Zonal Climate Models With 

Stochastic Forcing 

As for the simple global mean model, fluctuation-dis- 
sipation relations can also be derived for zonal models. In 
zonal models we expect the response to fall off over some 
characteristic distance, as is illustrated for the diffusive model 
in Figure 20. According to the fluctuation-dissipation relation 
this distance approximately equals the correlation length de- 
rived from the spatial cross covariance. Regions separated by 
more than this characteristic distance represent independent 
climates. As a result we could, for example, apply the same 
global-type model to two such independent regions. 

We shall restrict ourselves here to zonal average models 
with constant C. To study the zonal average models, we will 
follow the approach of section 6. For a basis set we shall use 
the eigenfunctions of the linearized energy balance equation. 
With this expansion the potential curvature of the global 
model, Xo, will be replaced by the eigenvalues of the linearized 
equation, 2,n. As in section 6, the 2,n are the curvature parame- 
ters of a generalized potential. The autocorrelation times for 
each mode, ,• = C/Xn, decrease as n increases. 

Consider the class of one-dimensional stochastic models ob- 

tained by adding random forcing 8H to the time-dependent 
version of (39): 

C (OT/O 0 + L[7] = H + 8H (151) 

As before, we assume 8H to have zero mean and to be nor- 

really distributed. We shall also take the spatial cross covari- 
ance to be given by 

(SH(x, t) 8H(y, t + ,)) -- ¾(x, y) 8(,) (152) 

where, as before, the angle brackets indicate an ensemble av- 
erage. 

Linearizing (151) about a stable steady state gives 

c (a/aO 8T + L[87] -- H'[87] + 8H (153) 

where the term H' is evaluated for the state in question. 
In order to relate the flfictuations to the sensitivity, as we 

did for the global model, we assume that L - H' has a discrete 
spectrum 2,n, as pictured in Figure 18, and expand 8T in terms 
of the corresponding eigenfunctions 4•(x) as follows: 

ST(x, 0 -- • 8T•(Oq,•(x) (154) 

With a similar expansion for 8H the individual modes will 
fluctuate according to 

C(d/dt) 8Tn + X n 8T• = 8H• (155) 

and these are coupled through 

{Smm(0 8m•(t + ,)) = ¾mn 8('r) (156) 

where 

¾mn -- dx dy q/n(X) q/m(Y) ¾(X, y) (157) 

Since (155) is analogous to the global form (137), the auto- 
covariance and spectrum of the 8T• are analogous to (146) 
and (150): 

F,,•T(,) m (8T,,(t) 8Tn(t + *)) 
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Fig. 22. Spectrum of fluctuations in To, given by the Fourier 
transform of the autocovariance function shown in Figure 2 l c. Most 
of the variance occurs below a frequency of the order of •c -i, which, 
according to the fluctuation-dissipation theorem, is smallest when the 
sensitivity rio is largest. 

-" [¾mn/(Am 4' An)C][e-X,.'/co(• -) + (158) 

SmnT(O)) = ¾mn 
(io.)C 4' Am)(-io.)C 4' An) (159) 

Modes with successively higher values of An (smaller spatial 
scales) have less variance, shorter autocorrelation times, and 
spectra which tend to be flat at frequencies such that Soo r - 
0.1-2 ' 

As with the simple global model, (153) may be solved 
through the use of a retarded Green's function. The Green's 
function satisfies 

[C(O/Ot) + L - H']G(x, x'; t - t') -- t•(x - x') t•(t - t') (160) 

In terms of the Green's function the temperature fluctuations 
are given by 

•ST(x, t, •) = $dx' $dt' G(x, x'; t - t') •SH(x', t', •) (161) 

By using (161) and (152) to evaluate the spatial cross covari- 
ance and by performing one of the time integrals we obtain 

pt(x, y; ,) =$dx' $dy' $dt' G(x, x'; t')G(y, y'; t' + •')¾(x', y') 

(162) 
This formal result is independent of the basis functions. Note 
that the modal expression given by (158) may be recovered 
from (162) by setting 

where 

Cl(x, xt; ,i-)= E l•tn(xt) l•tn(Xt)gn('i') 

1 

gn(*) ---- • e-Xn'/co0 ') 
From the orthonormality of the •n it can be shown that 

G(y, y'; t' + ,) = C $ dz G(z, y'; t') G(z, y; ,) (164) 

