
MySQL 5.7 Reference Manual

MySQL 5.7 Reference Manual

Abstract

This is the MySQL™ Reference Manual. It documents MySQL 5.7 through 5.7.5.

MySQL Cluster is currently not supported in MySQL 5.7. For information about MySQL Cluster, please see
MySQL Cluster NDB 7.3.

MySQL 5.7 features. This manual describes features that are not included in every edition of MySQL 5.7; such
features may not be included in the edition of MySQL 5.7 licensed to you. If you have any questions about the
features included in your edition of MySQL 5.7, refer to your MySQL 5.7 license agreement or contact your Oracle
sales representative.

For release notes detailing the changes in each release, see the MySQL 5.7 Release Notes.

For legal information, see the Legal Notices.

Document generated on: 2014-04-11 (revision: 38404)

General Administrators MySQL
Enterprise

Developers &
Functionality

Connectors &
APIs

HA/Scalability

Tutorial Installation &
Upgrades

MySQL
Enterprise Edition

MySQL
Workbench

Connectors and
APIs

» HA/Scalability
Guide

Server
Administration

MySQL Yum
Repository

MySQL
Enterprise
Monitor

Globalization Connector/J MySQL and
DRBD

SQL Syntax » MySQL Installer MySQL
Enterprise
Backup

Optimization Connector/ODBC memcached

Storage Engines » Security MySQL
Enterprise
Security

Functions and
Operators

Connector/Net MySQL and
Virtualization

Server Option /
Variable
Reference

» Startup /
Shutdown

MySQL
Enterprise Audit

Views and Stored
Programs

Connector/
Python

MySQL Proxy

» Release Notes » Backup and
Recovery
Overview

MySQL Thread
Pool

Partitioning PHP Replication

» MySQL Version
Reference

» MySQL Utilities Precision Math C API Semisynchronous
Replication

FAQs » Linux/Unix
Platform Guide

 Information
Schema

Connector/C

 » Windows
Platform Guide

 Performance
Schema

Connector/C++

 » Mac OS X
Platform Guide

 Spatial
Extensions

» MySQL for
Excel

 » Solaris Platform
Guide

 Restrictions and
Limitations

 » Building from
Source

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/doc/workbench/en/wb-intro.html
http://dev.mysql.com/doc/workbench/en/wb-intro.html
http://dev.mysql.com/doc/mysql-ha-scalability/en/index.html
http://dev.mysql.com/doc/mysql-ha-scalability/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/mysql-installer/en/
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/mysql-security-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/mysql-startstop-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-startstop-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/doc/mysql-backup-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-backup-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-backup-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/apis-php/en/index.html
http://dev.mysql.com/doc/mysqld-version-reference/en/
http://dev.mysql.com/doc/mysqld-version-reference/en/
http://dev.mysql.com/doc/workbench/en/mysql-utilities.html
http://dev.mysql.com/doc/mysql-linuxunix-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-linuxunix-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/mysql-windows-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-windows-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://dev.mysql.com/doc/mysql-macosx-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-macosx-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-for-excel/en/
http://dev.mysql.com/doc/mysql-for-excel/en/
http://dev.mysql.com/doc/mysql-solaris-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-solaris-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-sourcebuild-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-sourcebuild-excerpt/5.7/en/index.html

iii

Table of Contents
Preface and Legal Notices .. xxi
1 General Information ... 1

1.1 About This Manual .. 2
1.2 Typographical and Syntax Conventions .. 2
1.3 Overview of the MySQL Database Management System ... 4

1.3.1 What is MySQL? .. 4
1.3.2 The Main Features of MySQL ... 5
1.3.3 History of MySQL ... 8

1.4 What Is New in MySQL 5.7 ... 9
1.5 MySQL Development History ... 14
1.6 MySQL Information Sources .. 15

1.6.1 MySQL Mailing Lists ... 15
1.6.2 MySQL Community Support at the MySQL Forums .. 17
1.6.3 MySQL Community Support on Internet Relay Chat (IRC) 18
1.6.4 MySQL Enterprise .. 18

1.7 How to Report Bugs or Problems .. 18
1.8 MySQL Standards Compliance .. 22

1.8.1 MySQL Extensions to Standard SQL ... 23
1.8.2 MySQL Differences from Standard SQL .. 26
1.8.3 How MySQL Deals with Constraints .. 30

1.9 Credits .. 34
1.9.1 Contributors to MySQL ... 34
1.9.2 Documenters and translators .. 38
1.9.3 Packages that support MySQL .. 40
1.9.4 Tools that were used to create MySQL .. 40
1.9.5 Supporters of MySQL ... 41

2 Installing and Upgrading MySQL .. 43
2.1 General Installation Guidance .. 45

2.1.1 Operating Systems Supported by MySQL Community Server 45
2.1.2 Choosing Which MySQL Distribution to Install .. 45
2.1.3 How to Get MySQL .. 48
2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG 49
2.1.5 Installation Layouts ... 58
2.1.6 Compiler-Specific Build Characteristics .. 58

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 58
2.3 Installing MySQL on Microsoft Windows ... 61

2.3.1 MySQL Installation Layout on Microsoft Windows ... 62
2.3.2 Choosing An Installation Package ... 63
2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installer 63
2.3.4 MySQL Notifier for Microsoft Windows ... 80
2.3.5 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive 91
2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation 98
2.3.7 Upgrading MySQL on Windows ... 100
2.3.8 Windows Postinstallation Procedures ... 101

2.4 Installing MySQL on Mac OS X ... 103
2.4.1 General Notes on Installing MySQL on Mac OS X .. 103
2.4.2 Installing MySQL on Mac OS X Using Native Packages 105
2.4.3 Installing the MySQL Startup Item ... 107
2.4.4 Installing and Using the MySQL Preference Pane .. 110
2.4.5 Using the Bundled MySQL on Mac OS X Server .. 112

2.5 Installing MySQL on Linux ... 112
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository 113
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum
Repository ... 117
2.5.3 Installing MySQL on Linux Using RPM Packages ... 119

MySQL 5.7 Reference Manual

iv

2.5.4 Installing MySQL on Linux Using Debian Packages .. 123
2.5.5 Installing MySQL on Linux Using Native Package Managers 124

2.6 Installing MySQL on Solaris and OpenSolaris ... 128
2.6.1 Installing MySQL on Solaris Using a Solaris PKG ... 129
2.6.2 Installing MySQL on OpenSolaris Using IPS .. 130

2.7 Installing MySQL on FreeBSD ... 131
2.8 Installing MySQL from Source .. 131

2.8.1 MySQL Layout for Source Installation .. 133
2.8.2 Installing MySQL Using a Standard Source Distribution 133
2.8.3 Installing MySQL Using a Development Source Tree .. 137
2.8.4 MySQL Source-Configuration Options .. 139
2.8.5 Dealing with Problems Compiling MySQL .. 151
2.8.6 MySQL Configuration and Third-Party Tools .. 153

2.9 Postinstallation Setup and Testing ... 153
2.9.1 Postinstallation Procedures for Unix-like Systems ... 153
2.9.2 Securing the Initial MySQL Accounts ... 164

2.10 Upgrading or Downgrading MySQL .. 168
2.10.1 Upgrading MySQL .. 168
2.10.2 Downgrading MySQL .. 175
2.10.3 Checking Whether Tables or Indexes Must Be Rebuilt 177
2.10.4 Rebuilding or Repairing Tables or Indexes ... 179
2.10.5 Copying MySQL Databases to Another Machine .. 180

2.11 Environment Variables ... 181
2.12 Perl Installation Notes .. 183

2.12.1 Installing Perl on Unix ... 183
2.12.2 Installing ActiveState Perl on Windows .. 184
2.12.3 Problems Using the Perl DBI/DBD Interface .. 185

3 Tutorial .. 187
3.1 Connecting to and Disconnecting from the Server ... 187
3.2 Entering Queries ... 188
3.3 Creating and Using a Database ... 191

3.3.1 Creating and Selecting a Database ... 192
3.3.2 Creating a Table ... 193
3.3.3 Loading Data into a Table ... 194
3.3.4 Retrieving Information from a Table ... 195

3.4 Getting Information About Databases and Tables .. 208
3.5 Using mysql in Batch Mode .. 209
3.6 Examples of Common Queries .. 211

3.6.1 The Maximum Value for a Column .. 211
3.6.2 The Row Holding the Maximum of a Certain Column .. 211
3.6.3 Maximum of Column per Group .. 212
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 212
3.6.5 Using User-Defined Variables ... 213
3.6.6 Using Foreign Keys .. 213
3.6.7 Searching on Two Keys .. 215
3.6.8 Calculating Visits Per Day ... 215
3.6.9 Using AUTO_INCREMENT .. 216

3.7 Using MySQL with Apache .. 218
4 MySQL Programs ... 219

4.1 Overview of MySQL Programs ... 220
4.2 Using MySQL Programs .. 223

4.2.1 Invoking MySQL Programs ... 223
4.2.2 Connecting to the MySQL Server .. 224
4.2.3 Specifying Program Options .. 227
4.2.4 Setting Environment Variables ... 240

4.3 MySQL Server and Server-Startup Programs .. 241
4.3.1 mysqld — The MySQL Server ... 241
4.3.2 mysqld_safe — MySQL Server Startup Script ... 241

MySQL 5.7 Reference Manual

v

4.3.3 mysql.server — MySQL Server Startup Script ... 246
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 247

4.4 MySQL Installation-Related Programs .. 251
4.4.1 comp_err — Compile MySQL Error Message File ... 251
4.4.2 mysqlbug — Generate Bug Report .. 252
4.4.3 mysql_install_db — Initialize MySQL Data Directory 252
4.4.4 mysql_plugin — Configure MySQL Server Plugins ... 257
4.4.5 mysql_secure_installation — Improve MySQL Installation Security 259
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables 262
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables 262

4.5 MySQL Client Programs .. 267
4.5.1 mysql — The MySQL Command-Line Tool ... 267
4.5.2 mysqladmin — Client for Administering a MySQL Server 292
4.5.3 mysqlcheck — A Table Maintenance Program ... 300
4.5.4 mysqldump — A Database Backup Program ... 307
4.5.5 mysqlimport — A Data Import Program .. 326
4.5.6 mysqlshow — Display Database, Table, and Column Information 332
4.5.7 mysqlslap — Load Emulation Client ... 336

4.6 MySQL Administrative and Utility Programs .. 344
4.6.1 innochecksum — Offline InnoDB File Checksum Utility 344
4.6.2 myisam_ftdump — Display Full-Text Index information 350
4.6.3 myisamchk — MyISAM Table-Maintenance Utility ... 351
4.6.4 myisamlog — Display MyISAM Log File Contents .. 367
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 368
4.6.6 mysql_config_editor — MySQL Configuration Utility 374
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files 380
4.6.8 mysqldumpslow — Summarize Slow Query Log Files 400
4.6.9 mysqlhotcopy — A Database Backup Program ... 402
4.6.10 mysql_waitpid — Kill Process and Wait for Its Termination 405
4.6.11 mysql_zap — Kill Processes That Match a Pattern ... 405

4.7 MySQL Program Development Utilities ... 406
4.7.1 mysql_config — Display Options for Compiling Clients 406
4.7.2 my_print_defaults — Display Options from Option Files 407
4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 408

4.8 Miscellaneous Programs .. 409
4.8.1 perror — Explain Error Codes .. 409
4.8.2 replace — A String-Replacement Utility .. 410
4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa 410

5 MySQL Server Administration ... 413
5.1 The MySQL Server ... 413

5.1.1 Server Option and Variable Reference ... 414
5.1.2 Server Configuration Defaults .. 444
5.1.3 Server Command Options ... 444
5.1.4 Server System Variables ... 477
5.1.5 Using System Variables .. 587
5.1.6 Server Status Variables .. 600
5.1.7 Server SQL Modes ... 626
5.1.8 Server Plugins .. 638
5.1.9 IPv6 Support .. 642
5.1.10 Server-Side Help .. 646
5.1.11 Server Response to Signals .. 647
5.1.12 The Shutdown Process ... 647

5.2 MySQL Server Logs .. 649
5.2.1 Selecting General Query and Slow Query Log Output Destinations 649
5.2.2 The Error Log ... 651
5.2.3 The General Query Log .. 653
5.2.4 The Binary Log ... 654
5.2.5 The Slow Query Log ... 665

MySQL 5.7 Reference Manual

vi

5.2.6 Server Log Maintenance ... 667
5.3 Running Multiple MySQL Instances on One Machine .. 668

5.3.1 Setting Up Multiple Data Directories .. 669
5.3.2 Running Multiple MySQL Instances on Windows .. 671
5.3.3 Running Multiple MySQL Instances on Unix ... 673
5.3.4 Using Client Programs in a Multiple-Server Environment 674

5.4 Tracing mysqld Using DTrace .. 675
5.4.1 mysqld DTrace Probe Reference ... 676

6 Security ... 693
6.1 General Security Issues ... 694

6.1.1 Security Guidelines ... 694
6.1.2 Keeping Passwords Secure .. 695
6.1.3 Making MySQL Secure Against Attackers .. 708
6.1.4 Security-Related mysqld Options and Variables .. 710
6.1.5 How to Run MySQL as a Normal User .. 710
6.1.6 Security Issues with LOAD DATA LOCAL .. 711
6.1.7 Client Programming Security Guidelines .. 712

6.2 The MySQL Access Privilege System ... 713
6.2.1 Privileges Provided by MySQL .. 714
6.2.2 Privilege System Grant Tables .. 718
6.2.3 Specifying Account Names ... 724
6.2.4 Access Control, Stage 1: Connection Verification ... 726
6.2.5 Access Control, Stage 2: Request Verification .. 729
6.2.6 When Privilege Changes Take Effect ... 730
6.2.7 Causes of Access-Denied Errors ... 731

6.3 MySQL User Account Management ... 736
6.3.1 User Names and Passwords ... 736
6.3.2 Adding User Accounts .. 738
6.3.3 Removing User Accounts .. 741
6.3.4 Setting Account Resource Limits ... 741
6.3.5 Assigning Account Passwords ... 743
6.3.6 Password Expiration Policy ... 744
6.3.7 Password Expiration and Sandbox Mode ... 746
6.3.8 Pluggable Authentication ... 747
6.3.9 Authentication Plugins Available in MySQL .. 750
6.3.10 Proxy Users ... 760
6.3.11 Using SSL for Secure Connections .. 764
6.3.12 Connecting to MySQL Remotely from Windows with SSH 776
6.3.13 MySQL Enterprise Audit Log Plugin ... 776
6.3.14 SQL-Based MySQL Account Activity Auditing ... 793

7 Backup and Recovery .. 797
7.1 Backup and Recovery Types ... 798
7.2 Database Backup Methods .. 801
7.3 Example Backup and Recovery Strategy .. 803

7.3.1 Establishing a Backup Policy .. 804
7.3.2 Using Backups for Recovery ... 805
7.3.3 Backup Strategy Summary .. 806

7.4 Using mysqldump for Backups .. 806
7.4.1 Dumping Data in SQL Format with mysqldump ... 807
7.4.2 Reloading SQL-Format Backups ... 808
7.4.3 Dumping Data in Delimited-Text Format with mysqldump 808
7.4.4 Reloading Delimited-Text Format Backups ... 809
7.4.5 mysqldump Tips .. 810

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log ... 812
7.5.1 Point-in-Time Recovery Using Event Times ... 813
7.5.2 Point-in-Time Recovery Using Event Positions ... 814

7.6 MyISAM Table Maintenance and Crash Recovery ... 815
7.6.1 Using myisamchk for Crash Recovery .. 815

MySQL 5.7 Reference Manual

vii

7.6.2 How to Check MyISAM Tables for Errors ... 816
7.6.3 How to Repair MyISAM Tables .. 816
7.6.4 MyISAM Table Optimization ... 819
7.6.5 Setting Up a MyISAM Table Maintenance Schedule .. 819

8 Optimization ... 821
8.1 Optimization Overview ... 822
8.2 Optimizing SQL Statements ... 823

8.2.1 Optimizing SELECT Statements ... 823
8.2.2 Optimizing DML Statements .. 871
8.2.3 Optimizing Database Privileges ... 872
8.2.4 Optimizing INFORMATION_SCHEMA Queries .. 873
8.2.5 Other Optimization Tips .. 877

8.3 Optimization and Indexes .. 880
8.3.1 How MySQL Uses Indexes ... 880
8.3.2 Using Primary Keys .. 881
8.3.3 Using Foreign Keys .. 881
8.3.4 Column Indexes ... 882
8.3.5 Multiple-Column Indexes ... 883
8.3.6 Verifying Index Usage ... 884
8.3.7 InnoDB and MyISAM Index Statistics Collection ... 884
8.3.8 Comparison of B-Tree and Hash Indexes .. 886

8.4 Optimizing Database Structure ... 887
8.4.1 Optimizing Data Size .. 887
8.4.2 Optimizing MySQL Data Types ... 889
8.4.3 Optimizing for Many Tables .. 890
8.4.4 How MySQL Uses Internal Temporary Tables .. 892

8.5 Optimizing for InnoDB Tables ... 893
8.5.1 Optimizing Storage Layout for InnoDB Tables ... 893
8.5.2 Optimizing InnoDB Transaction Management .. 894
8.5.3 Optimizing InnoDB Logging .. 895
8.5.4 Bulk Data Loading for InnoDB Tables ... 895
8.5.5 Optimizing InnoDB Queries .. 896
8.5.6 Optimizing InnoDB DDL Operations .. 897
8.5.7 Optimizing InnoDB Disk I/O .. 897
8.5.8 Optimizing InnoDB Configuration Variables ... 898
8.5.9 Optimizing InnoDB for Systems with Many Tables ... 900

8.6 Optimizing for MyISAM Tables ... 900
8.6.1 Optimizing MyISAM Queries .. 900
8.6.2 Bulk Data Loading for MyISAM Tables ... 901
8.6.3 Speed of REPAIR TABLE Statements ... 902

8.7 Optimizing for MEMORY Tables ... 904
8.8 Understanding the Query Execution Plan ... 904

8.8.1 Optimizing Queries with EXPLAIN ... 904
8.8.2 EXPLAIN Output Format ... 905
8.8.3 Obtaining Execution Plan Information for a Named Connection 916
8.8.4 EXPLAIN EXTENDED Output Format ... 917
8.8.5 Estimating Query Performance .. 919
8.8.6 Controlling the Query Optimizer .. 919

8.9 Buffering and Caching ... 922
8.9.1 The InnoDB Buffer Pool ... 923
8.9.2 The MyISAM Key Cache ... 925
8.9.3 The MySQL Query Cache ... 929
8.9.4 Caching of Prepared Statements and Stored Programs 936

8.10 Optimizing Locking Operations ... 937
8.10.1 Internal Locking Methods .. 937
8.10.2 Table Locking Issues .. 939
8.10.3 Concurrent Inserts .. 940
8.10.4 Metadata Locking ... 941

MySQL 5.7 Reference Manual

viii

8.10.5 External Locking ... 942
8.11 Optimizing the MySQL Server .. 943

8.11.1 System Factors and Startup Parameter Tuning .. 943
8.11.2 Tuning Server Parameters .. 943
8.11.3 Optimizing Disk I/O ... 948
8.11.4 Optimizing Memory Use .. 952
8.11.5 Optimizing Network Use .. 955

8.12 Measuring Performance (Benchmarking) .. 957
8.12.1 Measuring the Speed of Expressions and Functions ... 957
8.12.2 The MySQL Benchmark Suite ... 958
8.12.3 Using Your Own Benchmarks .. 958
8.12.4 Measuring Performance with performance_schema 959
8.12.5 Examining Thread Information ... 959

9 Language Structure .. 973
9.1 Literal Values .. 973

9.1.1 String Literals ... 973
9.1.2 Number Literals .. 976
9.1.3 Date and Time Literals ... 976
9.1.4 Hexadecimal Literals ... 978
9.1.5 Boolean Literals .. 979
9.1.6 Bit-Field Literals .. 979
9.1.7 NULL Values .. 979

9.2 Schema Object Names .. 979
9.2.1 Identifier Qualifiers .. 981
9.2.2 Identifier Case Sensitivity .. 982
9.2.3 Mapping of Identifiers to File Names ... 984
9.2.4 Function Name Parsing and Resolution ... 986

9.3 Reserved Words ... 989
9.4 User-Defined Variables .. 992
9.5 Expression Syntax ... 995
9.6 Comment Syntax ... 997

10 Globalization .. 999
10.1 Character Set Support ... 999

10.1.1 Character Sets and Collations in General ... 1000
10.1.2 Character Sets and Collations in MySQL ... 1001
10.1.3 Specifying Character Sets and Collations ... 1002
10.1.4 Connection Character Sets and Collations ... 1009
10.1.5 Configuring the Character Set and Collation for Applications 1011
10.1.6 Character Set for Error Messages ... 1013
10.1.7 Collation Issues .. 1014
10.1.8 String Repertoire ... 1023
10.1.9 Operations Affected by Character Set Support ... 1024
10.1.10 Unicode Support ... 1027
10.1.11 Upgrading from Previous to Current Unicode Support 1032
10.1.12 UTF-8 for Metadata ... 1034
10.1.13 Column Character Set Conversion ... 1035
10.1.14 Character Sets and Collations That MySQL Supports 1036

10.2 Setting the Error Message Language .. 1049
10.3 Adding a Character Set ... 1050

10.3.1 Character Definition Arrays .. 1052
10.3.2 String Collating Support for Complex Character Sets 1053
10.3.3 Multi-Byte Character Support for Complex Character Sets 1053

10.4 Adding a Collation to a Character Set ... 1053
10.4.1 Collation Implementation Types ... 1055
10.4.2 Choosing a Collation ID .. 1057
10.4.3 Adding a Simple Collation to an 8-Bit Character Set 1058
10.4.4 Adding a UCA Collation to a Unicode Character Set 1059

10.5 Character Set Configuration ... 1066

MySQL 5.7 Reference Manual

ix

10.6 MySQL Server Time Zone Support ... 1067
10.6.1 Staying Current with Time Zone Changes .. 1069
10.6.2 Time Zone Leap Second Support .. 1070

10.7 MySQL Server Locale Support ... 1072
11 Data Types .. 1075

11.1 Data Type Overview .. 1076
11.1.1 Numeric Type Overview .. 1076
11.1.2 Date and Time Type Overview .. 1079
11.1.3 String Type Overview .. 1081

11.2 Numeric Types .. 1084
11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT .. 1085
11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC 1085
11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 1086
11.2.4 Bit-Value Type - BIT .. 1086
11.2.5 Numeric Type Attributes .. 1086
11.2.6 Out-of-Range and Overflow Handling ... 1087

11.3 Date and Time Types .. 1088
11.3.1 The DATE, DATETIME, and TIMESTAMP Types ... 1090
11.3.2 The TIME Type .. 1091
11.3.3 The YEAR Type .. 1092
11.3.4 YEAR(2) Limitations and Migrating to YEAR(4) ... 1092
11.3.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME 1095
11.3.6 Fractional Seconds in Time Values .. 1098
11.3.7 Conversion Between Date and Time Types .. 1099
11.3.8 Two-Digit Years in Dates .. 1100

11.4 String Types .. 1100
11.4.1 The CHAR and VARCHAR Types ... 1100
11.4.2 The BINARY and VARBINARY Types ... 1102
11.4.3 The BLOB and TEXT Types ... 1103
11.4.4 The ENUM Type .. 1105
11.4.5 The SET Type .. 1107

11.5 Data Type Default Values .. 1110
11.6 Data Type Storage Requirements ... 1111
11.7 Choosing the Right Type for a Column ... 1114
11.8 Using Data Types from Other Database Engines .. 1114

12 Functions and Operators .. 1117
12.1 Function and Operator Reference ... 1118
12.2 Type Conversion in Expression Evaluation .. 1125
12.3 Operators .. 1128

12.3.1 Operator Precedence .. 1129
12.3.2 Comparison Functions and Operators .. 1130
12.3.3 Logical Operators .. 1135
12.3.4 Assignment Operators ... 1137

12.4 Control Flow Functions .. 1138
12.5 String Functions .. 1140

12.5.1 String Comparison Functions ... 1155
12.5.2 Regular Expressions ... 1159

12.6 Numeric Functions and Operators .. 1164
12.6.1 Arithmetic Operators ... 1165
12.6.2 Mathematical Functions ... 1167

12.7 Date and Time Functions ... 1176
12.8 What Calendar Is Used By MySQL? ... 1197
12.9 Full-Text Search Functions ... 1197

12.9.1 Natural Language Full-Text Searches .. 1198
12.9.2 Boolean Full-Text Searches ... 1202
12.9.3 Full-Text Searches with Query Expansion .. 1204
12.9.4 Full-Text Stopwords .. 1205

MySQL 5.7 Reference Manual

x

12.9.5 Full-Text Restrictions ... 1208
12.9.6 Fine-Tuning MySQL Full-Text Search .. 1209
12.9.7 Adding a Collation for Full-Text Indexing .. 1211

12.10 Cast Functions and Operators .. 1212
12.11 XML Functions .. 1215
12.12 Bit Functions ... 1226
12.13 Encryption and Compression Functions .. 1227
12.14 Information Functions ... 1236
12.15 Functions Used with Global Transaction IDs ... 1244
12.16 Miscellaneous Functions .. 1246
12.17 Functions and Modifiers for Use with GROUP BY Clauses .. 1253

12.17.1 GROUP BY (Aggregate) Functions .. 1253
12.17.2 GROUP BY Modifiers ... 1257
12.17.3 MySQL Extensions to GROUP BY .. 1260

12.18 Spatial Extensions ... 1261
12.18.1 Introduction to MySQL Spatial Support ... 1262
12.18.2 The OpenGIS Geometry Model .. 1262
12.18.3 Supported Spatial Data Formats .. 1268
12.18.4 Creating a Spatially Enabled MySQL Database .. 1269
12.18.5 Spatial Analysis Functions ... 1274
12.18.6 Optimizing Spatial Analysis .. 1285
12.18.7 MySQL Conformance and Compatibility ... 1288

12.19 Precision Math ... 1288
12.19.1 Types of Numeric Values .. 1289
12.19.2 DECIMAL Data Type Characteristics .. 1289
12.19.3 Expression Handling ... 1290
12.19.4 Rounding Behavior .. 1292
12.19.5 Precision Math Examples .. 1292

13 SQL Statement Syntax ... 1297
13.1 Data Definition Statements ... 1298

13.1.1 ALTER DATABASE Syntax .. 1298
13.1.2 ALTER EVENT Syntax .. 1299
13.1.3 ALTER FUNCTION Syntax .. 1301
13.1.4 ALTER PROCEDURE Syntax .. 1301
13.1.5 ALTER SERVER Syntax .. 1301
13.1.6 ALTER TABLE Syntax .. 1302
13.1.7 ALTER VIEW Syntax .. 1318
13.1.8 CREATE DATABASE Syntax .. 1318
13.1.9 CREATE EVENT Syntax .. 1318
13.1.10 CREATE FUNCTION Syntax .. 1323
13.1.11 CREATE INDEX Syntax .. 1323
13.1.12 CREATE PROCEDURE and CREATE FUNCTION Syntax 1326
13.1.13 CREATE SERVER Syntax .. 1331
13.1.14 CREATE TABLE Syntax .. 1332
13.1.15 CREATE TRIGGER Syntax .. 1358
13.1.16 CREATE VIEW Syntax .. 1360
13.1.17 DROP DATABASE Syntax .. 1365
13.1.18 DROP EVENT Syntax .. 1366
13.1.19 DROP FUNCTION Syntax .. 1366
13.1.20 DROP INDEX Syntax .. 1366
13.1.21 DROP PROCEDURE and DROP FUNCTION Syntax ... 1367
13.1.22 DROP SERVER Syntax .. 1367
13.1.23 DROP TABLE Syntax .. 1367
13.1.24 DROP TRIGGER Syntax .. 1368
13.1.25 DROP VIEW Syntax .. 1368
13.1.26 RENAME TABLE Syntax .. 1368
13.1.27 TRUNCATE TABLE Syntax .. 1369

13.2 Data Manipulation Statements .. 1370

MySQL 5.7 Reference Manual

xi

13.2.1 CALL Syntax ... 1370
13.2.2 DELETE Syntax ... 1372
13.2.3 DO Syntax ... 1376
13.2.4 HANDLER Syntax ... 1377
13.2.5 INSERT Syntax ... 1378
13.2.6 LOAD DATA INFILE Syntax .. 1385
13.2.7 LOAD XML Syntax .. 1394
13.2.8 REPLACE Syntax ... 1399
13.2.9 SELECT Syntax ... 1401
13.2.10 Subquery Syntax ... 1420
13.2.11 UPDATE Syntax ... 1432

13.3 MySQL Transactional and Locking Statements .. 1434
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax 1434
13.3.2 Statements That Cannot Be Rolled Back ... 1437
13.3.3 Statements That Cause an Implicit Commit .. 1437
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax . 1438
13.3.5 LOCK TABLES and UNLOCK TABLES Syntax ... 1439
13.3.6 SET TRANSACTION Syntax .. 1444
13.3.7 XA Transactions ... 1447

13.4 Replication Statements .. 1451
13.4.1 SQL Statements for Controlling Master Servers .. 1451
13.4.2 SQL Statements for Controlling Slave Servers .. 1453

13.5 SQL Syntax for Prepared Statements ... 1466
13.5.1 PREPARE Syntax ... 1469
13.5.2 EXECUTE Syntax ... 1470
13.5.3 DEALLOCATE PREPARE Syntax .. 1470

13.6 MySQL Compound-Statement Syntax ... 1471
13.6.1 BEGIN ... END Compound-Statement Syntax ... 1471
13.6.2 Statement Label Syntax .. 1471
13.6.3 DECLARE Syntax ... 1472
13.6.4 Variables in Stored Programs .. 1472
13.6.5 Flow Control Statements ... 1474
13.6.6 Cursors .. 1478
13.6.7 Condition Handling .. 1480

13.7 Database Administration Statements .. 1505
13.7.1 Account Management Statements .. 1505
13.7.2 Table Maintenance Statements .. 1523
13.7.3 Plugin and User-Defined Function Statements .. 1532
13.7.4 SET Syntax ... 1535
13.7.5 SHOW Syntax ... 1538
13.7.6 Other Administrative Statements .. 1578

13.8 MySQL Utility Statements .. 1586
13.8.1 DESCRIBE Syntax ... 1586
13.8.2 EXPLAIN Syntax ... 1586
13.8.3 HELP Syntax ... 1588
13.8.4 USE Syntax ... 1590

14 Storage Engines ... 1591
14.1 Setting the Storage Engine .. 1594
14.2 The InnoDB Storage Engine .. 1595

14.2.1 Introduction to InnoDB .. 1595
14.2.2 InnoDB Concepts and Architecture ... 1600
14.2.3 InnoDB Configuration ... 1620
14.2.4 InnoDB Administration .. 1626
14.2.5 InnoDB Tablespace Management ... 1626
14.2.6 InnoDB Table Management .. 1641
14.2.7 InnoDB Compressed Tables ... 1659
14.2.8 InnoDB File-Format Management ... 1670
14.2.9 InnoDB Row Storage and Row Formats .. 1676

MySQL 5.7 Reference Manual

xii

14.2.10 InnoDB Disk I/O and File Space Management ... 1678
14.2.11 InnoDB and Online DDL ... 1681
14.2.12 InnoDB Performance Tuning ... 1715
14.2.13 InnoDB Startup Options and System Variables .. 1762
14.2.14 InnoDB Backup and Recovery .. 1827
14.2.15 InnoDB and MySQL Replication .. 1829
14.2.16 InnoDB Integration with memcached ... 1831
14.2.17 InnoDB Troubleshooting ... 1860

14.3 The MyISAM Storage Engine .. 1869
14.3.1 MyISAM Startup Options .. 1871
14.3.2 Space Needed for Keys .. 1873
14.3.3 MyISAM Table Storage Formats .. 1873
14.3.4 MyISAM Table Problems ... 1875

14.4 The MEMORY Storage Engine .. 1877
14.5 The CSV Storage Engine ... 1880

14.5.1 Repairing and Checking CSV Tables ... 1881
14.5.2 CSV Limitations .. 1882

14.6 The ARCHIVE Storage Engine .. 1882
14.7 The BLACKHOLE Storage Engine .. 1883
14.8 The MERGE Storage Engine .. 1886

14.8.1 MERGE Table Advantages and Disadvantages .. 1888
14.8.2 MERGE Table Problems ... 1889

14.9 The FEDERATED Storage Engine .. 1890
14.9.1 FEDERATED Storage Engine Overview ... 1891
14.9.2 How to Create FEDERATED Tables .. 1892
14.9.3 FEDERATED Storage Engine Notes and Tips .. 1894
14.9.4 FEDERATED Storage Engine Resources ... 1896

14.10 The EXAMPLE Storage Engine .. 1896
14.11 Other Storage Engines ... 1896
14.12 Overview of MySQL Storage Engine Architecture .. 1896

14.12.1 Pluggable Storage Engine Architecture .. 1897
14.12.2 The Common Database Server Layer .. 1897

15 High Availability and Scalability ... 1899
15.1 Oracle VM Template for MySQL Enterprise Edition ... 1902
15.2 Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux 1902
15.3 Overview of MySQL with Windows Failover Clustering ... 1905
15.4 Using MySQL within an Amazon EC2 Instance ... 1907

15.4.1 Setting Up MySQL on an EC2 AMI .. 1907
15.4.2 EC2 Instance Limitations ... 1909
15.4.3 Deploying a MySQL Database Using EC2 .. 1909

15.5 Using ZFS Replication ... 1912
15.5.1 Using ZFS for File System Replication ... 1914
15.5.2 Configuring MySQL for ZFS Replication ... 1914
15.5.3 Handling MySQL Recovery with ZFS ... 1915

15.6 Using MySQL with memcached .. 1915
15.6.1 Installing memcached .. 1916
15.6.2 Using memcached .. 1918
15.6.3 Developing a memcached Application .. 1936
15.6.4 Getting memcached Statistics .. 1961
15.6.5 memcached FAQ .. 1969

15.7 MySQL Proxy .. 1972
15.7.1 MySQL Proxy Supported Platforms .. 1973
15.7.2 Installing MySQL Proxy ... 1973
15.7.3 MySQL Proxy Command Options .. 1977
15.7.4 MySQL Proxy Scripting ... 1986
15.7.5 Using MySQL Proxy .. 2000
15.7.6 MySQL Proxy FAQ ... 2006

16 Replication ... 2011

MySQL 5.7 Reference Manual

xiii

16.1 Replication Configuration ... 2012
16.1.1 How to Set Up Replication .. 2013
16.1.2 Replication Formats .. 2022
16.1.3 Replication with Global Transaction Identifiers .. 2029
16.1.4 Replication and Binary Logging Options and Variables 2036
16.1.5 Common Replication Administration Tasks ... 2103

16.2 Replication Implementation .. 2106
16.2.1 Replication Implementation Details .. 2106
16.2.2 Replication Relay and Status Logs .. 2108
16.2.3 How Servers Evaluate Replication Filtering Rules ... 2113

16.3 Replication Solutions ... 2120
16.3.1 Using Replication for Backups ... 2121
16.3.2 Using Replication with Different Master and Slave Storage Engines 2124
16.3.3 Using Replication for Scale-Out ... 2125
16.3.4 Replicating Different Databases to Different Slaves ... 2126
16.3.5 Improving Replication Performance .. 2128
16.3.6 Switching Masters During Failover ... 2129
16.3.7 Setting Up Replication Using SSL .. 2131
16.3.8 Semisynchronous Replication .. 2132
16.3.9 Delayed Replication .. 2137

16.4 Replication Notes and Tips .. 2138
16.4.1 Replication Features and Issues .. 2138
16.4.2 Replication Compatibility Between MySQL Versions 2163
16.4.3 Upgrading a Replication Setup .. 2164
16.4.4 Troubleshooting Replication ... 2165
16.4.5 How to Report Replication Bugs or Problems ... 2167

17 Partitioning ... 2169
17.1 Overview of Partitioning in MySQL ... 2171
17.2 Partitioning Types .. 2173

17.2.1 RANGE Partitioning .. 2175
17.2.2 LIST Partitioning .. 2179
17.2.3 COLUMNS Partitioning .. 2181
17.2.4 HASH Partitioning .. 2189
17.2.5 KEY Partitioning .. 2192
17.2.6 Subpartitioning .. 2193
17.2.7 How MySQL Partitioning Handles NULL ... 2196

17.3 Partition Management .. 2200
17.3.1 Management of RANGE and LIST Partitions ... 2201
17.3.2 Management of HASH and KEY Partitions ... 2207
17.3.3 Exchanging Partitions and Subpartitions with Tables 2208
17.3.4 Maintenance of Partitions .. 2213
17.3.5 Obtaining Information About Partitions ... 2214

17.4 Partition Pruning .. 2217
17.5 Partition Selection .. 2220
17.6 Restrictions and Limitations on Partitioning ... 2225

17.6.1 Partitioning Keys, Primary Keys, and Unique Keys .. 2231
17.6.2 Partitioning Limitations Relating to Storage Engines .. 2234
17.6.3 Partitioning Limitations Relating to Functions .. 2235
17.6.4 Partitioning and Locking .. 2236

18 Stored Programs and Views ... 2239
18.1 Defining Stored Programs .. 2240
18.2 Using Stored Routines (Procedures and Functions) ... 2241

18.2.1 Stored Routine Syntax .. 2241
18.2.2 Stored Routines and MySQL Privileges .. 2242
18.2.3 Stored Routine Metadata ... 2243
18.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 2243

18.3 Using Triggers ... 2243
18.3.1 Trigger Syntax and Examples .. 2244

MySQL 5.7 Reference Manual

xiv

18.3.2 Trigger Metadata .. 2247
18.4 Using the Event Scheduler ... 2248

18.4.1 Event Scheduler Overview .. 2248
18.4.2 Event Scheduler Configuration ... 2249
18.4.3 Event Syntax .. 2251
18.4.4 Event Metadata .. 2251
18.4.5 Event Scheduler Status ... 2252
18.4.6 The Event Scheduler and MySQL Privileges .. 2253

18.5 Using Views .. 2255
18.5.1 View Syntax ... 2256
18.5.2 View Processing Algorithms .. 2256
18.5.3 Updatable and Insertable Views .. 2258
18.5.4 View Metadata .. 2259

18.6 Access Control for Stored Programs and Views .. 2260
18.7 Binary Logging of Stored Programs .. 2261

19 INFORMATION_SCHEMA Tables ... 2269
19.1 The INFORMATION_SCHEMA CHARACTER_SETS Table ... 2272
19.2 The INFORMATION_SCHEMA COLLATIONS Table .. 2272
19.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table .. 2273
19.4 The INFORMATION_SCHEMA COLUMNS Table .. 2273
19.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 2274
19.6 The INFORMATION_SCHEMA ENGINES Table .. 2275
19.7 The INFORMATION_SCHEMA EVENTS Table .. 2275
19.8 The INFORMATION_SCHEMA FILES Table .. 2279
19.9 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables 2280
19.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables ... 2280
19.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 2280
19.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table ... 2281
19.13 The INFORMATION_SCHEMA PARAMETERS Table ... 2282
19.14 The INFORMATION_SCHEMA PARTITIONS Table ... 2282
19.15 The INFORMATION_SCHEMA PLUGINS Table ... 2285
19.16 The INFORMATION_SCHEMA PROCESSLIST Table ... 2286
19.17 The INFORMATION_SCHEMA PROFILING Table ... 2287
19.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 2288
19.19 The INFORMATION_SCHEMA ROUTINES Table ... 2289
19.20 The INFORMATION_SCHEMA SCHEMATA Table ... 2290
19.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 2290
19.22 The INFORMATION_SCHEMA STATISTICS Table ... 2291
19.23 The INFORMATION_SCHEMA TABLES Table .. 2291
19.24 The INFORMATION_SCHEMA TABLESPACES Table ... 2293
19.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 2293
19.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 2293
19.27 The INFORMATION_SCHEMA TRIGGERS Table ... 2294
19.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table ... 2296
19.29 The INFORMATION_SCHEMA VIEWS Table .. 2296
19.30 INFORMATION_SCHEMA Tables for InnoDB .. 2297

19.30.1 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET
Tables ... 2298
19.30.2 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables .. 2298
19.30.3 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables ... 2299
19.30.4 The INFORMATION_SCHEMA INNODB_TRX Table .. 2300
19.30.5 The INFORMATION_SCHEMA INNODB_LOCKS Table 2301
19.30.6 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table 2302
19.30.7 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table 2303

MySQL 5.7 Reference Manual

xv

19.30.8 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table 2303
19.30.9 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table 2304
19.30.10 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table 2305
19.30.11 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table 2305
19.30.12 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table 2305
19.30.13 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View 2306
19.30.14 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table 2307
19.30.15 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table 2307
19.30.16 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 2307
19.30.17 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 2309
19.30.18 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 2309
19.30.19 The INFORMATION_SCHEMA INNODB_METRICS Table 2310
19.30.20 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 2316
19.30.21 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 2317
19.30.22 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 2317
19.30.23 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 2318
19.30.24 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 2318
19.30.25 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 2319
19.30.26 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 2319

19.31 Extensions to SHOW Statements .. 2320
20 MySQL Performance Schema ... 2323

20.1 Performance Schema Quick Start ... 2324
20.2 Performance Schema Configuration .. 2330

20.2.1 Performance Schema Build Configuration .. 2331
20.2.2 Performance Schema Startup Configuration ... 2332
20.2.3 Performance Schema Runtime Configuration ... 2334

20.3 Performance Schema Queries .. 2351
20.4 Performance Schema Instrument Naming Conventions .. 2352
20.5 Performance Schema Status Monitoring ... 2354
20.6 Performance Schema Atom and Molecule Events ... 2358
20.7 Performance Schema Statement Digests .. 2358
20.8 Performance Schema General Table Characteristics ... 2360
20.9 Performance Schema Table Descriptions .. 2360

20.9.1 Performance Schema Table Index ... 2360
20.9.2 Performance Schema Setup Tables ... 2363
20.9.3 Performance Schema Instance Tables ... 2367
20.9.4 Performance Schema Wait Event Tables ... 2372
20.9.5 Performance Schema Stage Event Tables ... 2376
20.9.6 Performance Schema Statement Event Tables ... 2378
20.9.7 Performance Schema Transaction Tables .. 2388
20.9.8 Performance Schema Connection Tables ... 2394
20.9.9 Performance Schema Connection Attribute Tables ... 2396
20.9.10 Performance Schema Replication Tables ... 2397
20.9.11 Performance Schema Lock Tables ... 2404
20.9.12 Performance Schema Summary Tables ... 2407
20.9.13 Performance Schema Miscellaneous Tables ... 2424

20.10 Performance Schema Option and Variable Reference .. 2431
20.11 Performance Schema Command Options .. 2434
20.12 Performance Schema System Variables ... 2435
20.13 Performance Schema Status Variables ... 2448
20.14 Performance Schema and Plugins .. 2450
20.15 Using the Performance Schema to Diagnose Problems ... 2450

21 Connectors and APIs .. 2453
21.1 MySQL Connector/ODBC ... 2456
21.2 MySQL Connector/Net ... 2457
21.3 MySQL Connector/J ... 2457
21.4 MySQL Connector/C++ .. 2457
21.5 MySQL Connector/C .. 2457

MySQL 5.7 Reference Manual

xvi

21.6 MySQL Connector/Python .. 2457
21.7 libmysqld, the Embedded MySQL Server Library ... 2457

21.7.1 Compiling Programs with libmysqld .. 2458
21.7.2 Restrictions When Using the Embedded MySQL Server 2458
21.7.3 Options with the Embedded Server .. 2459
21.7.4 Embedded Server Examples ... 2459

21.8 MySQL C API ... 2462
21.8.1 MySQL C API Implementations ... 2463
21.8.2 Simultaneous MySQL Server and MySQL Connector/C Installations 2464
21.8.3 Example C API Client Programs .. 2465
21.8.4 Building and Running C API Client Programs ... 2465
21.8.5 C API Data Structures .. 2469
21.8.6 C API Function Overview .. 2474
21.8.7 C API Function Descriptions .. 2478
21.8.8 C API Prepared Statements .. 2534
21.8.9 C API Prepared Statement Data Structures .. 2534
21.8.10 C API Prepared Statement Function Overview .. 2540
21.8.11 C API Prepared Statement Function Descriptions ... 2543
21.8.12 C API Threaded Function Descriptions ... 2565
21.8.13 C API Embedded Server Function Descriptions .. 2566
21.8.14 C API Client Plugin Functions .. 2567
21.8.15 Common Questions and Problems When Using the C API 2570
21.8.16 Controlling Automatic Reconnection Behavior ... 2572
21.8.17 C API Support for Multiple Statement Execution ... 2573
21.8.18 C API Prepared Statement Problems ... 2575
21.8.19 C API Prepared Statement Handling of Date and Time Values 2575
21.8.20 C API Support for Prepared CALL Statements .. 2577

21.9 MySQL PHP API ... 2580
21.10 MySQL Perl API .. 2581
21.11 MySQL Python API .. 2581
21.12 MySQL Ruby APIs ... 2582

21.12.1 The MySQL/Ruby API ... 2582
21.12.2 The Ruby/MySQL API ... 2582

21.13 MySQL Tcl API .. 2582
21.14 MySQL Eiffel Wrapper ... 2582

22 Extending MySQL .. 2583
22.1 MySQL Internals .. 2583

22.1.1 MySQL Threads .. 2583
22.1.2 The MySQL Test Suite .. 2584

22.2 The MySQL Plugin API .. 2584
22.2.1 Plugin API Characteristics ... 2585
22.2.2 Plugin API Components .. 2586
22.2.3 Types of Plugins ... 2587
22.2.4 Writing Plugins .. 2590
22.2.5 MySQL Services for Plugins .. 2638

22.3 Adding New Functions to MySQL ... 2639
22.3.1 Features of the User-Defined Function Interface ... 2640
22.3.2 Adding a New User-Defined Function .. 2640
22.3.3 Adding a New Native Function .. 2650

22.4 Debugging and Porting MySQL .. 2651
22.4.1 Debugging a MySQL Server .. 2652
22.4.2 Debugging a MySQL Client ... 2658
22.4.3 The DBUG Package ... 2658

23 MySQL Enterprise Edition ... 2663
23.1 MySQL Enterprise Monitor ... 2663
23.2 MySQL Enterprise Backup ... 2664
23.3 MySQL Enterprise Security .. 2664
23.4 MySQL Enterprise Audit ... 2665

MySQL 5.7 Reference Manual

xvii

23.5 MySQL Enterprise Thread Pool .. 2665
24 MySQL Workbench .. 2667
25 Introduction .. 2669

25.1 Installing and Configuring ... 2669
25.2 Edit MySQL Data in Excel ... 2671
25.3 Import MySQL Data into Excel ... 2673
25.4 Append Excel Data into MySQL ... 2676
25.5 Export Excel Data into MySQL ... 2679
25.6 What Is New In MySQL for Excel ... 2682
25.7 MySQL for Excel FAQ ... 2683

A Licenses for Third-Party Components ... 2685
A.1 Artistic License (Perl) 1.0 .. 2687
A.2 Boost Library License .. 2689
A.3 dtoa.c License .. 2689
A.4 Editline Library (libedit) License .. 2690
A.5 Expect.pm License .. 2693
A.6 Facebook Fast Checksum Patch License ... 2699
A.7 Facebook Patches License .. 2700
A.8 FindGTest.cmake License .. 2701
A.9 Fred Fish's Dbug Library License ... 2701
A.10 getarg License .. 2702
A.11 GLib License (for MySQL Proxy) .. 2703
A.12 GNU General Public License Version 2.0, June 1991 .. 2703
A.13 GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library
Exception Version 3.1, 31 March 2009 ... 2708
A.14 GNU Lesser General Public License Version 2.1, February 1999 2719
A.15 GNU Readline License .. 2727
A.16 GNU Standard C++ Library (libstdc++) License ... 2727
A.17 Google Controlling Master Thread I/O Rate Patch License .. 2728
A.18 Google Perftools (TCMalloc utility) License ... 2729
A.19 Google SMP Patch License ... 2729
A.20 lib_sql.cc License .. 2730
A.21 Libaio License ... 2730
A.22 libevent License .. 2730
A.23 Libiconv License .. 2732
A.24 libintl License .. 2732
A.25 Linux-PAM License .. 2733
A.26 LPeg Library License .. 2734
A.27 Lua (liblua) License ... 2734
A.28 LuaFileSystem Library License ... 2735
A.29 md5 (Message-Digest Algorithm 5) License .. 2735
A.30 MeCab License ... 2735
A.31 memcached License .. 2736
A.32 Memcached.pm License .. 2736
A.33 mkpasswd.pl License .. 2737
A.34 nt_servc (Windows NT Service class library) License .. 2740
A.35 OpenPAM License .. 2740
A.36 OpenSSL v1.0 License .. 2741
A.37 PCRE License .. 2743
A.38 Percona Multiple I/O Threads Patch License .. 2744
A.39 Red HAT RPM Spec File License .. 2744
A.40 RegEX-Spencer Library License .. 2744
A.41 Richard A. O'Keefe String Library License .. 2745
A.42 SHA-1 in C License .. 2745
A.43 Unicode Data Files .. 2745
A.44 zlib License .. 2746

B MySQL 5.7 Frequently Asked Questions ... 2747
B.1 MySQL 5.7 FAQ: General ... 2747

MySQL 5.7 Reference Manual

xviii

B.2 MySQL 5.7 FAQ: Storage Engines ... 2749
B.3 MySQL 5.7 FAQ: Server SQL Mode .. 2749
B.4 MySQL 5.7 FAQ: Stored Procedures and Functions .. 2750
B.5 MySQL 5.7 FAQ: Triggers ... 2754
B.6 MySQL 5.7 FAQ: Views .. 2757
B.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA .. 2758
B.8 MySQL 5.7 FAQ: Migration .. 2758
B.9 MySQL 5.7 FAQ: Security ... 2759
B.10 MySQL 5.7 FAQ: MySQL Cluster ... 2760
B.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 2760
B.12 MySQL 5.7 FAQ: Connectors & APIs ... 2773
B.13 MySQL 5.7 FAQ: Replication ... 2773

C Errors, Error Codes, and Common Problems .. 2779
C.1 Sources of Error Information .. 2779
C.2 Types of Error Values ... 2779
C.3 Server Error Codes and Messages .. 2780
C.4 Client Error Codes and Messages ... 2843
C.5 Problems and Common Errors .. 2847

C.5.1 How to Determine What Is Causing a Problem .. 2847
C.5.2 Common Errors When Using MySQL Programs ... 2849
C.5.3 Installation-Related Issues .. 2861
C.5.4 Administration-Related Issues ... 2862
C.5.5 Query-Related Issues ... 2869
C.5.6 Optimizer-Related Issues .. 2876
C.5.7 Table Definition-Related Issues ... 2876
C.5.8 Known Issues in MySQL .. 2877

D MySQL Release Notes .. 2881
E Restrictions and Limits ... 2883

E.1 Restrictions on Stored Programs .. 2883
E.2 Restrictions on Condition Handling ... 2886
E.3 Restrictions on Server-Side Cursors ... 2886
E.4 Restrictions on Subqueries .. 2887
E.5 Restrictions on Views .. 2889
E.6 Restrictions on XA Transactions .. 2890
E.7 Restrictions on Character Sets .. 2891
E.8 Restrictions on Performance Schema ... 2891
E.9 Restrictions on Pluggable Authentication .. 2891
E.10 Limits in MySQL .. 2893

E.10.1 Limits of Joins .. 2893
E.10.2 Limits on Number of Databases and Tables ... 2893
E.10.3 Limits on Table Size ... 2894
E.10.4 Limits on Table Column Count and Row Size .. 2895
E.10.5 Limits Imposed by .frm File Structure .. 2896
E.10.6 Windows Platform Limitations .. 2897

MySQL Glossary ... 2901
General Index ... 2955
C Function Index ... 3029
Command Index .. 3039
Function Index .. 3059
INFORMATION_SCHEMA Index ... 3077
Join Types Index ... 3083
Operator Index .. 3085
Option Index ... 3089
Privileges Index ... 3135
SQL Modes Index ... 3141
Statement/Syntax Index ... 3145
System Variable Index ... 3189
Status Variable Index .. 3217

MySQL 5.7 Reference Manual

xix

Transaction Isolation Level Index ... 3225

xx

xxi

Preface and Legal Notices
This is the Reference Manual for the MySQL Database System, version 5.7, through release 5.7.5.
Differences between minor versions of MySQL 5.7 are noted in the present text with reference to
release numbers (5.7.x). For license information, see the Legal Notices. This product may contain
third-party code. For license information on third-party code, see Appendix A, Licenses for Third-Party
Components.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 5.7 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.6
Reference Manual covers the 5.6 series of MySQL software releases.

Legal Notices

Copyright © 1997, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government
contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc.,
500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the
safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark
of Oracle Corporation and/or its affiliates, and shall not be used without Oracle's express written
authorization. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only.
It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this

http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/refman/5.6/en/

Legal Notices

xxii

documentation and will not be responsible for any loss, costs, or damages incurred due to the use of
this documentation.

The information contained in this document is for informational sharing purposes only and should
be considered in your capacity as a customer advisory board member or pursuant to your beta trial
agreement only. It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of any features or
functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this material is subject to the terms and
conditions of your Oracle Software License and Service Agreement, which has been executed and with
which you agree to comply. This document and information contained herein may not be disclosed,
copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle
or as specifically provided below. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is
built and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products,
see Preface and Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you
can discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into
other languages, and downloadable versions in variety of formats, including HTML and PDF formats,
see the MySQL Documentation Library.

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

1

Chapter 1 General Information

Table of Contents
1.1 About This Manual .. 2
1.2 Typographical and Syntax Conventions .. 2
1.3 Overview of the MySQL Database Management System ... 4

1.3.1 What is MySQL? .. 4
1.3.2 The Main Features of MySQL ... 5
1.3.3 History of MySQL ... 8

1.4 What Is New in MySQL 5.7 ... 9
1.5 MySQL Development History ... 14
1.6 MySQL Information Sources .. 15

1.6.1 MySQL Mailing Lists ... 15
1.6.2 MySQL Community Support at the MySQL Forums .. 17
1.6.3 MySQL Community Support on Internet Relay Chat (IRC) .. 18
1.6.4 MySQL Enterprise .. 18

1.7 How to Report Bugs or Problems .. 18
1.8 MySQL Standards Compliance .. 22

1.8.1 MySQL Extensions to Standard SQL ... 23
1.8.2 MySQL Differences from Standard SQL .. 26
1.8.3 How MySQL Deals with Constraints .. 30

1.9 Credits .. 34
1.9.1 Contributors to MySQL ... 34
1.9.2 Documenters and translators .. 38
1.9.3 Packages that support MySQL .. 40
1.9.4 Tools that were used to create MySQL ... 40
1.9.5 Supporters of MySQL ... 41

The MySQL™ software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured
Query Language) database server. MySQL Server is intended for mission-critical, heavy-load
production systems as well as for embedding into mass-deployed software. Oracle is a registered
trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/
or its affiliates, and shall not be used by Customer without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open
Source product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or
can purchase a standard commercial license from Oracle. See http://www.mysql.com/company/legal/
licensing/ for more information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion of MySQL Database Server capabilities, see Section 1.3.2, “The Main Features of
MySQL”.

• For an overview of new MySQL features, see Section 1.4, “What Is New in MySQL 5.7”. For
information about the changes in each version, see the Release Notes.

• For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about
upgrading MySQL, see Section 2.10.1, “Upgrading MySQL”.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.

• For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server
Administration.

• For information about security in MySQL, see Chapter 6, Security.

http://www.fsf.org/licenses/
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

About This Manual

2

• For information about setting up replication servers, see Chapter 16, Replication.

• For information about MySQL Enterprise, the commercial MySQL release with advanced features
and management tools, see Chapter 23, MySQL Enterprise Edition.

• For answers to a number of questions that are often asked concerning the MySQL Database Server
and its capabilities, see Appendix B, MySQL 5.7 Frequently Asked Questions.

• For a history of new features and bug fixes, see the Release Notes.

Important

To report problems or bugs, please use the instructions at Section 1.7, “How
to Report Bugs or Problems”. If you find a sensitive security bug in MySQL
Server, please let us know immediately by sending an email message to
<secalert_us@oracle.com>. Exception: Support customers should report
all problems, including security bugs, to Oracle Support.

1.1 About This Manual
This is the Reference Manual for the MySQL Database System, version 5.7, through release 5.7.5.
Differences between minor versions of MySQL 5.7 are noted in the present text with reference to
release numbers (5.7.x). For license information, see the Legal Notices. This product may contain
third-party code. For license information on third-party code, see Appendix A, Licenses for Third-Party
Components.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 5.7 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.6
Reference Manual covers the 5.6 series of MySQL software releases.

Because this manual serves as a reference, it does not provide general instruction on SQL or relational
database concepts. It also does not teach you how to use your operating system or command-line
interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is updated
frequently as well. The most recent version of the manual is available online in searchable form at
http://dev.mysql.com/doc/. Other formats also are available there, including HTML, PDF, and EPUB
versions.

The Reference Manual source files are written in DocBook XML format. The HTML version and other
formats are produced automatically, primarily using the DocBook XSL stylesheets. For information
about DocBook, see http://docbook.org/

If you have questions about using MySQL, you can ask them using our mailing lists or forums. See
Section 1.6.1, “MySQL Mailing Lists”, and Section 1.6.2, “MySQL Community Support at the MySQL
Forums”. If you have suggestions concerning additions or corrections to the manual itself, please send
them to the http://www.mysql.com/company/contact/.

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by
the MySQL Documentation Team, consisting of Paul DuBois, Stefan Hinz, Philip Olson, Daniel Price,
Daniel So, Edward Gilmore, and Jon Stephens.

1.2 Typographical and Syntax Conventions
This manual uses certain typographical conventions:

• Text in this style is used for SQL statements; database, table, and column names; program
listings and source code; and environment variables. Example: “To reload the grant tables, use the
FLUSH PRIVILEGES statement.”

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/
http://docbook.org/

Typographical and Syntax Conventions

3

• Text in this style indicates input that you type in examples.

• Text in this style indicates the names of executable programs and scripts, examples being
mysql (the MySQL command-line client program) and mysqld (the MySQL server executable).

• Text in this style is used for variable input for which you should substitute a value of your
own choosing.

• Text in this style is used for emphasis.

• Text in this style is used in table headings and to convey especially strong emphasis.

• Text in this style is used to indicate a program option that affects how the program is
executed, or that supplies information that is needed for the program to function in a certain way.
Example: “The --host option (short form -h) tells the mysql client program the hostname or IP
address of the MySQL server that it should connect to”.

• File names and directory names are written like this: “The global my.cnf file is located in the /etc
directory.”

• Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”

When commands are shown that are meant to be executed from within a particular program, the
prompt shown preceding the command indicates which command to use. For example, shell>
indicates a command that you execute from your login shell, root-shell> is similar but should be
executed as root, and mysql> indicates a statement that you execute from the mysql client program:

shell> type a shell command here
root-shell> type a shell command as root here
mysql> type a mysql statement here

In some areas different systems may be distinguished from each other to show that commands should
be executed in two different environments. For example, while working with replication the commands
might be prefixed with master and slave:

master> type a mysql command on the replication master here
slave> type a mysql command on the replication slave here

The “shell” is your command interpreter. On Unix, this is typically a program such as sh, csh, or bash.
On Windows, the equivalent program is command.com or cmd.exe, typically run in a console window.

When you enter a command or statement shown in an example, do not type the prompt shown in the
example.

Database, table, and column names must often be substituted into statements. To indicate that such
substitution is necessary, this manual uses db_name, tbl_name, and col_name. For example, you
might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, table,
and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case sensitive and may be written in any lettercase. This manual uses
uppercase.

In syntax descriptions, square brackets (“[” and “]”) indicate optional words or clauses. For example, in
the following statement, IF EXISTS is optional:

Overview of the MySQL Database Management System

4

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical
bars (“|”). When one member from a set of choices may be chosen, the alternatives are listed within
square brackets (“[” and “]”):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within braces (“{”
and “}”):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter
version of more complex syntax. For example, SELECT ... INTO OUTFILE is shorthand for the form
of SELECT statement that has an INTO OUTFILE clause following other parts of the statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In
the following example, multiple reset_option values may be given, with each of those after the first
preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence
to set the CC environment variable and run the configure command looks like this in Bourne shell
syntax:

shell> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

shell> setenv CC gcc
shell> ./configure

1.3 Overview of the MySQL Database Management System

1.3.1 What is MySQL?

MySQL, the most popular Open Source SQL database management system, is developed, distributed,
and supported by Oracle Corporation.

The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL software.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to
a picture gallery or the vast amounts of information in a corporate network. To add, access, and
process data stored in a computer database, you need a database management system such
as MySQL Server. Since computers are very good at handling large amounts of data, database
management systems play a central role in computing, as standalone utilities, or as parts of other
applications.

• MySQL databases are relational.

 A relational database stores data in separate tables rather than putting all the data in one big
storeroom. The database structures are organized into physical files optimized for speed. The
logical model, with objects such as databases, tables, views, rows, and columns, offers a flexible
programming environment. You set up rules governing the relationships between different data
fields, such as one-to-one, one-to-many, unique, required or optional, and “pointers” between

The Main Features of MySQL

5

different tables. The database enforces these rules, so that with a well-designed database, your
application never sees inconsistent, duplicate, orphan, out-of-date, or missing data.

The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common
standardized language used to access databases. Depending on your programming environment,
you might enter SQL directly (for example, to generate reports), embed SQL statements into code
written in another language, or use a language-specific API that hides the SQL syntax.

SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986
and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992,
“SQL:1999” refers to the standard released in 1999, and “SQL:2003” refers to the current version
of the standard. We use the phrase “the SQL standard” to mean the current version of the SQL
Standard at any time.

• MySQL software is Open Source.

 Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you wish, you
may study the source code and change it to suit your needs. The MySQL software uses the GPL
(GNU General Public License), http://www.fsf.org/licenses/, to define what you may and may not do
with the software in different situations. If you feel uncomfortable with the GPL or need to embed
MySQL code into a commercial application, you can buy a commercially licensed version from us.
See the MySQL Licensing Overview for more information (http://www.mysql.com/company/legal/
licensing/).

• The MySQL Database Server is very fast, reliable, scalable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a
desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no
attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage
of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of
machines, networked together.

You can find a performance comparison of MySQL Server with other database managers on our
benchmark page. See Section 8.12.2, “The MySQL Benchmark Suite”.

MySQL Server was originally developed to handle large databases much faster than existing
solutions and has been successfully used in highly demanding production environments for several
years. Although under constant development, MySQL Server today offers a rich and useful set of
functions. Its connectivity, speed, and security make MySQL Server highly suited for accessing
databases on the Internet.

• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multi-threaded SQL
server that supports different backends, several different client programs and libraries, administrative
tools, and a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that you can link into your
application to get a smaller, faster, easier-to-manage standalone product.

• A large amount of contributed MySQL software is available.

MySQL Server has a practical set of features developed in close cooperation with our users. It is
very likely that your favorite application or language supports the MySQL Database Server.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we do not mind if you
pronounce it as “my sequel” or in some other localized way.

1.3.2 The Main Features of MySQL

http://www.fsf.org/licenses/

The Main Features of MySQL

6

This section describes some of the important characteristics of the MySQL Database Software. See
also Section 1.5, “MySQL Development History”. In most respects, the roadmap applies to all versions
of MySQL. For information about features as they are introduced into MySQL on a series-specific
basis, see the “In a Nutshell” section of the appropriate Manual:

• MySQL 5.6: MySQL 5.6 in a Nutshell

• MySQL 5.5: MySQL 5.5 in a Nutshell

• MySQL 5.1: MySQL 5.1 in a Nutshell

• MySQL 5.0: MySQL 5.0 in a Nutshell

Internals and Portability:

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See http://www.mysql.com/support/supportedplatforms/
database.html.

• For portability, uses CMake in MySQL 5.5 and up. Previous series use GNU Automake, Autoconf,
and Libtool.

• Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool
(http://developer.kde.org/~sewardj/).

• Uses multi-layered server design with independent modules.

• Designed to be fully multi-threaded using kernel threads, to easily use multiple CPUs if they are
available.

• Provides transactional and nontransactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

• Designed to make it relatively easy to add other storage engines. This is useful if you want to provide
an SQL interface for an in-house database.

• Uses a very fast thread-based memory allocation system.

• Executes very fast joins using an optimized nested-loop join.

• Implements in-memory hash tables, which are used as temporary tables.

• Implements SQL functions using a highly optimized class library that should be as fast as possible.
Usually there is no memory allocation at all after query initialization.

• Provides the server as a separate program for use in a client/server networked environment, and as
a library that can be embedded (linked) into standalone applications. Such applications can be used
in isolation or in environments where no network is available.

Data Types:

• Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR,
VARCHAR, BINARY, VARBINARY, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET,
ENUM, and OpenGIS spatial types. See Chapter 11, Data Types.

• Fixed-length and variable-length string types.

Statements and Functions:

• Full operator and function support in the SELECT list and WHERE clause of queries. For example:

http://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-nutshell.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://developer.kde.org/~sewardj/

The Main Features of MySQL

7

mysql> SELECT CONCAT(first_name, ' ', last_name)
 -> FROM citizen
 -> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(),
AVG(), STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC
syntax.

• Support for aliases on tables and columns as required by standard SQL.

• Support for DELETE, INSERT, REPLACE, and UPDATE to return the number of rows that were
changed (affected), or to return the number of rows matched instead by setting a flag when
connecting to the server.

• Support for MySQL-specific SHOW statements that retrieve information about databases, storage
engines, tables, and indexes. MySQL 5.0 adds support for the INFORMATION_SCHEMA database,
implemented according to standard SQL.

• An EXPLAIN statement to show how the optimizer resolves a query.

• Independence of function names from table or column names. For example, ABS is a valid column
name. The only restriction is that for a function call, no spaces are permitted between the function
name and the “(” that follows it. See Section 9.3, “Reserved Words”.

• You can refer to tables from different databases in the same statement.

Security:

• A privilege and password system that is very flexible and secure, and that enables host-based
verification.

• Password security by encryption of all password traffic when you connect to a server.

Scalability and Limits:

• Support for large databases. We use MySQL Server with databases that contain 50 million records.
We also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.

• Support for up to 64 indexes per table (32 before MySQL 4.1.2). Each index may consist of 1 to 16
columns or parts of columns. The maximum index width is 767 bytes for InnoDB tables, or 1000 for
MyISAM; before MySQL 4.1.2, the limit is 500 bytes. An index may use a prefix of a column for CHAR,
VARCHAR, BLOB, or TEXT column types.

Connectivity:

• Clients can connect to MySQL Server using several protocols:

• Clients can connect using TCP/IP sockets on any platform.

• On Windows systems in the NT family (NT, 2000, XP, 2003, or Vista), clients can connect using
named pipes if the server is started with the --enable-named-pipe option. In MySQL 4.1 and
higher, Windows servers also support shared-memory connections if started with the --shared-
memory option. Clients can connect through shared memory by using the --protocol=memory
option.

• On Unix systems, clients can connect using Unix domain socket files.

• MySQL client programs can be written in many languages. A client library written in C is available for
clients written in C or C++, or for any language that provides C bindings.

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL
clients to be written in many languages. See Chapter 21, Connectors and APIs.

History of MySQL

8

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use
ODBC (Open Database Connectivity) connections. For example, you can use MS Access to connect
to your MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available.
All ODBC 2.5 functions are supported, as are many others. See MySQL Connector/ODBC Developer
Guide.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC
connections. Clients can be run on Windows or Unix. Connector/J source is available. See MySQL
Connector/J Developer Guide.

• MySQL Connector/Net enables developers to easily create .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET
languages. MySQL Connector/Net is a fully managed ADO.NET driver written in 100% pure C#. See
MySQL Connector/Net Developer Guide.

Localization:

• The server can provide error messages to clients in many languages. See Section 10.2, “Setting the
Error Message Language”.

• Full support for several different character sets, including latin1 (cp1252), german, big5, ujis,
and more. For example, the Scandinavian characters “å”, “ä” and “ö” are permitted in table and
column names. Unicode support is available as of MySQL 4.1.

• All data is saved in the chosen character set.

• Sorting and comparisons are done according to the chosen character set and collation (using
latin1 and Swedish collation by default). It is possible to change this when the MySQL server is
started. To see an example of very advanced sorting, look at the Czech sorting code. MySQL Server
supports many different character sets that can be specified at compile time and runtime.

• As of MySQL 4.1, the server time zone can be changed dynamically, and individual clients can
specify their own time zone. Section 10.6, “MySQL Server Time Zone Support”.

Clients and Tools:

• MySQL includes several client and utility programs. These include both command-line programs
such as mysqldump and mysqladmin, and graphical programs such as MySQL Workbench.

• MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These
statements are available from the command line through the mysqlcheck client. MySQL also
includes myisamchk, a very fast command-line utility for performing these operations on MyISAM
tables. See Chapter 4, MySQL Programs.

• MySQL programs can be invoked with the --help or -? option to obtain online assistance.

1.3.3 History of MySQL

We started out with the intention of using the mSQL database system to connect to our tables using
our own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that
mSQL was not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our
database but with almost the same API interface as mSQL. This API was designed to enable third-party
code that was written for use with mSQL to be ported easily for use with MySQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names
suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose
Twebaze, an Open Source software developer from Swaziland, Africa. According to Ambrose, the
feminine name Sakila has its roots in SiSwati, the local language of Swaziland. Sakila is also the name
of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html

What Is New in MySQL 5.7

9

1.4 What Is New in MySQL 5.7

This section summarizes what has been added to, deprecated in, and removed from MySQL 5.7.

Added Features

The following features have been added to MySQL 5.7:

• Security improvements. The server now requires account rows in the mysql.user table to
have a nonempty plugin column value and disables accounts with an empty value. For server
upgrade instructions, see Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”. DBAs are advised
to also convert accounts that use the deprecated mysql_old_password authentication plugin to
use mysql_native_password instead. For account upgrade instructions, see Section 6.3.9.3,
“Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

MySQL now enables database administrators to establish a policy for automatic password expiration:
Any user who connects to the server using an account for which the password is past its permitted
lifetime must change the password. For more information, see Section 6.3.6, “Password Expiration
Policy”.

MySQL deployments installed using RPM packages now are secure by default. The following
changes have been implemented as the default deployment characteristics:

• The installation process creates only a single root account, 'root'@'localhost',
automatically generates a random password for this account, and marks the password
expired. The MySQL administrator must connect as root using the random password
and use SET PASSWORD to select a new password. (The random password is found in the
$HOME/.mysql_secret file.)

• Installation creates no anonymous-user accounts.

• Installation creates no test database.

• Online ALTER TABLE. ALTER TABLE now supports a RENAME INDEX clause that renames an
index. The change is made in place without a table-copy operation. It works for all storage engines.
See Section 13.1.6, “ALTER TABLE Syntax”.

• InnoDB enhancements. These InnoDB enhancements were added:

• VARCHAR size may be increased using an in-place ALTER TABLE, as in this example:

ALTER TABLE t1 ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(255);

This is true as long as the number of length bytes required by a VARCHAR column remains the
same. For VARCHAR values of 0 to 255, one length byte is required to encode the value. For
VARCHAR values of 256 bytes or more, two length bytes are required. As a result, in-place ALTER
TABLE only supports increasing VARCHAR size from 0 to 255 bytes or increasing VARCHAR size
from a value equal to or greater than 256 bytes.

In-place ALTER TABLE does not support increasing VARCHAR size from less than 256 bytes to a
value equal to or greater than 256 bytes. In this case, the number of required length bytes would
change from 1 to 2, which is only supported by a table copy (ALGORITHM=COPY). For example,
attempting to change VARCHAR column size from 255 to 256 using in-place ALTER TABLE would
return an error:

ALTER TABLE t1 ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(256);
ERROR 0A000: ALGORITHM=INPLACE is not supported. Reason: Cannot change
column type INPLACE. Try ALGORITHM=COPY.

Added Features

10

Decreasing VARCHAR size using in-place ALTER TABLE is not supported. Decreasing VARCHAR
size requires a table copy (ALGORITHM=COPY).

• DDL performance for InnoDB temporary tables is improved through optimization of CREATE
TABLE, DROP TABLE, TRUNCATE TABLE, and ALTER TABLE statements.

• InnoDB temporary table metadata is no longer stored to InnoDB system tables. Instead, a new
table, INNODB_TEMP_TABLE_INFO, provides users with a snapshot of active temporary tables.
The table contains metadata and reports on all user and system-created temporary tables that are
active within a given InnoDB instance. The table is created when the first SELECT statement is run
against it.

• InnoDB now supports MySQL-supported spatial data types. Prior to this release, InnoDB would
store spatial data as binary BLOB data. BLOB remains the underlying data type but spatial data
types are now mapped to a new InnoDB internal data type, DATA_GEOMETRY.

• There is now a separate tablespace for all non-compressed InnoDB temporary tables. The new
tablespace is always recreated on server startup and is located in DATADIR by default. A newly
added configuration file option, innodb_temp_data_file_path, allows for a user-defined
temporary data file path.

• In MySQL 5.7.2, innochecksum functionality is enhanced with several new options and extended
capabilities. See Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”.

• A new type of non-redo undo log for both normal and compressed temporary tables and related
objects now resides in the temporary tablespace. For more information, see Section 14.2.2.13,
“InnoDB Temporary Table Undo Logs”.

• In MySQL 5.7.2, InnoDB buffer pool dump and load operations are enhanced. A new system
variable, innodb_buffer_pool_dump_pct, allows you to specify the percentage of most
recently used pages in each buffer pool to read out and dump. When there is other I/O activity
being performed by InnoDB background tasks, InnoDB attempts to limit the number of buffer pool
load operations per second using the innodb_io_capacity setting.

• In MySQL 5.7.3, support is added to InnoDB for full-text parser plugins. For information about full-
text parser plugins, see Section 22.2.3.2, “Full-Text Parser Plugins” and Section 22.2.4.4, “Writing
Full-Text Parser Plugins”.

• As of MySQL 5.7.4, InnoDB supports multiple page_cleaner threads for flushing dirty pages
from buffer pool instances. A new system variable, innodb_page_cleaners, is used to specify
the number of page_cleaner threads. The default value of 1 maintains the pre-MySQL 5.7.4
configuration in which there is a single page_cleaner thread. This enhancement builds on work
completed in MySQL 5.6.2, which introduced a single page_cleaner thread to offload buffer pool
flushing work from the InnoDB master thread.

• As of MySQL 5.7.4, MySQL supports rebuilding regular and partitioned InnoDB tables using
online DDL (ALGORITHM=INPLACE) for the following operations:

• OPTIMIZE TABLE

• ALTER TABLE ... FORCE

• ALTER TABLE ... ENGINE=INNODB (when run on an InnoDB table)

Online DDL support reduces table rebuild time and permits concurrent DML, which helps reduce
user application downtime. For additional information, see Section 14.2.11.1, “Overview of Online
DDL”.

Added Features

11

• The Fusion-io Non-Volatile Memory (NVM) file system on Linux provides atomic write capability,
which makes the InnoDB doublewrite buffer redundant. In MySQL 5.7.4, the InnoDB doublewrite
buffer is automatically disabled for system tablespace files (ibdata files) located on Fusion-io
devices that support atomic writes.

• As of MySQL 5.7.4, InnoDB supports the Transportable Tablespace feature for partitioned
InnoDB tables and individual InnoDB table partitions. This enhancement eases backup
procedures for partitioned tables and enables copying of partitioned tables and individual table
partitions between MySQL instances. For additional information, see Section 14.2.5.5, “Copying
Tablespaces to Another Server (Transportable Tablespaces)”.

• MySQL Enterprise. The format of the file generated by the audit log plugin was changed for
better compatibility with Oracle Audit Vault. See Section 6.3.13, “MySQL Enterprise Audit Log
Plugin”, and Section 6.3.13.3, “The Audit Log File”.

• Condition handling. MySQL now supports stacked diagnostics areas. When the diagnostics area
stack is pushed, the first (current) diagnostics area becomes the second (stacked) diagnostics area
and a new current diagnostics area is created as a copy of it. Within a condition handler, executed
statements modify the new current diagnostics area, but GET STACKED DIAGNOSTICS can be
used to inspect the stacked diagnostics area to obtain information about the condition that caused
the handler to activate, independent of current conditions within the handler itself. (Previously, there
was a single diagnostics area. To inspect handler-activating conditions within a handler, it was
necessary to check this diagnostics area before executing any statements that could change it.)
See Section 13.6.7.3, “GET DIAGNOSTICS Syntax”, and Section 13.6.7.7, “The MySQL Diagnostics
Area”.

• Optimizer. EXPLAIN can now be used to obtain the execution plan for an explainable statement
executing in a named connection:

EXPLAIN [options] FOR CONNECTION connection_id;

For more information, see Section 8.8.3, “Obtaining Execution Plan Information for a Named
Connection”.

• Triggers. Previously, a table could have at most one trigger for each combination of trigger event
(INSERT, UPDATE, DELETE) and action time (BEFORE, AFTER). This limitation has been lifted and
multiple triggers are permitted. For more information, see Section 18.3, “Using Triggers”.

• Logging. The mysql client now has a --syslog option that causes interactive statements to
be sent to the system syslog facility. Logging is suppressed for statements that match the default
“ignore” pattern list ("*IDENTIFIED*:*PASSWORD*"), as well as statements that match any
patterns specified using the --histignore option. See Section 4.5.1.3, “mysql Logging”.

• Test suite. The MySQL test suite now uses InnoDB as the default storage engine.

• mysql client. Previously, Control+C in mysql interrupted the current statement if there was one,
or exited mysql if not. Now Control+C interrupts the current statement if there was one, or cancels
any partial input line otherwise, but does not exit.

• Database name rewriting with mysqlbinlog. Renaming of databases by mysqlbinlog
when reading from binary logs written using the row-based format is now supported using the --
rewrite-db option added in MySQL 5.7.1.

This option uses the format --rewrite-db='dboldname->dbnewname'. You can implement
multiple rewrite rules, by specifying the option multiple times.

• HANDLER with partitioned tables. The HANDLER statement may now be used with user-
partitioned tables. Such tables may use any of the available partitioning types (see Section 17.2,
“Partitioning Types”).

Deprecated Features

12

• Index condition pushdown support for partitioned tables. In MySQL 5.7.3 and later, queries
on partitioned tables using the InnoDB or MyISAM storage engine may employ the index condition
pushdown optimization that was introduced in MySQL 5.6. See Section 8.2.1.6, “Index Condition
Pushdown Optimization”, for more information.

• Master dump thread improvements. The master dump thread was refactored to reduce lock
contention and improve master throughput. Previous to MySQL 5.7.2, the dump thread took a lock
on the binary log whenever reading an event; in MySQL 5.7.2 and later, this lock is held only while
reading the position at the end of the last successfully written event. This means both that multiple
dump threads are now able to read concurrently from the binary log file, and that dump threads are
now able to read while clients are writing to the binary log.

• Globalization improvements. MySQL 5.7.4 includes a gb18030 character set that supports the
China National Standard GB18030 character set. For more information about MySQL character set
support, see Section 10.1, “Character Set Support”.

• Changing the replication master without STOP SLAVE. In MySQL 5.7.4 and later, the strict
requirement to execute STOP SLAVE prior to issuing any CHANGE MASTER TO statement is
removed. Instead of depending on whether the slave is stopped, the behavior of CHANGE MASTER
TO now depends on the states of the slave SQL thread and slave I/O threads; which of these
threads is stopped or running now determines the options that can or cannot be used with a CHANGE
MASTER TO statement at a given point in time. The rules for making this determination are listed
here:

• If the SQL thread is stopped, you can execute CHANGE MASTER TO using any combination of
RELAY_LOG_FILE, RELAY_LOG_POS, and MASTER_DELAY options, even if the slave I/O thread is
running. No other options may be used with this statement when the I/O thread is running.

• If the I/O thread is stopped, you can execute CHANGE MASTER TO using any of the options for
this statement (in any allowed combination) except RELAY_LOG_FILE, RELAY_LOG_POS, or
MASTER_DELAY, even when the SQL thread is running. These three options may not be used
when the I/O thread is running.

• Both the SQL thread and the I/O thread must be stopped before issuing CHANGE MASTER
TO ... MASTER_AUTO_POSITION = 1.

You can check the current state of the slave SQL and I/O threads using SHOW SLAVE STATUS.

If you are using statement-based replication and temporary tables, it is possible for a CHANGE
MASTER TO statement following a STOP SLAVE statement to leave behind temporary tables
on the slave. As part of this set of improvements, a warning is now issued whenever CHANGE
MASTER TO is issued following STOP SLAVE when statement-based replication is in use and
Slave_open_temp_tables remains greater than 0.

For more information, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”, and Section 16.3.6,
“Switching Masters During Failover”.

Deprecated Features

The following features are deprecated in MySQL 5.7 and may be or will be removed in a future series.
Where alternatives are shown, applications should be updated to use them.

• The ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL
modes that were deprecated in MySQL 5.6 remain deprecated in 5.7 but do nothing. Instead,
their previous effects are included in the effects of strict SQL mode (STRICT_ALL_TABLES
or STRICT_TRANS_TABLES). In other words, strict mode now means the same thing as the
previous meaning of strict mode plus the ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE,
and NO_ZERO_IN_DATE modes. This change reduces the number of SQL modes with an effect
dependent on strict mode and makes them part of strict mode itself.

Removed Features

13

To prepare for these SQL mode changes, it is advisable before upgrading to read SQL Mode
Changes in MySQL 5.7. That discussion provides guidelines to assess whether your applications will
be affected by these changes.

The deprecated ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE
SQL modes are still recognized so that statements that name them do not produce an error, but will
be removed in a future version of MySQL. To make advance preparation for versions of MySQL in
which these modes do not exist, applications should be modified to not refer to those mode names.

• Relying on implicit GROUP BY sorting in MySQL 5.7 is deprecated. To achieve a specific sort order of
grouped results, it is preferable to use an explicit ORDER BY clause. GROUP BY sorting is a MySQL
extension that may change in a future release; for example, to make it possible for the optimizer to
order groupings in whatever manner it deems most efficient and to avoid the sorting overhead.

• The EXTENDED and PARTITIONS keywords for the EXPLAIN statement. These keywords are still
recognized but are now unnecessary because their effect is always enabled.

• The log_warnings system variable and --log-warnings server option. Use the
log_error_verbosity system variable instead.

• The metadata_locks_cache_size and metadata_locks_hash_instances system variables.
These do nothing as of MySQL 5.7.4.

• The timed_mutexes system variable. It does nothing and has no effect.

• The ENCODE() and DECODE() functions. Use AES_ENCRYPT() and AES_DECRYPT() instead.

• The INFORMATION_SCHEMA.PROFILING table. Use the Performance Schema instead; see
Chapter 20, MySQL Performance Schema.

Removed Features

The following constructs are obsolete and have been removed in MySQL 5.7. Where alternatives are
shown, applications should be updated to use them.

• The innodb_mirrored_log_groups system variable. The only supported value was 1, so it had
no purpose.

• The storage_engine system variable. Use default_storage_engine instead.

• The thread_concurrency system variable.

• The IGNORE clause for ALTER TABLE.

• INSERT DELAYED is no longer supported. The server recognizes but ignores the
DELAYED keyword, handles the insert as a nondelayed insert, and generates an
ER_WARN_LEGACY_SYNTAX_CONVERTED warning. (“INSERT DELAYED is no longer supported. The
statement was converted to INSERT.”) Similarly, REPLACE DELAYED is handled as a nondelayed
replace. The DELAYED keyword will be removed in a future release.

In addition, several DELAYED-related options or features were removed:

• The --delayed-insert option for mysqldump.

• The COUNT_WRITE_DELAYED, SUM_TIMER_WRITE_DELAYED, MIN_TIMER_WRITE_DELAYED,
AVG_TIMER_WRITE_DELAYED, and MAX_TIMER_WRITE_DELAYED columns of the Performance
Schema table_lock_waits_summary_by_table table.

• mysqlbinlog no longer writes comments mentioning INSERT DELAYED.

• Database symlinking on Windows using for .sym files has been removed because it is redundant
with native symlink support available using mklink. Any .sym file symbolic links will be ignored and

MySQL Development History

14

should be replaced with symlinks created using mklink. See Using Symbolic Links for Databases
on Windows.

• The unused --basedir and --datadir options for mysql_upgrade were removed.

• Previously, program options could be specified in full or as any unambiguous prefix. For example,
the --compress option could be given to mysqldump as --compr, but not as --comp because the
latter is ambiguous. Option prefixes are no longer supported; only full options are accepted. This is
because prefixes can cause problems when new options are implemented for programs and a prefix
that is currently unambiguous might become ambiguous in the future.

• SHOW ENGINE INNODB MUTEX output is removed in MySQL 5.7.2. Comparable information can be
generated by creating views on Performance Schema tables.

• The InnoDB Tablespace Monitor and InnoDB Table Monitor are removed in MySQL 5.7.4. For the
Tablespace Monitor, equivalent functionality will be introduced before the GA release of MySQL 5.7.
For the Table Monitor, equivalent information can be obtained from InnoDB INFORMATION_SCHEMA
tables.

• The specially named tables used to enable and disable the standard InnoDB Monitor and
InnoDB Lock Monitor (innodb_monitor and innodb_lock_monitor) are removed in
MySQL 5.7.4 and replaced by two dynamic system variables: innodb_status_output and
innodb_status_output_locks. For additional information, see Section 14.2.12.4, “InnoDB
Monitors”.

• The innodb_use_sys_malloc and innodb_additional_mem_pool_size system variables,
which were deprecated in MySQL 5.6.3, are removed in MySQL 5.7.4.

1.5 MySQL Development History

This section describes the general MySQL development history, provides an overview about features
that have been implemented in previous series and that are new in MySQL 5.7, the release series
covered in this manual. The maturity level this release series is m15. Information about maturity levels
can be found in Section 2.1.2.1, “Choosing Which Version of MySQL to Install”.

Before upgrading from one release series to the next, please see the notes in Section 2.10.1,
“Upgrading MySQL”.

The most requested features and the versions in which they were implemented are summarized in the
following table.

Feature MySQL Series

Unions 4.0

Subqueries 4.1

R-trees 4.1 (for the MyISAM storage engine)

Stored procedures and functions 5.0

Views 5.0

Cursors 5.0

XA transactions 5.0

Triggers 5.0 and 5.1

Event scheduler 5.1

Partitioning 5.1

Pluggable storage engine API 5.1

Plugin API 5.1

MySQL Information Sources

15

Feature MySQL Series

Row-based replication 5.1

Server log tables 5.1

Scalability and performance
improvements

5.1 (with InnoDB Plugin)

DTrace support 5.5

Semisynchronous replication 5.5

SIGNAL/RESIGNAL support in
stored routines

5.5

Performance Schema 5.5

Supplementary Unicode
characters

5.5

1.6 MySQL Information Sources
This section lists sources of additional information that you may find helpful, such as the MySQL
mailing lists and user forums, and Internet Relay Chat.

1.6.1 MySQL Mailing Lists

This section introduces the MySQL mailing lists and provides guidelines as to how the lists should be
used. When you subscribe to a mailing list, you receive all postings to the list as email messages. You
can also send your own questions and answers to the list.

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit http://
lists.mysql.com/. For most of them, you can select the regular version of the list where you get
individual messages, or a digest version where you get one large message per day.

Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because
such messages are distributed automatically to thousands of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may have a local
mailing list, so that messages sent from lists.mysql.com to your site are propagated to the local
list. In such cases, please contact your system administrator to be added to or dropped from the local
MySQL list.

To have traffic for a mailing list go to a separate mailbox in your mail program, set up a filter based on
the message headers. You can use either the List-ID: or Delivered-To: headers to identify list
messages.

The MySQL mailing lists are as follows:

• announce

The list for announcements of new versions of MySQL and related programs. This is a low-volume
list to which all MySQL users should subscribe.

• mysql

The main list for general MySQL discussion. Please note that some topics are better discussed on
the more-specialized lists. If you post to the wrong list, you may not get an answer.

• bugs

The list for people who want to stay informed about issues reported since the last release of MySQL
or who want to be actively involved in the process of bug hunting and fixing. See Section 1.7, “How
to Report Bugs or Problems”.

http://lists.mysql.com/
http://lists.mysql.com/

MySQL Mailing Lists

16

• internals

The list for people who work on the MySQL code. This is also the forum for discussions on MySQL
development and for posting patches.

• mysqldoc

The list for people who work on the MySQL documentation.

• benchmarks

The list for anyone interested in performance issues. Discussions concentrate on database
performance (not limited to MySQL), but also include broader categories such as performance of the
kernel, file system, disk system, and so on.

• packagers

The list for discussions on packaging and distributing MySQL. This is the forum used by distribution
maintainers to exchange ideas on packaging MySQL and on ensuring that MySQL looks and feels as
similar as possible on all supported platforms and operating systems.

• java

The list for discussions about the MySQL server and Java. It is mostly used to discuss JDBC drivers
such as MySQL Connector/J.

• win32

The list for all topics concerning the MySQL software on Microsoft operating systems, such as
Windows 9x, Me, NT, 2000, XP, and 2003.

• myodbc

The list for all topics concerning connecting to the MySQL server with ODBC.

• gui-tools

The list for all topics concerning MySQL graphical user interface tools such as MySQL Workbench.

• cluster

The list for discussion of MySQL Cluster.

• dotnet

The list for discussion of the MySQL server and the .NET platform. It is mostly related to MySQL
Connector/Net.

• plusplus

The list for all topics concerning programming with the C++ API for MySQL.

• perl

The list for all topics concerning Perl support for MySQL with DBD::mysql.

If you're unable to get an answer to your questions from a MySQL mailing list or forum, one option is to
purchase support from Oracle. This puts you in direct contact with MySQL developers.

The following MySQL mailing lists are in languages other than English. These lists are not operated by
Oracle.

• <mysql-france-subscribe@yahoogroups.com>

MySQL Community Support at the MySQL Forums

17

A French mailing list.

• <list@tinc.net>

A Korean mailing list. To subscribe, email subscribe mysql your@email.address to this list.

• <mysql-de-request@lists.4t2.com>

A German mailing list. To subscribe, email subscribe mysql-de your@email.address to this
list. You can find information about this mailing list at http://www.4t2.com/mysql/.

• <mysql-br-request@listas.linkway.com.br>

A Portuguese mailing list. To subscribe, email subscribe mysql-br your@email.address to
this list.

• <mysql-alta@elistas.net>

A Spanish mailing list. To subscribe, email subscribe mysql your@email.address to this list.

1.6.1.1 Guidelines for Using the Mailing Lists

Please do not post mail messages from your browser with HTML mode turned on. Many users do not
read mail with a browser.

When you answer a question sent to a mailing list, if you consider your answer to have broad interest,
you may want to post it to the list instead of replying directly to the individual who asked. Try to make
your answer general enough that people other than the original poster may benefit from it. When you
post to the list, please make sure that your answer is not a duplication of a previous answer.

Try to summarize the essential part of the question in your reply. Do not feel obliged to quote the entire
original message.

When answers are sent to you individually and not to the mailing list, it is considered good etiquette to
summarize the answers and send the summary to the mailing list so that others may have the benefit
of responses you received that helped you solve your problem.

1.6.2 MySQL Community Support at the MySQL Forums

The forums at http://forums.mysql.com are an important community resource. Many forums are
available, grouped into these general categories:

• Migration

• MySQL Usage

• MySQL Connectors

• Programming Languages

• Tools

• 3rd-Party Applications

• Storage Engines

• MySQL Technology

• SQL Standards

• Business

http://www.4t2.com/mysql/
http://forums.mysql.com

MySQL Community Support on Internet Relay Chat (IRC)

18

1.6.3 MySQL Community Support on Internet Relay Chat (IRC)

In addition to the various MySQL mailing lists and forums, you can find experienced community people
on Internet Relay Chat (IRC). These are the best networks/channels currently known to us:

freenode (see http://www.freenode.net/ for servers)

• #mysql is primarily for MySQL questions, but other database and general SQL questions are
welcome. Questions about PHP, Perl, or C in combination with MySQL are also common.

If you are looking for IRC client software to connect to an IRC network, take a look at xChat (http://
www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as for Windows platforms (a free
Windows build of X-Chat is available at http://www.silverex.org/download/).

1.6.4 MySQL Enterprise

Oracle offers technical support in the form of MySQL Enterprise. For organizations that rely on the
MySQL DBMS for business-critical production applications, MySQL Enterprise is a commercial
subscription offering which includes:

• MySQL Enterprise Server

• MySQL Enterprise Monitor

• Monthly Rapid Updates and Quarterly Service Packs

• MySQL Knowledge Base

• 24x7 Technical and Consultative Support

MySQL Enterprise is available in multiple tiers, giving you the flexibility to choose the level of service
that best matches your needs. For more information, see MySQL Enterprise.

1.7 How to Report Bugs or Problems

Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been
reported already:

• Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to keep the
manual up to date by updating it frequently with solutions to newly found problems. In addition, the
release notes accompanying the manual can be particularly useful since it is quite possible that a
newer version contains a solution to your problem. The release notes are available at the location
just given for the manual.

• If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find
something wrong with it, it is extremely likely that your current version of MySQL Server doesn't
support the syntax you are using. If you are using the current version and the manual doesn't cover
the syntax that you are using, MySQL Server doesn't support your statement.

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you
should check the MySQL change history to see when the syntax was implemented. In this case, you
have the option of upgrading to a newer version of MySQL Server.

• For solutions to some common problems, see Section C.5, “Problems and Common Errors”.

• Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and
fixed.

• Search the MySQL mailing list archives at http://lists.mysql.com/. See Section 1.6.1, “MySQL Mailing
Lists”.

http://www.freenode.net/
http://www.xchat.org/
http://www.xchat.org/
http://www.silverex.org/download/
http://www.mysql.com/products/enterprise/
http://dev.mysql.com/doc/
http://bugs.mysql.com/
http://lists.mysql.com/

How to Report Bugs or Problems

19

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual)
that are located at the MySQL Web site.

If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with
your local MySQL expert. If you still cannot find an answer to your question, please use the following
guidelines for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are
noted in the release notes.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an
email message to <secalert_us@oracle.com>. Exception: Support customers should report all
problems, including security bugs, to Oracle Support at http://support.oracle.com/.

To discuss problems with other users, you can use one of the MySQL mailing lists. Section 1.6.1,
“MySQL Mailing Lists”.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
the bug in the next release. This section helps you write your report correctly so that you do not waste
your time doing things that may not help us much or at all. Please read this section carefully and make
sure that all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL
Server before posting. Anyone should be able to repeat the bug by just using mysql test <
script_file on your test case or by running the shell or Perl script that you include in the bug report.
Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a
good example of everything you did that led to the problem and describe, in exact detail, the problem
itself. The best reports are those that include a full example showing how to reproduce the bug or
problem. See Section 22.4, “Debugging and Porting MySQL”.

Remember that it is possible for us to respond to a report containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem
and assume that some details do not matter. A good principle to follow is that if you are in doubt about
stating something, state it. It is faster and less troublesome to write a couple more lines in your report
than to wait longer for the answer if we must ask you to provide information that was missing from the
initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL
distribution that you use, and (b) not fully describing the platform on which the MySQL server is
installed (including the platform type and version number). These are highly relevant pieces of
information, and in 99 cases out of 100, the bug report is useless without them. Very often we get
questions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't
implemented in that MySQL version, or that a bug described in a report has been fixed in newer
MySQL versions. Errors often are platform-dependent. In such cases, it is next to impossible for us to
fix anything without knowing the operating system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if
it is related to the problem. Often people find bugs in compilers and think the problem is MySQL-
related. Most compilers are under development all the time and become better version by version. To
determine whether your problem depends on your compiler, we need to know what compiler you used.
Note that every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If
we try to search for something from the archives, it is better that the error message reported exactly

http://bugs.mysql.com/
http://bugs.mysql.com/
http://support.oracle.com/

How to Report Bugs or Problems

20

matches the one that the program produces. (Even the lettercase should be observed.) It is best
to copy and paste the entire error message into your report. You should never try to reproduce the
message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it
with your report. See How to Report Connector/ODBC Problems or Bugs.

If your report includes long query output lines from test cases that you run with the mysql command-
line tool, you can make the output more readable by using the --vertical option or the \G statement
terminator. The EXPLAIN SELECT example later in this section demonstrates the use of \G.

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 5.0.19). You can
find out which version you are running by executing mysqladmin version. The mysqladmin
program can be found in the bin directory under your MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the name
and version number by double-clicking your My Computer icon and pulling down the “Help/About
Windows” menu. For most Unix-like operating systems, you can get this information by executing the
command uname -a.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

• If you are using a source distribution of the MySQL software, include the name and version number
of the compiler that you used. If you have a binary distribution, include the distribution name.

• If the problem occurs during compilation, include the exact error messages and also a few lines of
context around the offending code in the file where the error occurs.

• If mysqld died, you should also report the statement that crashed mysqld. You can usually get this
information by running mysqld with query logging enabled, and then looking in the log after mysqld
crashes. See Section 22.4, “Debugging and Porting MySQL”.

• If a database table is related to the problem, include the output from the SHOW CREATE TABLE
db_name.tbl_name statement in the bug report. This is a very easy way to get the definition of
any table in a database. The information helps us create a situation matching the one that you have
experienced.

• The SQL mode in effect when the problem occurred can be significant, so please report the value
of the sql_mode system variable. For stored procedure, stored function, and trigger objects, the
relevant sql_mode value is the one in effect when the object was created. For a stored procedure
or function, the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement shows the
relevant SQL mode, or you can query INFORMATION_SCHEMA for the information:

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES;

For triggers, you can use this statement:

SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS;

• For performance-related bugs or problems with SELECT statements, you should always include
the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT statement
produces. You should also include the output from SHOW CREATE TABLE tbl_name for each
table that is involved. The more information you provide about your situation, the more likely it is that
someone can help you.

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-support-bug-report.html

How to Report Bugs or Problems

21

The following is an example of a very good bug report. The statements are run using the mysql
command-line tool. Note the use of the \G statement terminator for statements that would otherwise
provide very long output lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
 <output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
 <output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
 <A short version of the output from SELECT,
 including the time taken to run the query>
mysql> SHOW STATUS;
 <output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the
anomaly. This script should include any necessary source files. The more closely the script can
reproduce your situation, the better. If you can make a reproducible test case, you should upload it to
be attached to the bug report.

If you cannot provide a script, you should at least include the output from mysqladmin variables
extended-status processlist in your report to provide some information on how your system
is performing.

• If you cannot produce a test case with only a few rows, or if the test table is too big to be included in
the bug report (more than 10 rows), you should dump your tables using mysqldump and create a
README file that describes your problem. Create a compressed archive of your files using tar and
gzip or zip. After you initiate a bug report for our bugs database at http://bugs.mysql.com/, click the
Files tab in the bug report for instructions on uploading the archive to the bugs database.

• If you believe that the MySQL server produces a strange result from a statement, include not only the
result, but also your opinion of what the result should be, and an explanation describing the basis for
your opinion.

• When you provide an example of the problem, it is better to use the table names, variable names,
and so forth that exist in your actual situation than to come up with new names. The problem could
be related to the name of a table or variable. These cases are rare, perhaps, but it is better to be
safe than sorry. After all, it should be easier for you to provide an example that uses your actual
situation, and it is by all means better for us. If you have data that you do not want to be visible
to others in the bug report, you can upload it using the Files tab as previously described. If the
information is really top secret and you do not want to show it even to us, go ahead and provide an
example using other names, but please regard this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the
options that you use when you start the mysqld server, as well as the options that you use to run
any MySQL client programs. The options to programs such as mysqld and mysql, and to the
configure script, are often key to resolving problems and are very relevant. It is never a bad idea
to include them. If your problem involves a program written in a language such as Perl or PHP,
please include the language processor's version number, as well as the version for any modules
that the program uses. For example, if you have a Perl script that uses the DBI and DBD::mysql
modules, include the version numbers for Perl, DBI, and DBD::mysql.

• If your question is related to the privilege system, please include the output of mysqlaccess,
the output of mysqladmin reload, and all the error messages you get when trying to connect.
When you test your privileges, you should first run mysqlaccess. After this, execute mysqladmin
reload version and try to connect with the program that gives you trouble. mysqlaccess can be
found in the bin directory under your MySQL installation directory.

• If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that
we can use it, if you do not provide some necessary information such as test cases showing the bug

http://bugs.mysql.com/

MySQL Standards Compliance

22

that your patch fixes. We might find problems with your patch or we might not understand it at all. If
so, we cannot use it.

If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show
that the patch handles all the situations that may occur. If we find a borderline case (even a rare one)
where the patch will not work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team cannot guess such things without first using a debugger to determine the real cause of
a bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that
others know you have tried to solve the problem yourself.

• If your data appears corrupt or you get errors when you access a particular table, first check your
tables with CHECK TABLE. If that statement reports any errors:

• The InnoDB crash recovery mechanism handles cleanup when the server is restarted after being
killed, so in typical operation there is no need to “repair” tables. If you encounter an error with
InnoDB tables, restart the server and see whether the problem persists, or whether the error
affected only cached data in memory. If data is corrupted on disk, consider restarting with the
innodb_force_recovery option enabled so that you can dump the affected tables.

• For non-transactional tables, try to repair them with REPAIR TABLE or with myisamchk. See
Chapter 5, MySQL Server Administration.

If you are running Windows, please verify the value of lower_case_table_names using the SHOW
VARIABLES LIKE 'lower_case_table_names' statement. This variable affects how the server
handles lettercase of database and table names. Its effect for a given value should be as described
in Section 9.2.2, “Identifier Case Sensitivity”.

• If you often get corrupted tables, you should try to find out when and why this happens. In this case,
the error log in the MySQL data directory may contain some information about what happened. (This
is the file with the .err suffix in the name.) See Section 5.2.2, “The Error Log”. Please include any
relevant information from this file in your bug report. Normally mysqld should never crash a table
if nothing killed it in the middle of an update. If you can find the cause of mysqld dying, it is much
easier for us to provide you with a fix for the problem. See Section C.5.1, “How to Determine What Is
Causing a Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it
solves your problem. All versions of the MySQL software thoroughly tested and should work without
problems. We believe in making everything as backward-compatible as possible, and you should
be able to switch MySQL versions without difficulty. See Section 2.1.2, “Choosing Which MySQL
Distribution to Install”.

1.8 MySQL Standards Compliance
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many
extensions to the SQL standard, and here you can find out what they are and how to use them. You
can also find information about functionality missing from MySQL Server, and how to work around
some of the differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92”
refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999,
“SQL:2003” refers to the standard released in 2003, and “SQL:2008” refers to the most recent version
of the standard, released in 2008. We use the phrase “the SQL standard” or “standard SQL” to mean
the current version of the SQL Standard at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL
standard, but without sacrificing speed or reliability. We are not afraid to add extensions to SQL
or support for non-SQL features if this greatly increases the usability of MySQL Server for a large

Selecting SQL Modes

23

segment of our user base. The HANDLER interface is an example of this strategy. See Section 13.2.4,
“HANDLER Syntax”.

We continue to support transactional and nontransactional databases to satisfy both mission-critical
24/7 usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows,
or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-
sized databases, but the code can also be compiled in a reduced version suitable for hand-held and
embedded devices. The compact design of the MySQL server makes development in both directions
possible without any conflicts in the source tree.

Currently, we are not targeting real-time support, although MySQL replication capabilities offer
significant functionality.

MySQL supports ODBC levels 0 to 3.51.

MySQL supports high-availability database clustering using the NDBCLUSTER storage engine. See
MySQL Cluster NDB 7.3.

We implement XML functionality which supports most of the W3C XPath standard. See Section 12.11,
“XML Functions”.

Selecting SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. DBAs can set the global
SQL mode to match site server operating requirements, and each application can set its session SQL
mode to its own requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes
it easier to use MySQL in different environments and to use MySQL together with other database
servers.

For more information on setting the SQL mode, see Section 5.1.7, “Server SQL Modes”.

Running MySQL in ANSI Mode

To run MySQL Server in ANSI mode, start mysqld with the --ansi option. Running the server in
ANSI mode is the same as starting it with the following options:

--transaction-isolation=SERIALIZABLE --sql-mode=ANSI

To achieve the same effect at runtime, execute these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';

You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that
are relevant for ANSI mode as follows:

mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@global.sql_mode;
 -> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode to
'ANSI' because the --ansi option also sets the transaction isolation level.

See Section 5.1.3, “Server Command Options”.

1.8.1 MySQL Extensions to Standard SQL

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL Extensions to Standard SQL

24

MySQL Server supports some extensions that you probably won't find in other SQL DBMSs. Be
warned that if you use them, your code won't be portable to other SQL servers. In some cases, you can
write code that includes MySQL extensions, but is still portable, by using comments of the following
form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other
SQL statement, but other SQL servers will ignore the extensions. For example, MySQL Server
recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the “!” character, the syntax within the comment is executed only if
the MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword
in the following comment is executed only by servers from MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The following descriptions list MySQL extensions, organized by category.

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables
within a database to file names in the database directory. This has a few implications:

• Database and table names are case sensitive in MySQL Server on operating systems that
have case-sensitive file names (such as most Unix systems). See Section 9.2.2, “Identifier Case
Sensitivity”.

• You can use standard system commands to back up, rename, move, delete, and copy tables that
are managed by the MyISAM storage engine. For example, it is possible to rename a MyISAM table
by renaming the .MYD, .MYI, and .frm files to which the table corresponds. (Nevertheless, it is
preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the server rename the
files.)

• General language syntax

• By default, strings can be enclosed by either “"” or “'”, not just by “'”. (If the ANSI_QUOTES SQL
mode is enabled, strings can be enclosed only by “'” and the server interprets strings enclosed by
“"” as identifiers.)

• “\” is the escape character in strings.

• In SQL statements, you can access tables from different databases with the db_name.tbl_name
syntax. Some SQL servers provide the same functionality but call this User space. MySQL
Server doesn't support tablespaces such as used in statements like this: CREATE TABLE
ralph.my_table ... IN my_tablespace.

• SQL statement syntax

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See
Section 13.1.8, “CREATE DATABASE Syntax”, Section 13.1.17, “DROP DATABASE Syntax”, and
Section 13.1.1, “ALTER DATABASE Syntax”.

• The DO statement.

• EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.

MySQL Extensions to Standard SQL

25

• The FLUSH and RESET statements.

• The SET statement. See Section 13.7.4, “SET Syntax”.

• The SHOW statement. See Section 13.7.5, “SHOW Syntax”. The information produced by many of
the MySQL-specific SHOW statements can be obtained in more standard fashion by using SELECT
to query INFORMATION_SCHEMA. See Chapter 19, INFORMATION_SCHEMA Tables.

• Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle's LOAD DATA
INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• Use of RENAME TABLE. See Section 13.1.26, “RENAME TABLE Syntax”.

• Use of REPLACE instead of DELETE plus INSERT. See Section 13.2.8, “REPLACE Syntax”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in ALTER
TABLE statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE
statement. See Section 13.1.6, “ALTER TABLE Syntax”.

• Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE TABLE
statements. See Section 13.1.14, “CREATE TABLE Syntax”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE and DROP DATABASE.

• The capability of dropping multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO tbl_name SET col_name = ... syntax.

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

• Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 13.2.9, “SELECT
Syntax”.

• Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.

• You don't need to name all selected columns in the GROUP BY clause. This gives better
performance for some very specific, but quite normal queries. See Section 12.17, “Functions and
Modifiers for Use with GROUP BY Clauses”.

• You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

• The ability to set variables in a statement with the := assignment operator. See Section 9.4, “User-
Defined Variables”.

• Data types

• The MEDIUMINT, SET, and ENUM data types, and the various BLOB and TEXT data types.

• The AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL data type attributes.

• Functions and operators

• To make it easier for users who migrate from other SQL environments, MySQL Server supports
aliases for many functions. For example, all string functions support both standard SQL syntax and
ODBC syntax.

MySQL Differences from Standard SQL

26

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the C
programming language. In MySQL Server, || and OR are synonyms, as are && and AND. Because
of this nice syntax, MySQL Server doesn't support the standard SQL || operator for string
concatenation; use CONCAT() instead. Because CONCAT() takes any number of arguments, it is
easy to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT value_list) where value_list has more than one element.

• String comparisons are case-insensitive by default, with sort ordering determined by the collation
of the current character set, which is latin1 (cp1252 West European) by default. If you don't like
this, you should declare your columns with the BINARY attribute or use the BINARY cast, which
causes comparisons to be done using the underlying character code values rather than a lexical
ordering.

• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is
supported for C programmers and for compatibility with PostgreSQL.

• The =, <>, <=, <, >=, >, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions in
the output column list (to the left of the FROM) in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM my_table;

• The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See
Section 12.14, “Information Functions”.

• LIKE is permitted on numeric values.

• The REGEXP and NOT REGEXP extended regular expression operators.

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these
functions can take a variable number of arguments.)

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), ENCRYPT(),
MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(), and WEEKDAY()
functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and GROUP_CONCAT().
See Section 12.17, “Functions and Modifiers for Use with GROUP BY Clauses”.

1.8.2 MySQL Differences from Standard SQL

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but
MySQL Server performs operations differently in some cases:

• There are several differences between the MySQL and standard SQL privilege systems. For
example, in MySQL, privileges for a table are not automatically revoked when you delete a table.
You must explicitly issue a REVOKE statement to revoke privileges for a table. For more information,
see Section 13.7.1.6, “REVOKE Syntax”.

• The CAST() function does not support cast to REAL or BIGINT. See Section 12.10, “Cast Functions
and Operators”.

1.8.2.1 SELECT INTO TABLE Differences

MySQL Server doesn't support the SELECT ... INTO TABLE Sybase SQL extension. Instead,
MySQL Server supports the INSERT INTO ... SELECT standard SQL syntax, which is basically the
same thing. See Section 13.2.5.1, “INSERT ... SELECT Syntax”. For example:

MySQL Differences from Standard SQL

27

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.

You can use SELECT ... INTO with user-defined variables. The same syntax can also be used
inside stored routines using cursors and local variables. See Section 13.2.9.1, “SELECT ... INTO
Syntax”.

1.8.2.2 UPDATE Differences

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. The second assignment in the following statement sets col2 to the current (updated)
col1 value, not the original col1 value. The result is that col1 and col2 have the same value. This
behavior differs from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

1.8.2.3 Transaction and Atomic Operation Differences

MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions with the
InnoDB transactional storage engine. In MySQL 5.5 and up, newly created tables use InnoDB by
default, as explained in Section 14.2.1.1, “InnoDB as the Default MySQL Storage Engine”. By default,
InnoDB provides full ACID compliance; see Section 14.2.2.1, “MySQL and the ACID Model” for
ways that you can adjust settings to balance ACID compliance with raw performance. For information
about InnoDB differences from standard SQL with regard to treatment of transaction errors, see
Section 14.2.17.4, “InnoDB Error Handling”.

The nontransactional storage engines in MySQL Server (such as MyISAM) follow a different paradigm
for data integrity called “atomic operations”. MyISAM tables effectively always operate in autocommit
= 1 mode. Because changed data is written to disk one statement at a time, it is harder to guarantee
the consistency of a sequence of related DML operations, which could be interrupted partway through.
Thus, this mode is suitable for read-mostly workloads. In transactional terms, while each specific
update is running, no other user can interfere with it, there can never be an automatic rollback, and
there are no dirty reads. However, these features apply to single operations, not related updates that
succeed or fail as a unit. Workarounds such as the LOCK TABLES statement limit concurrent write
access to nontransactional tables.

You can choose which paradigm to use, even for different tables within the same application:
transactional features for reliability combined with high performance, or atomic operations for non-
critical, read-mostly data (for example, on replication slave servers).

Transactional storage engines such as InnoDB offer many significant features to support high
reliability for heavy read/write workloads. As a result, transactional tables can have higher memory
and disk space requirements, and more CPU overhead. MySQL Server's modular design enables
the concurrent use of different storage engines to suit different requirements and deliver optimum
performance in all situations.

Workarounds for Reliability with Non-Transactional Tables

But how do you use the features of MySQL Server to maintain integrity even with the nontransactional
MyISAM tables, and how do these features compare with the transactional storage engines?

• If your applications are written in a way that is dependent on being able to call ROLLBACK rather
than COMMIT in critical situations, transactions are more convenient. Transactions also ensure that
unfinished updates or corrupting activities are not committed to the database; the server is given the
opportunity to do an automatic rollback and your database is saved.

MySQL Differences from Standard SQL

28

If you use nontransactional tables, you must resolve potential problems at the application level by
including checks before updates and by running scripts that check the databases for inconsistencies
and automatically repair or warn if such an inconsistency occurs. You can normally fix tables with no
data integrity loss by using the MySQL log or even adding one extra log.

• Sometimes, critical transactional updates can be rewritten to be atomic. Multiple DML operations
can be done with LOCK TABLES or atomic updates, ensuring that there are no deadlocks by limiting
concurrent write access. If you obtain a READ LOCAL lock (as opposed to a write lock) for a table
that enables concurrent inserts at the end of the table, reads are permitted, as are inserts by other
clients. The newly inserted records are not be seen by the client that has the read lock until it
releases the lock. With INSERT DELAYED, you can write inserts that go into a local queue until
the locks are released, without having the client wait for the insert to complete. See Section 8.10.3,
“Concurrent Inserts”, and Section 13.2.5.2, “INSERT DELAYED Syntax”.

• To be safe with MySQL Server, regardless of what kinds of tables you use, make regular backups
and have binary logging turned on. It is always good to have backups, regardless of which database
system you use.

Following are some techniques for working with nontransactional tables:

• Loops that need transactions normally can be coded with the help of LOCK TABLES, and you don't
need cursors to update records on the fly.

• To avoid using ROLLBACK, you can employ the following strategy:

1. Use LOCK TABLES to lock all the tables you want to access.

2. Test the conditions that must be true before performing the update.

3. Update if the conditions are satisfied.

4. Use UNLOCK TABLES to release your locks.

Note

This solution does not handle the situation when someone kills the threads in
the middle of an update. In that case, all locks are released but some of the
updates may not have been executed.

• You can also use functions to update records in a single operation, using the following techniques:

• Modify columns relative to their current value. This makes the update correct even if another client
has changed the column values in the meantime.

• Update only those columns that actually have changed. This is a good database practice in
general.

• When managing unique identifiers, you can avoid statements such as LOCK TABLES or ROLLBACK
by using an AUTO_INCREMENT column and either the LAST_INSERT_ID() SQL function or
the mysql_insert_id() C API function. See Section 12.14, “Information Functions”, and
Section 21.8.7.38, “mysql_insert_id()”.

For situations that require row-level locking, use InnoDB tables. Otherwise, with MyISAM tables, you
can use a flag column in the table and do something like the following:

UPDATE tbl_name SET row_flag=1 WHERE id=ID;

MySQL returns 1 for the number of affected rows if the row was found and row_flag wasn't 1 in the
original row. You can think of this as though MySQL Server changed the preceding statement to:

MySQL Differences from Standard SQL

29

UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

1.8.2.4 Foreign Key Differences

The InnoDB storage engine supports checking of foreign key constraints, including CASCADE, ON
DELETE, and ON UPDATE. See Section 14.2.6.6, “InnoDB and FOREIGN KEY Constraints”.

For storage engines other than InnoDB, MySQL Server parses the FOREIGN KEY syntax in CREATE
TABLE statements, but does not use or store it. This information is also present in mysqldump, and
can be retrieved using Connector/ODBC. You can see which tables have foreign key constraints by
checking the INFORMATION_SCHEMA.TABLE_CONSTRAINTS table in the INFORMATION_SCHEMA
information database. You can obtain more detailed information about foreign keys from the
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS table. In addition, InnoDB provides a number
of INFORMATION_SCHEMA tables containing information about foreign keys on InnoDB tables; see
Section 19.30, “INFORMATION_SCHEMA Tables for InnoDB”.

Foreign key enforcement offers several benefits to database developers:

• Assuming proper design of the relationships, foreign key constraints make it more difficult for a
programmer to introduce an inconsistency into the database.

• Centralized checking of constraints by the database server makes it unnecessary to perform these
checks on the application side. This eliminates the possibility that different applications may not all
check the constraints in the same way.

• Using cascading updates and deletes can simplify the application code.

• Properly designed foreign key rules aid in documenting relationships between tables.

Foreign keys in SQL are used to check and enforce referential integrity, not to join tables. If you want
to get results from multiple tables from a SELECT statement, you do this by performing a join between
them:

SELECT * FROM t1 INNER JOIN t2 ON t1.id = t2.id;

See Section 13.2.9.2, “JOIN Syntax”, and Section 3.6.6, “Using Foreign Keys”.

The FOREIGN KEY syntax without ON DELETE ... is often used by ODBC applications to produce
automatic WHERE clauses.

1.8.2.5 '--' as the Start of a Comment

Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific
SQL to be embedded in the comment, as described in Section 9.6, “Comment Syntax”.

Standard SQL uses “--” as a start-comment sequence. MySQL Server uses “#” as the start comment
character. MySQL Server 3.23.3 and up also supports a variant of the “--” comment style. That is,
the “--” start-comment sequence must be followed by a space (or by a control character such as a
newline). The space is required to prevent problems with automatically generated SQL queries that use
constructs such as the following, where we automatically insert the value of the payment for payment:

UPDATE account SET credit=credit-payment

Consider about what happens if payment has a negative value such as -1:

UPDATE account SET credit=credit--1

credit--1 is a valid expression in SQL, but “--” is interpreted as the start of a comment, part of
the expression is discarded. The result is a statement that has a completely different meaning than
intended:

How MySQL Deals with Constraints

30

UPDATE account SET credit=credit

The statement produces no change in value at all. This illustrates that permitting comments to start with
“--” can have serious consequences.

Using our implementation requires a space following the “--” for it to be recognized as a start-comment
sequence in MySQL Server 3.23.3 and newer. Therefore, credit--1 is safe to use.

Another safe feature is that the mysql command-line client ignores lines that start with “--”.

The following information is relevant only if you are running a MySQL version earlier than 3.23.3:

If you have an SQL script in a text file that contains “--” comments, you should use the replace utility
as follows to convert the comments to use “#” characters before executing the script:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
 | mysql db_name

That is safer than executing the script in the usual way:

shell> mysql db_name < text-file-with-funny-comments.sql

You can also edit the script file “in place” to change the “--” comments to “#” comments:

shell> replace " --" " #" -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace " #" " --" -- text-file-with-funny-comments.sql

See Section 4.8.2, “replace — A String-Replacement Utility”.

1.8.3 How MySQL Deals with Constraints

MySQL enables you to work both with transactional tables that permit rollback and with
nontransactional tables that do not. Because of this, constraint handling is a bit different in MySQL
than in other DBMSs. We must handle the case when you have inserted or updated a lot of rows in a
nontransactional table for which changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect
while parsing a statement to be executed, and tries to recover from any errors that occur while
executing the statement. We do this in most cases, but not yet for all.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover as
well as possible from the problem and continue. By default, the server follows the latter course. This
means, for example, that the server may coerce invalid values to the closest valid values.

Several SQL mode options are available to provide greater control over handling of bad data values
and whether to continue statement execution or abort when errors occur. Using these options, you
can configure MySQL Server to act in a more traditional fashion that is like other DBMSs that reject
improper input. The SQL mode can be set globally at server startup to affect all clients. Individual
clients can set the SQL mode at runtime, which enables each client to select the behavior most
appropriate for its requirements. See Section 5.1.7, “Server SQL Modes”.

The following sections describe how MySQL Server handles different types of constraints.

1.8.3.1 PRIMARY KEY and UNIQUE Index Constraints

How MySQL Deals with Constraints

31

Normally, errors occurs for data-change statements (such as INSERT or UPDATE) that would violate
primary-key, unique-key, or foreign-key constraints. If you are using a transactional storage engine
such as InnoDB, MySQL automatically rolls back the statement. If you are using a nontransactional
storage engine, MySQL stops processing the statement at the row for which the error occurred and
leaves any remaining rows unprocessed.

MySQL supports an IGNORE keyword for INSERT, UPDATE, and so forth. If you use it, MySQL ignores
primary-key or unique-key violations and continues processing with the next row. See the section for
the statement that you are using (Section 13.2.5, “INSERT Syntax”, Section 13.2.11, “UPDATE Syntax”,
and so forth).

You can get information about the number of rows actually inserted or updated with the
mysql_info() C API function. You can also use the SHOW WARNINGS statement. See
Section 21.8.7.36, “mysql_info()”, and Section 13.7.5.39, “SHOW WARNINGS Syntax”.

Currently, only InnoDB tables support foreign keys. See Section 14.2.6.6, “InnoDB and FOREIGN KEY
Constraints”.

1.8.3.2 FOREIGN KEY Constraints

Foreign keys let you cross-reference related data across tables, and foreign key constraints help keep
this spread-out data consistent.

MySQL supports ON UPDATE and ON DELETE foreign key references in CREATE TABLE and ALTER
TABLE statements. The available referential actions are RESTRICT (the default), CASCADE, SET NULL,
and NO ACTION.

SET DEFAULT is also supported by the MySQL Server but is currently rejected as invalid by InnoDB.
Since MySQL does not support deferred constraint checking, NO ACTION is treated as RESTRICT. For
the exact syntax supported by MySQL for foreign keys, see Section 13.1.14.2, “Using FOREIGN KEY
Constraints”.

MATCH FULL, MATCH PARTIAL, and MATCH SIMPLE are allowed, but their use should be avoided,
as they cause the MySQL Server to ignore any ON DELETE or ON UPDATE clause used in the same
statement. MATCH options do not have any other effect in MySQL, which in effect enforces MATCH
SIMPLE semantics full-time.

MySQL requires that foreign key columns be indexed; if you create a table with a foreign key constraint
but no index on a given column, an index is created.

You can obtain information about foreign keys from the INFORMATION_SCHEMA.KEY_COLUMN_USAGE
table. An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
 > FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 > WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+---------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+---------------+-------------+-----------------+
fk1	myuser	myuser_id	f
fk1	product_order	customer_id	f2
fk1	product_order	product_id	f1
+--------------+---------------+-------------+-----------------+
3 rows in set (0.01 sec)

Information about foreign keys on InnoDB tables can also be found in the INNODB_SYS_FOREIGN and
INNODB_SYS_FOREIGN_COLS tables, in the INFORMATION_SCHEMA database.

Currently, only InnoDB tables support foreign keys. See Section 14.2.6.6, “InnoDB and FOREIGN KEY
Constraints”, for information specific to foreign key support in InnoDB.

How MySQL Deals with Constraints

32

Deviations from SQL Standards

MySQL's implementation of foreign keys differs from the SQL standard in the following key respects:

• If there are several rows in the parent table that have the same referenced key value, InnoDB acts
in foreign key checks as if the other parent rows with the same key value do not exist. For example,
if you have defined a RESTRICT type constraint, and there is a child row with several parent rows,
InnoDB does not permit the deletion of any of those parent rows.

InnoDB performs cascading operations through a depth-first algorithm, based on records in the
indexes corresponding to the foreign key constraints.

• A FOREIGN KEY constraint that references a non-UNIQUE key is not standard SQL but rather an
InnoDB extension.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the same cascade, it acts like RESTRICT. This means that you cannot
use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent
infinite loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the
other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not
be nested more than 15 levels deep.

• In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique
constraints) are checked row-by-row. When performing foreign key checks, InnoDB sets shared row-
level locks on child or parent records that it must examine. MySQL checks foreign key constraints
immediately; the check is not deferred to transaction commit. According to the SQL standard, the
default behavior should be deferred checking. That is, constraints are only checked after the entire
SQL statement has been processed. This means that it is not possible to delete a row that refers to
itself using a foreign key.

For information how InnoDB foreign keys differ from the SQL standard, see Section 14.2.6.6, “InnoDB
and FOREIGN KEY Constraints”.

1.8.3.3 Constraints on Invalid Data

By default, MySQL is forgiving of invalid or improper data values and coerces them to valid values
for data entry. However, you can change the server SQL mode to select more traditional treatment
of bad values such that the server rejects them and aborts the statement in which they occur. See
Section 5.1.7, “Server SQL Modes”.

This section describes the default (forgiving) behavior of MySQL, as well as the strict SQL mode and
how it differs.

If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as
a NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the
column to the “best possible value” instead of producing an error: The following rules describe in more
detail how this works:

• If you try to store an out of range value into a numeric column, MySQL Server instead stores zero,
the smallest possible value, or the largest possible value, whichever is closest to the invalid value.

• For strings, MySQL stores either the empty string or as much of the string as can be stored in the
column.

• If you try to store a string that doesn't start with a number into a numeric column, MySQL Server
stores 0.

• Invalid values for ENUM and SET columns are handled as described in Section 1.8.3.4, “ENUM and
SET Constraints”.

• MySQL enables you to store certain incorrect date values into DATE and DATETIME columns (such
as '2000-02-31' or '2000-02-00'). The idea is that it is not the job of the SQL server to validate

How MySQL Deals with Constraints

33

dates. If MySQL can store a date value and retrieve exactly the same value, MySQL stores it as
given. If the date is totally wrong (outside the server's ability to store it), the special “zero” date value
'0000-00-00' is stored in the column instead.

• If you try to store NULL into a column that doesn't take NULL values, an error occurs for single-
row INSERT statements. For multiple-row INSERT statements or for INSERT INTO ... SELECT
statements, MySQL Server stores the implicit default value for the column data type. In general, this
is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time
types. Implicit default values are discussed in Section 11.5, “Data Type Default Values”.

• If an INSERT statement specifies no value for a column, MySQL inserts its default value if the
column definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT clause,
MySQL inserts the implicit default value for the column data type.

The reason for using the preceding rules in nonstrict mode is that we can't check these conditions until
the statement has begun executing. We can't just roll back if we encounter a problem after updating
a few rows, because the storage engine may not support rollback. The option of terminating the
statement is not that good; in this case, the update would be “half done,” which is probably the worst
possible scenario. In this case, it is better to “do the best you can” and then continue as if nothing
happened.

In MySQL 5.0.2 and up, you can select stricter treatment of input values by using the
STRICT_TRANS_TABLES or STRICT_ALL_TABLES SQL modes:

SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode = 'STRICT_ALL_TABLES';

STRICT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some
extent for nontransactional engines. It works like this:

• For transactional storage engines, bad data values occurring anywhere in a statement cause the
statement to abort and roll back.

• For nontransactional storage engines, a statement aborts if the error occurs in the first row to be
inserted or updated. (When the error occurs in the first row, the statement can be aborted to leave
the table unchanged, just as for a transactional table.) Errors in rows after the first do not abort the
statement, because the table has already been changed by the first row. Instead, bad data values
are adjusted and result in warnings rather than errors. In other words, with STRICT_TRANS_TABLES,
a wrong value causes MySQL to roll back all updates done so far, if that can be done without
changing the table. But once the table has been changed, further errors result in adjustments and
warnings.

For even stricter checking, enable STRICT_ALL_TABLES. This is the same as
STRICT_TRANS_TABLES except that for nontransactional storage engines, errors abort the statement
even for bad data in rows following the first row. This means that if an error occurs partway through
a multiple-row insert or update for a nontransactional table, a partial update results. Earlier rows are
inserted or updated, but those from the point of the error on are not. To avoid this for nontransactional
tables, either use single-row statements or else use STRICT_TRANS_TABLES if conversion warnings
rather than errors are acceptable. To avoid problems in the first place, do not use MySQL to check
column content. It is safest (and often faster) to let the application ensure that it passes only valid
values to the database.

With either of the strict mode options, you can cause errors to be treated as warnings by using INSERT
IGNORE or UPDATE IGNORE rather than INSERT or UPDATE without IGNORE.

1.8.3.4 ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given set of
values. See Section 11.4.4, “The ENUM Type”, and Section 11.4.5, “The SET Type”. However, before
MySQL 5.0.2, ENUM and SET columns do not provide true constraints on entry of invalid data:

Credits

34

• ENUM columns always have a default value. If you specify no default value, then it is NULL for
columns that can have NULL, otherwise it is the first enumeration value in the column definition.

• If you insert an incorrect value into an ENUM column or if you force a value into an ENUM column with
IGNORE, it is set to the reserved enumeration value of 0, which is displayed as an empty string in
string context.

• If you insert an incorrect value into a SET column, the incorrect value is ignored. For example, if the
column can contain the values 'a', 'b', and 'c', an attempt to assign 'a,x,b,y' results in a
value of 'a,b'.

As of MySQL 5.0.2, you can configure the server to use strict SQL mode. See Section 5.1.7, “Server
SQL Modes”. With strict mode enabled, the definition of a ENUM or SET column does act as a constraint
on values entered into the column. An error occurs for values that do not satisfy these conditions:

• An ENUM value must be one of those listed in the column definition, or the internal numeric equivalent
thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined as
ENUM('a','b','c'), values such as '', 'd', or 'ax' are invalid and are rejected.

• A SET value must be the empty string or a value consisting only of the values listed in the column
definition separated by commas. For a column defined as SET('a','b','c'), values such as 'd'
or 'a,b,c,d' are invalid and are rejected.

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE
IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as
the error member (0). For SET, the value is inserted as given except that any invalid substrings are
deleted. For example, 'a,x,b,y' results in a value of 'a,b'.

1.9 Credits

The following sections list developers, contributors, and supporters that have helped to make MySQL
what it is today.

1.9.1 Contributors to MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and the
MySQL manual, we wish to recognize those who have made contributions of one kind or another to
the MySQL distribution. Contributors are listed here, in somewhat random order:

• Gianmassimo Vigazzola <qwerg@mbox.vol.it> or <qwerg@tin.it>

The initial port to Win32/NT.

• Per Eric Olsson

For constructive criticism and real testing of the dynamic record format.

• Irena Pancirov <irena@mail.yacc.it>

Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe.

• David J. Hughes

For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we
started with mSQL, but found that it couldn't satisfy our purposes so instead we wrote an SQL
interface to our application builder Unireg. mysqladmin and mysql client are programs that were
largely influenced by their mSQL counterparts. We have put a lot of effort into making the MySQL
syntax a superset of mSQL. Many of the API's ideas are borrowed from mSQL to make it easy to port
free mSQL programs to the MySQL API. The MySQL software doesn't contain any code from mSQL.
Two files in the distribution (client/insert_test.c and client/select_test.c) are based

Contributors to MySQL

35

on the corresponding (noncopyrighted) files in the mSQL distribution, but are modified as examples
showing the changes necessary to convert code from mSQL to MySQL Server. (mSQL is copyrighted
David J. Hughes.)

• Patrick Lynch

For helping us acquire http://www.mysql.com/.

• Fred Lindberg

For setting up qmail to handle the MySQL mailing list and for the incredible help we got in managing
the MySQL mailing lists.

• Igor Romanenko <igor@frog.kiev.ua>

mysqldump (previously msqldump, but ported and enhanced by Monty).

• Yuri Dario

For keeping up and extending the MySQL OS/2 port.

• Tim Bunce

Author of mysqlhotcopy.

• Zarko Mocnik <zarko.mocnik@dem.si>

Sorting for Slovenian language.

• "TAMITO" <tommy@valley.ne.jp>

The _MB character set macros and the ujis and sjis character sets.

• Joshua Chamas <joshua@chamas.com>

Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL
mailing list.

• Yves Carlier <Yves.Carlier@rug.ac.be>

mysqlaccess, a program to show the access rights for a user.

• Rhys Jones <rhys@wales.com> (And GWE Technologies Limited)

For one of the early JDBC drivers.

• Dr Xiaokun Kelvin ZHU <X.Zhu@brad.ac.uk>

Further development of one of the early JDBC drivers and other MySQL-related Java tools.

• James Cooper <pixel@organic.com>

For setting up a searchable mailing list archive at his site.

• Rick Mehalick <Rick_Mehalick@i-o.com>

For xmysql, a graphical X client for MySQL Server.

• Doug Sisk <sisk@wix.com>

For providing RPM packages of MySQL for Red Hat Linux.

• Diemand Alexander V. <axeld@vial.ethz.ch>

Contributors to MySQL

36

For providing RPM packages of MySQL for Red Hat Linux-Alpha.

• Antoni Pamies Olive <toni@readysoft.es>

For providing RPM versions of a lot of MySQL clients for Intel and SPARC.

• Jay Bloodworth <jay@pathways.sde.state.sc.us>

For providing RPM versions for MySQL 3.21.

• David Sacerdote <davids@secnet.com>

Ideas for secure checking of DNS host names.

• Wei-Jou Chen <jou@nematic.ieo.nctu.edu.tw>

Some support for Chinese(BIG5) characters.

• Wei He <hewei@mail.ied.ac.cn>

A lot of functionality for the Chinese(GBK) character set.

• Jan Pazdziora <adelton@fi.muni.cz>

Czech sorting order.

• Zeev Suraski <bourbon@netvision.net.il>

FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor. Active mailing list
member.

• Luuk de Boer <luuk@wxs.nl>

Ported (and extended) the benchmark suite to DBI/DBD. Have been of great help with crash-me
and running benchmarks. Some new date functions. The mysql_setpermission script.

• Alexis Mikhailov <root@medinf.chuvashia.su>

User-defined functions (UDFs); CREATE FUNCTION and DROP FUNCTION.

• Andreas F. Bobak <bobak@relog.ch>

The AGGREGATE extension to user-defined functions.

• Ross Wakelin <R.Wakelin@march.co.uk>

Help to set up InstallShield for MySQL-Win32.

• Jethro Wright III <jetman@li.net>

The libmysql.dll library.

• James Pereria <jpereira@iafrica.com>

Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.

• Curt Sampson <cjs@portal.ca>

Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.

• Martin Ramsch <m.ramsch@computer.org>

Examples in the MySQL Tutorial.

Contributors to MySQL

37

• Steve Harvey

For making mysqlaccess more secure.

• Konark IA-64 Centre of Persistent Systems Private Limited

http://www.pspl.co.in/konark/. Help with the Win64 port of the MySQL server.

• Albert Chin-A-Young.

Configure updates for Tru64, large file support and better TCP wrappers support.

• John Birrell

Emulation of pthread_mutex() for OS/2.

• Benjamin Pflugmann

Extended MERGE tables to handle INSERTS. Active member on the MySQL mailing lists.

• Jocelyn Fournier

Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).

• Marc Liyanage

Maintaining the Mac OS X packages and providing invaluable feedback on how to create Mac OS X
packages.

• Robert Rutherford

Providing invaluable information and feedback about the QNX port.

• Previous developers of NDB Cluster

Lots of people were involved in various ways summer students, master thesis students, employees.
In total more than 100 people so too many to mention here. Notable name is Ataullah Dabaghi who
up until 1999 contributed around a third of the code base. A special thanks also to developers of
the AXE system which provided much of the architectural foundations for NDB Cluster with blocks,
signals and crash tracing functionality. Also credit should be given to those who believed in the ideas
enough to allocate of their budgets for its development from 1992 to present time.

• Google Inc.

We wish to recognize Google Inc. for contributions to the MySQL distribution: Mark Callaghan's SMP
Performance patches and other patches.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech
Tryc, Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, <jehamby@lightside>,
<psmith@BayNetworks.com>, <duane@connect.com.au>, Ted Deppner <ted@psyber.com>,
Mike Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

• Daniel Koch <dkoch@amcity.com>

Irix setup.

• Luuk de Boer <luuk@wxs.nl>

Benchmark questions.

http://www.pspl.co.in/konark/

Documenters and translators

38

• Tim Sailer <tps@users.buoy.com>

DBD::mysql questions.

• Boyd Lynn Gerber <gerberb@zenez.com>

SCO-related questions.

• Richard Mehalick <RM186061@shellus.com>

xmysql-related questions and basic installation questions.

• Zeev Suraski <bourbon@netvision.net.il>

Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related
questions and other general questions.

• Francesc Guasch <frankie@citel.upc.es>

General questions.

• Jonathan J Smith <jsmith@wtp.net>

Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some
work.

• David Sklar <sklar@student.net>

Using MySQL from PHP and Perl.

• Alistair MacDonald <A.MacDonald@uel.ac.uk>

Is flexible and can handle Linux and perhaps HP-UX.

• John Lyon <jlyon@imag.net>

Questions about installing MySQL on Linux systems, using either .rpm files or compiling from
source.

• Lorvid Ltd. <lorvid@WOLFENET.com>

Simple billing/license/support/copyright issues.

• Patrick Sherrill <patrick@coconet.com>

ODBC and VisualC++ interface questions.

• Randy Harmon <rjharmon@uptimecomputers.com>

DBD, Linux, some SQL syntax questions.

1.9.2 Documenters and translators

The following people have helped us with writing the MySQL documentation and translating the
documentation or error messages in MySQL.

• Paul DuBois

Ongoing help with making this manual correct and understandable. That includes rewriting Monty's
and David's attempts at English into English as other people know it.

• Kim Aldale

Helped to rewrite Monty's and David's early attempts at English into English.

Documenters and translators

39

• Michael J. Miller Jr. <mke@terrapin.turbolift.com>

For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the
MySQL manual a long time ago).

• Yan Cailin

First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which
the Big5 and HK coded (http://mysql.hitstar.com/) versions were based. Personal home page at
linuxdb.yeah.net.

• Jay Flaherty <fty@mediapulse.com>

Big parts of the Perl DBI/DBD section in the manual.

• Paul Southworth <pauls@etext.org>, Ray Loyzaga <yar@cs.su.oz.au>

Proof-reading of the Reference Manual.

• Therrien Gilbert <gilbert@ican.net>, Jean-Marc Pouyot <jmp@scalaire.fr>

French error messages.

• Petr Snajdr, <snajdr@pvt.net>

Czech error messages.

• Jaroslaw Lewandowski <jotel@itnet.com.pl>

Polish error messages.

• Miguel Angel Fernandez Roiz

Spanish error messages.

• Roy-Magne Mo <rmo@www.hivolda.no>

Norwegian error messages and testing of MySQL 3.21.xx.

• Timur I. Bakeyev <root@timur.tatarstan.ru>

Russian error messages.

• <brenno@dewinter.com> & Filippo Grassilli <phil@hyppo.com>

Italian error messages.

• Dirk Munzinger <dirk@trinity.saar.de>

German error messages.

• Billik Stefan <billik@sun.uniag.sk>

Slovak error messages.

• Stefan Saroiu <tzoompy@cs.washington.edu>

Romanian error messages.

• Peter Feher

Hungarian error messages.

• Roberto M. Serqueira

http://mysql.hitstar.com/
http://linuxdb.yeah.net
http://linuxdb.yeah.net

Packages that support MySQL

40

Portuguese error messages.

• Carsten H. Pedersen

Danish error messages.

• Arjen Lentz

Dutch error messages, completing earlier partial translation (also work on consistency and spelling).

1.9.3 Packages that support MySQL

The following is a list of creators/maintainers of some of the most important API/packages/applications
that a lot of people use with MySQL.

We cannot list every possible package here because the list would then be way to hard to maintain. For
other packages, please refer to the software portal at http://solutions.mysql.com/software/.

• Tim Bunce, Alligator Descartes

For the DBD (Perl) interface.

• Andreas Koenig <a.koenig@mind.de>

For the Perl interface for MySQL Server.

• Jochen Wiedmann <wiedmann@neckar-alb.de>

For maintaining the Perl DBD::mysql module.

• Eugene Chan <eugene@acenet.com.sg>

For porting PHP for MySQL Server.

• Georg Richter

MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for use with MySQL 4.1
and up.

• Giovanni Maruzzelli <maruzz@matrice.it>

For porting iODBC (Unix ODBC).

• Xavier Leroy <Xavier.Leroy@inria.fr>

The author of LinuxThreads (used by the MySQL Server on Linux).

1.9.4 Tools that were used to create MySQL

The following is a list of some of the tools we have used to create MySQL. We use this to express our
thanks to those that has created them as without these we could not have made MySQL what it is
today.

• Free Software Foundation

From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the libc library
(from which we have borrowed strto.c to get some code working in Linux).

• Free Software Foundation & The XEmacs development team

For a really great editor/environment.

http://solutions.mysql.com/software/

Supporters of MySQL

41

• Julian Seward

Author of valgrind, an excellent memory checker tool that has helped us find a lot of otherwise
hard to find bugs in MySQL.

• Dorothea Lütkehaus and Andreas Zeller

For DDD (The Data Display Debugger) which is an excellent graphical front end to gdb).

1.9.5 Supporters of MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and
the MySQL manual, we wish to recognize the following companies, which helped us finance the
development of the MySQL server, such as by paying us for developing a new feature or giving us
hardware for development of the MySQL server.

• VA Linux / Andover.net

Funded replication.

• NuSphere

Editing of the MySQL manual.

• Stork Design studio

The MySQL Web site in use between 1998-2000.

• Intel

Contributed to development on Windows and Linux platforms.

• Compaq

Contributed to Development on Linux/Alpha.

• SWSoft

Development on the embedded mysqld version.

• FutureQuest

The --skip-show-database option.

42

43

Chapter 2 Installing and Upgrading MySQL

Table of Contents
2.1 General Installation Guidance .. 45

2.1.1 Operating Systems Supported by MySQL Community Server 45
2.1.2 Choosing Which MySQL Distribution to Install .. 45
2.1.3 How to Get MySQL .. 48
2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG 49
2.1.5 Installation Layouts ... 58
2.1.6 Compiler-Specific Build Characteristics .. 58

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 58
2.3 Installing MySQL on Microsoft Windows ... 61

2.3.1 MySQL Installation Layout on Microsoft Windows .. 62
2.3.2 Choosing An Installation Package ... 63
2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installer 63
2.3.4 MySQL Notifier for Microsoft Windows ... 80
2.3.5 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive 91
2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation 98
2.3.7 Upgrading MySQL on Windows ... 100
2.3.8 Windows Postinstallation Procedures ... 101

2.4 Installing MySQL on Mac OS X ... 103
2.4.1 General Notes on Installing MySQL on Mac OS X .. 103
2.4.2 Installing MySQL on Mac OS X Using Native Packages .. 105
2.4.3 Installing the MySQL Startup Item ... 107
2.4.4 Installing and Using the MySQL Preference Pane .. 110
2.4.5 Using the Bundled MySQL on Mac OS X Server .. 112

2.5 Installing MySQL on Linux ... 112
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository 113
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository 117
2.5.3 Installing MySQL on Linux Using RPM Packages ... 119
2.5.4 Installing MySQL on Linux Using Debian Packages .. 123
2.5.5 Installing MySQL on Linux Using Native Package Managers 124

2.6 Installing MySQL on Solaris and OpenSolaris ... 128
2.6.1 Installing MySQL on Solaris Using a Solaris PKG .. 129
2.6.2 Installing MySQL on OpenSolaris Using IPS .. 130

2.7 Installing MySQL on FreeBSD ... 131
2.8 Installing MySQL from Source ... 131

2.8.1 MySQL Layout for Source Installation .. 133
2.8.2 Installing MySQL Using a Standard Source Distribution .. 133
2.8.3 Installing MySQL Using a Development Source Tree .. 137
2.8.4 MySQL Source-Configuration Options .. 139
2.8.5 Dealing with Problems Compiling MySQL .. 151
2.8.6 MySQL Configuration and Third-Party Tools .. 153

2.9 Postinstallation Setup and Testing ... 153
2.9.1 Postinstallation Procedures for Unix-like Systems ... 153
2.9.2 Securing the Initial MySQL Accounts ... 164

2.10 Upgrading or Downgrading MySQL .. 168
2.10.1 Upgrading MySQL .. 168
2.10.2 Downgrading MySQL .. 175
2.10.3 Checking Whether Tables or Indexes Must Be Rebuilt .. 177
2.10.4 Rebuilding or Repairing Tables or Indexes ... 179
2.10.5 Copying MySQL Databases to Another Machine .. 180

2.11 Environment Variables ... 181
2.12 Perl Installation Notes .. 183

2.12.1 Installing Perl on Unix ... 183

44

2.12.2 Installing ActiveState Perl on Windows .. 184
2.12.3 Problems Using the Perl DBI/DBD Interface ... 185

This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later
sections provide the details. If you plan to upgrade an existing version of MySQL to a newer version
rather than install MySQL for the first time, see Section 2.10.1, “Upgrading MySQL”, for information
about upgrade procedures and about issues that you should consider before upgrading.

If you are interested in migrating to MySQL from another database system, you may wish to read
Section B.8, “MySQL 5.7 FAQ: Migration”, which contains answers to some common questions
concerning migration issues.

Installation of MySQL generally follows the steps outlined here:

1. Determine whether MySQL runs and is supported on your platform.

Please note that not all platforms are equally suitable for running MySQL, and that not all platforms
on which MySQL is known to run are officially supported by Oracle Corporation:

2. Choose which distribution to install.

Several versions of MySQL are available, and most are available in several distribution formats.
You can choose from pre-packaged distributions containing binary (precompiled) programs or
source code. When in doubt, use a binary distribution. We also provide public access to our current
source tree for those who want to see our most recent developments and help us test new code.
To determine which version and type of distribution you should use, see Section 2.1.2, “Choosing
Which MySQL Distribution to Install”.

3. Download the distribution that you want to install.

For instructions, see Section 2.1.3, “How to Get MySQL”. To verify the integrity of the distribution,
use the instructions in Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or
GnuPG”.

4. Install the distribution.

To install MySQL from a binary distribution, use the instructions in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”.

To install MySQL from a source distribution or from the current development source tree, use the
instructions in Section 2.8, “Installing MySQL from Source”.

5. Perform any necessary postinstallation setup.

After installing MySQL, see Section 2.9, “Postinstallation Setup and Testing” for information about
making sure the MySQL server is working properly. Also refer to the information provided in
Section 2.9.2, “Securing the Initial MySQL Accounts”. This section describes how to secure the
initial MySQL user accounts, which have no passwords until you assign passwords. The section
applies whether you install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See
Section 2.12, “Perl Installation Notes”.

Instructions for installing MySQL on different platforms and environments is available on a platform by
platform basis:

• Unix, Linux, FreeBSD

For instructions on installing MySQL on most Linux and Unix platforms using a generic binary (for
example, a .tar.gz package), see Section 2.2, “Installing MySQL on Unix/Linux Using Generic
Binaries”.

General Installation Guidance

45

For information on building MySQL entirely from the source code distributions or the source code
repositories, see Section 2.8, “Installing MySQL from Source”

For specific platform help on installation, configuration, and building from source see the
corresponding platform section:

• Linux, including notes on distribution specific methods, see Section 2.5, “Installing MySQL on
Linux”.

• Solaris and OpenSolaris, including PKG and IPS formats, see Section 2.6, “Installing MySQL on
Solaris and OpenSolaris”.

• IBM AIX, see Section 2.6, “Installing MySQL on Solaris and OpenSolaris”.

• FreeBSD, see Section 2.7, “Installing MySQL on FreeBSD”.

• Microsoft Windows

For instructions on installing MySQL on Microsoft Windows, using either a Zipped binary or an MSI
package, see Section 2.3, “Installing MySQL on Microsoft Windows”.

For information on using the MySQL Server Instance Config Wizard, see MySQL Server Instance
Configuration Wizard.

For details and instructions on building MySQL from source code using Microsoft Visual Studio, see
Section 2.8, “Installing MySQL from Source”.

• Mac OS X

For installation on Mac OS X, including using both the binary package and native PKG formats, see
Section 2.4, “Installing MySQL on Mac OS X”.

For information on making use of the MySQL Startup Item to automatically start and stop MySQL,
see Section 2.4.3, “Installing the MySQL Startup Item”.

For information on the MySQL Preference Pane, see Section 2.4.4, “Installing and Using the MySQL
Preference Pane”.

2.1 General Installation Guidance
The immediately following sections contain the information necessary to choose, download, and verify
your distribution. The instructions in later sections of the chapter describe how to install the distribution
that you choose. For binary distributions, see the instructions at Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries” or the corresponding section for your platform if available. To build
MySQL from source, use the instructions in Section 2.8, “Installing MySQL from Source”.

2.1.1 Operating Systems Supported by MySQL Community Server

MySQL is available on many operating systems and platforms. For information about platforms
supported by GA releases of MySQL, see http://www.mysql.com/support/supportedplatforms/
database.html. For development versions of MySQL, builds are available for a number of platforms
at http://dev.mysql.com/downloads/mysql/5.7.html. To learn more about MySQL Support, see http://
www.mysql.com/support/.

2.1.2 Choosing Which MySQL Distribution to Install

When preparing to install MySQL, you should decide which version to use. MySQL development
occurs in several release series, and you can pick the one that best fits your needs. After deciding
which version to install, you can choose a distribution format. Releases are available in binary or
source format.

http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard.html
http://dev.mysql.com/doc/mysql-development-cycle/en/ga-releases.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/downloads/mysql/5.7.html
http://www.mysql.com/support/
http://www.mysql.com/support/

Choosing Which MySQL Distribution to Install

46

2.1.2.1 Choosing Which Version of MySQL to Install

The first decision to make is whether you want to use a production (stable) release or a development
release. In the MySQL development process, multiple release series co-exist, each at a different stage
of maturity.

Production Releases

• MySQL 5.6: Latest General Availability (Production) release

• MySQL 5.5: Previous General Availability (Production) release

• MySQL 5.1: Older General Availability (Production) release

• MySQL 5.0: Older Production release nearing the end of the product lifecycle

MySQL 4.1, 4.0, and 3.23 are old releases that are no longer supported.

See http://www.mysql.com/about/legal/lifecycle/ for information about support policies and schedules.

Normally, if you are beginning to use MySQL for the first time or trying to port it to some system for
which there is no binary distribution, use the most recent General Availability series listed in the
preceding descriptions. All MySQL releases, even those from development series, are checked with
the MySQL benchmarks and an extensive test suite before being issued.

If you are running an older system and want to upgrade, but do not want to take the chance of having
a nonseamless upgrade, you should upgrade to the latest version in the same release series you are
using (where only the last part of the version number is newer than yours). We have tried to fix only
fatal bugs and make only small, relatively “safe” changes to that version.

If you want to use new features not present in the production release series, you can use a version
from a development series. Be aware that development releases are not as stable as production
releases.

We do not use a complete code freeze because this prevents us from making bugfixes and other fixes
that must be done. We may add small things that should not affect anything that currently works in a
production release. Naturally, relevant bugfixes from an earlier series propagate to later series.

If you want to use the very latest sources containing all current patches and bugfixes, you can use one
of our source code repositories (see Section 2.8.3, “Installing MySQL Using a Development Source
Tree”). These are not “releases” as such, but are available as previews of the code on which future
releases are to be based.

The naming scheme in MySQL 5.7 uses release names that consist of three numbers and a suffix; for
example, mysql-5.7.1-m1. The numbers within the release name are interpreted as follows:

• The first number (5) is the major version and describes the file format. All MySQL 5 releases have
the same file format.

• The second number (7) is the release level. Taken together, the major version and release level
constitute the release series number.

• The third number (1) is the version number within the release series. This is incremented for each
new release. Usually you want the latest version for the series you have chosen.

For each minor update, the last number in the version string is incremented. When there are major new
features or minor incompatibilities with previous versions, the second number in the version string is
incremented. When the file format changes, the first number is increased.

Release names also include a suffix to indicates the stability level of the release. Releases within a
series progress through a set of suffixes to indicate how the stability level improves. The possible
suffixes are:

Choosing Which MySQL Distribution to Install

47

• mN (for example, m1, m2, m3, ...) indicate a milestone number. MySQL development uses a
milestone model, in which each milestone proceeds through a small number of versions with a tight
focus on a small subset of thoroughly tested features. Following the releases for one milestone,
development proceeds with another small number of releases that focuses on the next small set of
features, also thoroughly tested. Features within milestone releases may be considered to be of pre-
production quality.

• rc indicates a Release Candidate. Release candidates are believed to be stable, having passed all of
MySQL's internal testing, and with all known fatal runtime bugs fixed. However, the release has not
been in widespread use long enough to know for sure that all bugs have been identified. Only minor
fixes are added.

• If there is no suffix, it indicates that the release is a General Availability (GA) or Production release.
GA releases are stable, having successfully passed through all earlier release stages and are
believed to be reliable, free of serious bugs, and suitable for use in production systems. Only critical
bugfixes are applied to the release.

All releases of MySQL are run through our standard tests and benchmarks to ensure that they are
relatively safe to use. Because the standard tests are extended over time to check for all previously
found bugs, the test suite keeps getting better.

All releases have been tested at least with these tools:

• An internal test suite. The mysql-test directory contains an extensive set of test cases.
We run these tests for every server binary. See Section 22.1.2, “The MySQL Test Suite”, for more
information about this test suite.

• The MySQL benchmark suite. This suite runs a range of common queries. It is also a
test to determine whether the latest batch of optimizations actually made the code faster. See
Section 8.12.2, “The MySQL Benchmark Suite”.

We also perform additional integration and nonfunctional testing of the latest MySQL version in our
internal production environment. Integration testing is done with different connectors, storage engines,
replication modes, backup, partitioning, stored programs, and so forth in various combinations.
Additional nonfunctional testing is done in areas of performance, concurrency, stress, high volume,
upgrade and downgrade.

2.1.2.2 Choosing a Distribution Format

After choosing which version of MySQL to install, you should decide whether to use a binary
distribution or a source distribution. In most cases, you should probably use a binary distribution, if one
exists for your platform. Binary distributions are available in native format for many platforms, such as
RPM packages for Linux, DMG packages for Mac OS X, and PKG packages for Solaris. Distributions
are also available in more generic formats such as Zip archives or compressed tar files.

Reasons to choose a binary distribution include the following:

• Binary distributions generally are easier to install than source distributions.

• To satisfy different user requirements, we provide several servers in binary distributions. mysqld
is an optimized server that is a smaller, faster binary. mysqld-debug is compiled with debugging
support.

Each of these servers is compiled from the same source distribution, though with different
configuration options. All native MySQL clients can connect to servers from either MySQL version.

Under some circumstances, you may be better off installing MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready
to run at any installation location, but you might require even more flexibility to place MySQL
components where you want.

How to Get MySQL

48

• You want to configure mysqld to ensure that features are available that might not be included in the
standard binary distributions. Here is a list of the most common extra options that you may want to
use to ensure feature availability:

• -DWITH_LIBWRAP=1 for TCP wrappers support.

• -DWITH_ZLIB={system|bundled} for features that depend on compression

• -DWITH_DEBUG=1 for debugging support

For additional information, see Section 2.8.4, “MySQL Source-Configuration Options”.

• You want to configure mysqld without some features that are included in the standard binary
distributions. For example, distributions normally are compiled with support for all character sets. If
you want a smaller MySQL server, you can recompile it with support for only the character sets you
need.

• You want to use the latest sources from one of the Bazaar repositories to have access to all current
bugfixes. For example, if you have found a bug and reported it to the MySQL development team, the
bugfix is committed to the source repository and you can access it there. The bugfix does not appear
in a release until a release actually is issued.

• You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you
should get a source distribution, because the source code is always the ultimate manual.

• Source distributions contain more tests and examples than binary distributions.

2.1.2.3 How and When Updates Are Released

MySQL is evolving quite rapidly and we want to share new developments with other MySQL users. We
try to produce a new release whenever we have new and useful features that others also seem to have
a need for.

We also try to help users who request features that are easy to implement. We take note of what our
licensed users want, and we especially take note of what our support customers want and try to help
them in this regard.

No one is required to download a new release. The Release Notes help you determine whether the
new release has something you really want.

We use the following policy when updating MySQL:

• Enterprise Server releases are meant to appear every 18 months, supplemented by quarterly service
packs and monthly rapid updates. Community Server releases are meant to appear 2 to 3 times per
year.

• Releases are issued within each series. For each release, the last number in the version is one more
than the previous release within the same series.

• Binary distributions for some platforms are made by us for major releases. Other people may make
binary distributions for other systems, but probably less frequently.

• We make fixes available as soon as we have identified and corrected small or noncritical but
annoying bugs. The fixes are available in source form immediately from our public Bazaar
repositories, and are included in the next release.

• If by any chance a security vulnerability or critical bug is found in a release, our policy is to fix it in a
new release as soon as possible. (We would like other companies to do this, too!)

2.1.3 How to Get MySQL

Check our downloads page at http://dev.mysql.com/downloads/ for information about the current
version of MySQL and for downloading instructions. For a complete up-to-date list of MySQL download

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/downloads/

Verifying Package Integrity Using MD5 Checksums or GnuPG

49

mirror sites, see http://dev.mysql.com/downloads/mirrors.html. You can also find information there
about becoming a MySQL mirror site and how to report a bad or out-of-date mirror.

For RPM-based Linux platforms that use Yum as their package management system, MySQL can be
installed using the MySQL Yum repository. See Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository” for details.

To obtain the latest development source, see Section 2.8.3, “Installing MySQL Using a Development
Source Tree”.

2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG

After you have downloaded the MySQL package that suits your needs and before you attempt to install
it, you should make sure that it is intact and has not been tampered with. There are three means of
integrity checking:

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the
respective package one more time, perhaps from another mirror site.

2.1.4.1 Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum that
you can verify against the package that you downloaded. The correct MD5 checksum is listed on the
downloads page for each MySQL product, and you will compare it against the MD5 checksum of the
file (product) that you download.

Each operating system and setup offers its own version of tools for checking the MD5 checksum.
Typically the command is named md5sum, or it may be named md5, and some operating systems do
not ship it at all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide
range of platforms. You can also download the source code from http://www.gnu.org/software/textutils/.
If you have OpenSSL installed, you can use the command openssl md5 package_name instead.
A Windows implementation of the md5 command line utility is available from http://www.fourmilab.ch/
md5/. winMd5Sum is a graphical MD5 checking tool that can be obtained from http://www.nullriver.com/
index/products/winmd5sum. Our Microsoft Windows examples will assume the name md5.exe.

Linux and Microsoft Windows examples:

shell> md5sum mysql-standard-5.7.5-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-5.7.5-linux-i686.tar.gz

shell> md5.exe mysql-installer-community-5.7.5.msi
aaab65abbec64d5e907dcd41b8699945 mysql-installer-community-5.7.5.msi

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one
displayed on the download page immediately below the respective package.

Note

Make sure to verify the checksum of the archive file (for example, the .zip,
.tar.gz, or .msi file) and not of the files that are contained inside of the
archive. In other words, verify the file before extracting its contents.

http://dev.mysql.com/downloads/mirrors.html
http://dev.mysql.com/downloads/repo/
http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.nullriver.com/index/products/winmd5sum

Verifying Package Integrity Using MD5 Checksums or GnuPG

50

2.1.4.2 Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic
signatures. This is more reliable than using MD5 checksums, but requires more work.

We sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open
Source alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See http://
www.gnupg.org/ for more information about GnuPG and how to obtain and install it on your system.
Most Linux distributions ship with GnuPG installed by default. For more information about GnuPG, see
http://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of our public GPG build
key, which you can download from http://pgp.mit.edu/. The key that you want to obtain is named
mysql-build@oss.oracle.com. Alternatively, you can cut and paste the key directly from the
following text:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.9 (SunOS)

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q2TXlTUUwgUmVs
ZWFzZSBFbmdpbmVlcmluZyA8bXlzcWwtYnVpbGRAb3NzLm9yYWNsZS5jb20+iGkE
ExECACkCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAIZAQUCUwHUZgUJGmbLywAK
CRCMcY07UHLh9V+DAKCjS1gGwgVI/eut+5L+l2v3ybl+ZgCcD7ZoA341HtoroV3U
6xRD09fUgeq0O015U1FMIFBhY2thZ2Ugc2lnbmluZyBrZXkgKHd3dy5teXNxbC5j
b20pIDxidWlsZEBteXNxbC5jb20+iG8EMBECAC8FAk53Pa0oHSBidWlsZEBteXNx
bC5jb20gd2lsbCBzdG9wIHdvcmtpbmcgc29vbgAKCRCMcY07UHLh9bU9AJ9xDK0o
xJFL9vTl9OSZC4lX0K9AzwCcCrS9cnJyz79eaRjL0s2r/CcljdyIZQQTEQIAHQUC
R6yUtAUJDTBYqAULBwoDBAMVAwIDFgIBAheAABIJEIxxjTtQcuH1B2VHUEcAAQGu
kgCffz4GUEjzXkOi71VcwgCxASTgbe0An34LPr1j9fCbrXWXO14msIADfb5piEwE
ExECAAwFAj4+o9EFgwlmALsACgkQSVDhKrJykfIk4QCfWbEeKN+3TRspe+5xKj+k
QJSammIAnjUz0xFWPlVx0f8o38qNG1bq0cU9iEwEExECAAwFAj5CggMFgwliIokA
CgkQtvXNTca6JD+WkQCgiGmnoGjMojynp5ppvMXkyUkfnykAoK79E6h8rwkSDZou
iz7nMRisH8uyiEYEEBECAAYFAj+s468ACgkQr8UjSHiDdA/2lgCg21IhIMMABTYd
p/IBiUsP/JQLiEoAnRzMywEtujQz/E9ono7H1DkebDa4iEYEEBECAAYFAj+0Q3cA
CgkQhZavqzBzTmbGwwCdFqD1frViC7WRt8GKoOS7hzNN32kAnirlbwpnT7a6NOsQ
83nk11a2dePhiEYEEBECAAYFAkNbs+oACgkQi9gubzC5S1x/dACdELKoXQKkwJN0
gZztsM7kjsIgyFMAnRRMbHQ7V39XC90OIpaPjk3a01tgiEYEExECAAYFAkTxMyYA
CgkQ9knE9GCTUwwKcQCgibak/SwhxWH1ijRhgYCo5GtM4vcAnAhtzL57wcw1Kg1X
m7nVGetUqJ7fiEwEEBECAAwFAkGBywEFgwYi2YsACgkQGFnQH2d7oexCjQCcD8sJ
NDc/mS8m8OGDUOx9VMWcnGkAnj1YWOD+Qhxo3mI/Ul9oEAhNkjcfiEwEEBECAAwF
AkGByzQFgwYi2VgACgkQgcL36+ITtpIiIwCdFVNVUB8xe8mFXoPm4d9Z54PTjpMA
niSPA/ZsfJ3oOMLKar4F0QPPrdrGiEwEEBECAAwFAkGBy2IFgwYi2SoACgkQa3Ds
2V3D9HMJqgCbBYzr5GPXOXgP88jKzmdbjweqXeEAnRss4G2G/3qD7uhTL1SPT1SH
jWUXiEwEEBECAAwFAkHQkyQFgwXUEWgACgkQfSXKCsEpp8JiVQCghvWvkPqowsw8
w7WSseTcw1tflvkAni+vLHl/DqIly0LkZYn5jzK1dpvfiEwEEBECAAwFAkIrW7oF
gwV5SNIACgkQ5hukiRXruavzEwCgkzL5QkLSypcw9LGHcFSx1ya0VL4An35nXkum
g6cCJ1NP8r2I4NcZWIrqiEwEEhECAAwFAkAqWToFgwd6S1IACgkQPKEfNJT6+GEm
XACcD+A53A5OGM7w750W11ukq4iZ9ckAnRMvndAqn3YTOxxlLPj2UPZiSgSqiEwE
EhECAAwFAkA9+roFgwdmqdIACgkQ8tdcY+OcZZyy3wCgtDcwlaq20w0cNuXFLLNe
EUaFFTwAni6RHN80moSVAdDTRkzZacJU3M5QiEwEEhECAAwFAkEOCoQFgwaWmggA
CgkQOcor9D1qil/83QCeITZ9wIo7XAMjC6y4ZWUL4m+edZsAoMOhRIRi42fmrNFu
vNZbnMGej81viEwEEhECAAwFAkKApTQFgwUj/1gACgkQBA3AhXyDn6jjJACcD1A4
UtXk84J13JQyoH9+dy24714Aniwlsso/9ndICJOkqs2j5dlHFq6oiEwEExECAAwF
Aj5NTYQFgwlXVwgACgkQLbt2v63UyTMFDACglT5G5NVKf5Mj65bFSlPzb92zk2QA
n1uc2h19/IwwrsbIyK/9POJ+JMP7iEwEExECAAwFAkHXgHYFgwXNJBYACgkQZu/b
yM2C/T4/vACfXe67xiSHB80wkmFZ2krb+oz/gBAAnjR2ucpbaonkQQgnC3GnBqmC
vNaJiEwEExECAAwFAkIYgQ4FgwWMI34ACgkQdsEDHKIxbqGg7gCfQi2HcrHn+yLF
uNlH1oSOh48ZM0oAn3hKV0uIRJphonHaUYiUP1ttWgdBiGUEExECAB0FCwcKAwQD
FQMCAxYCAQIXgAUCS3AvygUJEPPzpwASB2VHUEcAAQEJEIxxjTtQcuH1sNsAniYp
YBGqy/HhMnw3WE8kXahOOR5KAJ4xUmWPGYP4l3hKxyNK9OAUbpDVYIh7BDARAgA7

http://www.gnupg.org/
http://www.gnupg.org/
http://www.openpgp.org/
http://pgp.mit.edu/

Verifying Package Integrity Using MD5 Checksums or GnuPG

51

BQJCdzX1NB0AT29wcy4uLiBzaG91bGQgaGF2ZSBiZWVuIGxvY2FsISBJJ20gKnNv
KiBzdHVwaWQuLi4ACgkQOcor9D1qil/vRwCdFo08f66oKLiuEAqzlf9iDlPozEEA
n2EgvCYLCCHjfGosrkrU3WK5NFVgiI8EMBECAE8FAkVvAL9IHQBTaG91bGQgaGF2
ZSBiZWVuIGEgbG9jYWwgc2lnbmF0dXJlLCBvciBzb21ldGhpbmcgLSBXVEYgd2Fz
IEkgdGhpbmtpbmc/AAoJEDnKK/Q9aopfoPsAn3BVqKOalJeF0xPSvLR90PsRlnmG
AJ44oisY7Tl3NJbPgZal8W32fbqgbIkCIgQQAQIADAUCQYHLhQWDBiLZBwAKCRCq
4+bOZqFEaKgvEACCErnaHGyUYa0wETjj6DLEXsqeOiXad4i9aBQxnD35GUgcFofC
/nCY4XcnCMMEnmdQ9ofUuU3OBJ6BNJIbEusAabgLooebP/3KEaiCIiyhHYU5jarp
ZAh+Zopgs3Oc11mQ1tIaS69iJxrGTLodkAsAJAeEUwTPq9fHFFzC1eGBysoyFWg4
bIjz/zClI+qyTbFA5g6tRoiXTo8ko7QhY2AA5UGEg+83Hdb6akC04Z2QRErxKAqr
phHzj8XpjVOsQAdAi/qVKQeNKROlJ+iq6+YesmcWGfzeb87dGNweVFDJIGA0qY27
pTb2lExYjsRFN4Cb13NfodAbMTOxcAWZ7jAPCxAPlHUG++mHMrhQXEToZnBFE4nb
nC7vOBNgWdjUgXcpkUCkop4b17BFpR+k8ZtYLSS8p2LLz4uAeCcSm2/msJxT7rC/
FvoH8428oHincqs2ICo9zO/Ud4HmmO0O+SsZdVKIIjinGyOVWb4OOzkAlnnhEZ3o
6hAHcREIsBgPwEYVTj/9ZdC0AO44Nj9cU7awaqgtrnwwfr/o4V2gl8bLSkltZU27
/29HeuOeFGjlFe0YrDd/aRNsxbyb2O28H4sG1CVZmC5uK1iQBDiSyA7Q0bbdofCW
oQzm5twlpKWnY8Oe0ub9XP5p/sVfck4FceWFHwv+/PC9RzSl33lQ6vM2wIkCIgQT
AQIADAUCQp8KHAWDBQWacAAKCRDYwgoJWiRXzyE+D/9uc7z6fIsalfOYoLN60ajA
bQbI/uRKBFugyZ5RoaItusn9Z2rAtn61WrFhu4uCSJtFN1ny2RERg40f56pTghKr
D+YEt+Nze6+FKQ5AbGIdFsR/2bUk+ZZRSt83e14Lcb6ii/fJfzkoIox9ltkifQxq
Y7Tvk4noKu4oLSc8O1Wsfc/y0B9sYUUCmUfcnq58DEmGie9ovUslmyt5NPnveXxp
5UeaRc5Rqt9tK2B4A+7/cqENrdZJbAMSunt2+2fkYiRunAFPKPBdJBsY1sxeL/A9
aKe0viKEXQdAWqdNZKNCi8rd/oOP99/9lMbFudAbX6nL2DSb1OG2Z7NWEqgIAzjm
pwYYPCKeVz5Q8R+if9/fe5+STY/55OaI33fJ2H3v+U435VjYqbrerWe36xJItcJe
qUzW71fQtXi1CTEl3w2ch7VF5oj/QyjabLnAlHgSlkSi6p7By5C2MnbCHlCfPnIi
nPhFoRcRGPjJe9nFwGs+QblvS/Chzc2WX3s/2SWm4gEUKRX4zsAJ5ocyfa/vkxCk
SxK/erWlCPf/J1T70+i5waXDN/E3enSet/WL7h94pQKpjz8OdGL4JSBHuAVGA+a+
dknqnPF0KMKLhjrgV+L7O84FhbmAP7PXm3xmiMPriXf+el5fZZequQoIagf8rdRH
HhRJxQgI0HNknkaOqs8dtrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWs
EN/lxaZoJYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLm
RDRiRjd1DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hk
AWzE7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkb
f4fmLe11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHb
uE5p/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+
Lwqqa8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1Z
aSafanFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGo
TbOWI39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev4
2LmuQT5NdKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkK
Ht926s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUO
etdZWhe70YGNPw1yjWJT1IhUBBgRAgAMBQJOdz3tBQkT+wG4ABIHZUdQRwABAQkQ
jHGNO1By4fUUmwCbBYr2+bBEn/L2BOcnw9Z/QFWuhRMAoKVgCFm5fadQ3Afi+UQl
AcOphrnJ
=443I
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if
you have saved the key in a file named mysql_pubkey.asc, the import command looks like this:

shell> gpg --import mysql_pubkey.asc
gpg: key 5072E1F5: public key "MySQL Release Engineering
<mysql-build@oss.oracle.com>" imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: no ultimately trusted keys found

You can also download the key from the public keyserver using the public key id, 5072E1F5:

shell> gpg --recv-keys 5072E1F5
gpg: requesting key 5072E1F5 from hkp server keys.gnupg.net
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
1 new user ID
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
53 new signatures
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: new user IDs: 1
gpg: new signatures: 53

If you want to import the key into your RPM configuration to validate RPM install packages, you should
be able to import the key directly:

Verifying Package Integrity Using MD5 Checksums or GnuPG

52

shell> rpm --import mysql_pubkey.asc

If you experience problems or require RPM specific information, see Section 2.1.4.4, “Signature
Checking Using RPM”.

After you have downloaded and imported the public build key, download your desired MySQL package
and the corresponding signature, which also is available from the download page. The signature file
has the same name as the distribution file with an .asc extension, as shown by the examples in the
following table.

Table 2.1 MySQL Package and Signature Files for Source files

File Type File Name

Distribution file mysql-standard-5.7.5-linux-i686.tar.gz

Signature file mysql-standard-5.7.5-linux-i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file:

shell> gpg --verify package_name.asc

If the downloaded package is valid, you will see a "Good signature" similar to:

shell> gpg --verify mysql-standard-5.7.5-linux-i686.tar.gz.asc
gpg: Signature made Tue 01 Feb 2011 02:38:30 AM CST using DSA key ID 5072E1F5
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"

The Good signature message indicates that the file signature is valid, when compared to the
signature listed on our site. But you might also see warnings, like so:

shell> gpg --verify mysql-standard-5.7.5-linux-i686.tar.gz.asc
gpg: Signature made Wed 23 Jan 2013 02:25:45 AM PST using DSA key ID 5072E1F5
gpg: checking the trustdb
gpg: no ultimately trusted keys found
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5

That is normal, as they depend on your setup and configuration. Here are explanations for these
warnings:

• gpg: no ultimately trusted keys found: This means that the specific key is not "ultimately trusted" by
you or your web of trust, which is okay for the purposes of verifying file signatures.

• WARNING: This key is not certified with a trusted signature! There is no indication that the signature
belongs to the owner.: This refers to your level of trust in your belief that you possess our real public
key. This is a personal decision. Ideally, a MySQL developer would hand you the key in person,
but more commonly, you downloaded it. Was the download tampered with? Probably not, but this
decision is up to you. Setting up a web of trust is one method for trusting them.

See the GPG documentation for more information on how to work with public keys.

2.1.4.3 Signature Checking Using Gpg4win for Windows

The Section 2.1.4.2, “Signature Checking Using GnuPG” section describes how to verify MySQL
downloads using GPG. That guide also applies to Microsoft Windows, but another option is to use a

Verifying Package Integrity Using MD5 Checksums or GnuPG

53

GUI tool like Gpg4win. You may use a different tool but our examples are based on Gpg4win, and
utilize its bundled Kleopatra GUI.

Download and install Gpg4win, and then load Kleopatra. The dialog should look similar to:

Figure 2.1 Initial screen after loading Kleopatra

Next, add the MySQL Release Engineering certificate. Do this by clicking File, Lookup Certificates on
Server. Type "Mysql Release Engineering" into the search box and press Search.

Figure 2.2 Finding the MySQL Release Engineering certificate

Select the "MySQL Release Engineering" certificate. The Fingerprint and Key-ID must be "5072E1F5",
or choose Details... to confirm the certificate is valid. Now, import it by clicking Import. An import dialog

http://www.gpg4win.org/

Verifying Package Integrity Using MD5 Checksums or GnuPG

54

will be displayed, choose Okay, and this certificate will now be listed under the Imported Certificates
tab.

Next, configure the trust level for our certificate. Select our certificate, then from the main menu select
Certificates, Change Owner Trust.... We suggest choosing I believe checks are very accurate for our
certificate, as otherwise you might not be able to verify our signature. Select I believe checks are very
accurate and then press OK.

Figure 2.3 Changing the Trust level

Next, verify the downloaded MySQL package file. This requires files for both the packaged file, and
the signature. The signature file must have the same name as the packaged file but with an appended
.asc extension, as shown by the example in the following table. The signature is linked to on the
downloads page for each MySQL product. You must create the .asc file with this signature.

Table 2.2 MySQL Package and Signature Files for MySQL Installer for Microsoft Windows

File Type File Name

Distribution file mysql-installer-community-5.7.5.msi

Signature file mysql-installer-community-5.7.5.msi.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file. Either drag and drop the signature (.asc) file into Kleopatra, or
load the dialog from File, Decrypt/Verify Files..., and then choose either the .msi or .asc file.

Verifying Package Integrity Using MD5 Checksums or GnuPG

55

Figure 2.4 The Decrypt/Verify Files dialog

Click Decrypt/Verify to check the file. The two most common results will look like the following, and
although the yellow warning looks problematic, the following means that the file check passed with
success. You may now run this installer.

Verifying Package Integrity Using MD5 Checksums or GnuPG

56

Figure 2.5 The Decrypt/Verify Results: Good

Seeing a red "The signature is bad" error means the file is invalid. Do not execute the MSI file if you
see this error.

Verifying Package Integrity Using MD5 Checksums or GnuPG

57

Figure 2.6 The Decrypt/Verify Results: Bad

The Section 2.1.4.2, “Signature Checking Using GnuPG” section explains why you probably don't see a
green Good signature result.

2.1.4.4 Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

shell> rpm --checksig package_name.rpm

Example:

shell> rpm --checksig MySQL-server-5.7.5-0.linux_glibc2.5.i386.rpm
MySQL-server-5.7.5-0.linux_glibc2.5.i386.rpm: md5 gpg OK

Note

If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING
KEYS: GPG#5072e1f5), even though you have imported the MySQL public
build key into your own GPG keyring, you need to import the key into the RPM
keyring first. RPM 4.1 no longer uses your personal GPG keyring (or GPG
itself). Rather, RPM maintains a separate keyring because it is a system-wide
application and a user's GPG public keyring is a user-specific file. To import the

Installation Layouts

58

MySQL public key into the RPM keyring, first obtain the key, then use rpm --
import to import the key. For example:

shell> gpg --export -a 5072e1f5 > 5072e1f5.asc
shell> rpm --import 5072e1f5.asc

Alternatively, rpm also supports loading the key directly from a URL, and you can use this manual
page:

shell> rpm --import http://dev.mysql.com/doc/refman/5.7/en/checking-gpg-signature.html

If you need to obtain the MySQL public key, see Section 2.1.4.2, “Signature Checking Using GnuPG”.

2.1.5 Installation Layouts

The installation layout differs for different installation types (for example, native packages, binary
tarballs, and source tarballs), which can lead to confusion when managing different systems or using
different installation sources. The individual layouts are given in the corresponding installation type or
platform chapter, as described following. Note that the layout of installations from vendors other than
Oracle may differ from these layouts.

• Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”

• Section 2.8.1, “MySQL Layout for Source Installation”

• Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”

• Table 2.9, “MySQL Installation Layout for Linux RPM Packages”

• Table 2.6, “MySQL Installation Layout on Mac OS X”

2.1.6 Compiler-Specific Build Characteristics

In some cases, the compiler used to build MySQL affects the features available for use. The notes in
this section apply for binary distributions provided by Oracle Corporation or that you compile yourself
from source.

icc (Intel C++ Compiler) Builds

A server built with icc has these characteristics:

• SSL support is not included.

2.2 Installing MySQL on Unix/Linux Using Generic Binaries

Oracle provides a set of binary distributions of MySQL. These include binary distributions in the form of
compressed tar files (files with a .tar.gz extension) for a number of platforms, as well as binaries in
platform-specific package formats for selected platforms.

This section covers the installation of MySQL from a compressed tar file binary distribution. For other
platform-specific package formats, see the other platform-specific sections. For example, for Windows
distributions, see Section 2.3, “Installing MySQL on Microsoft Windows”.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.

MySQL compressed tar file binary distributions have names of the form
mysql-VERSION-OS.tar.gz, where VERSION is a number (for example, 5.7.5), and OS indicates
the type of operating system for which the distribution is intended (for example, pc-linux-i686 or
winx64).

Installing MySQL on Unix/Linux Using Generic Binaries

59

To install MySQL from a compressed tar file binary distribution, your system must have GNU gunzip
to uncompress the distribution and a reasonable tar to unpack it. If your tar program supports the z
option, it can both uncompress and unpack the file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or if
available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar
within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is
available from http://www.gnu.org/software/tar/.

Warning

If you have previously installed MySQL using your operating system native
package management system, such as yum or apt-get, you may experience
problems installing using a native binary. Make sure your previous MySQL
previous installation has been removed entirely (using your package
management system), and that any additional files, such as old versions of your
data files, have also been removed. You should also check the existence of
configuration files such as /etc/my.cnf or the /etc/mysql directory have
been deleted.

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How
to Report Bugs or Problems”.

On Unix, to install a compressed tar file binary distribution, unpack it at the installation location you
choose (typically /usr/local/mysql). This creates the directories shown in the following table.

Table 2.3 MySQL Installation Layout for Generic Unix/Linux Binary Package

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

docs Manual in Info format

man Unix manual pages

include Include (header) files

lib Libraries

scripts mysql_install_db

share Miscellaneous support files, including error messages,
sample configuration files, SQL for database installation

sql-bench Benchmarks

Debug versions of the mysqld binary are available as mysqld-debug. To compile your own debug
version of MySQL from a source distribution, use the appropriate configuration options to enable
debugging support. For more information on compiling from source, see Section 2.8, “Installing MySQL
from Source”.

To install and use a MySQL binary distribution, the basic command sequence looks like this:

shell> groupadd mysql
shell> useradd -r -g mysql mysql
shell> cd /usr/local
shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .

http://www.gnu.org/software/tar/

Create a mysql User and Group

60

shell> chown -R mysql data
shell> bin/mysqld_safe --user=mysql &
Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server

mysql_install_db creates a default option file named my.cnf in the base installation directory.
This file is created from a template included in the distribution package named my-default.cnf. For
more information, see Using a Sample Default Server Configuration File.

A more detailed version of the preceding description for installing a binary distribution follows.

Note

This procedure assumes that you have root (administrator) access to your
system. Alternatively, you can prefix each command using the sudo (Linux) or
pfexec (OpenSolaris) command.

The procedure does not set up any passwords for MySQL accounts. After
following the procedure, proceed to Section 2.9.2, “Securing the Initial MySQL
Accounts”.

Create a mysql User and Group

If your system does not already have a user and group for mysqld to run as, you may need to create
one. The following commands add the mysql group and the mysql user. You might want to call the
user and group something else instead of mysql. If so, substitute the appropriate name in the following
instructions. The syntax for useradd and groupadd may differ slightly on different versions of Unix, or
they may have different names such as adduser and addgroup.

shell> groupadd mysql
shell> useradd -r -g mysql mysql

Note

Because the user is required only for ownership purposes, not login purposes,
the useradd command uses the -r option to create a user that does not have
login permissions to your server host. Omit this option to permit logins for the
user (or if your useradd does not support the option).

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it. The
example here unpacks the distribution under /usr/local. The instructions, therefore, assume that
you have permission to create files and directories in /usr/local. If that directory is protected, you
must perform the installation as root.

shell> cd /usr/local

Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”. For a given
release, binary distributions for all platforms are built from the same MySQL source distribution.

Unpack the distribution, which creates the installation directory. Then create a symbolic link to that
directory. tar can uncompress and unpack the distribution if it has z option support:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
shell> ln -s full-path-to-mysql-VERSION-OS mysql

The tar command creates a directory named mysql-VERSION-OS. The ln command makes a
symbolic link to that directory. This enables you to refer more easily to the installation directory as /
usr/local/mysql.

http://dev.mysql.com/doc/refman/5.6/en/server-default-configuration-file.html

Perform Postinstallation Setup

61

If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack
it. Replace the preceding tar command with the following alternative command to uncompress and
extract the distribution:

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core
databases, and starting the MySQL server. For next steps, see Section 2.9, “Postinstallation Setup and
Testing”.

Note

The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.9.2, “Securing the Initial MySQL Accounts”.

2.3 Installing MySQL on Microsoft Windows
MySQL is available for Microsoft Windows, for both 32-bit and 64-bit versions. For supported Windows
platform information, see http://www.mysql.com/support/supportedplatforms/database.html.

It is possible to run MySQL as a standard application or as a Windows service. By using a service,
you can monitor and control the operation of the server through the standard Windows service
management tools. For more information, see Section 2.3.5.7, “Starting MySQL as a Windows
Service”.

Generally, you should install MySQL on Windows using an account that has administrator rights.
Otherwise, you may encounter problems with certain operations such as editing the PATH environment
variable or accessing the Service Control Manager. Once installed, MySQL does not need to be
executed using a user with Administrator privileges.

For a list of limitations on the use of MySQL on the Windows platform, see Section E.10.6, “Windows
Platform Limitations”.

In addition to the MySQL Server package, you may need or want additional components to use MySQL
with your application or development environment. These include, but are not limited to:

• To connect to the MySQL server using ODBC, you must have a Connector/ODBC driver. For more
information, including installation and configuration instructions, see MySQL Connector/ODBC
Developer Guide. But note that MySQL Installer will install and configure Connector/ODBC for you.

• To use MySQL server with .NET applications, you must have the Connector/Net driver. For more
information, including installation and configuration instructions, see MySQL Connector/Net
Developer Guide. But note that MySQL Installer will install and configure Connector/NET for you.

MySQL distributions for Windows can be downloaded from http://dev.mysql.com/downloads/. See
Section 2.1.3, “How to Get MySQL”.

MySQL for Windows is available in several distribution formats, detailed following. Generally speaking,
you should use MySQL Installer. It is simpler to use than the Zip file, and you need no additional tools
to get MySQL up and running. MySQL Installer automatically installs MySQL Server and additional
MySQL products, creates an options file, starts the server, and enables you to create default user
accounts. For more information on choosing a package, see Section 2.3.2, “Choosing An Installation
Package”.

• A MySQL Installer distribution includes MySQL Server and additional MySQL products including
MySQL Workbench, MySQL Notifier, and MySQL for Excel. MySQL Installer can also be used to
upgrade these products in the future.

http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/downloads/

MySQL Installation Layout on Microsoft Windows

62

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”.

• The standard binary distribution (packaged as a Zip file) contains all of the necessary files that you
unpack into your chosen location. This package contains all of the files in the full Windows MSI
Installer package, but does not include an installation program.

For instructions on installing MySQL using the Zip file, see Section 2.3.5, “Installing MySQL on
Microsoft Windows Using a noinstall Zip Archive”.

• The source distribution format contains all the code and support files for building the executables
using the Visual Studio compiler system.

For instructions on building MySQL from source on Windows, see Section 2.8, “Installing MySQL
from Source”.

MySQL on Windows considerations:

• Large Table Support

If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer file system. Do
not forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Section 13.1.14,
“CREATE TABLE Syntax”.

• MySQL and Virus Checking Software

Virus-scanning software such as Norton/Symantec Anti-Virus on directories containing MySQL data
and temporary tables can cause issues, both in terms of the performance of MySQL and the virus-
scanning software misidentifying the contents of the files as containing spam. This is due to the
fingerprinting mechanism used by the virus-scanning software, and the way in which MySQL rapidly
updates different files, which may be identified as a potential security risk.

After installing MySQL Server, it is recommended that you disable virus scanning on the main
directory (datadir) used to store your MySQL table data. There is usually a system built into the
virus-scanning software to enable specific directories to be ignored.

In addition, by default, MySQL creates temporary files in the standard Windows temporary directory.
To prevent the temporary files also being scanned, configure a separate temporary directory for
MySQL temporary files and add this directory to the virus scanning exclusion list. To do this, add
a configuration option for the tmpdir parameter to your my.ini configuration file. For more
information, see Section 2.3.5.2, “Creating an Option File”.

2.3.1 MySQL Installation Layout on Microsoft Windows

For MySQL 5.7 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL
Server 5.7. Some Windows users prefer to install in C:\mysql, the directory that formerly was used
as the default. However, the layout of the subdirectories remains the same.

All of the files are located within this parent directory, using the structure shown in the following table.

Table 2.4 Default MySQL Installation Layout for Microsoft Windows

Directory Contents of Directory Notes

bin Client programs and the mysqld server

%ALLUSERSPROFILE%
\MySQL\MySQL Server
5.7\

Log files, databases (Windows XP,
Windows Server 2003)

The Windows
system variable
%ALLUSERSPROFILE%
defaults to C:\Documents
and Settings\All Users
\Application Data

Choosing An Installation Package

63

Directory Contents of Directory Notes

%PROGRAMDATA%\MySQL
\MySQL Server 5.7\

Log files, databases (Vista, Windows 7,
Windows Server 2008, and newer)

The Windows system
variable %PROGRAMDATA
% defaults to C:
\ProgramData

examples Example programs and scripts

include Include (header) files

lib Libraries

scripts Utility scripts

share Miscellaneous support files, including
error messages, character set files,
sample configuration files, SQL for
database installation

If you install MySQL using the MySQL Installer, this package creates and sets up the data directory
that the installed server will use, and also creates a pristine “template” data directory named data
under the installation directory. After an installation has been performed using this package, the
template data directory can be copied to set up additional MySQL instances. See Section 5.3, “Running
Multiple MySQL Instances on One Machine”.

2.3.2 Choosing An Installation Package

For MySQL 5.7, there are installation package formats to choose from when installing MySQL on
Windows:

• MySQL Installer: This package has a file name similar to mysql-installer-
community-5.7.5.0.msi or mysql-installer-commercial-5.7.5.0.msi, and utilizes
MSIs to automatically install MySQL server and other products. It will download and apply updates to
itself, and for each of the installed products. It also configures the additional non-server products.

The installed products are configurable, and this includes: documentation with samples and
examples, connectors (such as C, C++, J, NET, and ODBC), MySQL Workbench, MySQL Notifier for
Microsoft Windows, MySQL for Excel, and the MySQL Server with its components.

MySQL Installer will run on all Windows platforms that are supported by MySQL (see http://
www.mysql.com/support/supportedplatforms/database.html).

Note

Because MySQL Installer is not a native component of Microsoft Windows
and depends on .NET, it will not work on minimal installation options like the
"Server Core" version of Windows Server 2008.

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”.

• The Noinstall Archive: This package has a file name similar to mysql-5.7.5-win32.zip or
mysql-5.7.5-winx64.zip, and contains all the files found in the Complete install package,
with the exception of the GUI. This package does not include an automated installer, and must be
manually installed and configured.

Your choice of install package affects the installation process you must follow. If you choose to use
MySQL Installer, see Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”.
If you choose to install a Noinstall archive, see Section 2.3.5, “Installing MySQL on Microsoft Windows
Using a noinstall Zip Archive”.

2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installer

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html

Installing MySQL on Microsoft Windows Using MySQL Installer

64

MySQL Installer is an application that simplifies the installation and updating process for a wide range
of MySQL products, including MySQL Notifier for Microsoft Windows, MySQL Workbench, and MySQL
for Excel. From this central application, you can see which MySQL products are already installed,
configure them, and update or remove them if necessary. The installer can also install plugins,
documentation, tutorials, and example databases. The MySQL Installer is only available for Microsoft
Windows, and includes both a GUI and command-line interface.

Installer package types

• Full: Bundles all of the MySQL products (including MySQL Server). The file' size is over 160MB,
and its name has the form mysql-installer-community-VERSION.N.msi where VERSION is
the MySQL Server version number such as 5.6 and N is the package number, which begins at 0.

• Web: Only contains the Installer and configuration files, and it only downloads the MySQL products
you choose to install. The size of this file is about 2MB; the name of the file has the form mysql-
installer-community-web-VERSION.N.msi where VERSION is the MySQL Server version
number such as 5.6 and N is the package number, which begins at 0.

Installer editions

• Community edition: Downloadable at http://dev.mysql.com/downloads/installer/. It installs the
community edition of all MySQL products.

• Commercial edition: Downloadable at either My Oracle Support (MOS) or https://
edelivery.oracle.com/. It installs the commercial version of all MySQL products, including Workbench
SE. It also integrates with your MOS account, so enter in your MOS credentials to automatically
receive updates for your commercial MySQL products.

For release notes detailing the changes in each release of MySQL Installer, see MySQL Installer
Release Notes.

MySQL Installer is compatible with pre-existing installations, and adds them to its list of installed
components. While the MySQL Installer is bundled with a specific version of MySQL Server, a single
MySQL Installer instance can install and manage multiple MySQL Server versions. For example,
a single MySQL Installer instance can install versions 5.1, 5.5, and 5.6. It can also manage either
commercial or community editions of the MySQL Server.

Note

A single host can not have both community and commercial editions of
MySQL Server installed. For example, if you want both MySQL Server 5.5
and 5.6 installed on a single host, then both must be the same commercial or
community edition.

MySQL Installer handles the initial configuration and setup of the applications. For example:

1. It will create MySQL Server connections in MySQL Workbench.

2. It creates the configuration file (my.ini) that is used to configure the MySQL Server. The values
written to this file are influenced by choices you make during the installation process.

3. It imports example databases.

4. It creates MySQL Server user accounts with configurable permissions based on general roles, such
as DB Administrator, DB Designer, and Backup Admin. It optionally creates a Windows user named
MysqlSys with limited privileges, which would then run the MySQL Server.

This feature is only available during the initial installation of the MySQL Server, and not during
future updates. User accounts may also be added with MySQL Workbench.

5. If the "Advanced Configuration" option is checked, then the Logging Options are also configured.
This includes defining file paths for the error log, general log, slow query log (including the
configuration of seconds it requires to execute a query), and the binary log.

http://dev.mysql.com/downloads/installer/
https://support.oracle.com/
https://edelivery.oracle.com/
https://edelivery.oracle.com/
http://dev.mysql.com/doc/relnotes/mysql-installer/en/
http://dev.mysql.com/doc/relnotes/mysql-installer/en/

Installing MySQL on Microsoft Windows Using MySQL Installer

65

MySQL Installer can optionally check for updated components and download them for you
automatically.

2.3.3.1 MySQL Installer GUI

After installation of the GUI version, the installer will have add its own Start Menu item under MySQL.

Note

Files that are generated by MySQL Installer grant full permissions to the user
that executes MySQL Installer, including my.ini. This does not apply to files
and directories for specific products such as the MySQL Server data directory in
ProgramData, that is owned by SYSTEM.

After the installer itself has been installed and started, the following screen is displayed:

Figure 2.7 MySQL Installer - Welcome Screen

There are three main options:

1. Install MySQL Products - The Installation Wizard.

2. About MySQL - Learn about MySQL products and features.

3. Resources - Information to help install and configure MySQL.

To Install MySQL Products after executing MySQL Installer for the first time, you must accept the
license agreement before proceeding with the installation process.

Installing MySQL on Microsoft Windows Using MySQL Installer

66

Figure 2.8 MySQL Installer - License Agreement

If you are connected to the Internet, then the Installer will search for the latest MySQL components and
add them to the installation bundle. Click Connect to the Internet to complete this step, or otherwise
check the Skip checkbox and then Continue.

Installing MySQL on Microsoft Windows Using MySQL Installer

67

Figure 2.9 MySQL Installer - Find latest products

If you chose "Connect to the Internet," the next page will show the progress of MySQL Installer's
search for available updates. When the search is complete (or if you opted to skip the search), you will
be taken to the Choose Setup Type page:

Installing MySQL on Microsoft Windows Using MySQL Installer

68

Figure 2.10 MySQL Installer - Choosing a Setup Type

Determine the option most compatible with your preferences by reading the Setup Type Description
descriptions.

The Installation and Data paths are also defined here, and a caution flag will notify you if the data path
you define already exists.

After you select a setup type, the MySQL Installer will check your system for the necessary external
requirements and download then install missing components onto your system.

Installing MySQL on Microsoft Windows Using MySQL Installer

69

Figure 2.11 MySQL Installer - Check Requirements

The next window lists the MySQL products that are scheduled to be installed:

Installing MySQL on Microsoft Windows Using MySQL Installer

70

Figure 2.12 MySQL Installer - Installation Progress

As components are installed, you'll see their status change from "to be installed" to "install success."

Installing MySQL on Microsoft Windows Using MySQL Installer

71

Figure 2.13 MySQL Installer - Installation Progress status

After all components are installed, the next step involves configuring the products. The
Configuration Overview window displays the progress and then loads a configuration window if it
is required.

Installing MySQL on Microsoft Windows Using MySQL Installer

72

Figure 2.14 MySQL Installer - Configuration Overview

The ideal MySQL Server configuration depends on your intended use, as explained in the next window.
Choose the description that most closely applies to your machine.

You may enable TCP/IP Networking here as otherwise only localhost connections are allowed.

Checking the "Advanced Configuration" option provides additional Logging Options to configure. This
includes defining file paths for the error log, general log, slow query log (including the configuration of
seconds it requires to execute a query), and the binary log.

Installing MySQL on Microsoft Windows Using MySQL Installer

73

Figure 2.15 MySQL Installer - MySQL Server Configuration: Define platform, networking, and
logging options

Next, choose your account information. Defining a root password is required, whereas it's optional
to create additional users. There are several different predefined user roles that each have different
permission levels. For example, a "DB Admin" will have more privileges than a "DB Designer.".

Installing MySQL on Microsoft Windows Using MySQL Installer

74

Figure 2.16 MySQL Installer - MySQL Server Configuration: User accounts

Note

If the MySQL Server is already installed, then the Current Root Password
will also be needed.

Next, configure the Windows Service Details. This includes the service name, how the MySQL Server
should be loaded at startup, and how the Windows Service for MySQL Server will be run.

Installing MySQL on Microsoft Windows Using MySQL Installer

75

Figure 2.17 MySQL Installer - MySQL Server Configuration: Windows service details

Note

When configuring Run Windows Services as ... using a Custom User, the
custom user must have privileges to log on to Windows as a service. And the
Next button will be disabled until this user is given these user rights.

On Microsoft Windows 7, this is configured by loading the Start Menu,
Control Panel, Administrative Tools, Local Security Policy,
Local Policies, User Rights Assignment, then Log On As A
Service. Choose Add User or Group here to add the custom user, and
then OK, OK to save.

The final configuration step is available if the Advanced Configuration option was checked, and it
includes configuration options related to log file names:

Installing MySQL on Microsoft Windows Using MySQL Installer

76

Figure 2.18 MySQL Installer - MySQL Server Configuration: Logging options

After the MySQL Installer configuration process is completed, you may save the installation log, and
then load MySQL Workbench if the Start MySQL Workbench after Setup option is checked:

Installing MySQL on Microsoft Windows Using MySQL Installer

77

Figure 2.19 MySQL Installer - Installation Complete

You can now open MySQL Installer from the Microsoft Windows Start menu under the MySQL group,
which will load the MySQL Installer Maintenance Screen. This is used to add, update, and remove
features.

Installing MySQL on Microsoft Windows Using MySQL Installer

78

Figure 2.20 MySQL Installer - Maintenance Screen

Note

An Update Screen screen is shown if MySQL Installer is used on a machine
with older products installed, as opposed to the Maintenance Screen shown
above. However, the functionality remains the same.

Add/Modify Products and Features will list all installed and available MySQL products.

Installing MySQL on Microsoft Windows Using MySQL Installer

79

Figure 2.21 MySQL Installer - Add/Modify Products and Features

The installation is now complete. MySQL Server should be running, and most MySQL products
installed and available for use.

See also the MySQL Workbench documentation (http://dev.mysql.com/doc/workbench/en/).

2.3.3.2 MySQL Installer Console

MySQLInstallerConsole provides functionality similar to the GUI version of MySQL Installer, but
from the command-line. It is installed when MySQL Installer is initially executed, and then available
within the MySQL Installer directory. Typically that is in C:\Program Files (x86)\MySQL
\MySQL Installer\, and the console must be executed with administrative privileges.

To use, invoke the Command Prompt with administrative privileges by choosing Start, Accessories,
then right-click on Command Prompt and choose Run as administrator. And from the command-
line, optionally change the directory to where MySQLInstallerConsole is located:

C:\> cd "C:\Program Files (x86)\MySQL\MySQL Installer"

MySQLInstallerConsole supports the following options, which are specified on the command line:

• --help, -h, or -?

Displays a help message with usage examples, and then exits.

C:\> MySQLInstallerConsole --help

• --updates (or -u)

http://dev.mysql.com/doc/workbench/en/

MySQL Notifier for Microsoft Windows

80

Checks for new products before any further action is taken. Disabled by default.

• --nowait

Skips the final pause when the program finishes. Otherwise, a "Press Enter to continue."
dialogue is generated. It is used in conjunction with other options.

• --catalog=catalog_name (or -c)

Sets the default catalog. Use --list to view a list of available catalogs.

• --type=installation_type (or -t)

Sets the installation type.

The possible values for installation_type are: developer, server, client, full, and custom.

• --action=action_name

The action being performed.

The possible values are: install, remove, upgrade, list, and status.

•
install: Installs a product or products, as defined by --products

•
upgrade: Upgrades a product or products, as defined by --products.

•
remove: Removes a product or products, as defined by --products.

•
list: Lists the product manifest, both installed and available products.

•
status: Shows the status after another action is performed.

• --product=product_name[:feature1],[feature2], [...] (or -p)

Set the feature list of a product. Use --list to view available products, or pass in --product=*
(an asterisk) to install all available products.

• --config=product_name:passwd=root_password[;parameter1=value],
[;parameter2=value], ...

The configuration parameters for the most recently listed products.

• --user=product_name:name=username,host:hostname,role=rolename,password=password
or --user=product_name:name=username,host:hostname,role=rolename,tokens=tokens

Creates a new user.

Requires: name, host, role, and the password or tokens. Tokens are separated by pipe ("|")
characters.

2.3.4 MySQL Notifier for Microsoft Windows

The MySQL Notifier for Microsoft Windows is a tool that enables you to monitor and adjust the status
of your local and remote MySQL Server instances through an indicator that resides in the system tray.
The MySQL Notifier for Microsoft Windows also gives quick access to several MySQL GUI tools (such
as MySQL Workbench) through its context menu.

MySQL Notifier for Microsoft Windows

81

The MySQL Notifier for Microsoft Windows is installed by MySQL Installer, and (by default) will start-up
when Microsoft Windows is started.

Note

To install, download and execute the MySQL Installer, be sure the MySQL
Notifier for Microsoft Windows product is selected, then proceed with the
installation. See the MySQL Installer manual for additional details.

For release notes detailing the changes in each release of MySQL Notifier for
Microsoft Windows, see the MySQL Notifier Release Notes.

Visit the MySQL Notifier forum for additional MySQL Notifier for Microsoft
Windows help and support.

Features include:

• Start, Stop, and Restart instances of the MySQL Server.

• Automatically detects (and adds) new MySQL Server services. These are listed under Manage
Monitored Items, and may also be configured.

• The Tray icon changes, depending on the status. It's green if all monitored MySQL Server instances
are running, or red if at least one service is stopped. The Update MySQL Notifier tray icon based
on service status option, which dictates this behavior, is enabled by default for each service.

• Links to other applications like MySQL Workbench, MySQL Installer, and the MySQL Utilities. For
example, choosing Configure Instance will load the MySQL Workbench Server Administration
window for that particular instance.

• If MySQL Workbench is also installed, then the Configure Instance and SQL Editor options are
available for local (but not remote) MySQL instances.

• Monitoring of both local and remote MySQL instances.

Note

Remote monitoring is available since MySQL Notifier for Microsoft Windows
1.1.0.

The MySQL Notifier for Microsoft Windows resides in the system tray and provides visual status
information for your MySQL Server instances. A green icon is displayed at the top left corner of the tray
icon if the current MySQL Server is running, or a red icon if the service is stopped.

The MySQL Notifier for Microsoft Windows automatically adds discovered MySQL Services on the
local machine, and each service is saved and configurable. By default, the Automatically add new
services whose name contains option is enabled and set to mysql. Related Notifications Options
include being notified when new services are either discovered or experience status changes, and are
also enabled by default. And uninstalling a service will also remove the service from the MySQL Notifier
for Microsoft Windows.

Note

The Automatically add new services whose name contains option default
changed from ".*mysqld.*" to "mysql" in Notifier 1.1.0.

Clicking the system tray icon will reveal several options, as seen in the screenshots below:

The Service Instance menu is the main MySQL Notifier for Microsoft Windows window, and enables
you to Stop, Start, and Restart the MySQL Server.

http://dev.mysql.com/downloads/installer/
http://dev.mysql.com/doc/relnotes/mysql-notifier/en/
http://forums.mysql.com/list.php?173

MySQL Notifier for Microsoft Windows

82

Figure 2.22 MySQL Notifier for Microsoft Windows Service Instance menu

The Actions menu includes several links to external applications (if they are installed), and a a Refresh
Status option to manually refresh the status of all monitored services (in both local and remote
computers) and MySQL instances.

Note

The main menu will not show the Actions menu when there are no services
being monitored by MySQL Notifier for Microsoft Windows.

Note

The Refresh Status feature is available since MySQL Notifier for Microsoft
Windows 1.1.0.

Figure 2.23 MySQL Notifier for Microsoft Windows Actions menu

The Actions, Options menu configures MySQL Notifier for Microsoft Windows and includes options to:

• Use colorful status icons: Enables a colorful style of icons for the tray of the MySQL Notifier for
Microsoft Windows.

• Run at Windows Startup: Allows the application to be loaded when Microsoft Windows starts.

• Automatically Check For Updates Every # Weeks: Checks for a new version of MySQL Notifier for
Microsoft Windows, and runs this check every # weeks.

• Automatically add new services whose name contains: The text used to filter services and add
them automatically to the monitored list of the local computer running MySQL Notifier, and on remote
computers already monitoring Windows services. monitored services, and also filters the list of the
Microsoft Windows services for the Add New Service dialog.

Prior to version 1.1.0, this option was named "Automatically add new services that match this
pattern."

• Notify me when a service is automatically added: Will display a balloon notification from the
taskbar when a newly discovered service is added to the monitored services list.

MySQL Notifier for Microsoft Windows

83

• Notify me when a service changes status: Will display a balloon notification from the taskbar when
a monitored service changes its status.

Figure 2.24 MySQL Notifier for Microsoft Windows Options menu

The Actions, Manage Monitored Items menu enables you to configure the monitored services and
MySQL instances. First, with the Services tab open:

Figure 2.25 MySQL Notifier for Microsoft Windows Manage Services menu

MySQL Notifier for Microsoft Windows

84

The Instances tab is similar:

Figure 2.26 MySQL Notifier for Microsoft Windows Manage Instances menu

Adding a service or instance (after clicking Add in the Manage Monitored Items window) enables you to
select a running Microsoft Windows service or instance connection, and configure MySQL Notifier for
Microsoft Windows to monitor it. Add a new service or instance by clicking service name from the list,
then OK to accept. Multiple services and instances may be selected.

MySQL Notifier for Microsoft Windows

85

Figure 2.27 MySQL Notifier for Microsoft Windows Adding new services

And instances:

MySQL Notifier for Microsoft Windows

86

Figure 2.28 MySQL Notifier for Microsoft Windows Adding new instances

Note

The Instances tab available since MySQL Notifier for Microsoft Windows 1.1.0.

2.3.4.1 Remote monitoring set up and installation instructions

The MySQL Notifier for Microsoft Windows uses Windows Management Instrumentation (WMI) to
manage and monitor services in remote computers running Windows XP or later. This guide explains
how it works, and how to set up your system to monitor remote MySQL instances.

Note

Remote monitoring is available since MySQL Notifier for Microsoft Windows
1.1.0.

In order to configure WMI, it is important to understand that the underlying Distributed Component
Object Model (DCOM) architecture is doing the WMI work. Specifically, MySQL Notifier for Microsoft
Windows is using asynchronous notification queries on remote Microsoft Windows hosts as .NET
events. These events send an asynchronous callback to the computer running the MySQL Notifier
for Microsoft Windows so it knows when a service status has changed on the remote computer.
Asynchronous notifications offer the best performance compared to semi-synchronous notifications or
synchronous notifications that use timers.

Asynchronous notifications requires the remote computer to send a callback to the client computer
(thus opening a reverse connection), so the Windows Firewall and DCOM settings must be properly
configured for the communication to function properly.