As a result, (162) becomes 

I'r(x, y; ,) = C $ dz I'r(x, z; 0) G(z, y; ,) (165) 

If we define the inverse of the zero-lag cross covariance, 
[I'r] -•, such that J'dz[I'r]-•(x, z; O)I'r(z, y; O) = 8(z - y), then 
(165) gives 

$dz[I'r]-•(x, z; O)I'r(z, y; •) = CG(z, y; •) (166) 

(163) 

The expression (166) is a generalization of the global fluctu- 
ation-dissipation relation (148), and it is the strong form, since 
it applies for each ,. It gives a direct connection between the 
unpredictable natural variability of the steady state climate, as 
measured by I 'r, and the potentially predictable response of 
the mean climate to an impulsive external perturbation. Ac- 
cording to this fluctuation-dissipation relation, if the thermal 
inertia of the system C is known, an estimate of I 'r from the 
climatic record determines G. Using G, the mean response to 
any perturbation (the addition of waste heat, a change in al- 
bedo, etc.) is obtained at any given latitude and time by con- 
voluting the proposed change with G, as in (161). Consider, 
for example, a constant change in heating added at x' = y and 
beginning at t' = O. From (161) this change produces a re- 
sponse at x and at time t given by the integral over G(x, y; ,) 
for 0 _< •' _< t. For large t this integral approaches the station- 
ary response function G(x, y) discussed in section 7 and illus- 
trated for a particular model in Figure 20. According to (166) 
the stationary response of the true climate to a perturbation 
could be estimated from the integral of I'r(x, y; ,) over all pos- 
itive ß . As for the global model, low frequencies dominate, 
and in terms of the spatial cross spectrum we obtain 

f dz[rq-' (x, z; 0) I « Re St(z, y; O) 
+ - • Im ST(z, y; co) (167) 

In our terminology, (167) is referred to as the weak form of 
the zonal fluctuation-dissipation relation. It generalizes the 
global version (147). The zonal version relates not only the 
time scales of natural fluctuations and responses to per- 
turbations but also their spatial distributions. According to 
(167) the spatial response may be estimated from the low-fre- 
quency cross covariance divided by the total cross covariance. 

In closing this section we should recall our original assump- 
tion that the system can be divided into slow and fast com- 
ponents, that is, that the autocorrelation time of 'weather' is 
much shorter than climatic response times. Some justification 
for Mitchell's original stochastic treatment of sea surface tem- 
perature anomalies is provided by the relatively long radiative 
relaxation time of an ocean column compared to that of the 
atmospheric column that provides the forcing. In Budyko- 
Sellers models the ice-albedo feedback results in long re- 
sponse times, at least for the largest spatial scales, but one 
must also isolate the effects of the mean forcing in each mode. 
The stochastic treatment is less tenable for the higher modes, 
since, as we have seen, the response times tend to be shorter 
and the mean forcing less well understood. 

9. DISCUSSION 

It is remarkable that the zonally averaged sea level temper- 
ature for the northern hemisphere can be fitted to the simple 
parabolic form 

T(x, t) • To + To cos (2•rt - rbT)P,(x) + T2P2(x) (168) 

with an rms error of only 2øC. The parameters To, T•, 4'r, and 
T2 thus give a reasonable representation of this hemispheric 
climate variable. An obvious goal in global climate theory is 
to construct models that generate these four parameters in 
agreement with observations and predict how the parameters 
change when external conditions change. 

Since (168) involves only the largest space scales and the 
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annual time scale and since the solar heating is also describ- 
able by these same scales, we are encouraged to try simple 
heat balance models that connect the two. This review has 

surveyed and appraised recent progress toward achieving the 
connection. 

In section 2 a sequence of mean annual models was in- 
troduced. It was shown that the mean annual global temper- 
ature To can be estimated by using the most elementary radia- 
tion balance considerations provided an empirical formula for 
the terrestrial outgoing radiation is used. This latter includes 
corrections for the greenhouse effect due to the presence of in- 
frared absorbing gases, clouds, and even the change of abso- 
lute humidity with temperature. Provided the observed pres- 
ent albedo is used, this estimate of To is independent of 
transport mechanisms. The sensitivity of the climate flo was 
shown to be about twice as large for the empirical earth model 
as for an ideal infrared-emitting planet. The enhancement can 
be accounted for by the change in absolute humidity with 
temperature. 