MySQL Notifier for Microsoft Windows

87

Figure 2.29 MySQL Notifier for Microsoft Windows Distributed Component Object Model
(DCOM)

Most of the common errors thrown by asynchronous WMI notifications are related to Windows Firewall
blocking the communication, or to DCOM / WMI settings not being set up properly. For a list of
common errors with solutions, see Common Errors.

The following steps are required to make WMI function. These steps are divided between two
machines. A single host computer that runs MySQL Notifier for Microsoft Windows (Computer A), and
multiple remote machines that are being monitored (Computer B).

Computer running MySQL Notifier for Microsoft Windows (Computer A)

1. Allow for remote administration by either editing the Group Policy Editor, or using NETSH:

Using the Group Policy Editor:

a. Click Start, click Run, type GPEDIT.MSC, and then click OK.

b. Under the Local Computer Policy heading, double-click Computer Configuration.

c. Double-click Administrative Templates, then Network, Network Connections, and then
Windows Firewall.

d. If the computer is in the domain, then double-click Domain Profile; otherwise, double-click
Standard Profile.

e. Click Windows Firewall: Allow inbound remote administration exception.

f. On the Action menu either select Edit, or double-click the selection from the previous step.

g. Check the Enabled radio button, and then click OK.

Using the NETSH command:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command:

NETSH firewall set service RemoteAdmin enable

2. Open the DCOM port TCP 135:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator) .

b. Execute the following command:

NETSH firewall add portopening protocol=tcp port=135 name=DCOM_TCP135

MySQL Notifier for Microsoft Windows

88

3. Add the client application which contains the sink for the callback (MySqlNotifier.exe) to the
Windows Firewall Exceptions List (use either the Windows Firewall configuration or NETSH):

Using the Windows Firewall configuration:

a. In the Control Panel, double-click Windows Firewall.

b. In the Windows Firewall window's left panel, click Allow a program or feature through
Windows Firewall.

c. In the Allowed Programs window, click Change Settings.

d. If MySqlNotifier.exe is in the Allowed programs and features list, make sure it is checked
for the type of networks the computer connects to (Private, Public or both).

e. If MySqlNotifier.exe is not in the list, click Allow another program....

f. In the Add a Program window, select the MySqlNotifier.exe if it exists in the Programs list,
otherwise click Browse... and go to the directory where MySqlNotifier.exe was installed to
select it, then click Add.

g. Make sure MySqlNotifier.exe is checked for the type of networks the computer connects to
(Private, Public or both).

Using the NETSH command:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command, where you change "[YOUR_INSTALL_DIRECTORY]":

NETSH firewall add allowedprogram program=[YOUR_INSTALL_DIRECTORY]\MySqlNotifier.exe name=MySqlNotifier

4. If Computer B is either a member of WORKGROUP or is in a different domain that is untrusted by
Computer A, then the callback connection (Connection 2) is created as an Anonymous connection.
To grant Anonymous connections DCOM Remote Access permissions:

a. Click Start, click Run, type DCOMCNFG, and then click OK.

b. In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. In the My Computer Properties dialog box, click the COM Security tab.

d. Under Access Permissions, click Edit Limits.

e. In the Access Permission dialog box, select ANONYMOUS LOGON name in the Group or user
names box. In the Allow column under Permissions for User, select Remote Access, and then
click OK.

Monitored Remote Computer (Computer B)

If the user account that is logged into the computer running the MySQL Notifier for Microsoft Windows
(Computer A) is a local administrator on the remote computer (Computer B), such that the same
account is an administrator on Computer B, you can skip to the "Allow for remote administration" step.

Setting DCOM security to allow a non-administrator user to access a computer remotely:

1. Grant "DCOM remote launch" and activation permissions for a user or group:

a. Click Start, click Run, type DCOMCNFG, and then click OK.

MySQL Notifier for Microsoft Windows

89

b. In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. In the My Computer Properties dialog box, click the COM Security tab.

d. Under Access Permissions, click Edit Limits.

e. In the Launch Permission dialog box, follow these steps if your name or your group does not
appear in the Groups or user names list:

i. In the Launch Permission dialog box, click Add.

ii. In the Select Users, Computers, or Groups dialog box, add your name and the group in the
"Enter the object names to select" box, and then click OK.

f. In the Launch Permission dialog box, select your user and group in the Group or user names
box. In the Allow column under Permissions for User, select Remote Launch, select Remote
Activation, and then click OK.

Grant DCOM remote access permissions:

a. Click Start, click Run, type DCOMCNFG, and then click OK.

b. In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. In the My Computer Properties dialog box, click the COM Security tab.

d. Under Access Permissions, click Edit Limits.

e. In the Access Permission dialog box, select ANONYMOUS LOGON name in the Group or user
names box. In the Allow column under Permissions for User, select Remote Access, and then
click OK.

2. Allowing non-administrator users access to a specific WMI namespace:

a. In the Control Panel, double-click Administrative Tools.

b. In the Administrative Tools window, double-click Computer Management.

c. In the Computer Management window, expand the Services and Applications tree and
double-click the WMI Control.

d. Right-click the WMI Control icon and select Properties.

e. In the WMI Control Properties window, click the Security tab.

f. In the Security tab, select the namespace and click Security.

g. Locate the appropriate account and check Remote Enable in the Permissions list.

3. Allow for remote administration by either editing the Group Policy Editor or using NETSH:

Using the Group Policy Editor:

a. Click Start, click Run, type GPEDIT.MSC, and then click OK.

b. Under the Local Computer Policy heading, double-click Computer Configuration.

c. Double-click Administrative Templates, then Network, Network Connections, and then
Windows Firewall.

MySQL Notifier for Microsoft Windows

90

d. If the computer is in the domain, then double-click Domain Profile; otherwise, double-click
Standard Profile.

e. Click Windows Firewall: Allow inbound remote administration exception.

f. On the Action menu either select Edit, or double-click the selection from the previous step.

g. Check the Enabled radio button, and then click OK.

Using the NETSH command:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command:

NETSH firewall set service RemoteAdmin enable

4. Now, be sure the user you are logging in with uses the Name value and not the Full Name value:

a. In the Control Panel, double-click Administrative Tools.

b. In the Administrative Tools window, double-click Computer Management.

c. In the Computer Management window, expand the System Tools then Local Users and
Groups.

d. Click the Users node, and on the right side panel locate your user and make sure it uses the
Name value to connect, and not the Full Name value.

5. If the remote computer is running on Windows XP Professional, make sure that remote logins
are not being forcefully changed to the guest account user (also known as ForceGuest), which is
enabled by default on computers that are not attached to a domain.

a. Click Start, click Run, type SECPOL.MSC, and then click OK.

b. Under the Local Policies node, double-click Security Options.

c. Select Network Access: Sharing and security model for local accounts and save.

Common Errors

• 0x80070005

• DCOM Security was not configured properly (see Computer B, the Setting DCOM
security... step).

• The remote computer (Computer B) is a member of WORKGROUP or is in a domain that is
untrusted by the client computer (Computer A) (see Computer A, the Grant Anonymous
connections DCOM Remote Access permissions step).

• 0x8007000E

• The remote computer (Computer B) is a member of WORKGROUP or is in a domain that is
untrusted by the client computer (Computer A) (see Computer A, the Grant Anonymous
connections DCOM Remote Access permissions step).

• 0x80041003

• Access to the remote WMI namespace was not configured properly (see Computer B, the
Allowing non-administrator users access to a specific WMI namespace step).

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

91

• 0x800706BA

• The DCOM port is not open on the client computers (Computer A) firewall. See the Open the
DCOM port TCP 135 step for Computer A.

• The remote computer (Computer B) is inaccessible because its network location is set to Public.
Make sure you can access it through the Windows Explorer.

2.3.5 Installing MySQL on Microsoft Windows Using a noinstall Zip
Archive

Users who are installing from the noinstall package can use the instructions in this section to
manually install MySQL. The process for installing MySQL from a Zip archive is as follows:

1. Extract the archive to the desired install directory

2. Create an option file

3. Choose a MySQL server type

4. Start the MySQL server

5. Secure the default user accounts

This process is described in the sections that follow.

2.3.5.1 Extracting the Install Archive

To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.3.7, “Upgrading MySQL on
Windows”, before beginning the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. The
MySQL Installer installs MySQL under C:\Program Files\MySQL. If you do not install MySQL at
C:\mysql, you must specify the path to the install directory during startup or in an option file. See
Section 2.3.5.2, “Creating an Option File”.

4. Extract the install archive to the chosen installation location using your preferred Zip archive tool.
Some tools may extract the archive to a folder within your chosen installation location. If this occurs,
you can move the contents of the subfolder into the chosen installation location.

2.3.5.2 Creating an Option File

If you need to specify startup options when you run the server, you can indicate them on the command
line or place them in an option file. For options that are used every time the server starts, you may find
it most convenient to use an option file to specify your MySQL configuration. This is particularly true
under the following circumstances:

• The installation or data directory locations are different from the default locations (C:\Program
Files\MySQL\MySQL Server 5.7 and C:\Program Files\MySQL\MySQL Server
5.7\data).

• You need to tune the server settings, such as memory, cache, or InnoDB configuration information.

When the MySQL server starts on Windows, it looks for option files in several locations, such as
the Windows directory, C:\, and the MySQL installation directory (for the full list of locations, see
Section 4.2.3.3, “Using Option Files”). The Windows directory typically is named something like C:
\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable
using the following command:

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

92

C:\> echo %WINDIR%

MySQL looks for options in each location first in the my.ini file, and then in the my.cnf file. However,
to avoid confusion, it is best if you use only one file. If your PC uses a boot loader where C: is not the
boot drive, your only option is to use the my.ini file. Whichever option file you use, it must be a plain
text file.

Note

When using the MySQL Installer to install MySQL Server, it will create the
my.ini at the default location. And as of MySQL Server 5.5.27, the user
running MySQL Installer is granted full permissions to this new my.ini.

In other words, be sure that the MySQL Server user has permission to read the
my.ini file.

You can also make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.

An option file can be created and modified with any text editor, such as Notepad. For example, if
MySQL is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an
option file containing a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data

Note that Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data

The rules for use of backslash in option file values are given in Section 4.2.3.3, “Using Option Files”.

The data directory is located within the AppData directory for the user running MySQL.

If you would like to use a data directory in a different location, you should copy the entire contents
of the data directory to the new location. For example, if you want to use E:\mydata as the data
directory instead, you must do two things:

1. Move the entire data directory and all of its contents from the default location (for example C:
\Program Files\MySQL\MySQL Server 5.7\data) to E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

2.3.5.3 Selecting a MySQL Server Type

The following table shows the available servers for Windows in MySQL 5.7.

Binary Description

mysqld Optimized binary with named-pipe support

mysqld-debug Like mysqld, but compiled with full debugging and automatic memory allocation
checking

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel
i386-class or higher processor.

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

93

Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES
statement displays which engines a given server supports.

All Windows MySQL 5.7 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows also support named
pipes, if you start the server with the --enable-named-pipe option. It is necessary to use this option
explicitly because some users have experienced problems with shutting down the MySQL server when
named pipes were used. The default is to use TCP/IP regardless of platform because named pipes are
slower than TCP/IP in many Windows configurations.

2.3.5.4 Starting the Server for the First Time

This section gives a general overview of starting the MySQL server. The following sections provide
more specific information for starting the MySQL server from the command line or as a Windows
service.

The information here applies primarily if you installed MySQL using the Noinstall version, or if you
wish to configure and test MySQL manually rather than with the GUI tools.

Note

The MySQL server will automatically start after using the MySQL Installer, and
the MySQL Notifier for Microsoft Windows GUI can be used to start/stop/restart
at any time.

The examples in these sections assume that MySQL is installed under the default location of C:
\Program Files\MySQL\MySQL Server 5.7. Adjust the path names shown in the examples if
you have MySQL installed in a different location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports
named-pipe connections.

MySQL for Windows also supports shared-memory connections if the server is started with
the --shared-memory option. Clients can connect through shared memory by using the --
protocol=MEMORY option.

For information about which server binary to run, see Section 2.3.5.3, “Selecting a MySQL Server
Type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you
can have the server display status messages in the window where they are easy to see. If something is
wrong with your configuration, these messages make it easier for you to identify and fix any problems.

To start the server, enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --console

For a server that includes InnoDB support, you should see the messages similar to those following as
it starts (the path names and sizes may differ):

2013-09-24T12:55:18.897250Z 0 [Note] InnoDB: The first specified data file "ibdata1" did not exist : a new database to be created!
2013-09-24T12:55:18.897299Z 0 [Note] InnoDB: Need to create new data file "ibdata2"
2013-09-24T12:55:18.897492Z 0 [Note] InnoDB: Setting file "./ibdata1" size to 128 MB
2013-09-24T12:55:18.897509Z 0 [Note] InnoDB: Database physically writes the file full: wait ...
2013-09-24T12:55:19.013723Z 0 [Note] InnoDB: Setting file "./ibdata2" size to 250 MB
2013-09-24T12:55:19.013766Z 0 [Note] InnoDB: Database physically writes the file full: wait ...
2013-09-24T12:55:19.131808Z 0 [Note] InnoDB: Setting log file ./ib_logfile101 size to 48 MB
2013-09-24T12:55:19.571493Z 0 [Note] InnoDB: Setting log file ./ib_logfile1 size to 48 MB
2013-09-24T12:55:20.226902Z 0 [Note] InnoDB: Renaming log file ./ib_logfile101 to ./ib_logfile0
2013-09-24T12:55:20.227251Z 0 [Warning] InnoDB: New log files created, LSN=45781
2013-09-24T12:55:21.227716Z 0 [Note] InnoDB: Creating shared tablespace for temporary tables
2013-09-24T12:55:21.228286Z 0 [Note] InnoDB: Setting file "./ibtmp1" size to 12 MB
2013-09-24T12:55:21.228334Z 0 [Note] InnoDB: Database physically writes the file full: wait ...

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

94

2013-09-24T12:55:21.329536Z 0 [Note] InnoDB: Doublewrite buffer not found: creating new
2013-09-24T12:55:21.476956Z 0 [Note] InnoDB: Doublewrite buffer created
2013-09-24T12:55:22.077524Z 0 [Note] InnoDB: 96 redo rollback segment(s) found. 96 redo rollback segment(s) are active.
2013-09-24T12:55:22.077564Z 0 [Note] InnoDB: 32 non-redo rollback segment(s) are active.
2013-09-24T12:55:22.182853Z 0 [Warning] InnoDB: Creating foreign key constraint system tables.
2013-09-24T12:55:22.195621Z 0 [Note] InnoDB: Foreign key constraint system tables created
2013-09-24T12:55:22.195791Z 0 [Note] InnoDB: Creating tablespace and datafile system tables.
2013-09-24T12:55:22.202725Z 0 [Note] InnoDB: Tablespace and datafile system tables created.
2013-09-24T12:55:22.202844Z 0 [Note] InnoDB: Waiting for purge to start
2013-09-24T12:55:22.253342Z 0 [Note] InnoDB: 5.7.5 started; log sequence number 0

When the server finishes its startup sequence, you should see something like this, which indicates that
the server is ready to service client connections:

mysqld: ready for connections
Version: '5.7.5' socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a
new console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data
directory (C:\Program Files\MySQL\MySQL Server 5.7\data by default). The error log is the
file with the .err extension, and may be set using the --log-error option.

Note

The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.9.2, “Securing the Initial MySQL Accounts”.

2.3.5.5 Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on any version
of Windows.

Note

The MySQL Notifier for Microsoft Windows GUI can also be used to start/stop/
restart the MySQL server.

To start the mysqld server from the command line, you should start a console window (or “DOS
window”) and enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"

The path to mysqld may vary depending on the install location of MySQL on your system.

You can stop the MySQL server by executing this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server
and tell it to shut down. The command connects as the MySQL root user, which is the default
administrative account in the MySQL grant system. Note that users in the MySQL grant system are
wholly independent from any login users under Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to
indicate the cause of the problem. By default, the error log is located in the C:\Program Files

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

95

\MySQL\MySQL Server 5.7\data directory. It is the file with a suffix of .err, or may be specified
by passing in the --log-error option. Alternatively, you can try to start the server as mysqld --
console; in this case, you may get some useful information on the screen that may help solve the
problem.

The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld
writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See
Section 22.4.3, “The DBUG Package”.

Use mysqld --verbose --help to display all the options that mysqld supports.

2.3.5.6 Customizing the PATH for MySQL Tools

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory
to your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL
\MySQL Server 5.7\bin)

Note

There must be a semicolon separating this path from any values present in
this field.

Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were
opened have been dismissed. You should now be able to invoke any MySQL executable program
by typing its name at the DOS prompt from any directory on the system, without having to supply
the path. This includes the servers, the mysql client, and all MySQL command-line utilities such as
mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand;
accidental deletion or modification of any portion of the existing PATH value can
leave you with a malfunctioning or even unusable system.

2.3.5.7 Starting MySQL as a Windows Service

On Windows, the recommended way to run MySQL is to install it as a Windows service, so that MySQL
starts and stops automatically when Windows starts and stops. A MySQL server installed as a service
can also be controlled from the command line using NET commands, or with the graphical Services
utility. Generally, to install MySQL as a Windows service you should be logged in using an account that
has administrator rights.

Note

The MySQL Notifier for Microsoft Windows GUI can also be used to monitor the
status of the MySQL service.

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

96

The Services utility (the Windows Service Control Manager) can be found in the Windows
Control Panel (under Administrative Tools on Windows 2000, XP, Vista, and Server 2003). To avoid
conflicts, it is advisable to close the Services utility while performing server installation or removal
operations from the command line.

Installing the service

Before installing MySQL as a Windows service, you should first stop the current server if it is running
by using the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin"
 -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server
and tell it to shut down. The command connects as the MySQL root user, which is the default
administrative account in the MySQL grant system. Note that users in the MySQL grant system are
wholly independent from any login users under Windows.

Install the server as a service using this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this
section.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory
to your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL
\MySQL Server 5.7\bin), Note that there should be a semicolon separating this path from any
values present in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of
the dialogues that were opened have been dismissed. You should now be able to invoke any MySQL
executable program by typing its name at the DOS prompt from any directory on the system, without
having to supply the path. This includes the servers, the mysql client, and all MySQL command-line
utilities such as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand;
accidental deletion or modification of any portion of the existing PATH value can
leave you with a malfunctioning or even unusable system.

The following additional arguments can be used when installing the service:

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

97

• You can specify a service name immediately following the --install option. The default service
name is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be --
defaults-file=file_name to specify the name of an option file from which the server should
read options when it starts.

The use of a single option other than --defaults-file is possible but discouraged. --
defaults-file is more flexible because it enables you to specify multiple startup options for the
server by placing them in the named option file.

• You can also specify a --local-service option following the service name. This causes the
server to run using the LocalService Windows account that has limited system privileges. This
account is available only for Windows XP or newer. If both --defaults-file and --local-
service are given following the service name, they can be in any order.

For a MySQL server that is installed as a Windows service, the following rules determine the service
name and option files that the server uses:

• If the service-installation command specifies no service name or the default service name (MySQL)
following the --install option, the server uses the a service name of MySQL and reads options
from the [mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the --
install option, the server uses that service name. It reads options from the [mysqld] group
and the group that has the same name as the service in the standard option files. This enables you
to use the [mysqld] group for options that should be used by all MySQL services, and an option
group with the service name for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name,
the server reads options the same way as described in the previous item, except that it reads options
only from the the named file and ignores the standard option files.

As a more complex example, consider the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"
 --install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no --defaults-
file option had been given, this command would have the effect of causing the server to read the
[mysqld] group from the standard option files. However, because the --defaults-file option is
present, the server reads options from the [mysqld] option group, and only from the named file.

Note

On Windows, if the server is started with the --defaults-file and --
install options, --install must be first. Otherwise, mysqld.exe will
attempt to start the MySQL server.

You can also specify options as Start parameters in the Windows Services utility before you start the
MySQL service.

Starting the service

Once a MySQL server has been installed as a service, Windows starts the service automatically
whenever Windows starts. The service also can be started immediately from the Services utility, or
by using a NET START MySQL command. The NET command is not case sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen
there. If mysqld does not start, check the error log to see whether the server wrote any messages
there to indicate the cause of the problem. The error log is located in the MySQL data directory (for

Troubleshooting a Microsoft Windows MySQL Server Installation

98

example, C:\Program Files\MySQL\MySQL Server 5.7\data). It is the file with a suffix of
.err.

When a MySQL server has been installed as a service, and the service is running, Windows stops the
service automatically when Windows shuts down. The server also can be stopped manually by using
the Services utility, the NET STOP MySQL command, or the mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service
to be started automatically during the boot process. To do this, use the --install-manual option
rather than the --install option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --install-manual

Removing the service

To remove a server that is installed as a service, first stop it if it is running by executing NET STOP
MySQL. Then use the --remove option to remove it:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see
Section 2.3.5.5, “Starting MySQL from the Windows Command Line”.

If you encounter difficulties during installation. see Section 2.3.6, “Troubleshooting a Microsoft
Windows MySQL Server Installation”.

2.3.5.8 Testing The MySQL Installation

You can test whether the MySQL server is working by executing any of the following commands:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem
with your DNS. In this case, start mysqld with the --skip-name-resolve option and use only
localhost and IP addresses in the Host column of the MySQL grant tables.

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --
pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket
option to specify the name of the pipe if you do not want to use the default pipe name.

Note that if you have set a password for the root account, deleted the anonymous account, or created
a new user account, then to connect to the MySQL server you must use the appropriate -u and -p
options with the commands shown previously. See Section 4.2.2, “Connecting to the MySQL Server”.

For more information about mysqlshow, see Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”.

2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation

When installing and running MySQL for the first time, you may encounter certain errors that prevent the
MySQL server from starting. This section helps you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the
error log to record information relevant to the error that prevents the server from starting. The error log
is located in the data directory specified in your my.ini file. The default data directory location is C:
\Program Files\MySQL\MySQL Server 5.7\data, or C:\ProgramData\Mysql on Windows
7 and Windows Server 2008. The C:\ProgramData directory is hidden by default. You need to
change your folder options to see the directory and contents. For more information on the error log and
understanding the content, see Section 5.2.2, “The Error Log”.

Troubleshooting a Microsoft Windows MySQL Server Installation

99

For information regarding possible errors, also consult the console messages displayed when the
MySQL service is starting. Use the NET START MySQL command from the command line after
installing mysqld as a service to see any error messages regarding the starting of the MySQL server
as a service. See Section 2.3.5.7, “Starting MySQL as a Windows Service”.

The following examples show other common error messages you might encounter when installing
MySQL and starting the server for the first time:

• If the MySQL server cannot find the mysql privileges database or other critical files, it displays these
messages:

System error 1067 has occurred.
Fatal error: Can't open and lock privilege tables:
Table 'mysql.user' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different
locations than the default locations (C:\Program Files\MySQL\MySQL Server 5.7 and C:
\Program Files\MySQL\MySQL Server 5.7\data, respectively).

This situation can occur when MySQL is upgraded and installed to a new location, but the
configuration file is not updated to reflect the new location. In addition, old and new configuration files
might conflict. Be sure to delete or rename any old configuration files when upgrading MySQL.

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server
5.7, ensure that the MySQL server is aware of this through the use of a configuration (my.ini)
file. Put the my.ini file in your Windows directory, typically C:\WINDOWS. To determine its exact
location from the value of the WINDIR environment variable, issue the following command from the
command prompt:

C:\> echo %WINDIR%

You can create or modify an option file with any text editor, such as Notepad. For example, if MySQL
is installed in E:\mysql and the data directory is D:\MySQLdata, you can create the option file and
set up a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata

Note that Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.7
set datadir to the location of your data directory
datadir=D:\\MySQLdata

The rules for use of backslash in option file values are given in Section 4.2.3.3, “Using Option Files”.

If you change the datadir value in your MySQL configuration file, you must move the contents of
the existing MySQL data directory before restarting the MySQL server.

See Section 2.3.5.2, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service
and install MySQL using the MySQL Installer, you might see this error:

Upgrading MySQL on Windows

100

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service
with the same name.

One solution to this problem is to choose a service name other than mysql when using the
configuration wizard. This enables the new service to be installed correctly, but leaves the outdated
service in place. Although this is harmless, it is best to remove old services that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with
administrative privileges, on the command line:

C:\> sc delete mysql
[SC] DeleteService SUCCESS

If the sc utility is not available for your version of Windows, download the delsrv utility from http://
www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv
mysql syntax.

2.3.7 Upgrading MySQL on Windows

To upgrade MySQL on Windows, follow these steps:

1. Review Section 2.10.1, “Upgrading MySQL”, for additional information on upgrading MySQL that is
not specific to Windows.

2. Always back up your current MySQL installation before performing an upgrade. See Section 7.2,
“Database Backup Methods”.

3. Download the latest Windows distribution of MySQL from http://dev.mysql.com/downloads/.

4. Before upgrading MySQL, stop the server. If the server is installed as a service, stop the service
with the following command from the command prompt:

C:\> NET STOP MySQL

If you are not running the MySQL server as a service, use mysqladmin to stop it. For example,
before upgrading from MySQL 5.6 to 5.7, use mysqladmin from MySQL 5.6 as follows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, invoke mysqladmin with
the -p option and enter the password when prompted.

5. Before upgrading to MySQL 5.7 from a version previous to 4.1.5, or from a version of MySQL
installed from a Zip archive to a version of MySQL installed with the MySQL Installation Wizard, you
must first manually remove the previous installation and MySQL service (if the server is installed as
a service).

To remove the MySQL service, use the following command:

C:\> C:\mysql\bin\mysqld --remove

If you do not remove the existing service, the MySQL Installation Wizard may fail to properly
install the new MySQL service.

6. If you are using the MySQL Installer, start it as described in Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”.

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://dev.mysql.com/downloads/

Windows Postinstallation Procedures

101

7. If you are upgrading MySQL from a Zip archive, extract the archive. You may either overwrite your
existing MySQL installation (usually located at C:\mysql), or install it into a different directory,
such as C:\mysql5. Overwriting the existing installation is recommended. However, for upgrades
(as opposed to installing for the first time), you must remove the data directory from your existing
MySQL installation to avoid replacing your current data files. To do so, follow these steps:

a. Unzip the Zip archive in some location other than your current MySQL installation

b. Remove the data directory

c. Rezip the Zip archive

d. Unzip the modified Zip archive on top of your existing installation

Alternatively:

a. Unzip the Zip archive in some location other than your current MySQL installation

b. Remove the data directory

c. Move the data directory from the current MySQL installation to the location of the just-removed
data directory

d. Remove the current MySQL installation

e. Move the unzipped installation to the location of the just-removed installation

8. If you were running MySQL as a Windows service and you had to remove the service earlier in this
procedure, reinstall the service. (See Section 2.3.5.7, “Starting MySQL as a Windows Service”.)

9. Restart the server. For example, use NET START MySQL if you run MySQL as a service, or invoke
mysqld directly otherwise.

10. As Administrator, run mysql_upgrade to check your tables, attempt to repair them if necessary,
and update your grant tables if they have changed so that you can take advantage of any new
capabilities. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

11. If you encounter errors, see Section 2.3.6, “Troubleshooting a Microsoft Windows MySQL Server
Installation”.

2.3.8 Windows Postinstallation Procedures

GUI tools exist that perform most of the tasks described below, including:

• MySQL Installer: Used to install and upgrade MySQL products.

• MySQL Workbench: Manages the MySQL server and edits SQL queries.

• MySQL Notifier: Starts, stops, or restarts the MySQL server, and monitors its status.

• MySQL for Excel: Edits MySQL data with Microsoft Excel.

On Windows, you need not create the data directory and the grant tables. MySQL Windows
distributions include the grant tables with a set of preinitialized accounts in the mysql database under
the data directory. Regarding passwords, if you installed MySQL using the MySQL Installer, you may
have already assigned passwords to the accounts. (See Section 2.3.3, “Installing MySQL on Microsoft
Windows Using MySQL Installer”.) Otherwise, use the password-assignment procedure given in
Section 2.9.2, “Securing the Initial MySQL Accounts”.

Before setting up passwords, you might want to try running some client programs to make sure that
you can connect to the server and that it is operating properly. Make sure that the server is running
(see Section 2.3.5.4, “Starting the Server for the First Time”), and then issue the following commands
to verify that you can retrieve information from the server. You may need to specify directory different

Windows Postinstallation Procedures

102

from C:\mysql\bin on the command line. If you used the MySQL Installer, the default directory is C:
\Program Files\MySQL\MySQL Server 5.7, and the mysql and mysqlshow client programs
are in C:\Program Files\MySQL\MySQL Server 5.7\bin. See Section 2.3.3, “Installing MySQL
on Microsoft Windows Using MySQL Installer”, for more information.

Use mysqlshow to see what databases exist:

C:\> C:\mysql\bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+

The list of installed databases may vary, but will always include the minimum of mysql and
information_schema. In most cases, the test database will also be installed automatically.

The preceding command (and commands for other MySQL programs such as mysql) may not work if
the correct MySQL account does not exist. For example, the program may fail with an error, or you may
not be able to view all databases. If you installed using MySQL Installer, then the root user will have
been created automatically with the password you supplied. In this case, you should use the -u root
and -p options. (You will also need to use the -u root and -p options if you have already secured
the initial MySQL accounts.) With -p, you will be prompted for the root password. For example:

C:\> C:\mysql\bin\mysqlshow -u root -p
Enter password: (enter root password here)
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+

If you specify a database name, mysqlshow displays a list of the tables within the database:

C:\> C:\mysql\bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

Installing MySQL on Mac OS X

103

C:\> C:\mysql\bin\mysql -e "SELECT Host,Db,User FROM mysql.db"
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+

For more information about mysqlshow and mysql, see Section 4.5.6, “mysqlshow — Display
Database, Table, and Column Information”, and Section 4.5.1, “mysql — The MySQL Command-Line
Tool”.

If you are running a version of Windows that supports services, you can set up the MySQL server to
run automatically when Windows starts. See Section 2.3.5.7, “Starting MySQL as a Windows Service”.

2.4 Installing MySQL on Mac OS X
MySQL for Mac OS X is available in a number of different forms:

• Native Package Installer format, which uses the native Mac OS X installer to walk you through the
installation of MySQL. For more information, see Section 2.4.2, “Installing MySQL on Mac OS X
Using Native Packages”. You can use the package installer with Mac OS X 10.3 and later, and the
package is available for both PowerPC and Intel architectures, and 32-bit and 64-bit architectures.
There is no Universal Binary available using the package installation method. The user you use to
perform the installation must have administrator privileges.

• Tar package format, which uses a file packaged using the Unix tar and gzip commands. To
use this method, you will need to open a Terminal window. You do not need administrator
privileges using this method, as you can install the MySQL server anywhere using this method.
For more information on using this method, you can use the generic instructions for using a tarball,
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.You can use the package
installer with Mac OS X 10.3 and later, and available for both PowerPC and Intel architectures,
and both 32-bit and 64-bit architectures. A Universal Binary, incorporating both Power PC and Intel
architectures and 32-bit and 64-bit binaries is available.

In addition to the core installation, the Package Installer also includes Section 2.4.3, “Installing the
MySQL Startup Item” and Section 2.4.4, “Installing and Using the MySQL Preference Pane”, both of
which simplify the management of your installation.

• Mac OS X server includes a version of MySQL as standard. If you want to use a more recent version
than that supplied with the Mac OS X server release, you can make use of the package or tar
formats. For more information on using the MySQL bundled with Mac OS X, see Section 2.4.5,
“Using the Bundled MySQL on Mac OS X Server”.

For additional information on using MySQL on Mac OS X, see Section 2.4.1, “General Notes on
Installing MySQL on Mac OS X”.

2.4.1 General Notes on Installing MySQL on Mac OS X

You should keep the following issues and notes in mind:

• The default location for the MySQL Unix socket is different on Mac OS X and Mac OS X Server
depending on the installation type you chose. The following table shows the default locations by
installation type.

Table 2.5 MySQL Unix Socket Locations on Mac OS X by Installation Type

Installation Type Socket Location

Package Installer from MySQL /tmp/mysql.sock

Tarball from MySQL /tmp/mysql.sock

General Notes on Installing MySQL on Mac OS X

104

Installation Type Socket Location

MySQL Bundled with Mac OS X Server /var/mysql/mysql.sock

To prevent issues, you should either change the configuration of the socket used within your
application (for example, changing php.ini), or you should configure the socket location using a
MySQL configuration file and the socket option. For more information, see Section 5.1.3, “Server
Command Options”.

• You may need (or want) to create a specific mysql user to own the MySQL directory and data. On
Mac OS X 10.4 and lower you can do this by using the Netinfo Manager application, located
within the Utilities folder within the Applications folder. On Mac OS X 10.5 and later you
can do this through the Directory Utility. From Mac OS X 10.5 and later (including Mac OS X
Server 10.5) the mysql should already exist. For use in single user mode, an entry for _mysql (note
the underscore prefix) should already exist within the system /etc/passwd file.

• Due to a bug in the Mac OS X package installer, you may see this error message in the destination
disk selection dialog:

You cannot install this software on this disk. (null)

If this error occurs, click the Go Back button once to return to the previous screen. Then click
Continue to advance to the destination disk selection again, and you should be able to choose the
destination disk correctly. We have reported this bug to Apple and it is investigating this problem.

• If you get an “insecure startup item disabled” error when MySQL launches, use the following
procedure. Adjust the pathnames appropriately for your system.

1. Modify the mysql.script using this command (enter it on a single line):

shell> sudo /Applications/TextEdit.app/Contents/MacOS/TextEdit
 /usr/local/mysql/support-files/mysql.server

2. Locate the option file that defines the basedir value and modify it to contain these lines:

basedir=/usr/local/mysql
datadir=/usr/local/mysql/data

In the /Library/StartupItems/MySQLCOM/ directory, make the following group ID changes
from staff to wheel:

shell> sudo chgrp wheel MySQLCOM StartupParameters.plist

3. Start the server from System Preferences or Terminal.app.

• Because the MySQL package installer installs the MySQL contents into a version and platform
specific directory, you can use this to upgrade and migrate your database between versions. You
will need to either copy the data directory from the old version to the new version, or alternatively
specify an alternative datadir value to set location of the data directory.

• You might want to add aliases to your shell's resource file to make it easier to access commonly
used programs such as mysql and mysqladmin from the command line. The syntax for bash is:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql

Installing MySQL on Mac OS X Using Native Packages

105

alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this
by modifying the appropriate startup file for your shell. For more information, see Section 4.2.1,
“Invoking MySQL Programs”.

• After you have copied over the MySQL database files from the previous installation and have
successfully started the new server, you should consider removing the old installation files to save
disk space. Additionally, you should also remove older versions of the Package Receipt directories
located in /Library/Receipts/mysql-VERSION.pkg.

2.4.2 Installing MySQL on Mac OS X Using Native Packages

You can install MySQL on Mac OS X 10.3.x (“Panther”) or newer using a Mac OS X binary package in
DMG format instead of the binary tarball distribution. Please note that older versions of Mac OS X (for
example, 10.1.x or 10.2.x) are not supported by this package.

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking
its icon in the Finder. It should then mount the image and display its contents.

Note

Before proceeding with the installation, be sure to stop all running MySQL
server instances by using either the MySQL Manager Application (on Mac OS X
Server) or mysqladmin shutdown on the command line.

When installing from the package version, you should also install the MySQL Preference Pane, which
will enable you to control the startup and execution of your MySQL server from System Preferences.
For more information, see Section 2.4.4, “Installing and Using the MySQL Preference Pane”.

When installing using the package installer, the files are installed into a directory within /usr/
local matching the name of the installation version and platform. For example, the installer file
mysql-5.1.39-osx10.5-x86_64.pkg installs MySQL into /usr/local/mysql-5.1.39-
osx10.5-x86_64 . The following table shows the layout of the installation directory.

Table 2.6 MySQL Installation Layout on Mac OS X

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

docs Manual in Info format

include Include (header) files

lib Libraries

man Unix manual pages

mysql-test MySQL test suite

scripts mysql_install_db

share Miscellaneous support files, including error messages,
sample configuration files, SQL for database installation

sql-bench Benchmarks

support-files Scripts and sample configuration files

/tmp/mysql.sock Location of the MySQL Unix socket

During the package installer process, a symbolic link from /usr/local/mysql to the version/platform
specific directory created during installation will be created automatically.

Installing MySQL on Mac OS X Using Native Packages

106

1. Download and open the MySQL package installer, which is provided on a disk image (.dmg) that
includes the main MySQL installation package, the MySQLStartupItem.pkg installation package,
and the MySQL.prefPane. Double-click the disk image to open it.

2. Double-click the MySQL installer package. It will be named according to the version of MySQL
you have downloaded. For example, if you have downloaded MySQL 5.1.39, double-click
mysql-5.1.39-osx10.5-x86.pkg.

3. You will be presented with the opening installer dialog. Click Continue to begin installation.

4. A copy of the installation instructions and other important information relevant to this installation are
displayed. Click Continue .

5. If you have downloaded the community version of MySQL, you will be shown a copy of the relevant
GNU General Public License. Click Continue .

6. Select the drive you want to use to install the MySQL Startup Item. The drive must have a valid,
bootable, Mac OS X operating system installed. Click Continue.

Installing the MySQL Startup Item

107

7. You will be asked to confirm the details of the installation, including the space required for the
installation. To change the drive on which the startup item is installed, click either Go Back or
Change Install Location.... To install the startup item, click Install.

8. Once the installation has been completed successfully, you will be shown an Install Succeeded
message.

For convenience, you may also want to install the startup item and preference pane. See Section 2.4.3,
“Installing the MySQL Startup Item”, and Section 2.4.4, “Installing and Using the MySQL Preference
Pane”.

2.4.3 Installing the MySQL Startup Item

The MySQL Installation Package includes a startup item that can be used to automatically start and
stop MySQL.

To install the MySQL Startup Item:

1. Download and open the MySQL package installer, which is provided on a disk image (.dmg) that
includes the main MySQL installation package, the MySQLStartupItem.pkg installation package,
and the MySQL.prefPane. Double-click the disk image to open it.

2. Double-click the MySQLStartItem.pkg file to start the installation process.

3. You will be presented with the Install MySQL Startup Item dialog.

Installing the MySQL Startup Item

108

Click Continue to continue the installation process.

4. A copy of the installation instructions and other important information relevant to this installation are
displayed. Click Continue .

5. Select the drive you want to use to install the MySQL Startup Item. The drive must have a valid,
bootable, Mac OS X operating system installed. Click Continue.

Installing the MySQL Startup Item

109

6. You will be asked to confirm the details of the installation. To change the drive on which the startup
item is installed, click either Go Back or Change Install Location.... To install the startup item, click
Install.

7. Once the installation has been completed successfully, you will be shown an Install Succeeded
message.

Installing and Using the MySQL Preference Pane

110

The Startup Item for MySQL is installed into /Library/StartupItems/MySQLCOM. The Startup Item
installation adds a variable MYSQLCOM=-YES- to the system configuration file /etc/hostconfig. If
you want to disable the automatic startup of MySQL, change this variable to MYSQLCOM=-NO-.

After the installation, you can start and stop MySQL by running the following commands in a terminal
window. You must have administrator privileges to perform these tasks, and you may be prompted for
your password.

If you have installed the Startup Item, use this command to start the server:

shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM start

If you have installed the Startup Item, use this command to stop the server:

shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM stop

2.4.4 Installing and Using the MySQL Preference Pane

The MySQL Package installer disk image also includes a custom MySQL Preference Pane that
enables you to start, stop, and control automated startup during boot of your MySQL installation.

To install the MySQL Preference Pane:

1. Download and open the MySQL package installer package, which is provided on a disk image
(.dmg) that includes the main MySQL installation package, the MySQLStartupItem.pkg
installation package, and the MySQL.prefPane. Double-click the disk image to open it.

2. Double-click the MySQL.prefPane. The MySQL System Preferences will open.

3. If this is the first time you have installed the preference pane, you will be asked to confirm
installation and whether you want to install the preference pane for all users, or only the current

Installing and Using the MySQL Preference Pane

111

user. To install the preference pane for all users you will need administrator privileges. If necessary,
you will be prompted for the username and password for a user with administrator privileges.

4. If you already have the MySQL Preference Pane installed, you will be asked to confirm whether you
want to overwrite the existing MySQL Preference Pane.

Note

The MySQL Preference Pane only starts and stops MySQL installation installed
from the MySQL package installation that have been installed in the default
location.

Once the MySQL Preference Pane has been installed, you can control your MySQL server instance
using the preference pane. To use the preference pane, open the System Preferences... from the
Apple menu. Select the MySQL preference pane by clicking the MySQL logo within the Other section
of the preference panes list.

The MySQL Preference Pane shows the current status of the MySQL server, showing stopped (in
red) if the server is not running and running (in green) if the server has already been started. The
preference pane also shows the current setting for whether the MySQL server has been set to start
automatically.

• To start MySQL using the preference pane:

Click Start MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to start the MySQL server.

• To stop MySQL using the preference pane:

Click Stop MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to stop the MySQL server.

• To automatically start the MySQL server when the system boots:

Check the check box next to Automatically Start MySQL Server on Startup.

• To disable automatic MySQL server startup when the system boots:

Uncheck the check box next to Automatically Start MySQL Server on Startup.

You can close the System Preferences... window once you have completed your settings.

Using the Bundled MySQL on Mac OS X Server

112

2.4.5 Using the Bundled MySQL on Mac OS X Server

If you are running Mac OS X Server, a version of MySQL should already be installed. The following
table shows the versions of MySQL that ship with Mac OS X Server versions.

Table 2.7 MySQL Versions Preinstalled with Mac OS X Server

Mac OS X Server Version MySQL Version

10.2-10.2.2 3.23.51

10.2.3-10.2.6 3.23.53

10.3 4.0.14

10.3.2 4.0.16

10.4.0 4.1.10a

10.5.0 5.0.45

10.6.0 5.0.82

The following table shows the installation layout of MySQL on Mac OS X Server.

Table 2.8 MySQL Directory Layout for Preinstalled MySQL Installations on Mac OS X Server

Directory Contents of Directory

/usr/bin Client programs

/var/mysql Log files, databases

/usr/libexec The mysqld server

/usr/share/man Unix manual pages

/usr/share/mysql/mysql-
test

MySQL test suite

/usr/share/mysql Miscellaneous support files, including error messages, character
set files, sample configuration files, SQL for database installation

/var/mysql/mysql.sock Location of the MySQL Unix socket

Additional Resources

• For more information on managing the bundled MySQL instance in Mac OS X Server 10.5, see Mac
OS X Server: Web Technologies Administration For Version 10.5 Leopard.

• For more information on managing the bundled MySQL instance in Mac OS X Server 10.6, see Mac
OS X Server: Web Technologies Administration Version 10.6 Snow Leopard.

• The MySQL server bundled with Mac OS X Server does not include the MySQL client libraries and
header files required to access and use MySQL from a third-party driver, such as Perl DBI or PHP.
For more information on obtaining and installing MySQL libraries, see Mac OS X Server version
10.5: MySQL libraries available for download. Alternatively, you can ignore the bundled MySQL
server and install MySQL from the package or tarball installation.

2.5 Installing MySQL on Linux
Linux supports a number of different solutions for installing MySQL. We recommend that you use one
of the distributions from Oracle, for which several methods for installation are available:

• Installing from a generic binary package in .tar.gz format. See Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries” for more information.

• Extracting and compiling MySQL from a source distribution. For detailed instructions, see
Section 2.8, “Installing MySQL from Source”.

http://images.apple.com/server/macosx/docs/Web_Technologies_Admin_v10.5.pdf
http://images.apple.com/server/macosx/docs/Web_Technologies_Admin_v10.5.pdf
http://manuals.info.apple.com/en_US/WebTech_v10.6.pdf
http://manuals.info.apple.com/en_US/WebTech_v10.6.pdf
http://support.apple.com/kb/TA25017
http://support.apple.com/kb/TA25017

Installing MySQL on Linux Using the MySQL Yum Repository

113

• Installing with Yum using the MySQL Yum repository. For detailed instructions, see Section 2.5.1,
“Installing MySQL on Linux Using the MySQL Yum Repository”.

• Installing using a precompiled RPM package. For more information, see Section 2.5.3, “Installing
MySQL on Linux Using RPM Packages”.

• Installing using a precompiled Debian package. For more information, see Section 2.5.4, “Installing
MySQL on Linux Using Debian Packages”.

As an alternative, you can use the package manager on your system to automatically download
and install MySQL with packages from the native software repositories of your Linux distribution.
These native packages are often several versions behind the currently available release. You will also
normally be unable to install development milestone releases (DMRs), as these are not usually made
available in the native repositories. For more information on using the native package installers, see
Section 2.5.5, “Installing MySQL on Linux Using Native Package Managers”.

Note

For many Linux installations, you will want to set up MySQL to be started
automatically when your machine starts. Many of the native package
installations perform this operation for you, but for source, binary and RPM
solutions you may need to set this up separately. The required script,
mysql.server, can be found in the support-files directory under the
MySQL installation directory or in a MySQL source tree. You can install it
as /etc/init.d/mysql for automatic MySQL startup and shutdown. See
Section 2.9.1.2, “Starting and Stopping MySQL Automatically”.

2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository

MySQL provides a Yum-style software repository for the following Linux platforms:

• EL5, EL6, and EL7-based platforms (for example, the relevant versions of Red Hat Enterprise Linux,
Oracle Linux, and CentOS)

• Fedora 19 and 20

Currently, the MySQL Yum repository for the above-mentioned platforms provides RPM packages for
installing the MySQL server, client, MySQL Workbench, MySQL Utilities (not available for EL5-based
platforms), Connector/ODBC, and Connector/Python (not available for EL5-based platforms).

Before You Start

As a popular, open-source software, MySQL, in its original or re-packaged form, is widely installed on
many systems from various sources, including different software download sites, software repositories,
and so on. The following instructions assume that no versions of MySQL (whether distributed by
Oracle or other parties) have already been installed on your system; if that is not the case, see
Section 2.10.1.1, “Upgrading MySQL with the MySQL Yum Repository” or Section 2.5.2, “Replacing a
Third-Party Distribution of MySQL Using the MySQL Yum Repository”.

Steps for a Fresh Installation of the latest GA Version of MySQL

Follow the steps below to install the latest GA version of MySQL with the MySQL Yum repository:

1.Adding the MySQL Yum Repository

First, add the MySQL Yum repository to your system's repository list. This is a one-time operation,
which can be performed by installing an RPM provided by MySQL. Follow these steps:

a. Go to the Download MySQL Yum Repository page (http://dev.mysql.com/downloads/repo) in the
MySQL Developer Zone.

b. Select and download the release package for your platform.

http://dev.mysql.com/downloads/repo/
http://dev.mysql.com/downloads/repo/
http://dev.mysql.com/downloads/repo

Installing MySQL on Linux Using the MySQL Yum Repository

114

c. Install the downloaded release package with the following command (except for EL5-based
systems), replacing platform-and-version-specific with the name of the downloaded
RPM file:

shell> sudo yum localinstall platform-and-version-specific.rpm

For an EL6-based system, the command is in the form of:

shell> sudo yum localinstall mysql-community-release-el6-{version-number}.noarch.rpm

For an EL7-based system:

shell> sudo yum localinstall mysql-community-release-el7-{version-number}.noarch.rpm

For Fedora 19:

shell> sudo yum localinstall mysql-community-release-fc19-{version-number}.noarch.rpm

For Fedora 20:

shell> sudo yum localinstall mysql-community-release-fc20-{version-number}.noarch.rpm

For an EL5-based system, use the following command instead:

shell> sudo rpm -Uvh mysql-community-release-el5-{version-number}.noarch.rpm

The installation command adds the MySQL Yum repository to your system's repository and
downloads the GnuPG key to check the integrity of the software packages. See Section 2.1.4.2,
“Signature Checking Using GnuPG” for details on GnuPG key checking.

You can check that the MySQL Yum repository has been successfully added by the following
command:

shell> yum repolist enabled | grep "mysql.*-community.*"

Note

Once the MySQL Yum repository is enabled on your system, any system-
wide update by the yum update command will upgrade MySQL packages
on your system and also replace any native third-party packages, if Yum
finds replacements for them from within the MySQL Yum repository; see
Section 2.10.1.1, “Upgrading MySQL with the MySQL Yum Repository”
and, for a discussion on some possible effects of that on your system, see
Upgrading to the Shared Client Libraries.

2.Installing MySQL with Yum

Install MySQL by the following command:

shell> sudo yum install mysql-server

This installs the package for MySQL server (mysql-community-server) and also packages for
the components required to run the server, including packages for the client (mysql-community-
client), the common error messages and character sets for client and server (mysql-
community-common), and the shared client libraries (mysql-community-libs).

Installing MySQL on Linux Using the MySQL Yum Repository

115

3.Starting and Stopping the MySQL Server

Start the MySQL server with the following command:

shell> sudo service mysqld start

This is a sample output of the above command:

Starting mysqld:[OK]

You can check the status of the MySQL server with the following command:

shell> sudo service mysqld status

This is a sample output of the above command:

mysqld (pid 3066) is running.

Stop the MySQL server with the following command:

shell> sudo service mysqld stop

4.Securing the MySQL Installation

Always run the program mysql_secure_installation to secure your MySQL installation:

shell> mysql_secure_installation

mysql_secure_installation allows you to perform important operations like setting
root password, removing anonymous users, and so on. The program is safe and easy to
use. It is important to remember the root password you set though. See Section 4.4.5,
“mysql_secure_installation — Improve MySQL Installation Security” for details.

For more information on the postinstallation procedures, see Section 2.9, “Postinstallation Setup and
Testing”.

Installing Additional MySQL Products and Components with Yum

You can use Yum to install and manage individual components of MySQL. Some of these components
are hosted in sub-repositories of the MySQL Yum repository: for example, the MySQL Connectors
are to be found in the MySQL Connectors Community sub-repository, and the MySQL Workbench in
MySQL Tools Community. You can use the following command to list the packages for all the MySQL
components available for your platform from the MySQL Yum repository:

shell> sudo yum --disablerepo=* --enablerepo='mysql*-community*' list available

Install any packages of your choice with the following command, replacing package-name with name
of the package:

shell> sudo yum install package-name

For example, to install MySQL Workbench:

shell> sudo yum install mysql-workbench-community

To install the shared client libraries:

shell> sudo yum install mysql-community-libs

Steps for a Fresh Installation of a Developer Milestone Release (DMR) of MySQL

Follow the steps below to install a developer milestone release (DMR) of MySQL with the MySQL Yum
repository:

Installing MySQL on Linux Using the MySQL Yum Repository

116

Warning

Developer milestone releases (DMRs) are for use at your own risk. Significant
development changes take place in milestone releases and you may encounter
compatibility issues, such as data format changes that require attention in
addition to the usual procedure of running mysql_upgrade. For example, you
may find it necessary to dump your data with mysqldump before the upgrade
and reload it afterward.

1. Add the MySQL Yum repository by following the instructions given in Adding the MySQL Yum
Repository.

2. Enable and disable the appropriate sub-repositories. Inside the MySQL Yum repositories, different
release series of the MySQL Community Server are hosted in different sub-repositories. Sub-
repository for the latest GA series (currently 5.6) is enabled by default, and sub-repositories for
all other series (for example, the 5.7 series, currently still in developer milestone release (DMR)
status) are disabled by default. Use this command to see all the sub-repositories in the MySQL
Yum repository:

shell> yum repolist all | grep "mysql.*-community.*"

To install the latest release from a specific series other than the latest GA series, simply disable the
sub-repository for the latest GA series and enable the sub-repository for the specific series before
running the yum install command. This is how it can be done, if, for example, you want to install
the 5.7 DMR series:

shell> sudo yum-config-manager --disable mysql56-community
shell> sudo yum-config-manager --enable mysql57-community-dmr

You can also enable and disable sub-repositories by editing manually the /etc/yum.repos.d/
mysql-community.repo file. This is a typical entry for a sub-repository in the file:

Enable to use MySQL 5.6
[mysql56-community]
name=MySQL 5.6 Community Server
baseurl=//repo.mysql.com/yum/mysql-5.6-community/el/5/$basearch/
enabled=1
gpgcheck=1
gpgkey=file:/etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

Find the entry for the sub-repository you want to configure, and edit the enabled= line. Make
enabled=0 to disable a sub-repository, or enabled=1 to enable a sub-repository.

You can verify that the enabling and disabling of sub-repositories have been done correctly by run
the following command and check its output:

shell> yum repolist enabled | grep "mysql.*-community.*"

Note

You can only enable sub-repository for one release series at a time. When
sub-repositories for more than one release series are enabled, the latest
series will be used by Yum.

Then, install the MySQL server from the chosen series by the command:

shell> sudo yum install mysql-server

3. Follow the instructions given in Securing the MySQL Installation and Starting and Stopping the
MySQL Server.

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

117

Updating MySQL with Yum

Besides installation, you can also perform updates for MySQL products and components using the
MySQL Yum repository. See Section 2.10.1.1, “Upgrading MySQL with the MySQL Yum Repository”
for details.

2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum
Repository

Different distributions of MySQL are distributed by different parties through their own software
repositories or download sites. You can replace a third-party distribution of MySQL using the MySQL
Yum repository in a few steps.

1.Backing Up Your Database

To avoid loss of data, always back up your database before trying to replace your MySQL
installation using the MySQL Yum repository. See Chapter 7, Backup and Recovery on how to back
up your database.

2.Stopping Yum from Receiving MySQL Packages from Third-Party, Non-Native
Repositories

Before you can use the MySQL Yum repository for installing (or updating) MySQL, you must stop
your system from receiving MySQL packages from any third-party, non-native Yum repositories.

One way to check whether Yum is now receiving third-party MySQL distributions from other
repositories is to use the following command:

shell> yum list installed mysql*

This is a sample output for the command:

mysql.i686 5.1.69-1.el6_4 @updates
mysql-libs.i686 5.1.69-1.el6_4 @updates
mysql-server.i686 5.1.69-1.el6_4 @updates

The output shows the names of the packages of the third-party MySQL distribution that are installed
and, on the right-hand side, the repository (which is named updates, a native repository for the
Linux distribution) from which they were installed.

However, sometimes the names of the packages of the third-party distribution might not contain the
string “mysql” in it. It might be useful to search also with this command:

shell> yum --disablerepo=* provides mysql*

The following is a sample output of the command:

MariaDB-compat-10.0.4-1.i686 ...
...
Repo : installed
Matched from:
Other : mysql-libs

MariaDB-server-10.0.4-1.i686 ...
...
Repo : installed
Matched from:
Other : mysql-server

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

118

From the result we can see the names of some of the packages for the installed third-party
distribution of MySQL (MariaDB-server and MariaDB-compat). To try to get an exhaustive
list of packages installed for this third-party distribution of MySQL, it might be helpful to search for
installed packages of similar names with, for example, the following command:

shell> yum list installed mariadb*

This is a sample output for the command:

MariaDB-common.i686 10.0.4-1 @mariadb
MariaDB-compat.i686 10.0.4-1 @mariadb
MariaDB-server.i686 10.0.4-1 @mariadb

From the command output, we can identify all the installed packages (MariaDB-common,
MariaDB-compat, and MariaDB-server) and the third-party Yum repository from which they
were installed (named mariadb).

The next step is to stop Yum from receiving packages from the third-party Yum repository:

shell> sudo yum-config-manager --disable mariadb

Note

For platforms like Fedora 19 and 20 that install MySQL from the native
repositories, this step is usually not required, unless you have explicitly
added a third-party Yum repository for MySQL packages.

3.Adding the MySQL Yum Repository

Once the third-party Yum repository has been disabled, add the MySQL Yum repository to your
system's repository list by following the instructions given in Adding the MySQL Yum Repository.

4.Uninstalling the Third-Party MySQL Distribution and Installing MySQL with the MySQL
Yum Repository

The installed third-party MySQL distribution must first be uninstalled before you can use the MySQL
Yum repository to install MySQL, or the installation process will give an error.

Assuming that, as in the example above, the third-part MySQL packages you have found are
named MariaDB-common, MariaDB-compat, and MariaDB-server, uninstall them with the
following command:

shell> sudo yum remove MariaDB-common MariaDB-compat MariaDB-server

Note

If your third-party MySQL distribution was not installed by Yum or by an
RPM installer, you will not be able to detect and then uninstall it by Yum. If
you are not sure what to do in that case, consult a system administrator or
the original third-party distributor.

Then, install MySQL from the MySQL Yum repository with the following command:

shell> sudo yum install mysql-server

The MySQL server and other components required to run the server, including the client, the
shared client libraries, and the common error messages and character sets for client and server,
are now installed from the MySQL Yum repository. To install more components for MySQL, see

Installing MySQL on Linux Using RPM Packages

119

Installing Additional MySQL Products and Components with Yum. Follow the postinstallation
procedures explained in Section 2.9, “Postinstallation Setup and Testing”.

2.5.3 Installing MySQL on Linux Using RPM Packages

Note

To install or upgrade to MySQL 5.7.2, be sure to read the special instructions at
the end of this section.

The recommended way to install MySQL on RPM-based Linux distributions that use glibc is by
using the RPM packages provided by MySQL. There are two methods for doing so: for EL5, EL6, or
EL7-based platforms and Fedora 19 or 20, this can be done using the MySQL Yum repository (see
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository” for details); for other
platforms, we provide various RPM packages that work for different platforms, and this section explains
how these packages work.

For non-RPM Linux distributions, you can install MySQL using a .tar.gz package. See Section 2.2,
“Installing MySQL on Unix/Linux Using Generic Binaries”.

Installations created from our Linux RPM distributions result in files under the system directories shown
in the following table.

Table 2.9 MySQL Installation Layout for Linux RPM Packages

Directory Contents of Directory

/usr/bin Client programs and scripts

/usr/sbin The mysqld server

/var/lib/mysql Log files, databases

/usr/share/info Manual in Info format

/usr/share/man Unix manual pages

/usr/include/mysql Include (header) files

/usr/lib/mysql Libraries

/usr/share/mysql Miscellaneous support files, including error messages,
character set files, sample configuration files, SQL for
database installation

/usr/share/sql-bench Benchmarks

Note

RPM distributions of MySQL are also provided by other vendors. Be aware that
they may differ from those built by us in features, capabilities, and conventions
(including communication setup), and that the instructions in this manual do
not necessarily apply to installing them. The vendor's instructions should be
consulted instead. Because of these differences, RPM packages built by us
check whether such RPMs built by other vendors are installed. If so, the RPM
does not install and produces a message explaining this.

Conflicts can arise when an RPM from another vendor is already installed, such
as when a vendor's convention about which files belong with the server and
which belong with the client library differ from the breakdown used for Oracle
packages. In such cases, attempts to install an Oracle RPM with rpm -i may
result in messages that files in the RPM to be installed conflict with files from an
installed package (denoted mysql-libs in the following paragraphs).

We provide a MySQL-shared-compat package with each MySQL release.
This package is meant to replace mysql-libs and provides a replacement-

Installing MySQL on Linux Using RPM Packages

120

compatible client library for older MySQL series. MySQL-shared-compat is
set up to make mysql-libs obsolete, but rpm explicitly refuses to replace
obsoleted packages when invoked with -i (unlike -U), which is why installation
with rpm -i produces a conflict.

MySQL-shared-compat can safely be installed alongside mysql-libs
because libraries are installed to different locations. Therefore, it is possible
to install shared-compat first, then manually remove mysql-libs before
continuing with the installation. After mysql-libs is removed, the dynamic linker
stops looking for the client library in the location where mysql-libs puts it, and
the library provided by the MySQL-shared-compat package takes over.

Another alternative is to install packages using yum. In a directory containing all
RPM packages for a MySQL release, yum install MySQL*rpm installs them
in the correct order and removes mysql-libs in one step without conflicts.

In most cases, you need to install only the MySQL-server and MySQL-client packages to get a
functional MySQL installation. The other packages are not required for a standard installation.

As of MySQL 5.7.4, MySQL deployments installed using RPM packages are secure by default and
have these characteristics:

• The installation process creates a single root account, 'root'@'localhost', automatically
generates a random password for this account, and marks the password expired.

• The initial random root password is written to the .mysql_secret file in the directory named
by the HOME environment variable. Depending on operating system, using a command such
as sudo may cause the value of HOME to refer to the home directory of the root system user.
.mysql_secret is created with mode 600 to be accessible only to the system user for whom it is
created.

If .mysql_secret already exists, the new password information is appended to it. Each password
entry includes a timestamp so that in the event of multiple install operations it is possible to
determine the password associated with each one.

• No anonymous-user MySQL accounts are created.

• No test database is created.

As a result of these actions, it is necessary after installation to start the server, connect as root
using the password written to the .mysql_secret file, and select a new root password. Until
this is done, root cannot do anything else. To change the password, you can use the SET
PASSWORD statement (for example, with the mysql client). You can also use mysqladmin or
mysql_secure_installation.

Before MySQL 5.7.4, new RPM install operations produce similar deployment characteristics, except
that multiple root accounts may be created, and the test database is created.

For upgrades, if your installation was originally produced by installing multiple RPM packages, it is
best to upgrade all the packages, not just some. For example, if you previously installed the server and
client RPMs, do not upgrade just the server RPM.

If the data directory exists at RPM installation time, the installation process does not modify existing
data. This has the effect, for example, that accounts in the grant tables are not initialized to the default
set of accounts.

If you get a dependency failure when trying to install MySQL packages (for example, error:
removing these packages would break dependencies: libmysqlclient.so.10 is
needed by ...), you should also install the MySQL-shared-compat package, which includes the
shared libraries for older releases for backward compatibility.

Installing MySQL on Linux Using RPM Packages

121

The RPM packages shown in the following list are available. The names shown here use a suffix of
.linux_glibc2.5.i386.rpm, but particular packages can have different suffixes, described later.

• MySQL-server-VERSION.linux_glibc2.5.i386.rpm

The MySQL server. You need this unless you only want to connect to a MySQL server running on
another machine.

• MySQL-client-VERSION.linux_glibc2.5.i386.rpm

The standard MySQL client programs. You probably always want to install this package.

• MySQL-devel-VERSION.linux_glibc2.5.i386.rpm

The libraries and include files that are needed if to compile other MySQL clients, such as the Perl
modules. Install this RPM if you intend to compile C API applications.

• MySQL-shared-VERSION.linux_glibc2.5.i386.rpm

This package contains the shared libraries (libmysqlclient.so*) that certain languages and
applications need to dynamically load and use MySQL. It contains single-threaded and thread-
safe libraries. Install this RPM if you intend to compile or run C API applications that depend on the
shared client library.

• MySQL-shared-compat-VERSION.linux_glibc2.5.i386.rpm

This package includes the shared libraries for older releases, but not the libraries for the current
release. It contains single-threaded and thread-safe libraries. Install this package if you have
applications installed that are dynamically linked against older versions of MySQL but you want to
upgrade to the current version without breaking the library dependencies.

The MySQL-shared-compat RPM package enables users of Red Hat-provided mysql-*-5.1
RPM packages to migrate to Oracle-provided MySQL-*-5.5 packages. MySQL-shared-compat
replaces the Red Hat mysql-libs package by replacing libmysqlclient.so files of the latter
package, thus satisfying dependencies of other packages on mysql-libs. This change affects only
users of Red Hat (or Red Hat-compatible) RPM packages. Nothing is different for users of Oracle
RPM packages.

• MySQL-embedded-VERSION.linux_glibc2.5.i386.rpm

The embedded MySQL server library.

• MySQL-test-VERSION.linux_glibc2.5.i386.rpm

This package includes the MySQL test suite.

• MySQL-VERSION.src.rpm

This contains the source code for all of the previous packages. It can also be used to rebuild the
RPMs on other architectures (for example, Alpha or SPARC).

The suffix of RPM package names (following the VERSION value) has the following syntax:

.PLATFORM.CPU.rpm

The PLATFORM and CPU values indicate the type of system for which the package is built. PLATFORM
indicates the platform and CPU indicates the processor type or family.

All packages are dynamically linked against glibc 2.5. The PLATFORM value indicates whether the
package is platform independent or intended for a specific platform, as shown in the following table.

Installing MySQL on Linux Using RPM Packages

122

Table 2.10 MySQL Linux Installation Packages

PLATFORM Value Intended Use

linux_glibc25 Platform independent, should run on any Linux distribution that supports
glibc 2.5

rhel5, rhel6 Red Hat Enterprise Linux 5 or 6

el6 Enterprise Linux 6

sles10, sles11 SuSE Linux Enterprise Server 10 or 11

In MySQL 5.7, only linux_glibc2.5 packages are available currently.

The CPU value indicates the processor type or family for which the package is built.

Table 2.11 MySQL Installation Packages for Linux CPU Identifiers

CPU Value Intended Processor Type or Family

i386, i586, i686 Pentium processor or better, 32 bit

x86_64 64-bit x86 processor

ia64 Itanium (IA-64) processor

To see all files in an RPM package (for example, a MySQL-server RPM), run a command like this:

shell> rpm -qpl MySQL-server-VERSION.linux_glibc2.5.i386.rpm

To perform a standard minimal installation, install the server and client RPMs:

shell> rpm -i MySQL-server-VERSION.linux_glibc2.5.i386.rpm
shell> rpm -i MySQL-client-VERSION.linux_glibc2.5.i386.rpm

To install only the client programs, install just the client RPM:

shell> rpm -i MySQL-client-VERSION.linux_glibc2.5.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing them. To
learn more about this feature, see Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums
or GnuPG”.

The server RPM places data under the /var/lib/mysql directory. The RPM also creates a login
account for a user named mysql (if one does not exist) to use for running the MySQL server, and
creates the appropriate entries in /etc/init.d/ to start the server automatically at boot time. (This
means that if you have performed a previous installation and have made changes to its startup script,
you may want to make a copy of the script so that you do not lose it when you install a newer RPM.)
See Section 2.9.1.2, “Starting and Stopping MySQL Automatically”, for more information on how
MySQL can be started automatically on system startup.

In MySQL 5.7, during a new installation, the server boot scripts are installed, but the MySQL server is
not started at the end of the installation, since the status of the server during an unattended installation
is not known.

In MySQL 5.7, during an upgrade installation using the RPM packages, if the MySQL server is running
when the upgrade occurs, the MySQL server is stopped, the upgrade occurs, and the MySQL server
is restarted. If the MySQL server is not already running when the RPM upgrade occurs, the MySQL
server is not started at the end of the installation.

If something goes wrong, you can find more information in the binary installation section. See
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

Installing MySQL on Linux Using Debian Packages

123

Note

The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.9, “Postinstallation Setup and Testing”.

During RPM installation, a user named mysql and a group named mysql are created on the system.
This is done using the useradd, groupadd, and usermod commands. Those commands require
appropriate administrative privileges, which is required for locally managed users and groups (as listed
in the /etc/passwd and /etc/group files) by the RPM installation process being run by root.

If you log in as the mysql user, you may find that MySQL displays “Invalid (old?) table or
database name” errors that mention .mysqlgui, lost+found, .mysqlgui, .bash_history,
.fonts.cache-1, .lesshst, .mysql_history, .profile, .viminfo, and similar files created
by MySQL or operating system utilities. You can safely ignore these error messages or remove the files
or directories that cause them if you do not need them.

For nonlocal user management (LDAP, NIS, and so forth), the administrative tools may require
additional authentication (such as a password), and will fail if the installing user does not provide this
authentication. Even if they fail, the RPM installation will not abort but succeed, and this is intentional.
If they failed, some of the intended transfer of ownership may be missing, and it is recommended that
the system administrator then manually ensures some appropriate user and group exists and manually
transfers ownership following the actions in the RPM spec file.

In MySQL 5.7.2, the RPM spec file has been updated, which has the following consequences:

• For a non-upgrade installation (no existing MySQL version installed), it possible to install MySQL
using yum.

• For upgrades, it is necessary to clean up any earlier MySQL installations. In effect, the update is
performed by removing the old installations and installing the new one.

Additional details follow.

For a non-upgrade installation of MySQL 5.7.2, it is possible to install using yum:

shell> yum install MySQL-server-NEWVERSION.linux_glibc2.5.i386.rpm

For upgrades to MySQL 5.7.2, the upgrade is performed by removing the old installation and installing
the new one. To do this, use the following procedure:

1. Remove the existing 5.7.X installation. OLDVERSION is the version to remove.

shell> rpm -e MySQL-server-OLDVERSION.linux_glibc2.5.i386.rpm

Repeat this step for all installed MySQL RPMs.

2. Install the new version. NEWVERSION is the version to install.

shell> rpm -ivh MySQL-server-NEWVERSION.linux_glibc2.5.i386.rpm

Alternatively, the removal and installation can be done using yum:

shell> yum remove MySQL-server-OLDVERSION.linux_glibc2.5.i386.rpm
shell> yum install MySQL-server-NEWVERSION.linux_glibc2.5.i386.rpm

2.5.4 Installing MySQL on Linux Using Debian Packages

Oracle provides Debian packages for installation on Debian or Debian-like Linux systems. To obtain a
package, see Section 2.1.3, “How to Get MySQL”.

Installing MySQL on Linux Using Native Package Managers

124

Note

Debian distributions of MySQL are also provided by other vendors. Be aware
that they may differ from those built by us in features, capabilities, and
conventions (including communication setup), and that the instructions in this
manual do not necessarily apply to installing them. The vendor's instructions
should be consulted instead.

Debian package files have names in mysql-MVER-DVER-CPU.deb format. MVER is the MySQL
version and DVER is the Debian version. The CPU value indicates the processor type or family for which
the package is built, as shown in the following table.

Table 2.12 MySQL Installation Packages for Linux CPU Identifiers

CPU Value Intended Processor Type or Family

i686 Pentium processor or better, 32 bit

x86_64 64-bit x86 processor

After downloading a Debian package, use the following command to install it;

shell> dpkg -i mysql-MVER-DVER-CPU.deb

The Debian package installs files in the /opt/mysql/server-5.7 directory.

You may also need to install the libaio library if it is not already present on your system:

shell> apt-get install libaio1

2.5.5 Installing MySQL on Linux Using Native Package Managers

Many Linux distributions include a version of the MySQL server, client tools, and development
components in their standard package management system. This section provides basic instructions
for installing MySQL using those package management systems.

Important

Native packages are often several versions behind the currently available
release. You will also normally be unable to install development milestone
releases (DMRs), as these are not usually made available in the native
repositories. Before proceeding, we recommend that you check out the other
installation options described in Section 2.5, “Installing MySQL on Linux”.

Distribution specific instructions are shown below:

• Red Hat Linux, Fedora, CentOS

Note

For EL5, EL6, or EL7-based Linux platforms and Fedora 19 or 20, you can
install MySQL using the MySQL Yum repository. See Section 2.5.1, “Installing
MySQL on Linux Using the MySQL Yum Repository” for details.

For Red Hat and similar distributions, the MySQL distribution is divided into a number of separate
packages, mysql for the client tools, mysql-server for the server and associated tools, and
mysql-libs for the libraries. The libraries are required if you want to provide connectivity from
different languages and environments such as Perl, Python and others.

To install, use the yum command to specify the packages that you want to install. For example:

root-shell> yum install mysql mysql-server mysql-libs mysql-server
Loaded plugins: presto, refresh-packagekit

Installing MySQL on Linux Using Native Package Managers

125

Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package mysql.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-libs.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-server.x86_64 0:5.1.48-2.fc13 set to be updated
--> Processing Dependency: perl-DBD-MySQL for package: mysql-server-5.1.48-2.fc13.x86_64
--> Running transaction check
---> Package perl-DBD-MySQL.x86_64 0:4.017-1.fc13 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 mysql x86_64 5.1.48-2.fc13 updates 889 k
 mysql-libs x86_64 5.1.48-2.fc13 updates 1.2 M
 mysql-server x86_64 5.1.48-2.fc13 updates 8.1 M
Installing for dependencies:
 perl-DBD-MySQL x86_64 4.017-1.fc13 updates 136 k

Transaction Summary
==
Install 4 Package(s)
Upgrade 0 Package(s)

Total download size: 10 M
Installed size: 30 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 10 M
(1/4): mysql-5.1.48-2.fc13.x86_64.rpm | 889 kB 00:04
(2/4): mysql-libs-5.1.48-2.fc13.x86_64.rpm | 1.2 MB 00:06
(3/4): mysql-server-5.1.48-2.fc13.x86_64.rpm | 8.1 MB 00:40
(4/4): perl-DBD-MySQL-4.017-1.fc13.x86_64.rpm | 136 kB 00:00
--
Total 201 kB/s | 10 MB 00:52
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : mysql-libs-5.1.48-2.fc13.x86_64 1/4
 Installing : mysql-5.1.48-2.fc13.x86_64 2/4
 Installing : perl-DBD-MySQL-4.017-1.fc13.x86_64 3/4
 Installing : mysql-server-5.1.48-2.fc13.x86_64 4/4

Installed:
 mysql.x86_64 0:5.1.48-2.fc13 mysql-libs.x86_64 0:5.1.48-2.fc13
 mysql-server.x86_64 0:5.1.48-2.fc13

Dependency Installed:
 perl-DBD-MySQL.x86_64 0:4.017-1.fc13

Complete!

MySQL and the MySQL server should now be installed. A sample configuration file is installed into /
etc/my.cnf. An init script, to start and stop the server, will have been installed into /etc/init.d/
mysqld. To start the MySQL server use service:

root-shell> service mysqld start

To enable the server to be started and stopped automatically during boot, use chkconfig:

root-shell> chkconfig --levels 235 mysqld on

Installing MySQL on Linux Using Native Package Managers

126

Which enables the MySQL server to be started (and stopped) automatically at the specified the run
levels.

The database tables will have been automatically created for you, if they do not already exist. You
should, however, run mysql_secure_installation to set the root passwords on your server.

• Debian, Ubuntu, Kubuntu

On Debian and related distributions, there are two packages, mysql-client and mysql-server,
for the client and server components respectively. You should specify an explicit version, for example
mysql-client-5.1, to ensure that you install the version of MySQL that you want.

To download and install, including any dependencies, use the apt-get command, specifying the
packages that you want to install.

Note

Before installing, make sure that you update your apt-get index files to
ensure you are downloading the latest available version.

A sample installation of the MySQL packages might look like this (some sections trimmed for clarity):

root-shell> apt-get install mysql-client-5.1 mysql-server-5.1
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
 linux-headers-2.6.28-11 linux-headers-2.6.28-11-generic
Use 'apt-get autoremove' to remove them.
The following extra packages will be installed:
 bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
 mysql-common postfix
Suggested packages:
 dbishell libipc-sharedcache-perl tinyca procmail postfix-mysql postfix-pgsql
 postfix-ldap postfix-pcre sasl2-bin resolvconf postfix-cdb
The following NEW packages will be installed
 bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
 mysql-client-5.1 mysql-common mysql-server-5.1 postfix
0 upgraded, 13 newly installed, 0 to remove and 182 not upgraded.
Need to get 1907kB/25.3MB of archives.
After this operation, 59.5MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
Get: 1 http://gb.archive.ubuntu.com jaunty-updates/main mysql-common 5.1.30really5.0.75-0ubuntu10.5 [63.6kB]
Get: 2 http://gb.archive.ubuntu.com jaunty-updates/main libmysqlclient15off 5.1.30really5.0.75-0ubuntu10.5 [1843kB]
Fetched 1907kB in 9s (205kB/s)
Preconfiguring packages ...
Selecting previously deselected package mysql-common.
(Reading database ... 121260 files and directories currently installed.)
...
Processing 1 added doc-base file(s)...
Registering documents with scrollkeeper...
Setting up libnet-daemon-perl (0.43-1) ...
Setting up libplrpc-perl (0.2020-1) ...
Setting up libdbi-perl (1.607-1) ...
Setting up libmysqlclient15off (5.1.30really5.0.75-0ubuntu10.5) ...

Setting up libdbd-mysql-perl (4.008-1) ...
Setting up libmysqlclient16 (5.1.31-1ubuntu2) ...

Setting up mysql-client-5.1 (5.1.31-1ubuntu2) ...

Setting up mysql-server-5.1 (5.1.31-1ubuntu2) ...
 * Stopping MySQL database server mysqld
 ...done.
2013-09-24T13:03:09.048353Z 0 [Note] InnoDB: 5.7.5 started; log sequence number 1566036

Installing MySQL on Linux Using Native Package Managers

127

2013-09-24T13:03:10.057269Z 0 [Note] InnoDB: Starting shutdown...
2013-09-24T13:03:10.857032Z 0 [Note] InnoDB: Shutdown completed; log sequence number 1566036
 * Starting MySQL database server mysqld
 ...done.
 * Checking for corrupt, not cleanly closed and upgrade needing tables.
...
Processing triggers for libc6 ...
ldconfig deferred processing now taking place

Note

The apt-get command will install a number of packages, including
the MySQL server, in order to provide the typical tools and application
environment. This can mean that you install a large number of packages in
addition to the main MySQL package.

During installation, the initial database will be created, and you will be prompted for the MySQL root
password (and confirmation). A configuration file will have been created in /etc/mysql/my.cnf.
An init script will have been created in /etc/init.d/mysql.

The server will already be started. You can manually start and stop the server using:

root-shell> service mysql [start|stop]

The service will automatically be added to the 2, 3 and 4 run levels, with stop scripts in the single,
shutdown and restart levels.

• Gentoo Linux

As a source-based distribution, installing MySQL on Gentoo involves downloading the source,
patching the Gentoo specifics, and then compiling the MySQL server and installing it. This process is
handled automatically by the emerge command. Depending on the version of MySQL that you want
to install, you may need to unmask the specific version that you want for your chosen platform.

The MySQL server and client tools are provided within a single package, dev-db/mysql. You can
obtain a list of the versions available to install by looking at the portage directory for the package:

root-shell> ls /usr/portage/dev-db/mysql/mysql-5.1*
mysql-5.1.39-r1.ebuild
mysql-5.1.44-r1.ebuild
mysql-5.1.44-r2.ebuild
mysql-5.1.44-r3.ebuild
mysql-5.1.44.ebuild
mysql-5.1.45-r1.ebuild
mysql-5.1.45.ebuild
mysql-5.1.46.ebuild

To install a specific MySQL version, you must specify the entire atom. For example:

root-shell> emerge =dev-db/mysql-5.1.46

A simpler alternative is to use the virtual/mysql-5.1 package, which will install the latest
version:

root-shell> emerge =virtual/mysql-5.1

If the package is masked (because it is not tested or certified for the current platform), use the
ACCEPT_KEYWORDS environment variable. For example:

root-shell> ACCEPT_KEYWORDS="~x86" emerge =virtual/mysql-5.1

Installing MySQL on Solaris and OpenSolaris

128

After installation, you should create a new database using mysql_install_db, and set the
password for the root user on MySQL. You can use the configuration interface to set the password
and create the initial database:

root-shell> emerge --config =dev-db/mysql-5.1.46

A sample configuration file will have been created for you in /etc/mysql/my.cnf, and an init script
will have been created in /etc/init.d/mysql.

To enable MySQL to start automatically at the normal (default) run levels, you can use:

root-shell> rc-update add mysql default

2.6 Installing MySQL on Solaris and OpenSolaris

MySQL on Solaris and OpenSolaris is available in a number of different formats.

• For information on installing using the native Solaris PKG format, see Section 2.6.1, “Installing
MySQL on Solaris Using a Solaris PKG”.

• On OpenSolaris, the standard package repositories include MySQL packages specially built for
OpenSolaris that include entries for the Service Management Framework (SMF) to enable control of
the installation using the SMF administration commands. For more information, see Section 2.6.2,
“Installing MySQL on OpenSolaris Using IPS”.

• To use a standard tar binary installation, use the notes provided in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”. Check the notes and hints at the end of this section for
Solaris specific notes that you may need before or after installation.

To obtain a binary MySQL distribution for Solaris in tarball or PKG format, http://dev.mysql.com/
downloads/mysql/5.7.html.

Additional notes to be aware of when installing and using MySQL on Solaris:

• If you want to use MySQL with the mysql user and group, use the groupadd and useradd
commands:

groupadd mysql
useradd -g mysql mysql

• If you install MySQL using a binary tarball distribution on Solaris, you may run into trouble even
before you get the MySQL distribution unpacked, as the Solaris tar cannot handle long file names.
This means that you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution. In Solaris 10 and
OpenSolaris gtar is normally located in /usr/sfw/bin/gtar, but may not be included in the
default path definition.

• When using Solaris 10 for x86_64, you should mount any file systems on which you intend to store
InnoDB files with the forcedirectio option. (By default mounting is done without this option.)
Failing to do so will cause a significant drop in performance when using the InnoDB storage engine
on this platform.

• If you would like MySQL to start automatically, you can copy support-files/mysql.server to /
etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

• If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL
log:

http://dev.mysql.com/downloads/mysql/5.7.html
http://dev.mysql.com/downloads/mysql/5.7.html

Installing MySQL on Solaris Using a Solaris PKG

129

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this.

• To configure the generation of core files on Solaris you should use the coreadm command. Because
of the security implications of generating a core on a setuid() application, by default, Solaris
does not support core files on setuid() programs. However, you can modify this behavior using
coreadm. If you enable setuid() core files for the current user, they will be generated using the
mode 600 and owned by the superuser.

2.6.1 Installing MySQL on Solaris Using a Solaris PKG

You can install MySQL on Solaris and OpenSolaris using a binary package using the native Solaris
PKG format instead of the binary tarball distribution.

To use this package, download the corresponding mysql-VERSION-solaris10-
PLATFORM.pkg.gz file, then uncompress it. For example:

shell> gunzip mysql-5.7.5-solaris10-x86_64.pkg.gz

To install a new package, use pkgadd and follow the onscreen prompts. You must have root privileges
to perform this operation:

shell> pkgadd -d mysql-5.7.5-solaris10-x86_64.pkg

The following packages are available:
 1 mysql MySQL Community Server (GPL)
 (i86pc) 5.7.5

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:

The PKG installer installs all of the files and tools needed, and then initializes your database if
one does not exist. To complete the installation, you should set the root password for MySQL
as provided in the instructions at the end of the installation. Alternatively, you can run the
mysql_secure_installation script that comes with the installation.

By default, the PKG package installs MySQL under the root path /opt/mysql. You can change only
the installation root path when using pkgadd, which can be used to install MySQL in a different Solaris
zone. If you need to install in a specific directory, use a binary tar file distribution.

The pkg installer copies a suitable startup script for MySQL into /etc/init.d/mysql. To enable
MySQL to startup and shutdown automatically, you should create a link between this file and the init
script directories. For example, to ensure safe startup and shutdown of MySQL you could use the
following commands to add the right links:

shell> ln /etc/init.d/mysql /etc/rc3.d/S91mysql
shell> ln /etc/init.d/mysql /etc/rc0.d/K02mysql

To remove MySQL, the installed package name is mysql. You can use this in combination with the
pkgrm command to remove the installation.

To upgrade when using the Solaris package file format, you must remove the existing installation
before installing the updated package. Removal of the package does not delete the existing database
information, only the server, binaries and support files. The typical upgrade sequence is therefore:

shell> mysqladmin shutdown
shell> pkgrm mysql
shell> pkgadd -d mysql-5.7.5-solaris10-x86_64.pkg

Installing MySQL on OpenSolaris Using IPS

130

shell> mysqld_safe &
shell> mysql_upgrade

You should check the notes in Section 2.10, “Upgrading or Downgrading MySQL” before performing
any upgrade.

2.6.2 Installing MySQL on OpenSolaris Using IPS

OpenSolaris includes standard packages for MySQL in the core repository. The MySQL packages
are based on a specific release of MySQL and updated periodically. For the latest release you must
use either the native Solaris PKG, tar, or source installations. The native OpenSolaris packages
include SMF files so that you can easily control your MySQL installation, including automatic startup
and recovery, using the native service management tools.

To install MySQL on OpenSolaris, use the pkg command. You will need to be logged in as root, or use
the pfexec tool, as shown in the example below:

shell> pfexec pkg install SUNWmysql57

The package set installs three individual packages, SUNWmysql57lib, which contains the MySQL
client libraries; SUNWmysql57r which contains the root components, including SMF and configuration
files; and SUNWmysql57u which contains the scripts, binary tools and other files. You can install these
packages individually if you only need the corresponding components.

The MySQL files are installed into /usr/mysql which symbolic links for the sub directories (bin,
lib, etc.) to a version specific directory. For MySQL 5.7, the full installation is located in /usr/
mysql/5.7. The default data directory is /var/mysql/5.7/data. The configuration file is installed
in /etc/mysql/5.7/my.cnf. This layout permits multiple versions of MySQL to be installed, without
overwriting the data and binaries from other versions.

Once installed, you must run mysql_install_db to initialize the database, and use the
mysql_secure_installation to secure your installation.

Using SMF to manage your MySQL installation

Once installed, you can start and stop your MySQL server using the installed SMF configuration. The
service name is mysql, or if you have multiple versions installed, you should use the full version name,
for example mysql:version_57. To start and enable MySQL to be started at boot time:

shell> svcadm enable mysql

To disable MySQL from starting during boot time, and shut the MySQL server down if it is running, use:

shell> svcadm disable mysql

To restart MySQL, for example after a configuration file changes, use the restart option:

shell> svcadm restart mysql

You can also use SMF to configure the data directory and enable full 64-bit mode. For example, to set
the data directory used by MySQL:

shell> svccfg
svc:> select mysql:version_57
svc:/application/database/mysql:version_57> setprop mysql/data=/data0/mysql

By default, the 32-bit binaries are used. To enable the 64-bit server on 64-bit platforms, set the
enable_64bit parameter. For example:

svc:/application/database/mysql:version_57> setprop mysql/enable_64bit=1

You need to refresh the SMF after settings these options:

Installing MySQL on FreeBSD

131

shell> svcadm refresh mysql

2.7 Installing MySQL on FreeBSD
This section provides information about installing MySQL on variants of FreeBSD Unix.

You can install MySQL on FreeBSD by using the binary distribution provided by Oracle. For more
information, see Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client
ports available at http://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.

• Automatic configuration and build.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you
must install it first before compiling MySQL.

To install using the ports system:

cd /usr/ports/databases/mysql51-server
make
...
cd /usr/ports/databases/mysql51-client
make
...

The standard port installation places the server into /usr/local/libexec/mysqld, with the startup
script for the MySQL server placed in /usr/local/etc/rc.d/mysql-server.

Some additional notes on the BSD implementation:

• To remove MySQL after installation using the ports system:

cd /usr/ports/databases/mysql51-server
make deinstall
...
cd /usr/ports/databases/mysql51-client
make deinstall
...

• If you get problems with the current date in MySQL, setting the TZ variable should help. See
Section 2.11, “Environment Variables”.

2.8 Installing MySQL from Source
Building MySQL from the source code enables you to customize build parameters, compiler
optimizations, and installation location. For a list of systems on which MySQL is known to run, see
http://www.mysql.com/support/supportedplatforms/database.html.

Before you proceed with an installation from source, check whether Oracle produces a precompiled
binary distribution for your platform and whether it works for you. We put a great deal of effort into
ensuring that our binaries are built with the best possible options for optimal performance. Instructions
for installing binary distributions are available in Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”.

http://www.freebsd.org/
http://www.mysql.com/support/supportedplatforms/database.html

Source Installation Methods

132

Source Installation Methods

There are two methods for installing MySQL from source:

• Use a standard MySQL source distribution. To obtain a standard distribution, see Section 2.1.3,
“How to Get MySQL”. For instructions on building from a standard distribution, see Section 2.8.2,
“Installing MySQL Using a Standard Source Distribution”.

Standard distributions are available as compressed tar files, Zip archives, or RPM packages.
Distribution files have names of the form mysql-VERSION.tar.gz, mysql-VERSION.zip, or
mysql-VERSION.rpm, where VERSION is a number like 5.7.5. File names for source distributions
can be distinguished from those for precompiled binary distributions in that source distribution names
are generic and include no platform name, whereas binary distribution names include a platform
name indicating the type of system for which the distribution is intended (for example, pc-linux-
i686 or winx64).

• Use a MySQL development tree. Development trees have not necessarily received the same level
of testing as standard release distributions, so this installation method is usually required only if you
need the most recent code changes. For information on building from one of the development trees,
see Section 2.8.3, “Installing MySQL Using a Development Source Tree”.

Source Installation System Requirements

Installation of MySQL from source requires several development tools. Some of these tools are needed
no matter whether you use a standard source distribution or a development source tree. Other tool
requirements depend on which installation method you use.

To install MySQL from source, your system must have the following tools, regardless of installation
method:

• CMake, which is used as the build framework on all platforms. CMake can be downloaded from http://
www.cmake.org.

• A good make program. Although some platforms come with their own make implementations, it is
highly recommended that you use GNU make 3.75 or newer. It may already be available on your
system as gmake. GNU make is available from http://www.gnu.org/software/make/.

• A working ANSI C++ compiler. GCC 4.2.1 or later, Sun Studio 12 or later, Visual Studio 2010 or later,
and many current vendor-supplied compilers are known to work.

• Perl is needed if you intend to run test scripts. Most Unix-like systems include Perl. On Windows, you
can use a version such as ActiveState Perl.

To install MySQL from a standard source distribution, one of the following tools is required to unpack
the distribution file:

• For a .tar.gz compressed tar file: GNU gunzip to uncompress the distribution and a reasonable
tar to unpack it. If your tar program supports the z option, it can both uncompress and unpack the
file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or
if available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as
tar within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU
tar is available from http://www.gnu.org/software/tar/.

• For a .zip Zip archive: WinZip or another tool that can read .zip files.

• For an .rpm RPM package: The rpmbuild program used to build the distribution unpacks it.

To install MySQL from a development source tree, the following additional tools are required:

http://www.cmake.org
http://www.cmake.org
http://www.gnu.org/software/make/
http://www.gnu.org/software/tar/

MySQL Layout for Source Installation

133

• To obtain the source tree, you must have Bazaar installed. The Bazaar VCS Web site has
instructions for downloading and installing Bazaar on different platforms. Bazaar is supported on any
platform that supports Python, and is therefore compatible with any Linux, Unix, Windows, or Mac
OS X host.

• bison is needed to generate sql_yacc.cc from sql_yacc.yy You should use the latest version
of bison where possible. Versions 1.75 and 2.1 are known to work. There have been reported
problems with bison 1.875. If you experience problems, upgrade to a later, rather than earlier,
version.

bison is available from http://www.gnu.org/software/bison/. bison for Windows can be downloaded
from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete
package, excluding sources”. On Windows, the default location for bison is the C:\Program
Files\GnuWin32 directory. Some utilities may fail to find bison because of the space in the
directory name. Also, Visual Studio may simply hang if there are spaces in the path. You can
resolve these problems by installing into a directory that does not contain a space; for example C:
\GnuWin32.

• On OpenSolaris and Solaris Express, m4 must be installed in addition to bison. m4 is available from
http://www.gnu.org/software/m4/.

Note

If you have to install any programs, modify your PATH environment variable to
include any directories in which the programs are located. See Section 4.2.4,
“Setting Environment Variables”.

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How
to Report Bugs or Problems”.

2.8.1 MySQL Layout for Source Installation

By default, when you install MySQL after compiling it from source, the installation step installs files
under /usr/local/mysql. The component locations under the installation directory are the same
as for binary distributions. See Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary
Package”, and Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”. To configure
installation locations different from the defaults, use the options described at Section 2.8.4, “MySQL
Source-Configuration Options”.

2.8.2 Installing MySQL Using a Standard Source Distribution

To install MySQL from a standard source distribution:

1. Verify that your system satisfies the tool requirements listed at Section 2.8, “Installing MySQL from
Source”.

2. Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

3. Configure, build, and install the distribution using the instructions in this section.

4. Perform postinstallation procedures using the instructions in Section 2.9, “Postinstallation Setup
and Testing”.

In MySQL 5.7, CMake is used as the build framework on all platforms. The instructions given here
should enable you to produce a working installation. For additional information on using CMake to build
MySQL, see How to Build MySQL Server with CMake.

If you start from a source RPM, use the following command to make a binary RPM that you can install.
If you do not have rpmbuild, use rpm instead.

shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

http://bazaar-vcs.org
http://www.gnu.org/software/bison/
http://gnuwin32.sourceforge.net/packages/bison.htm
http://www.gnu.org/software/m4/
http://dev.mysql.com/doc/internals/en/cmake.html

Installing MySQL Using a Standard Source Distribution

134

The result is one or more binary RPM packages that you install as indicated in Section 2.5.3, “Installing
MySQL on Linux Using RPM Packages”.

The sequence for installation from a compressed tar file or Zip archive source distribution is similar to
the process for installing from a generic binary distribution (see Section 2.2, “Installing MySQL on Unix/
Linux Using Generic Binaries”), except that it is used on all platforms and includes steps to configure
and compile the distribution. For example, with a compressed tar file source distribution on Unix, the
basic installation command sequence looks like this:

Preconfiguration setup
shell> groupadd mysql
shell> useradd -r -g mysql mysql
Beginning of source-build specific instructions
shell> tar zxvf mysql-VERSION.tar.gz
shell> cd mysql-VERSION
shell> cmake .
shell> make
shell> make install
End of source-build specific instructions
Postinstallation setup
shell> cd /usr/local/mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
shell> bin/mysqld_safe --user=mysql &
Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server

mysql_install_db creates a default option file named my.cnf in the base installation directory.
This file is created from a template included in the distribution package named my-default.cnf. For
more information, see Using a Sample Default Server Configuration File.

A more detailed version of the source-build specific instructions is shown following.

Note

The procedure shown here does not set up any passwords for MySQL
accounts. After following the procedure, proceed to Section 2.9, “Postinstallation
Setup and Testing”, for postinstallation setup and testing.

Perform Preconfiguration Setup

On Unix, set up the mysql user and group that will be used to run and execute the MySQL server and
own the database directory. For details, see Creating a mysql System User and Group, in Section 2.2,
“Installing MySQL on Unix/Linux Using Generic Binaries”. Then perform the following steps as the
mysql user, except as noted.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it.

Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

Unpack the distribution into the current directory:

• To unpack a compressed tar file, tar can uncompress and unpack the distribution if it has z option
support:

shell> tar zxvf mysql-VERSION.tar.gz

If your tar does not have z option support, use gunzip to unpack the distribution and tar to
unpack it:

http://dev.mysql.com/doc/refman/5.6/en/server-default-configuration-file.html

Installing MySQL Using a Standard Source Distribution

135

shell> gunzip < mysql-VERSION.tar.gz | tar xvf -

Alternatively, CMake can uncompress and unpack the distribution:

shell> cmake -E tar zxvf mysql-VERSION.tar.gz

• To unpack a Zip archive, use WinZip or another tool that can read .zip files.

Unpacking the distribution file creates a directory named mysql-VERSION.

Configure the Distribution

Change location into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION

Configure the source directory. The minimum configuration command includes no options to override
configuration defaults:

shell> cmake .

On Windows, specify the development environment. For example, the following commands configure
MySQL for 32-bit or 64-bit builds, respectively:

shell> cmake . -G "Visual Studio 10 2010"
shell> cmake . -G "Visual Studio 10 2010 Win64"

On Mac OS X, to use the Xcode IDE:

shell> cmake . -G Xcode

When you run cmake, you might want to add options to the command line. Here are some examples:

• -DBUILD_CONFIG=mysql_release: Configure the source with the same build options used by
Oracle to produce binary distributions for official MySQL releases.

• -DCMAKE_INSTALL_PREFIX=dir_name: Configure the distribution for installation under a
particular location.

• -DCPACK_MONOLITHIC_INSTALL=1: Cause make package to generate a single installation file
rather than multiple files.

• -DWITH_DEBUG=1: Build the distribution with debugging support.

For a more extensive list of options, see Section 2.8.4, “MySQL Source-Configuration Options”.

To list the configuration options, use one of the following commands:

shell> cmake . -L # overview
shell> cmake . -LH # overview with help text
shell> cmake . -LAH # all params with help text
shell> ccmake . # interactive display

If CMake fails, you might need to reconfigure by running it again with different options. If you do
reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts up, it looks
for that file and reads its contents if it exists, on the assumption that the information is still correct.
That assumption is invalid when you reconfigure.

Installing MySQL Using a Standard Source Distribution

136

• Each time you run CMake, you must run make again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old object files or configuration information from being used, run these commands on Unix
before re-running CMake:

shell> make clean
shell> rm CMakeCache.txt

Or, on Windows:

shell> devenv MySQL.sln /clean
shell> del CMakeCache.txt

If you build out of the source tree (as described later), the CMakeCache.txt file and all built files
are in the build directory, so you can remove that directory to object files and cached configuration
information.

If you are going to send mail to a MySQL mailing list to ask for configuration assistance, first check the
files in the CMakeFiles directory for useful information about the failure. To file a bug report, please
use the instructions in Section 1.7, “How to Report Bugs or Problems”.

Build the Distribution

On Unix:

shell> make
shell> make VERBOSE=1

The second command sets VERBOSE to show the commands for each compiled source.

Use gmake instead on systems where you are using GNU make and it has been installed as gmake.

On Windows:

shell> devenv MySQL.sln /build RelWithDebInfo

It is possible to build out of the source tree to keep the tree clean. If the top-level source directory is
named mysql-src under your current working directory, you can build in a directory named bld at the
same level like this:

shell> mkdir bld
shell> cd bld
shell> cmake ../mysql-src

The build directory need not actually be outside the source tree. For example, to build in a directory
directory, you can build in a directory named bld under the top-level source tree, do this, starting with
mysql-src as your current working directory:

shell> mkdir bld
shell> cd bld
shell> cmake ..

If you have multiple source trees at the same level (for example, to build multiple versions of MySQL),
the second strategy can be advantageous. The first strategy places all build directories at the same
level, which requires that you choose a unique name for each. With the second strategy, you can use
the same name for the build directory within each source tree.

If you have gotten to the compilation stage, but the distribution does not build, see Section 2.8.5,
“Dealing with Problems Compiling MySQL”, for help. If that does not solve the problem, please enter it

Installing MySQL Using a Development Source Tree

137

into our bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”.
If you have installed the latest versions of the required tools, and they crash trying to process our
configuration files, please report that also. However, if you get a command not found error or a
similar problem for required tools, do not report it. Instead, make sure that all the required tools are
installed and that your PATH variable is set correctly so that your shell can find them.

Install the Distribution

On Unix:

shell> make install

This installs the files under the configured installation directory (by default, /usr/local/mysql). You
might need to run the command as root.

To install in a specific directory, add a DESTDIR parameter to the command line:

shell> make install DESTDIR="/opt/mysql"

Alternatively, generate installation package files that you can install where you like:

shell> make package

This operation produces one or more .tar.gz files that can be installed like generic binary distribution
packages. See Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”. If you run CMake
with -DCPACK_MONOLITHIC_INSTALL=1, the operation produces a single file. Otherwise, it produces
multiple files.

On Windows, generate the data directory, then create a .zip archive installation package:

shell> devenv MySQL.sln /build RelWithDebInfo /project initial_database
shell> devenv MySQL.sln /build RelWithDebInfo /project package

You can install the resulting .zip archive where you like. See Section 2.3.5, “Installing MySQL on
Microsoft Windows Using a noinstall Zip Archive”.

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core
databases, and starting the MySQL server. For instructions, see Section 2.9, “Postinstallation Setup
and Testing”.

Note

The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.9, “Postinstallation Setup and Testing”.

2.8.3 Installing MySQL Using a Development Source Tree

This section discusses how to install MySQL from the latest development source code. Development
trees have not necessarily received the same level of testing as standard release distributions, so this
installation method is usually required only if you need the most recent code changes. Do not use a
development tree for production systems. If your goal is simply to get MySQL up and running on your
system, you should use a standard release distribution (either a binary or source distribution). See
Section 2.1.3, “How to Get MySQL”.

MySQL development projects are hosted on Launchpad. MySQL projects, including MySQL Server,
MySQL Workbench, and others are available from the Oracle/MySQL Engineering page. For the
repositories related only to MySQL Server, see the MySQL Server page.

http://launchpad.net/
http://launchpad.net/~mysql
http://launchpad.net/mysql-server

Installing MySQL Using a Development Source Tree

138

To install MySQL from a development source tree, your system must satisfy the tool requirements
listed at Section 2.8, “Installing MySQL from Source”, including the requirements for Bazaar and
bison.

To create a local branch of the MySQL development tree on your machine, use this procedure:

1. To obtain a copy of the MySQL source code, you must create a new Bazaar branch. If you do not
already have a Bazaar repository directory set up, you must initialize a new directory:

shell> mkdir mysql-server
shell> bzr init-repo --trees mysql-server

This is a one-time operation.

2. Assuming that you have an initialized repository directory, you can branch from the public MySQL
server repositories to create a local source tree. To create a branch of a specific version:

shell> cd mysql-server
shell> bzr branch lp:mysql-server/5.7 mysql-5.7

This is a one-time operation per source tree. You can branch the source trees for several versions
of MySQL under the mysql-server directory.

3. The initial download will take some time to complete, depending on the speed of your connection.
Please be patient. Once you have downloaded the first tree, additional trees should take
significantly less time to download.

4. When building from the Bazaar branch, you may want to create a copy of your active branch so that
you can make configuration and other changes without affecting the original branch contents. You
can achieve this by branching from the original branch:

shell> bzr branch mysql-5.7 mysql-5.7-build

5. To obtain changes made after you have set up the branch initially, update it using the pull option
periodically. Use this command in the top-level directory of the local copy:

shell> bzr pull

To examine the changeset comments for the tree, use the log option to bzr:

shell> bzr log

You can also browse changesets, comments, and source code online at the Launchpad MySQL
Server page.

If you see diffs (changes) or code that you have a question about, do not hesitate to send email
to the MySQL internals mailing list. See Section 1.6.1, “MySQL Mailing Lists”. If you think you
have a better idea on how to do something, send an email message to the list with a patch.

After you have the local branch, you can build MySQL server from the source code. For information,
see Section 2.8.2, “Installing MySQL Using a Standard Source Distribution”, except that you skip the
part about obtaining and unpacking the distribution.

Be careful about installing a build from a distribution source tree on a production machine. The
installation command may overwrite your live release installation. If you already have MySQL
installed and do not want to overwrite it, run CMake with values for the CMAKE_INSTALL_PREFIX,
MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options different from those used by your production
server. For additional information about preventing multiple servers from interfering with each other,
see Section 5.3, “Running Multiple MySQL Instances on One Machine”.

http://launchpad.net/mysql-server
http://launchpad.net/mysql-server

MySQL Source-Configuration Options

139

Play hard with your new installation. For example, try to make new features crash. Start by running
make test. See Section 22.1.2, “The MySQL Test Suite”.

2.8.4 MySQL Source-Configuration Options

The CMake program provides a great deal of control over how you configure a MySQL source
distribution. Typically, you do this using options on the CMake command line. For information about
options supported by CMake, run either of these commands in the top-level source directory:

shell> cmake . -LH
shell> ccmake .

You can also affect CMake using certain environment variables. See Section 2.11, “Environment
Variables”.

The following table shows the available CMake options. In the Default column, PREFIX stands for
the value of the CMAKE_INSTALL_PREFIX option, which specifies the installation base directory. This
value is used as the parent location for several of the installation subdirectories.