In order to estimate T2, which is a measure of the mean an- 
nual pole-to-equator temperature gradient, one must in- 
troduce assumptions about how heat is redistributed on the 
earth's surface by the geophysical fluid system. Because diffu- 
sive terms lead naturally to the parabolic component P2(x) in 
the energy balance equation, it is natural to take the transport 
to be proportional to the gradient of temperature. For simple 
diffusive models the diffusion coefficient may be adjusted so 
that the correct amplitude T2 is obtained. In order to estimate 
the sensitivity of the resulting two-mode model, more assump- 
tions must be introduced. For example, if the earth is cooled, 
the ice caps expand, and the planet becomes more reflective to 
solar radiation. To allow for such changes, feedbacks such as 
cloudiness changes, changes in the transport model, and 
changes in the infrared formula due, for example, to lapse rate 
changes ought to be included. As such feedbacks remain 
largely unknown, they were not treated extensively in this re- 
view. Of course, they merit further attention as more empiri- 
cal and theoretical information accrues. 

In section 2 it was shown that the simple ice cap models are 
nonlinear and have solutions that exhibit a rich structure. In 

particular, there are at least three solutions for the present 
value of the solar constant. If the sun's luminosity is lowered 
by about 10%, the model climates experience a catastrophic 
transition to an ice-covered earth. This feature appears to ex- 
ist even in the results produced with numerical general circu- 
lation climate models. 

By introducing a heat storage term C OT/Ot to the energy 
balance equation and allowing the solar absorption to vary 
with the seasonal cycle we showed in section 3 that T• and •r 
could be estimated. It appears that reasonable values for these 
parameters can only be obtained if the value of the thermal 
inertia C is taken to be much smaller over land than over 

ocean. As a test of the simple seasonal model construction the 
four parameters To, T•, • and T2 were computed for the 
southern hemisphere by changing only the albedo and the 
land fraction. The test proved satisfactory enough to suggest 
that the main feedbacks which operate on a seasonal time 
scale had been included. 

Section 4 concentrated upon the relationship between the 
quality of the parameterization formulae and their effect upon 
estimates of the sensitivity to solar constant changes. Each 
empirical formula was criticized, and the need for further 
work in parameterizations was emphasized. 

Even with the reservations of section 4 we think that some 

problems of practical interest can be examined with the 
simple models. In section 5 we used the seasonal model with 
ice cap feedback to estimate the effects of changes in the 
earth's orbital elements. We found that the climate response 
to orbital changes was about an order of magnitude less than 
the paleoclimatic data seem to indicate. We suspect that this is 
a large enough discrepancy to rule out the simple instanta- 
neously responding ice cap feedback as a prime cause of the 
ice ages. We emphasize that many lower-frequency feedbacks 
cannot be discovered by examining only the seasonal cycle. 
Clearly, more work can be done on this problem, and the 
simple models will provide a useful framework for future dis- 
cussions. 

Section 6 covers the stability of the simple models. In par- 
ticular, it was shown that the linear stability of a solution can 
be deduced from the sign of the local slope of the ice line ver- 
sus solar constant curve. This slope-stability theorem appears 
to hold for a broad class of models independent of numerical 
inputs. An analysis is also given for the finite amplitude time 
behavior of a class of models. A potential function can be con- 
structed that yields qualitative information about the behavior 
of the system far from steady states. The potential function 
can also be thought of as a variational principle for the cli- 
mate. 

Section 7 presents a simple analysis of stationary per- 
turbations to the heat balance. The analysis shows that the 
sensitivity for any perturbation is related to the sensitivity for 
solar constant changes. The relationship is shown to hold for a 
broad class of models. 

Section 8 concludes the review with an introduction to sto- 

chastic climate models. The simple models of previous sec- 
tions were linearized and allowed to have a stochastic white 

noise forcing. Analytical solutions are easily found for the 
various climate statistics. Example proofs of the fluctuation- 
dissipation theorem were given. Through this theorem, it was 
shown that information about climate sensitivity can be de- 
rived from data on natural fluctuations. 