Table 2.13 MySQL Source-Configuration Option Reference (CMake)

Formats Description Default IntroducedRemoved

BUILD_CONFIG Use same build options as
official releases

CMAKE_BUILD_TYPE Type of build to produce RelWithDebInfo

CMAKE_C_FLAGS Flags for C Compiler

CMAKE_CXX_FLAGS Flags for C++ Compiler

CMAKE_INSTALL_PREFIX Installation base directory /usr/local/
mysql

COMPILATION_COMMENT Comment about compilation
environment

CPACK_MONOLITHIC_INSTALLWhether package build
produces single file

OFF

DEFAULT_CHARSET The default server character
set

latin1

DEFAULT_COLLATION The default server collation latin1_swedish_ci

DISABLE_PSI_COND Exclude Performance
Schema condition
instrumentation

OFF 5.7.3

DISABLE_PSI_FILE Exclude Performance
Schema file instrumentation

OFF 5.7.3

DISABLE_PSI_IDLE Exclude Performance
Schema idle instrumentation

OFF 5.7.3

DISABLE_PSI_MEMORY Exclude Performance
Schema memory
instrumentation

OFF 5.7.3

DISABLE_PSI_METADATA Exclude Performance
Schema metadata
instrumentation

OFF 5.7.3

DISABLE_PSI_MUTEX Exclude Performance
Schema mutex
instrumentation

OFF 5.7.3

MySQL Source-Configuration Options

140

Formats Description Default IntroducedRemoved

DISABLE_PSI_RWLOCK Exclude Performance
Schema rwlock
instrumentation

OFF 5.7.3

DISABLE_PSI_SOCKET Exclude Performance
Schema socket
instrumentation

OFF 5.7.3

DISABLE_PSI_SP Exclude Performance
Schema stored program
instrumentation

OFF 5.7.3

DISABLE_PSI_STAGE Exclude Performance
Schema stage
instrumentation

OFF 5.7.3

DISABLE_PSI_STATEMENT Exclude Performance
Schema statement
instrumentation

OFF 5.7.3

DISABLE_PSI_STATEMENT_DIGESTExclude Performance
Schema statement_digest
instrumentation

OFF 5.7.3

DISABLE_PSI_TABLE Exclude Performance
Schema table instrumentation

OFF 5.7.3

ENABLE_DEBUG_SYNC Whether to enable Debug
Sync support

ON

ENABLE_DOWNLOADS Whether to download optional
files

OFF

ENABLE_DTRACE Whether to include DTrace
support

ENABLE_GCOV Whether to include gcov
support

ENABLE_GPROF Enable gprof (optimized Linux
builds only)

OFF

ENABLED_LOCAL_INFILE Whether to enable LOCAL for
LOAD DATA INFILE

OFF

ENABLED_PROFILING Whether to enable query
profiling code

ON

IGNORE_AIO_CHECK With -
DBUILD_CONFIG=mysql_release,
ignore libaio check

OFF

INNODB_PAGE_ATOMIC_REF_COUNTEnable or disable atomic
page reference counting

ON 5.7.4

INSTALL_BINDIR User executables directory PREFIX/bin

INSTALL_DOCDIR Documentation directory PREFIX/docs

INSTALL_DOCREADMEDIR README file directory PREFIX

INSTALL_INCLUDEDIR Header file directory PREFIX/include

INSTALL_INFODIR Info file directory PREFIX/docs

INSTALL_LAYOUT Select predefined installation
layout

STANDALONE

INSTALL_LIBDIR Library file directory PREFIX/lib

MySQL Source-Configuration Options

141

Formats Description Default IntroducedRemoved

INSTALL_MANDIR Manual page directory PREFIX/man

INSTALL_MYSQLSHAREDIR Shared data directory PREFIX/share

INSTALL_MYSQLTESTDIR mysql-test directory PREFIX/mysql-
test

INSTALL_PLUGINDIR Plugin directory PREFIX/lib/
plugin

INSTALL_SBINDIR Server executable directory PREFIX/bin

INSTALL_SCRIPTDIR Scripts directory PREFIX/scripts

INSTALL_SHAREDIR aclocal/mysql.m4 installation
directory

PREFIX/share

INSTALL_SQLBENCHDIR sql-bench directory PREFIX

INSTALL_SUPPORTFILESDIRExtra support files directory PREFIX/
support-files

MAX_INDEXES Maximum indexes per table 64 5.7.1

MYSQL_DATADIR Data directory

MYSQL_MAINTAINER_MODE Whether to enable MySQL
maintainer-specific
development environment

OFF

MYSQL_PROJECT_NAME Windows/Mac OS X project
name

3306

MYSQL_TCP_PORT TCP/IP port number 3306

MYSQL_UNIX_ADDR Unix socket file /tmp/
mysql.sock

ODBC_INCLUDES ODBC includes directory

ODBC_LIB_DIR ODBC library directory

OPTIMIZER_TRACE Whether to support optimizer
tracing

SYSCONFDIR Option file directory

TMPDIR tmpdir default value 5.7.4

WITH_ASAN Enable AddressSanitizer OFF 5.7.3

WITH_AUTHENTICATION_PAMBuild PAM authentication
plugin

OFF

WITH_CLIENT_PROTOCOL_TRACINGBuild client-side protocol
tracing framework

ON 5.7.2

WITH_DEBUG Whether to include
debugging support

OFF

WITH_DEFAULT_COMPILER_OPTIONSWhether to use default
compiler options

ON

WITH_DEFAULT_FEATURE_SETWhether to use default
feature set

ON

WITH_EDITLINE Which libedit/editline library to
use

bundled 5.7.2

WITH_EMBEDDED_SERVER Whether to build embedded
server

OFF

MySQL Source-Configuration Options

142

Formats Description Default IntroducedRemoved

WITH_xxx_STORAGE_ENGINECompile storage engine xxx
statically into server

WITH_EXTRA_CHARSETS Which extra character sets to
include

all

WITH_INNODB_MEMCACHED Whether to generate
memcached shared libraries.

OFF

WITH_LIBEVENT Which libevent library to use bundled

WITH_LIBWRAP Whether to include libwrap
(TCP wrappers) support

OFF

WITH_MSAN Enable MemorySanitizer OFF 5.7.4

WITH_SSL Type of SSL support no

WITH_TEST_TRACE_PLUGIN Build test protocol trace
plugin

OFF 5.7.2

WITH_UNIXODBC Enable unixODBC support OFF

WITH_ZLIB Type of zlib support system

WITHOUT_xxx_STORAGE_ENGINEExclude storage engine xxx
from build

WITHOUT_SERVER Do not build the server OFF

The following sections provide more information about CMake options.

• General Options

• Installation Layout Options

• Feature Options

• Compiler Flags

For boolean options, the value may be specified as 1 or ON to enable the option, or as 0 or OFF to
disable the option.

Many options configure compile-time defaults that can be overridden at server startup. For example,
the CMAKE_INSTALL_PREFIX, MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options that configure the
default installation base directory location, TCP/IP port number, and Unix socket file can be changed at
server startup with the --basedir, --port, and --socket options for mysqld. Where applicable,
configuration option descriptions indicate the corresponding mysqld startup option.

General Options

• -DBUILD_CONFIG=mysql_release

This option configures a source distribution with the same build options used by Oracle to produce
binary distributions for official MySQL releases.

• -DCMAKE_BUILD_TYPE=type

The type of build to produce:

• RelWithDebInfo: Enable optimizations and generate debugging information. This is the default
MySQL build type.

• Debug: Disable optimizations and generate debugging information. This build type is also used
if the WITH_DEBUG option is enabled. That is, -DWITH_DEBUG=1 has the same effect as -
DCMAKE_BUILD_TYPE=Debug.

MySQL Source-Configuration Options

143

• -DCPACK_MONOLITHIC_INSTALL=bool

This option affects whether the make package operation produces multiple installation package
files or a single file. If disabled, the operation produces multiple installation package files, which may
be useful if you want to install only a subset of a full MySQL installation. If enabled, it produces a
single file for installing everything.

Installation Layout Options

The CMAKE_INSTALL_PREFIX option indicates the base installation directory. Other options with
names of the form INSTALL_xxx that indicate component locations are interpreted relative to the
prefix and their values are relative pathnames. Their values should not include the prefix.

• -DCMAKE_INSTALL_PREFIX=dir_name

The installation base directory.

This value can be set at server startup with the --basedir option.

• -DINSTALL_BINDIR=dir_name

Where to install user programs.

• -DINSTALL_DOCDIR=dir_name

Where to install documentation.

• -DINSTALL_DOCREADMEDIR=dir_name

Where to install README files.

• -DINSTALL_INCLUDEDIR=dir_name

Where to install header files.

• -DINSTALL_INFODIR=dir_name

Where to install Info files.

• -DINSTALL_LAYOUT=name

Select a predefined installation layout:

• STANDALONE: Same layout as used for .tar.gz and .zip packages. This is the default.

• RPM: Layout similar to RPM packages.

• SVR4: Solaris package layout.

• DEB: DEB package layout (experimental).

You can select a predefined layout but modify individual component installation locations by
specifying other options. For example:

shell> cmake . -DINSTALL_LAYOUT=SVR4 -DMYSQL_DATADIR=/var/mysql/data

• -DINSTALL_LIBDIR=dir_name

Where to install library files.

• -DINSTALL_MANDIR=dir_name

Where to install manual pages.

MySQL Source-Configuration Options

144

• -DINSTALL_MYSQLSHAREDIR=dir_name

Where to install shared data files.

• -DINSTALL_MYSQLTESTDIR=dir_name

Where to install the mysql-test directory. As of MySQL 5.7.2, to suppress installation of this
directory, explicitly set the option to the empty value (-DINSTALL_MYSQLTESTDIR=).

• -DINSTALL_PLUGINDIR=dir_name

The location of the plugin directory.

This value can be set at server startup with the --plugin_dir option.

• -DINSTALL_SBINDIR=dir_name

Where to install the mysqld server.

• -DINSTALL_SCRIPTDIR=dir_name

Where to install mysql_install_db.

• -DINSTALL_SHAREDIR=dir_name

Where to install aclocal/mysql.m4.

• -DINSTALL_SQLBENCHDIR=dir_name

Where to install the sql-bench directory. To suppress installation of this directory, explicitly set the
option to the empty value (-DINSTALL_SQLBENCHDIR=).

• -DINSTALL_SUPPORTFILESDIR=dir_name

Where to install extra support files.

• -DMYSQL_DATADIR=dir_name

The location of the MySQL data directory.

This value can be set at server startup with the --datadir option.

• -DODBC_INCLUDES=dir_name

The location of the ODBC includes directory, and may be used while configuring Connector/ODBC.

• -DODBC_LIB_DIR=dir_name

The location of the ODBC library directory, and may be used while configuring Connector/ODBC.

• -DSYSCONFDIR=dir_name

The default my.cnf option file directory.

This location cannot be set at server startup, but you can start the server with a given option file
using the --defaults-file=file_name option, where file_name is the full path name to the
file.

• -DTMPDIR=dir_name

The default location to use for the tmpdir system variable. If unspecified, the value defaults to
P_tmpdir in <stdio.h>. This option was added in MySQL 5.7.4.

MySQL Source-Configuration Options

145

Storage Engine Options

Storage engines are built as plugins. You can build a plugin as a static module (compiled into the
server) or a dynamic module (built as a dynamic library that must be installed into the server using the
INSTALL PLUGIN statement or the --plugin-load option before it can be used). Some plugins
might not support static or dynamic building.

The MyISAM, MERGE, MEMORY, and CSV engines are mandatory (always compiled into the server) and
need not be installed explicitly.

To compile a storage engine statically into the server, use -DWITH_engine_STORAGE_ENGINE=1.
Some permissible engine values are ARCHIVE, BLACKHOLE, EXAMPLE, FEDERATED, INNOBASE
(InnoDB), PARTITION (partitioning support), and PERFSCHEMA (Performance Schema). Examples:

-DWITH_INNOBASE_STORAGE_ENGINE=1
-DWITH_ARCHIVE_STORAGE_ENGINE=1
-DWITH_BLACKHOLE_STORAGE_ENGINE=1
-DWITH_PERFSCHEMA_STORAGE_ENGINE=1

As of MySQL 5.7.4, to exclude a storage engine from the build, use -
DWITH_engine_STORAGE_ENGINE=0. Examples:

-DWITH_EXAMPLE_STORAGE_ENGINE=0
-DWITH_FEDERATED_STORAGE_ENGINE=0
-DWITH_PARTITION_STORAGE_ENGINE=0

Before MySQL 5.7.4, to exclude a storage engine from the build, use -
DWITHOUT_engine_STORAGE_ENGINE=1. (That syntax also works in 5.7.4 or later, but -
DWITH_engine_STORAGE_ENGINE=0 is preferred.) Examples:

-DWITHOUT_EXAMPLE_STORAGE_ENGINE=1
-DWITHOUT_FEDERATED_STORAGE_ENGINE=1
-DWITHOUT_PARTITION_STORAGE_ENGINE=1

If neither -DWITH_engine_STORAGE_ENGINE nor -DWITHOUT_engine_STORAGE_ENGINE are
specified for a given storage engine, the engine is built as a shared module, or excluded if it cannot be
built as a shared module.

Feature Options

• -DCOMPILATION_COMMENT=string

A descriptive comment about the compilation environment.

• -DDEFAULT_CHARSET=charset_name

The server character set. By default, MySQL uses the latin1 (cp1252 West European) character
set.

charset_name may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256,
cp1257, cp850, cp852, cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8,
greek, hebrew, hp8, keybcs2, koi8r, koi8u, latin1, latin2, latin5, latin7, macce,
macroman, sjis, swe7, tis620, ucs2, ujis, utf8, utf8mb4, utf16, utf16le, utf32. The
permissible character sets are listed in the cmake/character_sets.cmake file as the value of
CHARSETS_AVAILABLE.

This value can be set at server startup with the --character_set_server option.

• -DDEFAULT_COLLATION=collation_name

The server collation. By default, MySQL uses latin1_swedish_ci. Use the SHOW COLLATION
statement to determine which collations are available for each character set.

MySQL Source-Configuration Options

146

This value can be set at server startup with the --collation_server option.

• -DDISABLE_PSI_COND=bool

Whether to exclude the Performance Schema condition instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_FILE=bool

Whether to exclude the Performance Schema file instrumentation. The default is OFF (include). This
option was added in MySQL 5.7.3.

• -DDISABLE_PSI_IDLE=bool

Whether to exclude the Performance Schema idle instrumentation. The default is OFF (include). This
option was added in MySQL 5.7.3.

• -DDISABLE_PSI_MEMORY=bool

Whether to exclude the Performance Schema memory instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_METADATA=bool

Whether to exclude the Performance Schema metadata instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_MUTEX=bool

Whether to exclude the Performance Schema mutex instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_RWLOCK=bool

Whether to exclude the Performance Schema rwlock instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_SOCKET=bool

Whether to exclude the Performance Schema socket instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_SP=bool

Whether to exclude the Performance Schema stored program instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_STAGE=bool

Whether to exclude the Performance Schema stage instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_STATEMENT=bool

Whether to exclude the Performance Schema statement instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_STATEMENT_DIGEST=bool

Whether to exclude the Performance Schema statement_digest instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_TABLE=bool

MySQL Source-Configuration Options

147

Whether to exclude the Performance Schema table instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DENABLE_DEBUG_SYNC=bool

Whether to compile the Debug Sync facility into the server. This facility is used for testing and
debugging. This option is enabled by default, but has no effect unless MySQL is configured
with debugging enabled. If debugging is enabled and you want to disable Debug Sync, use -
DENABLE_DEBUG_SYNC=0.

When compiled in, Debug Sync is disabled by default at runtime. To enable it, start mysqld with the
--debug-sync-timeout=N option, where N is a timeout value greater than 0. (The default value is
0, which disables Debug Sync.) N becomes the default timeout for individual synchronization points.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• -DENABLE_DOWNLOADS=bool

Whether to download optional files. For example, with this option enabled, CMake downloads the
Google Test distribution that is used by the test suite to run unit tests.

• -DENABLE_DTRACE=bool

Whether to include support for DTrace probes. For information about DTrace, wee Section 5.4,
“Tracing mysqld Using DTrace”

• -DENABLE_GCOV=bool

Whether to include gcov support (Linux only).

• -DENABLE_GPROF=bool

Whether to enable gprof (optimized Linux builds only).

• -DENABLED_LOCAL_INFILE=bool

Whether to enable LOCAL capability in the client library for LOAD DATA INFILE.

This option controls client-side LOCAL capability, but the capability can be set on the server side at
server startup with the --local-infile option. See Section 6.1.6, “Security Issues with LOAD
DATA LOCAL”.

• -DENABLED_PROFILING=bool

Whether to enable query profiling code (for the SHOW PROFILE and SHOW PROFILES statements).

• -DIGNORE_AIO_CHECK=bool

If the -DBUILD_CONFIG=mysql_release option is given on Linux, the libaio library must be
linked in by default. If you do not have libaio or do not want to install it, you can suppress the
check for it by specifying -DIGNORE_AIO_CHECK=1.

• -DINNODB_PAGE_ATOMIC_REF_COUNT=bool

Whether to enable or disable atomic page reference counting. Fetching and releasing pages from
the buffer pool and tracking the page state are expensive and complex operations. Using a page
mutex to track these operations does not scale well. With INNODB_PAGE_ATOMIC_REF_COUNT=ON
(default), fetch and release is tracked using atomics where available. For platforms that do not
support atomics, set INNODB_PAGE_ATOMIC_REF_COUNT=OFF to disable atomic page reference
counting.

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html

MySQL Source-Configuration Options

148

When atomic page reference counting is enabled (default), “[Note] InnoDB: Using atomics
to ref count buffer pool pages” is printed to the error log at server startup. If atomic page
reference counting is disabled, “[Note] InnoDB: Using mutexes to ref count buffer
pool pages” is printed instead.

This build option was introduced with the fix for MySQL Bug #68079.

• -DMAX_INDEXES=num

The maximum number of indexes per table. The default is 64. The maximum is 255. Values smaller
than 64 are ignored and the default of 64 is used.

• -DMYSQL_MAINTAINER_MODE=bool

Whether to enable a MySQL maintainer-specific development environment. If enabled, this option
causes compiler warnings to become errors.

• -DMYSQL_PROJECT_NAME=name

For Windows or Mac OS X, the project name to incorporate into the project file name.

• -DMYSQL_TCP_PORT=port_num

The port number on on which the server listens for TCP/IP connections. The default is 3306.

This value can be set at server startup with the --port option.

• -DMYSQL_UNIX_ADDR=file_name

The Unix socket file path on which the server listens for socket connections. This must be an
absolute path name. The default is /tmp/mysql.sock.

This value can be set at server startup with the --socket option.

• -DOPTIMIZER_TRACE=bool

Whether to support optimizer tracing. See MySQL Internals: Tracing the Optimizer.

• -DWITH_ASAN=bool

Whether to enable AddressSanitizer, for compilers that support it. The default is off. This option was
added in MySQL 5.7.3.

• -DWITH_AUTHENTICATION_PAM=bool

Whether to build the PAM authentication plugin, for source trees that include this plugin. (See The
PAM Authentication Plugin.) Beginning with MySQL 5.7.2, if this option is specified and the plugin
cannot e compiled, the build fails.

• -DWITH_CLIENT_PROTOCOL_TRACING=bool

Whether to build the client-side protocol tracing framework into the client library. By default, this
option is enabled. This option was added in MySQL 5.7.2.

For information about writing protocol trace client plugins, see Section 22.2.4.11, “Writing Protocol
Trace Plugins”.

See also the WITH_TEST_TRACE_PLUGIN option.

• -DWITH_DEBUG=bool

Whether to include debugging support.

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/refman/5.6/en/pam-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.6/en/pam-authentication-plugin.html

MySQL Source-Configuration Options

149

Configuring MySQL with debugging support enables you to use the --debug="d,parser_debug"
option when you start the server. This causes the Bison parser that is used to process SQL
statements to dump a parser trace to the server's standard error output. Typically, this output is
written to the error log.

• -DWITH_DEFAULT_FEATURE_SET=bool

Whether to use the flags from cmake/build_configurations/feature_set.cmake.

• -DWITH_EDITLINE=value

Which libedit/editline library to use. The permitted values are bundled (the default) and
system.

WITH_EDITLINE was added in MySQL 5.7.2. It replaces WITH_LIBEDIT, which has been removed.

• -DWITH_EMBEDDED_SERVER=bool

Whether to build the libmysqld embedded server library.

• -DWITH_EXTRA_CHARSETS=name

Which extra character sets to include:

• all: All character sets. This is the default.

• complex: Complex character sets.

• none: No extra character sets.

• -DWITH_INNODB_EXTRA_DEBUG=bool

Whether to include extra InnoDB debugging support.

Enabling WITH_INNODB_EXTRA_DEBUG turns on extra InnoDB debug checks. This option can only
be enabled when WITH_DEBUG is enabled.

• -DWITH_INNODB_MEMCACHED=bool

Whether to generate memcached shared libraries (libmemcached.so and innodb_engine.so).

• -DWITH_LIBEVENT=string

Which libevent library to use. Permitted values are bundled (default), system, and yes. If
you specify system or yes, the system libevent library is used if present. If the system library
is not found, the bundled libevent library is used. The libevent library is required by InnoDB
memcached.

• -DWITH_LIBWRAP=bool

Whether to include libwrap (TCP wrappers) support.

• -DWITH_MSAN=bool

Whether to enable MemorySanitizer, for compilers that support it. The default is off. This option was
added in MySQL 5.7.4.

• -DWITH_SSL={ssl_type|path_name}

The type of SSL support to include or the path name to the OpenSSL installation to use.

• ssl_type can be one of the following values:

http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_libedit

MySQL Source-Configuration Options

150

• yes: Use the system SSL library if present, else the library bundled with the distribution.

• bundled: Use the SSL library bundled with the distribution. This is the default.

• system: Use the system SSL library.

• path_name is the path name to the OpenSSL installation to use. Using this can be preferable to
using the ssl_type value of system, for it can prevent CMake from detecting and using an older
or incorrect OpenSSL version installed on the system. (Another permitted way to do the same
thing is to set the CMAKE_PREFIX_PATH option to path_name.)

For information about using SSL support, see Section 6.3.11, “Using SSL for Secure Connections”.

• -DWITH_TEST_TRACE_PLUGIN=bool

Whether to build the test protocol trace client plugin (see Using the Test Protocol Trace
Plugin). By default, this option is disabled. Enabling this option has no effect unless the
WITH_CLIENT_PROTOCOL_TRACING option is enabled. If MySQL is configured with both options
enabled, the libmysqlclient client library is built with the test protocol trace plugin built in, and all
the standard MySQL clients load the plugin. However, even when the test plugin is enabled, it has no
effect by default. Control over the plugin is afforded using environment variables; see Using the Test
Protocol Trace Plugin.

This option was added in MySQL 5.7.2.

Note

Do not enable the WITH_TEST_TRACE_PLUGIN option if you want to use
your own protocol trace plugins because only one such plugin can be loaded
at a time and an error occurs for attempts to load a second one. If you have
already built MySQL with the test protocol trace plugin enabled to see how
it works, you must rebuild MySQL without it before you can use your own
plugins.

For information about writing trace plugins, see Section 22.2.4.11, “Writing Protocol Trace Plugins”.

• -DWITH_UNIXODBC=1

Enables unixODBC support, for Connector/ODBC.

• -DWITH_ZLIB=zlib_type

Some features require that the server be built with compression library support, such as the
COMPRESS() and UNCOMPRESS() functions, and compression of the client/server protocol. The
WITH_ZLIB indicates the source of zlib support:

• bundled: Use the zlib library bundled with the distribution.

• system: Use the system zlib library. This is the default.

• -DWITHOUT_SERVER=bool

Whether to build without the MySQL server. The default is OFF, which does build the server.

Compiler Flags

• -DCMAKE_C_FLAGS="flags"

Flags for the C Compiler.

• -DCMAKE_CXX_FLAGS="flags"

Dealing with Problems Compiling MySQL

151

Flags for the C++ Compiler.

• -DWITH_DEFAULT_COMPILER_OPTIONS=bool

Whether to use the flags from cmake/build_configurations/compiler_options.cmake.

Note

All optimization flags were carefully chosen and tested by the MySQL build
team. Overriding them can lead to unexpected results and is done at your
own risk.

To specify your own C and C++ compiler flags, for flags that do not affect optimization, use the
CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options.

When providing your own compiler flags, you might want to specify CMAKE_BUILD_TYPE as well.

For example, to create a 32-bit release build on a 64-bit Linux machine, do this:

shell> mkdir bld
shell> cd bld
shell> cmake .. -DCMAKE_C_FLAGS=-m32 \
 -DCMAKE_CXX_FLAGS=-m32 \
 -DCMAKE_BUILD_TYPE=RelWithDebInfo

If you set flags that affect optimization (-Onumber), you must set the CMAKE_C_FLAGS_build_type
and/or CMAKE_CXX_FLAGS_build_type options, where build_type corresponds
to the CMAKE_BUILD_TYPE value. To specify a different optimization for the default
build type (RelWithDebInfo) set the CMAKE_C_FLAGS_RELWITHDEBINFO and
CMAKE_CXX_FLAGS_RELWITHDEBINFO options. For example, to compile on Linux with -O3 and with
debug symbols, do this:

shell> cmake .. -DCMAKE_C_FLAGS_RELWITHDEBINFO="-O3 -g" \
 -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O3 -g"

2.8.5 Dealing with Problems Compiling MySQL

The solution to many problems involves reconfiguring. If you do reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts up, it looks
for that file and reads its contents if it exists, on the assumption that the information is still correct.
That assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old object files or configuration information from being used, run the following commands
before re-running CMake:

On Unix:

shell> make clean
shell> rm CMakeCache.txt

On Windows:

Dealing with Problems Compiling MySQL

152

shell> devenv MySQL.sln /clean
shell> del CMakeCache.txt

If you build outside of the source tree, remove and recreate your build directory before re-running
CMake. For instructions on building outside of the source tree, see How to Build MySQL Server with
CMake.

On some systems, warnings may occur due to differences in system include files. The following list
describes other problems that have been found to occur most often when compiling MySQL:

• To define which C and C++ compilers to use, you can define the CC and CXX environment
variables. For example:

shell> CC=gcc
shell> CXX=g++
shell> export CC CXX

To specify your own C and C++ compiler flags, use the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS
CMake options. See Compiler Flags.

To see what flags you might need to specify, invoke mysql_config with the --cflags and --
cxxflags options.

• To see what commands are executed during the compile stage, after using CMake to configure
MySQL, run make VERBOSE=1 rather than just make.

• If compilation fails, check whether the MYSQL_MAINTAINER_MODE option is enabled. This mode
causes compiler warnings to become errors, so disabling it may enable compilation to proceed.

• If your compile fails with errors such as any of the following, you must upgrade your version of make
to GNU make:

make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need
to create sql_yacc.cc because MySQL comes with a pregenerated copy. However, if you do need
to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install a recent version of
bison (the GNU version of yacc) and use that instead.

Versions of bison older than 1.75 may report this error:

http://dev.mysql.com/doc/internals/en/cmake.html
http://dev.mysql.com/doc/internals/en/cmake.html

MySQL Configuration and Third-Party Tools

153

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of
bison.

For information about acquiring or updating tools, see the system requirements in Section 2.8,
“Installing MySQL from Source”.

2.8.6 MySQL Configuration and Third-Party Tools

Third-party tools that need to determine the MySQL version from the MySQL source can read the
VERSION file in the top-level source directory. The file lists the pieces of the version separately. For
example, if the version is MySQL 5.7.4-m14, the file looks like this:

MYSQL_VERSION_MAJOR=5
MYSQL_VERSION_MINOR=7
MYSQL_VERSION_PATCH=4
MYSQL_VERSION_EXTRA=-m14

If the source is not for a General Availablility (GA) release, the MYSQL_VERSION_EXTRA value will be
nonempty. For the example, the value corresponds to Milestone 14.

To construct a five-digit number from the version components, use this formula:

MYSQL_VERSION_MAJOR*10000 + MYSQL_VERSION_MINOR*100 + MYSQL_VERSION_PATCH

2.9 Postinstallation Setup and Testing

This section discusses post-installation items for Unix-like systems. If you are using Windows, see
Section 2.3.8, “Windows Postinstallation Procedures”.

After installing MySQL, there are some items that you should address. For example:

• You should initialize the data directory and create the MySQL grant tables, as describe in
Section 2.9.1, “Postinstallation Procedures for Unix-like Systems”.

• An important security concern is that the initial accounts in the grant tables have no passwords. You
should assign passwords to prevent unauthorized access to the MySQL server. For instructions, see
Section 2.9.2, “Securing the Initial MySQL Accounts”.

• Optionally, you can create time zone tables to enable recognition of named time zones. For
instructions, see Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”.

• If you have trouble getting the server to start, see Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”.

• When you are ready to create additional user accounts, you can find information on the MySQL
access control system and account management in Section 6.2, “The MySQL Access Privilege
System”, and Section 6.3, “MySQL User Account Management”.

2.9.1 Postinstallation Procedures for Unix-like Systems

After installing MySQL on a Unix-like system, you must initialize the grant tables, start the server,
and make sure that the server works satisfactorily. You may also wish to arrange for the server to
be started and stopped automatically when your system starts and stops. You should also assign
passwords to the accounts in the grant tables.

On a Unix-like system, the grant tables are set up by the mysql_install_db program. For some
installation methods, this program is run for you automatically if an existing database cannot be found.

Postinstallation Procedures for Unix-like Systems

154

• If you install MySQL on Linux using RPM distributions, the server RPM runs mysql_install_db.

• Using the native packaging system on many platforms, including Debian Linux, Ubuntu Linux,
Gentoo Linux and others, the mysql_install_db command is run for you.

• If you install MySQL on Mac OS X using a DMG distribution, the installer runs mysql_install_db.

For other platforms and installation types, including generic binary and source installs, you will need to
run mysql_install_db yourself.

The following procedure describes how to initialize the grant tables (if that has not previously been
done) and start the server. It also suggests some commands that you can use to test whether the
server is accessible and working properly. For information about starting and stopping the server
automatically, see Section 2.9.1.2, “Starting and Stopping MySQL Automatically”.

After you complete the procedure and have the server running, you should assign passwords to
the accounts created by mysql_install_db and perhaps restrict access to test databases. For
instructions, see Section 2.9.2, “Securing the Initial MySQL Accounts”.

In the examples shown here, the server runs under the user ID of the mysql login account. This
assumes that such an account exists. Either create the account if it does not exist, or substitute the
name of a different existing login account that you plan to use for running the server. For information
about creating the account, see Creating a mysql System User and Group, in Section 2.2, “Installing
MySQL on Unix/Linux Using Generic Binaries”.

1. Change location into the top-level directory of your MySQL installation, represented here by
BASEDIR:

shell> cd BASEDIR

BASEDIR is the installation directory for your MySQL instance. It is likely to be something like /
usr/local/mysql or /usr/local. The following steps assume that you have changed location
to this directory.

You will find several files and subdirectories in the BASEDIR directory. The most important for
installation purposes are the bin and scripts subdirectories:

• The bin directory contains client programs and the server. You should add the full path name
of this directory to your PATH environment variable so that your shell finds the MySQL programs
properly. See Section 2.11, “Environment Variables”.

• The scripts directory contains the mysql_install_db script used to initialize the mysql
database containing the grant tables that store the server access permissions.

2. If necessary, ensure that the distribution contents are accessible to mysql. If you installed the
distribution as mysql, no further action is required. If you installed the distribution as root, its
contents will be owned by root. Change its ownership to mysql by executing the following
commands as root in the installation directory. The first command changes the owner attribute of
the files to the mysql user. The second changes the group attribute to the mysql group.

shell> chown -R mysql .
shell> chgrp -R mysql .

3. If necessary, run the mysql_install_db program to set up the initial MySQL grant tables
containing the privileges that determine how users are permitted to connect to the server. You will
need to do this if you used a distribution type for which the installation procedure does not run the
program for you.

shell> scripts/mysql_install_db --user=mysql

Postinstallation Procedures for Unix-like Systems

155

Typically, mysql_install_db needs to be run only the first time you install MySQL, so you can
skip this step if you are upgrading an existing installation, However, mysql_install_db does not
overwrite any existing privilege tables, so it should be safe to run in any circumstances.

It might be necessary to specify other options such as --basedir or --datadir if
mysql_install_db does not identify the correct locations for the installation directory or data
directory. For example:

shell> scripts/mysql_install_db --user=mysql \
 --basedir=/opt/mysql/mysql \
 --datadir=/opt/mysql/mysql/data

The mysql_install_db script creates the server's data directory with mysql as the owner.
Under the data directory, it creates directories for the mysql database that holds the grant tables
and the test database that you can use to test MySQL. The script also creates privilege table
entries for root and anonymous-user accounts. The accounts have no passwords initially.
Section 2.9.2, “Securing the Initial MySQL Accounts”, describes the initial privileges. Briefly, these
privileges permit the MySQL root user to do anything, and permit anybody to create or use
databases with a name of test or starting with test_. See Section 6.2, “The MySQL Access
Privilege System”, for a complete listing and description of the grant tables.

For a more secure installation, invoke mysql_install_db with the --random-passwords
option. This causes it to assign a random password to the MySQL root accounts, set the
“password expired” flag for those accounts, and remove the anonymous-user MySQL accounts. For
additional details, see Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”.
(Install operations using RPMs for Unbreakable Linux Network are unaffected because they do not
use mysql_install_db.)

It is important to make sure that the database directories and files are owned by the mysql login
account so that the server has read and write access to them when you run it later. To ensure this
if you run mysql_install_db as root, include the --user option as shown. Otherwise, you
should execute the script while logged in as mysql, in which case you can omit the --user option
from the command.

If you do not want to have the test database, you can remove it after starting the server, using the
instructions in Section 2.9.2, “Securing the Initial MySQL Accounts”.

If you have trouble with mysql_install_db at this point, see Section 2.9.1.1, “Problems Running
mysql_install_db”.

4. Most of the MySQL installation can be owned by root if you like. The exception is that the data
directory must be owned by mysql. To accomplish this, run the following commands as root in the
installation directory:

shell> chown -R root .
shell> chown -R mysql data

5. If the plugin directory (the directory named by the plugin_dir system variable) is writable by
the server, it may be possible for a user to write executable code to a file in the directory using
SELECT ... INTO DUMPFILE. This can be prevented by making plugin_dir read only to
the server or by setting --secure-file-priv to a directory where SELECT writes can be made
safely.

6. If you installed MySQL using a source distribution, you may want to optionally copy one of the
provided configuration files from the support-files directory into your /etc directory. There
are different sample configuration files for different use cases, server types, and CPU and RAM
configurations. If you want to use one of these standard files, you should copy it to /etc/my.cnf,
or /etc/mysql/my.cnf and edit and check the configuration before starting your MySQL server
for the first time.

Postinstallation Procedures for Unix-like Systems

156

If you do not copy one of the standard configuration files, the MySQL server will be started with the
default settings.

If you want MySQL to start automatically when you boot your machine, you can copy support-
files/mysql.server to the location where your system has its startup files. More information
can be found in the mysql.server script itself, and in Section 2.9.1.2, “Starting and Stopping
MySQL Automatically”.

7. Start the MySQL server:

shell> bin/mysqld_safe --user=mysql &

It is important that the MySQL server be run using an unprivileged (non-root) login account. To
ensure this if you run mysqld_safe as root, include the --user option as shown. Otherwise,
you should execute the script while logged in as mysql, in which case you can omit the --user
option from the command.

For further instructions for running MySQL as an unprivileged user, see Section 6.1.5, “How to Run
MySQL as a Normal User”.

If the command fails immediately and prints mysqld ended, look for information in the error log
(which by default is the host_name.err file in the data directory).

If you neglected to create the grant tables by running mysql_install_db before proceeding to
this step, the following message appears in the error log file when you start the server:

mysqld: Can't find file: 'host.frm'

This error also occurs if you run mysql_install_db as root without the --user option.
Remove the data directory and run mysql_install_db with the --user option as described
previously.

If you have other problems starting the server, see Section 2.9.1.3, “Starting and Troubleshooting
the MySQL Server”. For more information about mysqld_safe, see Section 4.3.2, “mysqld_safe
— MySQL Server Startup Script”.

8. Use mysqladmin to verify that the server is running. The following commands provide simple tests
to check whether the server is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

The output from mysqladmin version varies slightly depending on your platform and version of
MySQL, but should be similar to that shown here:

shell> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 5.7.5, for pc-linux-gnu on i686
...

Server version 5.7.5
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

Postinstallation Procedures for Unix-like Systems

157

9. Verify that you can shut down the server:

shell> bin/mysqladmin -u root shutdown

10. Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld
directly. For example:

shell> bin/mysqld_safe --user=mysql &

If mysqld_safe fails, see Section 2.9.1.3, “Starting and Troubleshooting the MySQL Server”.

11. Run some simple tests to verify that you can retrieve information from the server. The output should
be similar to what is shown here:

shell> bin/mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+

shell> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+

12. There is a benchmark suite in the sql-bench directory (under the MySQL installation directory)
that you can use to compare how MySQL performs on different platforms. The benchmark suite is
written in Perl. It requires the Perl DBI module that provides a database-independent interface to
the various databases, and some other additional Perl modules:

DBI
DBD::mysql
Data::Dumper

Postinstallation Procedures for Unix-like Systems

158

Data::ShowTable

These modules can be obtained from CPAN (http://www.cpan.org/). See also Section 2.12.1,
“Installing Perl on Unix”.

The sql-bench/Results directory contains the results from many runs against different
databases and platforms. To run all tests, execute these commands:

shell> cd sql-bench
shell> perl run-all-tests

If you do not have the sql-bench directory, you probably installed MySQL using RPM files
other than the source RPM. (The source RPM includes the sql-bench benchmark directory.)
In this case, you must first install the benchmark suite before you can use it. There are separate
benchmark RPM files named mysql-bench-VERSION.i386.rpm that contain benchmark code
and data.

If you have a source distribution, there are also tests in its tests subdirectory that you can run. For
example, to run auto_increment.tst, execute this command from the top-level directory of your
source distribution:

shell> mysql -vvf test < ./tests/auto_increment.tst

The expected result of the test can be found in the ./tests/auto_increment.res file.

13. At this point, you should have the server running. However, none of the initial MySQL accounts
have a password, and the server permits permissive access to test databases. To tighten security,
follow the instructions in Section 2.9.2, “Securing the Initial MySQL Accounts”.

The MySQL 5.7 installation procedure creates time zone tables in the mysql database but does not
populate them. To do so, use the instructions in Section 10.6, “MySQL Server Time Zone Support”.

To make it more convenient to invoke programs installed in the bin directory under the installation
directory, you can add that directory to your PATH environment variable setting. That enables you
to run a program by typing only its name, not its entire path name. See Section 4.2.4, “Setting
Environment Variables”.

2.9.1.1 Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables. It does not
overwrite existing MySQL privilege tables, and it does not affect any other data.

If you want to re-create your privilege tables, first stop the mysqld server if it is running. Then rename
the mysql directory under the data directory to save it, and then run mysql_install_db. Suppose
that your current directory is the MySQL installation directory and that mysql_install_db is located
in the bin directory and the data directory is named data. To rename the mysql database and re-run
mysql_install_db, use these commands.

shell> mv data/mysql data/mysql.old
shell> scripts/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after
displaying the following messages:

Starting mysqld daemon with databases from XXXXXX

http://www.cpan.org/

Postinstallation Procedures for Unix-like Systems

159

mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the
directory XXXXXX named by the error message and should indicate why mysqld did not start. If you
do not understand what happened, include the log when you post a bug report. See Section 1.7,
“How to Report Bugs or Problems”.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been created
already. If so, there is no need to run mysql_install_db at all because it needs to be run only
once (when you install MySQL the first time).

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation
in a different location. For example, you might have a production installation, but you want to create
a second installation for testing purposes. Generally the problem that occurs when you try to run a
second server is that it tries to use a network interface that is in use by the first server. In this case,
you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.3, “Running Multiple MySQL Instances
on One Machine”.

• You do not have write access to the /tmp directory

If you do not have write access to create temporary files or a Unix socket file in the default location
(the /tmp directory) or the TMP_DIR environment variable, if it has been set, an error occurs when
you run mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing
these commands prior to starting mysql_install_db or mysqld, where some_tmp_dir is the full
path name to some directory for which you have write permission:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

shell> scripts/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the scripts directory, modify the first command to scripts/
mysql_install_db.

See Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”, and Section 2.11,
“Environment Variables”.

There are some alternatives to running the mysql_install_db script provided in the MySQL
distribution:

• If you want the initial privileges to be different from the standard defaults, you can modify
mysql_install_db before you run it. However, it is preferable to use GRANT and REVOKE
to change the privileges after the grant tables have been set up. In other words, you can run
mysql_install_db, and then use mysql -u root mysql to connect to the server as the
MySQL root user so that you can issue the necessary GRANT and REVOKE statements.

Postinstallation Procedures for Unix-like Systems

160

If you want to install MySQL on several machines with the same privileges, you can put the
GRANT and REVOKE statements in a file and execute the file as a script using mysql after running
mysql_install_db. For example:

shell> scripts/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

By doing this, you can avoid having to issue the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You
might want to do this if you are just learning how to use GRANT and REVOKE and have made so many
modifications after running mysql_install_db that you want to wipe out the tables and start over.

To re-create the grant tables, remove all the .frm, .MYI, and .MYD files in the mysql database
directory. Then run the mysql_install_db script again.

• You can start mysqld manually using the --skip-grant-tables option and add the privilege
information yourself using mysql:

shell> bin/mysqld_safe --user=mysql --skip-grant-tables &
shell> bin/mysql mysql

From mysql, manually execute the SQL commands contained in mysql_install_db. Make sure
that you run mysqladmin flush-privileges or mysqladmin reload afterward to tell the
server to reload the grant tables.

Note that by not using mysql_install_db, you not only have to populate the grant tables
manually, you also have to create them first.

2.9.1.2 Starting and Stopping MySQL Automatically

Generally, you start the mysqld server in one of these ways:

• Invoke mysqld directly. This works on any platform.

• Invoke mysqld_safe, which tries to determine the proper options for mysqld and then runs it with
those options. This script is used on Unix and Unix-like systems. See Section 4.3.2, “mysqld_safe
— MySQL Server Startup Script”.

• Invoke mysql.server. This script is used primarily at system startup and shutdown on systems that
use System V-style run directories (that is, /etc/init.d and run-level specific directories), where
it usually is installed under the name mysql. The mysql.server script starts the server by invoking
mysqld_safe. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• On Mac OS X, install a separate MySQL Startup Item package to enable the automatic startup
of MySQL on system startup. The Startup Item starts the server by invoking mysql.server.
See Section 2.4.3, “Installing the MySQL Startup Item”, for details. A MySQL Preference Pane
also provides control for starting and stopping MySQL through the System Preferences, see
Section 2.4.4, “Installing and Using the MySQL Preference Pane”.

• Use the Solaris/OpenSolaris service management framework (SMF) system to initiate and control
MySQL startup. For more information, see Section 2.6.2, “Installing MySQL on OpenSolaris Using
IPS”.

The mysqld_safe and mysql.server scripts, Solaris/OpenSolaris SMF, and the Mac OS X Startup
Item (or MySQL Preference Pane) can be used to start the server manually, or automatically at system
startup time. mysql.server and the Startup Item also can be used to stop the server.

To start or stop the server manually using the mysql.server script, invoke it with start or stop
arguments:

Postinstallation Procedures for Unix-like Systems

161

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and
then invokes mysqld_safe. If you want the server to run as some specific user, add an appropriate
user option to the [mysqld] group of the /etc/my.cnf option file, as shown later in this section.
(It is possible that you will need to edit mysql.server if you've installed a binary distribution of
MySQL in a nonstandard location. Modify it to change location into the proper directory before it runs
mysqld_safe. If you do this, your modified version of mysql.server may be overwritten if you
upgrade MySQL in the future, so you should make a copy of your edited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server
manually by executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you need to add start and stop commands to
the appropriate places in your /etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), or a native Linux package
installation, the mysql.server script may be installed in the /etc/init.d directory with the name
mysql. See Section 2.5.3, “Installing MySQL on Linux Using RPM Packages”, for more information on
the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as
mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install
mysql.server automatically, you can install it manually. The script can be found in the support-
files directory under the MySQL installation directory or in a MySQL source tree.

To install mysql.server manually, copy it to the /etc/init.d directory with the name mysql,
and then make it executable. Do this by changing location into the appropriate directory where
mysql.server is located and executing these commands:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Note

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /
etc/init.d. Adjust the preceding commands accordingly. Alternatively, first
create /etc/init.d as a symbolic link that points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on your
operating system. On Linux, you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql
script:

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual
page states that scripts in this directory are executed only if their basename matches the *.sh shell
file name pattern. Any other files or directories present within the directory are silently ignored. In

Postinstallation Procedures for Unix-like Systems

162

other words, on FreeBSD, you should install the mysql.server script as /usr/local/etc/rc.d/
mysql.server.sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/
init.d/boot.local to start additional services on startup. To start up MySQL using this method,
you could append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf file
might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script supports the following options: basedir, datadir, and pid-file. If
specified, they must be placed in an option file, not on the command line. mysql.server supports
only start and stop as command-line arguments.

The following table shows which option groups the server and each startup script read from option files.

Table 2.14 MySQL Startup scripts and supported server option groups

Script Option Groups

mysqld [mysqld], [server], [mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.6] and
[mysqld-5.7] are read by servers having versions 5.6.x, 5.7.x, and so forth. This feature can be
used to specify options that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. However, you should update your option files to
use the [mysql.server] and [mysqld_safe] groups instead when using MySQL 5.7.

For more information on MySQL configuration files and their structure and contents, see
Section 4.2.3.3, “Using Option Files”.

2.9.1.3 Starting and Troubleshooting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server on a Unix-like
system. If you are using Windows, see Section 2.3.6, “Troubleshooting a Microsoft Windows MySQL
Server Installation”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start. Log files are located in the data directory
(typically C:\Program Files\MySQL\MySQL Server 5.7\data on Windows, /usr/local/
mysql/data for a Unix/Linux binary distribution, and /usr/local/var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host_name.err and

Postinstallation Procedures for Unix-like Systems

163

host_name.log, where host_name is the name of your server host. Then examine the last few
lines of these files. Use tail to display them:

shell> tail host_name.err
shell> tail host_name.log

• Specify any special options needed by the storage engines you are using. You can create a my.cnf
file and specify startup options for the engines that you plan to use. If you are going to use storage
engines that support transactional tables (InnoDB, NDB), be sure that you have them configured
the way you want before starting the server. If you are using InnoDB tables, see Section 14.2.3,
“InnoDB Configuration” for guidelines and Section 14.2.13, “InnoDB Startup Options and System
Variables” for option syntax.

Although storage engines use default values for options that you omit, Oracle recommends that
you review the available options and specify explicit values for any options whose defaults are not
appropriate for your installation.

• Make sure that the server knows where to find the data directory. The mysqld server uses this
directory as its current directory. This is where it expects to find databases and where it expects to
write log files. The server also writes the pid (process ID) file in the data directory.

The default data directory location is hardcoded when the server is compiled. To determine what
the default path settings are, invoke mysqld with the --verbose and --help options. If the data
directory is located somewhere else on your system, specify that location with the --datadir option
to mysqld or mysqld_safe, on the command line or in an option file. Otherwise, the server will not
work properly. As an alternative to the --datadir option, you can specify mysqld the location of
the base directory under which MySQL is installed with the --basedir, and mysqld looks for the
data directory there.

To check the effect of specifying path options, invoke mysqld with those options followed by the --
verbose and --help options. For example, if you change location into the directory where mysqld
is installed and then run the following command, it shows the effect of starting the server with a base
directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be
the last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this
command:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

• Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must allow the server to read and modify them.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means
that the privileges of the data directory or its contents do not permit server access. In this case, you
change the permissions for the involved files and directories so that the server has the right to use
them. You can also start the server as root, but this raises security issues and should be avoided.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Securing the Initial MySQL Accounts

164

Change location into the data directory and check the ownership of the data directory and its
contents to make sure the server has access. For example, if the data directory is /usr/local/
mysql/var, use this command:

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use
for running the server, change their ownership to that account. If the account is named mysql, use
these commands:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running
on your system that manages application access to various parts of the file system. In this case,
reconfigure that software to enable mysqld to access the directories it uses during normal operation.

• Verify that the network interfaces the server wants to use are available.

If either of the following errors occur, it means that some other program (perhaps another mysqld
server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server
before starting mysqld again. (If another server is running, and you really want to run multiple
servers, you can find information about how to do so in Section 5.3, “Running Multiple MySQL
Instances on One Machine”.)

If no other server is running, execute the command telnet your_host_name
tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple
of times. If you do not get an error message like telnet: Unable to connect to remote
host: Connection refused, some other program is using the TCP/IP port that mysqld is trying
to use. Track down what program this is and disable it, or tell mysqld to listen to a different port with
the --port option. In this case, specify the same non-default port number for client programs when
connecting to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks
connections to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, make sure that you have an entry in /etc/hosts
that looks like this:

127.0.0.1 localhost

• If you cannot get mysqld to start, try to make a trace file to find the problem by using the --debug
option. See Section 22.4.3, “The DBUG Package”.

2.9.2 Securing the Initial MySQL Accounts

Part of the MySQL installation process is to set up the mysql database that contains the grant tables:

• Windows distributions contain preinitialized grant tables.

• On Unix, the mysql_install_db program populates the grant tables. Some installation methods
run this program for you. Others require that you execute it manually. For details, see Section 2.9.1,
“Postinstallation Procedures for Unix-like Systems”.

Securing the Initial MySQL Accounts

165

The mysql.user grant table defines the initial MySQL user accounts and their access privileges:

• Some accounts have the user name root. These are superuser accounts that have all privileges
and can do anything. The initial root account passwords are empty, so anyone can connect to the
MySQL server as root without a password and be granted all privileges.

• On Windows, root accounts are created that permit connections from the local host only.
Connections can be made by specifying the host name localhost, the IP address 127.0.0.1,
or the IPv6 address ::1. If the user selects the Enable root access from remote machines
option during installation, the Windows installer creates another root account that permits
connections from any host.

• On Unix, each root account permits connections from the local host. Connections can be made
by specifying the host name localhost, the IP address 127.0.0.1, the IPv6 address ::1, or
the actual host name or IP address.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account.
However, this fails if the server is run with the --skip-name-resolve option, so the 127.0.0.1
account is useful in that case. The ::1 account is used for IPv6 connections.

• Some accounts are for anonymous users. These have an empty user name. The anonymous
accounts have no password, so anyone can use them to connect to the MySQL server.

• On Windows, there is one anonymous account that permits connections from the local host.
Connections can be made by specifying a host name of localhost.

• On Unix, each anonymous account permits connections from the local host. Connections can be
made by specifying a host name of localhost for one of the accounts, or the actual host name
or IP address for the other.

To display which accounts exist in the mysql.user table and check whether their passwords are
empty, use the following statement:

mysql> SELECT User, Host, Password FROM mysql.user;
+------+--------------------+----------+
| User | Host | Password |
+------+--------------------+----------+
root	localhost	
root	myhost.example.com	
root	127.0.0.1	
root	::1	
	localhost	
	myhost.example.com	
+------+--------------------+----------+

This output indicates that there are several root and anonymous-user accounts, none of which
have passwords. The output might differ on your system, but the presence of accounts with empty
passwords means that your MySQL installation is unprotected until you do something about it:

• You should assign a password to each MySQL root account.

• If you want to prevent clients from connecting as anonymous users without a password, you should
either assign a password to each anonymous account or else remove the accounts.

In addition, the mysql.db table contains rows that permit all accounts to access the test database
and other databases with names that start with test_. This is true even for accounts that otherwise
have no special privileges such as the default anonymous accounts. This is convenient for testing
but inadvisable on production servers. Administrators who want database access restricted only to
accounts that have permissions granted explicitly for that purpose should remove these mysql.db
table rows.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for
the root accounts, then for the anonymous accounts. The instructions also cover how to remove the

Securing the Initial MySQL Accounts

166

anonymous accounts, should you prefer not to permit anonymous access at all, and describe how to
remove permissive access to test databases. Replace newpwd in the examples with the password
that you want to use. Replace host_name with the name of the server host. You can determine this
name from the output of the preceding SELECT statement. For the output shown, host_name is
myhost.example.com.

Note

For additional information about setting passwords, see Section 6.3.5,
“Assigning Account Passwords”. If you forget your root password after setting
it, see Section C.5.4.1, “How to Reset the Root Password”.

You might want to defer setting the passwords until later, to avoid the need to specify them while you
perform additional setup or testing. However, be sure to set them before using your installation for
production purposes.

To set up additional accounts, see Section 6.3.2, “Adding User Accounts”.

Assigning root Account Passwords

The root account passwords can be set several ways. The following discussion demonstrates three
methods:

• Use the SET PASSWORD statement

• Use the UPDATE statement

• Use the mysqladmin command-line client program

To assign passwords using SET PASSWORD, connect to the server as root and issue a SET
PASSWORD statement for each root account listed in the mysql.user table. Be sure to encrypt the
password using the PASSWORD() function.

For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'::1' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('newpwd');

The last statement is unnecessary if the mysql.user table has no root account with a host value of
%.

For Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'::1' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');

You can also use a single statement that assigns a password to all root accounts by using UPDATE to
modify the mysql.user table directly. This method works on any platform:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')
 -> WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

Securing the Initial MySQL Accounts

167

To assign passwords to the root accounts using mysqladmin, execute the following commands:

shell> mysqladmin -u root password "newpwd"
shell> mysqladmin -u root -h host_name password "newpwd"

Those commands apply both to Windows and to Unix. The double quotation marks around the
password are not always necessary, but you should use them if the password contains spaces or other
characters that are special to your command interpreter.

The mysqladmin method of setting the root account passwords does not work for the
'root'@'127.0.0.1' or 'root'@'::1' account. Use the SET PASSWORD method shown earlier.

After the root passwords have been set, you must supply the appropriate password whenever you
connect as root to the server. For example, to shut down the server with mysqladmin, use this
command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Assigning Anonymous Account Passwords

The mysql commands in the following instructions include a -p option based on the assumption that
you have set the root account passwords using the preceding instructions and must specify that
password when connecting to the server.

To assign passwords to the anonymous accounts, connect to the server as root, then use either SET
PASSWORD or UPDATE. Be sure to encrypt the password using the PASSWORD() function.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');

To set the anonymous-user account passwords with a single UPDATE statement, do this (on any
platform):

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')
 -> WHERE User = '';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

Removing Anonymous Accounts

If you prefer to remove any anonymous accounts rather than assigning them passwords, do so as
follows on Windows:

Upgrading or Downgrading MySQL

168

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DROP USER ''@'localhost';

On Unix, remove the anonymous accounts like this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DROP USER ''@'localhost';
mysql> DROP USER ''@'host_name';

Securing Test Databases

By default, the mysql.db table contains rows that permit access by any user to the test database
and other databases with names that start with test_. (These rows have an empty User column
value, which for access-checking purposes matches any user name.) This means that such databases
can be used even by accounts that otherwise possess no privileges. If you want to remove any-user
access to test databases, do so as follows:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DELETE FROM mysql.db WHERE Db LIKE 'test%';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the privilege change
remains unnoticed by the server until you restart it.

With the preceding change, only users who have global database privileges or privileges granted
explicitly for the test database can use it. However, if you do not want the database to exist at all,
drop it:

mysql> DROP DATABASE test;

Note

On Windows, you can also perform the process described in this section using
the Configuration Wizard (see The Security Options Dialog). On all platforms,
the MySQL distribution includes mysql_secure_installation, a command-
line utility that automates much of the process of securing a MySQL installation.

2.10 Upgrading or Downgrading MySQL

This section describes the steps to upgrade or downgrade a MySQL installation.

Upgrading is a common procedure, as you pick up bug fixes within the same MySQL release series
or significant features between major MySQL releases. You perform this procedure first on some test
systems to make sure everything works smoothly, and then on the production systems.

Downgrading is less common. Typically, you undo an upgrade because of some compatibility or
performance issue that occurs on a production system, and was not uncovered during initial upgrade
verification on the test systems. As with the upgrade procedure, perform and verify the downgrade
procedure on some test systems first, before using it on a production system.

2.10.1 Upgrading MySQL

As a general rule, to upgrade from one release series to another, go to the next series rather than
skipping a series. To upgrade from a release series previous to MySQL 5.6, upgrade to each
successive release series in turn until you have reached MySQL 5.6, and then proceed with the

http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard-security.html

Upgrading MySQL

169

upgrade to MySQL 5.7. For example, if you currently are running MySQL 5.1 and wish to upgrade to
a newer series, upgrade to MySQL 5.5 first before upgrading to 5.6, and so forth. For information on
upgrading to MySQL 5.6, see the MySQL 5.6 Reference Manual.

To upgrade to MySQL 5.7, use the items in the following checklist as a guide:

• Before any upgrade, back up your databases, including the mysql database that contains the grant
tables. See Section 7.2, “Database Backup Methods”.

• Read all the notes in Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”. These notes enable
you to identify upgrade issues that apply to your current MySQL installation. Some incompatibilities
discussed in that section require your attention before upgrading. Others require some action after
upgrading.

• Read the Release Notes as well, which provide information about features that are new in MySQL
5.7 or differ from those found in earlier MySQL releases.

• After upgrading to a new version of MySQL, run mysql_upgrade (see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”). This program checks your tables, and
attempts to repair them if necessary. It also updates your grant tables to make sure that they have
the current structure so that you can take advantage of any new capabilities. (Some releases of
MySQL introduce changes to the structure of the grant tables to add new privileges or features.)

mysql_upgrade does not upgrade the contents of the help tables. For upgrade instructions, see
Section 5.1.10, “Server-Side Help”.

mysql_upgrade should not be used when the server is running with --gtid-mode=ON, since
it may make changes in nontransactional system tables in the mysql database, many of which
are MyISAM and cannot be changed to use a different storage engine. See GTID mode and
mysql_upgrade.

• If you run MySQL Server on Windows, see Section 2.3.7, “Upgrading MySQL on Windows”.

• If you use replication, see Section 16.4.3, “Upgrading a Replication Setup”, for information on
upgrading your replication setup.

• If you upgrade an installation originally produced by installing multiple RPM packages, it is best to
upgrade all the packages, not just some. For example, if you previously installed the server and
client RPMs, do not upgrade just the server RPM.

• If you have created a user-defined function (UDF) with a given name and upgrade MySQL to a
version that implements a new built-in function with the same name, the UDF becomes inaccessible.
To correct this, use DROP FUNCTION to drop the UDF, and then use CREATE FUNCTION to
re-create the UDF with a different nonconflicting name. The same is true if the new version of
MySQL implements a built-in function with the same name as an existing stored function. See
Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

For EL5, EL6, or EL7-based Linux platforms and Fedora 19 or 20, you can perform an in-place
upgrade of MySQL and its components with the MySQL Yum repository. See Section 2.10.1.1,
“Upgrading MySQL with the MySQL Yum Repository”.

For upgrades between versions of a MySQL release series that has reached General Availability
status, you can move the MySQL format files and data files between different versions on systems with
the same architecture. For upgrades to a version of a MySQL release series that is in development
status, that is not necessarily true. Use of development releases is at your own risk.

If you are cautious about using new versions, you can always rename your old mysqld before
installing a newer one. For example, if you are using a version of MySQL 5.6 and want to upgrade
to 5.7, rename your current server from mysqld to mysqld-5.6. If your new mysqld then does
something unexpected, you can simply shut it down and restart with your old mysqld.

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Upgrading MySQL

170

If problems occur, such as that the new mysqld server does not start or that you cannot connect
without a password, verify that you do not have an old my.cnf file from your previous installation. You
can check this with the --print-defaults option (for example, mysqld --print-defaults).
If this command displays anything other than the program name, you have an active my.cnf file that
affects server or client operation.

If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, you probably have used old header or library files when
compiling your programs. In this case, check the date for your mysql.h file and libmysqlclient.a
library to verify that they are from the new MySQL distribution. If not, recompile your programs
with the new headers and libraries. Recompilation might also be necessary for programs compiled
against the shared client library if the library major version number has changed (for example from
libmysqlclient.so.15 to libmysqlclient.so.16.

If your MySQL installation contains a large amount of data that might take a long time to convert after
an in-place upgrade, you might find it useful to create a “dummy” database instance for assessing what
conversions might be needed and the work involved to perform them. Make a copy of your MySQL
instance that contains a full copy of the mysql database, plus all other databases without data. Run
your upgrade procedure on this dummy instance to see what actions might be needed so that you can
better evaluate the work involved when performing actual data conversion on your original database
instance.

It is a good idea to rebuild and reinstall the Perl DBD::mysql module whenever you install a new
release of MySQL. The same applies to other MySQL interfaces as well, such as PHP mysql
extensions and the Python MySQLdb module.

2.10.1.1 Upgrading MySQL with the MySQL Yum Repository

For EL5, EL6, or EL7-based Linux platforms and Fedora 19 or 20, you can upgrade MySQL and its
components to the latest GA releases with the MySQL Yum repository.

Note

Before you perform any upgrade actions, please pay attention to the following:

• If your version of MySQL is more than one series older than the latest GA
series (for example, assuming the current GA release series is 5.6 and you
have 5.1.x installed right now), do NOT use the following instructions to
update MySQL, and do NOT enable the MySQL Yum repository on your
system until you have upgraded MySQL by other means (see Section 2.10.1,
“Upgrading MySQL”) to at least the last GA series before the latest one.

• Before performing any update to MySQL, follow carefully the instructions in
Section 2.10.1, “Upgrading MySQL”. Among other instructions discussed
there, it is especially important to back up your database before the update.

• If your MySQL installation is a third-party distribution, follow the instructions
in Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the
MySQL Yum Repository” for upgrading the installation.

The Yum update performs an in-place update for MySQL (that is, replaces the old version of the
software and then runs the new version off the old version's data files). It updates MySQL to the latest
release in the same release series. Assuming that you already have the MySQL Yum repository on
your system's repository list (see Adding the MySQL Yum Repository for details), make sure your Yum
repository setup is up-to-date by running:

shell> sudo yum update mysql-community-release

You can then update MySQL and its components by the following command:

shell> sudo yum update mysql-server

Upgrading MySQL

171

Alternatively, you can update the MySQL Yum repository setup and MySQL at the same time by telling
Yum to update everything on your system (this might take considerably more time):

shell> sudo yum update

Note that by default, the yum update command will only update MySQL to the latest version in
the same release series, which means, for example, a 5.6.x installation will NOT be updated to a
5.7.x release automatically. To update to the next release series, after updating the MySQL Yum
repository setup as described above, you need to first disable the sub-repository for your original
version and enable the sub-repository for your target version before you run the yum update
command for MySQL. See the instructions for doing that in Enable and Disable the Appropriate Sub-
Repositories [116].

Important

For important information about upgrading from MySQL 5.6 to 5.7, see
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”

The MySQL server always restarts after an update by Yum. Once the server restarts, you should
run mysql_upgrade to check and possibly resolve any incompatibilities between the old data
and the upgraded software. mysql_upgrade also performs other functions; see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables” for details.

Although we recommend that you update all the MySQL components at the same time, you can also
update only a specific component. You can use the following command to list all the installed packages
for the MySQL components, which can all be updated with the MySQL Yum repository:

shell> sudo yum list installed | grep "^mysql"

After identifying the package name of the component of your choice, update the package with the
following command, replacing package-name with the name of the package:

shell> sudo yum update package-name

Upgrading the Shared Client Libraries

After updating MySQL using the Yum repository, applications compiled with older versions of the
shared client libraries should continue to work.

If you recompile applications and dynamically link them with the updated libraries: As typical with new
versions of shared libraries where there are differences or additions in symbol versioning between
the newer and older libraries (for example, between the newer, standard 5.7 shared client libraries
and some older—prior or variant—versions of the shared libraries shipped natively by the Linux
distributions' software repositories, or from some other sources), any applications compiled using the
updated, newer shared libraries will require those updated libraries on systems where the applications
are deployed. And, as expected, if those libraries are not in place, the applications requiring the
shared libraries will fail. So, be sure to deploy the packages for the shared libraries from MySQL on
those systems. You can do this by adding the MySQL Yum repository to the systems (see Adding the
MySQL Yum Repository) and install the latest shared libraries using the instructions given in Installing
Additional MySQL Products and Components with Yum.

2.10.1.2 Upgrading from MySQL 5.6 to 5.7

Note

It is good practice to back up your data before installing any new version of
software. Although MySQL works very hard to ensure a high level of quality,
protect your data by making a backup.

To upgrade to 5.7 from any previous version, MySQL recommends that you
dump your tables with mysqldump before upgrading and reload the dump file

Upgrading MySQL

172

after upgrading. Use the --all-databases option to include all databases in
the dump. If your databases include stored programs, use the --routines and
--events options as well.

In general, do the following when upgrading from MySQL 5.6 to 5.7:

• Read all the items in these sections to see whether any of them might affect your applications:

• Section 2.10.1, “Upgrading MySQL”, has general update information.

• The items in the change lists provided later in this section enable you to identify upgrade issues
that apply to your current MySQL installation. Some incompatibilities discussed there require your
attention before upgrading. Others should be dealt with after upgrading.

• The MySQL 5.7 Release Notes describe significant new features you can use in 5.7 or that
differ from those found in earlier MySQL releases. Some of these changes may result in
incompatibilities.

Note particularly any changes that are marked Known issue or Incompatible change. These
incompatibilities with earlier versions of MySQL may require your attention before you upgrade.
Our aim is to avoid these changes, but occasionally they are necessary to correct problems that
would be worse than an incompatibility between releases. If any upgrade issue applicable to your
installation involves an incompatibility that requires special handling, follow the instructions given in
the incompatibility description. Sometimes this involves dumping and reloading tables, or use of a
statement such as CHECK TABLE or REPAIR TABLE.

For dump and reload instructions, see Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.
Any procedure that involves REPAIR TABLE with the USE_FRM option must be done before
upgrading. Use of this statement with a version of MySQL different from the one used to create the
table (that is, using it after upgrading) may damage the table. See Section 13.7.2.5, “REPAIR TABLE
Syntax”.

• Before upgrading to a new version of MySQL, Section 2.10.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”, to see whether changes to table formats or to character sets or collations were
made between your current version of MySQL and the version to which you are upgrading. If so and
these changes result in an incompatibility between MySQL versions, you will need to upgrade the
affected tables using the instructions in Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.

• After upgrading to a new version of MySQL, run mysql_upgrade (see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”). This program checks your tables, and
attempts to repair them if necessary. It also updates your grant tables to make sure that they have
the current structure so that you can take advantage of any new capabilities. (Some releases of
MySQL introduce changes to the structure of the grant tables to add new privileges or features.)

mysql_upgrade does not upgrade the contents of the help tables. For upgrade instructions, see
Section 5.1.10, “Server-Side Help”.

• If you run MySQL Server on Windows, see Section 2.3.7, “Upgrading MySQL on Windows”.

• If you use replication, see Section 16.4.3, “Upgrading a Replication Setup”, for information on
upgrading your replication setup.

• If you use InnoDB, consider setting innodb_fast_shutdown to 0 before shutting down and
upgrading your server. When you set innodb_fast_shutdown to 0, InnoDB does a slow
shutdown, a full purge and an insert buffer merge before shutting down, which ensures that all data
files are fully prepared in case the upgrade process modifies the file format.

If your MySQL installation contains a large amount of data that might take a long time to convert after
an in-place upgrade, you might find it useful to create a “dummy” database instance for assessing what
conversions might be needed and the work involved to perform them. Make a copy of your MySQL
instance that contains a full copy of the mysql database, plus all other databases without data. Run

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Upgrading MySQL

173

your upgrade procedure on this dummy instance to see what actions might be needed so that you can
better evaluate the work involved when performing actual data conversion on your original database
instance.

Read all the items in the following sections to see whether any of them might affect your applications:

Server Changes

• Incompatible change: As of MySQL 5.7.4, the deprecated ERROR_FOR_DIVISION_BY_ZERO,
NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL modes do nothing. Instead, their previous effects are
included in the effects of strict SQL mode (STRICT_ALL_TABLES or STRICT_TRANS_TABLES). In
other words, strict mode now means the same thing as the previous meaning of strict mode plus the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. This change
reduces the number of SQL modes with an effect dependent on strict mode and makes them part of
strict mode itself.

To prepare for these SQL mode changes, it is advisable before upgrading to read SQL Mode
Changes in MySQL 5.7. That discussion provides guidelines to assess whether your applications will
be affected by these changes.

The deprecated ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE
SQL modes are still recognized so that statements that name them do not produce an error, but will
be removed in a future version of MySQL. To make advance preparation for versions of MySQL in
which these modes do not exist, applications should be modified to not refer to those mode names.

• Incompatible change: As of MySQL 5.7.2, the server requires account rows in the mysql.user
table to have a nonempty plugin column value and disables accounts with an empty value. This
requires that you upgrade as follows.

For an upgrade in which you plan to use the data directory from your existing MySQL installation:

1. Stop the server

2. Upgrade MySQL in place

3. Restart the server with the --skip-grant-tables option to disable privilege checking

4. Run mysql_upgrade

5. Restart the server normally (without --skip-grant-tables)

For an upgrade in which you plan to reload a dump file generated from your existing MySQL
installation:

1. To generate the dump file, run mysqldump without the --flush-privileges option

2. Stop the server

3. Upgrade MySQL in place

4. Restart the server with the --skip-grant-tables option to disable privilege checking

5. Reload the dump file (mysql < dump_file)

6. Execute mysql_upgrade

7. Restart the server normally (without --skip-grant-tables)

mysql_upgrade runs by default as the MySQL root user. For either of the preceding procedures,
if the root password is expired when you run mysql_upgrade, you will see a message that your
password is expired and that mysql_upgrade failed as a result. To correct this, reset the root
password to unexpire it and run mysql_upgrade again:

Upgrading MySQL

174

shell> mysql -u root -p
Enter password: **** <- enter root password here
mysql> SET PASSWORD = PASSWORD('root-password');
mysql> quit

shell> mysql_upgrade

SET PASSWORD normally does not work if the server is started with --skip-grant-tables, but
the first invocation of mysql_upgrade flushes the privileges, so when you run mysql, the SET
PASSWORD statement is accepted.

After following the preceding instructions, DBAs are advised to also convert accounts that use the
deprecated mysql_old_password authentication plugin to use mysql_native_password
instead. For account upgrade instructions, see Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password Plugin”.

• Incompatible change: It is possible for a column DEFAULT value to be valid for the sql_mode
value at table-creation time but invalid for the sql_mode value when rows are inserted or updated.
Example:

SET sql_mode = '';
CREATE TABLE t (d DATE DEFAULT 0);
SET sql_mode = 'NO_ZERO_DATE,STRICT_ALL_TABLES';
INSERT INTO t (d) VALUES(DEFAULT);

In this case, 0 should be accepted for the CREATE TABLE but rejected for the INSERT. However, the
server did not evaluate DEFAULT values used for inserts or updates against the current sql_mode.
In the example, the INSERT succeeds and inserts '0000-00-00' into the DATE column.

As of MySQL 5.7.2, the server applies the proper sql_mode checks to generate a warning or error
at insert or update time.

A resulting incompatibility for replication if you use statement-based logging
(binlog_format=STATEMENT) is that if a slave is upgraded, a nonupgraded master will execute
the preceding example without error, whereas the INSERT will fail on the slave and replication will
stop.

To deal with this, stop all new statements on the master and wait until the slaves catch up. Then
upgrade the slaves followed by the master. Alternatively, if you cannot stop new statements,
temporarily change to row-based logging on the master (binlog_format=ROW) and wait until all
slaves have processed all binary logs produced up to the point of this change. Then upgrade the
slaves followed by the master and change the master back to statement-based logging.

• Incompatible change: Several changes were made to the audit log plugin for better compatibility
with Oracle Audit Vault. For upgrading purpose, the main issue is that the format of the audit log file
has changed: Information within <AUDIT_RECORD> elements previously written using attributes now
is written using subelements.

Example of old <AUDIT_RECORD> format:

<AUDIT_RECORD
 TIMESTAMP="2013-04-15T15:27:27"
 NAME="Query"
 CONNECTION_ID="3"
 STATUS="0"
 SQLTEXT="SELECT 1"
/>

Example of new format:

Downgrading MySQL

175

<AUDIT_RECORD>
 <TIMESTAMP>2013-04-15T15:27:27 UTC</TIMESTAMP>
 <RECORD_ID>3998_2013-04-15T15:27:27</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>select</COMMAND_CLASS>
 <SQLTEXT>SELECT 1</SQLTEXT>
</AUDIT_RECORD>

If you previously used an older version of the audit log plugin, use this procedure to avoid writing
new-format log entries to an existing log file that contains old-format entries:

1. Stop the server.

2. Rename the current audit log file manually. This file will contain only old-format log entries.

3. Update the server and restart it. The audit log plugin will create a new log file, which will contain
only new-format log entries.

For information about the audit log plugin, see Section 6.3.13, “MySQL Enterprise Audit Log Plugin”.

SQL Changes

• A trigger can have triggers for different combinations of trigger event (INSERT, UPDATE, DELETE)
and action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have
the same trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are
permitted. This change has implications for upgrades.

Suppose that you upgrade an old server that does not support multiple triggers to MySQL 5.7.2
or newer. If the new server is a replication master and has old slaves that do not support multiple
triggers, an error occurs on those slaves if a trigger is created on the master for a table that already
has a trigger with the same trigger event and action time. To avoid this problem, upgrade the slaves
first, then upgrade the master.

• Some keywords may be reserved in MySQL 5.7 that were not reserved in MySQL 5.6. See
Section 9.3, “Reserved Words”.

2.10.2 Downgrading MySQL

This section describes what to do to downgrade to an older MySQL version, in the unlikely case that
the previous version worked better than the new one.

It is always a good idea to make a backup beforehand, in case a downgrade fails and leaves the
instance in an unusable state.

To downgrade between General Availability (GA) status versions within the same release series,
typically you just install the new binaries on top of the old ones and do not make any changes to the
databases.

Downgrades between milestone releases (or from a GA release to a milestone release) within the
same release series are not supported and you may encounter issues.

The following items form a checklist of things to do whenever you perform a downgrade:

• Read the upgrading section for the release series from which you are downgrading to be sure that it
does not have any features you really need. See Section 2.10.1, “Upgrading MySQL”.

• If there is a downgrading section for that version, read that as well.

Downgrading MySQL

176

• To see which new features were added between the version to which you are downgrading and your
current version, see the Release Notes.

• Check Section 2.10.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, to see whether
changes to table formats or to character sets or collations were made between your current version
of MySQL and the version to which you are downgrading. If so and these changes result in an
incompatibility between MySQL versions, you will need to downgrade the affected tables using the
instructions in Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.

In most cases, you can move the MySQL format files and data files between different GA versions on
the same architecture as long as you stay within versions for the same release series of MySQL.

If you downgrade from one release series to another, there may be incompatibilities in table storage
formats. In this case, use mysqldump to dump your tables before downgrading. After downgrading,
reload the dump file using mysql or mysqlimport to re-create your tables. For examples, see
Section 2.10.5, “Copying MySQL Databases to Another Machine”.

A typical symptom of a downward-incompatible table format change when you downgrade is that you
cannot open tables. In that case, use the following procedure:

1. Stop the older MySQL server that you are downgrading to.

2. Restart the newer MySQL server you are downgrading from.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump
file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

If system tables in the mysql database changed, downgrading might introduce some loss of
functionality or require some adjustments. Here are some examples:

• Trigger creation requires the TRIGGER privilege as of MySQL 5.1. In MySQL 5.0, there is no
TRIGGER privilege and SUPER is required instead. If you downgrade from MySQL 5.1 to 5.0, you will
need to give the SUPER privilege to those accounts that had the TRIGGER privilege in 5.1.

• Triggers were added in MySQL 5.0, so if you downgrade from 5.0 to 4.1, you cannot use triggers at
all.

• The mysql.proc.comment column definition changed between MySQL 5.1 and 5.5. After a
downgrade from 5.5 to 5.1, this table is seen as corrupt and in need of repair. To workaround this
problem, execute mysql_upgrade from the version of MySQL to which you downgraded.

2.10.2.1 Downgrading to MySQL 5.6

When downgrading to MySQL 5.6 from MySQL 5.7, keep in mind the following issues relating to
features found in MySQL 5.7, but not in MySQL 5.6:

SQL Changes

• A trigger can have triggers for different combinations of trigger event (INSERT, UPDATE, DELETE)
and action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have
the same trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are
permitted. This change has implications for downgrades.

If you downgrade a server that supports multiple triggers to an older version that does not, the
downgrade has these effects:

• For each table that has triggers, all trigger definitions remain in the .TRG file for the table.
However, if there are multiple triggers with the same trigger event and action time, the server

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Checking Whether Tables or Indexes Must Be Rebuilt

177

executes only one of them when the trigger event occurs. For information about .TRG files, see
Table Trigger Storage.

• If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites
the table's .TRG file. The rewritten file retains only one trigger per combination of trigger event and
action time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed
using NEW and OLD can be passed to the routine using parameters. If the trigger needs a single
result value from the code, you can put the code in a stored function and have the function return
the value. If the trigger needs multiple result values from the code, you can put the code in a
stored procedure and return the values using OUT parameters.

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for
this trigger is thus the same as the multiple triggers it replaces.

2.10.3 Checking Whether Tables or Indexes Must Be Rebuilt

A binary upgrade or downgrade is one that installs one version of MySQL “in place” over an existing
version, without dumping and reloading tables:

1. Stop the server for the existing version if it is running.

2. Install a different version of MySQL. This is an upgrade if the new version is higher than the original
version, a downgrade if the version is lower.

3. Start the server for the new version.

In many cases, the tables from the previous version of MySQL can be used without problem by the
new version. However, sometimes changes occur that require tables or table indexes to be rebuilt,
as described in this section. If you have tables that are affected by any of the issues described here,
rebuild the tables or indexes as necessary using the instructions given in Section 2.10.4, “Rebuilding or
Repairing Tables or Indexes”.

Table Incompatibilities

After a binary upgrade to MySQL 5.1 from a MySQL 5.0 installation that contains ARCHIVE tables,
accessing those tables causes the server to crash, even if you have run mysql_upgrade or CHECK
TABLE ... FOR UPGRADE. To work around this problem, use mysqldump to dump all ARCHIVE
tables before upgrading, and reload them into MySQL 5.1 after upgrading. The same problem occurs
for binary downgrades from MySQL 5.1 to 5.0.

The upgrade problem is fixed in MySQL 5.6.4: The server can open ARCHIVE tables created in MySQL
5.0. However, it remains the recommended upgrade procedure to dump 5.0 ARCHIVE tables before
upgrading and reload them after upgrading.

Index Incompatibilities

In MySQL 5.6.3, the length limit for index prefix keys is increased from 767 bytes to 3072 bytes, for
InnoDB tables using ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED. See Section 14.2.6.7,
“Limits on InnoDB Tables” for details. This change is also backported to MySQL 5.5.14. If you
downgrade from one of these releases or higher, to an earlier release with a lower length limit, the
index prefix keys could be truncated at 767 bytes or the downgrade could fail. This issue could
only occur if the configuration option innodb_large_prefix was enabled on the server being
downgraded.

http://dev.mysql.com/doc/internals/en/sp-storage.html#sp-storage-trigger

Checking Whether Tables or Indexes Must Be Rebuilt

178

If you perform a binary upgrade without dumping and reloading tables, you cannot upgrade directly
from MySQL 4.1 to 5.1 or higher. This occurs due to an incompatible change in the MyISAM table index
format in MySQL 5.0. Upgrade from MySQL 4.1 to 5.0 and repair all MyISAM tables. Then upgrade
from MySQL 5.0 to 5.1 and check and repair your tables.

Modifications to the handling of character sets or collations might change the character sort order,
which causes the ordering of entries in any index that uses an affected character set or collation to be
incorrect. Such changes result in several possible problems:

• Comparison results that differ from previous results

• Inability to find some index values due to misordered index entries

• Misordered ORDER BY results

• Tables that CHECK TABLE reports as being in need of repair

The solution to these problems is to rebuild any indexes that use an affected character set or collation,
either by dropping and re-creating the indexes, or by dumping and reloading the entire table. In
some cases, it is possible to alter affected columns to use a different collation. For information about
rebuilding indexes, see Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.

To check whether a table has indexes that must be rebuilt, consult the following list. It indicates which
versions of MySQL introduced character set or collation changes that require indexes to be rebuilt.
Each entry indicates the version in which the change occurred and the character sets or collations that
the change affects. If the change is associated with a particular bug report, the bug number is given.

The list applies both for binary upgrades and downgrades. For example, Bug #27877 was fixed in
MySQL 5.1.24, so it applies to upgrades from versions older than 5.1.24 to 5.1.24 or newer, and to
downgrades from 5.1.24 or newer to versions older than 5.1.24.

In many cases, you can use CHECK TABLE ... FOR UPGRADE to identify tables for which index
rebuilding is required. It will report this message:

Table upgrade required.
Please do "REPAIR TABLE `tbl_name`" or dump/reload to fix it!

In these cases, you can also use mysqlcheck --check-upgrade or mysql_upgrade, which
execute CHECK TABLE. However, the use of CHECK TABLE applies only after upgrades, not
downgrades. Also, CHECK TABLE is not applicable to all storage engines. For details about which
storage engines CHECK TABLE supports, see Section 13.7.2.2, “CHECK TABLE Syntax”.

These changes cause index rebuilding to be necessary:

• MySQL 5.1.24 (Bug #27877)

Affects indexes that use the utf8_general_ci or ucs2_general_ci collation for columns that
contain 'ß' LATIN SMALL LETTER SHARP S (German). The bug fix corrected an error in the
original collations but introduced an incompatibility such that 'ß' compares equal to characters with
which it previously compared different.

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.30 (see
Bug #40053).

A workaround for this issue is implemented as of MySQL 5.1.62, 5.5.21, and 5.6.5. The
workaround involves altering affected columns to use the utf8_general_mysql500_ci and
ucs2_general_mysql500_ci collations, which preserve the original pre-5.1.24 ordering of
utf8_general_ci and ucs2_general_ci.

• MySQL 5.0.48, 5.1.23 (Bug #27562)

Rebuilding or Repairing Tables or Indexes

179

Affects indexes that use the ascii_general_ci collation for columns that contain any of these
characters: '`' GRAVE ACCENT, '[' LEFT SQUARE BRACKET, '\' REVERSE SOLIDUS, ']'
RIGHT SQUARE BRACKET, '~' TILDE

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29 (see
Bug #39585).

• MySQL 5.0.48, 5.1.21 (Bug #29461)

Affects indexes for columns that use any of these character sets: eucjpms, euc_kr, gb2312,
latin7, macce, ujis

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29 (see
Bug #39585).

2.10.4 Rebuilding or Repairing Tables or Indexes

This section describes how to rebuild a table, following changes to MySQL such as how data types or
character sets are handled. For example, an error in a collation might have been corrected, requiring
a table rebuild to update the indexes for character columns that use the collation. (For examples, see
Section 2.10.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.) You might also need to repair
or upgrade a table, as indicated by a table check operation such as that performed by CHECK TABLE,
mysqlcheck, or mysql_upgrade.

Methods for rebuilding a table include dumping and reloading it, or using ALTER TABLE or REPAIR
TABLE.

Note

If you are rebuilding tables because a different version of MySQL will not handle
them after a binary (in-place) upgrade or downgrade, you must use the dump-
and-reload method. Dump the tables before upgrading or downgrading using
your original version of MySQL. Then reload the tables after upgrading or
downgrading.

If you use the dump-and-reload method of rebuilding tables only for the purpose
of rebuilding indexes, you can perform the dump either before or after upgrading
or downgrading. Reloading still must be done afterward.

To rebuild a table by dumping and reloading it, use mysqldump to create a dump file and mysql to
reload the file:

shell> mysqldump db_name t1 > dump.sql
shell> mysql db_name < dump.sql

To rebuild all the tables in a single database, specify the database name without any following table
name:

shell> mysqldump db_name > dump.sql
shell> mysql db_name < dump.sql

To rebuild all tables in all databases, use the --all-databases option:

shell> mysqldump --all-databases > dump.sql
shell> mysql < dump.sql

To rebuild a table with ALTER TABLE, use a “null” alteration; that is, an ALTER TABLE statement that
“changes” the table to use the storage engine that it already has. For example, if t1 is a MyISAM table,
use this statement:

Copying MySQL Databases to Another Machine

180

mysql> ALTER TABLE t1 ENGINE = MyISAM;

If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOW CREATE
TABLE to display the table definition.

If you must rebuild a table because a table checking operation indicates that the table is corrupt or
needs an upgrade, you can use REPAIR TABLE if that statement supports the table's storage engine.
For example, to repair a MyISAM table, use this statement:

mysql> REPAIR TABLE t1;

For storage engines such as InnoDB that REPAIR TABLE does not support, use mysqldump to create
a dump file and mysql to reload the file, as described earlier.

For specifics about which storage engines REPAIR TABLE supports, see Section 13.7.2.5, “REPAIR
TABLE Syntax”.

mysqlcheck --repair provides command-line access to the REPAIR TABLE statement. This can
be a more convenient means of repairing tables because you can use the --databases or --all-
databases option to repair all tables in specific databases or all databases, respectively:

shell> mysqlcheck --repair --databases db_name ...
shell> mysqlcheck --repair --all-databases

For incompatibilities introduced in MySQL 5.1.24 by the fix for Bug #27877 that corrected the
utf8_general_ci and ucs2_general_ci collations, a workaround is implemented as of MySQL
5.1.62, 5.5.21, and 5.6.5. Upgrade to one of those versions, then convert each affected table using
one of the following methods. In each case, the workaround altering affected columns to use the
utf8_general_mysql500_ci and ucs2_general_mysql500_ci collations, which preserve the
original pre-5.1.24 ordering of utf8_general_ci and ucs2_general_ci.

• To convert an affected table after a binary upgrade that leaves the table files in place, alter the table
to use the new collation. Suppose that the table t1 contains one or more problematic utf8 columns.
To convert the table at the table level, use a statement like this:

ALTER TABLE t1
CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_mysql500_ci;

To apply the change on a column-specific basis, use a statement like this (be sure to repeat the
column definition as originally specified except for the COLLATE clause):

ALTER TABLE t1
MODIFY c1 CHAR(N) CHARACTER SET utf8 COLLATE utf8_general_mysql500_ci;

• To upgrade the table using a dump and reload procedure, dump the table using mysqldump, modify
the CREATE TABLE statement in the dump file to use the new collation, and reload the table.

After making the appropriate changes, CHECK TABLE should report no error.

2.10.5 Copying MySQL Databases to Another Machine

You can copy the .frm, .MYI, and .MYD files for MyISAM tables between different architectures
that support the same floating-point format. (MySQL takes care of any byte-swapping issues.) See
Section 14.3, “The MyISAM Storage Engine”.

In cases where you need to transfer databases between different architectures, you can use
mysqldump to create a file containing SQL statements. You can then transfer the file to the other
machine and feed it as input to the mysql client.

Environment Variables

181

Use mysqldump --help to see what options are available.

The easiest (although not the fastest) way to move a database between two machines is to run the
following commands on the machine on which the database is located:

shell> mysqladmin -h 'other_hostname' create db_name
shell> mysqldump db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these
commands:

shell> mysqladmin create db_name
shell> mysqldump -h 'other_hostname' --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file
into the database there. For example, you can dump a database to a compressed file on the source
machine like this:

shell> mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands
there:

shell> mysqladmin create db_name
shell> gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is
much faster than simply using mysqldump. In the following commands, DUMPDIR represents the full
path name of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine
and load the files into MySQL there:

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Do not forget to copy the mysql database because that is where the grant tables are stored. You
might have to run commands as the MySQL root user on the new machine until you have the mysql
database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-
privileges so that the server reloads the grant table information.

2.11 Environment Variables

This section lists all the environment variables that are used directly or indirectly by MySQL. Most of
these can also be found in other places in this manual.

Note that any options on the command line take precedence over values specified in option files
and environment variables, and values in option files take precedence over values in environment
variables.

Environment Variables

182

In many cases, it is preferable to use an option file instead of environment variables to modify the
behavior of MySQL. See Section 4.2.3.3, “Using Option Files”.

Variable Description

CXX The name of your C++ compiler (for running CMake).

CC The name of your C compiler (for running CMake).

DBI_USER The default user name for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is $HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of libmysqlclient.so.

LIBMYSQL_ENABLE_CLEARTEXT_PLUGINEnable mysql_clear_password authentication plugin; see
Section 6.3.9.5, “The Cleartext Client-Side Authentication Plugin”.

LIBMYSQL_PLUGIN_DIRDirectory in which to look for client plugins.

LIBMYSQL_PLUGINS Client plugins to preload.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFIX Option group suffix value (like specifying --defaults-group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this variable is set, its value overrides
the default for $HOME/.mysql_history.

MYSQL_HISTIGNORE Patterns specifying statements that mysql should not log to
$HOME/.mysql_history, or syslog if --syslog is given.

MYSQL_HOME The path to the directory in which the server-specific my.cnf file resides.

MYSQL_HOST The default host name used by the mysql command-line client.

MYSQL_PS1 The command prompt to use in the mysql command-line client.

MYSQL_PWD The default password when connecting to mysqld. Note that using this is
insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_TEST_LOGIN_FILEThe name of the .mylogin.cnf login file.

MYSQL_TEST_TRACE_CRASHWhether the test protocol trace plugin crashes clients. See note following
table

MYSQL_TEST_TRACE_DEBUGWhether the test protocol trace plugin produces output. See note following
table

MYSQL_UNIX_PORT The default Unix socket file name; used for connections to localhost.

PATH Used by the shell to find MySQL programs.

TMPDIR The directory where temporary files are created.

TZ This should be set to your local time zone. See Section C.5.4.6, “Time Zone
Problems”.

UMASK The user-file creation mode when creating files. See note following table.

UMASK_DIR The user-directory creation mode when creating directories. See note
following table.

USER The default user name on Windows when connecting to mysqld.

For information about the mysql history file, see Section 4.5.1.3, “mysql Logging”.

MYSQL_TEST_LOGIN_FILE is the path name of the login file (the file created by
mysql_config_editor). If not set, the default value is %APPDATA%\MySQL\.mylogin.cnf
directory on Windows and $HOME/.mylogin.cnf on non-Windows systems. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

Perl Installation Notes

183

The MYSQL_TEST_TRACE_DEBUG and MYSQL_TRACE_TRACE_CRASH variables control the test
protocol trace client plugin, if MySQL is built with that plugin enabled. For more information, see Using
the Test Protocol Trace Plugin.

The UMASK and UMASK_DIR variables, despite their names, are used as modes, not masks:

• If UMASK is set, mysqld uses ($UMASK | 0600) as the mode for file creation, so that newly
created files have a mode in the range from 0600 to 0666 (all values octal).

• If UMASK_DIR is set, mysqld uses ($UMASK_DIR | 0700) as the base mode for directory
creation, which then is AND-ed with ~(~$UMASK & 0666), so that newly created directories have
a mode in the range from 0700 to 0777 (all values octal). The AND operation may remove read and
write permissions from the directory mode, but not execute permissions.

MySQL assumes that the value for UMASK or UMASK_DIR is in octal if it starts with a zero.

2.12 Perl Installation Notes
The Perl DBI module provides a generic interface for database access. You can write a DBI script
that works with many different database engines without change. To use DBI, you must install the DBI
module, as well as a DataBase Driver (DBD) module for each type of database server you want to
access. For MySQL, this driver is the DBD::mysql module.

Perl, and the DBD::MySQL module for DBI must be installed if you want to run the MySQL benchmark
scripts; see Section 8.12.2, “The MySQL Benchmark Suite”.

Note

Perl support is not included with MySQL distributions. You can obtain the
necessary modules from http://search.cpan.org for Unix, or by using the
ActiveState ppm program on Windows. The following sections describe how to
do this.

The DBI/DBD interface requires Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not work if you
have an older version of Perl. You should use DBD::mysql 4.009 or higher. Although earlier versions
are available, they do not support the full functionality of MySQL 5.7.

2.12.1 Installing Perl on Unix

MySQL Perl support requires that you have installed MySQL client programming support (libraries and
header files). Most installation methods install the necessary files. If you install MySQL from RPM files
on Linux, be sure to install the developer RPM as well. The client programs are in the client RPM, but
client programming support is in the developer RPM.

The files you need for Perl support can be obtained from the CPAN (Comprehensive Perl Archive
Network) at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local
MySQL server using the default user name and password. (The default user name is your login name
on Unix, and ODBC on Windows. The default password is “no password.”) If you cannot connect to
the server with those values (for example, if your account has a password), the tests fail. You can use
force install DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before
installing DBI.

http://search.cpan.org
http://search.cpan.org

Installing ActiveState Perl on Windows

184

It is also possible to download the module distributions in the form of compressed tar archives and
build the modules manually. For example, to unpack and build a DBI distribution, use a procedure such
as this:

1. Unpack the distribution into the current directory:

shell> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

shell> cd DBI-VERSION

3. Build the distribution and compile everything:

shell> perl Makefile.PL
shell> make
shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note that when
you run that command during the DBD::mysql installation to exercise the interface code, the MySQL
server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new
release of MySQL. This ensures that the latest versions of the MySQL client libraries are installed
correctly.

If you do not have access rights to install Perl modules in the system directory or if you want to install
local Perl modules, the following reference may be useful: http://servers.digitaldaze.com/extensions/
perl/modules.html#modules

Look under the heading “Installing New Modules that Require Locally Installed Modules.”

2.12.2 Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

2. Open a console window.

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

C:\> set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

ppm> install DBI

6. If this succeeds, run the following command:

ppm> install DBD-mysql

http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://www.activestate.com/Products/ActivePerl/

Problems Using the Perl DBI/DBD Interface

185

This procedure should work with ActiveState Perl 5.6 or newer.

If you cannot get the procedure to work, you should install the ODBC driver instead and connect to the
MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
 die "Got error $DBI::errstr when connecting to $dsn\n";

2.12.3 Problems Using the Perl DBI/DBD Interface

If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl
cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one
of the following methods:

• Copy libmysqlclient.so to the directory where your other shared libraries are located (probably
/usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of
libmysqlclient.so.

• On Linux, you can add the path name of the directory where libmysqlclient.so is located to the
/etc/ld.so.conf file.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable. Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to
find. For example, if the linker cannot find libc because it is in /lib and the link command specifies -
L/usr/lib, change the -L option to -L/lib or add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary
compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built
(check the output from make for mysql.so when you compile the Perl client). The -L option should
specify the path name of the directory where libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this
case, you can solve the mismatch by compiling both with gcc.

186

187

Chapter 3 Tutorial

Table of Contents
3.1 Connecting to and Disconnecting from the Server ... 187
3.2 Entering Queries ... 188
3.3 Creating and Using a Database ... 191

3.3.1 Creating and Selecting a Database ... 192
3.3.2 Creating a Table .. 193
3.3.3 Loading Data into a Table ... 194
3.3.4 Retrieving Information from a Table ... 195

3.4 Getting Information About Databases and Tables ... 208
3.5 Using mysql in Batch Mode .. 209
3.6 Examples of Common Queries .. 211

3.6.1 The Maximum Value for a Column .. 211
3.6.2 The Row Holding the Maximum of a Certain Column .. 211
3.6.3 Maximum of Column per Group .. 212
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 212
3.6.5 Using User-Defined Variables ... 213
3.6.6 Using Foreign Keys .. 213
3.6.7 Searching on Two Keys .. 215
3.6.8 Calculating Visits Per Day ... 215
3.6.9 Using AUTO_INCREMENT .. 216

3.7 Using MySQL with Apache .. 218

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client
program to create and use a simple database. mysql (sometimes referred to as the “terminal monitor”
or just “monitor”) is an interactive program that enables you to connect to a MySQL server, run
queries, and view the results. mysql may also be used in batch mode: you place your queries in a file
beforehand, then tell mysql to execute the contents of the file. Both ways of using mysql are covered
here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the
administrator, you need to consult the relevant portions of this manual, such as Chapter 5, MySQL
Server Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only
in accessing an existing database, you may want to skip over the sections that describe how to create
the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you will usually need to provide a MySQL user name when you invoke mysql
and, most likely, a password. If the server runs on a machine other than the one where you log in,
you will also need to specify a host name. Contact your administrator to find out what connection
parameters you should use to connect (that is, what host, user name, and password to use). Once you
know the proper parameters, you should be able to connect like this:

Entering Queries

188

shell> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of
your MySQL account. Substitute appropriate values for your setup. The ******** represents your
password; enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 5.7.5-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter commands.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

shell> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't
connect to local MySQL server through socket '/tmp/mysql.sock' (2), it means
that the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator
or see the section of Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating
system.

For help with other problems often encountered when trying to log in, see Section C.5.2, “Common
Errors When Using MySQL Programs”.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that
server by invoking mysql without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the
mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate
this by the mysql> prompt.

3.2 Entering Queries

Make sure that you are connected to the server, as discussed in the previous section. Doing so does
not in itself select any database to work with, but that is okay. At this point, it is more important to find
out a little about how to issue queries than to jump right in creating tables, loading data into them, and
retrieving data from them. This section describes the basic principles of entering commands, using
several queries you can try out to familiarize yourself with how mysql works.

Entering Queries

189

Here is a simple command that asks the server to tell you its version number and the current date.
Type it in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+--------------+--------------+
| VERSION() | CURRENT_DATE |
+--------------+--------------+
| 5.7.1-m4-log | 2012-12-25 |
+--------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A command normally consists of an SQL statement followed by a semicolon. (There are some
exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to
others later.)

• When you issue a command, mysql sends it to the server for execution and displays the results,
then prints another mysql> prompt to indicate that it is ready for another command.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which gives
you a rough idea of server performance. These values are imprecise because they represent wall
clock time (not CPU or machine time), and because they are affected by factors such as server load
and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining
examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter
multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+--------------+
| VERSION() |
+--------------+
| 5.6.1-m4-log |
+--------------+
1 row in set (0.00 sec)
+---------------------+
| NOW() |
+---------------------+
| 2010-08-06 12:17:13 |
+---------------------+
1 row in set (0.00 sec)

Entering Queries

190

A command need not be given all on a single line, so lengthy commands that require several lines are
not a problem. mysql determines where your statement ends by looking for the terminating semicolon,
not by looking for the end of the input line. (In other words, mysql accepts free-format input: it collects
input lines but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

mysql> SELECT
 -> USER()
 -> ,
 -> CURRENT_DATE;
+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2010-08-06 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a
multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a command that you are in the process of entering, cancel it
by typing \c:

mysql> SELECT
 -> USER()
 -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to
indicate that mysql is ready for a new command.

The following table shows each of the prompts you may see and summarizes what they mean about
the state that mysql is in.

Prompt Meaning

mysql> Ready for new command.

-> Waiting for next line of multiple-line command.

'> Waiting for next line, waiting for completion of a string that began with a single quote (“'”).

"> Waiting for next line, waiting for completion of a string that began with a double quote (“"”).

`> Waiting for next line, waiting for completion of an identifier that began with a backtick (“`”).

/*> Waiting for next line, waiting for completion of a comment that began with /*.

Multiple-line statements commonly occur by accident when you intend to issue a command on a single
line, but forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
 ->

If this happens to you (you think you've entered a statement but the only response is a -> prompt),
most likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you
might sit there for a while before realizing what you need to do. Enter a semicolon to complete the
statement, and mysql executes it:

mysql> SELECT USER()
 -> ;
+---------------+

Creating and Using a Database

191

| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting for
completion of a string). In MySQL, you can write strings surrounded by either “'” or “"” characters (for
example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When
you see a '> or "> prompt, it means that you have entered a line containing a string that begins with a
“'” or “"” quote character, but have not yet entered the matching quote that terminates the string. This
often indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that
mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The
string 'Smith is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the command. However, you cannot just
type \c in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter
the closing quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not
completed a backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter
an unterminated string, any further lines you type appear to be ignored by mysql—including a line
containing QUIT. This can be quite confusing, especially if you do not know that you need to supply the
terminating quote before you can cancel the current command.

3.3 Creating and Using a Database
Once you know how to enter commands, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track
of various types of information about them. You can do so by creating tables to hold your data and
loading them with the desired information. Then you can answer different sorts of questions about
your animals by retrieving data from the tables. This section shows you how to perform the following
operations:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations
in which a similar type of database might be used. For example, a database like this could be used by
a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie

Creating and Selecting a Database

192

distribution containing some of the queries and sample data used in the following sections can be
obtained from the MySQL Web site. It is available in both compressed tar file and Zip formats at http://
dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The mysql database describes user access privileges. The test database often is available as a
workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES
does not show databases that you have no privileges for if you do not have the SHOW DATABASES
privilege. See Section 13.7.5.13, “SHOW DATABASES Syntax”.

If the test database exists, try to access it:

mysql> USE test
Database changed

USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon
if you like; it does no harm.) The USE statement is special in another way, too: it must be given on a
single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that
you want to call yours menagerie. The administrator needs to execute a command like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the
host from which you connect to the server.

3.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin
using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer
to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is
also true for table names. (Under Windows, this restriction does not apply, although you must refer to
databases and tables using the same lettercase throughout a given query. However, for a variety of
reasons, the recommended best practice is always to use the same lettercase that was used when the
database was created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied
for user 'monty'@'localhost' to database 'menagerie' when
attempting to create a database, this means that your user account does not

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

Creating a Table

193

have the necessary privileges to do so. Discuss this with the administrator or
see Section 6.2, “The MySQL Access Privilege System”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the
current database, use this command:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a
mysql session. You can do this by issuing a USE statement as shown in the example. Alternatively,
you can select the database on the command line when you invoke mysql. Just specify its name after
any connection parameters that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Important

menagerie in the command just shown is not your password. If you want
to supply your password on the command line after the -p option, you must
do so with no intervening space (for example, as -pmypassword, not as -p
mypassword). However, putting your password on the command line is not
recommended, because doing so exposes it to snooping by other users logged
in on your machine.

Note

You can see at any time which database is currently selected using SELECT
DATABASE().

3.3.2 Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and
what columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very
interesting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some
basic descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age
changes as time passes, which means you'd have to update your records often. Instead, it is better
to store a fixed value such as date of birth. Then, whenever you need age, you can calculate it as
the difference between the current date and the birth date. MySQL provides functions for doing date
arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If
you think this type of query is somewhat silly, note that it is the same question you might ask in the
context of a business database to identify clients to whom you need to send out birthday greetings in
the current week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

Loading Data into a Table

194

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
 -> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values
vary in length. The lengths in those column definitions need not all be the same, and need not be 20.
You can normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you
make a poor choice and it turns out later that you need a longer field, MySQL provides an ALTER
TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or
perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or
what types they have.

For more information about MySQL data types, see Chapter 11, Data Types.

3.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful
for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates
in 'YYYY-MM-DD' format; this may be different from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Retrieving Information from a Table

195

name owner species sex birth death

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a single
statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs,
and given in the order in which the columns were listed in the CREATE TABLE statement. For missing
values (such as unknown sexes or death dates for animals that are still living), you can use NULL
values. To represent these in your text file, use \N (backslash, capital-N). For example, the record for
Whistler the bird would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this statement:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use
this statement instead:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
 -> LINES TERMINATED BY '\r\n';

(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA
statement if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to
read the file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled
by default. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”, for information on how to
change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest
form, you supply values for each column, in the order in which the columns were listed in the CREATE
TABLE statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new
record using an INSERT statement like this:

mysql> INSERT INTO pet
 -> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL
directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load
your records initially using several INSERT statements rather than a single LOAD DATA statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select

Retrieving Information from a Table

196

FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT is useful if you want to review your entire table, for example, after you've just
loaded it with your initial data set. For example, you may happen to think that the birth date for Bowser
doesn't seem quite right. Consulting your original pedigree papers, you find that the correct birth year
should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.3.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause
from the SELECT statement. But typically you don't want to see the entire table, particularly when it
becomes large. Instead, you're usually more interested in answering a particular question, in which
case you specify some constraints on the information you want. Let's look at some selection queries in
terms of questions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that
you made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |

Retrieving Information from a Table

197

+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser',
'BOWSER', and so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which
animals were born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both
operators, it is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
 -> OR (species = 'dog' AND sex = 'f');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.3.4.3 Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are
interested, separated by commas. For example, if you want to know when your animals were born,
select the name and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
| Fluffy | 1993-02-04 |
| Claws | 1994-03-17 |

Retrieving Information from a Table

198

Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear
more than once. To minimize the output, retrieve each unique output record just once by adding the
keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
 -> WHERE species = 'dog' OR species = 'cat';
+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular
order. It is often easier to examine query output when the rows are sorted in some meaningful way. To
sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+

Retrieving Information from a Table

199

| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting—like all other comparison operations—is normally performed in a
case-insensitive fashion. This means that the order is undefined for columns that are identical except
for their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY
BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order,
add the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For
example, to sort by type of animal in ascending order, then by birth date within animal type in
descending order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
 -> ORDER BY species, birth DESC;
+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

The DESC keyword applies only to the column name immediately preceding it (birth); it does not
affect the species column sort order.

3.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, use the TIMESTAMPDIFF() function. Its
arguments are the unit in which you want the result expressed, and the two date for which to take the

Retrieving Information from a Table

200

difference. The following query shows, for each pet, the birth date, the current date, and the age in
years. An alias (age) is used to make the final output column label more meaningful.

mysql> SELECT name, birth, CURDATE(),
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 -> FROM pet;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

The query works, but the result could be scanned more easily if the rows were presented in some
order. This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 -> FROM pet ORDER BY name;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 -> FROM pet ORDER BY age;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine
which animals these are by checking whether the death value is NULL. Then, for those with non-NULL
values, compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
 -> TIMESTAMPDIFF(YEAR,birth,death) AS age
 -> FROM pet WHERE death IS NOT NULL ORDER BY age;
+--------+------------+------------+------+

Retrieving Information from a Table

201

| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed later. See
Section 3.3.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation,
year and day are irrelevant; you simply want to extract the month part of the birth column.
MySQL provides several functions for extracting parts of dates, such as YEAR(), MONTH(), and
DAYOFMONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query
that displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the
month number (12) and look for animals born in month 13, because there is no such month. Instead,
you look for animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date.
If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result
produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet
 -> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
 -> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between
0 and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to
January (1).

3.3.4.6 Working with NULL Values

Retrieving Information from a Table

202

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing
unknown value” and it is treated somewhat differently from other values.

To test for NULL, use the IS NULL and IS NOT NULL operators, as shown here:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate
this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any
meaningful results from such comparisons.

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a
boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if
you do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an
empty string into a column defined as NOT NULL, but this is not the case. These are in fact values,
whereas NULL means “not having a value.” You can test this easily enough by using IS [NOT] NULL
as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Section C.5.5.3, “Problems with NULL Values”.

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on
extended regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching enables you to use “_” to match any single character and “%” to match an
arbitrary number of characters (including zero characters). In MySQL, SQL patterns are case-
insensitive by default. Some examples are shown here. You do not use = or <> when you use SQL
patterns; use the LIKE or NOT LIKE comparison operators instead.

To find names beginning with “b”:

Retrieving Information from a Table

203

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with “fy”:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the “_” pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and
NOT RLIKE, which are synonyms).

The following list describes some characteristics of extended regular expressions:

• “.” matches any single character.

• A character class “[...]” matches any character within the brackets. For example, “[abc]”
matches “a”, “b”, or “c”. To name a range of characters, use a dash. “[a-z]” matches any letter,
whereas “[0-9]” matches any digit.

• “*” matches zero or more instances of the thing preceding it. For example, “x*” matches any
number of “x” characters, “[0-9]*” matches any number of digits, and “.*” matches any number of
anything.

• A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This
differs from a LIKE pattern match, which succeeds only if the pattern matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use “^” at
the beginning or “$” at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are
rewritten here to use REGEXP.

Retrieving Information from a Table

204

To find names beginning with “b”, use “^” to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

If you really want to force a REGEXP comparison to be case sensitive, use the BINARY keyword to
make one of the strings a binary string. This query matches only lowercase “b” at the beginning of a
name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with “fy”, use “$” to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in
the previous query to put a wildcard on either side of the pattern to get it to match the entire value like it
would be if you used an SQL pattern.

To find names containing exactly five characters, use “^” and “$” to match the beginning and end of the
name, and five instances of “.” in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

Section 12.5.2, “Regular Expressions”, provides more information about the syntax for regular
expressions.

Retrieving Information from a Table

205

3.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a
table?” For example, you might want to know how many pets you have, or how many pets each owner
has, or you might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to
count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to
find out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

The preceding query uses GROUP BY to group all records for each owner. The use of COUNT()
in conjunction with GROUP BY is useful for characterizing your data under various groupings. The
following examples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;

Retrieving Information from a Table

206

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
 -> WHERE species = 'dog' OR species = 'cat'
 -> GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
 -> WHERE sex IS NOT NULL
 -> GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present
that names those same columns. Otherwise, the following occurs:

• If the ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT()...)
with no GROUP columns is illegal if there is no GROUP BY clause

• If ONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single
group, but the value selected for each named column is indeterminate. The server is free to select
the value from any row:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
+--------+----------+

Retrieving Information from a Table

207

| owner | COUNT(*) |
+--------+----------+
| Harold | 8 |
+--------+----------+
1 row in set (0.00 sec)

See also Section 12.17.3, “MySQL Extensions to GROUP BY”.

3.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs to contain the following information:

• The pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
 -> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file
containing the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy

Claws 1998-03-17 birthday Gave him a new flea collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be
able to perform retrievals on the records in the event table; the principles are the same. But when is
the event table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate
her age on that date you need her birth date, which is stored in the pet table. This means the query
requires both tables:

mysql> SELECT pet.name,

Getting Information About Databases and Tables

208

 -> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
 -> remark
 -> FROM pet INNER JOIN event
 -> ON pet.name = event.name
 -> WHERE event.type = 'litter';
+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one
table can be matched to records in the other. This is easy because they both have a name column.
The query uses an ON clause to match up records in the two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN permits rows from either
table to appear in the result if and only if both tables meet the conditions specified in the ON clause.
In this example, the ON clause specifies that the name column in the pet table must match the name
column in the event table. If a name appears in one table but not the other, the row will not appear
in the result because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean
when referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself,
if you want to compare records in a table to other records in that same table. For example, to find
breeding pairs among your pets, you can join the pet table with itself to produce candidate pairs of
males and females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
 -> FROM pet AS p1 INNER JOIN pet AS p2
 -> ON p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';
+--------+------+--------+------+---------+
| name | sex | name | sex | species |
+--------+------+--------+------+---------+
Fluffy	f	Claws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which
instance of the table each column reference is associated with.

3.4 Getting Information About Databases and Tables
What if you forget the name of a database or table, or what the structure of a given table is (for
example, what its columns are called)? MySQL addresses this problem through several statements
that provide information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To
find out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

Using mysql in Batch Mode

209

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the
name of a table), use this command:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |
+---------------------+
| event |
| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name,
where db_name is the name of the database. See Section 13.7.5.36, “SHOW TABLES Syntax”, for more
information.

If you want to find out about the structure of a table, the DESCRIBE statement is useful; it displays
information about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Default specifies
the column's default value. Extra displays special information about columns: If a column was created
with the AUTO_INCREMENT option, the value will be auto_increment rather than empty.

DESC is a short form of DESCRIBE. See Section 13.8.1, “DESCRIBE Syntax”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW
CREATE TABLE statement. See Section 13.7.5.10, “SHOW CREATE TABLE Syntax”.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See
Section 13.7.5.21, “SHOW INDEX Syntax”, for more about this statement.

3.5 Using mysql in Batch Mode

In the previous sections, you used mysql interactively to enter queries and view the results. You can
also run mysql in batch mode. To do this, put the commands you want to run in a file, then tell mysql
to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause
problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

Using mysql in Batch Mode

210

shell> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use
the --force command-line option.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid
retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line
commands or multiple-statement sequences of commands. If you make a mistake, you don't have to
retype everything. Just edit your script to correct the error, then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

shell> mysql < batch-file | more

• You can catch the output in a file for further processing:

shell> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the commands.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job.
In this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when
you use it interactively. For example, the output of SELECT DISTINCT species FROM pet looks
like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output
the commands that are executed, use mysql -vvv.

You can also use scripts from the mysql prompt by using the source command or \. command:

Examples of Common Queries

211

mysql> source filename;
mysql> \. filename

See Section 4.5.1.5, “Executing SQL Statements from a Text File”, for more information.

3.6 Examples of Common Queries
Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain
traders (dealers). Supposing that each trader has a single fixed price per article, then (article,
dealer) is a primary key for the records.

Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database named test).

You can create and populate the example table with these statements:

CREATE TABLE shop (
 article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
 dealer CHAR(20) DEFAULT '' NOT NULL,
 price DOUBLE(16,2) DEFAULT '0.00' NOT NULL,
 PRIMARY KEY(article, dealer));
INSERT INTO shop VALUES
 (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
 (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
+---------+--------+-------+

3.6.1 The Maximum Value for a Column

“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
| 4 |
+---------+

3.6.2 The Row Holding the Maximum of a Certain Column

Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

Maximum of Column per Group

212

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Other solutions are to use a LEFT JOIN or to sort all rows descending by price and get only the first
row using the MySQL-specific LIMIT clause:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.price < s2.price
WHERE s2.article IS NULL;

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the
LIMIT solution would show only one of them.

3.6.3 Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article;

+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)
 FROM shop s2
 WHERE s1.article = s2.article);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

Using User-Defined Variables

213

The preceding example uses a correlated subquery, which can be inefficient (see Section 13.2.10.7,
“Correlated Subqueries”). Other possibilities for solving the problem are to use an uncorrelated
subquery in the FROM clause or a LEFT JOIN.

Uncorrelated subquery:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
 SELECT article, MAX(price) AS price
 FROM shop
 GROUP BY article) AS s2
 ON s1.article = s2.article AND s1.price = s2.price;

LEFT JOIN:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no
s2.price with a greater value and the s2 rows values will be NULL. See Section 13.2.9.2, “JOIN
Syntax”.

3.6.5 Using User-Defined Variables

You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See Section 9.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a
column in a user variable and then to use this variable in an SQL statement;
however, this requires the use of a prepared statement. See Section 13.5, “SQL
Syntax for Prepared Statements”, for more information.

3.6.6 Using Foreign Keys

In MySQL, InnoDB tables support checking of foreign key constraints. See Section 14.2, “The InnoDB
Storage Engine”, and Section 1.8.2.4, “Foreign Key Differences”.

A foreign key constraint is not required merely to join two tables. For storage engines other than
InnoDB, it is possible when defining a column to use a REFERENCES tbl_name(col_name) clause,
which has no actual effect, and serves only as a memo or comment to you that the column which
you are currently defining is intended to refer to a column in another table. It is extremely important to
realize when using this syntax that:

• MySQL does not perform any sort of CHECK to make sure that col_name actually exists in
tbl_name (or even that tbl_name itself exists).

Using Foreign Keys

214

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to
actions taken on rows in the table which you are defining; in other words, this syntax induces no
ON DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON
UPDATE clause as part of the REFERENCES clause, it is also ignored.)

• This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(60) NOT NULL,
 PRIMARY KEY (id)
);

CREATE TABLE shirt (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
 color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
 owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
 PRIMARY KEY (id)
);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
 ON s.owner = p.id
 WHERE p.name LIKE 'Lilliana%'
 AND s.color <> 'white';

+----+-------+--------+-------+

Searching on Two Keys

215

| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE
TABLE or DESCRIBE:

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

The use of REFERENCES in this way as a comment or “reminder” in a column definition works with
MyISAM tables.

3.6.7 Searching on Two Keys

An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized. See Section 8.2.1.4, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate
SELECT statements. See Section 13.2.9.4, “UNION Syntax”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
 FROM test_table WHERE field1_index = '1'
UNION
SELECT field1_index, field2_index
 FROM test_table WHERE field2_index = '1';

3.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days
per month a user has visited a Web page.

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
 day INT(2) UNSIGNED ZEROFILL);
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
 (2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To
determine how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
 GROUP BY year,month;

Using AUTO_INCREMENT

216

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination,
with automatic removal of duplicate entries.

3.6.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO animals (name) VALUES
 ('dog'),('cat'),('penguin'),
 ('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

No value was specified for the AUTO_INCREMENT column, so MySQL assigned sequence numbers
automatically. You can also explicitly assign 0 to the column to generate sequence numbers. If the
column is declared NOT NULL, it is also possible to assign NULL to the column to generate sequence
numbers.

You can retrieve the most recent AUTO_INCREMENT value with the LAST_INSERT_ID() SQL function
or the mysql_insert_id() C API function. These functions are connection-specific, so their return
values are not affected by another connection which is also performing inserts.

Use the smallest integer data type for the AUTO_INCREMENT column that is large enough to hold the
maximum sequence value you will need. When the column reaches the upper limit of the data type, the
next attempt to generate a sequence number fails. Use the UNSIGNED attribute if possible to allow a
greater range. For example, if you use TINYINT, the maximum permissible sequence number is 127.
For TINYINT UNSIGNED, the maximum is 255. See Section 11.2.1, “Integer Types (Exact Value) -
INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT” for the ranges of all the integer types.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id()
actually return the AUTO_INCREMENT key from the first of the inserted rows.
This enables multiple-row inserts to be reproduced correctly on other servers in
a replication setup.

Using AUTO_INCREMENT

217

To start with an AUTO_INCREMENT value other than 1, set that value with CREATE TABLE or ALTER
TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

InnoDB Notes

For InnoDB tables, be careful if you modify the column containing the auto-increment value in the
middle of a sequence of INSERT statements. For example, if you use an UPDATE statement to put a
new, larger value in the auto-increment column, a subsequent INSERT could encounter a “Duplicate
entry” error. The test whether an auto-increment value is already present occurs if you do a DELETE
followed by more INSERT statements, or when you COMMIT the transaction, but not after an UPDATE
statement.

MyISAM Notes

• For MyISAM tables, you can specify AUTO_INCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as
MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you
want to put data into ordered groups.

CREATE TABLE animals (
 grp ENUM('fish','mammal','bird') NOT NULL,
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (grp,id)
) ENGINE=MyISAM;

INSERT INTO animals (grp,name) VALUES
 ('mammal','dog'),('mammal','cat'),
 ('bird','penguin'),('fish','lax'),('mammal','whale'),
 ('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

In this case (when the AUTO_INCREMENT column is part of a multiple-column index),
AUTO_INCREMENT values are reused if you delete the row with the biggest AUTO_INCREMENT value
in any group. This happens even for MyISAM tables, for which AUTO_INCREMENT values normally
are not reused.

• If the AUTO_INCREMENT column is part of multiple indexes, MySQL generates sequence values
using the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the
animals table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would
ignore the PRIMARY KEY for generating sequence values. As a result, the table would contain a
single sequence, not a sequence per grp value.

Further Reading

More information about AUTO_INCREMENT is available here:

Using MySQL with Apache

218

• How to assign the AUTO_INCREMENT attribute to a column: Section 13.1.14, “CREATE TABLE
Syntax”, and Section 13.1.6, “ALTER TABLE Syntax”.

• How AUTO_INCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode:
Section 5.1.7, “Server SQL Modes”.

• How to use the LAST_INSERT_ID() function to find the row that contains the most recent
AUTO_INCREMENT value: Section 12.14, “Information Functions”.

• Setting the AUTO_INCREMENT value to be used: Section 5.1.4, “Server System Variables”.

• AUTO_INCREMENT and replication: Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Section 5.1.4, “Server System
Variables”.

3.7 Using MySQL with Apache

There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following
into the Apache configuration file:

LogFormat \
 "\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
 \"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line
writes to the log file.

219

Chapter 4 MySQL Programs

Table of Contents
4.1 Overview of MySQL Programs ... 220
4.2 Using MySQL Programs .. 223

4.2.1 Invoking MySQL Programs ... 223
4.2.2 Connecting to the MySQL Server .. 224
4.2.3 Specifying Program Options .. 227
4.2.4 Setting Environment Variables ... 240

4.3 MySQL Server and Server-Startup Programs .. 241
4.3.1 mysqld — The MySQL Server ... 241
4.3.2 mysqld_safe — MySQL Server Startup Script ... 241
4.3.3 mysql.server — MySQL Server Startup Script ... 246
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 247

4.4 MySQL Installation-Related Programs .. 251
4.4.1 comp_err — Compile MySQL Error Message File .. 251
4.4.2 mysqlbug — Generate Bug Report .. 252
4.4.3 mysql_install_db — Initialize MySQL Data Directory .. 252
4.4.4 mysql_plugin — Configure MySQL Server Plugins ... 257
4.4.5 mysql_secure_installation — Improve MySQL Installation Security 259
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables ... 262
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables ... 262

4.5 MySQL Client Programs .. 267
4.5.1 mysql — The MySQL Command-Line Tool ... 267
4.5.2 mysqladmin — Client for Administering a MySQL Server .. 292
4.5.3 mysqlcheck — A Table Maintenance Program ... 300
4.5.4 mysqldump — A Database Backup Program ... 307
4.5.5 mysqlimport — A Data Import Program ... 326
4.5.6 mysqlshow — Display Database, Table, and Column Information 332
4.5.7 mysqlslap — Load Emulation Client ... 336

4.6 MySQL Administrative and Utility Programs .. 344
4.6.1 innochecksum — Offline InnoDB File Checksum Utility .. 344
4.6.2 myisam_ftdump — Display Full-Text Index information ... 350
4.6.3 myisamchk — MyISAM Table-Maintenance Utility ... 351
4.6.4 myisamlog — Display MyISAM Log File Contents .. 367
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 368
4.6.6 mysql_config_editor — MySQL Configuration Utility ... 374
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files ... 380
4.6.8 mysqldumpslow — Summarize Slow Query Log Files .. 400
4.6.9 mysqlhotcopy — A Database Backup Program ... 402
4.6.10 mysql_waitpid — Kill Process and Wait for Its Termination 405
4.6.11 mysql_zap — Kill Processes That Match a Pattern ... 405

4.7 MySQL Program Development Utilities ... 406
4.7.1 mysql_config — Display Options for Compiling Clients ... 406
4.7.2 my_print_defaults — Display Options from Option Files 407
4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 408

4.8 Miscellaneous Programs .. 409
4.8.1 perror — Explain Error Codes .. 409
4.8.2 replace — A String-Replacement Utility .. 410
4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa 410

This chapter provides a brief overview of the MySQL command-line programs provided by Oracle
Corporation. It also discusses the general syntax for specifying options when you run these programs.
Most programs have options that are specific to their own operation, but the option syntax is similar for

Overview of MySQL Programs

220

all of them. Finally, the chapter provides more detailed descriptions of individual programs, including
which options they recognize.

4.1 Overview of MySQL Programs
There are many different programs in a MySQL installation. This section provides a brief overview
of them. Later sections provide a more detailed description of each one. Each program's description
indicates its invocation syntax and the options that it supports.

Most MySQL distributions include all of these programs, except for those programs that are platform-
specific. (For example, the server startup scripts are not used on Windows.) The exception is that RPM
distributions are more specialized. There is one RPM for the server, another for client programs, and
so forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading
MySQL, for information on types of distributions and what they contain. It may be that you have a
distribution that does not include all programs and you need to install an additional package.

Each MySQL program takes many different options. Most programs provide a --help option that you
can use to get a description of the program's different options. For example, try mysql --help.

You can override default option values for MySQL programs by specifying options on the command
line or in an option file. See Section 4.2, “Using MySQL Programs”, for general information on invoking
programs and specifying program options.

The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation.
The server is accompanied by several related scripts that assist you in starting and stopping the server:

• mysqld

The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running,
because clients gain access to databases by connecting to the server. See Section 4.3.1, “mysqld
— The MySQL Server”.

• mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld. See Section 4.3.2, “mysqld_safe
— MySQL Server Startup Script”.

• mysql.server

A server startup script. This script is used on systems that use System V-style run directories
containing scripts that start system services for particular run levels. It invokes mysqld_safe to start
the MySQL server. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”.

Several programs perform setup operations during MySQL installation or upgrading:

• comp_err

This program is used during the MySQL build/installation process. It compiles error message files
from the error source files. See Section 4.4.1, “comp_err — Compile MySQL Error Message File”.

• mysql_install_db

This script creates the MySQL database, initializes the grant tables with default privileges, and sets
up the InnoDB system tablespace. It is usually executed only once, when first installing MySQL on a
system. See Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”, Section 2.9.1,
“Postinstallation Procedures for Unix-like Systems”, and Section 4.4.3, “mysql_install_db —
Initialize MySQL Data Directory”.

Overview of MySQL Programs

221

• mysql_plugin

This program configures MySQL server plugins. See Section 4.4.4, “mysql_plugin — Configure
MySQL Server Plugins”.

• mysql_secure_installation

This program enables you to improve the security of your MySQL installation. SQL. See
Section 4.4.5, “mysql_secure_installation — Improve MySQL Installation Security”.

• mysql_tzinfo_to_sql

This program loads the time zone tables in the mysql database using the contents of the host
system zoneinfo database (the set of files describing time zones). SQL. See Section 4.4.6,
“mysql_tzinfo_to_sql — Load the Time Zone Tables”.

• mysql_upgrade

This program is used after a MySQL upgrade operation. It checks tables for incompatibilities and
repairs them if necessary, and updates the grant tables with any changes that have been made in
newer versions of MySQL. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL
Tables”.

MySQL client programs that connect to the MySQL server:

• mysql

The command-line tool for interactively entering SQL statements or executing them from a file in
batch mode. See Section 4.5.1, “mysql — The MySQL Command-Line Tool”.

• mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reloading
the grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be used to
retrieve version, process, and status information from the server. See Section 4.5.2, “mysqladmin
— Client for Administering a MySQL Server”.

• mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

• mysqldump

A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 4.5.4,
“mysqldump — A Database Backup Program”.

• mysqlimport

A client that imports text files into their respective tables using LOAD DATA INFILE. See
Section 4.5.5, “mysqlimport — A Data Import Program”.

• mysqlshow

A client that displays information about databases, tables, columns, and indexes. See Section 4.5.6,
“mysqlshow — Display Database, Table, and Column Information”.

• mysqlslap

A client that is designed to emulate client load for a MySQL server and report the timing of each
stage. It works as if multiple clients are accessing the server. See Section 4.5.7, “mysqlslap —
Load Emulation Client”.

Overview of MySQL Programs

222

MySQL administrative and utility programs:

• innochecksum

An offline InnoDB offline file checksum utility. See Section 4.6.1, “innochecksum — Offline InnoDB
File Checksum Utility”.

• myisam_ftdump

A utility that displays information about full-text indexes in MyISAM tables. See Section 4.6.2,
“myisam_ftdump — Display Full-Text Index information”.

• myisamchk

A utility to describe, check, optimize, and repair MyISAM tables. See Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”.

• myisamlog

A utility that processes the contents of a MyISAM log file. See Section 4.6.4, “myisamlog — Display
MyISAM Log File Contents”.

• myisampack

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 4.6.5,
“myisampack — Generate Compressed, Read-Only MyISAM Tables”.

• mysql_config_editor

A utility that enables you to store authentication credentials in a secure, encrypted login file named
.mylogin.cnf. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• mysqlbinlog

A utility for reading statements from a binary log. The log of executed statements contained in the
binary log files can be used to help recover from a crash. See Section 4.6.7, “mysqlbinlog —
Utility for Processing Binary Log Files”.

• mysqldumpslow

A utility to read and summarize the contents of a slow query log. See Section 4.6.8,
“mysqldumpslow — Summarize Slow Query Log Files”.

• mysqlhotcopy

A utility that quickly makes backups of MyISAM tables while the server is running. See Section 4.6.9,
“mysqlhotcopy — A Database Backup Program”.

• mysql_waitpid

A utility that kills the process with a given process ID. See Section 4.6.10, “mysql_waitpid — Kill
Process and Wait for Its Termination”.

• mysql_zap

A utility that kills processes that match a pattern. See Section 4.6.11, “mysql_zap — Kill Processes
That Match a Pattern”.

MySQL program-development utilities:

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs. See
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”.

Using MySQL Programs

223

• my_print_defaults

A utility that shows which options are present in option groups of option files. See Section 4.7.2,
“my_print_defaults — Display Options from Option Files”.

• resolve_stack_dump

A utility program that resolves a numeric stack trace dump to symbols. See Section 4.7.3,
“resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”.

Miscellaneous utilities:

• perror

A utility that displays the meaning of system or MySQL error codes. See Section 4.8.1, “perror —
Explain Error Codes”.

• replace

A utility program that performs string replacement in the input text. See Section 4.8.2, “replace — A
String-Replacement Utility”.

• resolveip

A utility program that resolves a host name to an IP address or vice versa. See Section 4.8.3,
“resolveip — Resolve Host name to IP Address or Vice Versa”.

Oracle Corporation also provides the MySQL Workbench GUI tool, which is used to administer MySQL
servers and databases, to create, execute, and evaluate queries, and to migrate schemas and data
from other relational database management systems for use with MySQL. Additional GUI tools include
MySQL Notifier for Microsoft Windows and MySQL for Excel.

MySQL client programs that communicate with the server using the MySQL client/server library use the
following environment variables.

Environment Variable Meaning

MYSQL_UNIX_PORT The default Unix socket file; used for connections to localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP connections

MYSQL_PWD The default password

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are created

For a full list of environment variables used by MySQL programs, see Section 2.11, “Environment
Variables”.

Use of MYSQL_PWD is insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

4.2 Using MySQL Programs

4.2.1 Invoking MySQL Programs

To invoke a MySQL program from the command line (that is, from your shell or command prompt),
enter the program name followed by any options or other arguments needed to instruct the program
what you want it to do. The following commands show some sample program invocations. “shell>”
represents the prompt for your command interpreter; it is not part of what you type. The particular
prompt you see depends on your command interpreter. Typical prompts are $ for sh, ksh, or bash, %
for csh or tcsh, and C:\> for the Windows command.com or cmd.exe command interpreters.

shell> mysql --user=root test

Connecting to the MySQL Server

224

shell> mysqladmin extended-status variables
shell> mysqlshow --help
shell> mysqldump -u root personnel

Arguments that begin with a single or double dash (“-”, “--”) specify program options. Options typically
indicate the type of connection a program should make to the server or affect its operational mode.
Option syntax is described in Section 4.2.3, “Specifying Program Options”.

Nonoption arguments (arguments with no leading dash) provide additional information to the program.
For example, the mysql program interprets the first nonoption argument as a database name, so the
command mysql --user=root test indicates that you want to use the test database.

Later sections that describe individual programs indicate which options a program supports and
describe the meaning of any additional nonoption arguments.

Some options are common to a number of programs. The most frequently used of these are the --
host (or -h), --user (or -u), and --password (or -p) options that specify connection parameters.
They indicate the host where the MySQL server is running, and the user name and password of your
MySQL account. All MySQL client programs understand these options; they enable you to specify
which server to connect to and the account to use on that server. Other connection options are --port
(or -P) to specify a TCP/IP port number and --socket (or -S) to specify a Unix socket file on Unix (or
named pipe name on Windows). For more information on options that specify connection options, see
Section 4.2.2, “Connecting to the MySQL Server”.

You may find it necessary to invoke MySQL programs using the path name to the bin directory in
which they are installed. This is likely to be the case if you get a “program not found” error whenever
you attempt to run a MySQL program from any directory other than the bin directory. To make it more
convenient to use MySQL, you can add the path name of the bin directory to your PATH environment
variable setting. That enables you to run a program by typing only its name, not its entire path name.
For example, if mysql is installed in /usr/local/mysql/bin, you can run the program by invoking it
as mysql, and it is not necessary to invoke it as /usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on setting your PATH variable.
The syntax for setting environment variables is interpreter-specific. (Some information is given in
Section 4.2.4, “Setting Environment Variables”.) After modifying your PATH setting, open a new console
window on Windows or log in again on Unix so that the setting goes into effect.

4.2.2 Connecting to the MySQL Server

For a client program to be able to connect to the MySQL server, it must use the proper connection
parameters, such as the name of the host where the server is running and the user name and
password of your MySQL account. Each connection parameter has a default value, but you can
override them as necessary using program options specified either on the command line or in an option
file.

The examples here use the mysql client program, but the principles apply to other clients such as
mysqldump, mysqladmin, or mysqlshow.

This command invokes mysql without specifying any connection parameters explicitly:

shell> mysql

Because there are no parameter options, the default values apply:

• The default host name is localhost. On Unix, this has a special meaning, as described later.

• The default user name is ODBC on Windows or your Unix login name on Unix.

• No password is sent if neither -p nor --password is given.

• For mysql, the first nonoption argument is taken as the name of the default database. If there is no
such option, mysql does not select a default database.

Connecting to the MySQL Server

225

To specify the host name and user name explicitly, as well as a password, supply appropriate options
on the command line:

shell> mysql --host=localhost --user=myname --password=mypass mydb
shell> mysql -h localhost -u myname -pmypass mydb

For password options, the password value is optional:

• If you use a -p or --password option and specify the password value, there must be no space
between -p or --password= and the password following it.

• If you use a -p or --password option but do not specify the password value, the client program
prompts you to enter the password. The password is not displayed as you enter it. This is more
secure than giving the password on the command line. Other users on your system may be able to
see a password specified on the command line by executing a command such as ps auxw. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

As just mentioned, including the password value on the command line can be a security risk. To avoid
this problem, specify the --password or -p option without any following password value:

shell> mysql --host=localhost --user=myname --password mydb
shell> mysql -h localhost -u myname -p mydb

When the password option has no password value, the client program prints a prompt and waits for
you to enter the password. (In these examples, mydb is not interpreted as a password because it is
separated from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits
the password to eight characters. That is a problem with the system library, not with MySQL. Internally,
MySQL does not have any limit for the length of the password. To work around the problem, change
your MySQL password to a value that is eight or fewer characters long, or put your password in an
option file.

On Unix, MySQL programs treat the host name localhost specially, in a way that is likely different
from what you expect compared to other network-based programs. For connections to localhost,
MySQL programs attempt to connect to the local server by using a Unix socket file. This occurs even
if a --port or -P option is given to specify a port number. To ensure that the client makes a TCP/IP
connection to the local server, use --host or -h to specify a host name value of 127.0.0.1, or the
IP address or name of the local server. You can also specify the connection protocol explicitly, even for
localhost, by using the --protocol=TCP option. For example:

shell> mysql --host=127.0.0.1
shell> mysql --protocol=TCP

The --protocol option enables you to establish a particular type of connection even when the other
options would normally default to some other protocol.

If the server is configured to accept IPv6 connections, client can connect over IPv6 using --
host=::1. See Section 5.1.9, “IPv6 Support”.

On Windows, you can force a MySQL client to use a named-pipe connection by specifying the --pipe
or --protocol=PIPE option, or by specifying . (period) as the host name. If named-pipe connections
are not enabled, an error occurs. Use the --socket option to specify the name of the pipe if you do
not want to use the default pipe name.

Connections to remote servers always use TCP/IP. This command connects to the server running on
remote.example.com using the default port number (3306):

shell> mysql --host=remote.example.com

Connecting to the MySQL Server

226

To specify a port number explicitly, use the --port or -P option:

shell> mysql --host=remote.example.com --port=13306

You can specify a port number for connections to a local server, too. However, as indicated previously,
connections to localhost on Unix will use a socket file by default. You will need to force a TCP/IP
connection as already described or any option that specifies a port number will be ignored.

For this command, the program uses a socket file on Unix and the --port option is ignored:

shell> mysql --port=13306 --host=localhost

To cause the port number to be used, invoke the program in either of these ways:

shell> mysql --port=13306 --host=127.0.0.1
shell> mysql --port=13306 --protocol=TCP

The following list summarizes the options that can be used to control how client programs connect to
the server:

• --host=host_name, -h host_name

The host where the server is running. The default value is localhost.

• --password[=pass_val], -p[pass_val]

The password of the MySQL account. As described earlier, the password value is optional, but if
given, there must be no space between -p or --password= and the password following it. The
default is to send no password.

• --pipe, -W

On Windows, connect to the server using a named pipe. The server must be started with the --
enable-named-pipe option to enable named-pipe connections.

• --port=port_num, -P port_num

The port number to use for the connection, for connections made using TCP/IP. The default port
number is 3306.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

This option explicitly specifies a protocol to use for connecting to the server. It is useful when the
other connection parameters normally would cause a protocol to be used other than the one you
want. For example, connections on Unix to localhost are made using a Unix socket file by default:

shell> mysql --host=localhost

To force a TCP/IP connection to be used instead, specify a --protocol option:

shell> mysql --host=localhost --protocol=TCP

The following table shows the permissible --protocol option values and indicates the platforms on
which each value may be used. The values are not case sensitive.

--protocol
Value

Connection Protocol Permissible Operating
Systems

TCP TCP/IP connection to local or remote server All

Specifying Program Options

227

--protocol
Value

Connection Protocol Permissible Operating
Systems

SOCKET Unix socket file connection to local server Unix only

PIPE Named-pipe connection to local or remote server Windows only

MEMORY Shared-memory connection to local server Windows only

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --socket=file_name, -S file_name

On Unix, the name of the Unix socket file to use, for connections made using a named pipe to a local
server. The default Unix socket file name is /tmp/mysql.sock.

On Windows, the name of the named pipe to use, for connections to a local server. The default
Windows pipe name is MySQL. The pipe name is not case sensitive.

The server must be started with the --enable-named-pipe option to enable named-pipe
connections.

• --ssl*

Options that begin with --ssl are used for establishing a secure connection to the server using
SSL, if the server is configured with SSL support. For details, see Section 6.3.11.4, “SSL Command
Options”.

• --user=user_name, -u user_name

The user name of the MySQL account you want to use. The default user name is ODBC on Windows
or your Unix login name on Unix.

It is possible to specify different default values to be used when you make a connection so that you
need not enter them on the command line each time you invoke a client program. This can be done in
a couple of ways:

• You can specify connection parameters in the [client] section of an option file. The relevant
section of the file might look like this:

[client]
host=host_name
user=user_name
password=your_pass

Section 4.2.3.3, “Using Option Files”, discusses option files further.

• You can specify some connection parameters using environment variables. The host can be
specified for mysql using MYSQL_HOST. The MySQL user name can be specified using USER (this
is for Windows only). The password can be specified using MYSQL_PWD, although this is insecure;
see Section 6.1.2.1, “End-User Guidelines for Password Security”. For a list of variables, see
Section 2.11, “Environment Variables”.

4.2.3 Specifying Program Options

There are several ways to specify options for MySQL programs:

Specifying Program Options

228

• List the options on the command line following the program name. This is common for options that
apply to a specific invocation of the program.

• List the options in an option file that the program reads when it starts. This is common for options
that you want the program to use each time it runs.

• List the options in environment variables (see Section 4.2.4, “Setting Environment Variables”).
This method is useful for options that you want to apply each time the program runs. In practice,
option files are used more commonly for this purpose, but Section 5.3.3, “Running Multiple MySQL
Instances on Unix”, discusses one situation in which environment variables can be very helpful. It
describes a handy technique that uses such variables to specify the TCP/IP port number and Unix
socket file for the server and for client programs.

Options are processed in order, so if an option is specified multiple times, the last occurrence takes
precedence. The following command causes mysql to connect to the server running on localhost:

shell> mysql -h example.com -h localhost

If conflicting or related options are given, later options take precedence over earlier options. The
following command runs mysql in “no column names” mode:

shell> mysql --column-names --skip-column-names

MySQL programs determine which options are given first by examining environment variables, then by
reading option files, and then by checking the command line. This means that environment variables
have the lowest precedence and command-line options the highest.

You can take advantage of the way that MySQL programs process options by specifying default option
values for a program in an option file. That enables you to avoid typing them each time you run the
program while enabling you to override the defaults if necessary by using command-line options.

Note

Prior to MySQL 5.7.2, program options could be specified in full or as any
unambiguous prefix. For example, the --compress option could be given to
mysqldump as --compr, but not as --comp because the latter is ambiguous.
As of MySQL 5.7.2, option prefixes are no longer supported; only full options
are accepted. This is because prefixes can cause problems when new options
are implemented for programs and a prefix that is currently unambiguous might
become ambiguous in the future.

4.2.3.1 Using Options on the Command Line

Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it is a short form or
long form of the option name. Many options have both short and long forms. For example, -? and --
help are the short and long forms of the option that instructs a MySQL program to display its help
message.

• Option names are case sensitive. -v and -V are both legal and have different meanings. (They are
the corresponding short forms of the --verbose and --version options.)

• Some options take a value following the option name. For example, -h localhost or --
host=localhost indicate the MySQL server host to a client program. The option value tells the
program the name of the host where the MySQL server is running.

• For a long option that takes a value, separate the option name and the value by an “=” sign. For a
short option that takes a value, the option value can immediately follow the option letter, or there

Specifying Program Options

229

can be a space between: -hlocalhost and -h localhost are equivalent. An exception to this
rule is the option for specifying your MySQL password. This option can be given in long form as --
password=pass_val or as --password. In the latter case (with no password value given), the
program prompts you for the password. The password option also may be given in short form as -
ppass_val or as -p. However, for the short form, if the password value is given, it must follow the
option letter with no intervening space. The reason for this is that if a space follows the option letter,
the program has no way to tell whether a following argument is supposed to be the password value
or some other kind of argument. Consequently, the following two commands have two completely
different meanings:

shell> mysql -ptest
shell> mysql -p test

The first command instructs mysql to use a password value of test, but specifies no default
database. The second instructs mysql to prompt for the password value and to use test as the
default database.

• Within option names, dash (“-”) and underscore (“_”) may be used interchangeably. For example, --
skip-grant-tables and --skip_grant_tables are equivalent. (However, the leading dashes
cannot be given as underscores.)

• For options that take a numeric value, the value can be given with a suffix of K, M, or G (either
uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243. For example, the following
command tells mysqladmin to ping the server 1024 times, sleeping 10 seconds between each ping:

mysql> mysqladmin --count=1K --sleep=10 ping

Option values that contain spaces must be quoted when given on the command line. For example, the
--execute (or -e) option can be used with mysql to pass SQL statements to the server. When this
option is used, mysql executes the statements in the option value and exits. The statements must be
enclosed by quotation marks. For example, you can use the following command to obtain a list of user
accounts:

mysql> mysql -u root -p --execute="SELECT User, Host FROM mysql.user"
Enter password: ******
+------+-----------+
| User | Host |
+------+-----------+
	gigan
root	gigan
	localhost
jon	localhost
root	localhost
+------+-----------+
shell>

Note that the long form (--execute) is followed by an equals sign (=).

If you wish to use quoted values within a statement, you will either need to escape the inner quotation
marks, or use a different type of quotation marks within the statement from those used to quote the
statement itself. The capabilities of your command processor dictate your choices for whether you can
use single or double quotation marks and the syntax for escaping quote characters. For example, if
your command processor supports quoting with single or double quotation marks, you can use double
quotation marks around the statement, and single quotation marks for any quoted values within the
statement.

Multiple SQL statements may be passed in the option value on the command line, separated by
semicolons:

shell> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"
Enter password: ******

Specifying Program Options

230

+-----------------+
| VERSION() |
+-----------------+
| 5.1.5-alpha-log |
+-----------------+
+---------------------+
| NOW() |
+---------------------+
| 2006-01-05 21:19:04 |
+---------------------+

4.2.3.2 Program Option Modifiers

Some options are “boolean” and control behavior that can be turned on or off. For example, the mysql
client supports a --column-names option that determines whether or not to display a row of column
names at the beginning of query results. By default, this option is enabled. However, you may want
to disable it in some instances, such as when sending the output of mysql into another program that
expects to see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option
off.

The “enabled” form of the option may be specified in any of these ways:

--column-names
--enable-column-names
--column-names=1

The values ON, TRUE, OFF, and FALSE are also recognized for boolean options (not case sensitive).

If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the
option, but instead issues only a warning:

shell> mysql --loose-no-such-option
mysql: WARNING: unknown option '--no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL on the
same machine and list options in an option file, An option that may not be recognized by all versions of
a program can be given using the --loose prefix (or loose in an option file). Versions of the program
that recognize the option process it normally, and versions that do not recognize it issue a warning and
ignore it.

mysqld enables a limit to be placed on how large client programs can set dynamic system
variables. To do this, use a --maximum prefix with the variable name. For example, --maximum-
query_cache_size=4M prevents any client from making the query cache size larger than 4MB.

4.2.3.3 Using Option Files

Most MySQL programs can read startup options from option files (also sometimes called configuration
files). Option files provide a convenient way to specify commonly used options so that they need not be
entered on the command line each time you run a program. For the MySQL server, MySQL provides a
number of preconfigured option files.

To determine whether a program reads option files, invoke it with the --help option. (For mysqld, use
--verbose and --help.) If the program reads option files, the help message indicates which files it
looks for and which option groups it recognizes.

Specifying Program Options

231

The .mylogin.cnf file that contains login path options is created by the mysql_config_editor
utility. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”. A “login path” is
an option group that permits only a limited set of options: host, user, and password. Client programs
specify which login path to read from .mylogin.cnf using the --login-path option.

To specify an alternate file name, set the MYSQL_TEST_LOGIN_FILE environment variable.
This variable is used by the mysql-test-run.pl testing utility, but also is recognized by
mysql_config_editor and by MySQL clients such as mysql, mysqladmin, and so forth.

On Windows, MySQL programs read startup options from the following files, in the specified order (top
items are used first).

File Name Purpose

%PROGRAMDATA
%\MySQL\MySQL
Server 5.7\my.ini,
%PROGRAMDATA%\MySQL
\MySQL Server
5.7\my.cnf

Global options

%WINDIR%\my.ini,
%WINDIR%\my.cnf

Global options

C:\my.ini, C:\my.cnf Global options

INSTALLDIR\my.ini,
INSTALLDIR\my.cnf

Global options

defaults-extra-file The file specified with --defaults-extra-file=path, if any

%APPDATA%\MySQL
\.mylogin.cnf

Login path options

%PROGRAMDATA% represents the file system directory that contains application data for all users on
the host. This path defaults to C:\ProgramData on Microsoft Windows Vista and greater, and C:
\Documents and Settings\All Users\Application Data on older versions of Microsoft
Windows.

%WINDIR% represents the location of your Windows directory. This is commonly C:\WINDOWS. You
can determine its exact location from the value of the WINDIR environment variable using the following
command:

C:\> echo %WINDIR%

INSTALLDIR represents the MySQL installation directory. This is typically C:\PROGRAMDIR\MySQL
\MySQL 5.7 Server where PROGRAMDIR represents the programs directory (usually Program
Files on English-language versions of Windows), when MySQL 5.7 has been installed using the
installation and configuration wizards. See Section 2.3.3, “Installing MySQL on Microsoft Windows
Using MySQL Installer”.

%APPDATA% represents the value of the Windows application data directory. You can determine its
exact location from the value of the APPDATA environment variable using the following command:

C:\> echo %APPDATA%

On Unix, Linux and Mac OS X, MySQL programs read startup options from the following files, in the
specified order (top items are used first).

File Name Purpose

/etc/my.cnf Global options

/etc/mysql/my.cnf Global options

Specifying Program Options

232

File Name Purpose

SYSCONFDIR/my.cnf Global options

$MYSQL_HOME/my.cnf Server-specific options

defaults-extra-file The file specified with --defaults-extra-file=path, if any

~/.my.cnf User-specific options

~/.mylogin.cnf Login path options

~ represents the current user's home directory (the value of $HOME).

SYSCONFDIR represents the directory specified with the SYSCONFDIR option to CMake when MySQL
was built. By default, this is the etc directory located under the compiled-in installation directory.

MYSQL_HOME is an environment variable containing the path to the directory in which the
server-specific my.cnf file resides. If MYSQL_HOME is not set and you start the server using the
mysqld_safe program, mysqld_safe attempts to set MYSQL_HOME as follows:

• Let BASEDIR and DATADIR represent the path names of the MySQL base directory and data
directory, respectively.

• If there is a my.cnf file in DATADIR but not in BASEDIR, mysqld_safe sets MYSQL_HOME to
DATADIR.

• Otherwise, if MYSQL_HOME is not set and there is no my.cnf file in DATADIR, mysqld_safe sets
MYSQL_HOME to BASEDIR.

In MySQL 5.7, use of DATADIR as the location for my.cnf is deprecated.

Typically, DATADIR is /usr/local/mysql/data for a binary installation or /usr/local/var for a
source installation. Note that this is the data directory location that was specified at configuration time,
not the one specified with the --datadir option when mysqld starts. Use of --datadir at runtime
has no effect on where the server looks for option files, because it looks for them before processing
any options.

MySQL looks for option files in the order just described and reads any that exist. If an option file that
you want to use does not exist, create it with a plain text editor.

If multiple instances of a given option are found, the last instance takes precedence. There is one
exception: For mysqld, the first instance of the --user option is used as a security precaution, to
prevent a user specified in an option file from being overridden on the command line.

Note

On Unix platforms, MySQL ignores configuration files that are world-writable.
This is intentional as a security measure.

Any long option that may be given on the command line when running a MySQL program can be given
in an option file as well. To get the list of available options for a program, run it with the --help option.

The syntax for specifying options in an option file is similar to command-line syntax (see
Section 4.2.3.1, “Using Options on the Command Line”). However, in an option file, you omit
the leading two dashes from the option name and you specify only one option per line. For
example, --quick and --host=localhost on the command line should be specified as quick
and host=localhost on separate lines in an option file. To specify an option of the form --
loose-opt_name in an option file, write it as loose-opt_name.

Empty lines in option files are ignored. Nonempty lines can take any of the following forms:

• #comment, ;comment

Comment lines start with “#” or “;”. A “#” comment can start in the middle of a line as well.

Specifying Program Options

233

• [group]

group is the name of the program or group for which you want to set options. After a group line, any
option-setting lines apply to the named group until the end of the option file or another group line is
given. Option group names are not case sensitive.

• opt_name

This is equivalent to --opt_name on the command line.

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can have
spaces around the “=” character, something that is not true on the command line. You can optionally
enclose the value within single quotation marks or double quotation marks, which is useful if the
value contains a “#” comment character.

Leading and trailing spaces are automatically deleted from option names and values.

You can use the escape sequences “\b”, “\t”, “\n”, “\r”, “\\”, and “\s” in option values to represent
the backspace, tab, newline, carriage return, backslash, and space characters. The escaping rules in
option files are:

• If a backslash is followed by a valid escape sequence character, the sequence is converted to the
character represented by the sequence. For example, “\s” is converted to a space.

• If a backslash is not followed by a valid escape sequence character, it remains unchanged. For
example, “\S” is retained as is.

The preceding rules mean that a literal backslash can be given as “\\”, or as “\” if it is not followed by
a valid escape sequence character.

The rules for escape sequences in option files differ slightly from the rules for escape sequences in
string literals in SQL statements. In the latter context, if “x” is not a valid escape sequence character,
“\x” becomes “x” rather than “\x”. See Section 9.1.1, “String Literals”.

The escaping rules for option file values are especially pertinent for Windows path names, which use
“\” as a path name separator. A separator in a Windows path name must be written as “\\” if it is
followed by an escape sequence character. It can be written as “\\” or “\” if it is not. Alternatively, “/”
may be used in Windows path names and will be treated as “\”. Suppose that you want to specify a
base directory of C:\Program Files\MySQL\MySQL Server 5.7 in an option file. This can be
done several ways. Some examples:

basedir="C:\Program Files\MySQL\MySQL Server 5.7"
basedir="C:\\Program Files\\MySQL\\MySQL Server 5.7"
basedir="C:/Program Files/MySQL/MySQL Server 5.7"
basedir=C:\\Program\sFiles\\MySQL\\MySQL\sServer\s5.7

If an option group name is the same as a program name, options in the group apply specifically to
that program. For example, the [mysqld] and [mysql] groups apply to the mysqld server and the
mysql client program, respectively.

The [client] option group is read by all client programs (but not by mysqld). This enables you to
specify options that apply to all clients. For example, [client] is the perfect group to use to specify
the password that you use to connect to the server. (But make sure that the option file is readable and
writable only by yourself, so that other people cannot find out your password.) Be sure not to put an
option in the [client] group unless it is recognized by all client programs that you use. Programs
that do not understand the option quit after displaying an error message if you try to run them.

Here is a typical global option file:

Specifying Program Options

234

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M

[mysqldump]
quick

The preceding option file uses var_name=value syntax for the lines that set the key_buffer_size
and max_allowed_packet variables.

Here is a typical user option file:

[client]
The following password will be sent to all standard MySQL clients
password="my_password"

[mysql]
no-auto-rehash
connect_timeout=2

[mysqlhotcopy]
interactive-timeout

If you want to create option groups that should be read by mysqld servers from a specific MySQL
release series only, you can do this by using groups with names of [mysqld-5.6], [mysqld-5.7],
and so forth. The following group indicates that the --new option should be used only by MySQL
servers with 5.7.x version numbers:

[mysqld-5.7]
new

It is possible to use !include directives in option files to include other option files and !includedir
to search specific directories for option files. For example, to include the /home/mydir/myopt.cnf
file, use the following directive:

!include /home/mydir/myopt.cnf

To search the /home/mydir directory and read option files found there, use this directive:

!includedir /home/mydir

There is no guarantee about the order in which the option files in the directory will be read.

Note

Currently, any files to be found and included using the !includedir directive
on Unix operating systems must have file names ending in .cnf. On Windows,
this directive checks for files with the .ini or .cnf extension.

Write the contents of an included option file like any other option file. That is, it should contain groups of
options, each preceded by a [group] line that indicates the program to which the options apply.

While an included file is being processed, only those options in groups that the current program is
looking for are used. Other groups are ignored. Suppose that a my.cnf file contains this line:

!include /home/mydir/myopt.cnf

Specifying Program Options

235

And suppose that /home/mydir/myopt.cnf looks like this:

[mysqladmin]
force

[mysqld]
key_buffer_size=16M

If my.cnf is processed by mysqld, only the [mysqld] group in /home/mydir/myopt.cnf is used.
If the file is processed by mysqladmin, only the [mysqladmin] group is used. If the file is processed
by any other program, no options in /home/mydir/myopt.cnf are used.

The !includedir directive is processed similarly except that all option files in the named directory
are read.

4.2.3.4 Command-Line Options that Affect Option-File Handling

Most MySQL programs that support option files handle the following options. They affect option-file
handling, so they must be given on the command line and not in an option file. To work properly, each
of these options must be given before other options, with these exceptions:

• --print-defaults may be used immediately after --defaults-file or --defaults-extra-
file.

• On Windows, if the server is started with the --defaults-file and --install options, --
install must be first. See Section 2.3.5.7, “Starting MySQL as a Windows Service”.

When specifying file names, you should avoid the use of the “~” shell metacharacter because it might
not be interpreted as you expect.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, the mysql client normally reads the [client] and [mysql] groups. If the --
defaults-group-suffix=_other option is given, mysql also reads the [client_other] and
[mysql_other] groups.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

Specifying Program Options

236

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --print-defaults

Print the program name and all options that it gets from option files.

4.2.3.5 Using Options to Set Program Variables

Many MySQL programs have internal variables that can be set at runtime using the SET statement.
See Section 13.7.4, “SET Syntax”, and Section 5.1.5, “Using System Variables”.

Most of these program variables also can be set at server startup by using the same syntax that
applies to specifying program options. For example, mysql has a max_allowed_packet variable that
controls the maximum size of its communication buffer. To set the max_allowed_packet variable for
mysql to a value of 16MB, use either of the following commands:

shell> mysql --max_allowed_packet=16777216
shell> mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes. For
variables that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase
or lowercase) to indicate a multiplier of 1024, 10242 or 10243. (For example, when used to set
max_allowed_packet, the suffixes indicate units of kilobytes, megabytes, or gigabytes.)

In an option file, variable settings are given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in a variable name can be specified as dashes. The following option groups are
equivalent. Both set the size of the server's key buffer to 512MB:

[mysqld]
key_buffer_size=512M

[mysqld]
key-buffer-size=512M

A variable can be specified by writing it in full or as any unambiguous prefix. For example, the
max_allowed_packet variable can be set for mysql as --max_a, but not as --max because the
latter is ambiguous:

shell> mysql --max=1000000
mysql: ambiguous option '--max=1000000' (max_allowed_packet, max_join_size)

Be aware that the use of variable prefixes can cause problems in the event that new variables are
implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

Specifying Program Options

237

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

4.2.3.6 Option Defaults, Options Expecting Values, and the = Sign

By convention, long forms of options that assign a value are written with an equals (=) sign, like this:

shell> mysql --host=tonfisk --user=jon

For options that require a value (that is, not having a default value), the equals sign is not required, and
so the following is also valid:

shell> mysql --host tonfisk --user jon

In both cases, the mysql client attempts to connect to a MySQL server running on the host named
“tonfisk” using an account with the user name “jon”.

Due to this behavior, problems can occasionally arise when no value is provided for an option that
expects one. Consider the following example, where a user connects to a MySQL server running on
host tonfisk as user jon:

shell> mysql --host 85.224.35.45 --user jon
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.7.5 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| jon@% |
+----------------+
1 row in set (0.00 sec)

Omitting the required value for one of these option yields an error, such as the one shown here:

shell> mysql --host 85.224.35.45 --user
mysql: option '--user' requires an argument

In this case, mysql was unable to find a value following the --user option because nothing came
after it on the command line. However, if you omit the value for an option that is not the last option to
be used, you obtain a different error that you may not be expecting:

shell> mysql --host --user jon
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

Because mysql assumes that any string following --host on the command line is a host name, --
host --user is interpreted as --host=--user, and the client attempts to connect to a MySQL
server running on a host named “--user”.

Options having default values always require an equals sign when assigning a value; failing to do
so causes an error. For example, the MySQL server --log-error option has the default value
host_name.err, where host_name is the name of the host on which MySQL is running. Assume

Specifying Program Options

238

that you are running MySQL on a computer whose host name is “tonfisk”, and consider the following
invocation of mysqld_safe:

shell> mysqld_safe &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

After shutting down the server, restart it as follows:

shell> mysqld_safe --log-error &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

The result is the same, since --log-error is not followed by anything else on the command line,
and it supplies its own default value. (The & character tells the operating system to run MySQL in the
background; it is ignored by MySQL itself.) Now suppose that you wish to log errors to a file named
my-errors.err. You might try starting the server with --log-error my-errors, but this does not
have the intended effect, as shown here:

shell> mysqld_safe --log-error my-errors &
[1] 31357
shell> 080111 22:53:31 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080111 22:53:32 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

[1]+ Done ./mysqld_safe --log-error my-errors

The server attempted to start using /usr/local/mysql/var/tonfisk.err as the error log, but
then shut down. Examining the last few lines of this file shows the reason:

shell> tail /usr/local/mysql/var/tonfisk.err
2013-09-24T15:36:22.278034Z 0 [ERROR] Too many arguments (first extra is 'my-errors').
2013-09-24T15:36:22.278059Z 0 [Note] Use --verbose --help to get a list of available options!
2013-09-24T15:36:22.278076Z 0 [ERROR] Aborting
2013-09-24T15:36:22.279704Z 0 [Note] InnoDB: Starting shutdown...
2013-09-24T15:36:23.777471Z 0 [Note] InnoDB: Shutdown completed; log sequence number 2319086
2013-09-24T15:36:23.780134Z 0 [Note] mysqld: Shutdown complete

Because the --log-error option supplies a default value, you must use an equals sign to assign a
different value to it, as shown here:

shell> mysqld_safe --log-error=my-errors &
[1] 31437
shell> 080111 22:54:15 mysqld_safe Logging to '/usr/local/mysql/var/my-errors.err'.
080111 22:54:15 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var

shell>

Now the server has been started successfully, and is logging errors to the file /usr/local/mysql/
var/my-errors.err.

Similar issues can arise when specifying option values in option files. For example, consider a my.cnf
file that contains the following:

[mysql]

host
user

Specifying Program Options

239

When the mysql client reads this file, these entries are parsed as --host --user or --host=--
user, with the result shown here:

shell> mysql
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

However, in option files, an equals sign is not assumed. Suppose the my.cnf file is as shown here:

[mysql]

user jon

Trying to start mysql in this case causes a different error:

shell> mysql
mysql: unknown option '--user jon'

A similar error would occur if you were to write host tonfisk in the option file rather than
host=tonfisk. Instead, you must use the equals sign:

[mysql]

user=jon

Now the login attempt succeeds:

shell> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.7.5 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+
1 row in set (0.00 sec)

This is not the same behavior as with the command line, where the equals sign is not required:

shell> mysql --user jon --host tonfisk
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.7.5 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@tonfisk |
+---------------+
1 row in set (0.00 sec)

In MySQL 5.7, specifying an option requiring a value without a value in an option file causes the server
to abort with an error. Suppose that my.cnf contains the following:

[mysqld]
log_error

Setting Environment Variables

240

relay_log
relay_log_index

This causes the server to fail on startup, as shown here:

shell> mysqld_safe &

130924 10:41:46 mysqld_safe Logging to '/home/jon/bin/mysql/var/tonfisk.err'.
130924 10:41:46 mysqld_safe Starting mysqld daemon with databases from /home/jon/bin/mysql/var
130924 10:41:47 mysqld_safe mysqld from pid file /home/jon/bin/mysql/var/tonfisk.pid ended

The --log-error option does not require an argument; however, the --relay-log option
requires one, as shown in the error log (which in the absence of a specified value, defaults to
datadir/hostname.err):

shell> tail -n 3 ../var/tonfisk.err

130924 10:41:46 mysqld_safe Starting mysqld daemon with databases from /home/jon/bin/mysql/var
2013-09-24T15:41:47.217180Z 0 [ERROR] /home/jon/bin/mysql/libexec/mysqld: option '--relay-log' requires an argument
2013-09-24T15:41:47.217479Z 0 [ERROR] Aborting

This is a change from previous behavior, where the server would have interpreted the last two lines
in the example my.cnf file as --relay-log=relay_log_index and created a relay log file using
“relay_log_index” as the basename. (Bug #25192)

4.2.4 Setting Environment Variables

Environment variables can be set at the command prompt to affect the current invocation of your
command processor, or set permanently to affect future invocations. To set a variable permanently,
you can set it in a startup file or by using the interface provided by your system for this purpose.
Consult the documentation for your command interpreter for specific details. Section 2.11,
“Environment Variables”, lists all environment variables that affect MySQL program operation.

To specify a value for an environment variable, use the syntax appropriate for your command
processor. For example, on Windows, you can set the USER variable to specify your MySQL account
name. To do so, use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number
using the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, ksh, bash, zsh, and so on) is as
follows:

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT

The first command sets the variable, and the export command exports the variable to the shell
environment so that its value becomes accessible to MySQL and other processes.

For csh and tcsh, use setenv to make the shell variable available to the environment:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect
immediately, but the settings persist only until you log out. To have the settings take effect each time
you log in, use the interface provided by your system or place the appropriate command or commands
in a startup file that your command interpreter reads each time it starts.

On Windows, you can set environment variables using the System Control Panel (under Advanced).

On Unix, typical shell startup files are .bashrc or .bash_profile for bash, or .tcshrc for tcsh.

MySQL Server and Server-Startup Programs

241

Suppose that your MySQL programs are installed in /usr/local/mysql/bin and that you want to
make it easy to invoke these programs. To do this, set the value of the PATH environment variable to
include that directory. For example, if your shell is bash, add the following line to your .bashrc file:

PATH=${PATH}:/usr/local/mysql/bin

bash uses different startup files for login and nonlogin shells, so you might want to add the setting to
.bashrc for login shells and to .bash_profile for nonlogin shells to make sure that PATH is set
regardless.

If your shell is tcsh, add the following line to your .tcshrc file:

setenv PATH ${PATH}:/usr/local/mysql/bin

If the appropriate startup file does not exist in your home directory, create it with a text editor.

After modifying your PATH setting, open a new console window on Windows or log in again on Unix so
that the setting goes into effect.

4.3 MySQL Server and Server-Startup Programs

This section describes mysqld, the MySQL server, and several programs that are used to start the
server.

4.3.1 mysqld — The MySQL Server

mysqld, also known as MySQL Server, is the main program that does most of the work in a MySQL
installation. MySQL Server manages access to the MySQL data directory that contains databases and
tables. The data directory is also the default location for other information such as log files and status
files.

When MySQL server starts, it listens for network connections from client programs and manages
access to databases on behalf of those clients.

The mysqld program has many options that can be specified at startup. For a complete list of options,
run this command:

shell> mysqld --verbose --help

MySQL Server also has a set of system variables that affect its operation as it runs. System variables
can be set at server startup, and many of them can be changed at runtime to effect dynamic server
reconfiguration. MySQL Server also has a set of status variables that provide information about its
operation. You can monitor these status variables to access runtime performance characteristics.

For a full description of MySQL Server command options, system variables, and status variables, see
Section 5.1, “The MySQL Server”. For information about installing MySQL and setting up the initial
configuration, see Chapter 2, Installing and Upgrading MySQL.

4.3.2 mysqld_safe — MySQL Server Startup Script

mysqld_safe is the recommended way to start a mysqld server on Unix. mysqld_safe adds some
safety features such as restarting the server when an error occurs and logging runtime information to
an error log file. A description of error logging is given later in this section.

mysqld_safe tries to start an executable named mysqld. To override the default behavior and
specify explicitly the name of the server you want to run, specify a --mysqld or --mysqld-version
option to mysqld_safe. You can also use --ledir to indicate the directory where mysqld_safe
should look for the server.

mysqld_safe — MySQL Server Startup Script

242

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.1.3,
“Server Command Options”.

Options unknown to mysqld_safe are passed to mysqld if they are specified on the command line,
but ignored if they are specified in the [mysqld_safe] group of an option file. See Section 4.2.3.3,
“Using Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in
option files. For example, if you specify a [mysqld] section like this, mysqld_safe will find and use
the --log-error option:

[mysqld]
log-error=error.log

For backward compatibility, mysqld_safe also reads [safe_mysqld] sections, although you should
rename such sections to [mysqld_safe] in MySQL 5.7 installations.

mysqld_safe supports the following options. It also reads option files and supports the options
for processing them described at Section 4.2.3.4, “Command-Line Options that Affect Option-File
Handling”.

Table 4.1 mysqld_safe Options

Format Option File Description

--basedir=path basedir The path to the MySQL installation directory

--core-file-size=size core-file-size The size of the core file that mysqld should be able to
create

--datadir=path datadir The path to the data directory

--defaults-extra-
file=path

defaults-extra-file Read option file in addition to the usual option files

--defaults-
file=file_name

defaults-file Read only the given option file

--help Display a help message and exit

--ledir=path ledir Use this option to indicate the path name to the directory
where the server is located

--log-
error=file_name

log-error Write the error log to the given file

--malloc-lib=[lib-
name]

malloc-lib Alternative malloc library to use for mysqld

--
mysqld=prog_name

mysqld The name of the server program (in the ledir directory)
that you want to start

--mysqld-
version=suffix

mysqld-version This option is similar to the --mysqld option, but you
specify only the suffix for the server program name

--nice=priority nice Use the nice program to set the server's scheduling
priority to the given value

--no-defaults no-defaults Do not read any option files

--open-files-
limit=count

open-files-limit The number of files that mysqld should be able to open

--pid-file=file_name pid-file=file_name The path name of the process ID file

--plugin-dir=path plugin-dir=path The directory where plugins are located

--port=number port The port number that the server should use when
listening for TCP/IP connections

mysqld_safe — MySQL Server Startup Script

243

Format Option File Description

--skip-kill-mysqld skip-kill-mysqld Do not try to kill stray mysqld processes

--skip-syslog skip-syslog Do not write error messages to syslog; use error log file

--socket=path socket The Unix socket file that the server should use when
listening for local connections

--syslog syslog Write error messages to syslog

--syslog-tag=tag syslog-tag Tag suffix for messages written to syslog

--
timezone=timezone

timezone Set the TZ time zone environment variable to the given
option value

--user={user_name|
user_id}

user Run the mysqld server as the user having the name
user_name or the numeric user ID user_id

• --help

Display a help message and exit.

• --basedir=path

The path to the MySQL installation directory.

• --core-file-size=size

The size of the core file that mysqld should be able to create. The option value is passed to ulimit
-c.

• --datadir=path

The path to the data directory.

• --defaults-extra-file=path

The name of an option file to be read in addition to the usual option files. This must be the first option
on the command line if it is used. If the file does not exist or is otherwise inaccessible, the server will
exit with an error.

• --defaults-file=file_name

The name of an option file to be read instead of the usual option files. This must be the first option on
the command line if it is used.

• --ledir=path

If mysqld_safe cannot find the server, use this option to indicate the path name to the directory
where the server is located.

• --log-error=file_name

Write the error log to the given file. See Section 5.2.2, “The Error Log”.

• --malloc-lib=[lib_name]

The name of the library to use for memory allocation instead of the system malloc() library. Any
library can be used by specifying its path name, but there is a shortcut form to enable use of the
tcmalloc library that is shipped with binary MySQL distributions for Linux in MySQL 5.7. It is
possible that the shortcut form will not work under certain configurations, in which case you should
specify a path name instead.

The --malloc-lib option works by modifying the LD_PRELOAD environment value to affect
dynamic linking to enable the loader to find the memory-allocation library when mysqld runs:

mysqld_safe — MySQL Server Startup Script

244

• If the option is not given, or is given without a value (--malloc-lib=), LD_PRELOAD is not
modified and no attempt is made to use tcmalloc.

• If the option is given as --malloc-lib=tcmalloc, mysqld_safe looks for a tcmalloc library
in /usr/lib and then in the MySQL pkglibdir location (for example, /usr/local/mysql/
lib or whatever is appropriate). If tmalloc is found, its path name is added to the beginning of
the LD_PRELOAD value for mysqld. If tcmalloc is not found, mysqld_safe aborts with an error.

• If the option is given as --malloc-lib=/path/to/some/library, that full path is added to
the beginning of the LD_PRELOAD value. If the full path points to a nonexistent or unreadable file,
mysqld_safe aborts with an error.

• For cases where mysqld_safe adds a path name to LD_PRELOAD, it adds the path to the
beginning of any existing value the variable already has.

Linux users can use the libtcmalloc_minimal.so included in binary packages by adding these
lines to the my.cnf file:

[mysqld_safe]
malloc-lib=tcmalloc

Those lines also suffice for users on any platform who have installed a tcmalloc package in /usr/
lib. To use a specific tcmalloc library, specify its full path name. Example:

[mysqld_safe]
malloc-lib=/opt/lib/libtcmalloc_minimal.so

• --mysqld=prog_name

The name of the server program (in the ledir directory) that you want to start. This option is
needed if you use the MySQL binary distribution but have the data directory outside of the binary
distribution. If mysqld_safe cannot find the server, use the --ledir option to indicate the path
name to the directory where the server is located.

• --mysqld-version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server
program name. The basename is assumed to be mysqld. For example, if you use --mysqld-
version=debug, mysqld_safe starts the mysqld-debug program in the ledir directory. If the
argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir directory.

• --nice=priority

Use the nice program to set the server's scheduling priority to the given value.

• --no-defaults

Do not read any option files. This must be the first option on the command line if it is used.

• --open-files-limit=count

The number of files that mysqld should be able to open. The option value is passed to ulimit -n.
Note that you need to start mysqld_safe as root for this to work properly!

• --pid-file=file_name

The path name of the process ID file.

In MySQL 5.7.2 and later, mysqld_safe when starting up creates a PID file named
mysqld_safe.pid in the MySQL data directory (Bug #16776528).

mysqld_safe — MySQL Server Startup Script

245

• --plugin-dir=path

The path name of the plugin directory.

• --port=port_num

The port number that the server should use when listening for TCP/IP connections. The port number
must be 1024 or higher unless the server is started by the root system user.

• --skip-kill-mysqld

Do not try to kill stray mysqld processes at startup. This option works only on Linux.

• --socket=path

The Unix socket file that the server should use when listening for local connections.

• --syslog, --skip-syslog

--syslog causes error messages to be sent to syslog on systems that support the logger
program. --skip-syslog suppresses the use of syslog; messages are written to an error log file.

When syslog is used, the daemon.err syslog priority/facility is used for all log messages.

• --syslog-tag=tag

For logging to syslog, messages from mysqld_safe and mysqld are written with a tag of
mysqld_safe and mysqld, respectively. To specify a suffix for the tag, use --syslog-tag=tag,
which modifies the tags to be mysqld_safe-tag and mysqld-tag.

• --timezone=timezone

Set the TZ time zone environment variable to the given option value. Consult your operating system
documentation for legal time zone specification formats.

• --user={user_name|user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

If you execute mysqld_safe with the --defaults-file or --defaults-extra-file option to
name an option file, the option must be the first one given on the command line or the option file will not
be used. For example, this command will not use the named option file:

mysql> mysqld_safe --port=port_num --defaults-file=file_name

Instead, use the following command:

mysql> mysqld_safe --defaults-file=file_name --port=port_num

The mysqld_safe script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install the
server in slightly different locations. (See Section 2.1.5, “Installation Layouts”.) mysqld_safe expects
one of the following conditions to be true:

• The server and databases can be found relative to the working directory (the directory from which
mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working directory
for bin and data directories. For source distributions, it looks for libexec and var directories. This
condition should be met if you execute mysqld_safe from your MySQL installation directory (for
example, /usr/local/mysql for a binary distribution).

mysql.server — MySQL Server Startup Script

246

• If the server and databases cannot be found relative to the working directory, mysqld_safe
attempts to locate them by absolute path names. Typical locations are /usr/local/libexec
and /usr/local/var. The actual locations are determined from the values configured into the
distribution at the time it was built. They should be correct if MySQL is installed in the location
specified at configuration time.

Because mysqld_safe tries to find the server and databases relative to its own working directory,
you can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the
MySQL installation directory:

shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, you can specify the
--ledir and --datadir options to indicate the directories in which the server and databases are
located on your system.

In MySQL 5.7, mysqld_safe tries to use the sleep and date system utilities to determine how many
times it has attempted to start this second, and—if these are present and this is greater than 5 times—
is forced to wait 1 full second before starting again. This is intended to prevent excessive CPU usage in
the event of repeated failures. (Bug #11761530, Bug #54035)

When you use mysqld_safe to start mysqld, mysqld_safe arranges for error (and notice)
messages from itself and from mysqld to go to the same destination.

There are several mysqld_safe options for controlling the destination of these messages:

• --syslog: Write error messages to syslog on systems that support the logger program.

• --skip-syslog: Do not write error messages to syslog. Messages are written to the default error
log file (host_name.err in the data directory), or to a named file if the --log-error option is
given.

• --log-error=file_name: Write error messages to the named error file.

If none of these options is given, the default is --skip-syslog.

If --syslog and --log-error are both given, a warning is issued and --log-error takes
precedence.

When mysqld_safe writes a message, notices go to the logging destination (syslog or the error log
file) and stdout. Errors go to the logging destination and stderr.

Normally, you should not edit the mysqld_safe script. Instead, configure mysqld_safe by using
command-line options or options in the [mysqld_safe] section of a my.cnf option file. In rare cases,
it might be necessary to edit mysqld_safe to get it to start the server properly. However, if you do
this, your modified version of mysqld_safe might be overwritten if you upgrade MySQL in the future,
so you should make a copy of your edited version that you can reinstall.

4.3.3 mysql.server — MySQL Server Startup Script

MySQL distributions on Unix include a script named mysql.server. It can be used on systems such
as Linux and Solaris that use System V-style run directories to start and stop system services. It is also
used by the Mac OS X Startup Item for MySQL.

mysql.server can be found in the support-files directory under your MySQL installation
directory or in a MySQL source distribution.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server script
will be installed in the /etc/init.d directory with the name mysql. You need not install it manually.
See Section 2.5.3, “Installing MySQL on Linux Using RPM Packages”, for more information on the
Linux RPM packages.

mysqld_multi — Manage Multiple MySQL Servers

247

Some vendors provide RPM packages that install a startup script under a different name such as
mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install
mysql.server automatically, you can install it manually. Instructions are provided in Section 2.9.1.2,
“Starting and Stopping MySQL Automatically”.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files. For
backward compatibility, it also reads [mysql_server] sections, although you should rename such
sections to [mysql.server] when using MySQL 5.7.

mysql.server supports the following options.

• --basedir=path

The path to the MySQL installation directory.

• --datadir=path

The path to the MySQL data directory.

• --pid-file=file_name

The path name of the file in which the server should write its process ID.

• --service-startup-timeout=file_name

How long in seconds to wait for confirmation of server startup. If the server does not start within this
time, mysql.server exits with an error. The default value is 900. A value of 0 means not to wait at
all for startup. Negative values mean to wait forever (no timeout).

• --use-mysqld_safe

Use mysqld_safe to start the server. This is the default.

• --user=user_name

The login user name to use for running mysqld.

4.3.4 mysqld_multi — Manage Multiple MySQL Servers

mysqld_multi is designed to manage several mysqld processes that listen for connections on
different Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --
defaults-file option). N can be any positive integer. This number is referred to in the following
discussion as the option group number, or GNR. Group numbers distinguish option groups from one
another and are used as arguments to mysqld_multi to specify which servers you want to start,
stop, or obtain a status report for. Options listed in these groups are the same that you would use in the
[mysqld] group used for starting mysqld. (See, for example, Section 2.9.1.2, “Starting and Stopping
MySQL Automatically”.) However, when using multiple servers, it is necessary that each one use its
own value for options such as the Unix socket file and TCP/IP port number. For more information on
which options must be unique per server in a multiple-server environment, see Section 5.3, “Running
Multiple MySQL Instances on One Machine”.

To invoke mysqld_multi, use the following syntax:

shell> mysqld_multi [options] {start|stop|reload|report} [GNR[,GNR] ...]

start, stop, reload (stop and restart), and report indicate which operation to perform. You can
perform the designated operation for a single server or multiple servers, depending on the GNR list that

mysqld_multi — Manage Multiple MySQL Servers

248

follows the option name. If there is no list, mysqld_multi performs the operation for all servers in the
option file.

Each GNR value represents an option group number or range of group numbers. The value should be
the number at the end of the group name in the option file. For example, the GNR for a group named
[mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The
GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group
ranges can be specified on the command line, separated by commas. There must be no whitespace
characters (spaces or tabs) in the GNR list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:

shell> mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through
[mysqld13]:

shell> mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

shell> mysqld_multi --example

mysqld_multi searches for option files as follows:

• With --no-defaults, no option files are read.

• With --defaults-file=file_name, only the named file is read.

• Otherwise, option files in the standard list of locations are read, including any file named by the --
defaults-extra-file=file_name option, if one is given. (If the option is given multiple times,
the last value is used.)

Option files read are searched for [mysqld_multi] and [mysqldN] option groups. The
[mysqld_multi] group can be used for options to mysqld_multi itself. [mysqldN] groups can be
used for options passed to specific mysqld instances.

The [mysqld] or [mysqld_safe] groups can be used for common options read by all instances
of mysqld or mysqld_safe. You can specify a --defaults-file=file_name option to use a
different configuration file for that instance, in which case the [mysqld] or [mysqld_safe] groups
from that file will be used for that instance.

mysqld_multi supports the following options.

• --help

Display a help message and exit.

• --example

Display a sample option file.

• --log=file_name

Specify the name of the log file. If the file exists, log output is appended to it.

• --mysqladmin=prog_name

The mysqladmin binary to be used to stop servers.

• --mysqld=prog_name

mysqld_multi — Manage Multiple MySQL Servers

249

The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this option
also. If you use mysqld_safe to start the server, you can include the mysqld or ledir options
in the corresponding [mysqldN] option group. These options indicate the name of the server that
mysqld_safe should start and the path name of the directory where the server is located. (See the
descriptions for these options in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.)
Example:

[mysqld38]
mysqld = mysqld-debug
ledir = /opt/local/mysql/libexec

• --no-log

Print log information to stdout rather than to the log file. By default, output goes to the log file.

• --password=password

The password of the MySQL account to use when invoking mysqladmin. Note that the password
value is not optional for this option, unlike for other MySQL programs.

• --silent

Silent mode; disable warnings.

• --tcp-ip

Connect to each MySQL server through the TCP/IP port instead of the Unix socket file. (If a socket
file is missing, the server might still be running, but accessible only through the TCP/IP port.) By
default, connections are made using the Unix socket file. This option affects stop and report
operations.

• --user=user_name

The user name of the MySQL account to use when invoking mysqladmin.

• --verbose

Be more verbose.

• --version

Display version information and exit.

Some notes about mysqld_multi:

• Most important: Before using mysqld_multi be sure that you understand the meanings of the
options that are passed to the mysqld servers and why you would want to have separate mysqld
processes. Beware of the dangers of using multiple mysqld servers with the same data directory.
Use separate data directories, unless you know what you are doing. Starting multiple servers with
the same data directory does not give you extra performance in a threaded system. See Section 5.3,
“Running Multiple MySQL Instances on One Machine”.

• Important

Make sure that the data directory for each server is fully accessible to the
Unix account that the specific mysqld process is started as. Do not use
the Unix root account for this, unless you know what you are doing. See
Section 6.1.5, “How to Run MySQL as a Normal User”.

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin
program) has the same user name and password for each server. Also, make sure that the account

mysqld_multi — Manage Multiple MySQL Servers

250

has the SHUTDOWN privilege. If the servers that you want to manage have different user names or
passwords for the administrative accounts, you might want to create an account on each server that
has the same user name and password. For example, you might set up a common multi_admin
account by executing the following commands for each server:

shell> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> GRANT SHUTDOWN ON *.*
 -> TO 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';

See Section 6.2, “The MySQL Access Privilege System”. You have to do this for each mysqld
server. Change the connection parameters appropriately when connecting to each one. Note that
the host name part of the account name must permit you to connect as multi_admin from the host
where you want to run mysqld_multi.

• The Unix socket file and the TCP/IP port number must be different for every mysqld. (Alternatively, if
the host has multiple network addresses, you can use --bind-address to cause different servers
to listen to different interfaces.)

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for
example, --mysqld=mysqld_safe) Every mysqld should have its own process ID file. The
advantage of using mysqld_safe instead of mysqld is that mysqld_safe monitors its mysqld
process and restarts it if the process terminates due to a signal sent using kill -9 or for other
reasons, such as a segmentation fault. Please note that the mysqld_safe script might require
that you start it from a certain place. This means that you might have to change location to a
certain directory before running mysqld_multi. If you have problems starting, please see the
mysqld_safe script. Check especially the lines:

--
MY_PWD=`pwd`
Check if we are starting this relative (for the binary release)
if test -d $MY_PWD/data/mysql -a \
 -f ./share/mysql/english/errmsg.sys -a \
 -x ./bin/mysqld
--

The test performed by these lines should be successful, or you might encounter problems. See
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

• You might want to use the --user option for mysqld, but to do this you need to run the
mysqld_multi script as the Unix superuser (root). Having the option in the option file doesn't
matter; you just get a warning if you are not the superuser and the mysqld processes are started
under your own Unix account.

The following example shows how you might set up an option file for use with mysqld_multi. The
order in which the mysqld programs are started or stopped depends on the order in which they appear
in the option file. Group numbers need not form an unbroken sequence. The first and fifth [mysqldN]
groups were intentionally omitted from the example to illustrate that you can have “gaps” in the option
file. This gives you more flexibility.

This file should probably be in your home dir (~/.my.cnf)
or /etc/my.cnf
Version 2.1 by Jani Tolonen

[mysqld_multi]
mysqld = /usr/local/bin/mysqld_safe
mysqladmin = /usr/local/bin/mysqladmin
user = multi_admin
password = multipass

[mysqld2]
socket = /tmp/mysql.sock2

MySQL Installation-Related Programs

251

port = 3307
pid-file = /usr/local/mysql/var2/hostname.pid2
datadir = /usr/local/mysql/var2
language = /usr/local/share/mysql/english
user = john

[mysqld3]
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/var3/hostname.pid3
datadir = /usr/local/mysql/var3
language = /usr/local/share/mysql/swedish
user = monty

[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/var4/hostname.pid4
datadir = /usr/local/mysql/var4
language = /usr/local/share/mysql/estonia
user = tonu

[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/var6/hostname.pid6
datadir = /usr/local/mysql/var6
language = /usr/local/share/mysql/japanese
user = jani

See Section 4.2.3.3, “Using Option Files”.

4.4 MySQL Installation-Related Programs

The programs in this section are used when installing or upgrading MySQL.

4.4.1 comp_err — Compile MySQL Error Message File

comp_err creates the errmsg.sys file that is used by mysqld to determine the error messages
to display for different error codes. comp_err normally is run automatically when MySQL is built. It
compiles the errmsg.sys file from the plaintext file located at sql/share/errmsg.txt in MySQL
source distributions.

comp_err also generates mysqld_error.h, mysqld_ername.h, and sql_state.h header files.

For more information about how error messages are defined, see the MySQL Internals Manual.

Invoke comp_err like this:

shell> comp_err [options]

comp_err supports the following options.

• --help, -?

Display a help message and exit.

• --charset=path, -C path

The character set directory. The default is ../sql/share/charsets.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:O,file_name. The default is
d:t:O,/tmp/comp_err.trace.

http://dev.mysql.com/doc/internals/en

mysqlbug — Generate Bug Report

252

• --debug-info, -T

Print some debugging information when the program exits.

• --header_file=file_name, -H file_name

The name of the error header file. The default is mysqld_error.h.

• --in_file=file_name, -F file_name

The name of the input file. The default is ../sql/share/errmsg.txt.

• --name_file=file_name, -N file_name

The name of the error name file. The default is mysqld_ername.h.

• --out_dir=path, -D path

The name of the output base directory. The default is ../sql/share/.

• --out_file=file_name, -O file_name

The name of the output file. The default is errmsg.sys.

• --statefile=file_name, -S file_name

The name for the SQLSTATE header file. The default is sql_state.h.

• --version, -V

Display version information and exit.

4.4.2 mysqlbug — Generate Bug Report

This program is obsolete.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

4.4.3 mysql_install_db — Initialize MySQL Data Directory

mysql_install_db initializes the MySQL data directory and creates the system tables that it
contains, if they do not exist. It also initializes the system tablespace and related data structures
needed to manage InnoDB tables. mysql_install_db is a Perl script and can be used on any
system with Perl installed.

As of MySQL 5.7.4, MySQL deployments installed using RPM packages are secure by default and
have these characteristics:

• The installation process creates a single root account, 'root'@'localhost', automatically
generates a random password for this account, and marks the password expired.

• The initial random root password is written to the .mysql_secret file in the home directory of the
effective user running the script. .mysql_secret is created with mode 600 to be accessible only to
the system user for whom it is created.

If .mysql_secret already exists, the new password information is appended to it. Each password
entry includes a timestamp so that in the event of multiple install operations it is possible to
determine the password associated with each one.

• No anonymous-user MySQL accounts are created.

• No test database is created.

http://bugs.mysql.com/

mysql_install_db — Initialize MySQL Data Directory

253

As a result of these actions, it is necessary after installation to start the server, connect as root
using the password written to the .mysql_secret file, and select a new root password. Until
this is done, root cannot do anything else. To change the password, you can use the SET
PASSWORD statement (for example, with the mysql client). You can also use mysqladmin or
mysql_secure_installation.

For information about overriding some of the characteristics just described, see the description of the
--skip-random-passwords option.

On Unix platforms, mysql_install_db creates a default option file named my.cnf in the base
installation directory. This file is created from a template included in the distribution package named
my-default.cnf. You can find the template in or under the base installation directory. When
started using mysqld_safe, the server uses my.cnf file by default. If my.cnf already exists,
mysql_install_db assumes it to be in use and writes a new file named my-new.cnf instead.

With one exception, the settings in the default option file are commented and have no effect.
The exception is that the file changes the sql_mode system variable from its default of
NO_ENGINE_SUBSTITUTION to also include STRICT_TRANS_TABLES. This setting produces a
server configuration that results in errors rather than warnings for bad data in operations that modify
transactional tables. See Section 5.1.7, “Server SQL Modes”.

As of MySQL 5.7.2, when mysql_install_db invokes the server to initialize the mysql
database, the server assigns every user table row a nonempty plugin column value. The value is
'mysql_native_password' unless the default_authentication_plugin system variable is
set otherwise.

To invoke mysql_install_db, use the following syntax:

shell> mysql_install_db [options]

Because the MySQL server, mysqld, must access the data directory when it runs later, you should
either run mysql_install_db from the same system account that will be used for running mysqld or
run it as root and use the --user option to indicate the user name that mysqld will run as. It might
be necessary to specify other options such as --basedir or --datadir if mysql_install_db
does not use the correct locations for the installation directory or data directory. For example:

shell> scripts/mysql_install_db --user=mysql \
 --basedir=/opt/mysql/mysql \
 --datadir=/opt/mysql/mysql/data

Note

After mysql_install_db sets up the InnoDB system tablespace, changes to
some tablespace characteristics require setting up a whole new instance. This
includes the file name of the first file in the system tablespace and the number
of undo logs. If you do not want to use the default values, make sure that the
settings for the innodb_data_file_path and innodb_log_file_size
configuration parameters are in place in the MySQL configuration file before
running mysql_install_db. Also make sure to specify as necessary other
parameters that affect the creation and location of InnoDB files, such as
innodb_data_home_dir and innodb_log_group_home_dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the --defaults-
extra-file option when you run mysql_install_db.

Note

If you have set a custom TMPDIR environment variable when performing the
installation, and the specified directory is not accessible, mysql_install_db

mysql_install_db — Initialize MySQL Data Directory

254

may fail. If so, unset TMPDIR or set TMPDIR to point to the system temporary
directory (usually /tmp).

mysql_install_db supports the following options, which can be specified on the command line or in
the [mysql_install_db] group of an option file. (Options that are common to mysqld can also be
specified in the [mysqld] group.) Other options are passed to mysqld. For information about option
files, see Section 4.2.3.3, “Using Option Files”.

Table 4.2 mysql_install_db Options

Format Option File Description IntroducedRemoved

--basedir=path basedir The MySQL base directory

--builddir=path builddir The build directory (for out-of-source builds)

--cross-
bootstrap

cross-bootstrap For internal use

--datadir=path datadir The MySQL data directory

--defaults-extra-
file=file_name

 Read option file in addition to the usual
option files

--defaults-
file=file_name

 Read only the given option file

--force force Run even if DNS does not work

--help help Display help message and exit

--ldata=path ldata Synonym for --datadir

--no-defaults Do not read any option files

--random-
passwords

random-
passwords

Generate random root password 5.7.4

--rpm rpm For internal use

--skip-name-
resolve

skip-name-
resolve

Use IP addresses rather than host names in
grant tables

--skip-random-
passwords

skip-random-
passwords

Do not generate random root password 5.7.4

--srcdir=path srcdir For internal use

--
user=user_name

user System login user under which to execute

--verbose verbose Verbose mode

--windows windows For internal use

• --help

Display a help message and exit.

• --basedir=path

The path to the MySQL installation directory.

• --builddir=path

For use with --srcdir and out-of-source builds. Set this to the location of the directory where the
built files reside.

• --cross-bootstrap

For internal use. This option is used for building system tables on one host intended for another.

mysql_install_db — Initialize MySQL Data Directory

255

• --datadir=path, --ldata=path

The path to the MySQL data directory. Only the last component of the path name is created if it does
not exist; the parent directory must already exist or an error occurs.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --force

Cause mysql_install_db to run even if DNS does not work. Grant table entries normally created
using host names will use IP addresses instead.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

• --random-passwords

Note

This option was removed in MySQL 5.7.4 and replaced with --skip-
random-passwords.

On Unix platforms, this option provides for more secure MySQL installation. Invoking
mysql_install_db with --random-passwords causes it to perform the following actions in
addition to its normal operation:

• The installation process creates a random password, assigns it to the initial MySQL root
accounts, and sets the “password expired” flag for those accounts.

• The initial random root password is written to the .mysql_secret file in the directory named
by the HOME environment variable. Depending on operating system, using a command such
as sudo may cause the value of HOME to refer to the home directory of the root system user.
.mysql_secret is created with mode 600 to be accessible only to the system user for whom it is
created.

If .mysql_secret already exists, the new password information is appended to it. Each
password entry includes a timestamp so that in the event of multiple install operations it is possible
to determine the password associated with each one.

• No anonymous-user MySQL accounts are created.

As a result of these actions, it is necessary after installation to start the server, connect as root
using the password written to the .mysql_secret file, and select a new root password. Until this
is done, root cannot do anything else. This must be done for each root account you intend to use.
To change the password, you can use the SET PASSWORD statement (for example, with the mysql
client). You can also use mysqladmin or mysql_secure_installation.

New install operations (not upgrades) using RPM packages and Solaris PKG packages invoke
mysql_install_db with the --random-passwords option. (Install operations using RPMs for
Unbreakable Linux Network are unaffected because they do not use mysql_install_db.)

mysql_install_db — Initialize MySQL Data Directory

256

For install operations using a binary .tar.gz distribution or a source distribution, you can invoke
mysql_install_db with the --random-passwords option manually to make your MySQL
installation more secure. This is recommended, particularly for sites with sensitive data.

• --rpm

For internal use. This option is used during the MySQL installation process for install operations
performed using RPM packages.

• --skip-name-resolve

Use IP addresses rather than host names when creating grant table entries. This option can be
useful if your DNS does not work.

• --skip-random-passwords

As of MySQL 5.7.4, MySQL deployments produced using mysql_install_db are secure by
default. When invoked without the --skip-random-passwords option, mysql_install_db uses
these default deployment characteristics:

• The installation process creates a single root account, 'root'@'localhost', automatically
generates a random password for this account, and marks the password expired.

• The initial random root password is written to the .mysql_secret file in the home directory of
the effective user running the script. .mysql_secret is created with mode 600 to be accessible
only to the system user for whom it is created.

If .mysql_secret already exists, the new password information is appended to it. Each
password entry includes a timestamp so that in the event of multiple install operations it is possible
to determine the password associated with each one.

• No anonymous-user MySQL accounts are created.

• No test database is created.

As a result of these actions, it is necessary after installation to start the server, connect as root
using the password written to the .mysql_secret file, and select a new root password. Until
this is done, root cannot do anything else. To change the password, you can use the SET
PASSWORD statement (for example, with the mysql client). You can also use mysqladmin or
mysql_secure_installation.

To produce a MySQL deployment that is not secure by default, you must explicitly specify the
--skip-random-passwords option when you invoke mysql_install_db. With this option,
mysql_install_db performs the following actions:

• Installation creates a single root account, 'root'@'localhost', that has no password.

• A test database is created that is accessible by any user.

Note

As of MySQL 5.7.4, mysql_install_db no longer creates anonymous-user
accounts, even with --skip-random-passwords.

The --skip-random-passwords option was added in MySQL 5.7.4. It replaces the --random-
passwords option.

• --srcdir=path

For internal use. This option specifies the directory under which mysql_install_db looks for
support files such as the error message file and the file for populating the help tables.

mysql_plugin — Configure MySQL Server Plugins

257

• --user=user_name

The system (login) user name to use for running mysqld. Files and directories created by mysqld
will be owned by this user. You must be root to use this option. By default, mysqld runs using your
current login name and files and directories that it creates will be owned by you.

• --verbose

Verbose mode. Print more information about what the program does.

• --windows

For internal use. This option is used for creating Windows distributions. This is a deprecated alias for
--cross-bootstrap

4.4.4 mysql_plugin — Configure MySQL Server Plugins

The mysql_plugin utility enables MySQL administrators to manage which plugins a MySQL server
loads. It provides an alternative to manually specifying the --plugin-load option at server startup or
using the INSTALL PLUGIN and UNINSTALL PLUGIN statements at runtime.

Depending on whether mysql_plugin is invoked to enable or disable plugins, it inserts or deletes
rows in the mysql.plugin table that serves as a plugin registry. (To perform this operation,
mysql_plugin invokes the MySQL server in bootstrap mode. This means that the server must
not already be running.) For normal server startups, the server loads and enables plugins listed in
mysql.plugin automatically. For additional control over plugin activation, use --plugin_name
options named for specific plugins, as described in Section 5.1.8.1, “Installing and Uninstalling Plugins”.

Each invocation of mysql_plugin reads a configuration file to determine how to configure the plugins
contained in a single plugin library object file. To invoke mysql_plugin, use this syntax:

mysql_plugin [options] plugin {ENABLE|DISABLE}

plugin is the name of the plugin to configure. ENABLE or DISABLE (not case sensitive) specify
whether to enable or disable components of the plugin library named in the configuration file. The order
of the plugin and ENABLE or DISABLE arguments does not matter.

For example, to configure components of a plugin library file named myplugins.so on Linux or
myplugins.dll on Windows, specify a plugin value of myplugins. Suppose that this plugin
library contains three plugins, plugin1, plugin2, and plugin3, all of which should be configured
under mysql_plugin control. By convention, configuration files have a suffix of .ini and the
same basename as the plugin library, so the default configuration file name for this plugin library is
myplugins.ini. The configuration file contents look like this:

myplugins
plugin1
plugin2
plugin3

The first line in the myplugins.ini file is the name of the library object file, without any extension
such as .so or .dll. The remaining lines are the names of the components to be enabled or disabled.
Each value in the file should be on a separate line. Lines on which the first character is '#' are taken
as comments and ignored.

To enable the plugins listed in the configuration file, invoke mysql_plugin this way:

shell> mysql_plugin myplugins ENABLE

To disable the plugins, use DISABLE rather than ENABLE.

mysql_plugin — Configure MySQL Server Plugins

258

An error occurs if mysql_plugin cannot find the configuration file or plugin library file, or if
mysql_plugin cannot start the MySQL server.

mysql_plugin supports the following options, which can be specified on the command line or in
the [mysqld] group of any option file. For options specified in a [mysqld] group, mysql_plugin
recognizes the --basedir, --datadir, and --plugin-dir options and ignores others. For
information about option files, see Section 4.2.3.3, “Using Option Files”.

Table 4.3 mysql_plugin Options

Format Option File Description

--basedir=path basedir=path The server base directory

--datadir=path datadir=path The server data directory

--help Display help message and exit

--my-print-
defaults=path

my-print-
defaults=path

The path to my_print_defaults

--mysqld=path mysqld=path The path to the server

--no-defaults no-defaults Do not read configuration file

--plugin-dir=path plugin-dir=path The directory where plugins are located

--plugin-
ini=file_name

plugin-ini=file_name The plugin configuration file

--print-defaults print-defaults Show configuration file defaults

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --basedir=path, -b path

The server base directory.

• --datadir=path, -d path

The server data directory.

• --my-print-defaults=path, -b path

The path to the my_print_defaults program.

• --mysqld=path, -b path

The path to the mysqld server.

• --no-defaults, -p

Do not read values from the configuration file. This option enables an administrator to skip reading
defaults from the configuration file.

With mysql_plugin, this option need not be given first on the command line, unlike most other
MySQL programs that support --no-defaults.

• --plugin-dir=path, -p path

The server plugin directory.

• --plugin-ini=file_name, -i file_name

mysql_secure_installation — Improve MySQL Installation Security

259

The mysql_plugin configuration file. Relative path names are interpreted relative to the current
directory. If this option is not given, the default is plugin.ini in the plugin directory, where plugin
is the plugin argument on the command line.

• --print-defaults, -P

Display the default values from the configuration file. This option causes mysql_plugin to print the
defaults for --basedir, --datadir, and --plugin-dir if they are found in the configuration file.
If no value for a variable is found, nothing is shown.

With mysql_plugin, this option need not be given first on the command line, unlike most other
MySQL programs that support --print-defaults.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

• --version, -V

Display version information and exit.

4.4.5 mysql_secure_installation — Improve MySQL Installation
Security

This program enables you to improve the security of your MySQL installation in the following ways:

• You can set a password for root accounts.

• You can remove root accounts that are accessible from outside the local host.

• You can remove anonymous-user accounts.

• You can remove the test database (which by default can be accessed by all users, even
anonymous users), and privileges that permit anyone to access databases with names that start with
test_.

mysql_secure_installation helps you implement security recommendations similar to those
described at Section 2.9.2, “Securing the Initial MySQL Accounts”.

As of MySQL 5.7.2, mysql_secure_installation is an executable binary available on all
platforms. Before 5.7.2, it was a script available for Unix and Unix-like systems.

Normal usage is to connect to the local MySQL server; invoke mysql_secure_installation
without arguments:

shell> mysql_secure_installation

When executed, mysql_secure_installation prompts you to determine which actions to perform.

As of MySQL 5.7.2, mysql_secure_installation supports these additional features:

• The validate_password plugin can be used for password strength checking. If the plugin is not
installed, mysql_secure_installation prompts the user whether to install it. Any passwords
entered later are checked using the plugin if it is enabled.

• Most of the usual MySQL client options such as --host and --port can be used on the command
line and in option files. For example, to connect to the local server over IPv6 using port 3307, use
this command:

mysql_secure_installation — Improve MySQL Installation Security

260

shell> mysql_secure_installation --host=::1 --port=3307

mysql_secure_installation supports the following options, which can be specified on the
command line or in the [mysql_secure_installation] and [client] groups of an option file.
For information about option files, see Section 4.2.3.3, “Using Option Files”.

Table 4.4 mysql_secure_installation Options

Format Option File Description Introduced

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files 5.7.2

--defaults-
file=file_name

 Read only the given option file 5.7.2

--defaults-group-
suffix=str

 Option group suffix value 5.7.2

--help Display help message and exit 5.7.2

--host host Host to connect to (IP address or hostname) 5.7.2

--no-defaults Do not read any option files 5.7.2

--
password=password

password Accepted but always ignored. Whenever
mysql_secure_installation is invoked, the user is
prompted for a password, regardless.

5.7.2

--port=port_num port The TCP/IP port number to use for the connection 5.7.2

--print-defaults Print defaults 5.7.2

--protocol=type protocol The connection protocol to use 5.7.2

--socket=path socket For connections to localhost 5.7.2

--ssl ssl Enable SSL for connection 5.7.2

--ssl-
ca=file_name

ssl-ca The path to a file that contains a list of trusted SSL
CAs

5.7.2

--ssl-
capath=dir_name

ssl-capath The path to a directory that contains trusted SSL
CA certificates in PEM format

5.7.2

--ssl-
cert=file_name

ssl-cert The name of the SSL certificate file to use for
establishing a secure connection

5.7.2

--ssl-
cipher=cipher_list

ssl-cipher A list of allowable ciphers to use for SSL
encryption

5.7.2

--ssl-
crl=file_name

ssl-crl The path to a file that contains certificate
revocation lists

5.7.2

--ssl-
crlpath=dir_name

ssl-crlpath The path to a directory that contains certificate
revocation list files

5.7.2

--ssl-
key=file_name

ssl-key The name of the SSL key file to use for
establishing a secure connection

5.7.2

--ssl-verify-server-
cert

ssl-verify-server-
cert

The server's Common Name value in its certificate
is verified against the host name used when
connecting to the server

5.7.2

--use-default use-default Execute with no user interactivity 5.7.4

--
user=user_name

user MySQL user name to use when connecting to
server

5.7.2

• --help, -?

Display a help message and exit.

mysql_secure_installation — Improve MySQL Installation Security

261

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix
of str. For example, mysql_secure_installation normally reads the [client] and
[mysql_secure_installation] groups. If the --defaults-group-suffix=_other
option is given, mysql_secure_installation also reads the [client_other] and
[mysql_secure_installation_other] groups.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --password=password, -p password

This option is accepted but ignored. Whether or not this option is used,
mysql_secure_installation always prompts the user for a password.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

mysql_tzinfo_to_sql — Load the Time Zone Tables

262

• --use-default

Execute noninteractively. This option can be used for unattended installation operations. This option
was added in MySQL 5.7.4.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables

The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used
on systems that have a zoneinfo database (the set of files describing time zones). Examples of such
systems are Linux, FreeBSD, Solaris, and Mac OS X. One likely location for these files is the /usr/
share/zoneinfo directory (/usr/share/lib/zoneinfo on Solaris). If your system does not
have a zoneinfo database, you can use the downloadable package described in Section 10.6, “MySQL
Server Time Zone Support”.

mysql_tzinfo_to_sql can be invoked several ways:

shell> mysql_tzinfo_to_sql tz_dir
shell> mysql_tzinfo_to_sql tz_file tz_name
shell> mysql_tzinfo_to_sql --leap tz_file

For the first invocation syntax, pass the zoneinfo directory path name to mysql_tzinfo_to_sql and
send the output into the mysql program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from
them. mysql processes those statements to load the time zone tables.

The second syntax causes mysql_tzinfo_to_sql to load a single time zone file tz_file that
corresponds to a time zone name tz_name:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

If your time zone needs to account for leap seconds, invoke mysql_tzinfo_to_sql using the third
syntax, which initializes the leap second information. tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to
use any previously cached time zone data.

4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL Server. mysql_upgrade also upgrades the system tables so that you can take advantage of
new privileges or capabilities that might have been added.

mysql_upgrade should be executed each time you upgrade MySQL.

Important

If you upgrade to MySQL 5.7.2 or later from a version older than 5.7.2, a
change to the mysql.user table requires a special sequence of steps to
perform an upgrade using mysql_upgrade. For details, see Section 2.10.1.2,
“Upgrading from MySQL 5.6 to 5.7”.

mysql_upgrade — Check and Upgrade MySQL Tables

263

If mysql_upgrade finds that a table has a possible incompatibility, it performs a table check and,
if problems are found, attempts a table repair. If the table cannot be repaired, see Section 2.10.4,
“Rebuilding or Repairing Tables or Indexes” for manual table repair strategies.

Note

On Windows Server 2008, Vista, and newer, you must run mysql_upgrade
with administrator privileges. You can do this by running a Command Prompt
as Administrator and running the command. Failure to do so may result in the
upgrade failing to execute correctly.

Caution

You should always back up your current MySQL installation before performing
an upgrade. See Section 7.2, “Database Backup Methods”.

Some upgrade incompatibilities may require special handling before
you upgrade your MySQL installation and run mysql_upgrade. See
Section 2.10.1, “Upgrading MySQL”, for instructions on determining whether
any such incompatibilities apply to your installation and how to handle them.