Many of the results of this review are expected to hold for 
more comprehensive climate models. The simple models form 
an intuitive base from which we can study the larger but less 
scrutable models. For example, when a result fails to carry 
over to a larger model, we immediately face the problem of 
discovering why. Future experiments with the large and small 
models may lead to valid parameterizations that can be used 
in the simple models. If this turns out to be true, the simple 
models may be able to combine the parameterization for- 
mulae found with empirical data in such a way as to play a 
significant role in the assessment of climate change. 

APPENDIX A: CLOSED FORM GREEN'S FUNCTION 

In this appendix we present a brief derivation of the 
Green's function for a diffusive climate model. Instead of the 

form (44), which converges slowly, we seek a closed form ex- 
pression. We follow a notation used by North [1975a] in a 
slightly different context. Consider the differential equation 

D d (1 - x 2) d•Go(x, x') + Go(x, x') = •5(x - x') (A1) Bdx 

subject to the usual vanishing gradient boundary condition at 
the pole and equator. For x > x' the equation is homoge- 
neous and is known to have the solution [Kamke, 1959] 

G$,(x, x') = AiP,,(x) + A2Q,,(x) x > x' (A2) 
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where P•(x) and Q•(x) are the Legendre functions and 

v = --« + «[1 -- (4B/D)] 1/: (A3) 

which in general may be complex. The coefficient .8: must 
vanish, since Q•(x) diverges at the pole. Similarly, below the 
heat source, x < x', we find [Kamke, 1959] 

Ga{x, x') -- A 3f iv(x) "[' •14f2,,(X') (A4) 

The functions P•(x), fl•(X), and f2•(x) may all be related to hy- 
pergeometric functions [Kamke, 1959; Erddlyi, 1953]: 

P•(x) = F(« + «v, -«v, 1, 1 - x •) 

f l,,(X): F(-«•, « + «•, «, x 2) (AS) 

f•(x) = xF(« - «v, 1 + «v, :3_, x •) 

Power series representations may be used to evaluate any of 
these functions in the domain of interest. If we make use of 

the property 

(d/dz)F(z, b, c, z) = (ab/c)F(a + 1, b + 1, c + 1, z) (A6) 
and 

F(a, b, c, 0) = 1 (A7) 

it can be shown that A4 must vanish to satisfy the equatorial 
boundary condition. Now continuity requires 

G•,(x', x') = Gœ(x', x') (A8) 

which leads to 

A3 = AiP•(x')/f l•(X') (A9) 

Now by integrating (A1) over an infinitesimal interval about x 
= x' we obtain another condition, 

D(1 - x:) •xG(X, x')l,, "+ = 1 (A10) B _ 

which leads to the unique solution for A1, .83. The Green's 
function may now be written as 

Go(x, x') = f P(x)/• x' _< x _< 1 
(All) 

Go(X, x') - Pf (x)/• 0 _< x _< x' 

where 

• = -(1 - x':)(fP '- Pf')D/B (A12) 

where the argument x' and the indices v, 1 have been sup- 
pressed and the prime on P and f indicates derivative. 

NOTATION 

Equation numbers given refer to the first use of the symbol 
in an equation or to equations nearest the first occurrence of 
the symbol in the text. In some cases a numerical value is 
listed which coincides with that used in the text. These values 
are likely to change with improved measurements and mod- 
els. 

A intercept in the Budyko radiation formula (7); 
203.3 W m -2 for northern hemisphere. 

a(x) albedo at latitude designated by x (2); cf. Table 1 
for northern hemisphere. 

% planetary albedo (2); 0.30. 
ai, af absorption fraction (co-albedo) of earth-atmo- 

sphere system over ice and ice-free surfaces (13); 
0.38; 0.70. 

ti average co-albedo at ice cap edge (18); 0.54. 
ao, a2 Legendre coefficients of co-albedo (19); 0.681, 

-0.202. 

a(x, xs) co-albedo as function of latitude and ice cap 
edge. 

am(t) time-dependent coefficient of Pl(X) (61); cf. Table 
1. 

B linear coefficient in Budyko radiation formula 
(7); 2.09 W m -2 øC-l. 

/•o sensitivity (5); value model-dependent, as dis- 
cussed in section 4. 

C effective heat capacity per unit area of earth-at- 
mosphere system (78). 

CL, Cw C for ideal land and oceanic mixed layer; 0.16B 
years, 4.7B years (B = 2.09 W m -2 øC-I). 