To use mysql_upgrade, make sure that the server is running, and then invoke it like this:

shell> mysql_upgrade [options]

After running mysql_upgrade, stop the server and restart it so that any changes made to the system
tables take effect.

mysql_upgrade executes the following commands to check and repair tables and to upgrade the
system tables:

mysqlcheck --all-databases --check-upgrade --auto-repair
mysql < fix_priv_tables
mysqlcheck --all-databases --check-upgrade --fix-db-names --fix-table-names

Notes about the preceding commands:

• Because mysql_upgrade invokes mysqlcheck with the --all-databases option, it processes
all tables in all databases, which might take a long time to complete. Each table is locked and
therefore unavailable to other sessions while it is being processed. Check and repair operations can
be time-consuming, particularly for large tables.

• For details about what checks the --check-upgrade option entails, see the description of the FOR
UPGRADE option of the CHECK TABLE statement (see Section 13.7.2.2, “CHECK TABLE Syntax”).

• fix_priv_tables represents a script generated internally by mysql_upgrade that contains SQL
statements to upgrade the tables in the mysql database.

All checked and repaired tables are marked with the current MySQL version number. This ensures that
next time you run mysql_upgrade with the same version of the server, it can tell whether there is any
need to check or repair the table again.

mysql_upgrade also saves the MySQL version number in a file named mysql_upgrade_info in
the data directory. This is used to quickly check whether all tables have been checked for this release
so that table-checking can be skipped. To ignore this file and perform the check regardless, use the --
force option.

If you install MySQL from RPM packages on Linux, you must install the server and client RPMs.
mysql_upgrade is included in the server RPM but requires the client RPM because the latter includes
mysqlcheck. (See Section 2.5.3, “Installing MySQL on Linux Using RPM Packages”.)

mysql_upgrade — Check and Upgrade MySQL Tables

264

As of MySQL 5.7.2, mysql_upgrade checks user table rows and, for any row with an empty plugin
column, sets that column to 'mysql_native_password' or 'mysql_old_password' depending
on the hash format of the Password column value.

mysql_upgrade does not upgrade the contents of the help tables. For upgrade instructions, see
Section 5.1.10, “Server-Side Help”.

mysql_upgrade runs by default as the MySQL root user. If the root password is expired when you
run mysql_upgrade, you will see a message that your password is expired and that mysql_upgrade
failed as a result. To correct this, reset the root password to unexpire it and run mysql_upgrade
again:

shell> mysql -u root -p
Enter password: **** <- enter root password here
mysql> SET PASSWORD = PASSWORD('root-password');
mysql> quit

shell> mysql_upgrade

mysql_upgrade supports the following options, which can be specified on the command line or
in the [mysql_upgrade] and [client] groups of an option file. Other options are passed to
mysqlcheck. For example, it might be necessary to specify the --password[=password] option.
For information about option files, see Section 4.2.3.3, “Using Option Files”.

Table 4.5 mysql_upgrade Options

Format Option File Description IntroducedRemoved

--basedir basedir Not used; exists only for compatibility with
some very old applications

 5.7.2

--character-
sets-dir=path

character-sets-
dir

Directory where character sets are.

--compress compress Use compression in server/client protocol.

--datadir=path datadir Not used; exists only for compatibility with
some very old applications

 5.7.2

--debug[=#] debug If this is a non-debug version, catch error
and exit.

--debug-check debug-check --debug-check Check memory and open file
usage at exit.

--default-
auth=plugin

default-
auth=plugin

The authentication plugin to use

--default-
character-
set=name

default-
character-set

Set the default character set.

--defaults-extra-
file=file_name

 Read option file in addition to the usual
option files

--defaults-
file=file_name

 Read only the given option file

--defaults-
group-suffix=str

 Option group suffix value

--force force Force execution even if mysql_upgrade
has already been executed for the current
version of MySQL.

--help help Display a help message and exit

--host=name host Connect to host.

mysql_upgrade — Check and Upgrade MySQL Tables

265

Format Option File Description IntroducedRemoved

--no-defaults Do not read any option files

--
password[=name]

password Password to use when connecting to server.
If password is not given it's solicited on the
tty.

--plugin-
dir=path

plugin-dir=path The directory where plugins are located

--port=# port Port number to use for connection or 0 for
default to, in order of preference, my.cnf,
$MYSQL_TCP_PORT, /etc/services, built-in
default (3306).

--print-defaults Print defaults

--
protocol=name

protocol The connection protocol (TCP=default,
socket, pipe, memory)

--socket=name socket Socket file to use for connection.

--tmpdir=path tmpdir Directory for temporary files

--user=name user User for login if not current user.

--verbose verbose Show more information about the process

--version-check version-check Check for proper server version 5.7.2

--write-binlog write-binlog Enables binary logging of all commands
including mysqlcheck.

• --help

Display a short help message and exit.

• --basedir=path

The path to the MySQL installation directory. This option was removed in MySQL 5.7.2.

• --datadir=path

The path to the data directory. This option was removed in MySQL 5.7.2.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:O,file_name. The default is
d:t:O,/tmp/mysql_upgrade.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

mysql_upgrade — Check and Upgrade MySQL Tables

266

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysql_upgrade normally reads the [client] and [mysql_upgrade] groups.
If the --defaults-group-suffix=_other option is given, mysql_upgrade also reads the
[client_other] and [mysql_upgrade_other] groups.

• --force

Ignore the mysql_upgrade_info file and force execution of mysqlcheck even if
mysql_upgrade has already been executed for the current version of MySQL.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --plugin-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the --
default-auth option is used to specify an authentication plugin but mysql_upgrade does not
find it. See Section 6.3.8, “Pluggable Authentication”.

• --print-defaults

Print the program name and all options that it gets from option files.

• --tmpdir=path, -t path

The path name of the directory to use for creating temporary files.

• --upgrade-system-tables, -s

Upgrade only the system tables, do not upgrade data.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server. The default user name is root.

• --verbose

Verbose mode. Print more information about what the program does.

• --version-check, -k

Check the version of the server to which mysql_upgrade is connecting to verify that it is the same
as the version for which mysql_upgrade was built. If not, mysql_upgrade exits. This option is
enabled by default; to disable the check, use --skip-version-check. This option was added in
MySQL 5.7.2.

• --write-binlog

MySQL Client Programs

267

Binary logging by mysql_upgrade is disabled by default, and you must invoke the program
explicitly with --write-binlog if you want its actions to be written to the binary log.

Running mysql_upgrade is not recommended with a MySQL Server that is running with global
transaction identifiers enabled (Bug #13833710). This is because enabling GTIDs means that any
updates which mysql_upgrade might need to perform on system tables using a nontransactional
storage engine such as MyISAM to fail. See Section 16.1.3.4, “Restrictions on Replication with
GTIDs”, for more information.

4.5 MySQL Client Programs
This section describes client programs that connect to the MySQL server.

4.5.1 mysql — The MySQL Command-Line Tool

mysql is a simple SQL shell with input line editing capabilities. It supports interactive and
noninteractive use. When used interactively, query results are presented in an ASCII-table format.
When used noninteractively (for example, as a filter), the result is presented in tab-separated format.
The output format can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option.
This forces mysql to retrieve results from the server a row at a time rather than retrieving the
entire result set and buffering it in memory before displaying it. This is done by returning the
result set using the mysql_use_result() C API function in the client/server library rather than
mysql_store_result().

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

shell> mysql db_name

Or:

shell> mysql --user=user_name --password=your_password db_name

Then type an SQL statement, end it with “;”, \g, or \G and press Enter.

Typing Control+C interrupts the current statement if there is one, or cancels any partial input line
otherwise.

You can execute SQL statements in a script file (batch file) like this:

shell> mysql db_name < script.sql > output.tab

On Unix, the mysql client logs statements executed interactively to a history file. See Section 4.5.1.3,
“mysql Logging”.

4.5.1.1 mysql Options

mysql supports the following options, which can be specified on the command line or in the [mysql]
and [client] groups of an option file. For information about option files, see Section 4.2.3.3, “Using
Option Files”.

Table 4.6 mysql Options

Format Option File Description Introduced

--auto-rehash auto-rehash Enable automatic rehashing

--auto-vertical-
output

auto-vertical-
output

Enable automatic vertical result set display

--batch batch Don't use history file

mysql — The MySQL Command-Line Tool

268

Format Option File Description Introduced

--binary-mode binary-mode Disable \r\n - to - \n translation and treatment of \0
as end-of-query

--bind-
address=ip_address

bind-address Use the specified network interface to connect to
the MySQL Server

--character-sets-
dir=path

character-sets-dir Set the default character set

--column-names column-names Write column names in results

--column-type-info column-type-info Display result set metadata

--comments comments Whether to retain or strip comments in statements
sent to the server

--compress compress Compress all information sent between the client
and the server

--connect-expired-
password

 Indicate to server that client can handle expired-
password sandbox mode.

5.7.2

--
connect_timeout=value

connect_timeout The number of seconds before connection timeout

--
database=dbname

database The database to use

--
debug[=debug_options]

debug Write a debugging log

--debug-check debug-check Print debugging information when the program
exits

--debug-info debug-info Print debugging information, memory and CPU
statistics when the program exits

--default-
auth=plugin

default-
auth=plugin

The authentication plugin to use

--default-
character-
set=charset_name

default-character-
set

Use charset_name as the default character set

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files

--defaults-
file=file_name

 Read only the given option file

--defaults-group-
suffix=str

 Option group suffix value

--delimiter=str delimiter Set the statement delimiter

--enable-cleartext-
plugin

enable-cleartext-
plugin

Enable cleartext authentication plugin

--
execute=statement

execute Execute the statement and quit

--force force Continue even if an SQL error occurs

--help Display help message and exit

--
histignore=pattern_list

histignore Patterns specifying which statements to ignore for
logging

--host=host_name host Connect to the MySQL server on the given host

--html html Produce HTML output

mysql — The MySQL Command-Line Tool

269

Format Option File Description Introduced

--ignore-spaces ignore-spaces Ignore spaces after function names

--init-
command=str

init-command SQL statement to execute after connecting

--line-numbers line-numbers Write line numbers for errors

--local-infile[={0|
1}]

local-infile Enable or disable for LOCAL capability for LOAD
DATA INFILE

--login-
path=name

 Read login path options from .mylogin.cnf

--
max_allowed_packet=value

max_allowed_packetThe maximum packet length to send to or receive
from the server

--
max_join_size=value

max_join_size The automatic limit for rows in a join when using --
safe-updates

--named-
commands

named-
commands

Enable named mysql commands

--
net_buffer_length=value

net_buffer_length The buffer size for TCP/IP and socket
communication

--no-auto-rehash Disable automatic rehashing

--no-beep no-beep Do not beep when errors occur

--no-defaults Do not read any option files

--one-database one-database Ignore statements except those for the default
database named on the command line

--
pager[=command]

pager Use the given command for paging query output

--
password[=password]

password The password to use when connecting to the
server

--pipe On Windows, connect to server using a named
pipe

--plugin-dir=path plugin-dir=path The directory where plugins are located

--port=port_num port The TCP/IP port number to use for the connection

--print-defaults Print defaults

--
prompt=format_str

prompt Set the prompt to the specified format

--protocol=type protocol The connection protocol to use

--quick quick Do not cache each query result

--raw raw Write column values without escape conversion

--reconnect reconnect If the connection to the server is lost, automatically
try to reconnect

--safe-updates safe-updates Allow only UPDATE and DELETE statements that
specify key values

--secure-auth secure-auth Do not send passwords to the server in old
(pre-4.1.1) format

--
select_limit=value

select_limit The automatic limit for SELECT statements when
using --safe-updates

--server-
public-key-
path=file_name

server-public-key-
path=file_name

Path name to file containing RSA public key

mysql — The MySQL Command-Line Tool

270

Format Option File Description Introduced

--show-warnings show-warnings Show warnings after each statement if there are
any

--sigint-ignore sigint-ignore Ignore SIGINT signals (typically the result of
typing Control+C)

--silent silent Silent mode

--skip-auto-rehash skip-auto-rehash Disable automatic rehashing

--skip-column-
names

skip-column-
names

Do not write column names in results

--skip-line-
numbers

skip-line-numbers Skip line numbers for errors

--skip-named-
commands

skip-named-
commands

Disable named mysql commands

--skip-pager skip-pager Disable paging

--skip-reconnect skip-reconnect Disable reconnecting

--socket=path socket For connections to localhost

--ssl[=TRUE|
FALSE]

 Enable an SSL connection to the server. This
option is set to TRUE when any other SSL option
is used, and so is normally not needed.

--ssl-
ca=file_name

ssl-ca The path to a file that contains a list of trusted SSL
CAs

--ssl-
capath=dir_name

ssl-capath The path to a directory that contains trusted SSL
CA certificates in PEM format

--ssl-
cert=file_name

ssl-cert The name of the SSL certificate file to use for
establishing a secure connection

--ssl-
cipher=cipher_list

ssl-cipher A list of allowable ciphers to use for SSL
encryption

--ssl-
crl=file_name

ssl-crl The path to a file that contains certificate
revocation lists

--ssl-
crlpath=dir_name

ssl-crlpath The path to a directory that contains certificate
revocation list files

--ssl-
key=file_name

ssl-key The name of the SSL key file to use for
establishing a secure connection

--ssl-verify-server-
cert

ssl-verify-server-
cert

The server's Common Name value in its certificate
is verified against the host name used when
connecting to the server

--syslog syslog Log interactive statements to syslog 5.7.1

--table table Display output in tabular format

--tee=file_name tee Append a copy of output to the given file

--unbuffered unbuffered Flush the buffer after each query

--
user=user_name

user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

--vertical vertical Print query output rows vertically (one line per
column value)

mysql — The MySQL Command-Line Tool

271

Format Option File Description Introduced

--wait wait If the connection cannot be established, wait and
retry instead of aborting

--xml xml Produce XML output

• --help, -?

Display a help message and exit.

• --auto-rehash

Enable automatic rehashing. This option is on by default, which enables database, table, and column
name completion. Use --disable-auto-rehash to disable rehashing. That causes mysql to start
faster, but you must issue the rehash command if you want to use name completion.

To complete a name, enter the first part and press Tab. If the name is unambiguous, mysql
completes it. Otherwise, you can press Tab again to see the possible names that begin with what
you have typed so far. Completion does not occur if there is no default database.

• --auto-vertical-output

Cause result sets to be displayed vertically if they are too wide for the current window, and using
normal tabular format otherwise. (This applies to statements terminated by ; or \G.)

• --batch, -B

Print results using tab as the column separator, with each row on a new line. With this option, mysql
does not use the history file.

Batch mode results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --binary-mode

This option helps when processing mysqlbinlog output that may contain BLOB values. By default,
mysql translates \r\n in statement strings to \n and interprets \0 as the statement terminator.
--binary-mode disables both features. It also disables all mysql commands except charset
and delimiter in non-interactive mode (for input piped to mysql or loaded using the source
command).

• --bind-address=ip_address

On a computer having multiple network interfaces, this option can be used to select which interface
is employed when connecting to the MySQL server.

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --column-names

Write column names in results.

• --column-type-info, -m

Display result set metadata.

• --comments, -c

Whether to preserve comments in statements sent to the server. The default is --skip-comments
(discard comments), enable with --comments (preserve comments).

mysql — The MySQL Command-Line Tool

272

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --connect-expired-password

Indicate to the server that the client is can handle sandbox mode if the account used to connect has
an expired password. This can be useful for noninteractive invocations of mysql because normally
the server disconnects noninteractive clients that attempt to connect using an account with an
expired password. (See Section 6.3.7, “Password Expiration and Sandbox Mode”.) This option was
added in MySQL 5.7.2.

• --database=db_name, -D db_name

The database to use. This is useful primarily in an option file.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysql.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.

• --default-character-set=charset_name

Use charset_name as the default character set for the client and connection.

A common issue that can occur when the operating system uses utf8 or another multi-byte
character set is that output from the mysql client is formatted incorrectly, due to the fact that the
MySQL client uses the latin1 character set by default. You can usually fix such issues by using
this option to force the client to use the system character set instead.

See Section 10.5, “Character Set Configuration”, for more information.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysql normally reads the [client] and [mysql] groups. If the --defaults-group-
suffix=_other option is given, mysql also reads the [client_other] and [mysql_other]
groups.

mysql — The MySQL Command-Line Tool

273

• --delimiter=str

Set the statement delimiter. The default is the semicolon character (“;”).

• --disable-named-commands

Disable named commands. Use the * form only, or use named commands only at the beginning of
a line ending with a semicolon (“;”). mysql starts with this option enabled by default. However, even
with this option, long-format commands still work from the first line. See Section 4.5.1.2, “mysql
Commands”.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.5, “The
Cleartext Client-Side Authentication Plugin”.)

• --execute=statement, -e statement

Execute the statement and quit. The default output format is like that produced with --batch. See
Section 4.2.3.1, “Using Options on the Command Line”, for some examples. With this option, mysql
does not use the history file.

• --force, -f

Continue even if an SQL error occurs.

• --histignore

A colon-separated list of one or more patterns specifying statements to ignore for logging purposes.
These patterns are added to the default pattern list ("*IDENTIFIED*:*PASSWORD*"). The value
specified for this option affects logging of statements written to the history file, and to syslog if the
--syslog option is given. For more information, see Section 4.5.1.3, “mysql Logging”.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --html, -H

Produce HTML output.

• --ignore-spaces, -i

Ignore spaces after function names. The effect of this is described in the discussion for the
IGNORE_SPACE SQL mode (see Section 5.1.7, “Server SQL Modes”).

• --init-command=str

SQL statement to execute after connecting to the server. If auto-reconnect is enabled, the statement
is executed again after reconnection occurs.

• --line-numbers

Write line numbers for errors. Disable this with --skip-line-numbers.

• --local-infile[={0|1}]

Enable or disable LOCAL capability for LOAD DATA INFILE. With no value, the option enables
LOCAL. The option may be given as --local-infile=0 or --local-infile=1 to explicitly
disable or enable LOCAL. Enabling LOCAL has no effect if the server does not also support it.

• --login-path=name

mysql — The MySQL Command-Line Tool

274

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --named-commands, -G

Enable named mysql commands. Long-format commands are permitted, not just short-format
commands. For example, quit and \q both are recognized. Use --skip-named-commands to
disable named commands. See Section 4.5.1.2, “mysql Commands”.

• --no-auto-rehash, -A

This has the same effect as -skip-auto-rehash. See the description for --auto-rehash.

• --no-beep, -b

Do not beep when errors occur.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --one-database, -o

Ignore statements except those that occur while the default database is the one named on the
command line. This option is rudimentary and should be used with care. Statement filtering is based
only on USE statements.

Initially, mysql executes statements in the input because specifying a database db_name on the
command line is equivalent to inserting USE db_name at the beginning of the input. Then, for each
USE statement encountered, mysql accepts or rejects following statements depending on whether
the database named is the one on the command line. The content of the statements is immaterial.

Suppose that mysql is invoked to process this set of statements:

DELETE FROM db2.t2;
USE db2;
DROP TABLE db1.t1;
CREATE TABLE db1.t1 (i INT);
USE db1;
INSERT INTO t1 (i) VALUES(1);
CREATE TABLE db2.t1 (j INT);

If the command line is mysql --force --one-database db1, mysql handles the input as
follows:

• The DELETE statement is executed because the default database is db1, even though the
statement names a table in a different database.

• The DROP TABLE and CREATE TABLE statements are not executed because the default database
is not db1, even though the statements name a table in db1.

mysql — The MySQL Command-Line Tool

275

• The INSERT and CREATE TABLE statements are executed because the default database is db1,
even though the CREATE TABLE statement names a table in a different database.

• --pager[=command]

Use the given command for paging query output. If the command is omitted, the default pager is the
value of your PAGER environment variable. Valid pagers are less, more, cat [> filename],
and so forth. This option works only on Unix and only in interactive mode. To disable paging, use --
skip-pager. Section 4.5.1.2, “mysql Commands”, discusses output paging further.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysql prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the --
default-auth option is used to specify an authentication plugin but mysql does not find it. See
Section 6.3.8, “Pluggable Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --prompt=format_str

Set the prompt to the specified format. The default is mysql>. The special sequences that the
prompt can contain are described in Section 4.5.1.2, “mysql Commands”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --quick, -q

Do not cache each query result, print each row as it is received. This may slow down the server if the
output is suspended. With this option, mysql does not use the history file.

• --raw, -r

For tabular output, the “boxing” around columns enables one column value to be distinguished from
another. For nontabular output (such as is produced in batch mode or when the --batch or --
silent option is given), special characters are escaped in the output so they can be identified
easily. Newline, tab, NUL, and backslash are written as \n, \t, \0, and \\. The --raw option
disables this character escaping.

mysql — The MySQL Command-Line Tool

276

The following example demonstrates tabular versus nontabular output and the use of raw mode to
disable escaping:

% mysql
mysql> SELECT CHAR(92);
+----------+
| CHAR(92) |
+----------+
| \ |
+----------+

% mysql -s
mysql> SELECT CHAR(92);
CHAR(92)
\\

% mysql -s -r
mysql> SELECT CHAR(92);
CHAR(92)
\

• --reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt
is made each time the connection is lost. To suppress reconnection behavior, use --skip-
reconnect.

• --safe-updates, --i-am-a-dummy, -U

Permit only those UPDATE and DELETE statements that specify which rows to modify by using key
values. If you have set this option in an option file, you can override it by using --safe-updates on
the command line. See Section 4.5.1.6, “mysql Tips”, for more information about this option.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except
for servers that use the newer password format. This option is enabled by default; use --skip-
secure-auth to disable it.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --server-public-key-path=file_name

The path name to a file containing the server RSA public key. The file must be in PEM format. The
public key is used for RSA encryption of the client password for connections to the server made
using accounts that authenticate with the sha256_password plugin. This option is ignored for client
accounts that do not authenticate with that plugin. It is also ignored if password encryption is not
needed, as is the case when the client connects to the server using an SSL connection.

The server sends the public key to the client as needed, so it is not necessary to use this option for
RSA password encryption to occur. It is more efficient to do so because then the server need not
send the key.

For additional discussion regarding use of the sha256_password plugin, including how to get the
RSA public key, see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

mysql — The MySQL Command-Line Tool

277

This option is available only if MySQL was built using OpenSSL.

• --show-warnings

Cause warnings to be shown after each statement if there are any. This option applies to interactive
and batch mode.

• --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control+C).

• --silent, -s

Silent mode. Produce less output. This option can be given multiple times to produce less and less
output.

This option results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --skip-column-names, -N

Do not write column names in results.

• --skip-line-numbers, -L

Do not write line numbers for errors. Useful when you want to compare result files that include error
messages.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

• --syslog, -j

This option causes mysql to send interactive statements to the system logging facility. On Unix,
this is syslog; on Windows, it is the Windows Event Log. The destination where logged messages
appear is system dependent. On Linux, the destination is often the /var/log/messages file.

Here is a sample of output generated on Linux by using --syslog. This output is formatted for
readability; each logged message actually takes a single line.

Mar 7 12:39:25 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'
Mar 7 12:39:28 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'test', QUERY:'SHOW TABLES;'

For more information, see Section 4.5.1.3, “mysql Logging”.

The --syslog option was added in MySQL 5.7.1.

• --table, -t

Display output in table format. This is the default for interactive use, but can be used to produce table
output in batch mode.

mysql — The MySQL Command-Line Tool

278

• --tee=file_name

Append a copy of output to the given file. This option works only in interactive mode. Section 4.5.1.2,
“mysql Commands”, discusses tee files further.

• --unbuffered, -n

Flush the buffer after each query.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Produce more output about what the program does. This option can be given
multiple times to produce more and more output. (For example, -v -v -v produces table output
format even in batch mode.)

• --version, -V

Display version information and exit.

• --vertical, -E

Print query output rows vertically (one line per column value). Without this option, you can specify
vertical output for individual statements by terminating them with \G.

• --wait, -w

If the connection cannot be established, wait and retry instead of aborting.

• --xml, -X

Produce XML output.

<field name="column_name">NULL</field>

The output when --xml is used with mysql matches that of mysqldump --xml. See Section 4.5.4,
“mysqldump — A Database Backup Program” for details.

The XML output also uses an XML namespace, as shown here:

shell> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%'"
<?xml version="1.0"?>

<resultset statement="SHOW VARIABLES LIKE 'version%'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="Variable_name">version</field>
<field name="Value">5.0.40-debug</field>
</row>

<row>
<field name="Variable_name">version_comment</field>
<field name="Value">Source distribution</field>
</row>

<row>
<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>
</row>

<row>
<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>

mysql — The MySQL Command-Line Tool

279

</row>
</resultset>

(See Bug #25946.)

You can also set the following variables by using --var_name=value.

• connect_timeout

The number of seconds before connection timeout. (Default value is 0.)

• max_allowed_packet

The maximum size of the buffer for client/server communication. The default is 16MB, the maximum
is 1GB.

• max_join_size

The automatic limit for rows in a join when using --safe-updates. (Default value is 1,000,000.)

• net_buffer_length

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• select_limit

The automatic limit for SELECT statements when using --safe-updates. (Default value is 1,000.)

4.5.1.2 mysql Commands

mysql sends each SQL statement that you issue to the server to be executed. There is also a set of
commands that mysql itself interprets. For a list of these commands, type help or \h at the mysql>
prompt:

mysql> help

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
clear (\c) Clear the current input statement.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given
 outfile.
use (\u) Use another database. Takes database name as argument.
charset (\C) Switch to another charset. Might be needed for processing
 binlog with multi-byte charsets.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.
resetconnection(\x) Clean session context.

mysql — The MySQL Command-Line Tool

280

For server side help, type 'help contents'

If mysql is invoked with the --binary-mode option, all mysql commands are disabled except
charset and delimiter in non-interactive mode (for input piped to mysql or loaded using the
source command).

Each command has both a long and short form. The long form is not case sensitive; the short form is.
The long form can be followed by an optional semicolon terminator, but the short form should not.

The use of short-form commands within multi-line /* ... */ comments is not supported.

• help [arg], \h [arg], \? [arg], ? [arg]

Display a help message listing the available mysql commands.

If you provide an argument to the help command, mysql uses it as a search string to access
server-side help from the contents of the MySQL Reference Manual. For more information, see
Section 4.5.1.4, “mysql Server-Side Help”.

• charset charset_name, \C charset_name

Change the default character set and issue a SET NAMES statement. This enables the character set
to remain synchronized on the client and server if mysql is run with auto-reconnect enabled (which
is not recommended), because the specified character set is used for reconnects.

• clear, \c

Clear the current input. Use this if you change your mind about executing the statement that you are
entering.

• connect [db_name host_name]], \r [db_name host_name]]

Reconnect to the server. The optional database name and host name arguments may be given to
specify the default database or the host where the server is running. If omitted, the current values are
used.

• delimiter str, \d str

Change the string that mysql interprets as the separator between SQL statements. The default is
the semicolon character (“;”).

The delimiter string can be specified as an unquoted or quoted argument on the delimiter
command line. Quoting can be done with either single quote ('), double quote ("), or backtick (`)
characters. To include a quote within a quoted string, either quote the string with a different quote
character or escape the quote with a backslash (“\”) character. Backslash should be avoided outside
of quoted strings because it is the escape character for MySQL. For an unquoted argument, the
delimiter is read up to the first space or end of line. For a quoted argument, the delimiter is read up to
the matching quote on the line.

mysql interprets instances of the delimiter string as a statement delimiter anywhere it occurs, except
within quoted strings. Be careful about defining a delimiter that might occur within other words. For
example, if you define the delimiter as X, you will be unable to use the word INDEX in statements.
mysql interprets this as INDE followed by the delimiter X.

When the delimiter recognized by mysql is set to something other than the default of “;”, instances
of that character are sent to the server without interpretation. However, the server itself still interprets
“;” as a statement delimiter and processes statements accordingly. This behavior on the server side
comes into play for multiple-statement execution (see Section 21.8.17, “C API Support for Multiple
Statement Execution”), and for parsing the body of stored procedures and functions, triggers, and
events (see Section 18.1, “Defining Stored Programs”).

• edit, \e

mysql — The MySQL Command-Line Tool

281

Edit the current input statement. mysql checks the values of the EDITOR and VISUAL environment
variables to determine which editor to use. The default editor is vi if neither variable is set.

The edit command works only in Unix.

• ego, \G

Send the current statement to the server to be executed and display the result using vertical format.

• exit, \q

Exit mysql.

• go, \g

Send the current statement to the server to be executed.

• nopager, \n

Disable output paging. See the description for pager.

The nopager command works only in Unix.

• notee, \t

Disable output copying to the tee file. See the description for tee.

• nowarning, \w

Enable display of warnings after each statement.

• pager [command], \P [command]

Enable output paging. By using the --pager option when you invoke mysql, it is possible to
browse or search query results in interactive mode with Unix programs such as less, more, or any
other similar program. If you specify no value for the option, mysql checks the value of the PAGER
environment variable and sets the pager to that. Pager functionality works only in interactive mode.

Output paging can be enabled interactively with the pager command and disabled with nopager.
The command takes an optional argument; if given, the paging program is set to that. With no
argument, the pager is set to the pager that was set on the command line, or stdout if no pager
was specified.

Output paging works only in Unix because it uses the popen() function, which does not exist on
Windows. For Windows, the tee option can be used instead to save query output, although it is not
as convenient as pager for browsing output in some situations.

• print, \p

Print the current input statement without executing it.

• prompt [str], \R [str]

Reconfigure the mysql prompt to the given string. The special character sequences that can be
used in the prompt are described later in this section.

If you specify the prompt command with no argument, mysql resets the prompt to the default of
mysql>.

• quit, \q

Exit mysql.

mysql — The MySQL Command-Line Tool

282

• rehash, \#

Rebuild the completion hash that enables database, table, and column name completion while you
are entering statements. (See the description for the --auto-rehash option.)

• resetconnection, \x

Reset the connection to clear the session state. This command was added in MySQL 5.7.3.

Resetting a connection has effects similar to mysql_change_user() or an auto-reconnect
except that the connection is not closed and reopened, and re-authentication is not done. See
Section 21.8.7.3, “mysql_change_user()”) and see Section 21.8.16, “Controlling Automatic
Reconnection Behavior”).

This example shows how resetconnection clears a value maintained in the session state:

mysql> SELECT LAST_INSERT_ID(3);
+-------------------+
| LAST_INSERT_ID(3) |
+-------------------+
| 3 |
+-------------------+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 3 |
+------------------+

mysql> resetconnection;

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 0 |
+------------------+

• source file_name, \. file_name

Read the named file and executes the statements contained therein. On Windows, you can specify
path name separators as / or \\.

• status, \s

Provide status information about the connection and the server you are using. If you are running in
--safe-updates mode, status also prints the values for the mysql variables that affect your
queries.

• system command, \! command

Execute the given command using your default command interpreter.

The system command works only in Unix.

• tee [file_name], \T [file_name]

By using the --tee option when you invoke mysql, you can log statements and their output. All the
data displayed on the screen is appended into a given file. This can be very useful for debugging
purposes also. mysql flushes results to the file after each statement, just before it prints its next
prompt. Tee functionality works only in interactive mode.

mysql — The MySQL Command-Line Tool

283

You can enable this feature interactively with the tee command. Without a parameter, the previous
file is used. The tee file can be disabled with the notee command. Executing tee again re-enables
logging.

• use db_name, \u db_name

Use db_name as the default database.

• warnings, \W

Enable display of warnings after each statement (if there are any).

Here are a few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide query
results. Sometimes a very wide result set is difficult to read on the screen. The -S option to less
can make the result set much more readable because you can scroll it horizontally using the left-
arrow and right-arrow keys. You can also use -S interactively within less to switch the horizontal-
browse mode on and off. For more information, read the less manual page:

shell> man less

• The -F and -X options may be used with less to cause it to exit if output fits on one screen, which
is convenient when no scrolling is necessary:

mysql> pager less -n -i -S -F -X

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
 | tee /dr2/tmp/res2.txt | less -n -i -S

In this example, the command would send query results to two files in two different directories on two
different file systems mounted on /dr1 and /dr2, yet still display the results onscreen using less.

You can also combine the tee and pager functions. Have a tee file enabled and pager set to less,
and you are able to browse the results using the less program and still have everything appended
into a file the same time. The difference between the Unix tee used with the pager command and
the mysql built-in tee command is that the built-in tee works even if you do not have the Unix tee
available. The built-in tee also logs everything that is printed on the screen, whereas the Unix tee
used with pager does not log quite that much. Additionally, tee file logging can be turned on and
off interactively from within mysql. This is useful when you want to log some queries to a file, but not
others.

The prompt command reconfigures the default mysql> prompt. The string for defining the prompt can
contain the following special sequences.

Option Description

\c A counter that increments for each statement you issue

mysql — The MySQL Command-Line Tool

284

Option Description

\D The full current date

\d The default database

\h The server host

\l The current delimiter

\m Minutes of the current time

\n A newline character

\O The current month in three-letter format (Jan, Feb, …)

\o The current month in numeric format

\P am/pm

\p The current TCP/IP port or socket file

\R The current time, in 24-hour military time (0–23)

\r The current time, standard 12-hour time (1–12)

\S Semicolon

\s Seconds of the current time

\t A tab character

\U Your full user_name@host_name account name

\u Your user name

\v The server version

\w The current day of the week in three-letter format (Mon, Tue, …)

\Y The current year, four digits

\y The current year, two digits

_ A space

\ A space (a space follows the backslash)

\' Single quote

\" Double quote

\\ A literal “\” backslash character

\x x, for any “x” not listed above

You can set the prompt in several ways:

• Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string.
For example:

shell> export MYSQL_PS1="(\u@\h) [\d]> "

• Use a command-line option. You can set the --prompt option on the command line to mysql. For
example:

shell> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

• Use an option file. You can set the prompt option in the [mysql] group of any MySQL option file,
such as /etc/my.cnf or the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>_

mysql — The MySQL Command-Line Tool

285

In this example, note that the backslashes are doubled. If you set the prompt using the prompt
option in an option file, it is advisable to double the backslashes when using the special prompt
options. There is some overlap in the set of permissible prompt options and the set of special escape
sequences that are recognized in option files. (The rules for escape sequences in option files are
listed in Section 4.2.3.3, “Using Option Files”.) The overlap may cause you problems if you use
single backslashes. For example, \s is interpreted as a space rather than as the current seconds
value. The following example shows how to define a prompt within an option file to include the
current time in HH:MM:SS> format:

[mysql]
prompt="\\r:\\m:\\s> "

• Set the prompt interactively. You can change your prompt interactively by using the prompt (or \R)
command. For example:

mysql> prompt (\u@\h) [\d]>_
PROMPT set to '(\u@\h) [\d]>_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

4.5.1.3 mysql Logging

The mysql client can do these types of logging for statements executed interactively:

• On Unix, mysql writes the statements to a history file. By default, this file is named
.mysql_history in your home directory. To specify a different file, set the value of the
MYSQL_HISTFILE environment variable.

• On all platforms, if the --syslog option is given, mysql writes the statements to the system logging
facility. On Unix, this is syslog; on Windows, it is the Windows Event Log. The destination where
logged messages appear is system dependent. On Linux, the destination is often the /var/log/
messages file.

The following discussion describes characteristics that apply to all logging types and provides
information specific to each logging type.

How Logging Occurs

For each enabled logging destination, statement logging occurs as follows:

• Statements are logged only when executed interactively. Statements are noninteractive, for example,
when read from a file or a pipe. It is also possible to suppress statement logging by using the --
batch or --execute option.

• Statements are ignored and not logged if they match any pattern in the “ignore” list. This list is
described later.

• mysql logs each nonignored, nonempty statement line individually.

• If a nonignored statement spans multiple lines (not including the terminating delimiter), mysql
concatenates the lines to form the complete statement, maps newlines to spaces, and logs the
result, plus a delimiter.

Consequently, an input statement that spans multiple lines can be logged twice. Consider this input:

mysql> SELECT
 -> 'Today is'
 -> ,
 -> CONCAT()

mysql — The MySQL Command-Line Tool

286

 -> ;

In this case, mysql logs the “SELECT”, “'Today is'”, “,”, “CONCAT()”, and “;” lines as it reads them.
It also logs the complete statement, after mapping SELECT\n'Today is'\n,\nCURDATE() to
SELECT 'Today is' , CURDATE(), plus a delimiter. Thus, these lines appear in logged output:

SELECT
'Today is'
,
CURDATE()
;
SELECT 'Today is' , CURDATE();

mysql ignores for logging purposes statements that match any pattern in the “ignore” list. By default,
the pattern list is "*IDENTIFIED*:*PASSWORD*", to ignore statements that refer to passwords.
Pattern matching is not case sensitive. Within patterns, two characters are special:

• ? matches any single character.

• * matches any sequence of zero or more characters.

To specify additional patterns, use the --histignore option or set the MYSQL_HISTIGNORE
environment variable. (If both are specified, the option value takes precedence.) The value should be a
colon-separated list of one or more patterns, which are appended to the default pattern list.

Patterns specified on the command line might need to be quoted or escaped to prevent your command
interpreter from treating them specially. For example, to suppress logging for UPDATE and DELETE
statements in addition to statements that refer to passwords, invoke mysql like this:

shell> mysql --histignore="*UPDATE*:*DELETE*"

Controlling the History File

The .mysql_history file should be protected with a restrictive access mode because sensitive
information might be written to it, such as the text of SQL statements that contain passwords. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

If you do not want to maintain a history file, first remove .mysql_history if it exists. Then use either
of the following techniques to prevent it from being created again:

• Set the MYSQL_HISTFILE environment variable to /dev/null. To cause this setting to take effect
each time you log in, put it in one of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null; this need be done only once:

shell> ln -s /dev/null $HOME/.mysql_history

syslog Logging Characteristics

If the --syslog option is given, mysql writes interactive statements to the system logging facility.
Message logging has the following characteristics.

Logging occurs at the “information” level. This corresponds to the LOG_INFO priority for syslog on
Unix/Linux syslog capability and to EVENTLOG_INFORMATION_TYPE for the Windows Event Log.
Consult your system documentation for configuration of your logging capability.

Message size is limited to 1024 bytes.

Messages consist of the identifier MysqlClient followed by these values:

• SYSTEM_USER

The system user name (login name) or -- if the user is unknown.

mysql — The MySQL Command-Line Tool

287

• MYSQL_USER

The MySQL user name (specified with the --user option) or -- if the user is unknown.

• CONNECTION_ID:

The client connection identifier. This is the same as the CONNECTION_ID() function value within the
session.

• DB_SERVER

The server host or -- if the host is unknown.

• DB

The default database or -- if no database has been selected.

• QUERY

The text of the logged statement.

Here is a sample of output generated on Linux by using --syslog. This output is formatted for
readability; each logged message actually takes a single line.

Mar 7 12:39:25 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'
Mar 7 12:39:28 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'test', QUERY:'SHOW TABLES;'

4.5.1.4 mysql Server-Side Help

mysql> help search_string

If you provide an argument to the help command, mysql uses it as a search string to access server-
side help from the contents of the MySQL Reference Manual. The proper operation of this command
requires that the help tables in the mysql database be initialized with help topic information (see
Section 5.1.10, “Server-Side Help”).

If there is no match for the search string, the search fails:

mysql> help me

Nothing found
Please try to run 'help contents' for a list of all accessible topics

Use help contents to see a list of the help categories:

mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:
 Account Management
 Administration
 Data Definition
 Data Manipulation
 Data Types
 Functions
 Functions and Modifiers for Use with GROUP BY
 Geographic Features
 Language Structure
 Plugins
 Storage Engines
 Stored Routines

mysql — The MySQL Command-Line Tool

288

 Table Maintenance
 Transactions
 Triggers

If the search string matches multiple items, mysql shows a list of matching topics:

mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
 SHOW
 SHOW BINARY LOGS
 SHOW ENGINE
 SHOW LOGS

Use a topic as the search string to see the help entry for that topic:

mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-binary-logs], that shows how
to determine which logs can be purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

The search string can contain the the wildcard characters “%” and “_”. These have the same meaning
as for pattern-matching operations performed with the LIKE operator. For example, HELP rep%
returns a list of topics that begin with rep:

mysql> HELP rep%
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
 REPAIR TABLE
 REPEAT FUNCTION
 REPEAT LOOP
 REPLACE
 REPLACE FUNCTION

4.5.1.5 Executing SQL Statements from a Text File

The mysql client typically is used interactively, like this:

shell> mysql db_name

However, it is also possible to put your SQL statements in a file and then tell mysql to read its input
from that file. To do so, create a text file text_file that contains the statements you wish to execute.
Then invoke mysql as shown here:

shell> mysql db_name < text_file

If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the
database name on the command line:

mysql — The MySQL Command-Line Tool

289

shell> mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source command or
\. command:

mysql> source file_name
mysql> \. file_name

Sometimes you may want your script to display progress information to the user. For this you can insert
statements like this:

SELECT '<info_to_display>' AS ' ';

The statement shown outputs <info_to_display>.

You can also invoke mysql with the --verbose option, which causes each statement to be displayed
before the result that it produces.

mysql ignores Unicode byte order mark (BOM) characters at the beginning of input files. Previously,
it read them and sent them to the server, resulting in a syntax error. Presence of a BOM does not
cause mysql to change its default character set. To do that, invoke mysql with an option such as --
default-character-set=utf8.

For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.

4.5.1.6 mysql Tips

This section describes some techniques that can help you use mysql more effectively.

Input-Line Editing

mysql supports input-line editing, which enables you to modify the current input line in place or recall
previous input lines. For example, the left-arrow and right-arrow keys move horizontally within the
current input line, and the up-arror and down-arrow keys move up and down through the set of
previously entered lines. Backspace deletes the character before the cursor and typing new characters
enters them at the cursor position. To enter the line, press Enter.

On Windows, the editing key sequences are the same as supported for command editing in console
windows. On Unix, the key sequences depend on the input library used to build mysql (for example,
the libedit or readline library).

Documentation for the libedit and readline libraries is available online. To change the set of key
sequences permitted by a given input library, define key bindings in the library startup file. This is a file
in your home directory: .editrc for libedit and .inputrc for readline.

For example, in libedit, Control+W deletes everything before the current cursor position and
Control+U deletes the entire line. In readline, Control+W deletes the word before the cursor and
Control+U deletes everything before the current cursor position. If mysql was built using libedit, a
user who prefers the readline behavior for these two keys can put the following lines in the .editrc
file (creating the file if necessary):

bind "^W" ed-delete-prev-word
bind "^U" vi-kill-line-prev

To see the current set of key bindings, temporarily put a line that says only bind at the end of
.editrc. mysql will show the bindings when it starts.

Unicode Support on Windows

Windows provides APIs based on UTF-16LE for reading from and writing to the console; the mysql
client for Windows is able to use these APIs. The Windows installer creates an item in the MySQL

mysql — The MySQL Command-Line Tool

290

menu named MySQL command line client - Unicode. This item invokes the mysql client with
properties set to communicate through the console to the MySQL server using Unicode.

To take advantage of this support manually, run mysql within a console that uses a compatible
Unicode font and set the default character set to a Unicode character set that is supported for
communication with the server:

1. Open a console window.

2. Go to the console window properties, select the font tab, and choose Lucida Console or some other
compatible Unicode font. This is necessary because console windows start by default using a DOS
raster font that is inadequate for Unicode.

3. Execute mysql.exe with the --default-character-set=utf8 (or utf8mb4) option. This
option is necessary because utf16le is not supported as a connection character set.

With those changes, mysql will use the Windows APIs to communicate with the console using
UTF-16LE, and communicate with the server using UTF-8. (The menu item mentioned previously sets
the font and character set as just described.)

To avoid those steps each time you run mysql, you can create a shortcut that invokes mysql.exe.
The shortcut should set the console font to Lucida Console or some other compatible Unicode font, and
pass the --default-character-set=utf8 (or utf8mb4) option to mysql.exe.

Alternatively, create a shortcut that only sets the console font, and set the character set in the [mysql]
group of your my.ini file:

[mysql]
default-character-set=utf8

Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual
horizontal table format. Queries can be displayed vertically by terminating the query with \G instead of
a semicolon. For example, longer text values that include newlines often are much easier to read with
vertical output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************
 msg_nro: 3068
 date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Monty
 reply: monty@no.spam.com
 mail_to: "Thimble Smith" <tim@no.spam.com>
 sbj: UTF-8
 txt: >>>>> "Thimble" == Thimble Smith writes:

Thimble> Hi. I think this is a good idea. Is anyone familiar
Thimble> with UTF-8 or Unicode? Otherwise, I'll put this on my
Thimble> TODO list and see what happens.

Yes, please do that.

Regards,
Monty
 file: inbox-jani-1
 hash: 190402944
1 row in set (0.09 sec)

Using the --safe-updates Option

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has
the same effect). It is helpful for cases when you might have issued a DELETE FROM tbl_name

mysql — The MySQL Command-Line Tool

291

statement but forgotten the WHERE clause. Normally, such a statement deletes all rows from the table.
With --safe-updates, you can delete rows only by specifying the key values that identify them. This
helps prevent accidents.

When you use the --safe-updates option, mysql issues the following statement when it connects
to the MySQL server:

SET sql_safe_updates=1, sql_select_limit=1000, max_join_size=1000000;

See Section 5.1.4, “Server System Variables”.

The SET statement has the following effects:

• You are not permitted to execute an UPDATE or DELETE statement unless you specify a key
constraint in the WHERE clause or provide a LIMIT clause (or both). For example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

UPDATE tbl_name SET not_key_column=val LIMIT 1;

• The server limits all large SELECT results to 1,000 rows unless the statement includes a LIMIT
clause.

• The server aborts multiple-table SELECT statements that probably need to examine more than
1,000,000 row combinations.

To specify limits different from 1,000 and 1,000,000, you can override the defaults by using the --
select_limit and --max_join_size options:

shell> mysql --safe-updates --select_limit=500 --max_join_size=10000

Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a statement, it immediately and
automatically tries to reconnect once to the server and send the statement again. However, even if
mysql succeeds in reconnecting, your first connection has ended and all your previous session objects
and settings are lost: temporary tables, the autocommit mode, and user-defined and session variables.
Also, any current transaction rolls back. This behavior may be dangerous for you, as in the following
example where the server was shut down and restarted between the first and second statements
without you knowing it:

mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it
is important to have mysql terminate with an error if the connection has been lost, you can start the
mysql client with the --skip-reconnect option.

mysqladmin — Client for Administering a MySQL Server

292

For more information about auto-reconnect and its effect on state information when a reconnection
occurs, see Section 21.8.16, “Controlling Automatic Reconnection Behavior”.

4.5.2 mysqladmin — Client for Administering a MySQL Server

mysqladmin is a client for performing administrative operations. You can use it to check the server's
configuration and current status, to create and drop databases, and more.

Invoke mysqladmin like this:

shell> mysqladmin [options] command [command-arg] [command [command-arg]] ...

mysqladmin supports the following commands. Some of the commands take an argument following
the command name.

• create db_name

Create a new database named db_name.

• debug

Tell the server to write debug information to the error log. Format and content of this information is
subject to change.

This includes information about the Event Scheduler. See Section 18.4.5, “Event Scheduler Status”.

• drop db_name

Delete the database named db_name and all its tables.

• extended-status

Display the server status variables and their values.

• flush-hosts

Flush all information in the host cache.

• flush-logs

Flush all logs.

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

Clear status variables.

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache.

• kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

• old-password new-password

mysqladmin — Client for Administering a MySQL Server

293

This is like the password command but stores the password using the old (pre-4.1) password-
hashing format. (See Section 6.1.2.4, “Password Hashing in MySQL”.)

• password new-password

Set a new password. This changes the password to new-password for the account that you use
with mysqladmin for connecting to the server. Thus, the next time you invoke mysqladmin (or any
other client program) using the same account, you will need to specify the new password.

If the new-password value contains spaces or other characters that are special to your command
interpreter, you need to enclose it within quotation marks. On Windows, be sure to use double
quotation marks rather than single quotation marks; single quotation marks are not stripped from the
password, but rather are interpreted as part of the password. For example:

shell> mysqladmin password "my new password"

In MySQL 5.7, the new password can be omitted following the password command. In this case,
mysqladmin prompts for the password value, which enables you to avoid specifying the password
on the command line. Omitting the password value should be done only if password is the final
command on the mysqladmin command line. Otherwise, the next argument is taken as the
password.

Caution

Do not use this command used if the server was started with the --skip-
grant-tables option. No password change will be applied. This is true
even if you precede the password command with flush-privileges
on the same command line to re-enable the grant tables because the flush
operation occurs after you connect. However, you can use mysqladmin
flush-privileges to re-enable the grant table and then use a separate
mysqladmin password command to change the password.

• ping

Check whether the server is available. The return status from mysqladmin is 0 if the server is
running, 1 if it is not. This is 0 even in case of an error such as Access denied, because this
means that the server is running but refused the connection, which is different from the server not
running.

• processlist

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement.
If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST. (See
Section 13.7.5.28, “SHOW PROCESSLIST Syntax”.)

• reload

Reload the grant tables.

• refresh

Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-slave

Start replication on a slave server.

mysqladmin — Client for Administering a MySQL Server

294

• status

Display a short server status message.

• stop-slave

Stop replication on a slave server.

• variables

Display the server system variables and their values.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

shell> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+---------+------+-------+------------------+
| 51 | monty | localhost | | Query | 0 | | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624 Threads: 1 Questions: 39487
Slow queries: 0 Opens: 541 Flush tables: 1
Open tables: 19 Queries per second avg: 0.0268

The mysqladmin status command result displays the following values:

• Uptime

The number of seconds the MySQL server has been running.

• Threads

The number of active threads (clients).

• Questions

The number of questions (queries) from clients since the server was started.

• Slow queries

The number of queries that have taken more than long_query_time seconds. See Section 5.2.5,
“The Slow Query Log”.

• Opens

The number of tables the server has opened.

• Flush tables

The number of flush-*, refresh, and reload commands the server has executed.

• Open tables

The number of tables that currently are open.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file,
mysqladmin waits until the server's process ID file has been removed, to ensure that the server has
stopped properly.

mysqladmin — Client for Administering a MySQL Server

295

mysqladmin supports the following options, which can be specified on the command line or in the
[mysqladmin] and [client] groups of an option file. For information about option files, see
Section 4.2.3.3, “Using Option Files”.

Table 4.7 mysqladmin Options

Format Option File Description Introduced

--bind-
address=ip_address

bind-address Use the specified network interface to connect to
the MySQL Server

--compress compress Compress all information sent between the client
and the server

--
connect_timeout=seconds

connect_timeout The number of seconds before connection timeout

--count=# count The number of iterations to make for repeated
command execution

--
debug[=debug_options]

debug Write a debugging log

--debug-check debug-check Print debugging information when the program
exits

--debug-info debug-info Print debugging information, memory and CPU
statistics when the program exits

--default-
auth=plugin

default-
auth=plugin

The authentication plugin to use

--default-
character-
set=charset_name

default-character-
set

Use charset_name as the default character set

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files

--defaults-
file=file_name

 Read only the given option file

--defaults-group-
suffix=str

 Option group suffix value

--enable-cleartext-
plugin

enable-cleartext-
plugin

Enable cleartext authentication plugin

--force force Continue even if an SQL error occurs

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--login-
path=name

 Read login path options from .mylogin.cnf

--no-beep no-beep Do not beep when errors occur

--no-defaults Do not read any option files

--
password[=password]

password The password to use when connecting to the
server

--pipe On Windows, connect to server using a named
pipe

--plugin-dir=path plugin-dir=path The directory where plugins are located

--port=port_num port The TCP/IP port number to use for the connection

--print-defaults Print defaults

mysqladmin — Client for Administering a MySQL Server

296

Format Option File Description Introduced

--protocol=type protocol The connection protocol to use

--relative relative Show the difference between the current and
previous values when used with the --sleep option

--secure-auth secure-auth Do not send passwords to the server in old
(pre-4.1.1) format

5.7.4

--show-warnings show-warnings Show warnings after statement execution 5.7.2

--
shutdown_timeout=seconds

shutdown_timeout The maximum number of seconds to wait for
server shutdown

--silent silent Silent mode

--sleep=delay sleep Execute commands repeatedly, sleeping for delay
seconds in between

--socket=path socket For connections to localhost

--ssl-
ca=file_name

ssl-ca The path to a file that contains a list of trusted SSL
CAs

--ssl-
capath=dir_name

ssl-capath The path to a directory that contains trusted SSL
CA certificates in PEM format

--ssl-
cert=file_name

ssl-cert The name of the SSL certificate file to use for
establishing a secure connection

--ssl-
cipher=cipher_list

ssl-cipher A list of allowable ciphers to use for SSL
encryption

--ssl-
crl=file_name

ssl-crl The path to a file that contains certificate
revocation lists

--ssl-
crlpath=dir_name

ssl-crlpath The path to a directory that contains certificate
revocation list files

--ssl-
key=file_name

ssl-key The name of the SSL key file to use for
establishing a secure connection

--ssl-verify-server-
cert

ssl-verify-server-
cert

The server's Common Name value in its certificate
is verified against the host name used when
connecting to the server

--
user=user_name,

user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

--vertical vertical Print query output rows vertically (one line per
column value)

--wait wait If the connection cannot be established, wait and
retry instead of aborting

• --help, -?

Display a help message and exit.

• --bind-address=ip_address

On a computer having multiple network interfaces, this option can be used to select which interface
is employed when connecting to the MySQL server.

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

mysqladmin — Client for Administering a MySQL Server

297

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count=N, -c N

The number of iterations to make for repeated command execution if the --sleep option is given.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqladmin.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqladmin normally reads the [client] and [mysqladmin] groups.
If the --defaults-group-suffix=_other option is given, mysqladmin also reads the
[client_other] and [mysqladmin_other] groups.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.5, “The
Cleartext Client-Side Authentication Plugin”.)

• --force, -f

Do not ask for confirmation for the drop db_name command. With multiple commands, continue
even if an error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --login-path=name

mysqladmin — Client for Administering a MySQL Server

298

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --no-beep, -b

Suppress the warning beep that is emitted by default for errors such as a failure to connect to the
server.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqladmin prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the --
default-auth option is used to specify an authentication plugin but mysqladmin does not find it.
See Section 6.3.8, “Pluggable Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --relative, -r

Show the difference between the current and previous values when used with the --sleep option.
This option works only with the extended-status command.

• --show-warnings

mysqladmin — Client for Administering a MySQL Server

299

Show warnings resulting from execution of statements sent to the server. This option was added in
MySQL 5.7.2.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except
for servers that use the newer password format. This option is enabled by default; use --skip-
secure-auth to disable it. This option was added in MySQL 5.7.4.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --silent, -s

Exit silently if a connection to the server cannot be established.

• --sleep=delay, -i delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count option
determines the number of iterations. If --count is not given, mysqladmin executes commands
indefinitely until interrupted.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --vertical, -E

Print output vertically. This is similar to --relative, but prints output vertically.

• --wait[=count], -w[count]

If the connection cannot be established, wait and retry instead of aborting. If a count value is given,
it indicates the number of times to retry. The default is one time.

You can also set the following variables by using --var_name=value.

• connect_timeout

mysqlcheck — A Table Maintenance Program

300

The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).

• shutdown_timeout

The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).

4.5.3 mysqlcheck — A Table Maintenance Program

The mysqlcheck client performs table maintenance: It checks, repairs, optimizes, or analyzes tables.

Each table is locked and therefore unavailable to other sessions while it is being processed, although
for check operations, the table is locked with a READ lock only (see Section 13.3.5, “LOCK TABLES
and UNLOCK TABLES Syntax”, for more information about READ and WRITE locks). Table maintenance
operations can be time-consuming, particularly for large tables. If you use the --databases or --
all-databases option to process all tables in one or more databases, an invocation of mysqlcheck
might take a long time. (This is also true for mysql_upgrade because that program invokes
mysqlcheck to check all tables and repair them if necessary.)

mysqlcheck is similar in function to myisamchk, but works differently. The main operational
difference is that mysqlcheck must be used when the mysqld server is running, whereas
myisamchk should be used when it is not. The benefit of using mysqlcheck is that you do not have to
stop the server to perform table maintenance.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and
OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the
operation you want to perform, and then sends the statements to the server to be executed. For details
about which storage engines each statement works with, see the descriptions for those statements in
Section 13.7.2, “Table Maintenance Statements”.

The MyISAM storage engine supports all four maintenance operations, so mysqlcheck can be
used to perform any of them on MyISAM tables. Other storage engines do not necessarily support all
operations. In such cases, an error message is displayed. For example, if test.t is a MEMORY table,
an attempt to check it produces this result:

shell> mysqlcheck test t
test.t
note : The storage engine for the table doesn't support check

If mysqlcheck is unable to repair a table, see Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes” for manual table repair strategies. This will be the case, for example, for InnoDB tables,
which can be checked with CHECK TABLE, but not repaired with REPAIR TABLE.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible
causes include but are not limited to file system errors.

There are three general ways to invoke mysqlcheck:

shell> mysqlcheck [options] db_name [tbl_name ...]
shell> mysqlcheck [options] --databases db_name ...
shell> mysqlcheck [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-
databases option, entire databases are checked.

mysqlcheck has a special feature compared to other client programs. The default behavior of
checking tables (--check) can be changed by renaming the binary. If you want to have a tool that
repairs tables by default, you should just make a copy of mysqlcheck named mysqlrepair, or make
a symbolic link to mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs tables.

mysqlcheck — A Table Maintenance Program

301

The names shown in the following table can be used to change mysqlcheck default behavior.

Command Meaning

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck supports the following options, which can be specified on the command line or in the
[mysqlcheck] and [client] groups of an option file. For information about option files, see
Section 4.2.3.3, “Using Option Files”.

Table 4.8 mysqlcheck Options

Format Option File Description Introduced

--all-databases all-databases Check all tables in all databases

--all-in-1 all-in-1 Execute a single statement for each database that
names all the tables from that database

--analyze analyze Analyze the tables

--auto-repair auto-repair If a checked table is corrupted, automatically fix it

--bind-
address=ip_address

bind-address Use the specified network interface to connect to
the MySQL Server

--character-sets-
dir=path

character-sets-dir The directory where character sets are installed

--check check Check the tables for errors

--check-only-
changed

check-only-
changed

Check only tables that have changed since the
last check

--check-upgrade check-upgrade Invoke CHECK TABLE with the FOR UPGRADE
option

--compress compress Compress all information sent between the client
and the server

--databases databases Process all tables in the named databases

--
debug[=debug_options]

debug Write a debugging log

--debug-check debug-check Print debugging information when the program
exits

--debug-info debug-info Print debugging information, memory and CPU
statistics when the program exits

--default-
auth=plugin

default-
auth=plugin

The authentication plugin to use

--default-
character-
set=charset_name

default-character-
set

Use charset_name as the default character set

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files

--defaults-
file=file_name

 Read only the given option file

--defaults-group-
suffix=str

 Option group suffix value

--extended extended Check and repair tables

mysqlcheck — A Table Maintenance Program

302

Format Option File Description Introduced

--fast fast Check only tables that have not been closed
properly

--fix-db-names fix-db-names Convert database names to 5.1 format

--fix-table-names fix-table-names Convert table names to 5.1 format

--force force Continue even if an SQL error occurs

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--login-
path=name

 Read login path options from .mylogin.cnf

--medium-check medium-check Do a check that is faster than an --extended
operation

--no-defaults Do not read any option files

--optimize optimize Optimize the tables

--
password[=password]

password The password to use when connecting to the
server

--pipe On Windows, connect to server using a named
pipe

--plugin-dir=path plugin-dir=path The directory where plugins are located

--port=port_num port The TCP/IP port number to use for the connection

--print-defaults Print defaults

--protocol=type protocol The connection protocol to use

--quick quick The fastest method of checking

--repair repair Perform a repair that can fix almost anything
except unique keys that are not unique

--secure-auth secure-auth Do not send passwords to the server in old
(pre-4.1.1) format

5.7.4

--silent silent Silent mode

--skip-
database=db_name

skip-database Omit this database from performed operations 5.7.1

--socket=path socket For connections to localhost

--ssl-
ca=file_name

ssl-ca The path to a file that contains a list of trusted SSL
CAs

--ssl-
capath=dir_name

ssl-capath The path to a directory that contains trusted SSL
CA certificates in PEM format

--ssl-
cert=file_name

ssl-cert The name of the SSL certificate file to use for
establishing a secure connection

--ssl-
cipher=cipher_list

ssl-cipher A list of allowable ciphers to use for SSL
encryption

--ssl-
crl=file_name

ssl-crl The path to a file that contains certificate
revocation lists

--ssl-
crlpath=dir_name

ssl-crlpath The path to a directory that contains certificate
revocation list files

--ssl-
key=file_name

ssl-key The name of the SSL key file to use for
establishing a secure connection

mysqlcheck — A Table Maintenance Program

303

Format Option File Description Introduced

--ssl-verify-server-
cert

ssl-verify-server-
cert

The server's Common Name value in its certificate
is verified against the host name used when
connecting to the server

--tables tables Overrides the --databases or -B option

--use-frm use-frm For repair operations on MyISAM tables

--
user=user_name,

user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

--write-binlog write-binlog Log ANALYZE, OPTIMIZE, REPAIR statements
to binary log. --skip-write-binlog adds
NO_WRITE_TO_BINLOG to these statements.

• --help, -?

Display a help message and exit.

• --all-databases, -A

Check all tables in all databases. This is the same as using the --databases option and naming all
the databases on the command line.

• --all-in-1, -1

Instead of issuing a statement for each table, execute a single statement for each database that
names all the tables from that database to be processed.

• --analyze, -a

Analyze the tables.

• --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables
have been checked.

• --bind-address=ip_address

On a computer having multiple network interfaces, this option can be used to select which interface
is employed when connecting to the MySQL server.

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --check, -c

Check the tables for errors. This is the default operation.

• --check-only-changed, -C

Check only tables that have changed since the last check or that have not been closed properly.

• --check-upgrade, -g

Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with the
current version of the server. This option automatically enables the --fix-db-names and --fix-
table-names options.

mysqlcheck — A Table Maintenance Program

304

• --compress

Compress all information sent between the client and the server if both support compression.

• --databases, -B

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument
on the command line as a database name and following names as table names. With this option, it
treats all name arguments as database names.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqlcheck normally reads the [client] and [mysqlcheck] groups.
If the --defaults-group-suffix=_other option is given, mysqlcheck also reads the
[client_other] and [mysqlcheck_other] groups.

• --extended, -e

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long
time.

If you are using this option to repair tables, it runs an extended repair that may not only take a long
time to execute, but may produce a lot of garbage rows also!

• --default-auth=plugin

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.

• --fast, -F

Check only tables that have not been closed properly.

• --fix-db-names

mysqlcheck — A Table Maintenance Program

305

Convert database names to 5.1 format. Only database names that contain special characters are
affected.

• --fix-table-names

Convert table names to 5.1 format. Only table names that contain special characters are affected.
This option also applies to views.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --medium-check, -m

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which
should be good enough in most cases.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --optimize, -o

Optimize the tables.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlcheck prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=path

mysqlcheck — A Table Maintenance Program

306

The directory in which to look for plugins. It may be necessary to specify this option if the --
default-auth option is used to specify an authentication plugin but mysqlcheck does not find it.
See Section 6.3.8, “Pluggable Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --quick, -q

If you are using this option to check tables, it prevents the check from scanning the rows to check for
incorrect links. This is the fastest check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest
repair method.

• --repair, -r

Perform a repair that can fix almost anything except unique keys that are not unique.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except
for servers that use the newer password format. This option is enabled by default; use --skip-
secure-auth to disable it. This option was added in MySQL 5.7.4.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --silent, -s

Silent mode. Print only error messages.

• --skip-database=db_name

Do not include the named database (case sensitive) in the operations performed by mysqlcheck.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

mysqldump — A Database Backup Program

307

• --tables

Override the --databases or -B option. All name arguments following the option are regarded as
table names.

• --use-frm

For repair operations on MyISAM tables, get the table structure from the .frm file so that the table
can be repaired even if the .MYI header is corrupted.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print information about the various stages of program operation.

• --version, -V

Display version information and exit.

• --write-binlog

This option is enabled by default, so that ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements generated by mysqlcheck are written to the binary log. Use --skip-write-binlog
to cause NO_WRITE_TO_BINLOG to be added to the statements so that they are not logged. Use
the --skip-write-binlog when these statements should not be sent to replication slaves or run
when using the binary logs for recovery from backup.

4.5.4 mysqldump — A Database Backup Program

The mysqldump client is a utility that performs logical backups, producing a set of SQL statements that
can be run to reproduce the original schema objects, table data, or both. It dumps one or more MySQL
database for backup or transfer to another SQL server. The mysqldump command can also generate
output in CSV, other delimited text, or XML format.

mysqldump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views,
TRIGGER for dumped triggers, and LOCK TABLES if the --single-transaction option is not used.
Certain options might require other privileges as noted in the option descriptions.

To reload a dump file, you must have the same privileges needed to create each of the dumped objects
by issuing CREATE statements manually.

mysqldump output can include ALTER DATABASE statements that change the database collation.
These may be used when dumping stored programs to preserve their character encodings. To reload a
dump file containing such statements, the ALTER privilege for the affected database is required.

Performance and Scalability Considerations

mysqldump advantages include the convenience and flexibility of viewing or even editing the output
before restoring. You can clone databases for development and DBA work, or produce slight variations
of an existing database for testing. It is not intended as a fast or scalable solution for backing up
substantial amounts of data. With large data sizes, even if the backup step takes a reasonable time,
restoring the data can be very slow because replaying the SQL statements involves disk I/O for
insertion, index creation, and so on.

For large-scale backup and restore, a physical backup is more appropriate, to copy the data files in
their original format that can be restored quickly:

• If your tables are primarily InnoDB tables, or if you have a mix of InnoDB and MyISAM tables,
consider using the mysqlbackup command of the MySQL Enterprise Backup product. (Available
as part of the Enterprise subscription.) It provides the best performance for InnoDB backups

mysqldump — A Database Backup Program

308

with minimal disruption; it can also back up tables from MyISAM and other storage engines; and
it provides a number of convenient options to accommodate different backup scenarios. See
Section 23.2, “MySQL Enterprise Backup”.

• If your tables are primarily MyISAM tables, consider using the mysqlhotcopy instead, for
better performance than mysqldump of backup and restore operations. See Section 4.6.9,
“mysqlhotcopy — A Database Backup Program”.

mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from
a table and buffer it in memory before dumping it. Buffering in memory can be a problem if you are
dumping large tables. To dump tables row by row, use the --quick option (or --opt, which enables
--quick). The --opt option (and hence --quick) is enabled by default, so to enable memory
buffering, use --skip-quick.

If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old
MySQL server, use the --skip-opt option instead of the --opt or --extended-insert option.

For additional information about mysqldump, see Section 7.4, “Using mysqldump for Backups”.

Syntax

There are in general three ways to use mysqldump—in order to dump a set of one or more tables, a
set of one or more complete databases, or an entire MySQL server—as shown here:

shell> mysqldump [options] db_name [tbl_name ...]
shell> mysqldump [options] --databases db_name ...
shell> mysqldump [options] --all-databases

To dump entire databases, do not name any tables following db_name, or use the --databases or
--all-databases option.

To see a list of the options your version of mysqldump supports, issue the command mysqldump --
help.

Option Syntax - Alphabetical Summary

mysqldump supports the following options, which can be specified on the command line or in the
[mysqldump] and [client] groups of an option file. For information about option files, see
Section 4.2.3.3, “Using Option Files”.

Table 4.9 mysqldump Options

Format Option File Description Introduced

--add-drop-
database

add-drop-
database

Add a DROP DATABASE statement before each
CREATE DATABASE statement

--add-drop-table add-drop-table Add a DROP TABLE statement before each
CREATE TABLE statement

--add-drop-trigger add-drop-trigger Add a DROP TRIGGER statement before each
CREATE TRIGGER statement

--add-locks add-locks Surround each table dump with LOCK TABLES
and UNLOCK TABLES statements

--all-databases all-databases Dump all tables in all databases

--allow-keywords allow-keywords Allow creation of column names that are keywords

--apply-slave-
statements

apply-slave-
statements

Include STOP SLAVE prior to CHANGE MASTER
statement and START SLAVE at end of output

--bind-
address=ip_address

bind-address Use the specified network interface to connect to
the MySQL Server

--comments comments Add comments to the dump file

mysqldump — A Database Backup Program

309

Format Option File Description Introduced

--compact compact Produce more compact output

--
compatible=name[,name,...]

compatible Produce output that is more compatible with other
database systems or with older MySQL servers

--complete-insert complete-insert Use complete INSERT statements that include
column names

--create-options create-options Include all MySQL-specific table options in
CREATE TABLE statements

--databases databases Dump several databases

--
debug[=debug_options]

debug Write a debugging log

--debug-check debug-check Print debugging information when the program
exits

--debug-info debug-info Print debugging information, memory and CPU
statistics when the program exits

--default-
auth=plugin

default-
auth=plugin

The authentication plugin to use

--default-
character-
set=charset_name

default-character-
set

Use charset_name as the default character set

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files

--defaults-
file=file_name

 Read only the given option file

--defaults-group-
suffix=str

 Option group suffix value

--delete-master-
logs

delete-master-
logs

On a master replication server, delete the binary
logs after performing the dump operation

--disable-keys disable-keys For each table, surround the INSERT statements
with statements to disable and enable keys

--dump-date dump-date Include dump date as "Dump completed on"
comment if --comments is given

--dump-
slave[=value]

dump-slave Include CHANGE MASTER statement that lists
binary log coordinates of slave's master

--events events Dump events from the dumped databases

--extended-insert extended-insert Use multiple-row INSERT syntax that include
several VALUES lists

--fields-enclosed-
by=string

fields-enclosed-by This option is used with the --tab option and has
the same meaning as the corresponding clause
for LOAD DATA INFILE

--fields-escaped-
by

fields-escaped-by This option is used with the --tab option and has
the same meaning as the corresponding clause
for LOAD DATA INFILE

--fields-optionally-
enclosed-
by=string

fields-optionally-
enclosed-by

This option is used with the --tab option and has
the same meaning as the corresponding clause
for LOAD DATA INFILE

--fields-
terminated-
by=string

fields-terminated-
by

This option is used with the --tab option and has
the same meaning as the corresponding clause
for LOAD DATA INFILE

mysqldump — A Database Backup Program

310

Format Option File Description Introduced

--flush-logs flush-logs Flush the MySQL server log files before starting
the dump

--flush-privileges flush-privileges Emit a FLUSH PRIVILEGES statement after
dumping the mysql database

--help Display help message and exit

--hex-blob hex-blob Dump binary columns using hexadecimal notation
(for example, 'abc' becomes 0x616263)

--host host Host to connect to (IP address or hostname)

--ignore-
error=error[,error]...

ignore-error Ignore the specified errors 5.7.1

--ignore-
table=db_name.tbl_name

ignore-table Do not dump the given table

--include-master-
host-port

include-master-
host-port

Include MASTER_HOST/MASTER_PORT options
in CHANGE MASTER statement produced with --
dump-slave

--insert-ignore insert-ignore Write INSERT IGNORE statements rather than
INSERT statements

--lines-terminated-
by=string

lines-terminated-
by

This option is used with the --tab option and has
the same meaning as the corresponding clause
for LOAD DATA INFILE

--lock-all-tables lock-all-tables Lock all tables across all databases

--lock-tables lock-tables Lock all tables before dumping them

--log-
error=file_name

log-error Append warnings and errors to the named file

--login-
path=name

 Read login path options from .mylogin.cnf

--master-
data[=value]

master-data Write the binary log file name and position to the
output

--
max_allowed_packet=value

max_allowed_packetThe maximum packet length to send to or receive
from the server

--
net_buffer_length=value

net_buffer_length The buffer size for TCP/IP and socket
communication

--no-autocommit no-autocommit Enclose the INSERT statements for each dumped
table within SET autocommit = 0 and COMMIT
statements

--no-create-db no-create-db This option suppresses the CREATE DATABASE
statements

--no-create-info no-create-info Do not write CREATE TABLE statements that re-
create each dumped table

--no-data no-data Do not dump table contents

--no-defaults Do not read any option files

--no-set-names no-set-names Same as --skip-set-charset

--no-tablespaces no-tablespaces Do not write any CREATE LOGFILE GROUP or
CREATE TABLESPACE statements in output

--opt opt Shorthand for --add-drop-table --add-locks --
create-options --disable-keys --extended-insert --
lock-tables --quick --set-charset.

mysqldump — A Database Backup Program

311

Format Option File Description Introduced

--order-by-primary order-by-primary Dump each table's rows sorted by its primary key,
or by its first unique index

--
password[=password]

password The password to use when connecting to the
server

--pipe On Windows, connect to server using a named
pipe

--plugin-dir=path plugin-dir=path The directory where plugins are located

--port=port_num port The TCP/IP port number to use for the connection

--print-defaults Print defaults

--protocol=type protocol The connection protocol to use

--quick quick Retrieve rows for a table from the server a row at
a time

--quote-names quote-names Quote identifiers within backtick characters

--replace replace Write REPLACE statements rather than INSERT
statements

--result-file=file result-file Direct output to a given file

--routines routines Dump stored routines (procedures and functions)
from the dumped databases

--secure-auth secure-auth Do not send passwords to the server in old
(pre-4.1.1) format

5.7.4

--set-charset set-charset Add SET NAMES default_character_set to output

--set-gtid-
purged=value

set-gtid-purged Whether to add SET
@@GLOBAL.GTID_PURGED to output

--single-
transaction

single-transaction This option issues a BEGIN SQL statement before
dumping data from the server

--skip-add-drop-
table

skip-add-drop-
table

Do not add a DROP TABLE statement before
each CREATE TABLE statement

--skip-add-locks skip-add-locks Do not add locks

--skip-comments skip-comments Do not add comments to the dump file

--skip-compact skip-compact Do not produce more compact output

--skip-disable-
keys

skip-disable-keys Do not disable keys

--skip-extended-
insert

skip-extended-
insert

Turn off extended-insert

--skip-opt skip-opt Turn off the options set by --opt

--skip-quick skip-quick Do not retrieve rows for a table from the server a
row at a time

--skip-quote-
names

skip-quote-names Do not quote identifiers

--skip-set-charset skip-set-charset Suppress the SET NAMES statement

--skip-triggers skip-triggers Do not dump triggers

--skip-tz-utc skip-tz-utc Turn off tz-utc

--socket=path socket For connections to localhost

--ssl-
ca=file_name

ssl-ca The path to a file that contains a list of trusted SSL
CAs

mysqldump — A Database Backup Program

312

Format Option File Description Introduced

--ssl-
capath=dir_name

ssl-capath The path to a directory that contains trusted SSL
CA certificates in PEM format

--ssl-
cert=file_name

ssl-cert The name of the SSL certificate file to use for
establishing a secure connection

--ssl-
cipher=cipher_list

ssl-cipher A list of allowable ciphers to use for SSL
encryption

--ssl-
crl=file_name

ssl-crl The path to a file that contains certificate
revocation lists

--ssl-
crlpath=dir_name

ssl-crlpath The path to a directory that contains certificate
revocation list files

--ssl-
key=file_name

ssl-key The name of the SSL key file to use for
establishing a secure connection

--ssl-verify-server-
cert

ssl-verify-server-
cert

The server's Common Name value in its certificate
is verified against the host name used when
connecting to the server

--tab=path tab Produce tab-separated data files

--tables tables Override the --databases or -B option

--triggers triggers Dump triggers for each dumped table

--tz-utc tz-utc Add SET TIME_ZONE='+00:00' to the dump file

--
user=user_name

user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

--
where='where_condition'

where Dump only rows selected by the given WHERE
condition

--xml xml Produce XML output

Connection Options

The mysqldump command logs into a MySQL server to extract information. The following options
specify how to connect to the MySQL server, either on the same machine or a remote system.

• --bind-address=ip_address

On a computer having multiple network interfaces, this option can be used to select which interface
is employed when connecting to the MySQL server.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --default-auth=plugin

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.

• --host=host_name, -h host_name

Dump data from the MySQL server on the given host. The default host is localhost.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a

mysqldump — A Database Backup Program

313

login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqldump prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the --
default-auth option is used to specify an authentication plugin but mysqldump does not find it.
See Section 6.3.8, “Pluggable Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except
for servers that use the newer password format. This option is enabled by default; use --skip-
secure-auth to disable it. This option was added in MySQL 5.7.4.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

mysqldump — A Database Backup Program

314

You can also set the following variables by using --var_name=value syntax:

• max_allowed_packet

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum
is 1GB.

• net_buffer_length

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert or --opt option), mysqldump creates rows up to
net_buffer_length length. If you increase this variable, ensure that the net_buffer_length
variable in the MySQL server is at least this large.

Option-File Options

These options are used to control which option files to read.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqldump normally reads the [client] and [mysqldump] groups. If the --
defaults-group-suffix=_other option is given, mysqldump also reads the [client_other]
and [mysqldump_other] groups.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --print-defaults

Print the program name and all options that it gets from option files.

DDL Options

Usage scenarios for mysqldump include setting up an entire new MySQL instance (including database
tables), and replacing data inside an existing instance with existing databases and tables. The following
options let you specify which things to tear down and set up when restoring a dump, by encoding
various DDL statements within the dump file.

• --add-drop-database

Add a DROP DATABASE statement before each CREATE DATABASE statement. This option is
typically used in conjunction with the --all-databases or --databases option because no
CREATE DATABASE statements are written unless one of those options is specified.

mysqldump — A Database Backup Program

315

• --add-drop-table

Add a DROP TABLE statement before each CREATE TABLE statement.

• --add-drop-trigger

Add a DROP TRIGGER statement before each CREATE TRIGGER statement.

• --all-tablespaces, -Y

Adds to a table dump all SQL statements needed to create any tablespaces used by an NDB table.
This information is not otherwise included in the output from mysqldump. This option is currently
relevant only to MySQL Cluster tables, which are not supported in MySQL 5.7.

• --no-create-db, -n

This option suppresses the CREATE DATABASE statements that are otherwise included in the output
if the --databases or --all-databases option is given.

• --no-create-info, -t

Do not write CREATE TABLE statements that re-create each dumped table.

Note

This option does not not exclude statements creating log file groups or
tablespaces from mysqldump output; however, you can use the --no-
tablespaces option for this purpose.

• --no-tablespaces, -y

This option suppresses all CREATE LOGFILE GROUP and CREATE TABLESPACE statements in the
output of mysqldump.

• --replace

Write REPLACE statements rather than INSERT statements.

Debug Options

The following options print debugging information, encode debugging information in the dump file, or let
the dump operation proceed regardless of potential problems.

• --allow-keywords

Permit creation of column names that are keywords. This works by prefixing each column name with
the table name.

• --comments, -i

Write additional information in the dump file such as program version, server version, and host. This
option is enabled by default. To suppress this additional information, use --skip-comments.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default value is
d:t:o,/tmp/mysqldump.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/create-logfile-group.html
http://dev.mysql.com/doc/refman/5.6/en/create-tablespace.html

mysqldump — A Database Backup Program

316

Print debugging information and memory and CPU usage statistics when the program exits.

• --dump-date

If the --comments option is given, mysqldump produces a comment at the end of the dump of the
following form:

-- Dump completed on DATE

However, the date causes dump files taken at different times to appear to be different, even if the
data are otherwise identical. --dump-date and --skip-dump-date control whether the date is
added to the comment. The default is --dump-date (include the date in the comment). --skip-
dump-date suppresses date printing.

• --force, -f

Ignore all errors; continue even if an SQL error occurs during a table dump.

One use for this option is to cause mysqldump to continue executing even when it encounters a
view that has become invalid because the definition refers to a table that has been dropped. Without
--force, mysqldump exits with an error message. With --force, mysqldump prints the error
message, but it also writes an SQL comment containing the view definition to the dump output and
continues executing.

If the --ignore-error option is also given to ignore specific errors, --force takes precedence.

• --log-error=file_name

Log warnings and errors by appending them to the named file. The default is to do no logging.

• --skip-comments

See the description for the --comments option.

• --verbose, -v

Verbose mode. Print more information about what the program does.

Help Options

The following options display information about the mysqldump command itself.

• --help, -?

Display a help message and exit.

• --version, -V

Display version information and exit.

Internationalization Options

The following options change how the mysqldump command represents character data with national
language settings.

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --default-character-set=charset_name

mysqldump — A Database Backup Program

317

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”. If
no character set is specified, mysqldump uses utf8, and earlier versions use latin1.

• --no-set-names, -N

Turns off the --set-charset setting, the same as specifying --skip-set-charset.

• --set-charset

Add SET NAMES default_character_set to the output. This option is enabled by default. To
suppress the SET NAMES statement, use --skip-set-charset.

Replication Options

The mysqldump command is frequently used to create an empty instance, or an instance including
data, on a slave server in a replication configuration. The following options apply to dumping and
restoring data on replication master and slave servers.

• --apply-slave-statements

For a slave dump produced with the --dump-slave option, add a STOP SLAVE statement before
the CHANGE MASTER TO statement and a START SLAVE statement at the end of the output.

• --delete-master-logs

On a master replication server, delete the binary logs by sending a PURGE BINARY LOGS statement
to the server after performing the dump operation. This option automatically enables --master-
data.

• --dump-slave[=value]

This option is similar to --master-data except that it is used to dump a replication slave server to
produce a dump file that can be used to set up another server as a slave that has the same master
as the dumped server. It causes the dump output to include a CHANGE MASTER TO statement that
indicates the binary log coordinates (file name and position) of the dumped slave's master. These are
the master server coordinates from which the slave should start replicating.

--dump-slave causes the coordinates from the master to be used rather than those of the dumped
server, as is done by the --master-data option. In addition, specfiying this option causes the --
master-data option to be overridden, if used, and effectively ignored.

The option value is handled the same way as for --master-data (setting no value or 1 causes
a CHANGE MASTER TO statement to be written to the dump, setting 2 causes the statement to be
written but encased in SQL comments) and has the same effect as --master-data in terms of
enabling or disabling other options and in how locking is handled.

This option causes mysqldump to stop the slave SQL thread before the dump and restart it again
after.

In conjunction with --dump-slave, the --apply-slave-statements and --include-
master-host-port options can also be used.

• --include-master-host-port

For the CHANGE MASTER TO statement in a slave dump produced with the --dump-slave option,
add MASTER_HOST and MASTER_PORT options for the host name and TCP/IP port number of the
slave's master.

• --master-data[=value]

mysqldump — A Database Backup Program

318

Use this option to dump a master replication server to produce a dump file that can be used to set
up another server as a slave of the master. It causes the dump output to include a CHANGE MASTER
TO statement that indicates the binary log coordinates (file name and position) of the dumped server.
These are the master server coordinates from which the slave should start replicating after you load
the dump file into the slave.

If the option value is 2, the CHANGE MASTER TO statement is written as an SQL comment, and
thus is informative only; it has no effect when the dump file is reloaded. If the option value is 1, the
statement is not written as a comment and takes effect when the dump file is reloaded. If no option
value is specified, the default value is 1.

This option requires the RELOAD privilege and the binary log must be enabled.

The --master-data option automatically turns off --lock-tables. It also turns on --lock-
all-tables, unless --single-transaction also is specified, in which case, a global read lock
is acquired only for a short time at the beginning of the dump (see the description for --single-
transaction). In all cases, any action on logs happens at the exact moment of the dump.

It is also possible to set up a slave by dumping an existing slave of the master, using the --dump-
slave option, which overrides --master-data and causes it to be ignored if both options are
used.

• --set-gtid-purged=value

This option enables control over global transaction ID (GTID) information written to the dump file, by
indicating whether to add a SET @@global.gtid_purged statement to the output.

The following table shows the permitted option values. The default value is AUTO.

Value Meaning

OFF Add no SET statement to the output.

ON Add a SET statement to the output. An error occurs if GTIDs are not enabled on the
server.

AUTO Add a SET statement to the output if GTIDs are enabled on the server.

Format Options

The following options specify how to represent the entire dump file or certain kinds of data in the dump
file. They also control whether certain optional information is written to the dump file.

• --compact

Produce more compact output. This option enables the --skip-add-drop-table, --skip-add-
locks, --skip-comments, --skip-disable-keys, and --skip-set-charset options.

• --compatible=name

Produce output that is more compatible with other database systems or with older MySQL servers.
The value of name can be ansi, mysql323, mysql40, postgresql, oracle, mssql, db2, maxdb,
no_key_options, no_table_options, or no_field_options. To use several values, separate
them by commas. These values have the same meaning as the corresponding options for setting the
server SQL mode. See Section 5.1.7, “Server SQL Modes”.

This option does not guarantee compatibility with other servers. It only enables those SQL mode
values that are currently available for making dump output more compatible. For example, --
compatible=oracle does not map data types to Oracle types or use Oracle comment syntax.

This option requires a server version of 4.1.0 or higher. With older servers, it does nothing.

mysqldump — A Database Backup Program

319

• --complete-insert, -c

Use complete INSERT statements that include column names.

• --create-options

Include all MySQL-specific table options in the CREATE TABLE statements.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-
optionally-enclosed-by=..., --fields-escaped-by=...

These options are used with the --tab option and have the same meaning as the corresponding
FIELDS clauses for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, the BLOB types, and BIT.

• --lines-terminated-by=...

This option is used with the --tab option and has the same meaning as the corresponding LINES
clause for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --quote-names, -Q

Quote identifiers (such as database, table, and column names) within “`” characters. If the
ANSI_QUOTES SQL mode is enabled, identifiers are quoted within “"” characters. This option is
enabled by default. It can be disabled with --skip-quote-names, but this option should be given
after any option such as --compatible that may enable --quote-names.

• --result-file=file_name, -r file_name

Direct output to a given file. This option should be used on Windows to prevent newline “\n”
characters from being converted to “\r\n” carriage return/newline sequences. The result file is
created and its previous contents overwritten, even if an error occurs while generating the dump.

• --tab=path, -T path

Produce tab-separated text-format data files. For each dumped table, mysqldump creates a
tbl_name.sql file that contains the CREATE TABLE statement that creates the table, and the
server writes a tbl_name.txt file that contains its data. The option value is the directory in which to
write the files.

Note

This option should be used only when mysqldump is run on the same
machine as the mysqld server. You must have the FILE privilege, and the
server must have permission to write files in the directory that you specify.

By default, the .txt data files are formatted using tab characters between column values and a
newline at the end of each line. The format can be specified explicitly using the --fields-xxx and
--lines-terminated-by options.

Column values are converted to the character set specified by the --default-character-set
option.

• --tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers
in different time zones. mysqldump sets its connection time zone to UTC and adds SET
TIME_ZONE='+00:00' to the dump file. Without this option, TIMESTAMP columns are dumped and

mysqldump — A Database Backup Program

320

reloaded in the time zones local to the source and destination servers, which can cause the values
to change if the servers are in different time zones. --tz-utc also protects against changes due to
daylight saving time. --tz-utc is enabled by default. To disable it, use --skip-tz-utc.

• --xml, -X

Write dump output as well-formed XML.

NULL, 'NULL', and Empty Values: For a column named column_name, the NULL value, an empty
string, and the string value 'NULL' are distinguished from one another in the output generated by
this option as follows.

Value: XML Representation:

NULL (unknown value) <field name="column_name"
xsi:nil="true" />

'' (empty string) <field name="column_name"></field>

'NULL' (string value) <field name="column_name">NULL</
field>

The output from the mysql client when run using the --xml option also follows the preceding rules.
(See Section 4.5.1.1, “mysql Options”.)

XML output from mysqldump includes the XML namespace, as shown here:

shell> mysqldump --xml -u root world City
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<database name="world">
<table_structure name="City">
<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />
<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />
<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />
<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />
<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />
<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID"
Collation="A" Cardinality="4079" Null="" Index_type="BTREE" Comment="" />
<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079"
Avg_row_length="67" Data_length="273293" Max_data_length="18858823439613951"
Index_length="43008" Data_free="0" Auto_increment="4080"
Create_time="2007-03-31 01:47:01" Update_time="2007-03-31 01:47:02"
Collation="latin1_swedish_ci" Create_options="" Comment="" />
</table_structure>
<table_data name="City">
<row>
<field name="ID">1</field>
<field name="Name">Kabul</field>
<field name="CountryCode">AFG</field>
<field name="District">Kabol</field>
<field name="Population">1780000</field>
</row>

...

<row>
<field name="ID">4079</field>
<field name="Name">Rafah</field>
<field name="CountryCode">PSE</field>
<field name="District">Rafah</field>
<field name="Population">92020</field>
</row>
</table_data>
</database>
</mysqldump>

mysqldump — A Database Backup Program

321

Filtering Options

The following options control which kinds of schema objects are written to the dump file: by category,
such as triggers or events; by name, for example, choosing which databases and tables to dump; or
even filtering rows from the table data using a WHERE clause.

• --all-databases, -A

Dump all tables in all databases. This is the same as using the --databases option and naming all
the databases on the command line.

• --databases, -B

Dump several databases. Normally, mysqldump treats the first name argument on the command
line as a database name and following names as table names. With this option, it treats all name
arguments as database names. CREATE DATABASE and USE statements are included in the output
before each new database.

• --events, -E

Include Event Scheduler events for the dumped databases in the output.

• --ignore-error=error[,error]...

Ignore the specified errors. The option value is a comma-separated list of error numbers specifying
the errors to ignore during mysqldump execution. If the --force option is also given to ignore all
errors, --force takes precedence.

This option was added in MySQL 5.7.1.

• --ignore-table=db_name.tbl_name

Do not dump the given table, which must be specified using both the database and table names. To
ignore multiple tables, use this option multiple times. This option also can be used to ignore views.

• --no-data, -d

Do not write any table row information (that is, do not dump table contents). This is useful if you want
to dump only the CREATE TABLE statement for the table (for example, to create an empty copy of
the table by loading the dump file).

• --routines, -R

Include stored routines (procedures and functions) for the dumped databases in the output. Use
of this option requires the SELECT privilege for the mysql.proc table. The output generated by
using --routines contains CREATE PROCEDURE and CREATE FUNCTION statements to re-create
the routines. However, these statements do not include attributes such as the routine creation and
modification timestamps. This means that when the routines are reloaded, they will be created with
the timestamps equal to the reload time.

If you require routines to be re-created with their original timestamp attributes, do not use --
routines. Instead, dump and reload the contents of the mysql.proc table directly, using a
MySQL account that has appropriate privileges for the mysql database.

• --tables

Override the --databases or -B option. mysqldump regards all name arguments following the
option as table names.

• --triggers

Include triggers for each dumped table in the output. This option is enabled by default; disable it with
--skip-triggers.

mysqldump — A Database Backup Program

322

Before MySQL 5.7.2, a table cannot have multiple triggers that have the same combination of trigger
event (INSERT, UPDATE, DELETE) and action time (BEFORE, AFTER). MySQL 5.7.2 lifts this limitation
and multiple triggers are permitted. mysqldump dumps triggers in activation order so that when the
dump file is reloaded, triggers are re-created in the same activation order. However, if a mysqldump
dump file contains multiple triggers for a table that have the same trigger event and action time, an
error occurs for attempts to load the dump file into an older server that does not support multiple
triggers. (For a workaround, see Section 2.10.2.1, “Downgrading to MySQL 5.6”; you can convert
triggers to be compatible with older servers.)

• --where='where_condition', -w 'where_condition'

Dump only rows selected by the given WHERE condition. Quotes around the condition are mandatory
if it contains spaces or other characters that are special to your command interpreter.

Examples:

--where="user='jimf'"
-w"userid>1"
-w"userid<1"

Performance Options

The following options are the most relevant for the performance particularly of the restore operations.
For large data sets, restore operation (processing the INSERT statements in the dump file) is the most
time-consuming part. When it is urgent to restore data quickly, plan and test the performance of this
stage in advance. For restore times measured in hours, you might prefer an alternative backup and
restore solution, such as MySQL Enterprise Backup for InnoDB-only and mixed-use databases, or
mysqlhotcopy for MyISAM-only databases.

Performance is also affected by the transactional options, primarily for the dump operation.

• --disable-keys, -K

For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name
DISABLE KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE KEYS */; statements.
This makes loading the dump file faster because the indexes are created after all rows are inserted.
This option is effective only for nonunique indexes of MyISAM tables.

• --extended-insert, -e

Use multiple-row INSERT syntax that include several VALUES lists. This results in a smaller dump file
and speeds up inserts when the file is reloaded.

• --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

• --opt

This option, enabled by default, is shorthand for the combination of --add-drop-table --add-
locks --create-options --disable-keys --extended-insert --lock-tables --quick
--set-charset. It gives a fast dump operation and produces a dump file that can be reloaded into
a MySQL server quickly.

Because the --opt option is enabled by default, you only specify its converse, the --skip-opt
to turn off several default settings. See the discussion of mysqldump option groups for information
about selectively enabling or disabling a subset of the options affected by --opt.

• --quick, -q

mysqldump — A Database Backup Program

323

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table from
the server a row at a time rather than retrieving the entire row set and buffering it in memory before
writing it out.

• --skip-opt

See the description for the --opt option.

Transactional Options

The following options trade off the performance of the dump operation, against the reliability and
consistency of the exported data.

• --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in
faster inserts when the dump file is reloaded. See Section 8.2.2.1, “Speed of INSERT Statements”.

• --flush-logs, -F

Flush the MySQL server log files before starting the dump. This option requires the RELOAD
privilege. If you use this option in combination with the --all-databases option, the logs
are flushed for each database dumped. The exception is when using --lock-all-tables,
--master-data, or --single-transaction: In this case, the logs are flushed only once,
corresponding to the moment that all tables are locked. If you want your dump and the log flush to
happen at exactly the same moment, you should use --flush-logs together with --lock-all-
tables, --master-data, or --single-transaction.

• --flush-privileges

Add a FLUSH PRIVILEGES statement to the dump output after dumping the mysql database. This
option should be used any time the dump contains the mysql database and any other database that
depends on the data in the mysql database for proper restoration.

Note

For upgrades to MySQL 5.7.2 or higher from older versions, do not use
--flush-privileges. For upgrade instructions in this case, see
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”.

• --lock-all-tables, -x

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration
of the whole dump. This option automatically turns off --single-transaction and --lock-
tables.

• --lock-tables, -l

For each dumped database, lock all tables to be dumped before dumping them. The tables are
locked with READ LOCAL to permit concurrent inserts in the case of MyISAM tables. For transactional
tables such as InnoDB, --single-transaction is a much better option than --lock-tables
because it does not need to lock the tables at all.

Because --lock-tables locks tables for each database separately, this option does not guarantee
that the tables in the dump file are logically consistent between databases. Tables in different
databases may be dumped in completely different states.

Some options, such as --opt, automatically enable --lock-tables. If you want to override this,
use --skip-lock-tables at the end of the option list.

• --no-autocommit

mysqldump — A Database Backup Program

324

Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT
statements.

• --order-by-primary

Dump each table's rows sorted by its primary key, or by its first unique index, if such an index exists.
This is useful when dumping a MyISAM table to be loaded into an InnoDB table, but makes the
dump operation take considerably longer.

• --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional
tables such as InnoDB, because then it dumps the consistent state of the database at the time when
START TRANSACTION was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements:
ALTER TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent
read is not isolated from those statements, so use of them on a table to be dumped can cause the
SELECT that is performed by mysqldump to retrieve the table contents to obtain incorrect contents
or fail.

The --single-transaction option and the --lock-tables option are mutually exclusive
because LOCK TABLES causes any pending transactions to be committed implicitly.

To dump large tables, combine the --single-transaction option with the --quick option.

Option Groups

• The --opt option turns on several settings that work together to perform a fast dump operation. All
of these settings are on by default, because --opt is on by default. Thus you rarely if ever specify
--opt. Instead, you can turn these settings off as a group by specifying --skip-opt, the optionally
re-enable certain settings by specifying the associated options later on the command line.

• The --compact option turns off several settings that control whether optional statements and
comments appear in the output. Again, you can follow this option with other options that re-enable
certain settings, or turn all the settings on by using the --skip-compact form.

When you selectively enable or disable the effect of a group option, order is important because options
are processed first to last. For example, --disable-keys --lock-tables --skip-opt would not
have the intended effect; it is the same as --skip-opt by itself.

Examples

To make a backup of an entire database:

shell> mysqldump db_name > backup-file.sql

To load the dump file back into the server:

shell> mysql db_name < backup-file.sql

Another way to reload the dump file:

shell> mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump — A Database Backup Program

325

mysqldump is also very useful for populating databases by copying data from one MySQL server to
another:

shell> mysqldump --opt db_name | mysql --host=remote_host -C db_name

You can dump several databases with one command:

shell> mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

shell> mysqldump --all-databases > all_databases.sql

For InnoDB tables, mysqldump provides a way of making an online backup:

shell> mysqldump --all-databases --single-transaction > all_databases.sql

This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at
the beginning of the dump. As soon as this lock has been acquired, the binary log coordinates are read
and the lock is released. If long updating statements are running when the FLUSH statement is issued,
the MySQL server may get stalled until those statements finish. After that, the dump becomes lock free
and does not disturb reads and writes on the tables. If the update statements that the MySQL server
receives are short (in terms of execution time), the initial lock period should not be noticeable, even
with many updates.

For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup
and replay the changes that happened since that backup), it is often useful to rotate the binary log
(see Section 5.2.4, “The Binary Log”) or at least know the binary log coordinates to which the dump
corresponds:

shell> mysqldump --all-databases --master-data=2 > all_databases.sql

Or:

shell> mysqldump --all-databases --flush-logs --master-data=2
 > all_databases.sql

The --master-data and --single-transaction options can be used simultaneously, which
provides a convenient way to make an online backup suitable for use prior to point-in-time recovery if
tables are stored using the InnoDB storage engine.

For more information on making backups, see Section 7.2, “Database Backup Methods”, and
Section 7.3, “Example Backup and Recovery Strategy”.

• To select the effect of --opt except for some features, use the --skip option for each feature. To
disable extended inserts and memory buffering, use --opt --skip-extended-insert --skip-
quick. (Actually, --skip-extended-insert --skip-quick is sufficient because --opt is on
by default.)

• To reverse --opt for all features except index disabling and table locking, use --skip-opt --
disable-keys --lock-tables.

Restrictions

mysqldump does not dump the INFORMATION_SCHEMA database by default. To dump
INFORMATION_SCHEMA, name it explicitly on the command line and also use the --skip-lock-
tables option.

It is not recommended to restore from a dump made using mysqldump to a MySQL 5.6.9 or earlier
server that has GTIDs enabled. See Section 16.1.3.4, “Restrictions on Replication with GTIDs”.

mysqlimport — A Data Import Program

326

mysqldump never dumps the performance_schema database.

mysqldump includes statements to recreate the general_log and slow_query_log tables for
dumps of the mysql database. Log table contents are not dumped.

If you encounter problems backing up views due to insufficient privileges, see Section E.5, “Restrictions
on Views” for a workaround.

4.5.5 mysqlimport — A Data Import Program

The mysqlimport client provides a command-line interface to the LOAD DATA INFILE SQL
statement. Most options to mysqlimport correspond directly to clauses of LOAD DATA INFILE
syntax. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

Invoke mysqlimport like this:

shell> mysqlimport [options] db_name textfile1 [textfile2 ...]

For each text file named on the command line, mysqlimport strips any extension from the file name
and uses the result to determine the name of the table into which to import the file's contents. For
example, files named patient.txt, patient.text, and patient all would be imported into a table
named patient.

mysqlimport supports the following options, which can be specified on the command line or in the
[mysqlimport] and [client] groups of an option file. For information about option files, see
Section 4.2.3.3, “Using Option Files”.

Table 4.10 mysqlimport Options

Format Option File Description Introduced

--bind-
address=ip_address

bind-address Use the specified network interface to connect to
the MySQL Server

--
columns=column_list

columns This option takes a comma-separated list of
column names as its value

--compress compress Compress all information sent between the client
and the server

--
debug[=debug_options]

debug Write a debugging log

--debug-check debug-check Print debugging information when the program
exits

--debug-info debug-info Print debugging information, memory and CPU
statistics when the program exits

--default-
auth=plugin

default-
auth=plugin

The authentication plugin to use

--default-
character-
set=charset_name

default-character-
set

Use charset_name as the default character set

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files

--defaults-
file=file_name

 Read only the given option file

--defaults-group-
suffix=str

 Option group suffix value

--delete delete Empty the table before importing the text file

mysqlimport — A Data Import Program

327

Format Option File Description Introduced

--fields-enclosed-
by=string

fields-enclosed-by This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--fields-escaped-
by

fields-escaped-by This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--fields-optionally-
enclosed-
by=string

fields-optionally-
enclosed-by

This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--fields-
terminated-
by=string

fields-terminated-
by

-- This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--force force Continue even if an SQL error occurs

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--ignore ignore See the description for the --replace option

--ignore-lines=# ignore-lines Ignore the first N lines of the data file

--lines-terminated-
by=string

lines-terminated-
by

This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--local local Read input files locally from the client host

--lock-tables lock-tables Lock all tables for writing before processing any
text files

--login-
path=name

 Read login path options from .mylogin.cnf

--low-priority low-priority Use LOW_PRIORITY when loading the table.

--no-defaults Do not read any option files

--
password[=password]

password The password to use when connecting to the
server

--pipe On Windows, connect to server using a named
pipe

--plugin-dir=path plugin-dir=path The directory where plugins are located

--port=port_num port The TCP/IP port number to use for the connection

--print-defaults Print defaults

--protocol=type protocol The connection protocol to use

--replace replace The --replace and --ignore options control
handling of input rows that duplicate existing rows
on unique key values

--secure-auth secure-auth Do not send passwords to the server in old
(pre-4.1.1) format

5.7.4

--silent silent Produce output only when errors occur

--socket=path socket For connections to localhost

--ssl-
ca=file_name

ssl-ca The path to a file that contains a list of trusted SSL
CAs

--ssl-
capath=dir_name

ssl-capath The path to a directory that contains trusted SSL
CA certificates in PEM format

--ssl-
cert=file_name

ssl-cert The name of the SSL certificate file to use for
establishing a secure connection

mysqlimport — A Data Import Program

328

Format Option File Description Introduced

--ssl-
cipher=cipher_list

ssl-cipher A list of allowable ciphers to use for SSL
encryption

--ssl-
crl=file_name

ssl-crl The path to a file that contains certificate
revocation lists

--ssl-
crlpath=dir_name

ssl-crlpath The path to a directory that contains certificate
revocation list files

--ssl-
key=file_name

ssl-key The name of the SSL key file to use for
establishing a secure connection

--ssl-verify-server-
cert

ssl-verify-server-
cert

The server's Common Name value in its certificate
is verified against the host name used when
connecting to the server

--use-threads=# use-threads The number of threads for parallel file-loading

--
user=user_name,

user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --bind-address=ip_address

On a computer having multiple network interfaces, this option can be used to select which interface
is employed when connecting to the MySQL server.

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --columns=column_list, -c column_list

This option takes a comma-separated list of column names as its value. The order of the column
names indicates how to match data file columns with table columns.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --default-auth=plugin

mysqlimport — A Data Import Program

329

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqlimport normally reads the [client] and [mysqlimport] groups.
If the --defaults-group-suffix=_other option is given, mysqlimport also reads the
[client_other] and [mysqlimport_other] groups.

• --delete, -D

Empty the table before importing the text file.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-
optionally-enclosed-by=..., --fields-escaped-by=...

These options have the same meaning as the corresponding clauses for LOAD DATA INFILE. See
Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --force, -f

Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining
files. Without --force, mysqlimport exits if a table does not exist.

• --host=host_name, -h host_name

Import data to the MySQL server on the given host. The default host is localhost.

• --ignore, -i

See the description for the --replace option.

• --ignore-lines=N

Ignore the first N lines of the data file.

• --lines-terminated-by=...

This option has the same meaning as the corresponding clause for LOAD DATA INFILE. For
example, to import Windows files that have lines terminated with carriage return/linefeed pairs, use
--lines-terminated-by="\r\n". (You might have to double the backslashes, depending on
the escaping conventions of your command interpreter.) See Section 13.2.6, “LOAD DATA INFILE
Syntax”.

• --local, -L

Read input files locally from the client host.

• --lock-tables, -l

mysqlimport — A Data Import Program

330

Lock all tables for writing before processing any text files. This ensures that all tables are
synchronized on the server.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --low-priority

Use LOW_PRIORITY when loading the table. This affects only storage engines that use only table-
level locking (such as MyISAM, MEMORY, and MERGE).

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlimport prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the --
default-auth option is used to specify an authentication plugin but mysqlimport does not find it.
See Section 6.3.8, “Pluggable Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --replace, -r

mysqlimport — A Data Import Program

331

The --replace and --ignore options control handling of input rows that duplicate existing rows
on unique key values. If you specify --replace, new rows replace existing rows that have the same
unique key value. If you specify --ignore, input rows that duplicate an existing row on a unique key
value are skipped. If you do not specify either option, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except
for servers that use the newer password format. This option is enabled by default; use --skip-
secure-auth to disable it. This option was added in MySQL 5.7.4.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --silent, -s

Silent mode. Produce output only when errors occur.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --use-threads=N

Load files in parallel using N threads.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

Here is a sample session that demonstrates use of mysqlimport:

shell> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
shell> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
shell> od -c imptest.txt

mysqlshow — Display Database, Table, and Column Information

332

0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
shell> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
shell> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

4.5.6 mysqlshow — Display Database, Table, and Column Information

The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's
columns or indexes.

mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 13.7.5,
“SHOW Syntax”. The same information can be obtained by using those statements directly. For
example, you can issue them from the mysql client program.

Invoke mysqlshow like this:

shell> mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, a list of database names is shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some
privileges.

If the last argument contains shell or SQL wildcard characters (“*”, “?”, “%”, or “_”), only those names
that are matched by the wildcard are shown. If a database name contains any underscores, those
should be escaped with a backslash (some Unix shells require two) to get a list of the proper tables
or columns. “*” and “?” characters are converted into SQL “%” and “_” wildcard characters. This might
cause some confusion when you try to display the columns for a table with a “_” in the name, because
in this case, mysqlshow shows you only the table names that match the pattern. This is easily fixed by
adding an extra “%” last on the command line as a separate argument.

mysqlshow supports the following options, which can be specified on the command line or in the
[mysqlshow] and [client] groups of an option file. For information about option files, see
Section 4.2.3.3, “Using Option Files”.

Table 4.11 mysqlshow Options

Format Option File Description Introduced

--bind-
address=ip_address

bind-address Use the specified network interface to connect to
the MySQL Server

--compress compress Compress all information sent between the client
and the server

--count count Show the number of rows per table

--
debug[=debug_options]

debug Write a debugging log

--debug-check debug-check Print debugging information when the program
exits

--debug-info debug-info Print debugging information, memory and CPU
statistics when the program exits

mysqlshow — Display Database, Table, and Column Information

333

Format Option File Description Introduced

--default-
auth=plugin

default-
auth=plugin

The authentication plugin to use

--default-
character-
set=charset_name

default-character-
set

Use charset_name as the default character set

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files

--defaults-
file=file_name

 Read only the given option file

--defaults-group-
suffix=str

 Option group suffix value

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--keys keys Show table indexes

--login-
path=name

 Read login path options from .mylogin.cnf

--no-defaults Do not read any option files

--
password[=password]

password The password to use when connecting to the
server

--pipe On Windows, connect to server using a named
pipe

--plugin-dir=path plugin-dir=path The directory where plugins are located

--port=port_num port The TCP/IP port number to use for the connection

--print-defaults Print defaults

--protocol=type protocol The connection protocol to use

--secure-auth secure-auth Do not send passwords to the server in old
(pre-4.1.1) format

5.7.4

--show-table-type Show a column indicating the table type

--socket=path socket For connections to localhost

--ssl-
ca=file_name

ssl-ca The path to a file that contains a list of trusted SSL
CAs

--ssl-
capath=dir_name

ssl-capath The path to a directory that contains trusted SSL
CA certificates in PEM format

--ssl-
cert=file_name

ssl-cert The name of the SSL certificate file to use for
establishing a secure connection

--ssl-
cipher=cipher_list

ssl-cipher A list of allowable ciphers to use for SSL
encryption

--ssl-
crl=file_name

ssl-crl The path to a file that contains certificate
revocation lists

--ssl-
crlpath=dir_name

ssl-crlpath The path to a directory that contains certificate
revocation list files

--ssl-
key=file_name

ssl-key The name of the SSL key file to use for
establishing a secure connection

--ssl-verify-server-
cert

ssl-verify-server-
cert

The server's Common Name value in its certificate
is verified against the host name used when
connecting to the server

mysqlshow — Display Database, Table, and Column Information

334

Format Option File Description Introduced

--status status Display extra information about each table

--
user=user_name,

user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --bind-address=ip_address

On a computer having multiple network interfaces, this option can be used to select which interface
is employed when connecting to the MySQL server.

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count

Show the number of rows per table. This can be slow for non-MyISAM tables.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --default-auth=plugin

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

mysqlshow — Display Database, Table, and Column Information

335

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlshow normally reads the [client] and [mysqlshow] groups. If the --
defaults-group-suffix=_other option is given, mysqlshow also reads the [client_other]
and [mysqlshow_other] groups.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --keys, -k

Show table indexes.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlshow prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the --
default-auth option is used to specify an authentication plugin but mysqlshow does not find it.
See Section 6.3.8, “Pluggable Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

mysqlslap — Load Emulation Client

336

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except
for servers that use the newer password format. This option is enabled by default; use --skip-
secure-auth to disable it. This option was added in MySQL 5.7.4.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --show-table-type, -t

Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE or
VIEW.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

• --status, -i

Display extra information about each table.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

• --version, -V

Display version information and exit.

4.5.7 mysqlslap — Load Emulation Client

mysqlslap is a diagnostic program designed to emulate client load for a MySQL server and to report
the timing of each stage. It works as if multiple clients are accessing the server.

Invoke mysqlslap like this:

shell> mysqlslap [options]

Some options such as --create or --query enable you to specify a string containing an SQL
statement or a file containing statements. If you specify a file, by default it must contain one statement

mysqlslap — Load Emulation Client

337

per line. (That is, the implicit statement delimiter is the newline character.) Use the --delimiter
option to specify a different delimiter, which enables you to specify statements that span multiple lines
or place multiple statements on a single line. You cannot include comments in a file; mysqlslap does
not understand them.

mysqlslap runs in three stages:

1. Create schema, table, and optionally any stored programs or data to use for the test. This stage
uses a single client connection.

2. Run the load test. This stage can use many client connections.

3. Clean up (disconnect, drop table if specified). This stage uses a single client connection.

Examples:

Supply your own create and query SQL statements, with 50 clients querying and 200 selects for each
(enter the command on a single line):

mysqlslap --delimiter=";"
 --create="CREATE TABLE a (b int);INSERT INTO a VALUES (23)"
 --query="SELECT * FROM a" --concurrency=50 --iterations=200

Let mysqlslap build the query SQL statement with a table of two INT columns and three VARCHAR
columns. Use five clients querying 20 times each. Do not create the table or insert the data (that is, use
the previous test's schema and data):

mysqlslap --concurrency=5 --iterations=20
 --number-int-cols=2 --number-char-cols=3
 --auto-generate-sql

Tell the program to load the create, insert, and query SQL statements from the specified files, where
the create.sql file has multiple table creation statements delimited by ';' and multiple insert
statements delimited by ';'. The --query file will have multiple queries delimited by ';'. Run all the
load statements, then run all the queries in the query file with five clients (five times each):

mysqlslap --concurrency=5
 --iterations=5 --query=query.sql --create=create.sql
 --delimiter=";"

mysqlslap supports the following options, which can be specified on the command line or in the
[mysqlslap] and [client] groups of an option file. For information about option files, see
Section 4.2.3.3, “Using Option Files”.

Table 4.12 mysqlslap Options

Format Option File Description Introduced

--auto-generate-
sql

auto-generate-sql Generate SQL statements automatically when
they are not supplied in files or using command
options

--auto-generate-
sql-add-
autoincrement

auto-generate-
sql-add-
autoincrement

Add AUTO_INCREMENT column to automatically
generated tables

--auto-generate-
sql-execute-
number=#

auto-generate-
sql-execute-
number

Specify how many queries to generate
automatically

--auto-generate-
sql-guid-primary

auto-generate-
sql-guid-primary

Add a GUID-based primary key to automatically
generated tables

mysqlslap — Load Emulation Client

338

Format Option File Description Introduced

--auto-generate-
sql-load-
type=type

auto-generate-
sql-load-type

Specify how many queries to generate
automatically

--auto-generate-
sql-secondary-
indexes=#

auto-generate-
sql-secondary-
indexes

Specify how many secondary indexes to add to
automatically generated tables

--auto-generate-
sql-unique-query-
number=#

auto-generate-
sql-unique-query-
number

How many different queries to generate for
automatic tests.

--auto-generate-
sql-unique-write-
number=#

auto-generate-
sql-unique-write-
number

How many different queries to generate for --auto-
generate-sql-write-number

--auto-generate-
sql-write-
number=#

auto-generate-
sql-write-number

How many row inserts to perform on each thread

--commit=# commit How many statements to execute before
committing.

--compress compress Compress all information sent between the client
and the server

--concurrency=# concurrency The number of clients to simulate when issuing
the SELECT statement

--create=value create The file or string containing the statement to use
for creating the table

--create-
schema=value

create-schema The schema in which to run the tests

--csv=[file] csv Generate output in comma-separated values
format

--
debug[=debug_options]

debug Write a debugging log

--debug-check debug-check Print debugging information when the program
exits

--debug-info debug-info Print debugging information, memory and CPU
statistics when the program exits

--default-
auth=plugin

default-
auth=plugin

The authentication plugin to use

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files

--defaults-
file=file_name

 Read only the given option file

--defaults-group-
suffix=str

 Option group suffix value

--delimiter=str delimiter The delimiter to use in SQL statements

--detach=# detach Detach (close and reopen) each connection after
each N statements

--enable-cleartext-
plugin

enable-cleartext-
plugin

Enable cleartext authentication plugin

--
engine=engine_name

engine The storage engine to use for creating the table

mysqlslap — Load Emulation Client

339

Format Option File Description Introduced

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--iterations=# iterations The number of times to run the tests

--login-
path=name

 Read login path options from .mylogin.cnf

--no-defaults Do not read any option files

--no-drop no-drop Do not drop any schema created during the test
run

--number-char-
cols=#

number-char-cols The number of VARCHAR columns to use if --
auto-generate-sql is specified

--number-int-
cols=#

number-int-cols The number of INT columns to use if --auto-
generate-sql is specified

--number-of-
queries=#

number-of-
queries

Limit each client to approximately this number of
queries

--only-print only-print Do not connect to databases. mysqlslap only
prints what it would have done

--
password[=password]

password The password to use when connecting to the
server

--pipe On Windows, connect to server using a named
pipe

--plugin-dir=path plugin-dir=path The directory where plugins are located

--port=port_num port The TCP/IP port number to use for the connection

--post-
query=value

post-query The file or string containing the statement to
execute after the tests have completed

--post-system=str post-system The string to execute using system() after the
tests have completed

--pre-query=value pre-query The file or string containing the statement to
execute before running the tests

--pre-system=str pre-system The string to execute using system() before
running the tests

--print-defaults Print defaults

--protocol=type protocol The connection protocol to use

--query=value query The file or string containing the SELECT
statement to use for retrieving data

--secure-auth secure-auth Do not send passwords to the server in old
(pre-4.1.1) format

5.7.4

--silent silent Silent mode

--socket=path socket For connections to localhost

--ssl-
ca=file_name

ssl-ca The path to a file that contains a list of trusted SSL
CAs

--ssl-
capath=dir_name

ssl-capath The path to a directory that contains trusted SSL
CA certificates in PEM format

--ssl-
cert=file_name

ssl-cert The name of the SSL certificate file to use for
establishing a secure connection

--ssl-
cipher=cipher_list

ssl-cipher A list of allowable ciphers to use for SSL
encryption

mysqlslap — Load Emulation Client

340

Format Option File Description Introduced

--ssl-
crl=file_name

ssl-crl The path to a file that contains certificate
revocation lists

--ssl-
crlpath=dir_name

ssl-crlpath The path to a directory that contains certificate
revocation list files

--ssl-
key=file_name

ssl-key The name of the SSL key file to use for
establishing a secure connection

--ssl-verify-server-
cert

ssl-verify-server-
cert

The server's Common Name value in its certificate
is verified against the host name used when
connecting to the server

--
user=user_name,

user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --auto-generate-sql, -a

Generate SQL statements automatically when they are not supplied in files or using command
options.

• --auto-generate-sql-add-autoincrement

Add an AUTO_INCREMENT column to automatically generated tables.

• --auto-generate-sql-execute-number=N

Specify how many queries to generate automatically.

• --auto-generate-sql-guid-primary

Add a GUID-based primary key to automatically generated tables.

• --auto-generate-sql-load-type=type

Specify the test load type. The permissible values are read (scan tables), write (insert into tables),
key (read primary keys), update (update primary keys), or mixed (half inserts, half scanning
selects). The default is mixed.

• --auto-generate-sql-secondary-indexes=N

Specify how many secondary indexes to add to automatically generated tables. By default, none are
added.

• --auto-generate-sql-unique-query-number=N

How many different queries to generate for automatic tests. For example, if you run a key test that
performs 1000 selects, you can use this option with a value of 1000 to run 1000 unique queries, or
with a value of 50 to perform 50 different selects. The default is 10.

• --auto-generate-sql-unique-write-number=N

How many different queries to generate for --auto-generate-sql-write-number. The default
is 10.

• --auto-generate-sql-write-number=N

mysqlslap — Load Emulation Client

341

How many row inserts to perform on each thread. The default is 100.

• --commit=N

How many statements to execute before committing. The default is 0 (no commits are done).

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --concurrency=N, -c N

The number of clients to simulate when issuing the SELECT statement.

• --create=value

The file or string containing the statement to use for creating the table.

• --create-schema=value

The schema in which to run the tests.

Note

If the --auto-generate-sql option is also given, mysqlslap drops the
schema at the end of the test run. To avoid this, use the --no-drop option
as well.

• --csv[=file_name]

Generate output in comma-separated values format. The output goes to the named file, or to the
standard output if no file is given.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqlslap.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

mysqlslap — Load Emulation Client

342

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlslap normally reads the [client] and [mysqlslap] groups. If the --
defaults-group-suffix=_other option is given, mysqlslap also reads the [client_other]
and [mysqlslap_other] groups.

• --delimiter=str, -F str

The delimiter to use in SQL statements supplied in files or using command options.

• --detach=N

Detach (close and reopen) each connection after each N statements. The default is 0 (connections
are not detached).

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.5, “The
Cleartext Client-Side Authentication Plugin”.)

• --engine=engine_name, -e engine_name

The storage engine to use for creating tables.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --iterations=N, -i N

The number of times to run the tests.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --no-drop

Prevent mysqlslap from dropping any schema it creates during the test run.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --number-char-cols=N, -x N

The number of VARCHAR columns to use if --auto-generate-sql is specified.

• --number-int-cols=N, -y N

The number of INT columns to use if --auto-generate-sql is specified.

• --number-of-queries=N

mysqlslap — Load Emulation Client

343

Limit each client to approximately this many queries. Query counting takes into account the
statement delimiter. For example, if you invoke mysqlslap as follows, the ; delimiter is recognized
so that each instance of the query string counts as two queries. As a result, 5 rows (not 10) are
inserted.

shell> mysqlslap --delimiter=";" --number-of-queries=10
 --query="use test;insert into t values(null)"

• --only-print

Do not connect to databases. mysqlslap only prints what it would have done.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlslap prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the --
default-auth option is used to specify an authentication plugin but mysqlslap does not find it.
See Section 6.3.8, “Pluggable Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --post-query=value

The file or string containing the statement to execute after the tests have completed. This execution
is not counted for timing purposes.

• --post-system=str

The string to execute using system() after the tests have completed. This execution is not counted
for timing purposes.

• --pre-query=value

The file or string containing the statement to execute before running the tests. This execution is not
counted for timing purposes.

• --pre-system=str

The string to execute using system() before running the tests. This execution is not counted for
timing purposes.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

MySQL Administrative and Utility Programs

344

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --query=value, -q value

The file or string containing the SELECT statement to use for retrieving data.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except
for servers that use the newer password format. This option is enabled by default; use --skip-
secure-auth to disable it. This option was added in MySQL 5.7.4.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. This option applies only if the server supports shared-memory connections.

• --silent, -s

Silent mode. No output.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

• --version, -V

Display version information and exit.

4.6 MySQL Administrative and Utility Programs
This section describes administrative programs and programs that perform miscellaneous utility
operations.

4.6.1 innochecksum — Offline InnoDB File Checksum Utility

innochecksum — Offline InnoDB File Checksum Utility

345

innochecksum prints checksums for InnoDB files. This tool reads an InnoDB tablespace file,
calculates the checksum for each page, compares the calculated checksum to the stored checksum,
and reports mismatches, which indicate damaged pages. It was originally developed to speed up
verifying the integrity of tablespace files after power outages but can also be used after file copies.
Because checksum mismatches will cause InnoDB to deliberately shut down a running server, it
can be preferable to use this tool rather than waiting for a server in production usage to encounter
the damaged pages. As of MySQL 5.7.2, innochecksum supports files greater than 2GB in size.
Previously, innochecksum only supported files up to 2GB in size.

innochecksum cannot be used on tablespace files that the server already has open. For such
files, you should use CHECK TABLE to check tables within the tablespace. Attempting to run
innochecksum on a tablespace that the server already has open will result in an “Unable to lock
file” error.

If checksum mismatches are found, you would normally restore the tablespace from backup or start the
server and attempt to use mysqldump to make a backup of the tables within the tablespace.

Invoke innochecksum like this:

shell> innochecksum [options] file_name

innochecksum Options

innochecksum supports the following options. For options that refer to page numbers, the numbers
are zero-based.

• --help, -?

Displays command line help. Example usage:

shell> innochecksum --help

• --info, -I

Synonym for --help. Displays command line help. Example usage:

shell> innochecksum --info

• --version, -V

Displays version information. Example usage:

shell> innochecksum --version

• --verbose, -v

Verbose mode; prints a progress indicator to the log file every five seconds. In order for the progress
indicator to be printed, the log file must be specified using the --log option. To turn on verbose
mode, run:

shell> innochecksum --verbose

To turn off verbose mode, run:

shell> innochecksum --verbose=FALSE

The --verbose option and --log option can be specified at the same time. For example:

shell> innochecksum --verbose --log=/var/lib/mysql/test/logtest.txt

innochecksum — Offline InnoDB File Checksum Utility

346

To locate the progress indicator information in the log file, you can perform the following search:

shell> cat ./logtest.txt | grep -i "okay"

The progress indicator information in the log file appears similar to the following:

page 1663 okay: 2.863% done
page 8447 okay: 14.537% done
page 13695 okay: 23.568% done
page 18815 okay: 32.379% done
page 23039 okay: 39.648% done
page 28351 okay: 48.789% done
page 33023 okay: 56.828% done
page 37951 okay: 65.308% done
page 44095 okay: 75.881% done
page 49407 okay: 85.022% done
page 54463 okay: 93.722% done
...

• --count, -c

Print a count of the number of pages in the file and exit. Example usage:

shell> innochecksum --count ../data/test/tab1.ibd

• --start-page=num, -s num

Start at this page number. Example usage:

shell> innochecksum --start-page=600 ../data/test/tab1.ibd

or:

shell> innochecksum -s 600 ../data/test/tab1.ibd

• --end-page=num, -e num

End at this page number. Example usage:

shell> innochecksum --end-page=700 ../data/test/tab1.ibd

or:

shell> innochecksum --p 700 ../data/test/tab1.ibd

• --page=num, -p num

Check only this page number. Example usage:

shell> innochecksum --page=701 ../data/test/tab1.ibd

• --strict-check, -C

Specify a strict checksum algorithm. Options include innodb, crc32, and none.

In this example, the innodb checksum algorithm is specified:

shell> innochecksum --strict-check=innodb ../data/test/tab1.ibd

innochecksum — Offline InnoDB File Checksum Utility

347

In this example, the crc32 checksum algorithm is specified:

shell> innochecksum -C crc32 ../data/test/tab1.ibd

The following conditions apply:

• If you do not specify the --strict-check option, innochecksum validates against innodb,
crc32 and none.

• If you specify the none option, only checksums generated by none are allowed.

• If you specify the innodb option, only checksums generated by innodb are allowed.

• If you specify the crc32 option, only checksums generated by crc32 are allowed.

• --no-check, -n

Ignore the checksum verification when rewriting a checksum. This option may only be used with
the innochecksum --write option. If the --write option is not specified, innochecksum will
terminate.

In this example, an innodb checksum is rewritten to replace an invalid checksum:

shell> innochecksum --no-check --write innodb ../data/test/tab1.ibd

• --allow-mismatches, -a

The maximum number of checksum mismatches allowed before innochecksum terminates. The
default setting is 0. If --allow-mismatches=N, where N>=0, N mismatches are permitted and
innochecksum terminates at N+1. When --allow-mismatches is set to 0, innochecksum
terminates on the first checksum mismatch.

In this example, an existing innodb checksum is rewritten to set --allow-mismatches to 1.

shell> innochecksum --allow-mismatches=1 --write innodb ../data/test/tab1.ibd

With --allow-mismatches set to 1, if there is a mismatch at page 600 and another at page 700
on a file with 1000 pages, the checksum is updated for pages 0-599 and 601-699. Because --
allow-mismatches is set to 1, the checksum tolerates the first mismatch and terminates on the
second mismatch, leaving page 600 and pages 700-999 unchanged.

• --write=name, -w num

Rewrite a checksum. When rewriting an invalid checksum, the --no-check option must be
used together with the --write option. The --no-check option tells innochecksum to ignore
verification of the invalid checksum. You do not have to specify the --no-check option if the current
checksum is valid.

An algorithm must be specified when using the --write option. Possible values for the --write
option are:

• innodb: A checksum calculated in software, using the original algorithm from InnoDB.

• crc32: A checksum calculated using the crc32 algorithm, possibly done with a hardware assist.

• none: A constant number.

The --write option rewrites entire pages to disk. If the new checksum is identical to the existing
checksum, the new checksum is not written to disk in order to minimize I/O.

innochecksum — Offline InnoDB File Checksum Utility

348

innochecksum obtains an exclusive lock when the --write option is used.

In this example, a crc32 checksum is written for tab1.ibd:

shell> innochecksum -w crc32 ../data/test/tab1.ibd

In this example, a crc32 checksum is rewritten to replace an invalid crc32 checksum:

shell> innochecksum --no-check --write crc32 ../data/test/tab1.ibd

• --page-type-summary, -S

Display a count of each page type in a tablespace. Example usage:

shell> innochecksum --page-type-summary ../data/test/tab1.ibd

Sample output for --page-type-summary:

File::../data/test/tab1.ibd
================PAGE TYPE SUMMARY==============
#PAGE_COUNT PAGE_TYPE
===
 2 Index page
 0 Undo log page
 1 Inode page
 0 Insert buffer free list page
 2 Freshly allocated page
 1 Insert buffer bitmap
 0 System page
 0 Transaction system page
 1 File Space Header
 0 Extent descriptor page
 0 BLOB page
 0 Compressed BLOB page
 0 Other type of page
===
Additional information:
Undo page type: 0 insert, 0 update, 0 other
Undo page state: 0 active, 0 cached, 0 to_free, 0 to_purge, 0 prepared, 0 other

• --page-type-dump, -D

Dump the page type information for each page in a tablespace to stderr or stdout. Example
usage:

shell> innochecksum --page-type-dump=/tmp/a.txt ../data/test/tab1.ibd

• --log, -l

Log output for the innochecksum tool. A log file name must be provided. Log output contains
checksum values for each tablespace page. For uncompressed tables, LSN values are also
provided. The --log replaces the --debug option, which was available in earlier releases. Example
usage:

shell> innochecksum --log=/tmp/log.txt ../data/test/tab1.ibd

or:

shell> innochecksum -l /tmp/log.txt ../data/test/tab1.ibd

innochecksum — Offline InnoDB File Checksum Utility

349

• “-” option.

Specify the “-” option to read from standard input. If the “-” option is missing when “read from
standard in” is expected, innochecksum will output innochecksum usage information indicating
that the “-” option was omitted. Example usages:

shell> cat t1.ibd | innochecksum -

In this example, innochecksum writes the crc32 checksum algorithm to a.ibd without changing
the original t1.ibd file.

shell> cat t1.ibd | innochecksum --write=crc32 - > a.ibd

Running innochecksum on Multiple User-defined Tablespace Files

The following examples demonstrate how to run innochecksum on multiple user-defined tablespace
files (.ibd files).

Run innochecksum for all tablespace (.ibd) files in the “test” database:

shell> innochecksum ./data/test/*.ibd

Run innochecksum for all tablespace files (.ibd files) that have a file name starting with “t”:

shell> innochecksum ./data/test/t*.ibd

Run innochecksum for all tablespace files (.ibd files) in the data directory:

shell> innochecksum ./data/*/*.ibd

Note

Running innochecksum on multiple user-defined tablespace files is not
supported on Windows operating systems, as Windows shells such as
cmd.exe do not support glob pattern expansion. On Windows systems,
innochecksum must be run separately for each user-defined tablespace file.
For example:

cmd> innochecksum.exe t1.ibd
cmd> innochecksum.exe t2.ibd
cmd> innochecksum.exe t3.ibd

Running innochecksum on Multiple System Tablespace Files

By default, there is only one InnoDB system tablespace file (ibdata1) but multiple files for the system
tablespace can be defined using the innodb_data_file_path option. In the following example,
three files for the system tablespace are defined using the innodb_data_file_path option:
ibdata1, ibdata2, and ibdata3.

shell> ./bin/mysqld --no-defaults --innodb-data-file-path="ibdata1:10M;ibdata2:10M;ibdata3:10M:autoextend"

The three files (ibdata1, ibdata2, and ibdata3) form one logical system tablespace. To run
innochecksum on multiple files that form one logical system tablespace, innochecksum requires the
“-” option to read tablespace files in from standard input, which is equivalent to concatenating multiple
files to create one single file. For the example provided above, the following innochecksum command
would be used:

 shell> cat ibdata* | innochecksum -

myisam_ftdump — Display Full-Text Index information

350

Refer to the innochecksum options information for more information about the “-” option.

Note

Running innochecksum on multiple files in the same tablespace is not
supported on Windows operating systems, as Windows shells such as
cmd.exe do not support glob pattern expansion. On Windows systems,
innochecksum must be run separately for each system tablespace file. For
example:

cmd> innochecksum.exe ibdata1
cmd> innochecksum.exe ibdata2
cmd> innochecksum.exe ibdata3

4.6.2 myisam_ftdump — Display Full-Text Index information

myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the
MyISAM index file directly, so it must be run on the server host where the table is located. Before using
myisam_ftdump, be sure to issue a FLUSH TABLES statement first if the server is running.

myisam_ftdump scans and dumps the entire index, which is not particularly fast. On the other hand,
the distribution of words changes infrequently, so it need not be run often.

Invoke myisam_ftdump like this:

shell> myisam_ftdump [options] tbl_name index_num

The tbl_name argument should be the name of a MyISAM table. You can also specify a table by
naming its index file (the file with the .MYI suffix). If you do not invoke myisam_ftdump in the
directory where the table files are located, the table or index file name must be preceded by the path
name to the table's database directory. Index numbers begin with 0.

Example: Suppose that the test database contains a table named mytexttable that has the
following definition:

CREATE TABLE mytexttable
(
 id INT NOT NULL,
 txt TEXT NOT NULL,
 PRIMARY KEY (id),
 FULLTEXT (txt)
) ENGINE=MyISAM;

The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is the
test database directory, invoke myisam_ftdump as follows:

shell> myisam_ftdump mytexttable 1

If the path name to the test database directory is /usr/local/mysql/data/test, you can
also specify the table name argument using that path name. This is useful if you do not invoke
myisam_ftdump in the database directory:

shell> myisam_ftdump /usr/local/mysql/data/test/mytexttable 1

You can use myisam_ftdump to generate a list of index entries in order of frequency of occurrence
like this:

myisamchk — MyISAM Table-Maintenance Utility

351

shell> myisam_ftdump -c mytexttable 1 | sort -r

myisam_ftdump supports the following options:

• --help, -h -?

Display a help message and exit.

• --count, -c

Calculate per-word statistics (counts and global weights).

• --dump, -d

Dump the index, including data offsets and word weights.

• --length, -l

Report the length distribution.

• --stats, -s

Report global index statistics. This is the default operation if no other operation is specified.

• --verbose, -v

Verbose mode. Print more output about what the program does.

4.6.3 myisamchk — MyISAM Table-Maintenance Utility

The myisamchk utility gets information about your database tables or checks, repairs, or optimizes
them. myisamchk works with MyISAM tables (tables that have .MYD and .MYI files for storing data
and indexes).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM
tables. See Section 13.7.2.2, “CHECK TABLE Syntax”, and Section 13.7.2.5, “REPAIR TABLE Syntax”.

The use of myisamchk with partitioned tables is not supported.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible
causes include but are not limited to file system errors.

Invoke myisamchk like this:

shell> myisamchk [options] tbl_name ...

The options specify what you want myisamchk to do. They are described in the following sections.
You can also get a list of options by invoking myisamchk --help.

With no options, myisamchk simply checks your table as the default operation. To get more
information or to tell myisamchk to take corrective action, specify options as described in the following
discussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere
other than in the database directory, you must specify the path to the database directory, because
myisamchk has no idea where the database is located. In fact, myisamchk does not actually care
whether the files you are working on are located in a database directory. You can copy the files that
correspond to a database table into some other location and perform recovery operations on them
there.

myisamchk — MyISAM Table-Maintenance Utility

352

You can name several tables on the myisamchk command line if you wish. You can also specify a
table by naming its index file (the file with the .MYI suffix). This enables you to specify all tables in a
directory by using the pattern *.MYI. For example, if you are in a database directory, you can check all
the MyISAM tables in that directory like this:

shell> myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the
directory:

shell> myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL
data directory:

shell> myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM tables is:

shell> myisamchk --silent --fast /path/to/datadir/*/*.MYI

If you want to check all MyISAM tables and repair any that are corrupted, you can use the following
command:

shell> myisamchk --silent --force --fast --update-state \
 --key_buffer_size=64M --myisam_sort_buffer_size=64M \
 --read_buffer_size=1M --write_buffer_size=1M \
 /path/to/datadir/*/*.MYI

This command assumes that you have more than 64MB free. For more information about memory
allocation with myisamchk, see Section 4.6.3.6, “myisamchk Memory Usage”.

For additional information about using myisamchk, see Section 7.6, “MyISAM Table Maintenance and
Crash Recovery”.

Important

You must ensure that no other program is using the tables while you are
running myisamchk. The most effective means of doing so is to shut down the
MySQL server while running myisamchk, or to lock all tables that myisamchk
is being used on.

Otherwise, when you run myisamchk, it may display the following error
message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by
another program (such as the mysqld server) that hasn't yet closed the file or
that has died without closing the file properly, which can sometimes lead to the
corruption of one or more MyISAM tables.

If mysqld is running, you must force it to flush any table modifications that are
still buffered in memory by using FLUSH TABLES. You should then ensure that
no one is using the tables while you are running myisamchk

However, the easiest way to avoid this problem is to use CHECK TABLE instead
of myisamchk to check tables. See Section 13.7.2.2, “CHECK TABLE Syntax”.

myisamchk — MyISAM Table-Maintenance Utility

353

myisamchk supports the following options, which can be specified on the command line or in the
[myisamchk] group of an option file. For information about option files, see Section 4.2.3.3, “Using
Option Files”.

Table 4.13 myisamchk Options

Format Option File Description

--analyze analyze Analyze the distribution of key values

--backup backup Make a backup of the .MYD file as file_name-time.BAK

--block-
search=offset

block-search Find the record that a block at the given offset belongs to

--check check Check the table for errors

--check-only-
changed

check-only-changed Check only tables that have changed since the last check

--correct-checksum correct-checksum Correct the checksum information for the table

--data-file-length=len data-file-length Maximum length of the data file (when re-creating data
file when it is full)

--
debug[=debug_options]

debug Write a debugging log

decode_bits=# decode_bits Decode_bits

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files

--defaults-
file=file_name

 Read only the given option file

--defaults-group-
suffix=str

 Option group suffix value

--description description Print some descriptive information about the table

--extend-check extend-check Do very thorough table check or repair that tries to
recover every possible row from the data file

--fast fast Check only tables that haven't been closed properly

--force force Do a repair operation automatically if myisamchk finds
any errors in the table

--force force-recover Overwrite old temporary files. For use with the -r or -o
option

ft_max_word_len=# ft_max_word_len Maximum word length for FULLTEXT indexes

ft_min_word_len=# ft_min_word_len Minimum word length for FULLTEXT indexes

ft_stopword_file=valueft_stopword_file Use stopwords from this file instead of built-in list

--HELP Display help message and exit

--help Display help message and exit

--information information Print informational statistics about the table that is
checked

key_buffer_size=# key_buffer_size The size of the buffer used for index blocks for MyISAM
tables

--keys-used=val keys-used A bit-value that indicates which indexes to update

--max-record-
length=len

max-record-length Skip rows larger than the given length if myisamchk
cannot allocate memory to hold them

--medium-check medium-check Do a check that is faster than an --extend-check
operation

myisamchk — MyISAM Table-Maintenance Utility

354

Format Option File Description

myisam_block_size=#myisam_block_size Block size to be used for MyISAM index pages

myisam_sort_buffer_size=#myisam_sort_buffer_sizeThe buffer that is allocated when sorting the index when
doing a REPAIR or when creating indexes with CREATE
INDEX or ALTER TABLE

--no-defaults Do not read any option files

--parallel-recover parallel-recover Uses the same technique as -r and -n, but creates all the
keys in parallel, using different threads (beta)

--print-defaults Print defaults

--quick quick Achieve a faster repair by not modifying the data file.

read_buffer_size=# read_buffer_size Each thread that does a sequential scan allocates a
buffer of this size for each table it scans

--read-only read-only Don't mark the table as checked

--recover recover Do a repair that can fix almost any problem except unique
keys that aren't unique

--safe-recover safe-recover Do a repair using an old recovery method that reads
through all rows in order and updates all index trees
based on the rows found

--set-auto-
increment[=value]

set-auto-increment Force AUTO_INCREMENT numbering for new records to
start at the given value

--set-collation=name set-collation Specify the collation to use for sorting table indexes

--silent silent Silent mode

sort_buffer_size=# sort_buffer_size The buffer that is allocated when sorting the index when
doing a REPAIR or when creating indexes with CREATE
INDEX or ALTER TABLE

--sort-index sort-index Sort the index tree blocks in high-low order

sort_key_blocks=# sort_key_blocks sort_key_blocks

--sort-records=# sort-records Sort records according to a particular index

--sort-recover sort-recover Force myisamchk to use sorting to resolve the keys even
if the temporary files would be very large

stats_method=value stats_method Specifies how MyISAM index statistics collection code
should treat NULLs

--tmpdir=path tmpdir Path of the directory to be used for storing temporary files

--unpack unpack Unpack a table that was packed with myisampack

--update-state update-state Store information in the .MYI file to indicate when the
table was checked and whether the table crashed

--verbose Verbose mode

--version Display version information and exit

write_buffer_size=# write_buffer_size Write buffer size

4.6.3.1 myisamchk General Options

The options described in this section can be used for any type of table maintenance operation
performed by myisamchk. The sections following this one describe options that pertain only to specific
operations, such as table checking or repairing.

• --help, -?

Display a help message and exit. Options are grouped by type of operation.

myisamchk — MyISAM Table-Maintenance Utility

355

• --HELP, -H

Display a help message and exit. Options are presented in a single list.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/myisamchk.trace.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, myisamchk normally reads the [myisamchk] group. If the --defaults-group-
suffix=_other option is given, myisamchk also reads the [myisamchk_other] group.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --print-defaults

Print the program name and all options that it gets from option files.

• --silent, -s

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myisamchk
very silent.

• --verbose, -v

Verbose mode. Print more information about what the program does. This can be used with -d and -
e. Use -v multiple times (-vv, -vvv) for even more output.

• --version, -V

Display version information and exit.

• --wait, -w

Instead of terminating with an error if the table is locked, wait until the table is unlocked before
continuing. If you are running mysqld with external locking disabled, the table can be locked only by
another myisamchk command.

You can also set the following variables by using --var_name=value syntax:

myisamchk — MyISAM Table-Maintenance Utility

356

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

myisam_sort_key_blocks 16

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

stats_method nulls_unequal

write_buffer_size 262136

The possible myisamchk variables and their default values can be examined with myisamchk --
help:

myisam_sort_buffer_size is used when the keys are repaired by sorting keys, which is
the normal case when you use --recover. sort_buffer_size is a deprecated synonym for
myisam_sort_buffer_size.

key_buffer_size is used when you are checking the table with --extend-check or when the keys
are repaired by inserting keys row by row into the table (like when doing normal inserts). Repairing
through the key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating the
key file directly. This is often the case when you have large key values for CHAR, VARCHAR, or TEXT
columns, because the sort operation needs to store the complete key values as it proceeds. If you
have lots of temporary space and you can force myisamchk to repair by sorting, you can use the --
sort-recover option.

Repairing through the key buffer takes much less disk space than using sorting, but is also much
slower.

If you want a faster repair, set the key_buffer_size and myisam_sort_buffer_size variables to
about 25% of your available memory. You can set both variables to large values, because only one of
them is used at a time.

myisam_block_size is the size used for index blocks.

stats_method influences how NULL values are treated for index statistics collection when the
--analyze option is given. It acts like the myisam_stats_method system variable. For more
information, see the description of myisam_stats_method in Section 5.1.4, “Server System
Variables”, and Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for
FULLTEXT indexes on MyISAM tables. ft_stopword_file names the stopword file. These need to
be set under the following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze),
the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum and
maximum word length and the stopword file unless you specify otherwise. This can result in queries
failing.

myisamchk — MyISAM Table-Maintenance Utility

357

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or the stopword file in the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can place
each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE
TABLE, or ALTER TABLE. These statements are performed by the server, which knows the proper full-
text parameter values to use.

4.6.3.2 myisamchk Check Options

myisamchk supports the following options for table checking operations:

• --check, -c

Check the table for errors. This is the default operation if you specify no option that selects an
operation type explicitly.

• --check-only-changed, -C

Check only tables that have changed since the last check.

• --extend-check, -e

Check the table very thoroughly. This is quite slow if the table has many indexes. This option should
only be used in extreme cases. Normally, myisamchk or myisamchk --medium-check should be
able to determine whether there are any errors in the table.

If you are using --extend-check and have plenty of memory, setting the key_buffer_size
variable to a large value helps the repair operation run faster.

See also the description of this option under table repair options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --fast, -F

Check only tables that haven't been closed properly.

• --force, -f

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is the
same as that specified with the --recover or -r option.

• --information, -i

Print informational statistics about the table that is checked.

• --medium-check, -m

myisamchk — MyISAM Table-Maintenance Utility

358

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all errors,
which should be good enough in most cases.

• --read-only, -T

Do not mark the table as checked. This is useful if you use myisamchk to check a table that is in use
by some other application that does not use locking, such as mysqld when run with external locking
disabled.

• --update-state, -U

Store information in the .MYI file to indicate when the table was checked and whether the table
crashed. This should be used to get full benefit of the --check-only-changed option, but you
shouldn't use this option if the mysqld server is using the table and you are running it with external
locking disabled.

4.6.3.3 myisamchk Repair Options

myisamchk supports the following options for table repair operations (operations performed when an
option such as --recover or --safe-recover is given):

• --backup, -B

Make a backup of the .MYD file as file_name-time.BAK

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --correct-checksum

Correct the checksum information for the table.

• --data-file-length=len, -D len

The maximum length of the data file (when re-creating data file when it is “full”).

• --extend-check, -e

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of
garbage rows. Do not use this option unless you are desperate.

See also the description of this option under table checking options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --force, -f

Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.

• --keys-used=val, -k val

For myisamchk, the option value is a bit-value that indicates which indexes to update. Each binary
bit of the option value corresponds to a table index, where the first index is bit 0. An option value of 0
disables updates to all indexes, which can be used to get faster inserts. Deactivated indexes can be
reactivated by using myisamchk -r.

• --no-symlinks, -l

Do not follow symbolic links. Normally myisamchk repairs the table that a symlink points to. This
option does not exist as of MySQL 4.0 because versions from 4.0 on do not remove symlinks during
repair operations.

myisamchk — MyISAM Table-Maintenance Utility

359

• --max-record-length=len

Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.

• --parallel-recover, -p

Use the same technique as -r and -n, but create all the keys in parallel, using different threads.
This is beta-quality code. Use at your own risk!

• --quick, -q

Achieve a faster repair by modifying only the index file, not the data file. You can specify this option
twice to force myisamchk to modify the original data file in case of duplicate keys.

• --recover, -r

Do a repair that can fix almost any problem except unique keys that are not unique (which is an
extremely unlikely error with MyISAM tables). If you want to recover a table, this is the option to try
first. You should try --safe-recover only if myisamchk reports that the table cannot be recovered
using --recover. (In the unlikely case that --recover fails, the data file remains intact.)

If you have lots of memory, you should increase the value of myisam_sort_buffer_size.

• --safe-recover, -o

Do a repair using an old recovery method that reads through all rows in order and updates all index
trees based on the rows found. This is an order of magnitude slower than --recover, but can
handle a couple of very unlikely cases that --recover cannot. This recovery method also uses
much less disk space than --recover. Normally, you should repair first using --recover, and
then with --safe-recover only if --recover fails.

If you have lots of memory, you should increase the value of key_buffer_size.

• --set-character-set=name

Change the character set used by the table indexes. This option was replaced by --set-
collation in MySQL 5.0.3.

• --set-collation=name

Specify the collation to use for sorting table indexes. The character set name is implied by the first
part of the collation name.

• --sort-recover, -n

Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large.

• --tmpdir=path, -t path

The path of the directory to be used for storing temporary files. If this is not set, myisamchk uses
the value of the TMPDIR environment variable. --tmpdir can be set to a list of directory paths that
are used successively in round-robin fashion for creating temporary files. The separator character
between directory names is the colon (“:”) on Unix and the semicolon (“;”) on Windows.

• --unpack, -u

Unpack a table that was packed with myisampack.

4.6.3.4 Other myisamchk Options

myisamchk supports the following options for actions other than table checks and repairs:

• --analyze, -a

myisamchk — MyISAM Table-Maintenance Utility

360

Analyze the distribution of key values. This improves join performance by enabling the join
optimizer to better choose the order in which to join the tables and which indexes it should use. To
obtain information about the key distribution, use a myisamchk --description --verbose
tbl_name command or the SHOW INDEX FROM tbl_name statement.

• --block-search=offset, -b offset

Find the record that a block at the given offset belongs to.

• --description, -d

Print some descriptive information about the table. Specifying the --verbose option once or
twice produces additional information. See Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if
there are existing records with AUTO_INCREMENT values this large). If value is not specified,
AUTO_INCREMENT numbers for new records begin with the largest value currently in the table, plus
one.

• --sort-index, -S

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=N, -R N

Sort records according to a particular index. This makes your data much more localized and may
speed up range-based SELECT and ORDER BY operations that use this index. (The first time you
use this option to sort a table, it may be very slow.) To determine a table's index numbers, use SHOW
INDEX, which displays a table's indexes in the same order that myisamchk sees them. Indexes are
numbered beginning with 1.

If keys are not packed (PACK_KEYS=0), they have the same length, so when myisamchk sorts and
moves records, it just overwrites record offsets in the index. If keys are packed (PACK_KEYS=1),
myisamchk must unpack key blocks first, then re-create indexes and pack the key blocks again. (In
this case, re-creating indexes is faster than updating offsets for each index.)

4.6.3.5 Obtaining Table Information with myisamchk

To obtain a description of a MyISAM table or statistics about it, use the commands shown here. The
output from these commands is explained later in this section.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL
server with external locking disabled, myisamchk may report an error for a table that is updated
while it runs. However, because myisamchk does not change the table in describe mode, there is no
risk of destroying data.

• myisamchk -dv tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about the table.
Adding -v a second time produces even more information.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read
the entire table.

myisamchk — MyISAM Table-Maintenance Utility

361

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as
described in Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Multiple tbl_name
arguments can be given.

Suppose that a table named person has the following structure. (The MAX_ROWS table option is
included so that in the example output from myisamchk shown later, some values are smaller and fit
the output format more easily.)

CREATE TABLE person
(
 id INT NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(20) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 birth DATE,
 death DATE,
 PRIMARY KEY (id),
 INDEX (last_name, first_name),
 INDEX (birth)
) MAX_ROWS = 1000000;

Suppose also that the table has these data and index file sizes:

-rw-rw---- 1 mysql mysql 9347072 Aug 19 11:47 person.MYD
-rw-rw---- 1 mysql mysql 6066176 Aug 19 11:47 person.MYI

Example of myisamchk -dvv output:

MyISAM file: person
Record format: Packed
Character set: latin1_swedish_ci (8)
File-version: 1
Creation time: 2009-08-19 16:47:41
Recover time: 2009-08-19 16:47:56
Status: checked,analyzed,optimized keys
Auto increment key: 1 Last value: 306688
Data records: 306688 Deleted blocks: 0
Datafile parts: 306688 Deleted data: 0
Datafile pointer (bytes): 4 Keyfile pointer (bytes): 3
Datafile length: 9347072 Keyfile length: 6066176
Max datafile length: 4294967294 Max keyfile length: 17179868159
Recordlength: 54

table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 4 unique long 1 99328 1024
2 6 20 multip. varchar prefix 512 3563520 1024
 27 20 varchar 512
3 48 3 multip. uint24 NULL 306688 6065152 1024

Field Start Length Nullpos Nullbit Type
1 1 1
2 2 4 no zeros
3 6 21 varchar
4 27 21 varchar
5 48 3 1 1 no zeros
6 51 3 1 2 no zeros

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the
index file. “Record” and “row” are synonymous, as are “field” and “column.”

The initial part of the table description contains these values:

• MyISAM file

myisamchk — MyISAM Table-Maintenance Utility

362

Name of the MyISAM (index) file.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible
values are Compressed and Packed. (Packed corresponds to what SHOW TABLE STATUS reports
as Dynamic.)

• Chararacter set

The table default character set.

• File-version

Version of MyISAM format. Currently always 1.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Status

Table status flags. Possible values are crashed, open, changed, analyzed, optimized keys,
and sorted index pages.

• Auto increment key, Last value

The key number associated the table's AUTO_INCREMENT column, and the most recently generated
value for this column. These fields do not appear if there is no such column.

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table
without fragmented rows, this is the same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with
2 bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a row address. For
dynamic tables, this is a byte address.

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2
bytes, but this is calculated automatically by MySQL. It is always a block address.

myisamchk — MyISAM Table-Maintenance Utility

363

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each row takes, in bytes.

The table description part of the output includes a list of all keys in the table. For each key,
myisamchk displays some low-level information:

• Key

This key's number. This value is shown only for the first column of the key. If this value is missing,
the line corresponds to the second or later column of a multiple-column key. For the table shown in
the example, there are two table description lines for the second index. This indicates that it is
a multiple-part index with two parts.

• Start

Where in the row this portion of the index starts.

• Len

How long this portion of the index is. For packed numbers, this should always be the full length of the
column. For strings, it may be shorter than the full length of the indexed column, because you can
index a prefix of a string column. The total length of a multiple-part key is the sum of the Len values
for all key parts.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or multip.
(multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values
packed, stripped, or empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile time
when MySQL is built from source.

• Rec/key

This is a statistical value used by the optimizer. It tells how many rows there are per value for this
index. A unique index always has a value of 1. This may be updated after a table is loaded (or
greatly changed) with myisamchk -a. If this is not updated at all, a default value of 30 is given.

The last part of the output provides information about each column:

• Field

The column number.

myisamchk — MyISAM Table-Maintenance Utility

364

• Start

The byte position of the column within table rows.

• Length

The length of the column in bytes.

• Nullpos, Nullbit

For columns that can be NULL, MyISAM stores NULL values as a flag in a byte. Depending on
how many nullable columns there are, there can be one or more bytes used for this purpose. The
Nullpos and Nullbit values, if nonempty, indicate which byte and bit contains that flag indicating
whether the column is NULL.

The position and number of bytes used to store NULL flags is shown in the line for field 1. This is why
there are six Field lines for the person table even though it has only five columns.

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

myisamchk — MyISAM Table-Maintenance Utility

365

The Huff tree and Bits fields are displayed if the table has been compressed with myisampack.
See Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”, for an
example of this information.

Example of myisamchk -eiv output:

Checking MyISAM file: person
Data records: 306688 Deleted blocks: 0
- check file-size
- check record delete-chain
No recordlinks
- check key delete-chain
block_size 1024:
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 98% Packed: 0% Max levels: 3
- check data record references index: 2
Key: 2: Keyblocks used: 99% Packed: 97% Max levels: 3
- check data record references index: 3
Key: 3: Keyblocks used: 98% Packed: -14% Max levels: 3
Total: Keyblocks used: 98% Packed: 89%

- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***

Records: 306688 M.recordlength: 25 Packed: 83%
Recordspace used: 97% Empty space: 2% Blocks/Record: 1.00
Record blocks: 306688 Delete blocks: 0
Record data: 7934464 Deleted data: 0
Lost space: 256512 Linkdata: 1156096

User time 43.08, System time 1.68
Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 0, Physical pagefaults 0, Swaps 0
Blocks in 0 out 7, Messages in 0 out 0, Signals 0
Voluntary context switches 0, Involuntary context switches 0
Maximum memory usage: 1046926 bytes (1023k)

myisamchk -eiv output includes the following information:

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Key

The key number.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with
myisamchk, the values are very high (very near theoretical maximum).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on
CHAR and VARCHAR columns. For long indexed strings that have similar leftmost parts, this can
significantly reduce the space used. In the preceding example, the second key is 40 bytes long and a
97% reduction in space is achieved.

• Max levels

myisamchk — MyISAM Table-Maintenance Utility

366

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all
rows have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings
achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record

Average number of blocks per row (that is, how many links a fragmented row is composed of). This
is always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible. If it gets too
large, you can reorganize the table. See Section 7.6.4, “MyISAM Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in
bytes.

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each).
Linkdata is the sum of the amount of storage used by all such pointers.

4.6.3.6 myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory than
its memory-related variables are set to. If you are going to use myisamchk on very large tables, you
should first decide how much memory you want it to use. The default is to use only about 3MB to
perform repairs. By using larger values, you can get myisamchk to operate faster. For example, if you

myisamlog — Display MyISAM Log File Contents

367

have more than 512MB RAM available, you could use options such as these (in addition to any other
options you might specify):

shell> myisamchk --myisam_sort_buffer_size=256M \
 --key_buffer_size=512M \
 --read_buffer_size=64M \
 --write_buffer_size=64M ...

Using --myisam_sort_buffer_size=16M is probably enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory file system,
out of memory errors can easily occur. If this happens, run myisamchk with the --tmpdir=path
option to specify a directory located on a file system that has more space.

When performing repair operations, myisamchk also needs a lot of disk space:

• Twice the size of the data file (the original file and a copy). This space is not needed if you do a
repair with --quick; in this case, only the index file is re-created. This space must be available on
the same file system as the original data file, as the copy is created in the same directory as the
original.

• Space for the new index file that replaces the old one. The old index file is truncated at the start of
the repair operation, so you usually ignore this space. This space must be available on the same file
system as the original data file.

• When using --recover or --sort-recover (but not when using --safe-recover), you need
space on disk for sorting. This space is allocated in the temporary directory (specified by TMPDIR or
--tmpdir=path). The following formula yields the amount of space required:

(largest_key + row_pointer_length) * number_of_rows * 2

You can check the length of the keys and the row_pointer_length with myisamchk -
dv tbl_name (see Section 4.6.3.5, “Obtaining Table Information with myisamchk”). The
row_pointer_length and number_of_rows values are the Datafile pointer and Data
records values in the table description. To determine the largest_key value, check the Key
lines in the table description. The Len column indicates the number of bytes for each key part. For a
multiple-column index, the key size is the sum of the Len values for all key parts.

If you have a problem with disk space during repair, you can try --safe-recover instead of --
recover.

4.6.4 myisamlog — Display MyISAM Log File Contents

myisamlog processes the contents of a MyISAM log file. To create such a file, start the server with a
--log-isam=log_file option.

Invoke myisamlog like this:

shell> myisamlog [options] [file_name [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates
and deletes are done and errors are only counted. The default log file name is myisam.log if no
log_file argument is given. If tables are named on the command line, only those tables are updated.

myisamlog supports the following options:

• -?, -I

Display a help message and exit.

• -c N

myisampack — Generate Compressed, Read-Only MyISAM Tables

368

Execute only N commands.

• -f N

Specify the maximum number of open files.

• -i

Display extra information before exiting.

• -o offset

Specify the starting offset.

• -p N

Remove N components from path.

• -r

Perform a recovery operation.

• -R record_pos_file record_pos

Specify record position file and record position.

• -u

Perform an update operation.

• -v

Verbose mode. Print more output about what the program does. This option can be given multiple
times to produce more and more output.

• -w write_file

Specify the write file.

• -V

Display version information.

4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables

The myisampack utility compresses MyISAM tables. myisampack works by compressing each column
in the table separately. Usually, myisampack packs the data file 40% to 70%.

When the table is used later, the server reads into memory the information needed to decompress
columns. This results in much better performance when accessing individual rows, because you only
have to uncompress exactly one row.

MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap()
does not work, MySQL falls back to normal read/write file operations.

Please note the following:

• If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke
myisampack if the table might be updated by the server during the packing process. It is safest to
compress tables with the server stopped.

• After packing a table, it becomes read only. This is generally intended (such as when accessing
packed tables on a CD).

myisampack — Generate Compressed, Read-Only MyISAM Tables

369

• myisampack does not support partitioned tables.

Invoke myisampack like this:

shell> myisampack [options] file_name ...

Each file name argument should be the name of an index (.MYI) file. If you are not in the database
directory, you should specify the path name to the file. It is permissible to omit the .MYI extension.

After you compress a table with myisampack, you should use myisamchk -rq to rebuild its indexes.
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

myisampack supports the following options. It also reads option files and supports the options
for processing them described at Section 4.2.3.4, “Command-Line Options that Affect Option-File
Handling”.

• --help, -?

Display a help message and exit.

• --backup, -b

Make a backup of each table's data file using the name tbl_name.OLD.

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

• --force, -f

Produce a packed table even if it becomes larger than the original or if the intermediate file from
an earlier invocation of myisampack exists. (myisampack creates an intermediate file named
tbl_name.TMD in the database directory while it compresses the table. If you kill myisampack,
the .TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that
tbl_name.TMD exists. With --force, myisampack packs the table anyway.

• --join=big_tbl_name, -j big_tbl_name

Join all tables named on the command line into a single packed table big_tbl_name. All tables that
are to be combined must have identical structure (same column names and types, same indexes,
and so forth).

big_tbl_name must not exist prior to the join operation. All source tables named on the command
line to be merged into big_tbl_name must exist. The source tables are read for the join
operation but not modified. The join operation does not create a .frm file for big_tbl_name,
so after the join operation finishes, copy the .frm file from one of the source tables and name it
big_tbl_name.frm.

• --silent, -s

Silent mode. Write output only when errors occur.

• --test, -t

Do not actually pack the table, just test packing it.

• --tmpdir=path, -T path

myisampack — Generate Compressed, Read-Only MyISAM Tables

370

Use the named directory as the location where myisampack creates temporary files.

• --verbose, -v

Verbose mode. Write information about the progress of the packing operation and its result.

• --version, -V

Display version information and exit.

• --wait, -w

Wait and retry if the table is in use. If the mysqld server was invoked with external locking disabled,
it is not a good idea to invoke myisampack if the table might be updated by the server during the
packing process.

The following sequence of commands illustrates a typical table compression session:

shell> ls -l station.*
-rw-rw-r-- 1 monty my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834
Record format: Fixed length

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1

Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1
5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2

myisampack — Generate Compressed, Read-Only MyISAM Tables

371

27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20
45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4

shell> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics

normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables

shell> ls -l station.*
-rw-rw-r-- 1 monty my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1

Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0

myisampack — Generate Compressed, Read-Only MyISAM Tables

372

6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces. These occupy one bit.

• empty-zero

The number of columns containing values that are only binary zeros. These occupy one bit.

• empty-fill

myisampack — Generate Compressed, Read-Only MyISAM Tables

373

The number of integer columns that do not occupy the full byte range of their type. These are
changed to a smaller type. For example, a BIGINT column (eight bytes) can be stored as a
TINYINT column (one byte) if all its values are in the range from -128 to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value
contains a count for the number of leading spaces.

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a count
for the number of trailing spaces.

• table-lookup

The column had only a small number of different values, which were converted to an ENUM before
Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, the Field lines displayed by myisamchk -dvv include additional
information about each column:

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

mysql_config_editor — MySQL Configuration Utility

374

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, you must run myisamchk to re-create any indexes. At this time, you
can also sort the index blocks and create statistics needed for the MySQL optimizer to work more
efficiently:

shell> myisamchk -rq --sort-index --analyze tbl_name.MYI

After you have installed the packed table into the MySQL database directory, you should execute
mysqladmin flush-tables to force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk.

4.6.6 mysql_config_editor — MySQL Configuration Utility

The mysql_config_editor utility enables you to store authentication credentials in an encrypted
login file named .mylogin.cnf. The file location is the %APPDATA%\MySQL directory on Windows
and the current user's home directory on non-Windows systems. The file can be read later by MySQL
client programs to obtain authentication credentials for connecting to MySQL Server.

To specify an alternate file name, set the MYSQL_TEST_LOGIN_FILE environment variable.
This variable is used by the mysql-test-run.pl testing utility, but also is recognized by
mysql_config_editor and by MySQL clients such as mysql, mysqladmin, and so forth.

mysql_config_editor encrypts the .mylogin.cnf file so it cannot be read as clear text, and its
contents when decrypted by client programs are used only in memory. In this way, passwords can
be stored in a file in non-cleartext format and used later without ever needing to be exposed on the
command line or in an environment variable. mysql_config_editor provides a print command
that enables the user to display the file contents, but even in this case, password values are masked so
as never to appear in a way that other users can see them.

The encryption used by mysql_config_editor prevents passwords from appearing in
.mylogin.cnf as clear text and provides a measure of security by preventing inadvertent password
exposure. For example, if you display a regular unencrypted my.cnf option file on the screen, any
passwords it contains are visible for anyone to see. With .mylogin.cnf, that is not true. But the
encryption used will not deter a determined attacker and you should not consider it unbreakable. A user
who can gain system administration privileges on your machine to access your files could decrypt the
.mylogin.cnf file with some effort.

The login file must be readable and writable to the current user, and inaccessible to other users.
Otherwise, mysql_config_editor ignores it, and the file is not used by client programs, either.
On Windows, this constraint does not apply; instead, the user must have access to the %APPDATA%
\MySQL directory.

The unencrypted format of the .mylogin.cnf login file consists of option groups, similar to other
option files. Each option group in .mylogin.cnf is called a “login path,” which is a group that permits
only a limited set of options: host, user, and password. Think of a login path as a set of values that
indicate the server host and the credentials for authenticating with the server. Here is an example:

mysql_config_editor — MySQL Configuration Utility

375

[myloginpath]
user = myname
password = mypass
host = 127.0.0.1

When you invoke a client program to connect to the server, .mylogin.cnf is used in conjunction
with other option files. Its precedence is higher than other option files, but less than options specified
explicitly on the client command line. For information about the order in which option files are used, see
Section 4.2.3.3, “Using Option Files”.

Invoke mysql_config_editor like this:

shell> mysql_config_editor [program_options] command [command_options]

program_options consists of general mysql_config_editor options. command indicates
what command to perform, and command_options indicates any additional options needed by the
command.

The command indicates what action to perform on the .mylogin.cnf login file. For example, set
writes a login path to the file, remove removes a login path, and print displays login path contents.
Any options given provide information to the command, such as the login path name and the values to
use in the login path.

The position of the command name within the set of program arguments is significant. For example,
these command lines have the same arguments, but produce different results:

mysql_config_editor --help set
mysql_config_editor set --help

The first command line displays general mysql_config_editor help, and ignores the set
command. The second command line displays help for the set command.

Suppose that you want to establish two login paths named local and remote for connecting to the
local MySQL server and a server on the host remote.example.com. You want to authenticate to
the local server with a user name and password of localuser and localpass, and to the remote
server with a user name and password of remoteuser and remotepass. To set up the login paths in
the .mylogin.cnf file, use the following set commands. Enter each command on a single line, then
enter the appropriate password when prompted.

shell> mysql_config_editor set --login-path=local
 --host=localhost --user=localuser --password
Enter password: enter password "localpass" here
shell> mysql_config_editor set --login-path=remote
 --host=remote.example.com --user=remoteuser --password
Enter password: enter password "remotepass" here

To see what mysql_config_editor wrote to the .mylogin.cnf file, use the print command:

shell> mysql_config_editor print --all
[local]
user = localuser
password = *****
host = localhost
[remote]
user = remoteuser
password = *****
host = remote.example.com

The print command displays each login path as a set of lines beginning with a group header
indicating the login path name in square brackets, followed by the option values for the login path.
Password values are masked and do not appear as clear text.

mysql_config_editor — MySQL Configuration Utility

376

As shown by the preceding examples, the .mylogin.cnf file can contain multiple login paths. In
this way, mysql_config_editor makes it easy to set up multiple “personalities” for connecting to
different MySQL servers. Any of these can be selected by name later using the --login-path option
when you invoke a client program. For example, to connect to the local server, use this command:

shell> mysql --login-path=local

To connect to the remote server, use this command:

shell> mysql --login-path=remote

When you use the set command with mysql_config_editor to create a login path, you need
not specify all three possible option values (host name, user name, and password). Only those
values given are written to the path. Any missing values required later can be specified when you
invoke a client path to connect to the MySQL server, either in other option files or on the command
line. Also, any options specified on the command line override those in option files, including the
.mylogin.cnf file. For example, if the credentials in the remote login path also apply for the host
remote2.example.com, you can connect to the server on that host like this:

shell> mysql --login-path=remote --host=remote2.example.com

The .mylogin.cnf file, if it exists, is read in all cases, even when the --no-defaults option is
used. This permits passwords to be specified in a safer way than on the command line even if --no-
defaults is present.

mysql_config_editor Commands

This section describes the permitted mysql_config_editor commands, and the interpretation of
options that have a command-specific meaning. In addition, mysql_config_editor takes other
options that can be used with any command, such as --verbose to produce more information as
mysql_config_editor executes. This option may be helpful in diagnosing problems if an operation
does not have the effect you expect. For a list of supported options, see mysql_config_editor
Options.

mysql_config_editor supports these commands:

• help

Display a help message and exit.

• print [options]

Print the contents of .mylogin.cnf in unencrypted form. Passwords are displayed as *****.

The print command takes these options:

• --all

Print all login paths.

• --login-path=name

Print the named login path.

If no login path is specified, the default path name is client. If both --all and --login-path are
given, --all takes precedence.

• remove [options]

Remove a login path from the .mylogin.cnf file.

mysql_config_editor — MySQL Configuration Utility

377

The remove command takes these options:

• --host

Remove the host name from the login path.

• --login-path=name

The login path to remove. If this option is not given, the default path name is client.

• --password

Remove the password from the login path.

• --port

Remove the TCP/IP port number from the login path.

• --socket

Remove the Unix socket file name from the login path.

• --user

Remove the user name from the login path.

The --port and --socket options are supported for the remove command as of MySQL 5.7.1

The remove command removes from the login path only such values as are specified with the --
host, --password, --port, --socket, and --user options. If none of them is given, remove
removes the entire login path. For example, this command removes only the user value from the
client login path rather than the entire client login path:

mysql_config_editor remove --login-path=client --user

• reset

Empty the contents of the .mylogin.cnf file. The file is created if it does not exist.

• set [options]

Write a login path to the .mylogin.cnf file.

The set command takes these options:

• --host=host_name

The host name to write to the login path.

• --login-path=name

The login path to create. If this option is not given, the default path name is client.

• --password

Prompt for a password to write to the login path.

• --port=port_num

The TCP/IP port number to write to the login path.

mysql_config_editor — MySQL Configuration Utility

378

• --socket=file_name

The Unix socket file to write to the login path.

• --user=user_name

The user name to write to the login path.

The --port and --socket options are supported for the set command as of MySQL 5.7.1

The set command writes to the login path only such values as are specified with the --host,
--password, --port, --socket, and --user options. If none of those options are given,
mysql_config_editor writes the login path as an empty group.

To specify an empty password, use the set command with the --password option, then press
Enter at the password prompt. The resulting login path written to .mylogin.cnf will include a line
like this:

password =

If the login path already exists in .mylogin.cnf, the set command replaces it. To ensure that this
is what the user wants, mysql_config_editor prints a warning and prompts for confirmation. To
suppress the warning and prompt, use the --skip-warn option.

mysql_config_editor Options

mysql_config_editor supports the following options.

Table 4.14 mysql_config_editor Options

Format Option File Description Introduced

--all Print all login paths

--
debug[=debug_options]

 Write a debugging log

--help Display help message and exit

--host=host_name Host to write to login file

--login-
path=name

 Login path name

--password Solicit password to write to login file

--port=port_num port The TCP/IP port number to write to login file 5.7.1

--socket=path socket The Unix socket file name to write to login file 5.7.1

--
user=user_name

 User name to write to login file

--verbose Verbose mode

--version Display version information and exit

--warn Warn and solicit confirmation for overwriting login
path

• --help, -?

Display a help message and exit. If preceded by a command name such as set or remove, displays
information about that command.

• --all

mysql_config_editor — MySQL Configuration Utility

379

For the print command, print all login paths in the login file.

• --debug[=debug_options], -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

• --host=host_name, -h host_name

For the set command, the host name to write to to the login path. For the remove command,
removes the host name from the login path.

• --login-path=name, -G name

For the print, remove, and set commands, the login path to use in the .mylogin.cnf login file.

Client programs also support the --login-path option, to enable users to specify which login path
to use for connecting to a MySQL server. For client programs, --login-path must be the first
option given, which is not true for mysql_config_editor. See Section 4.2.3.4, “Command-Line
Options that Affect Option-File Handling”.

• --password, -p

For the set command, cause mysql_config_editor to prompt for a password and write the
value entered by the user to the login path. After mysql_config_editor starts and displays the
prompt, the user should type the password and press Enter. To prevent other users from seeing the
password, mysql_config_editor does not echo it.

This option does not permit a password value following the option name. That is, with
mysql_config_editor, you never enter a password on the command line where it might be seen
by other users. This differs from most other MySQL programs, which permit the password to be
given on the command line as --password=pass_val or -ppass_val. (That practice is insecure
and should be avoided, however.)

For the remove command, removes the password from the login path.

• --port=port_num, -P port_num

For the set command, the TCP/IP port number to write to the login path. For the remove command,
removes the port number from the login path.

• --socket=file_name, -S file_name

For the set command, the Unix socket file name to write to the login path. For the remove
command, removes the socket file from the login path.

• --user=user_name, -u user_name

For the set command, the user name to write to the login path. For the remove command, removes
the user name from the login path.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --warn, -w

mysqlbinlog — Utility for Processing Binary Log Files

380

For the set command, warn and prompt the user for confirmation if the command attempts to
overwrite an existing login path. This option is enabled by default; use --skip-warn to disable it.

4.6.7 mysqlbinlog — Utility for Processing Binary Log Files

The server's binary log consists of files containing “events” that describe modifications to database
contents. The server writes these files in binary format. To display their contents in text format, use the
mysqlbinlog utility. You can also use mysqlbinlog to display the contents of relay log files written
by a slave server in a replication setup because relay logs have the same format as binary logs. The
binary log and relay log are discussed further in Section 5.2.4, “The Binary Log”, and Section 16.2.2,
“Replication Relay and Status Logs”.

Invoke mysqlbinlog like this:

shell> mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this command:

shell> mysqlbinlog binlog.0000003

The output includes events contained in binlog.000003. For statement-based logging, event
information includes the SQL statement, the ID of the server on which it was executed, the timestamp
when the statement was executed, how much time it took, and so forth. For row-based logging,
the event indicates a row change rather than an SQL statement. See Section 16.1.2, “Replication
Formats”, for information about logging modes.

Events are preceded by header comments that provide additional information. For example:

at 141
#100309 9:28:36 server id 123 end_log_pos 245
 Query thread_id=3350 exec_time=11 error_code=0

In the first line, the number following at indicates the starting position of the event in the binary log file.

The second line starts with a date and time indicating when the statement started on the server where
the event originated. For replication, this timestamp is propagated to slave servers. server id is
the server_id value of the server where the event originated. end_log_pos indicates where the
next event starts (that is, it is the end position of the current event + 1). thread_id indicates which
thread executed the event. exec_time is the time spent executing the event, on a master server. On
a slave, it is the difference of the end execution time on the slave minus the beginning execution time
on the master. The difference serves as an indicator of how much replication lags behind the master.
error_code indicates the result from executing the event. Zero means that no error occurred.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql) to redo
the statements in the log. This is useful for recovery operations after a server crash. For other usage
examples, see the discussion later in this section and in Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Normally, you use mysqlbinlog to read binary log files directly and apply them to the local MySQL
server. It is also possible to read binary logs from a remote server by using the --read-from-
remote-server option. To read remote binary logs, the connection parameter options can be given
to indicate how to connect to the server. These options are --host, --password, --port, --
protocol, --socket, and --user; they are ignored except when you also use the --read-from-
remote-server option.

mysqlbinlog supports the following options, which can be specified on the command line or in the
[mysqlbinlog] and [client] groups of an option file. For information about option files, see
Section 4.2.3.3, “Using Option Files”.

mysqlbinlog — Utility for Processing Binary Log Files

381

Table 4.15 mysqlbinlog Options

Format Option File Description Introduced

--base64-
output=value

base64-output Print binary log entries using base-64 encoding

--bind-
address=ip_address

bind-address Use the specified network interface to connect to
the MySQL Server

--binlog-row-
event-max-size=#

binlog-row-event-
max-size

Binary log max event size

--character-sets-
dir=path

character-sets-dir The directory where character sets are installed

--
database=db_name

database List entries for just this database

--
debug[=debug_options]

debug Write a debugging log

--debug-check debug-check Print debugging information when the program
exits

--debug-info debug-info Print debugging information, memory and CPU
statistics when the program exits

--default-
auth=plugin

default-
auth=plugin

The authentication plugin to use

--defaults-extra-
file=file_name

 Read option file in addition to the usual option files

--defaults-
file=file_name

 Read only the given option file

--defaults-group-
suffix=str

 Option group suffix value

--disable-log-bin disable-log-bin Disable binary logging

--exclude-
gtids=gtid_set

exclude-gtids Do not show any of the groups in the GTID set
provided

--force-if-open force-if-open Read binary log files even if open or not closed
properly

--force-read force-read If mysqlbinlog reads a binary log event that it does
not recognize, it prints a warning

--help Display help message and exit

--hexdump hexdump Display a hex dump of the log in comments

--host=host_name host Connect to the MySQL server on the given host

--idempotent idempotent Cause the server to use idempotent mode while
processing binary log updates from this session
only

5.7.0

--include-
gtids=gtid_set

include-gtids Show only the groups in the GTID set provided

--local-load=path local-load Prepare local temporary files for LOAD DATA
INFILE in the specified directory

--login-
path=name

 Read login path options from .mylogin.cnf

--no-defaults Do not read any option files

--offset=# offset Skip the first N entries in the log

mysqlbinlog — Utility for Processing Binary Log Files

382

Format Option File Description Introduced

--
password[=password]

password The password to use when connecting to the
server

--plugin-dir=path plugin-dir=path The directory where plugins are located

--port=port_num port The TCP/IP port number to use for the connection

--print-defaults Print defaults

--protocol=type protocol The connection protocol to use

--raw raw Write events in raw (binary) format to output files

--read-from-
remote-
master=type

read-from-remote-
master

Read the binary log from a MySQL master rather
than reading a local log file

--read-from-
remote-server

read-from-remote-
server

Read binary log from MySQL server rather than
local log file

--result-file=name result-file Direct output to the given file

--rewrite-
db='oldname-
>newname'

rewrite-db Create rewrite rules for databases when playing
back from logs written in row-based format. Can
be used multiple times.

5.7.1

--secure-auth secure-auth Do not send passwords to the server in old
(pre-4.1.1) format

5.7.4

--server-id=id server-id Extract only those events created by the server
having the given server ID

--set-
charset=charset_name

set-charset Add a SET NAMES charset_name statement to
the output

--short-form short-form Display only the statements contained in the log

--skip-gtids[=true|
false]

skip-gtids Do not print any GTIDs; use this when writing a
dump file from binary logs containing GTIDs.

--socket=path socket For connections to localhost

--ssl[=TRUE|
FALSE]

 Enable an SSL connection to the server. This
option is set to TRUE when any other SSL option
is used, and so is normally not needed.

5.7.3

--ssl-
ca=file_name

 The path to a file that contains a list of trusted SSL
CAs

5.7.3

--ssl-
capath=dir_name

 The path to a directory that contains trusted SSL
CA certificates in PEM format

5.7.3

--ssl-
cert=file_name

 The name of the SSL certificate file to use for
establishing a secure connection

5.7.3

--ssl-
cipher=cipher_list

 A list of allowable ciphers to use for SSL
encryption

5.7.3

--ssl-
crl=file_name

 The path to a file that contains certificate
revocation lists

--ssl-
crlpath=dir_name

 The path to a directory that contains certificate
revocation list files

--ssl-
key=file_name

 The name of the SSL key file to use for
establishing a secure connection

5.7.3

--ssl-verify-server-
cert

 The server's Common Name value in its certificate
is verified against the host name used when
connecting to the server

5.7.3

mysqlbinlog — Utility for Processing Binary Log Files

383

Format Option File Description Introduced

--start-
datetime=datetime

start-datetime Read binary log from first event with timestamp
equal to or later than datetime argument

--start-position=# start-position Read binary log from first event with position equal
to or greater than argument

--stop-
datetime=datetime

stop-datetime Stop reading binary log at first event with
timestamp equal to or greater than datetime
argument

--stop-never stop-never Stay connected to server after reading last binary
log file

--stop-never-
slave-server-id=#

stop-never-slave-
server-id

Slave server ID to report when connecting to
server

--stop-position=# stop-position Stop reading binary log at first event with position
equal to or greater than argument

--to-last-log to-last-log Do not stop at the end of requested binary log
from a MySQL server, but rather continue printing
to end of last binary log

--
user=user_name,

user MySQL user name to use when connecting to
server

--verbose Reconstruct row events as SQL statements

--verify-binlog-
checksum

 Verify checksums in binary log

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --base64-output=value

This option determines when events should be displayed encoded as base-64 strings using BINLOG
statements. The option has these permissible values (not case sensitive):

• AUTO ("automatic") or UNSPEC ("unspecified") displays BINLOG statements automatically when
necessary (that is, for format description events and row events). If no --base64-output option
is given, the effect is the same as --base64-output=AUTO.

Note

Automatic BINLOG display is the only safe behavior if you intend to use the
output of mysqlbinlog to re-execute binary log file contents. The other
option values are intended only for debugging or testing purposes because
they may produce output that does not include all events in executable
form.

• NEVER causes BINLOG statements not to be displayed. mysqlbinlog exits with an error if a row
event is found that must be displayed using BINLOG.

• DECODE-ROWS specifies to mysqlbinlog that you intend for row events to be decoded and
displayed as commented SQL statements by also specifying the --verbose option. Like NEVER,
DECODE-ROWS suppresses display of BINLOG statements, but unlike NEVER, it does not exit with
an error if a row event is found.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.7.2, “mysqlbinlog Row Event Display”.

mysqlbinlog — Utility for Processing Binary Log Files

384

• --bind-address=ip_address

On a computer having multiple network interfaces, this option can be used to select which interface
is employed when connecting to the MySQL server.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Option-File Format binlog-row-event-max-size

Permitted Values

Platform
Bit Size

64

Type numeric

Default 4294967040

Range 256 .. 18446744073709547520

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 4GB.

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --database=db_name, -d db_name

This option causes mysqlbinlog to output entries from the binary log (local log only) that occur
while db_name is been selected as the default database by USE.

The --database option for mysqlbinlog is similar to the --binlog-do-db option for mysqld,
but can be used to specify only one database. If --database is given multiple times, only the last
instance is used.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --binlog-do-db depend on whether statement-based or
row-based logging is in use.

Statement-based logging. The --database option works as follows:

• While db_name is the default database, statements are output whether they modify tables in
db_name or a different database.

• Unless db_name is selected as the default database, statements are not output, even if they
modify tables in db_name.

• There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE. The
database being created, altered, or dropped is considered to be the default database when
determining whether to output the statement.

Suppose that the binary log was created by executing these statements using statement-based-
logging:

INSERT INTO test.t1 (i) VALUES(100);
INSERT INTO db2.t2 (j) VALUES(200);
USE test;
INSERT INTO test.t1 (i) VALUES(101);
INSERT INTO t1 (i) VALUES(102);
INSERT INTO db2.t2 (j) VALUES(201);
USE db2;
INSERT INTO test.t1 (i) VALUES(103);

mysqlbinlog — Utility for Processing Binary Log Files

385

INSERT INTO db2.t2 (j) VALUES(202);
INSERT INTO t2 (j) VALUES(203);

mysqlbinlog --database=test does not output the first two INSERT statements because there
is no default database. It outputs the three INSERT statements following USE test, but not the
three INSERT statements following USE db2.

mysqlbinlog --database=db2 does not output the first two INSERT statements because there
is no default database. It does not output the three INSERT statements following USE test, but
does output the three INSERT statements following USE db2.

Row-based logging. mysqlbinlog outputs only entries that change tables belonging to
db_name. The default database has no effect on this. Suppose that the binary log just described
was created using row-based logging rather than statement-based logging. mysqlbinlog --
database=test outputs only those entries that modify t1 in the test database, regardless of
whether USE was issued or what the default database is.

If a server is running with binlog_format set to MIXED and you want it to be possible to use
mysqlbinlog with the --database option, you must ensure that tables that are modified are in the
database selected by USE. (In particular, no cross-database updates should be used.)

Prior to MySQL 5.7.1, the --database option did not work correctly with a log written by a GTID-
enabled MySQL server. (Bug #15912728)

When used together with the --rewrite-db option (available in MySQL 5.7.1 and later), the --
rewrite-db option is applied first; then the --database option is applied, using the rewritten
database name. The order in which the options are provided makes no difference in this regard.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqlbinlog.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqlbinlog normally reads the [client] and [mysqlbinlog] groups.

mysqlbinlog — Utility for Processing Binary Log Files

386

If the --defaults-group-suffix=_other option is given, mysqlbinlog also reads the
[client_other] and [mysqlbinlog_other] groups.

• --disable-log-bin, -D

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-
log option and are sending the output to the same MySQL server. This option also is useful when
restoring after a crash to avoid duplication of the statements you have logged.

This option requires that you have the SUPER privilege. It causes mysqlbinlog to include a SET
sql_log_bin = 0 statement in its output to disable binary logging of the remaining output. The
SET statement is ineffective unless you have the SUPER privilege.

• --exclude-gtids=gtid_set

Do not display any of the groups listed in the gtid_set.

• --force-if-open, -F

Read binary log files even if they are open or were not closed properly.

• --force-read, -f

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a
warning, ignores the event, and continues. Without this option, mysqlbinlog stops if it reads such
an event.

• --hexdump, -H

Display a hex dump of the log in comments, as described in Section 4.6.7.1, “mysqlbinlog Hex
Dump Format”. The hex output can be helpful for replication debugging.

• --host=host_name, -h host_name

Get the binary log from the MySQL server on the given host.

• --idempotent

Tell the MySQL Server to use idempotent mode while processing updates; this causes suppression
of any duplicate-key or key-not-found errors that the server encounters in the current session while
processing updates. This option may prove useful whenever it is desirable or necessary to replay
one or more binary logs to a MySQL Server which may not contain all of the data to which the logs
refer.

The scope of effect for this option includes the current mysqlbinlog client and session only.

The --idempotent option was introduced in MySQL 5.7.0.

• --include-gtids=gtid_set

Display only the groups listed in the gtid_set.

• --local-load=path, -l path

Prepare local temporary files for LOAD DATA INFILE in the specified directory.

Important

These temporary files are not automatically removed by mysqlbinlog or
any other MySQL program.

• --login-path=name

mysqlbinlog — Utility for Processing Binary Log Files

387

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --offset=N, -o N

Skip the first N entries in the log.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlbinlog prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --plugin-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the --
default-auth option is used to specify an authentication plugin but mysqlbinlog does not find it.
See Section 6.3.8, “Pluggable Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for connecting to a remote server.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --raw

By default, mysqlbinlog reads binary log files and writes events in text format. The --raw option
tells mysqlbinlog to write them in their original binary format. Its use requires that --read-from-
remote-server also be used because the files are requested from a server. mysqlbinlog writes
one output file for each file read from the server. The --raw option can be used to make a backup
of a server's binary log. With the --stop-never option, the backup is “live” because mysqlbinlog
stays connected to the server. By default, output files are written in the current directory with the
same names as the original log files. Output file names can be modified using the --result-file
option. For more information, see Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log
Files”.

mysqlbinlog — Utility for Processing Binary Log Files

388

• --read-from-remote-master=type

Read binary logs from a MySQL server with the COM_BINLOG_DUMP or COM_BINLOG_DUMP_GTID
commands by setting the option value to either BINLOG-DUMP-NON-GTIDS or BINLOG-DUMP-
GTIDS, respectively. If --read-from-remote-master=BINLOG-DUMP-GTIDS is combined with
--exclude-gtids, transactions can be filtered out on the master, avoiding unnecessary network
traffic.

See also the description for --read-from-remote-server.

• --read-from-remote-server, -R

Read the binary log from a MySQL server rather than reading a local log file. Any connection
parameter options are ignored unless this option is given as well. These options are --host, --
password, --port, --protocol, --socket, and --user.

This option requires that the remote server be running. It works only for binary log files on the remote
server, not relay log files.

This option is like --read-from-remote-master=BINLOG-DUMP-NON-GTIDS.

• --result-file=name, -r name

Without the --raw option, this option indicates the file to which mysqlbinlog writes text output.
With --raw, mysqlbinlog writes one binary output file for each log file transferred from the server,
writing them by default in the current directory using the same names as the original log file. In this
case, the --result-file option value is treated as a prefix that modifies output file names.

• --rewrite-db='dboldname->dbnewname'

When reading from a row-based log, rewrite all occurrences of dboldname to dbnewname. For use
when restoring tables logged using the row-based format to a database having a different name from
the original database.

The rewrite rule employed as a value for this option is a string having the form 'dboldname-
>dbnewname', as shown previously, and for this reason must be enclosed by quotation marks.
These can be single or double quotation marks (' or ").

To employ multiple rewrite rules, specify the option multiple times, as shown here:

shell> mysqlbinlog --rewrite-db='dbcurrent->dbold' --rewrite-db='dbtest->dbcurrent' \
 binlog.00001 > /tmp/statements.sql

When used together with the --database option, the --rewrite-db option is applied first; then
--database option is applied, using the rewritten database name. The order in which the options
are provided makes no difference in this regard.

This means that, for example, if mysqlbinlog is started with --rewrite-db='mydb->yourdb'
--database=yourdb, then all updates to any tables in databases mydb and yourdb are included
in the output. On the other hand, if it is started with --rewrite-db='mydb->yourdb' --
database=mydb, then mysqlbinlog outputs no statements at all: since all updates to mydb are
first rewritten as updates to yourdb before applying the --database option, there remain no
updates that match --database=mydb.

This option was added in MySQL 5.7.1.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except
for servers that use the newer password format. This option is enabled by default; use --skip-
secure-auth to disable it. This option was added in MySQL 5.7.4.

mysqlbinlog — Utility for Processing Binary Log Files

389

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --server-id=id

Display only those events created by the server having the given server ID.

• --set-charset=charset_name

Add a SET NAMES charset_name statement to the output to specify the character set to be used
for processing log files.

• --short-form, -s

Display only the statements contained in the log, without any extra information or row-based events.
This is for testing only, and should not be used in production systems.

• --skip-gtids[=(true|false)]

Do not display any GTIDs in the output. This is needed when writing to a dump file from one or more
binary logs containing GTIDs, as shown in this example:

shell> mysqlbinlog --skip-gtids binlog.000001 > /tmp/dump.sql
shell> mysqlbinlog --skip-gtids binlog.000002 >> /tmp/dump.sql
shell> mysql -u root -p -e "source /tmp/dump.sql"

The use of this option is otherwise not normally recommended in production.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

• --start-datetime=datetime

Start reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. The datetime value is relative to the local time zone on the machine where you run
mysqlbinlog. The value should be in a format accepted for the DATETIME or TIMESTAMP data
types. For example:

shell> mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --start-position=N, -j N

Start reading the binary log at the first event having a position equal to or greater than N. This option
applies to the first log file named on the command line.

mysqlbinlog — Utility for Processing Binary Log Files

390

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. This option is useful for point-in-time recovery. See the description of the --start-
datetime option for information about the datetime value.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --stop-never

This option is used with --read-from-remote-server. It tells mysqlbinlog to remain
connected to the server. Otherwise mysqlbinlog exits when the last log file has been transferred
from the server. --stop-never implies --to-last-log, so only the first log file to transfer need
be named on the command line.

--stop-never is commonly used with --raw to make a live binary log backup, but also can be
used without --raw to maintain a continuous text display of log events as the server generates
them.

• --stop-never-slave-server-id=id

With --stop-never, mysqlbinlog reports a server ID of 65535 when it connects to the server.
--stop-never-slave-server-id explicitly specifies the server ID to report. It can be used to
avoid a conflict with the ID of a slave server or another mysqlbinlog process. See Section 4.6.7.4,
“Specifying the mysqlbinlog Server ID”.

• --stop-position=N

Stop reading the binary log at the first event having a position equal to or greater than N. This option
applies to the last log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --to-last-log, -t

Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing
until the end of the last binary log. If you send the output to the same MySQL server, this may lead to
an endless loop. This option requires --read-from-remote-server.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to a remote server.

• --verbose, -v

Reconstruct row events and display them as commented SQL statements. If this option is given
twice, the output includes comments to indicate column data types and some metadata.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.7.2, “mysqlbinlog Row Event Display”.

• --verify-binlog-checksum, -c

Verify checksums in binary log files.

• --version, -V

mysqlbinlog — Utility for Processing Binary Log Files

391

Display version information and exit.

In MySQL 5.7.1 and later, the mysqlbinlog version number shown when using this option is 3.4.
(Bug #15894381, Bug #67643)

You can also set the following variable by using --var_name=value syntax:

• open_files_limit

Specify the number of open file descriptors to reserve.

You can pipe the output of mysqlbinlog into the mysql client to execute the events contained in
the binary log. This technique is used to recover from a crash when you have an old backup (see
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”). For example:

shell> mysqlbinlog binlog.000001 | mysql -u root -p

Or:

shell> mysqlbinlog binlog.[0-9]* | mysql -u root -p

If the statements produced by mysqlbinlog may contain BLOB values, these may cause problems
when mysql processes them. In this case, invoke mysql with the --binary-mode option.

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the
statement log first (for example, to remove statements that you do not want to execute for some
reason). After editing the file, execute the statements that it contains by using it as input to the mysql
program:

shell> mysqlbinlog binlog.000001 > tmpfile
shell> ... edit tmpfile ...
shell> mysql -u root -p < tmpfile

When mysqlbinlog is invoked with the --start-position option, it displays only those events
with an offset in the binary log greater than or equal to a given position (the given position must match
the start of one event). It also has options to stop and start when it sees an event with a given date and
time. This enables you to perform point-in-time recovery using the --stop-datetime option (to be
able to say, for example, “roll forward my databases to how they were today at 10:30 a.m.”).

If you have more than one binary log to execute on the MySQL server, the safe method is to process
them all using a single connection to the server. Here is an example that demonstrates what may be
unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using multiple connections to the server causes problems if the first log
file contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that
uses the temporary table. When the first mysql process terminates, the server drops the temporary
table. When the second mysql process attempts to use the table, the server reports “unknown table.”

To avoid problems like this, use a single mysql process to execute the contents of all binary logs that
you want to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql

mysqlbinlog — Utility for Processing Binary Log Files

392

shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"

mysqlbinlog can produce output that reproduces a LOAD DATA INFILE operation without the
original data file. mysqlbinlog copies the data to a temporary file and writes a LOAD DATA LOCAL
INFILE statement that refers to the file. The default location of the directory where these files are
written is system-specific. To specify a directory explicitly, use the --local-load option.

Because mysqlbinlog converts LOAD DATA INFILE statements to LOAD DATA LOCAL INFILE
statements (that is, it adds LOCAL), both the client and the server that you use to process the
statements must be configured with the LOCAL capability enabled. See Section 6.1.6, “Security Issues
with LOAD DATA LOCAL”.

Warning

The temporary files created for LOAD DATA LOCAL statements are not
automatically deleted because they are needed until you actually execute those
statements. You should delete the temporary files yourself after you no longer
need the statement log. The files can be found in the temporary file directory
and have names like original_file_name-#-#.

4.6.7.1 mysqlbinlog Hex Dump Format

The --hexdump option causes mysqlbinlog to produce a hex dump of the binary log contents:

shell> mysqlbinlog --hexdump master-bin.000001

The hex output consists of comment lines beginning with #, so the output might look like this for the
preceding command:

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#051024 17:24:13 server id 1 end_log_pos 98
Position Timestamp Type Master ID Size Master Pos Flags
00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|
00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
at startup
ROLLBACK;

Hex dump output currently contains the elements in the following list. This format is subject to change.
(For more information about binary log format, see MySQL Internals: The Binary Log.

• Position: The byte position within the log file.

• Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation of
'051024 17:24:13' in hexadecimal.

• Type: The event type code. In the example shown, '0f' indicates a
FORMAT_DESCRIPTION_EVENT. The following table lists the possible type codes.

TypeName Meaning

00 UNKNOWN_EVENT This event should never be present in the log.

01 START_EVENT_V3 This indicates the start of a log file written by MySQL 4 or
earlier.

02 QUERY_EVENT The most common type of events. These contain
statements executed on the master.

http://dev.mysql.com/doc/internals/en/binary-log.html

mysqlbinlog — Utility for Processing Binary Log Files

393

TypeName Meaning

03 STOP_EVENT Indicates that master has stopped.

04 ROTATE_EVENT Written when the master switches to a new log file.

05 INTVAR_EVENT Used for AUTO_INCREMENT values or when the
LAST_INSERT_ID() function is used in the statement.

06 LOAD_EVENT Used for LOAD DATA INFILE in MySQL 3.23.

07 SLAVE_EVENT Reserved for future use.

08 CREATE_FILE_EVENT Used for LOAD DATA INFILE statements. This indicates
the start of execution of such a statement. A temporary file
is created on the slave. Used in MySQL 4 only.

09 APPEND_BLOCK_EVENT Contains data for use in a LOAD DATA INFILE statement.
The data is stored in the temporary file on the slave.

0a EXEC_LOAD_EVENT Used for LOAD DATA INFILE statements. The contents of
the temporary file is stored in the table on the slave. Used
in MySQL 4 only.

0b DELETE_FILE_EVENT Rollback of a LOAD DATA INFILE statement. The
temporary file should be deleted on the slave.

0c NEW_LOAD_EVENT Used for LOAD DATA INFILE in MySQL 4 and earlier.

0d RAND_EVENT Used to send information about random values if the
RAND() function is used in the statement.

0e USER_VAR_EVENT Used to replicate user variables.

0f FORMAT_DESCRIPTION_EVENT This indicates the start of a log file written by MySQL 5 or
later.

10 XID_EVENT Event indicating commit of an XA transaction.

11 BEGIN_LOAD_QUERY_EVENT Used for LOAD DATA INFILE statements in MySQL 5 and
later.

12 EXECUTE_LOAD_QUERY_EVENT Used for LOAD DATA INFILE statements in MySQL 5 and
later.

13 TABLE_MAP_EVENT Information about a table definition. Used in MySQL 5.1.5
and later.

14 PRE_GA_WRITE_ROWS_EVENT Row data for a single table that should be created. Used in
MySQL 5.1.5 to 5.1.17.

15 PRE_GA_UPDATE_ROWS_EVENT Row data for a single table that needs to be updated. Used
in MySQL 5.1.5 to 5.1.17.

16 PRE_GA_DELETE_ROWS_EVENT Row data for a single table that should be deleted. Used in
MySQL 5.1.5 to 5.1.17.

17 WRITE_ROWS_EVENT Row data for a single table that should be created. Used in
MySQL 5.1.18 and later.

18 UPDATE_ROWS_EVENT Row data for a single table that needs to be updated. Used
in MySQL 5.1.18 and later.

19 DELETE_ROWS_EVENT Row data for a single table that should be deleted. Used in
MySQL 5.1.18 and later.

1a INCIDENT_EVENT Something out of the ordinary happened. Added in MySQL
5.1.18.

• Master ID: The server ID of the master that created the event.

• Size: The size in bytes of the event.

mysqlbinlog — Utility for Processing Binary Log Files

394

• Master Pos: The position of the next event in the original master log file.

• Flags: 16 flags. Currently, the following flags are used. The others are reserved for future use.

Flag Name Meaning

01 LOG_EVENT_BINLOG_IN_USE_F Log file correctly closed. (Used only in
FORMAT_DESCRIPTION_EVENT.) If this flag is
set (if the flags are, for example, '01 00') in a
FORMAT_DESCRIPTION_EVENT, the log file has not been
properly closed. Most probably this is because of a master
crash (for example, due to power failure).

02 Reserved for future use.

04 LOG_EVENT_THREAD_SPECIFIC_FSet if the event is dependent on the connection it was
executed in (for example, '04 00'), for example, if the
event uses temporary tables.

08 LOG_EVENT_SUPPRESS_USE_F Set in some circumstances when the event is not
dependent on the default database.

4.6.7.2 mysqlbinlog Row Event Display

The following examples illustrate how mysqlbinlog displays row events that specify data
modifications. These correspond to events with the WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT, and
DELETE_ROWS_EVENT type codes. The --base64-output=DECODE-ROWS and --verbose options
may be used to affect row event output.

Suppose that the server is using row-based binary logging and that you execute the following
sequence of statements:

CREATE TABLE t
(
 id INT NOT NULL,
 name VARCHAR(20) NOT NULL,
 date DATE NULL
) ENGINE = InnoDB;

START TRANSACTION;
INSERT INTO t VALUES(1, 'apple', NULL);
UPDATE t SET name = 'pear', date = '2009-01-01' WHERE id = 1;
DELETE FROM t WHERE id = 1;
COMMIT;

By default, mysqlbinlog displays row events encoded as base-64 strings using BINLOG statements.
Omitting extraneous lines, the output for the row events produced by the preceding statement
sequence looks like this:

shell> mysqlbinlog log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP

mysqlbinlog — Utility for Processing Binary Log Files

395

'/*!*/;
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;

To see the row events as comments in the form of “pseudo-SQL” statements, run mysqlbinlog with
the --verbose or -v option. The output will contain lines beginning with ###:

shell> mysqlbinlog -v log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

Specify --verbose or -v twice to also display data types and some metadata for each column. The
output will contain an additional comment following each column change:

shell> mysqlbinlog -vv log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;

mysqlbinlog — Utility for Processing Binary Log Files

396

INSERT INTO test.t
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

You can tell mysqlbinlog to suppress the BINLOG statements for row events by using the --
base64-output=DECODE-ROWS option. This is similar to --base64-output=NEVER but does not
exit with an error if a row event is found. The combination of --base64-output=DECODE-ROWS and
--verbose provides a convenient way to see row events only as SQL statements:

shell> mysqlbinlog -v --base64-output=DECODE-ROWS log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

mysqlbinlog — Utility for Processing Binary Log Files

397

Note

You should not suppress BINLOG statements if you intend to re-execute
mysqlbinlog output.

The SQL statements produced by --verbose for row events are much more readable than the
corresponding BINLOG statements. However, they do not correspond exactly to the original SQL
statements that generated the events. The following limitations apply:

• The original column names are lost and replaced by @N, where N is a column number.

• Character set information is not available in the binary log, which affects string column display:

• There is no distinction made between corresponding binary and nonbinary string types (BINARY
and CHAR, VARBINARY and VARCHAR, BLOB and TEXT). The output uses a data type of STRING
for fixed-length strings and VARSTRING for variable-length strings.

• For multi-byte character sets, the maximum number of bytes per character is not present in
the binary log, so the length for string types is displayed in bytes rather than in characters. For
example, STRING(4) will be used as the data type for values from either of these column types:

CHAR(4) CHARACTER SET latin1
CHAR(2) CHARACTER SET ucs2

• Due to the storage format for events of type UPDATE_ROWS_EVENT, UPDATE statements are
displayed with the WHERE clause preceding the SET clause.

Proper interpretation of row events requires the information from the format description event at the
beginning of the binary log. Because mysqlbinlog does not know in advance whether the rest of the
log contains row events, by default it displays the format description event using a BINLOG statement
in the initial part of the output.

If the binary log is known not to contain any events requiring a BINLOG statement (that is, no row
events), the --base64-output=NEVER option can be used to prevent this header from being written.

4.6.7.3 Using mysqlbinlog to Back Up Binary Log Files

By default, mysqlbinlog reads binary log files and displays their contents in text format. This enables
you to examine events within the files more easily and to re-execute them (for example, by using the
output as input to mysql). mysqlbinlog can read log files directly from the local file system, or, with
the --read-from-remote-server option, it can connect to a server and request binary log contents
from that server. mysqlbinlog writes text output to its standard output, or to the file named as the
value of the --result-file=file_name option if that option is given.

mysqlbinlog can read binary log files and write new files containing the same content—that is,
in binary format rather than text format. This capability enables you to easily back up a binary log
in its original format. mysqlbinlog can make a static backup, backing up a set of log files and
stopping when the end of the last file is reached. It can also make a continuous (“live”) backup, staying
connected to the server when it reaches the end of the last log file and continuing to copy new events
as they are generated. In continuous-backup operation, mysqlbinlog runs until the connection ends
(for example, when the server exits) or mysqlbinlog is forcibly terminated. When the connection
ends, mysqlbinlog does not wait and retry the connection, unlike a slave replication server. To
continue a live backup after the server has been restarted, you must also restart mysqlbinlog.

Binary log backup requires that you invoke mysqlbinlog with two options at minimum:

• The --read-from-remote-server (or -R) option tells mysqlbinlog to connect to a server and
request its binary log. (This is similar to a slave replication server connecting to its master server.)

• The --raw option tells mysqlbinlog to write raw (binary) output, not text output.

mysqlbinlog — Utility for Processing Binary Log Files

398

Along with --read-from-remote-server, it is common to specify other options: --host indicates
where the server is running, and you may also need to specify connection options such as --user and
--password.

Several other options are useful in conjunction with --raw:

• --stop-never: Stay connected to the server after reaching the end of the last log file and continue
to read new events.

• --stop-never-slave-server-id=id: The server ID that mysqlbinlog reports to the server
when --stop-never is used. The default is 65535. This can be used to avoid a conflict with
the ID of a slave server or another mysqlbinlog process. See Section 4.6.7.4, “Specifying the
mysqlbinlog Server ID”.

• --result-file: A prefix for output file names, as described later.

To back up a server's binary log files with mysqlbinlog, you must specify file names that actually
exist on the server. If you do not know the names, connect to the server and use the SHOW BINARY
LOGS statement to see the current names. Suppose that the statement produces this output:

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
binlog.000130	27459
binlog.000131	13719
binlog.000132	43268
+---------------+-----------+

With that information, you can use mysqlbinlog to back up the binary log to the current directory as
follows (enter each command on a single line):

• To make a static backup of binlog.000130 through binlog.000132, use either of these
commands:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 binlog.000130 binlog.000131 binlog.000132

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --to-last-log binlog.000130

The first command specifies every file name explicitly. The second names only the first file and uses
--to-last-log to read through the last. A difference between these commands is that if the server
happens to open binlog.000133 before mysqlbinlog reaches the end of binlog.000132, the
first command will not read it, but the second command will.

• To make a live backup in which mysqlbinlog starts with binlog.000130 to copy existing log
files, then stays connected to copy new events as the server generates them:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000130

With --stop-never, it is not necessary to specify --to-last-log to read to the last log file
because that option is implied.

Output File Naming

Without --raw, mysqlbinlog produces text output and the --result-file option, if given,
specifies the name of the single file to which all output is written. With --raw, mysqlbinlog writes
one binary output file for each log file transferred from the server. By default, mysqlbinlog writes
the files in the current directory with the same names as the original log files. To modify the output file

mysqlbinlog — Utility for Processing Binary Log Files

399

names, use the --result-file option. In conjunction with --raw, the --result-file option value
is treated as a prefix that modifies the output file names.

Suppose that a server currently has binary log files named binlog.000999 and up. If you use
mysqlbinlog --raw to back up the files, the --result-file option produces output file names as
shown in the following table. You can write the files to a specific directory by beginning the --result-
file value with the directory path. If the --result-file value consists only of a directory name, the
value must end with the pathname separator character. Output files are overwritten if they exist.

--result-file Option Output File Names

--result-file=x xbinlog.000999 and up

--result-file=/tmp/ /tmp/binlog.000999 and up

--result-file=/tmp/x /tmp/xbinlog.000999 and up

Example: mysqldump + mysqlbinlog for Backup and Restore

The following example describes a simple scenario that shows how to use mysqldump and
mysqlbinlog together to back up a server's data and binary log, and how to use the backup to
restore the server if data loss occurs. The example assumes that the server is running on host
host_name and its first binary log file is named binlog.000999. Enter each command on a single
line.

Use mysqlbinlog to make a continuous backup of the binary log:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000999

Use mysqldump to create a dump file as a snapshot of the server's data. Use --all-databases, --
events, and --routines to back up all data, and --master-data=2 to include the current binary
log coordinates in the dump file.

mysqldump --host=host_name --all-databases --events --routines --master-data=2> dump_file

Execute the mysqldump command periodically to create newer snapshots as desired.

If data loss occurs (for example, if the server crashes), use the most recent dump file to restore the
data:

mysql --host=host_name -u root -p < dump_file

Then use the binary log backup to re-execute events that were written after the coordinates listed in the
dump file. Suppose that the coordinates in the file look like this:

-- CHANGE MASTER TO MASTER_LOG_FILE='binlog.001002', MASTER_LOG_POS=27284;

If the most recent backed-up log file is named binlog.001004, re-execute the log events like this:

mysqlbinlog --start-position=27284 binlog.001002 binlog.001003 binlog.001004
 | mysql --host=host_name -u root -p

You might find it easier to copy the backup files (dump file and binary log files) to the server host to
make it easier to perform the restore operation, or if MySQL does not allow remote root access.