D thermal diffusion coefficient (22), (33); 0.649 W 
m -2 øC-I or D/B = 0.310. 

D2' effective D for latitude-dependent diffusion in 
two-mode approximation (36). 

Aa change in co-albedo at the ice cap edge (99b). 
e eccentricity of earth's orbit (73); 0.017 (present 

value). 
f,x) orthonormal eigenfunctions of the diffusion oper- 

ator (47). 
fL, fw fraction of land and water in a latitude belt for 

the simplified seasonal model (54). 
F(To), F(Io, 12, '") potential function for the zero- and one-di- 

mensional models (86), (115). 
/:I7] Lyapunov functional for the temperature field 

(107). 
qb• infinitesimal departure from a local extremum in 

F(Io, 12, ...) (115). 
g global average value of the stationary heat per- 

turbation (121). 
go(t), g,(t) temperature impulse-response functions for the 

global average or higher modes (139), (163). 
Go(x, x') Green's function for the linear transport operator 

in the energy balance equation (42). 
G(x, z) Green's function for the transport combined with 

linearized ice-albedo feedback (131). 
Ge•, mode-coupling coefficients (64). 

G(x, Xo; t- t') Green's function for the linearized time-de- 
pendent energy balance equation (160). 

¾ Budyko transport coefficient (34); also the 
strength of global white noise forcing in (144). 

¾(x, y) spatial cross covariance of the white noise forcing 
in (•52). 

•- expansion coefficients of ¾(x, y) in the •k• basis 

FH(r) autocovariance of global white noise forcing at 
lag time r (144). 

Foot(r) autocovariance of global temperature fluctua- 
tions at lag time r (146). 

Fr(x, y; •) spatial cross covariance of zonal temperature 
fluctuations at lag time •- (162). 

Fm,,r(• ') expansion coefficients of FT(x, y; 'r) in the l•n 
basis (158). 

Hn(xs) Legendre polynomial amplitude of solar heat ab- 
sorbed (29). 

h,,(Xs) amplitude of solar heat absorbed with respect to 
the eigenfunctions f,,(x) (9lb). 
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I, I(x), I(x, t) infrared radiation to space (7), also Table 1, 
watts per square meter. 

/• I evaluated at x = x s (90). 
In Legendre or fn(x) amplitude for I (90). 

L[7] a linear operator (40). 
Ln, In eigenvalues of the linear operator in an energy 

balance equation (29), (49). 
2• stability eigenvalue (98). 
v an empirical transfer coefficient coupling land 

and water areas in the seasonal model (56). 
•n(x) orthonormal eigenfunctions of the linearized 

steady state energy balance equation, with eigen- 
values given by the stability parameter •; in the 
absence of ice-albedo feedback, •n = fn and • = 
i n (154). 

Pn(x) Legendre polynomial. 
Q, Qo solar constant divided by 4 (8) (subscript zero de- 

notes present value (335 W m -2 in section 2, 340 
W m-: in section 3)). 

R radius of earth (1). 
o Stefan-Boltzmann constant (1), equal to 0.5669 X 

10 -7 W m -2 K -4. 

Oo solar constant, see Q, Qo (1). 
$(x), $(x, t) theoretical distribution of solar heat energy 

reaching top of the atmosphere (2), (3), Table 1, 
(74). 

Sn(t) Legendre mode amplitude for S(x, t) (3), (61), 
Table 1, (74). 

S H spectrum of random forcing (145). 
Soor(0o) spectrum of global temperature fluctuations 

St(x, y; oo) spatial cross spectrum of zonal temperature fluc- 
tuations (167). 

Smnr(OO) cross spectrum of temperature fluctuations in 
modes of rn and n (159). 

T, T(x) zonally averaged 1000-mbar level temperature 
field (when t does not appear, annual averaging is 
implied) Table 1. 

TR planetary radiative temperature (1). 
Tn Legendre mode amplitude for T(x) or T(x, t); To 

is the planetary average temperature. 
Ts temperature at ice cap edge (16); Budyko's rule: 

T• -- -10øC. 
•', •'c, •'R lag time, climatic autocorrelation time, climatic 

response time (values depend on/•o). 
u(x) normalized distribution of added heat flux (121). 

x sine of latitude (2). 
x• sine of latitude at ice cap edge (13); for the pres- 

ent climate, x• = 0.95. 
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