4.6.7.4 Specifying the mysqlbinlog Server ID

When invoked with the --read-from-remote-server option, mysqlbinlog connects to a MySQL
server, specifies a server ID to identify itself, and requests binary log files from the server. You can use
mysqlbinlog to request log files from a server in several ways:

mysqldumpslow — Summarize Slow Query Log Files

400

• Specify an explicitly named set of files: For each file, mysqlbinlog connects and issues a Binlog
dump command. The server sends the file and disconnects. There is one connection per file.

• Specify the beginning file and --to-last-log: mysqlbinlog connects and issues a Binlog
dump command for all files. The server sends all files and disconnects.

• Specify the beginning file and --stop-never (which implies --to-last-log): mysqlbinlog
connects and issues a Binlog dump command for all files. The server sends all files, but does not
disconnect after sending the last one.

With --read-from-remote-server only, mysqlbinlog connects using a server ID of 0, which
tells the server to disconnect after sending the last requested log file.

With --read-from-remote-server and --stop-never, mysqlbinlog connects using a nonzero
server ID, so the server does not disconnect after sending the last log file. The server ID is 65535 by
default, but this can be changed with --stop-never-slave-server-id.

Thus, for the first two ways of requesting files, the server disconnects because mysqlbinlog specifies
a server ID of 0. It does not disconnect if --stop-never is given because mysqlbinlog specifies a
nonzero server ID.

4.6.8 mysqldumpslow — Summarize Slow Query Log Files

The MySQL slow query log contains information about queries that take a long time to execute (see
Section 5.2.5, “The Slow Query Log”). mysqldumpslow parses MySQL slow query log files and prints
a summary of their contents.

Normally, mysqldumpslow groups queries that are similar except for the particular values of number
and string data values. It “abstracts” these values to N and 'S' when displaying summary output. The
-a and -n options can be used to modify value abstracting behavior.

Invoke mysqldumpslow like this:

shell> mysqldumpslow [options] [log_file ...]

mysqldumpslow supports the following options.

Table 4.16 mysqldumpslow Options

Format Option File Description

-a Do not abstract all numbers to N and strings to S

-n num Abstract numbers with at least the specified digits

--debug debug Write debugging information

-g pattern Only consider statements that match the pattern

--help Display help message and exit

-h name Host name of the server in the log file name

-i name Name of the server instance

-l Do not subtract lock time from total time

-r Reverse the sort order

-s value How to sort output

-t num Display only first num queries

--verbose verbose Verbose mode

• --help

mysqldumpslow — Summarize Slow Query Log Files

401

Display a help message and exit.

• -a

Do not abstract all numbers to N and strings to 'S'.

• --debug, -d

Run in debug mode.

• -g pattern

Consider only queries that match the (grep-style) pattern.

• -h host_name

Host name of MySQL server for *-slow.log file name. The value can contain a wildcard. The
default is * (match all).

• -i name

Name of server instance (if using mysql.server startup script).

• -l

Do not subtract lock time from total time.

• -n N

Abstract numbers with at least N digits within names.

• -r

Reverse the sort order.

• -s sort_type

How to sort the output. The value of sort_type should be chosen from the following list:

• t, at: Sort by query time or average query time

• l, al: Sort by lock time or average lock time

• r, ar: Sort by rows sent or average rows sent

• c: Sort by count

By default, mysqldumpslow sorts by average query time (equivalent to -s at).

• -t N

Display only the first N queries in the output.

• --verbose, -v

Verbose mode. Print more information about what the program does.

Example of usage:

shell> mysqldumpslow

Reading mysql slow query log from /usr/local/mysql/data/mysqld51-apple-slow.log

mysqlhotcopy — A Database Backup Program

402

Count: 1 Time=4.32s (4s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1

Count: 3 Time=2.53s (7s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1 limit N

Count: 3 Time=2.13s (6s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t1 select * from t1

4.6.9 mysqlhotcopy — A Database Backup Program

mysqlhotcopy is a Perl script that was originally written and contributed by Tim Bunce. It uses FLUSH
TABLES, LOCK TABLES, and cp or scp to make a database backup. It is a fast way to make a backup
of the database or single tables, but it can be run only on the same machine where the database
directories are located. mysqlhotcopy works only for backing up MyISAM and ARCHIVE tables. It
runs on Unix.

To use mysqlhotcopy, you must have read access to the files for the tables that you are backing up,
the SELECT privilege for those tables, the RELOAD privilege (to be able to execute FLUSH TABLES),
and the LOCK TABLES privilege (to be able to lock the tables).

shell> mysqlhotcopy db_name [/path/to/new_directory]

shell> mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory

Back up tables in the given database that match a regular expression:

shell> mysqlhotcopy db_name./regex/

The regular expression for the table name can be negated by prefixing it with a tilde (“~”):

shell> mysqlhotcopy db_name./~regex/

mysqlhotcopy supports the following options, which can be specified on the command line or in the
[mysqlhotcopy] and [client] groups of an option file. For information about option files, see
Section 4.2.3.3, “Using Option Files”.

Table 4.17 mysqlhotcopy Options

Format Option File Description

--addtodest addtodest Do not rename target directory (if it exists); merely add
files to it

--allowold allowold Do not abort if a target exists; rename it by adding an
_old suffix

--
checkpoint=db_name.tbl_name

checkpoint Insert checkpoint entries

--chroot=path chroot Base directory of the chroot jail in which mysqld operates

--debug debug Write a debugging log

--dryrun dryrun Report actions without performing them

--flushlog flushlog Flush logs after all tables are locked

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--keepold keepold Do not delete previous (renamed) target when done

--method method The method for copying files

mysqlhotcopy — A Database Backup Program

403

Format Option File Description

--noindices noindices Do not include full index files in the backup

--old_server old_server Connect to server that does not support FLUSH TABLES
tbl_list WITH READ LOCK

--
password[=password]

password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

--quiet quiet Be silent except for errors

--regexp regexp Copy all databases with names that match the given
regular expression

--resetmaster resetmaster Reset the binary log after locking all the tables

--resetslave resetslave Reset the master.info file after locking all the tables

--socket=path socket For connections to localhost

--tmpdir=path tmpdir The temporary directory

--user=user_name, user MySQL user name to use when connecting to server

• --help, -?

Display a help message and exit.

• --addtodest

Do not rename target directory (if it exists); merely add files to it.

• --allowold

Do not abort if a target exists; rename it by adding an _old suffix.

• --checkpoint=db_name.tbl_name

Insert checkpoint entries into the specified database db_name and table tbl_name.

• --chroot=path

Base directory of the chroot jail in which mysqld operates. The path value should match that of
the --chroot option given to mysqld.

• --debug

Enable debug output.

• --dryrun, -n

Report actions without performing them.

• --flushlog

Flush logs after all tables are locked.

• --host=host_name, -h host_name

The host name of the local host to use for making a TCP/IP connection to the local server. By
default, the connection is made to localhost using a Unix socket file.

• --keepold

Do not delete previous (renamed) target when done.

mysqlhotcopy — A Database Backup Program

404

• --method=command

The method for copying files (cp or scp). The default is cp.

• --noindices

Do not include full index files for MyISAM tables in the backup. This makes the backup smaller and
faster. The indexes for reloaded tables can be reconstructed later with myisamchk -rq.

• --password=password, -ppassword

The password to use when connecting to the server. The password value is not optional for this
option, unlike for other MySQL programs.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --port=port_num, -P port_num

The TCP/IP port number to use when connecting to the local server.

• --old_server

In MySQL 5.7, mysqlhotcopy uses FLUSH TABLES tbl_list WITH READ LOCK to flush and
lock tables. Use the --old_server option if the server is older than 5.5.3, which is when that
statement was introduced.

• --quiet, -q

Be silent except for errors.

• --record_log_pos=db_name.tbl_name

Record master and slave status in the specified database db_name and table tbl_name.

• --regexp=expr

Copy all databases with names that match the given regular expression.

• --resetmaster

Reset the binary log after locking all the tables.

• --resetslave

Reset the master info repository file or table after locking all the tables.

• --socket=path, -S path

The Unix socket file to use for connections to localhost.

• --suffix=str

The suffix to use for names of copied databases.

• --tmpdir=path

The temporary directory. The default is /tmp.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

mysql_waitpid — Kill Process and Wait for Its Termination

405

Use perldoc for additional mysqlhotcopy documentation, including information about the structure
of the tables needed for the --checkpoint and --record_log_pos options:

shell> perldoc mysqlhotcopy

4.6.10 mysql_waitpid — Kill Process and Wait for Its Termination

mysql_waitpid signals a process to terminate and waits for the process to exit. It uses the kill()
system call and Unix signals, so it runs on Unix and Unix-like systems.

Invoke mysql_waitpid like this:

shell> mysql_waitpid [options] pid wait_time

mysql_waitpid sends signal 0 to the process identified by pid and waits up to wait_time seconds
for the process to terminate. pid and wait_time must be positive integers.

If process termination occurs within the wait time or the process does not exist, mysql_waitpid
returns 0. Otherwise, it returns 1.

If the kill() system call cannot handle signal 0, mysql_waitpid() uses signal 1 instead.

mysql_waitpid supports the following options:

• --help, -?, -I

Display a help message and exit.

• --verbose, -v

Verbose mode. Display a warning if signal 0 could not be used and signal 1 is used instead.

• --version, -V

Display version information and exit.

4.6.11 mysql_zap — Kill Processes That Match a Pattern

mysql_zap kills processes that match a pattern. It uses the ps command and Unix signals, so it runs
on Unix and Unix-like systems.

Invoke mysql_zap like this:

shell> mysql_zap [-signal] [-?Ift] pattern

A process matches if its output line from the ps command contains the pattern. By default, mysql_zap
asks for confirmation for each process. Respond y to kill the process, or q to exit mysql_zap. For any
other response, mysql_zap does not attempt to kill the process.

If the -signal option is given, it specifies the name or number of the signal to send to each process.
Otherwise, mysql_zap tries first with TERM (signal 15) and then with KILL (signal 9).

mysql_zap supports the following additional options:

• --help, -?, -I

Display a help message and exit.

• -f

Force mode. mysql_zap attempts to kill each process without confirmation.

MySQL Program Development Utilities

406

• -t

Test mode. Display information about each process but do not kill it.

4.7 MySQL Program Development Utilities
This section describes some utilities that you may find useful when developing MySQL programs.

In shell scripts, you can use the my_print_defaults program to parse option files and see
what options would be used by a given program. The following example shows the output that
my_print_defaults might produce when asked to show the options found in the [client] and
[mysql] groups:

shell> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note for developers: Option file handling is implemented in the C client library simply by processing
all options in the appropriate group or groups before any command-line arguments. This works well
for programs that use the last instance of an option that is specified multiple times. If you have a C or
C++ program that handles multiply specified options this way but that doesn't read option files, you
need add only two lines to give it that capability. Check the source code of any of the standard MySQL
clients to see how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them
provide a way to access option file contents. These include Perl and Python. For details, see the
documentation for your preferred interface.

4.7.1 mysql_config — Display Options for Compiling Clients

mysql_config provides you with useful information for compiling your MySQL client and connecting it
to MySQL. It is a shell script, so it is available only on Unix and Unix-like systems.

Note

As of MySQL 5.7.4, for binary distributions for Solaris, mysql_config does
not provide arguments for linking with the embedded library. To get linking
arguments for the embedded library, use the mysql_server_config script
instead.

mysql_config supports the following options.

• --cflags

C Compiler flags to find include files and critical compiler flags and defines used when compiling the
libmysqlclient library. The options returned are tied to the specific compiler that was used when
the library was created and might clash with the settings for your own compiler. Use --include for
more portable options that contain only include paths.

• --cxxflags

Like --cflags, but for C++ compiler flags.

• --include

Compiler options to find MySQL include files.

• --libmysqld-libs, --embedded

Libraries and options required to link with the MySQL embedded server.

my_print_defaults — Display Options from Option Files

407

• --libs

Libraries and options required to link with the MySQL client library.

• --libs_r

Libraries and options required to link with the thread-safe MySQL client library. In MySQL 5.7, all
client libraries are thread-safe, so this option need not be used. The --libs option can be used in
all cases.

• --plugindir

The default plugin directory path name, defined when configuring MySQL.

• --port

The default TCP/IP port number, defined when configuring MySQL.

• --socket

The default Unix socket file, defined when configuring MySQL.

• --version

Version number for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their
values:

shell> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
 --cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --include [-I/usr/local/mysql/include/mysql]
 --libs [-L/usr/local/mysql/lib/mysql -lmysqlclient
 -lpthread -lm -lrt -lssl -lcrypto -ldl]
 --libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r
 -lpthread -lm -lrt -lssl -lcrypto -ldl]
 --socket [/tmp/mysql.sock]
 --port [3306]
 --version [5.7.1]
 --libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld
 -lpthread -lm -lrt -lssl -lcrypto -ldl -lcrypt]

You can use mysql_config within a command line using backticks to include the output that it
produces for a particular option. For example, to compile and link a MySQL client program, use
mysql_config as follows:

shell> gcc -c `mysql_config --cflags` progname.c
shell> gcc -o progname progname.o `mysql_config --libs`

4.7.2 my_print_defaults — Display Options from Option Files

my_print_defaults displays the options that are present in option groups of option files. The output
indicates what options will be used by programs that read the specified option groups. For example, the
mysqlcheck program reads the [mysqlcheck] and [client] option groups. To see what options
are present in those groups in the standard option files, invoke my_print_defaults like this:

shell> my_print_defaults mysqlcheck client
--user=myusername
--password=secret
--host=localhost

resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

408

The output consists of options, one per line, in the form that they would be specified on the command
line.

my_print_defaults supports the following options.

• --help, -?

Display a help message and exit.

• --config-file=file_name, --defaults-file=file_name, -c file_name

Read only the given option file.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/my_print_defaults.trace.

• --defaults-extra-file=file_name, --extra-file=file_name, -e file_name

Read this option file after the global option file but (on Unix) before the user option file.

• --defaults-group-suffix=suffix, -g suffix

In addition to the groups named on the command line, read groups that have the given suffix.

• --login-path=name, -l name

Read options from the named login path in the .mylogin.cnf login file. A “login path” is an
option group that permits only a limited set of options: host, user, and password. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• --no-defaults, -n

Return an empty string.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to
Symbols

resolve_stack_dump resolves a numeric stack dump to symbols.

Invoke resolve_stack_dump like this:

shell> resolve_stack_dump [options] symbols_file [numeric_dump_file]

The symbols file should include the output from the nm --numeric-sort mysqld command. The
numeric dump file should contain a numeric stack track from mysqld. If no numeric dump file is named
on the command line, the stack trace is read from the standard input.

resolve_stack_dump supports the following options.

• --help, -h

Miscellaneous Programs

409

Display a help message and exit.

• --numeric-dump-file=file_name, -n file_name

Read the stack trace from the given file.

• --symbols-file=file_name, -s file_name

Use the given symbols file.

• --version, -V

Display version information and exit.

For more information, see Section 22.4.1.5, “Using a Stack Trace”.

4.8 Miscellaneous Programs

4.8.1 perror — Explain Error Codes

For most system errors, MySQL displays, in addition to an internal text message, the system error code
in one of the following styles:

message ... (errno: #)
message ... (Errcode: #)

You can find out what the error code means by examining the documentation for your system or by
using the perror utility.

perror prints a description for a system error code or for a storage engine (table handler) error code.

Invoke perror like this:

shell> perror [options] errorcode ...

Example:

shell> perror 13 64
OS error code 13: Permission denied
OS error code 64: Machine is not on the network

To obtain the error message for a MySQL Cluster error code, invoke perror with the --ndb option:

shell> perror --ndb errorcode

Note that the meaning of system error messages may be dependent on your operating system. A given
error code may mean different things on different operating systems.

perror supports the following options.

• --help, --info, -I, -?

Display a help message and exit.

• --ndb

Print the error message for a MySQL Cluster error code.

• --silent, -s

replace — A String-Replacement Utility

410

Silent mode. Print only the error message.

• --verbose, -v

Verbose mode. Print error code and message. This is the default behavior.

• --version, -V

Display version information and exit.

4.8.2 replace — A String-Replacement Utility

The replace utility program changes strings in place in files or on the standard input.

Invoke replace in one of the following ways:

shell> replace from to [from to] ... -- file_name [file_name] ...
shell> replace from to [from to] ... < file_name

from represents a string to look for and to represents its replacement. There can be one or more pairs
of strings.

Use the -- option to indicate where the string-replacement list ends and the file names begin. In this
case, any file named on the command line is modified in place, so you may want to make a copy of
the original before converting it. replace prints a message indicating which of the input files it actually
modifies.

If the -- option is not given, replace reads the standard input and writes to the standard output.

replace uses a finite state machine to match longer strings first. It can be used to swap strings. For
example, the following command swaps a and b in the given files, file1 and file2:

shell> replace a b b a -- file1 file2 ...

replace supports the following options.

• -?, -I

Display a help message and exit.

• -#debug_options

Enable debugging.

• -s

Silent mode. Print less information what the program does.

• -v

Verbose mode. Print more information about what the program does.

• -V

Display version information and exit.

4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa

The resolveip utility resolves host names to IP addresses and vice versa.

Invoke resolveip like this:

resolveip — Resolve Host name to IP Address or Vice Versa

411

shell> resolveip [options] {host_name|ip-addr} ...

resolveip supports the following options.

• --help, --info, -?, -I

Display a help message and exit.

• --silent, -s

Silent mode. Produce less output.

• --version, -V

Display version information and exit.

412

413

Chapter 5 MySQL Server Administration

Table of Contents
5.1 The MySQL Server ... 413

5.1.1 Server Option and Variable Reference .. 414
5.1.2 Server Configuration Defaults .. 444
5.1.3 Server Command Options ... 444
5.1.4 Server System Variables ... 477
5.1.5 Using System Variables .. 587
5.1.6 Server Status Variables .. 600
5.1.7 Server SQL Modes ... 626
5.1.8 Server Plugins .. 638
5.1.9 IPv6 Support .. 642
5.1.10 Server-Side Help .. 646
5.1.11 Server Response to Signals .. 647
5.1.12 The Shutdown Process ... 647

5.2 MySQL Server Logs .. 649
5.2.1 Selecting General Query and Slow Query Log Output Destinations 649
5.2.2 The Error Log ... 651
5.2.3 The General Query Log .. 653
5.2.4 The Binary Log ... 654
5.2.5 The Slow Query Log .. 665
5.2.6 Server Log Maintenance ... 667

5.3 Running Multiple MySQL Instances on One Machine .. 668
5.3.1 Setting Up Multiple Data Directories .. 669
5.3.2 Running Multiple MySQL Instances on Windows .. 671
5.3.3 Running Multiple MySQL Instances on Unix ... 673
5.3.4 Using Client Programs in a Multiple-Server Environment ... 674

5.4 Tracing mysqld Using DTrace .. 675
5.4.1 mysqld DTrace Probe Reference ... 676

MySQL Server (mysqld) is the main program that does most of the work in a MySQL installation. This
chapter provides an overview of MySQL Server and covers general server administration:

• Server configuration.

• The server log files.

• Management of multiple servers on a single machine.

For additional information on administrative topics, see also:

• Chapter 6, Security

• Chapter 7, Backup and Recovery

• Chapter 16, Replication

5.1 The MySQL Server
mysqld is the MySQL server. The following discussion covers these MySQL server configuration
topics:

• Startup options that the server supports. You can specify these options on the command line,
through configuration files, or both.

• Server system variables. These variables reflect the current state and values of the startup options,
some of which can be modified while the server is running.

Server Option and Variable Reference

414

• Server status variables. These variables contain counters and statistics about runtime operation.

• How to set the server SQL mode. This setting modifies certain aspects of SQL syntax and
semantics, for example for compatibility with code from other database systems, or to control the
error handling for particular situations.

• The server shutdown process. There are performance and reliability considerations depending on
the type of table (transactional or nontransactional) and whether you use replication.

Note

Not all storage engines are supported by all MySQL server binaries and
configurations. To find out how to determine which storage engines your
MySQL server installation supports, see Section 13.7.5.15, “SHOW ENGINES
Syntax”.

5.1.1 Server Option and Variable Reference

The following table provides a list of all the command line options, server and status variables
applicable within mysqld.

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with notification
of where each option/variable is valid. If a server option set on the command line or in an option file
differs from the name of the corresponding server system or status variable, the variable name is noted
immediately below the corresponding option. For status variables, the scope of the variable is shown
(Scope) as either global, session, or both. Please see the corresponding sections for details on setting
and using the options and variables. Where appropriate, a direct link to further information on the item
as available.

Table 5.1 Option/Variable Summary

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

abort-slave-
event-count

Yes Yes

Aborted_clients Yes Global No

Aborted_connects Yes Global No

allow-suspicious-
udfs

Yes Yes

ansi Yes Yes

audit_log_format Yes Global No

auto_increment_increment Yes Both Yes

auto_increment_offset Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privileges Yes Global Yes

back_log Yes Global No

basedir Yes Yes Yes Global No

big-tables Yes Yes Both Yes

- Variable:
big_tables

 Yes Both Yes

bind-address Yes Yes Global No

- Variable:
bind_address

 Yes Global No

Binlog_cache_disk_use Yes Global No

Server Option and Variable Reference

415

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

binlog_cache_sizeYes Yes Yes Global Yes

Binlog_cache_use Yes Global No

binlog-checksum Yes Yes

binlog_checksum Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog-do-db Yes Yes

binlog-format Yes Yes Both Yes

- Variable:
binlog_format

 Yes Both Yes

binlog-ignore-db Yes Yes

binlog_max_flush_queue_time Yes Global Yes

binlog_order_commits Yes Global Yes

binlog-row-event-
max-size

Yes Yes

binlog_row_image Yes Yes Yes Both Yes

binlog_rows_query_log_events Yes Both Yes

binlog-rows-
query-log-events

Yes Yes

- Variable:
binlog_rows_query_log_events

Binlog_stmt_cache_disk_use Yes Global No

binlog_stmt_cache_sizeYes Yes Yes Global Yes

Binlog_stmt_cache_use Yes Global No

block_encryption_modeYes Yes Yes Both Yes

bootstrap Yes Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

Bytes_received Yes Both No

Bytes_sent Yes Both No

character_set_client Yes Both Yes

character-set-
client-handshake

Yes Yes

character_set_connection Yes Both Yes

character_set_databasea Yes Both Yes

character-set-
filesystem

Yes Yes Both Yes

- Variable:
character_set_filesystem

 Yes Both Yes

character_set_results Yes Both Yes

character-set-
server

Yes Yes Both Yes

- Variable:
character_set_server

 Yes Both Yes

character_set_system Yes Global No

Server Option and Variable Reference

416

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

character-sets-dir Yes Yes Global No

- Variable:
character_sets_dir

 Yes Global No

chroot Yes Yes

collation_connection Yes Both Yes

collation_databaseb Yes Both Yes

collation-server Yes Yes Both Yes

- Variable:
collation_server

 Yes Both Yes

Com_admin_commands Yes Both No

Com_alter_db Yes Both No

Com_alter_db_upgrade Yes Both No

Com_alter_event Yes Both No

Com_alter_function Yes Both No

Com_alter_procedure Yes Both No

Com_alter_server Yes Both No

Com_alter_table Yes Both No

Com_alter_tablespace Yes Both No

Com_alter_user Yes Both No

Com_analyze Yes Both No

Com_assign_to_keycache Yes Both No

Com_begin Yes Both No

Com_binlog Yes Both No

Com_call_procedure Yes Both No

Com_change_db Yes Both No

Com_change_master Yes Both No

Com_change_repl_filter Yes Both No

Com_check Yes Both No

Com_checksum Yes Both No

Com_commit Yes Both No

Com_create_db Yes Both No

Com_create_event Yes Both No

Com_create_function Yes Both No

Com_create_index Yes Both No

Com_create_procedure Yes Both No

Com_create_server Yes Both No

Com_create_table Yes Both No

Com_create_trigger Yes Both No

Com_create_udf Yes Both No

Com_create_user Yes Both No

Com_create_view Yes Both No

Server Option and Variable Reference

417

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Com_dealloc_sql Yes Both No

Com_delete Yes Both No

Com_delete_multi Yes Both No

Com_do Yes Both No

Com_drop_db Yes Both No

Com_drop_event Yes Both No

Com_drop_function Yes Both No

Com_drop_index Yes Both No

Com_drop_procedure Yes Both No

Com_drop_server Yes Both No

Com_drop_table Yes Both No

Com_drop_trigger Yes Both No

Com_drop_user Yes Both No

Com_drop_view Yes Both No

Com_empty_query Yes Both No

Com_execute_sql Yes Both No

Com_flush Yes Both No

Com_get_diagnostics Yes Both No

Com_grant Yes Both No

Com_ha_close Yes Both No

Com_ha_open Yes Both No

Com_ha_read Yes Both No

Com_help Yes Both No

Com_insert Yes Both No

Com_insert_select Yes Both No

Com_install_plugin Yes Both No

Com_kill Yes Both No

Com_load Yes Both No

Com_lock_tables Yes Both No

Com_optimize Yes Both No

Com_preload_keys Yes Both No

Com_prepare_sql Yes Both No

Com_purge Yes Both No

Com_purge_before_date Yes Both No

Com_release_savepoint Yes Both No

Com_rename_table Yes Both No

Com_rename_user Yes Both No

Com_repair Yes Both No

Com_replace Yes Both No

Com_replace_select Yes Both No

Com_reset Yes Both No

Server Option and Variable Reference

418

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Com_resignal Yes Both No

Com_revoke Yes Both No

Com_revoke_all Yes Both No

Com_rollback Yes Both No

Com_rollback_to_savepoint Yes Both No

Com_savepoint Yes Both No

Com_select Yes Both No

Com_set_option Yes Both No

Com_show_authors Yes Both No

Com_show_binlog_events Yes Both No

Com_show_binlogs Yes Both No

Com_show_charsets Yes Both No

Com_show_collations Yes Both No

Com_show_contributors Yes Both No

Com_show_create_db Yes Both No

Com_show_create_event Yes Both No

Com_show_create_func Yes Both No

Com_show_create_proc Yes Both No

Com_show_create_table Yes Both No

Com_show_create_trigger Yes Both No

Com_show_databases Yes Both No

Com_show_engine_logs Yes Both No

Com_show_engine_mutex Yes Both No

Com_show_engine_status Yes Both No

Com_show_errors Yes Both No

Com_show_events Yes Both No

Com_show_fields Yes Both No

Com_show_function_code Yes Both No

Com_show_function_status Yes Both No

Com_show_grants Yes Both No

Com_show_keys Yes Both No

Com_show_master_status Yes Both No

Com_show_new_master Yes Both No

Com_show_open_tables Yes Both No

Com_show_plugins Yes Both No

Com_show_privileges Yes Both No

Com_show_procedure_code Yes Both No

Com_show_procedure_status Yes Both No

Com_show_processlist Yes Both No

Com_show_profile Yes Both No

Com_show_profiles Yes Both No

Server Option and Variable Reference

419

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Com_show_relaylog_events Yes Both No

Com_show_slave_hosts Yes Both No

Com_show_slave_status Yes Both No

Com_show_status Yes Both No

Com_show_storage_engines Yes Both No

Com_show_table_status Yes Both No

Com_show_tables Yes Both No

Com_show_triggers Yes Both No

Com_show_variables Yes Both No

Com_show_warnings Yes Both No

Com_signal Yes Both No

Com_slave_start Yes Both No

Com_slave_stop Yes Both No

Com_stmt_close Yes Both No

Com_stmt_execute Yes Both No

Com_stmt_fetch Yes Both No

Com_stmt_prepare Yes Both No

Com_stmt_reprepare Yes Both No

Com_stmt_reset Yes Both No

Com_stmt_send_long_data Yes Both No

Com_truncate Yes Both No

Com_uninstall_plugin Yes Both No

Com_unlock_tables Yes Both No

Com_update Yes Both No

Com_update_multi Yes Both No

Com_xa_commit Yes Both No

Com_xa_end Yes Both No

Com_xa_prepare Yes Both No

Com_xa_recover Yes Both No

Com_xa_rollback Yes Both No

Com_xa_start Yes Both No

completion_type Yes Yes Yes Both Yes

Compression Yes Session No

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

Connection_errors_accept Yes Global No

Connection_errors_internal Yes Global No

Connection_errors_max_connections Yes Global No

Connection_errors_peer_addr Yes Global No

Connection_errors_select Yes Global No

Connection_errors_tcpwrap Yes Global No

Server Option and Variable Reference

420

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Connections Yes Global No

console Yes Yes

core_file Yes Global No

core-file Yes Yes

Created_tmp_disk_tables Yes Both No

Created_tmp_files Yes Global No

Created_tmp_tables Yes Both No

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

datadir Yes Yes Yes Global No

date_format Yes Global No

datetime_format Yes Global No

debug Yes Yes Yes Both Yes

debug_sync Yes Session Yes

debug-sync-
timeout

Yes Yes

default-
authentication-
plugin

Yes Yes

default_authentication_pluginYes Yes Yes Global No

default_password_lifetimeYes Yes Yes Global Yes

default-storage-
engine

Yes Yes Both Yes

- Variable:
default_storage_engine

 Yes Both Yes

default-time-zone Yes Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_formatYes Yes Yes Both Yes

defaults-extra-file Yes

defaults-file Yes

defaults-group-
suffix

Yes

delay-key-write Yes Yes Global Yes

- Variable:
delay_key_write

 Yes Global Yes

Delayed_errors Yes Global No

delayed_insert_limitYes Yes Yes Global Yes

Delayed_insert_threads Yes Global No

delayed_insert_timeoutYes Yes Yes Global Yes

Server Option and Variable Reference

421

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

delayed_queue_sizeYes Yes Yes Global Yes

Delayed_writes Yes Global No

des-key-file Yes Yes

disconnect_on_expired_passwordYes Yes Yes Session No

disconnect-slave-
event-count

Yes Yes

div_precision_incrementYes Yes Yes Both Yes

enable-named-
pipe

Yes Yes

- Variable:
named_pipe

end_markers_in_json Yes Both Yes

enforce_gtid_consistencyYes Yes Yes Global No

enforce-gtid-
consistency

Yes Yes Yes Global No

eq_range_index_dive_limit Yes Both Yes

error_count Yes Session No

event-scheduler Yes Yes Global Yes

- Variable:
event_scheduler

 Yes Global Yes

exit-info Yes Yes

expire_logs_days Yes Yes Yes Global Yes

explicit_defaults_for_timestampYes Yes Yes Session No

external-locking Yes Yes

- Variable:
skip_external_locking

external_user Yes Session No

federated Yes Yes

flush Yes Yes Yes Global Yes

Flush_commands Yes Global No

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntax Yes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

gdb Yes Yes

general-log Yes Yes Global Yes

- Variable:
general_log

 Yes Global Yes

general_log_file Yes Yes Yes Global Yes

group_concat_max_lenYes Yes Yes Both Yes

Server Option and Variable Reference

422

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

gtid_executed Yes Both No

gtid_mode Yes Global No

gtid-mode Yes Yes Global No

- Variable:
gtid_mode

 Yes Global No

gtid_next Yes Session Yes

gtid_owned Yes Both No

gtid_purged Yes Global Yes

Handler_commit Yes Both No

Handler_delete Yes Both No

Handler_discover Yes Both No

Handler_external_lock Yes Both No

Handler_mrr_init Yes Both No

Handler_prepare Yes Both No

Handler_read_first Yes Both No

Handler_read_key Yes Both No

Handler_read_last Yes Both No

Handler_read_next Yes Both No

Handler_read_prev Yes Both No

Handler_read_rnd Yes Both No

Handler_read_rnd_next Yes Both No

Handler_rollback Yes Both No

Handler_savepoint Yes Both No

Handler_savepoint_rollback Yes Both No

Handler_update Yes Both No

Handler_write Yes Both No

have_compress Yes Global No

have_crypt Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_symlink Yes Global No

help Yes Yes

host_cache_size Yes Global Yes

hostname Yes Global No

identity Yes Session Yes

Server Option and Variable Reference

423

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

ignore-builtin-
innodb

Yes Yes Global No

- Variable:
ignore_builtin_innodb

 Yes Global No

ignore-db-dir Yes Yes

ignore_db_dirs Yes Global No

init_connect Yes Yes Yes Global Yes

init-file Yes Yes Global No

- Variable:
init_file

 Yes Global No

init_slave Yes Yes Yes Global Yes

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

Innodb_available_undo_logs Yes Global No

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Server Option and Variable Reference

424

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global No

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_flush_log_at_timeout Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

Server Option and Variable Reference

425

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_tableYes Yes Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Global Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

Innodb_have_atomic_builtins Yes Global No

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefixYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

Server Option and Variable Reference

426

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_files Yes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

innodb_page_cleanersYes Yes Yes Global No

innodb_page_size Yes Yes Yes Global No

Innodb_page_size Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_only Yes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

Server Option and Variable Reference

427

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb-status-file Yes Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

Innodb_truncated_status_writes Yes Global No

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_logs Yes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

insert_id Yes Session Yes

install Yes

install-manual Yes

interactive_timeoutYes Yes Yes Both Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

Key_blocks_not_flushed Yes Global No

Key_blocks_unused Yes Global No

Key_blocks_used Yes Global No

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

Key_read_requests Yes Global No

Key_reads Yes Global No

Key_write_requests Yes Global No

Key_writes Yes Global No

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

Server Option and Variable Reference

428

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

large-pages Yes Yes Global No

- Variable:
large_pages

 Yes Global No

last_insert_id Yes Session Yes

Last_query_cost Yes Session No

Last_query_partial_plans Yes Session No

lc-messages Yes Yes Both Yes

- Variable:
lc_messages

 Yes Both Yes

lc-messages-dir Yes Yes Global No

- Variable:
lc_messages_dir

 Yes Global No

lc_time_names Yes Both Yes

license Yes Global No

local_infile Yes Global Yes

local-service Yes

lock_wait_timeout Yes Yes Yes Both Yes

locked_in_memory Yes Global No

log_bin Yes Global No

log-bin Yes Yes Yes Global No

log_bin_basename Yes Global No

log_bin_index Yes Global No

log-bin-index Yes Yes

log-bin-trust-
function-creators

Yes Yes Global Yes

- Variable:
log_bin_trust_function_creators

 Yes Global Yes

log_bin_use_v1_row_eventsYes Yes Yes Global No

log-bin-use-v1-
row-events

Yes Yes Global No

- Variable:
log_bin_use_v1_row_events

 Yes Global No

log-error Yes Yes Global No

- Variable:
log_error

 Yes Global No

log_error_verbosityYes Yes Yes Global Yes

log-isam Yes Yes

log-output Yes Yes Global Yes

- Variable:
log_output

 Yes Global Yes

log-queries-not-
using-indexes

Yes Yes Global Yes

- Variable:
log_queries_not_using_indexes

 Yes Global Yes

Server Option and Variable Reference

429

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

log-raw Yes Yes

log-short-format Yes Yes

log-slave-
updates

Yes Yes Global No

- Variable:
log_slave_updates

 Yes Global No

log_slave_updatesYes Yes Yes Global No

log_slow_admin_statements Yes Global Yes

log-slow-admin-
statements

Yes Yes

log_slow_slave_statements Yes Global Yes

log-slow-slave-
statements

Yes Yes

log-tc Yes Yes

log-tc-size Yes Yes

log_throttle_queries_not_using_indexes Yes Global Yes

log_timestamps Yes Yes Yes Global Yes

log-warnings Yes Yes Global Yes

- Variable:
log_warnings

 Yes Global Yes

long_query_time Yes Yes Yes Both Yes

low-priority-
updates

Yes Yes Both Yes

- Variable:
low_priority_updates

 Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

master-info-file Yes Yes

master_info_repositoryYes Yes Yes Global Yes

master-info-
repository

Yes Yes

- Variable:
master_info_repository

master-retry-
count

Yes Yes

master_verify_checksum Yes Global Yes

master-verify-
checksum

Yes Yes

- Variable:
master_verify_checksum

max_allowed_packetYes Yes Yes Global Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max-binlog-
dump-events

Yes Yes

Server Option and Variable Reference

430

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

max_binlog_size Yes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errorsYes Yes Yes Global Yes

max_connections Yes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_error_count Yes Yes Yes Both Yes

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_sizeYes Yes Yes Global Yes

max_seeks_for_keyYes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_statement_timeYes Yes Yes Both Yes

Max_statement_time_exceeded Yes Both No

Max_statement_time_set Yes Both No

Max_statement_time_set_failed Yes Both No

Max_used_connections Yes Global No

Max_used_connections_time Yes Global No

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

memlock Yes Yes Yes Global No

metadata_locks_cache_size Yes Global No

metadata_locks_hash_instances Yes Global No

min-examined-
row-limit

Yes Yes Yes Both Yes

myisam-block-
size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam-recover-
options

Yes Yes

- Variable:
myisam_recover_options

myisam_recover_options Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

Server Option and Variable Reference

431

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

named_pipe Yes Global No

Ndb_conflict_fn_max Yes Global No

Ndb_conflict_fn_old Yes Global No

Ndb_number_of_data_nodes Yes Global No

net_buffer_length Yes Yes Yes Both Yes

net_read_timeout Yes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeout Yes Yes Yes Both Yes

new Yes Yes Yes Both Yes

no-defaults Yes

Not_flushed_delayed_rows Yes Global No

old Yes Yes Yes Global No

old-alter-table Yes Yes Both Yes

- Variable:
old_alter_table

 Yes Both Yes

old_passwords Yes Both Yes

old-style-user-
limits

Yes Yes

Open_files Yes Global No

open-files-limit Yes Yes Global No

- Variable:
open_files_limit

 Yes Global No

Open_streams Yes Global No

Open_table_definitions Yes Global No

Open_tables Yes Both No

Opened_files Yes Global No

Opened_table_definitions Yes Both No

Opened_tables Yes Both No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switch Yes Yes Yes Both Yes

optimizer_trace Yes Both Yes

optimizer_trace_features Yes Both Yes

optimizer_trace_limit Yes Both Yes

optimizer_trace_max_mem_size Yes Both Yes

optimizer_trace_offset Yes Both Yes

partition Yes Yes

- Variable:
have_partitioning

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_have_partitioning

Server Option and Variable Reference

432

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-stages-
current

Yes Yes

performance-
schema-
consumer-
events-stages-
history

Yes Yes

performance-
schema-
consumer-
events-stages-
history-long

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

performance-
schema-
consumer-
events-
statements-
history-long

Yes Yes

performance-
schema-
consumer-
events-
transactions-
current

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history

Yes Yes

performance-
schema-
consumer-
events-

Yes Yes

Server Option and Variable Reference

433

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic
transactions-
history-long

performance-
schema-
consumer-
events-waits-
current

Yes Yes

performance-
schema-
consumer-
events-waits-
history

Yes Yes

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-global-
instrumentation

Yes Yes

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

Server Option and Variable Reference

434

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_memory_classes_lost Yes Global No

Performance_schema_metadata_lock_lost Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_nested_statement_lost Yes Global No

Performance_schema_prepared_statements_lost Yes Global No

Performance_schema_program_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Server Option and Variable Reference

435

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Performance_schema_stage_classes_lost Yes Global No

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

pid-file Yes Yes Global No

- Variable:
pid_file

 Yes Global No

plugin Yes Yes

plugin_dir Yes Yes Yes Global No

plugin-load Yes Yes

plugin-load-add Yes Yes

port Yes Yes Yes Global No

port-open-
timeout

Yes Yes

preload_buffer_sizeYes Yes Yes Both Yes

Prepared_stmt_count Yes Global No

print-defaults Yes

profiling Yes Both Yes

profiling_history_sizeYes Yes Yes Both Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

Qcache_free_blocks Yes Global No

Qcache_free_memory Yes Global No

Qcache_hits Yes Global No

Qcache_inserts Yes Global No

Qcache_lowmem_prunes Yes Global No

Qcache_not_cached Yes Global No

Qcache_queries_in_cache Yes Global No

Qcache_total_blocks Yes Global No

Queries Yes Both No

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limit Yes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_size Yes Yes Yes Global Yes

query_cache_type Yes Yes Yes Both Yes

Server Option and Variable Reference

436

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_sizeYes Yes Yes Both Yes

Questions Yes Both No

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_sizeYes Yes Yes Both Yes

relay-log Yes Yes Global No

- Variable:
relay_log

 Yes Global No

relay_log_basename Yes Global No

relay-log-index Yes Yes Global No

- Variable:
relay_log_index

 Yes Global No

relay_log_index Yes Yes Yes Global No

relay-log-info-file Yes Yes

- Variable:
relay_log_info_file

relay_log_info_file Yes Yes Yes Global No

relay-log-info-
repository

Yes Yes

- Variable:
relay_log_info_repository

relay_log_info_repository Yes Global Yes

relay_log_purge Yes Yes Yes Global Yes

relay_log_recoveryYes Yes Yes Global No

relay-log-
recovery

Yes Yes

- Variable:
relay_log_recovery

relay_log_space_limitYes Yes Yes Global No

remove Yes

replicate-do-db Yes Yes

replicate-do-table Yes Yes

replicate-ignore-
db

Yes Yes

replicate-ignore-
table

Yes Yes

replicate-rewrite-
db

Yes Yes

replicate-same-
server-id

Yes Yes

Server Option and Variable Reference

437

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

replicate-wild-do-
table

Yes Yes

replicate-wild-
ignore-table

Yes Yes

report-host Yes Yes Global No

- Variable:
report_host

 Yes Global No

report-password Yes Yes Global No

- Variable:
report_password

 Yes Global No

report-port Yes Yes Global No

- Variable:
report_port

 Yes Global No

report-user Yes Yes Global No

- Variable:
report_user

 Yes Global No

Rpl_semi_sync_master_clients Yes Global No

rpl_semi_sync_master_enabled Yes Global Yes

Rpl_semi_sync_master_net_avg_wait_time Yes Global No

Rpl_semi_sync_master_net_wait_time Yes Global No

Rpl_semi_sync_master_net_waits Yes Global No

Rpl_semi_sync_master_no_times Yes Global No

Rpl_semi_sync_master_no_tx Yes Global No

Rpl_semi_sync_master_status Yes Global No

Rpl_semi_sync_master_timefunc_failures Yes Global No

rpl_semi_sync_master_timeout Yes Global Yes

rpl_semi_sync_master_trace_level Yes Global Yes

Rpl_semi_sync_master_tx_avg_wait_time Yes Global No

Rpl_semi_sync_master_tx_wait_time Yes Global No

Rpl_semi_sync_master_tx_waits Yes Global No

rpl_semi_sync_master_wait_for_slave_count Yes Global Yes

rpl_semi_sync_master_wait_no_slave Yes Global Yes

rpl_semi_sync_master_wait_point Yes Global Yes

Rpl_semi_sync_master_wait_pos_backtraverse Yes Global No

Rpl_semi_sync_master_wait_sessions Yes Global No

Rpl_semi_sync_master_yes_tx Yes Global No

rpl_semi_sync_slave_enabled Yes Global Yes

Rpl_semi_sync_slave_status Yes Global No

rpl_semi_sync_slave_trace_level Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

Rsa_public_key Yes Global No

safe-user-create Yes Yes

Server Option and Variable Reference

438

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

secure-auth Yes Yes Global Yes

- Variable:
secure_auth

 Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable:
secure_file_priv

 Yes Global No

Select_full_join Yes Both No

Select_full_range_join Yes Both No

Select_range Yes Both No

Select_range_check Yes Both No

Select_scan Yes Both No

server-id [2037] Yes Yes Global Yes

- Variable:
server_id

 Yes Global Yes

server_uuid [2037] Yes Global No

session_track_schemaYes Yes Yes Both Yes

session_track_state_changeYes Yes Yes Both Yes

session_track_system_variablesYes Yes Yes Both Yes

sha256_password_private_key_path Yes Global No

sha256_password_public_key_path Yes Global No

shared_memory Yes Global No

shared_memory_base_name Yes Global No

show-slave-auth-
info

Yes Yes

skip-character-
set-client-
handshake

Yes Yes

skip-concurrent-
insert

Yes Yes

- Variable:
concurrent_insert

skip-event-
scheduler

Yes Yes

skip_external_lockingYes Yes Yes Global No

skip-grant-tables Yes Yes

skip-host-cache Yes Yes

skip-name-
resolve

Yes Yes Global No

- Variable:
skip_name_resolve

 Yes Global No

skip-networking Yes Yes Global No

- Variable:
skip_networking

 Yes Global No

skip-new Yes Yes

Server Option and Variable Reference

439

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

skip-partition Yes Yes

skip-show-
database

Yes Yes Global No

- Variable:
skip_show_database

 Yes Global No

skip-slave-start Yes Yes

skip-ssl Yes Yes

skip-stack-trace Yes Yes

skip-symbolic-
links

Yes

slave_allow_batchingYes Yes Yes Global Yes

slave_checkpoint_groupYes Yes Yes Global Yes

slave-checkpoint-
group

Yes Yes

- Variable:
slave_checkpoint_group

slave_checkpoint_periodYes Yes Yes Global Yes

slave-checkpoint-
period

Yes Yes

- Variable:
slave_checkpoint_period

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_mode Yes Yes Yes Global Yes

Slave_heartbeat_period Yes Global No

Slave_last_heartbeat Yes Global No

slave-load-tmpdir Yes Yes Global No

- Variable:
slave_load_tmpdir

 Yes Global No

slave_max_allowed_packet Yes Global Yes

slave-max-
allowed-packet

Yes Yes

- Variable:
slave_max_allowed_packet

slave-net-timeout Yes Yes Global Yes

- Variable:
slave_net_timeout

 Yes Global Yes

Slave_open_temp_tables Yes Global No

slave_parallel_type Yes Global Yes

slave-parallel-
type

Yes Yes

- Variable:
slave_parallel_type

slave_parallel_workers Yes Global Yes

slave-parallel-
workers

Yes Yes

Server Option and Variable Reference

440

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

- Variable:
slave_parallel_workers

slave_pending_jobs_size_max Yes Global Yes

slave-pending-
jobs-size-max

Yes

- Variable:
slave_pending_jobs_size_max

Slave_received_heartbeats Yes Global No

Slave_retried_transactions Yes Global No

slave-rows-
search-
algorithms

Yes Yes

- Variable:
slave_rows_search_algorithms

slave_rows_search_algorithms Yes Global Yes

Slave_running Yes Global No

slave-skip-errors Yes Yes Global No

- Variable:
slave_skip_errors

 Yes Global No

slave_sql_verify_checksum Yes Global Yes

slave-sql-verify-
checksum

Yes Yes

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global No

Slow_launch_threads Yes Both No

slow_launch_time Yes Yes Yes Global Yes

Slow_queries Yes Both No

slow-query-log Yes Yes Global Yes

- Variable:
slow_query_log

 Yes Global Yes

slow_query_log_fileYes Yes Yes Global Yes

slow-start-
timeout

Yes Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

Sort_merge_passes Yes Both No

Sort_range Yes Both No

Sort_rows Yes Both No

Sort_scan Yes Both No

sporadic-binlog-
dump-fail

Yes Yes

sql_auto_is_null Yes Both Yes

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

Server Option and Variable Reference

441

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

sql_log_bin Yes Both Yes

sql_log_off Yes Both Yes

sql-mode Yes Yes Both Yes

- Variable:
sql_mode

 Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl Yes Yes

Ssl_accept_renegotiates Yes Global No

Ssl_accepts Yes Global No

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

Ssl_callback_cache_hits Yes Global No

ssl-capath Yes Yes Global No

- Variable:
ssl_capath

 Yes Global No

ssl-cert Yes Yes Global No

- Variable:
ssl_cert

 Yes Global No

ssl-cipher Yes Yes Global No

- Variable:
ssl_cipher

 Yes Global No

Ssl_cipher Yes Both No

Ssl_cipher_list Yes Both No

Ssl_client_connects Yes Global No

Ssl_connect_renegotiates Yes Global No

ssl-crl Yes Yes Global No

- Variable: ssl_crl Yes Global No

ssl-crlpath Yes Yes Global No

- Variable:
ssl_crlpath

 Yes Global No

Ssl_ctx_verify_depth Yes Global No

Ssl_ctx_verify_mode Yes Global No

Ssl_default_timeout Yes Both No

Ssl_finished_accepts Yes Global No

Ssl_finished_connects Yes Global No

ssl-key Yes Yes Global No

- Variable:
ssl_key

 Yes Global No

Server Option and Variable Reference

442

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Ssl_server_not_after Yes Both No

Ssl_server_not_before Yes Both No

Ssl_session_cache_hits Yes Global No

Ssl_session_cache_misses Yes Global No

Ssl_session_cache_mode Yes Global No

Ssl_session_cache_overflows Yes Global No

Ssl_session_cache_size Yes Global No

Ssl_session_cache_timeouts Yes Global No

Ssl_sessions_reused Yes Both No

Ssl_used_session_cache_entries Yes Global No

Ssl_verify_depth Yes Both No

Ssl_verify_mode Yes Both No

ssl-verify-server-
cert

Yes Yes

Ssl_version Yes Both No

standalone Yes Yes

storage_engine Yes Both Yes

stored_program_cacheYes Yes Yes Global Yes

super-large-
pages

Yes Yes

symbolic-links Yes Yes

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

sync_master_info Yes Yes Yes Global Yes

sync_relay_log Yes Yes Yes Global Yes

sync_relay_log_infoYes Yes Yes Global Yes

sysdate-is-now Yes Yes

system_time_zone Yes Global No

table_definition_cache Yes Global Yes

Table_locks_immediate Yes Global No

Table_locks_waited Yes Global No

table_open_cache Yes Global Yes

Table_open_cache_hits Yes Both No

table_open_cache_instances Yes Global No

Table_open_cache_misses Yes Both No

Table_open_cache_overflows Yes Both No

tc-heuristic-
recover

Yes Yes

Tc_log_max_pages_used Yes Global No

Tc_log_page_size Yes Global No

Tc_log_page_waits Yes Global No

temp-pool Yes Yes

Server Option and Variable Reference

443

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

thread_cache_sizeYes Yes Yes Global Yes

thread_concurrencyYes Yes Yes Global No

thread_handling Yes Yes Yes Global No

thread_stack Yes Yes Yes Global No

Threads_cached Yes Global No

Threads_connected Yes Global No

Threads_created Yes Global No

Threads_running Yes Global No

time_format Yes Global No

time_zone Yes Both Yes

timed_mutexes Yes Yes Yes Global Yes

timestamp Yes Session Yes

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction-
isolation

Yes Yes

- Variable:
tx_isolation

transaction_prealloc_sizeYes Yes Yes Both Yes

transaction-read-
only

Yes Yes

- Variable:
tx_read_only

tx_isolation Yes Both Yes

tx_read_only Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

Uptime Yes Global No

Uptime_since_flush_status Yes Global No

user Yes Yes

validate-
password

Yes Yes

validate_password_dictionary_file Yes Global No

validate_password_length Yes Global Yes

validate_password_mixed_case_count Yes Global Yes

validate_password_number_count Yes Global Yes

validate_password_policy Yes Global Yes

validate_password_special_char_count Yes Global Yes

validate_user_plugins Yes Global No

verbose Yes Yes

version Yes Global No

Server Configuration Defaults

444

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No
aThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.
bThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.

5.1.2 Server Configuration Defaults

The MySQL server has many operating parameters, which you can change at server startup using
command-line options or configuration files (option files). It is also possible to change many parameters
at runtime. For general instructions on setting parameters at startup or runtime, see Section 5.1.3,
“Server Command Options”, and Section 5.1.4, “Server System Variables”.

On Unix platforms, mysql_install_db creates a default option file named my.cnf in the base
installation directory. This file is created from a template included in the distribution package named
my-default.cnf. You can find the template in or under the base installation directory. When
started using mysqld_safe, the server uses my.cnf file by default. If my.cnf already exists,
mysql_install_db assumes it to be in use and writes a new file named my-new.cnf instead.

With one exception, the settings in the default option file are commented and have no effect.
The exception is that the file changes the sql_mode system variable from its default of
NO_ENGINE_SUBSTITUTION to also include STRICT_TRANS_TABLES:

sql_mode=NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES

This setting produces a server configuration that results in errors rather than warnings for bad data in
operations that modify transactional tables. See Section 5.1.7, “Server SQL Modes”.

On Windows, MySQL Installer interacts with the user and creates a file named my.ini in the base
installation directory as the default option file. If you install on Windows from a Zip archive, you can
copy the my-default.ini template file in the base installation directory to my.ini and use the latter
as the default option file.

Note

On Windows, the .ini or .cnf option file extension might not be displayed.

On any platform, after completing the installation process, you can edit the default option file at any
time to modify the parameters used by the server. For example, to use a parameter setting in the
file that is commented with a # character at the beginning of the line, remove the #, and modify the
parameter value if necessary. To disable a setting, either add a # to the beginning of the line or remove
it.

For additional information about option file format and syntax, see Section 4.2.3.3, “Using Option Files”.

5.1.3 Server Command Options

When you start the mysqld server, you can specify program options using any of the methods
described in Section 4.2.3, “Specifying Program Options”. The most common methods are to provide
options in an option file or on the command line. However, in most cases it is desirable to make sure
that the server uses the same options each time it runs. The best way to ensure this is to list them in an
option file. See Section 4.2.3.3, “Using Option Files”.

Server Command Options

445

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options from
the [mysqld], [server], [mysqld_safe], and [safe_mysqld] groups. mysql.server reads
options from the [mysqld] and [mysql.server] groups.

An embedded MySQL server usually reads options from the [server], [embedded], and
[xxxxx_SERVER] groups, where xxxxx is the name of the application into which the server is
embedded.

mysqld accepts many command options. For a brief summary, execute mysqld --help. To see the
full list, use mysqld --verbose --help.

The following list shows some of the most common server options. Additional options are described in
other sections:

• Options that affect security: See Section 6.1.4, “Security-Related mysqld Options and Variables”.

• SSL-related options: See Section 6.3.11.4, “SSL Command Options”.

• Binary log control options: See Section 5.2.4, “The Binary Log”.

• Replication-related options: See Section 16.1.4, “Replication and Binary Logging Options and
Variables”.

• Options for loading plugins such as pluggable storage engines: See Section 5.1.8.1, “Installing and
Uninstalling Plugins”.

• Options specific to particular storage engines: See Section 14.2.13, “InnoDB Startup Options and
System Variables” and Section 14.3.1, “MyISAM Startup Options”.

You can also set the values of server system variables by using variable names as options, as
described at the end of this section.

Some options control the size of buffers or caches. For a given buffer, the server might need to allocate
internal data structures. These structures typically are allocated from the total memory allocated to
the buffer, and the amount of space required might be platform dependent. This means that when you
assign a value to an option that controls a buffer size, the amount of space actually available might
differ from the value assigned. In some cases, the amount might be less than the value assigned. It is
also possible that the server will adjust a value upward. For example, if you assign a value of 0 to an
option for which the minimal value is 1024, the server will set the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some options take file name values. Unless otherwise specified, the default file location is the data
directory if the value is a relative path name. To specify the location explicitly, use an absolute path
name. Suppose that the data directory is /var/mysql/data. If a file-valued option is given as a
relative path name, it will be located under /var/mysql/data. If the value is an absolute path name,
its location is as given by the path name.

• --help, -?

Command-Line Format -?

 --help

Option-File Format help

Display a short help message and exit. Use both the --verbose and --help options to see the full
message.

• --allow-suspicious-udfs

Command-Line Format --allow-suspicious-udfs

Option-File Format allow-suspicious-udfs

Server Command Options

446

Permitted Values

Type boolean

Default FALSE

This option controls whether user-defined functions that have only an xxx symbol for the main
function can be loaded. By default, the option is off and only UDFs that have at least one auxiliary
symbol can be loaded; this prevents attempts at loading functions from shared object files other
than those containing legitimate UDFs. See Section 22.3.2.6, “User-Defined Function Security
Precautions”.

• --ansi

Command-Line Format --ansi

 -a

Option-File Format ansi

Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the server
SQL mode, use the --sql-mode option instead. See Section 1.8, “MySQL Standards Compliance”,
and Section 5.1.7, “Server SQL Modes”.

• --basedir=path, -b path

Command-Line Format --basedir=path

 -b

Option-File Format basedir

System Variable Name basedir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

The path to the MySQL installation directory. All paths are usually resolved relative to this directory.

• --big-tables

Command-Line Format --big-tables

Option-File Format big-tables

System Variable Name big_tables

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Enable large result sets by saving all temporary sets in files. This option prevents most “table full”
errors, but also slows down queries for which in-memory tables would suffice. Since MySQL 3.23.2,
the server is able to handle large result sets automatically by using memory for small temporary
tables and switching to disk tables where necessary.

• --bind-address=addr

Command-Line Format --bind-address=addr

Server Command Options

447

Option-File Format bind-address

System Variable Name bind_address

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

Default *

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound
to a single address, but it is possible for an address to map onto multiple network interfaces. To
specify an address, use the --bind-address=addr option at server startup, where addr is an
IPv4 or IPv6 address or a host name. If addr is a host name, the server resolves the name to an IP
address and binds to that address.

The server treats different types of addresses as follows:

• If the address is *, the server accepts TCP/IP connections on all server host IPv6 and IPv4
interfaces if the server host supports IPv6, or accepts TCP/IP connections on all IPv4 addresses
otherwise. Use this address to permit both IPv4 and IPv6 connections on all server interfaces. This
value is the default) in MySQL 5.7.

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4
interfaces.

• If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces.

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that
address, in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1,
clients can connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

If you intend to bind the server to a specific address, be sure that the mysql.user grant table
contains an account with administrative privileges that you can use to connect to that address.
Otherwise, you will not be able to shut down the server. For example, if you bind the server to *, you
can connect to it using all existing accounts. But if you bind the server to ::1, it accepts connections
only on that address. In that case, first make sure that the 'root'@'::1' account is present in the
mysql.user table so you can still connect to the server to shut it down.

• --binlog-format={ROW|STATEMENT|MIXED}

Command-Line Format --binlog-format=format

Option-File Format binlog-format

System Variable Name binlog_format

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default STATEMENT

ROW

Valid
Values STATEMENT

Server Command Options

448

MIXED

Specify whether to use row-based, statement-based, or mixed replication. Statement-based is the
default in MySQL 5.7. See Section 16.1.2, “Replication Formats”.

Under some conditions, changing this variable at runtime is not possible, or causes replication to fail.
See Section 5.2.4.2, “Setting The Binary Log Format”, for more information.

Setting the binary logging format without enabling binary logging sets the binlog_format global
system variable and logs a warning.

• --bootstrap

Command-Line Format --bootstrap

Option-File Format bootstrap

This option is used by the mysql_install_db script to create the MySQL privilege tables without
having to start a full MySQL server.

Replication and global transaction identifiers are automatically disabled whenever this option is used
(Bug #1332602). See Section 16.1.3, “Replication with Global Transaction Identifiers”.

• --character-sets-dir=path

Command-Line Format --character-sets-dir=path

Option-File Format character-sets-dir

System Variable Name character_sets_dir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --character-set-client-handshake

Command-Line Format --character-set-client-handshake

Option-File Format character-set-client-handshake

Permitted Values

Type boolean

Default TRUE

Do not ignore character set information sent by the client. To ignore client information and use the
default server character set, use --skip-character-set-client-handshake; this makes
MySQL behave like MySQL 4.0.

• --character-set-filesystem=charset_name

Command-Line Format --character-set-filesystem=name

Option-File Format character-set-filesystem

System Variable Name character_set_filesystem

Variable Scope Global, Session

Dynamic Variable Yes

Server Command Options

449

Permitted Values

Type string

Default binary

The file system character set. This option sets the character_set_filesystem system variable.

• --character-set-server=charset_name, -C charset_name

Command-Line Format --character-set-server

Option-File Format character-set-server

System Variable Name character_set_server

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

Default latin1

Use charset_name as the default server character set. See Section 10.5, “Character Set
Configuration”. If you use this option to specify a nondefault character set, you should also use --
collation-server to specify the collation.

• --chroot=path, -r path

Command-Line Format --chroot=name

 -r name

Option-File Format chroot

Permitted Values

Type directory name

Put the mysqld server in a closed environment during startup by using the chroot() system call.
This is a recommended security measure. Note that use of this option somewhat limits LOAD DATA
INFILE and SELECT ... INTO OUTFILE.

• --collation-server=collation_name

Command-Line Format --collation-server

Option-File Format collation-server

System Variable Name collation_server

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

Default latin1_swedish_ci

Use collation_name as the default server collation. See Section 10.5, “Character Set
Configuration”.

• --console

Command-Line Format --console

Option-File Format console

Server Command Options

450

Platform Specific Windows

(Windows only.) Write error log messages to stderr and stdout even if --log-error is
specified. mysqld does not close the console window if this option is used.

If both --log-error and --console are specified, --console takes precedence. The server
writes to the console, but not to the log file. (In MySQL 5.5 and 5.6, the precedence is reversed: --
log-error causes --console to be ignored.)

• --core-file

Command-Line Format --core-file

Option-File Format core-file

Permitted Values

Type boolean

Default OFF

Write a core file if mysqld dies. The name and location of the core file is system dependent. On
Linux, a core file named core.pid is written to the current working directory of the process, which
for mysqld is the data directory. pid represents the process ID of the server process. On Mac OS
X, a core file named core.pid is written to the /cores directory. On Solaris, use the coreadm
command to specify where to write the core file and how to name it.

For some systems, to get a core file you must also specify the --core-file-size option to
mysqld_safe. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”. On some
systems, such as Solaris, you do not get a core file if you are also using the --user option. There
might be additional restrictions or limitations. For example, it might be necessary to execute ulimit
-c unlimited before starting the server. Consult your system documentation.

• --datadir=path, -h path

Command-Line Format --datadir=path

 -h

Option-File Format datadir

System Variable Name datadir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

The path to the data directory.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Option-File Format debug

System Variable Name debug

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type
(Unix)

string

Server Command Options

451

Default d:t:i:o,/tmp/mysqld.trace

Permitted Values

Type
(Windows)

string

Default d:t:i:O,\mysqld.trace

If MySQL is configured with -DWITH_DEBUG=1, you can use this option to get a trace file of
what mysqld is doing. A typical debug_options string is d:t:o,file_name. The default is
d:t:i:o,/tmp/mysqld.trace on Unix and d:t:i:O,\mysqld.trace on Windows.

Using -DWITH_DEBUG=1 to configure MySQL with debugging support enables you to use the --
debug="d,parser_debug" option when you start the server. This causes the Bison parser that
is used to process SQL statements to dump a parser trace to the server's standard error output.
Typically, this output is written to the error log.

This option may be given multiple times. Values that begin with + or - are added to or subtracted
from the previous value. For example, --debug=T --debug=+P sets the value to P:T.

For more information, see Section 22.4.3, “The DBUG Package”.

• --debug-sync-timeout[=N]

Command-Line Format --debug-sync-timeout[=#]

Option-File Format debug-sync-timeout

Permitted Values

Type numeric

Controls whether the Debug Sync facility for testing and debugging is enabled. Use of Debug Sync
requires that MySQL be configured with the -DENABLE_DEBUG_SYNC=1 option (see Section 2.8.4,
“MySQL Source-Configuration Options”). If Debug Sync is not compiled in, this option is not
available. The option value is a timeout in seconds. The default value is 0, which disables Debug
Sync. To enable it, specify a value greater than 0; this value also becomes the default timeout for
individual synchronization points. If the option is given without a value, the timeout is set to 300
seconds.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• --default-authentication-plugin=plugin_name

Removed 5.7.2

Command-Line Format --default-authentication-plugin=plugin_name

Option-File Format default-authentication-plugin

Permitted Values

Type enumeration

Default mysql_native_password

mysql_native_password

Valid
Values sha256_password

This option sets the default authentication plugin. It was removed in MySQL 5.7.2 and replaced by
the default_authentication_plugin system variable. The variable is used the same way as
the option at server startup, but also enables the default plugin value to be inspected as runtime. For
usage details, see the description of default_authentication_plugin.

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html

Server Command Options

452

• --default-storage-engine=type

Command-Line Format --default-storage-engine=name

Option-File Format default-storage-engine

System Variable Name default_storage_engine

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default InnoDB

Set the default storage engine for tables. See Chapter 14, Storage Engines. This option sets the
storage engine for permanent tables only. To set the storage engine for TEMPORARY tables, set the
default_tmp_storage_engine system variable.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server will not start.

• --default-time-zone=timezone

Command-Line Format --default-time-zone=name

Option-File Format default-time-zone

Permitted Values

Type string

Set the default server time zone. This option sets the global time_zone system variable. If this
option is not given, the default time zone is the same as the system time zone (given by the value of
the system_time_zone system variable.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqld normally reads the [mysqld] group. If the --defaults-group-
suffix=_other option is given, mysqld also reads the [mysqld_other] group.

• --delay-key-write[={OFF|ON|ALL}]

Command-Line Format --delay-key-write[=name]

Option-File Format delay-key-write

System Variable Name delay_key_write

Variable Scope Global

Dynamic Variable Yes

Server Command Options

453

Permitted Values

Type enumeration

Default ON

ON

OFF

Valid
Values

ALL

Specify how to use delayed key writes. Delayed key writing causes key buffers not to be flushed
between writes for MyISAM tables. OFF disables delayed key writes. ON enables delayed key writes
for those tables that were created with the DELAY_KEY_WRITE option. ALL delays key writes for
all MyISAM tables. See Section 8.11.2, “Tuning Server Parameters”, and Section 14.3.1, “MyISAM
Startup Options”.

Note

If you set this variable to ALL, you should not use MyISAM tables from within
another program (such as another MySQL server or myisamchk) when the
tables are in use. Doing so leads to index corruption.

• --des-key-file=file_name

Command-Line Format --des-key-file=file_name

Option-File Format des-key-file

Read the default DES keys from this file. These keys are used by the DES_ENCRYPT() and
DES_DECRYPT() functions.

• --enable-named-pipe

Command-Line Format --enable-named-pipe

Option-File Format enable-named-pipe

Platform Specific Windows

Enable support for named pipes. This option applies only on Windows.

• --event-scheduler[=value]

Command-Line Format --event-scheduler[=value]

Option-File Format event-scheduler

System Variable Name event_scheduler

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default OFF

ON

OFF

Valid
Values

DISABLED

Enable or disable, and start or stop, the event scheduler.

For detailed information, see The --event-scheduler Option [2249].

Server Command Options

454

• --exit-info[=flags], -T [flags]

Command-Line Format --exit-info[=flags]

 -T [flags]

Option-File Format exit-info

Permitted Values

Type numeric

This is a bit mask of different flags that you can use for debugging the mysqld server. Do not use
this option unless you know exactly what it does!

• --external-locking

Command-Line Format --external-locking

Option-File Format external-locking

Permitted Values

Type boolean

Default FALSE

Enable external locking (system locking), which is disabled by default as of MySQL 4.0. Note that if
you use this option on a system on which lockd does not fully work (such as Linux), it is easy for
mysqld to deadlock.

To disable external locking explicitly, use --skip-external-locking.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.10.5, “External Locking”.

• --flush

Command-Line Format --flush

Option-File Format flush

System Variable Name flush

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write
of all changes to disk only after each SQL statement and lets the operating system handle the
synchronizing to disk. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.

• --gdb

Command-Line Format --gdb

Option-File Format gdb

Permitted Values

Type boolean

Default FALSE

Server Command Options

455

Install an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and
disable stack tracing and core file handling. See Section 22.4, “Debugging and Porting MySQL”.

• --general-log[={0|1}]

Command-Line Format --general-log

Option-File Format general-log

System Variable Name general_log

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Specify the initial general query log state. With no argument or an argument of 1, the --general-
log option enables the log. If omitted or given with an argument of 0, the option disables the log.

• --ignore-db-dir=dir_name

Command-Line Format --ignore-db-dir

Option-File Format ignore-db-dir

Permitted Values

Type directory name

This option tells the server to ignore the given directory name for purposes of the SHOW DATABASES
statement or INFORMATION_SCHEMA tables. For example, if a MySQL configuration locates the data
directory at the root of a file system on Unix, the system might create a lost+found directory there
that the server should ignore. Starting the server with --ignore-db-dir=lost+found causes that
name not to be listed as a database.

To specify more than one name, use this option multiple times, once for each name. Specifying the
option with an empty value (that is, as --ignore-db-dir=) resets the directory list to the empty
list.

Instances of this option given at server startup are used to set the ignore_db_dirs system
variable.

• --init-file=file_name

Command-Line Format --init-file=file_name

Option-File Format init-file

System Variable Name init_file

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Read SQL statements from this file at startup. Each statement must be on a single line and should
not include comments.

• --innodb-xxx

Server Command Options

456

Set an option for the InnoDB storage engine. The InnoDB options are listed in Section 14.2.13,
“InnoDB Startup Options and System Variables”.

• --install [service_name]

Command-Line Format --install [service_name]

(Windows only) Install the server as a Windows service that starts automatically during Windows
startup. The default service name is MySQL if no service_name value is given. For more
information, see Section 2.3.5.7, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install options,
--install must be first.

• --install-manual [service_name]

Command-Line Format --install-manual [service_name]

(Windows only) Install the server as a Windows service that must be started manually. It does not
start automatically during Windows startup. The default service name is MySQL if no service_name
value is given. For more information, see Section 2.3.5.7, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install-manual
options, --install-manual must be first.

• --language=lang_name, -L lang_name

Deprecated 5.6.1, by lc-messages-dir

Command-Line Format --language=name

 -L

Option-File Format language

System Variable Name language

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

Default /usr/local/mysql/share/mysql/english/

The language to use for error messages. lang_name can be given as the language name or as the
full path name to the directory where the language files are installed. See Section 10.2, “Setting the
Error Message Language”.

In MySQL 5.7, --lc-messages-dir and --lc-messages should be used rather than --
language, which is deprecated (and handled as an alias for --lc-messages-dir). The --
language option will be removed in a future MySQL release.

• --large-pages

Command-Line Format --large-pages

Option-File Format large-pages

System Variable Name large_pages

Server Command Options

457

Variable Scope Global

Dynamic Variable No

Platform Specific Linux

Permitted Values

Type
(Linux)

boolean

Default FALSE

Some hardware/operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and
operating system. Applications that perform a lot of memory accesses may obtain performance
improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

MySQL 5.7 supports the Linux implementation of large page support (which is called HugeTLB in
Linux). See Section 8.11.4.2, “Enabling Large Page Support”. For Solaris support of large pages, see
the description of the --super-large-pages option.

--large-pages is disabled by default.

• --lc-messages=locale_name

Command-Line Format --lc-messages=name

Option-File Format lc-messages

System Variable Name lc_messages

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

The locale to use for error messages. The server converts the argument to a language name
and combines it with the value of the --lc-messages-dir to produce the location for the error
message file. See Section 10.2, “Setting the Error Message Language”.

• --lc-messages-dir=path

Command-Line Format --lc-messages-dir=path

Option-File Format lc-messages-dir

System Variable Name lc_messages_dir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

The directory where error messages are located. The value is used together with the value of --lc-
messages to produce the location for the error message file. See Section 10.2, “Setting the Error
Message Language”.

• --local-service

Command-Line Format --local-service

Server Command Options

458

(Windows only) A --local-service option following the service name causes the server to run
using the LocalService Windows account that has limited system privileges. This account is
available only for Windows XP or newer. If both --defaults-file and --local-service are
given following the service name, they can be in any order. See Section 2.3.5.7, “Starting MySQL as
a Windows Service”.

• --log-error[=file_name]

Command-Line Format --log-error[=name]

Option-File Format log-error

System Variable Name log_error

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Log errors and startup messages to this file. See Section 5.2.2, “The Error Log”. If you omit the
file name, MySQL uses host_name.err. If the file name has no extension, the server adds an
extension of .err.

• --log-isam[=file_name]

Command-Line Format --log-isam[=name]

Option-File Format log-isam

Permitted Values

Type file name

Log all MyISAM changes to this file (used only when debugging MyISAM).

• --log-output=value,...

Command-Line Format --log-output=name

Option-File Format log-output

System Variable Name log_output

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type set

Default FILE

TABLE

FILE

Valid
Values

NONE

This option determines the destination for general query log and slow query log output. The option
value can be given as one or more of the words TABLE, FILE, or NONE. TABLE select logging to the
general_log and slow_log tables in the mysql database as a destination. FILE selects logging
to log files as a destination. NONE disables logging. If NONE is present in the option value, it takes
precedence over any other words that are present. TABLE and FILE can both be given to select to
both log output destinations.

Server Command Options

459

This option selects log output destinations, but does not enable log output. To do that, use the --
general_log and --slow_query_log options. For FILE logging, the --general_log_file
and -slow_query_log_file options determine the log file location. For more information, see
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”.

• --log-queries-not-using-indexes

Command-Line Format --log-queries-not-using-indexes

Option-File Format log-queries-not-using-indexes

System Variable Name log_queries_not_using_indexes

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

If you are using this option with the slow query log enabled, queries that are expected to retrieve all
rows are logged. See Section 5.2.5, “The Slow Query Log”. This option does not necessarily mean
that no index is used. For example, a query that uses a full index scan uses an index but would be
logged because the index would not limit the number of rows.

• --log-raw

Command-Line Format --log-raw[=value]

Option-File Format log-raw

Permitted Values

Type boolean

Default OFF

In MySQL 5.7, passwords in certain statements written to the general query log, slow query log, and
binary log are rewritten by the server not to occur literally in plain text. Password rewriting can be
suppressed for the general query log by starting the server with the --log-raw option. This option
may be useful for diagnostic purposes, to see the exact text of statements as received by the server,
but for security reasons is not recommended for production use.

For more information, see Section 6.1.2.3, “Passwords and Logging”.

• --log-short-format

Command-Line Format --log-short-format

Option-File Format log-short-format

Permitted Values

Type boolean

Default FALSE

Log less information to the binary log and slow query log, if they have been activated.

• --log-slow-admin-statements

Removed 5.7.1

Command-Line Format --log-
slow-

through 5.7.0

Server Command Options

460

admin-
statements

Option-File Format log-slow-admin-statements

Permitted Values

Type boolean

Default OFF

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP
INDEX, OPTIMIZE TABLE, and REPAIR TABLE.

This command-line option was removed in MySQL 5.7.1 and replaced by the
log_slow_admin_statements system variable. The system variable can be set on the command
line or in option files the same way as the option, so there is no need for any changes at server
startup, but the system variable also makes it possible to examine or set the value at runtime.

• --log-tc=file_name

Command-Line Format --log-tc=name

Option-File Format log-tc

Permitted Values

Type file name

Default tc.log

The name of the memory-mapped transaction coordinator log file (for XA transactions that affect
multiple storage engines when the binary log is disabled). The default name is tc.log. The file is
created under the data directory if not given as a full path name. Currently, this option is unused.

• --log-tc-size=size

Command-Line Format --log-tc-size=#

Option-File Format log-tc-size

Permitted Values

Platform
Bit Size

32

Type numeric

Default 24576

Max
Value

4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 24576

Max
Value

18446744073709547520

The size in bytes of the memory-mapped transaction coordinator log. The default size is 24KB.

• --log-warnings[=level], -W [level]

Server Command Options

461

Deprecated 5.7.2

Command-Line Format --log-warnings[=#]

 -W [#]

Option-File Format log-warnings[=#]

System Variable Name log_warnings

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 1

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1

Range 0 .. 18446744073709547520

Note

As of MySQL 5.7.2, the log_error_verbosity system variable is
preferred over, and should be used instead of, the --log-warnings
option or log_warnings system variable. For more information, see the
descriptions of log_error_verbosity and log_warnings. The --log-
warnings command-line option and log_warnings system variable are
deprecated and will be removed in a future MySQL release.

Print out warnings such as Aborted connection... to the error log. This option is enabled (1)
by default. To disable it, use --log-warnings=0. Specifying the option without a level value
increments the current value by 1. Enabling this option by setting it greater than 0 is recommended,
for example, if you use replication (you get more information about what is happening, such
as messages about network failures and reconnections). If the value is greater than 1, aborted
connections are written to the error log, and access-denied errors for new connection attempts are
written. See Section C.5.2.11, “Communication Errors and Aborted Connections”.

If a slave server was started with --log-warnings enabled, the slave prints messages to the error
log to provide information about its status, such as the binary log and relay log coordinates where it
starts its job, when it is switching to another relay log, when it reconnects after a disconnect, and so
forth. The server logs messages about statements that are unsafe for statement-based logging if --
log-warnings is greater than 0.

• --low-priority-updates

Command-Line Format --low-priority-updates

Option-File Format low-priority-updates

System Variable Name low_priority_updates

Variable Scope Global, Session

Dynamic Variable Yes

Server Command Options

462

Permitted Values

Type boolean

Default FALSE

Give table-modifying operations (INSERT, REPLACE, DELETE, UPDATE) lower priority than selects.
This can also be done using {INSERT | REPLACE | DELETE | UPDATE} LOW_PRIORITY ...
to lower the priority of only one query, or by SET LOW_PRIORITY_UPDATES=1 to change the priority
in one thread. This affects only storage engines that use only table-level locking (MyISAM, MEMORY,
MERGE). See Section 8.10.2, “Table Locking Issues”.

• --min-examined-row-limit=number

Command-Line Format --min-examined-row-limit=#

Option-File Format min-examined-row-limit

System Variable Name min_examined_row_limit

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 0

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 0

Range 0 .. 18446744073709547520

When this option is set, queries which examine fewer than number rows are not written to the slow
query log. The default is 0.

• --memlock

Command-Line Format --memlock

Option-File Format memlock

System Variable Name locked_in_memory

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default FALSE

Lock the mysqld process in memory. This option might help if you have a problem where the
operating system is causing mysqld to swap to disk.

--memlock works on systems that support the mlockall() system call; this includes Solaris,
most Linux distributions that use a 2.4 or newer kernel, and perhaps other Unix systems. On Linux

Server Command Options

463

systems, you can tell whether or not mlockall() (and thus this option) is supported by checking to
see whether or not it is defined in the system mman.h file, like this:

shell> grep mlockall /usr/include/sys/mman.h

If mlockall() is supported, you should see in the output of the previous command something like
the following:

extern int mlockall (int __flags) __THROW;

Important

Use of this option may require you to run the server as root, which, for
reasons of security, is normally not a good idea. See Section 6.1.5, “How to
Run MySQL as a Normal User”.

On Linux and perhaps other systems, you can avoid the need to run the
server as root by changing the limits.conf file. See the notes regarding
the memlock limit in Section 8.11.4.2, “Enabling Large Page Support”.

You must not try to use this option on a system that does not support the
mlockall() system call; if you do so, mysqld will very likely crash as soon
as you try to start it.

• --myisam-block-size=N

Command-Line Format --myisam-block-size=#

Option-File Format myisam-block-size

Permitted Values

Type numeric

Default 1024

Range 1024 .. 16384

The block size to be used for MyISAM index pages.

• --myisam-recover-options[=option[,option]...]]

Command-Line Format --myisam-recover-options[=name]

Option-File Format myisam-recover-options

Permitted Values

Type enumeration

Default OFF

OFF

DEFAULT

BACKUP

FORCE

Valid
Values

QUICK

Set the MyISAM storage engine recovery mode. The option value is any combination of the values
of OFF, DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by
commas. Specifying the option with no argument is the same as specifying DEFAULT, and specifying
with an explicit value of "" disables recovery (same as a value of OFF). If recovery is enabled, each
time mysqld opens a MyISAM table, it checks whether the table is marked as crashed or was not

Server Command Options

464

closed properly. (The last option works only if you are running with external locking disabled.) If this
is the case, mysqld runs a check on the table. If the table was corrupted, mysqld attempts to repair
it.

The following options affect how the repair works.

Option Description

OFF No recovery.

DEFAULT Recovery without backup, forcing, or quick checking.

BACKUP If the data file was changed during recovery, save a backup of the
tbl_name.MYD file as tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than one row from the .MYD file.

QUICK Do not check the rows in the table if there are not any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If you
want to be able to recover from most problems without user intervention, you should use the options
BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it keeps the
old data file as a backup so that you can later examine what happened.

See Section 14.3.1, “MyISAM Startup Options”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --old-alter-table

Command-Line Format --old-alter-table

Option-File Format old-alter-table

System Variable Name old_alter_table

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

When this option is given, the server does not use the optimized method of processing an ALTER
TABLE operation. It reverts to using a temporary table, copying over the data, and then renaming
the temporary table to the original, as used by MySQL 5.0 and earlier. For more information on the
operation of ALTER TABLE, see Section 13.1.6, “ALTER TABLE Syntax”.

• --old-style-user-limits

Command-Line Format --old-style-user-limits

Option-File Format old-style-user-limits

Permitted Values

Type boolean

Server Command Options

465

Default FALSE

Enable old-style user limits. (Before MySQL 5.0.3, account resource limits were counted separately
for each host from which a user connected rather than per account row in the user table.) See
Section 6.3.4, “Setting Account Resource Limits”.

• --open-files-limit=count

Command-Line Format --open-files-limit=#

Option-File Format open-files-limit

System Variable Name open_files_limit

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default (autosized)

Range 0 .. platform dependent

Changes the number of file descriptors available to mysqld. You should try increasing the value
of this option if mysqld gives you the error Too many open files. mysqld uses the option
value to reserve descriptors with setrlimit(). Internally, the maximum value for this option is the
maximum unsigned integer value, but the actual maximum is platform dependent. If the requested
number of file descriptors cannot be allocated, mysqld writes a warning to the error log.

mysqld may attempt to allocate more than the requested number of descriptors (if they are
available), using the values of max_connections and table_open_cache to estimate whether
more descriptors will be needed.

On Unix, the value cannot be set less than ulimit -n.

• --partition[=value]

Command-Line Format --partition

Option-File Format partition

Disabled by skip-partition

Permitted Values

Type boolean

Default ON

Enables or disables user-defined partitioning support in the MySQL Server.

• --performance-schema-xxx

Configure a Performance Schema option. For details, see Section 20.11, “Performance Schema
Command Options”.

• --pid-file=path

Command-Line Format --pid-file=file_name

Option-File Format pid-file

System Variable Name pid_file

Variable Scope Global

Dynamic Variable No

Server Command Options

466

Permitted Values

Type file name

The path name of the process ID file. The server creates the file in the data directory unless an
absolute path name is given to specify a different directory. This file is used by other programs such
as mysqld_safe to determine the server's process ID.

• --plugin-xxx

Specifies an option that pertains to a server plugin. For example, many storage engines can be
built as plugins, and for such engines, options for them can be specified with a --plugin prefix.
Thus, the --innodb_file_per_table option for InnoDB can be specified as --plugin-
innodb_file_per_table.

For boolean options that can be enabled or disabled, the --skip prefix and other alternative formats
are supported as well (see Section 4.2.3.2, “Program Option Modifiers”). For example, --skip-
plugin-innodb_file_per_table disables innodb_file_per_table.

The rationale for the --plugin prefix is that it enables plugin options to be specified unambiguously
if there is a name conflict with a built-in server option. For example, were a plugin writer to name a
plugin “sql” and implement a “mode” option, the option name might be --sql-mode, which would
conflict with the built-in option of the same name. In such cases, references to the conflicting name
are resolved in favor of the built-in option. To avoid the ambiguity, users can specify the plugin option
as --plugin-sql-mode. Use of the --plugin prefix for plugin options is recommended to avoid
any question of ambiguity.

• --plugin-load=plugin_list

Command-Line Format --plugin-load=plugin_list

Option-File Format plugin-load

Permitted Values

Type string

This option tells the server to load the named plugins at startup. The option value is a semicolon-
separated list of name=plugin_library pairs. Each name is the name of the plugin, and
plugin_library is the name of the shared library that contains the plugin code. Each library file
must be located in the directory named by the plugin_dir system variable. For example, if plugins
named myplug1 and myplug2 have library files myplug1.so and myplug2.so, use this option to
load them at startup:

shell> mysqld --plugin-load="myplug1=myplug1.so;myplug2=myplug2.so"

Quotes are used around the argument value here because semicolon (;) is interpreted as a
special character by some command interpreters. (Unix shells treat it as a command terminator, for
example.)

If multiple --plugin-load options are given, only the last one is used. Additional plugins to load
may be specified using --plugin-load-add options.

If a plugin library is named without any preceding plugin name, the server loads all plugins in the
library.

Each plugin is loaded for a single invocation of mysqld only. After a restart, the plugin is not loaded
unless --plugin-load is used again. This is in contrast to INSTALL PLUGIN, which adds an entry
to the mysql.plugins table to cause the plugin to be loaded for every normal server startup.

Server Command Options

467

Under normal startup, the server determines which plugins to load by reading the mysql.plugins
system table. If the server is started with the --skip-grant-tables option, it does not consult the
mysql.plugins table and does not load plugins listed there. --plugin-load enables plugins to
be loaded even when --skip-grant-tables is given. --plugin-load also enables plugins to
be loaded at startup under configurations when plugins cannot be loaded at runtime.

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

• --plugin-load-add=plugin_list

Command-Line Format --plugin-load-add=plugin_list

Option-File Format plugin-load-add

Permitted Values

Type string

This option complements the --plugin-load option. --plugin-load-add adds a plugin or
plugins to the set of plugins to be loaded at startup. The argument format is the same as for --
plugin-load. --plugin-load-add can be used to avoid specifying a large set of plugins as a
single long unwieldy --plugin-load argument.

--plugin-load-add can be given in the absence of --plugin-load, but any instance of --
plugin-load-add that appears before --plugin-load. has no effect because --plugin-load
resets the set of plugins to load. In other words, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to this option:

--plugin-load="x;y"

But these options:

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

• --port=port_num, -P port_num

Command-Line Format --port=#

 -P

Option-File Format port

System Variable Name port

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Server Command Options

468

Default 3306

Range 0 .. 65535

The port number to use when listening for TCP/IP connections. The port number must be 1024 or
higher unless the server is started by the root system user.

• --port-open-timeout=num

Command-Line Format --port-open-timeout=#

Option-File Format port-open-timeout

Permitted Values

Type numeric

Default 0

On some systems, when the server is stopped, the TCP/IP port might not become available
immediately. If the server is restarted quickly afterward, its attempt to reopen the port can fail. This
option indicates how many seconds the server should wait for the TCP/IP port to become free if it
cannot be opened. The default is not to wait.

• --print-defaults

Print the program name and all options that it gets from option files.

• --remove [service_name]

Command-Line Format --remove [service_name]

(Windows only) Remove a MySQL Windows service. The default service name is MySQL if no
service_name value is given. For more information, see Section 2.3.5.7, “Starting MySQL as a
Windows Service”.

• --safe-user-create

Command-Line Format --safe-user-create

Option-File Format safe-user-create

Permitted Values

Type boolean

Default FALSE

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement
unless the user has the INSERT privilege for the mysql.user table or any column in the table. If
you want a user to have the ability to create new users that have those privileges that the user has
the right to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT
statement to give privileges to other users.

• --secure-auth

Command-Line Format --secure-auth

Option-File Format secure-auth

System Variable Name secure_auth

Server Command Options

469

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

This option causes the server to block connections by clients that attempt to use accounts that have
passwords stored in the old (pre-4.1) format. Use it to prevent all use of passwords employing the old
format (and hence insecure communication over the network). This option is enabled by default; to
disable it, use --skip-secure-auth.

Server startup fails with an error if this option is enabled and the privilege tables are in pre-4.1
format. See Section C.5.2.4, “Client does not support authentication protocol”.

The mysql client also has a --secure-auth option, which prevents connections to a server if the
server requires a password in old format for the client account.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release.

• --secure-file-priv=path

Command-Line Format --secure-file-priv=path

Option-File Format secure-file-priv

System Variable Name secure_file_priv

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

This option limits the effect of the LOAD_FILE() function and the LOAD DATA and SELECT ...
INTO OUTFILE statements to work only with files in the specified directory.

• --shared-memory

System Variable Name shared_memory

Variable Scope Global

Dynamic Variable No

Platform Specific Windows

Enable shared-memory connections by local clients. This option is available only on Windows.

• --shared-memory-base-name=name

System Variable Name shared_memory_base_name

Variable Scope Global

Dynamic Variable No

Platform Specific Windows

Server Command Options

470

The name of shared memory to use for shared-memory connections. This option is available only on
Windows. The default name is MYSQL. The name is case sensitive.

• --skip-concurrent-insert

Turn off the ability to select and insert at the same time on MyISAM tables. (This is to be used only if
you think you have found a bug in this feature.) See Section 8.10.3, “Concurrent Inserts”.

• --skip-event-scheduler

Command-Line Format --skip-event-scheduler

 --disable-event-scheduler

Option-File Format skip-event-scheduler

Turns the Event Scheduler OFF. This is not the same as disabling the Event Scheduler, which
requires setting --event-scheduler=DISABLED; see The --event-scheduler Option [2249],
for more information.

• --skip-grant-tables

This option causes the server to start without using the privilege system at all, which gives anyone
with access to the server unrestricted access to all databases. You can cause a running server to
start using the grant tables again by executing mysqladmin flush-privileges or mysqladmin
reload command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES statement
after connecting to the server. This option also suppresses loading of plugins that were installed with
the INSTALL PLUGIN statement, user-defined functions (UDFs), and scheduled events. To cause
plugins to be loaded anyway, use the --plugin-load option.

Note that FLUSH PRIVILEGES might be executed implicitly by other actions performed after startup.
For example, mysql_upgrade flushes the privileges during the upgrade procedure.

• --skip-host-cache

Disable use of the internal host cache for faster name-to-IP resolution. In this case, the server
performs a DNS lookup every time a client connects. See Section 8.11.5.2, “DNS Lookup
Optimization and the Host Cache”.

Use of --skip-host-cache is similar to setting the host_cache_size system variable to 0, but
host_cache_size is more flexible because it can also be used to resize, enable, or disable the
host cache at runtime, not just at server startup.

If you start the server with --skip-host-cache, that does not prevent changes to the value of
host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

• --skip-innodb

Disable the InnoDB storage engine. In this case, because the default storage engine is InnoDB,
the server will not start unless you also use --default-storage-engine and --default-tmp-
storage-engine to set the default to some other engine for both permanent and TEMPORARY
tables.

• --skip-name-resolve

Do not resolve host names when checking client connections. Use only IP addresses. If you use
this option, all Host column values in the grant tables must be IP addresses or localhost. See
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”.

Server Command Options

471

Depending on the network configuration of your system and the Host values for your accounts,
clients may need to connect using an explicit --host option, such as --host=localhost, --
host=127.0.0.1, or --host=::1.

• --skip-networking

Do not listen for TCP/IP connections at all. All interaction with mysqld must be made using
named pipes or shared memory (on Windows) or Unix socket files (on Unix). This option is highly
recommended for systems where only local clients are permitted. See Section 8.11.5.2, “DNS
Lookup Optimization and the Host Cache”.

• --skip-partition

Command-Line Format --skip-partition

 --disable-partition

Option-File Format skip-partition

Disables user-defined partitioning. Partitioned tables can be seen using SHOW TABLES
or by querying the INFORMATION_SCHEMA.TABLES table, but cannot be created or
modified, nor can data in such tables be accessed. All partition-specific columns in the
INFORMATION_SCHEMA.PARTITIONS table display NULL.

Since DROP TABLE removes table definition (.frm) files, this statement works on partitioned tables
even when partitioning is disabled using the option. The statement, however, does not remove .par
files associated with partitioned tables in such cases. For this reason, you should avoid dropping
partitioned tables with partitioning disabled, or take action to remove the orphaned .par files
manually.

• --ssl*

Options that begin with --ssl specify whether to permit clients to connect using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

• --standalone

Command-Line Format --standalone

Option-File Format standalone

Platform Specific Windows

Available on Windows only; instructs the MySQL server not to run as a service.

• --super-large-pages

Command-Line Format --super-large-pages

Option-File Format super-large-pages

Platform Specific Solaris

Permitted Values

Type
(Solaris)

boolean

Default FALSE

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available
for recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or
--skip-super-large-pages option.

Server Command Options

472

• --symbolic-links, --skip-symbolic-links

Command-Line Format --symbolic-links

Option-File Format symbolic-links

Enable or disable symbolic link support. On Unix, enabling symbolic links means that you can link a
MyISAM index file or data file to another directory with the INDEX DIRECTORY or DATA DIRECTORY
options of the CREATE TABLE statement. If you delete or rename the table, the files that its symbolic
links point to also are deleted or renamed. See Using Symbolic Links for MyISAM Tables on Unix.

This option has no meaning on Windows.

• --skip-show-database

Command-Line Format --skip-show-database

Option-File Format skip-show-database

System Variable Name skip_show_database

Variable Scope Global

Dynamic Variable No

This option sets the skip_show_database system variable that controls who is permitted to use
the SHOW DATABASES statement. See Section 5.1.4, “Server System Variables”.

• --skip-stack-trace

Command-Line Format --skip-stack-trace

Option-File Format skip-stack-trace

Do not write stack traces. This option is useful when you are running mysqld under a debugger. On
some systems, you also must use this option to get a core file. See Section 22.4, “Debugging and
Porting MySQL”.

• --slow-query-log[={0|1}]

Command-Line Format --slow-query-log

Option-File Format slow-query-log

System Variable Name slow_query_log

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Specify the initial slow query log state. With no argument or an argument of 1, the --slow-query-
log option enables the log. If omitted or given with an argument of 0, the option disables the log.

• --slow-start-timeout=timeout

Command-Line Format --slow-start-timeout=#

Option-File Format slow-start-timeout

Permitted Values

Type
(Windows)

numeric

Server Command Options

473

Default 15000

This option controls the Windows service control manager's service start timeout. The value is the
maximum number of milliseconds that the service control manager waits before trying to kill the
windows service during startup. The default value is 15000 (15 seconds). If the MySQL service takes
too long to start, you may need to increase this value. A value of 0 means there is no timeout.

• --socket=path

Command-Line Format --socket=name

Option-File Format socket

System Variable Name socket

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Default /tmp/mysql.sock

On Unix, this option specifies the Unix socket file to use when listening for local connections. The
default value is /tmp/mysql.sock. If this option is given, the server creates the file in the data
directory unless an absolute path name is given to specify a different directory. On Windows, the
option specifies the pipe name to use when listening for local connections that use a named pipe.
The default value is MySQL (not case sensitive).

• --sql-mode=value[,value[,value...]]

Command-Line Format --sql-mode=name

Option-File Format sql-mode

System Variable Name sql_mode

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type set

Default NO_ENGINE_SUBSTITUTION

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

Valid
Values

NO_TABLE_OPTIONS

Server Command Options

474

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

Set the SQL mode. See Section 5.1.7, “Server SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the
installation process. For example, mysql_install_db creates a default
option file named my.cnf in the base installation directory. This file contains
a line that sets the SQL mode; see Section 4.4.3, “mysql_install_db —
Initialize MySQL Data Directory”.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

• --sysdate-is-now

Command-Line Format --sysdate-is-now

Option-File Format sysdate-is-now

Permitted Values

Type boolean

Default FALSE

SYSDATE() by default returns the time at which it executes, not the time at which the statement
in which it occurs begins executing. This differs from the behavior of NOW(). This option causes
SYSDATE() to be an alias for NOW(). For information about the implications for binary logging and
replication, see the description for SYSDATE() in Section 12.7, “Date and Time Functions” and for
SET TIMESTAMP in Section 5.1.4, “Server System Variables”.

• --tc-heuristic-recover={COMMIT|ROLLBACK}

Command-Line Format --tc-heuristic-recover=name

Option-File Format tc-heuristic-recover

Permitted Values

Type enumeration

Default COMMIT

COMMIT

Valid
Values ROLLBACK

The type of decision to use in the heuristic recovery process. Currently, this option is unused.

• --temp-pool

Command-Line Format --temp-pool

Server Command Options

475

Option-File Format temp-pool

Permitted Values

Type boolean

Default TRUE

This option causes most temporary files created by the server to use a small set of names, rather
than a unique name for each new file. This works around a problem in the Linux kernel dealing with
creating many new files with different names. With the old behavior, Linux seems to “leak” memory,
because it is being allocated to the directory entry cache rather than to the disk cache. This option is
ignored except on Linux.

• --transaction-isolation=level

Command-Line Format --transaction-isolation=name

Option-File Format transaction-isolation

Permitted Values

Type enumeration

Default REPEATABLE-READ

READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

Valid
Values

SERIALIZABLE

Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 13.3.6, “SET TRANSACTION
Syntax”.

The default transaction isolation level can also be set at runtime using the SET TRANSACTION
statement or by setting the tx_isolation system variable.

• --transaction-read-only

Command-Line Format --transaction-read-only

Option-File Format transaction-read-only

Permitted Values

Type boolean

Default OFF

Sets the default transaction access mode. By default, read-only mode is disabled, so the mode is
read/write.

To set the default transaction access mode at runtime, use the SET TRANSACTION statement or set
the tx_read_only system variable. See Section 13.3.6, “SET TRANSACTION Syntax”.

• --tmpdir=path, -t path

Command-Line Format --tmpdir=path

 -t

Option-File Format tmpdir

System Variable Name tmpdir

Variable Scope Global

Server Command Options

476

Dynamic Variable No

Permitted Values

Type directory name

The path of the directory to use for creating temporary files. It might be useful if your default /
tmp directory resides on a partition that is too small to hold temporary tables. This option accepts
several paths that are used in round-robin fashion. Paths should be separated by colon characters
(“:”) on Unix and semicolon characters (“;”) on Windows. If the MySQL server is acting as a
replication slave, you should not set --tmpdir to point to a directory on a memory-based file
system or to a directory that is cleared when the server host restarts. For more information about the
storage location of temporary files, see Section C.5.4.4, “Where MySQL Stores Temporary Files”. A
replication slave needs some of its temporary files to survive a machine restart so that it can replicate
temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost
when the server restarts, replication fails.

• --user={user_name|user_id}, -u {user_name|user_id}

Command-Line Format --user=name

 -u name

Option-File Format user

Permitted Values

Type string

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

This option is mandatory when starting mysqld as root. The server changes its user ID during its
startup sequence, causing it to run as that particular user rather than as root. See Section 6.1.1,
“Security Guidelines”.

To avoid a possible security hole where a user adds a --user=root option to a my.cnf file
(thus causing the server to run as root), mysqld uses only the first --user option specified
and produces a warning if there are multiple --user options. Options in /etc/my.cnf and
$MYSQL_HOME/my.cnf are processed before command-line options, so it is recommended that you
put a --user option in /etc/my.cnf and specify a value other than root. The option in /etc/
my.cnf is found before any other --user options, which ensures that the server runs as a user
other than root, and that a warning results if any other --user option is found.

• --verbose, -v

Use this option with the --help option for detailed help.

• --version, -V

Display version information and exit.

You can assign a value to a server system variable by using an option of the form
--var_name=value. For example, --key_buffer_size=32M sets the key_buffer_size variable
to a value of 32MB.

Note that when you assign a value to a variable, MySQL might automatically correct the value to stay
within a given range, or adjust the value to the closest permissible value if only certain values are
permitted.

If you want to restrict the maximum value to which a variable can be set at runtime with SET, you can
define this by using the --maximum-var_name=value command-line option.

Server System Variables

477

You can change the values of most system variables for a running server with the SET statement. See
Section 13.7.4, “SET Syntax”.

Section 5.1.4, “Server System Variables”, provides a full description for all variables, and additional
information for setting them at server startup and runtime. Section 8.11.2, “Tuning Server Parameters”,
includes information on optimizing the server by tuning system variables.

5.1.4 Server System Variables

The MySQL server maintains many system variables that indicate how it is configured. Each system
variable has a default value. System variables can be set at server startup using options on the
command line or in an option file. Most of them can be changed dynamically while the server is running
by means of the SET statement, which enables you to modify operation of the server without having to
stop and restart it. You can refer to system variable values in expressions.

There are several ways to see the names and values of system variables:

• To see the values that a server will use based on its compiled-in defaults and any option files that it
reads, use this command:

mysqld --verbose --help

• To see the values that a server will use based on its compiled-in defaults, ignoring the settings in any
option files, use this command:

mysqld --no-defaults --verbose --help

• To see the current values used by a running server, use the SHOW VARIABLES statement.

This section provides a description of each system variable. Variables with no version indicated are
present in all MySQL 5.7 releases. For historical information concerning their implementation, please
see http://dev.mysql.com/doc/refman/5.0/en/, and http://dev.mysql.com/doc/refman/4.1/en/.

The following table lists all available system variables.

Table 5.2 System Variable Summary

Name Cmd-Line Option file System Var Var Scope Dynamic

audit_log_format Yes Global No

auto_increment_increment Yes Both Yes

auto_increment_offset Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privileges Yes Global Yes

back_log Yes Global No

basedir Yes Yes Yes Global No

big-tables Yes Yes Yes

- Variable:
big_tables

 Yes Both Yes

bind-address Yes Yes No

- Variable:
bind_address

 Yes Global No

binlog_cache_size Yes Yes Yes Global Yes

binlog_checksum Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog-format Yes Yes Yes

http://dev.mysql.com/doc/refman/5.0/en/
http://dev.mysql.com/doc/refman/4.1/en/

Server System Variables

478

Name Cmd-Line Option file System Var Var Scope Dynamic

- Variable:
binlog_format

 Yes Both Yes

binlog_max_flush_queue_time Yes Global Yes

binlog_order_commits Yes Global Yes

binlog_row_image Yes Yes Yes Both Yes

binlog_rows_query_log_events Yes Both Yes

binlog_stmt_cache_sizeYes Yes Yes Global Yes

block_encryption_modeYes Yes Yes Both Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

character_set_client Yes Both Yes

character_set_connection Yes Both Yes

character_set_databasea Yes Both Yes

character-set-
filesystem

Yes Yes Yes

- Variable:
character_set_filesystem

 Yes Both Yes

character_set_results Yes Both Yes

character-set-server Yes Yes Yes

- Variable:
character_set_server

 Yes Both Yes

character_set_system Yes Global No

character-sets-dir Yes Yes No

- Variable:
character_sets_dir

 Yes Global No

collation_connection Yes Both Yes

collation_databaseb Yes Both Yes

collation-server Yes Yes Yes

- Variable:
collation_server

 Yes Both Yes

completion_type Yes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

core_file Yes Global No

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

datadir Yes Yes Yes Global No

date_format Yes Global No

datetime_format Yes Global No

debug Yes Yes Yes Both Yes

Server System Variables

479

Name Cmd-Line Option file System Var Var Scope Dynamic

debug_sync Yes Session Yes

default_authentication_pluginYes Yes Yes Global No

default_password_lifetimeYes Yes Yes Global Yes

default-storage-
engine

Yes Yes Yes

- Variable:
default_storage_engine

 Yes Both Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_format Yes Yes Yes Both Yes

delay-key-write Yes Yes Yes

- Variable:
delay_key_write

 Yes Global Yes

delayed_insert_limit Yes Yes Yes Global Yes

delayed_insert_timeoutYes Yes Yes Global Yes

delayed_queue_size Yes Yes Yes Global Yes

disconnect_on_expired_passwordYes Yes Yes Session No

div_precision_incrementYes Yes Yes Both Yes

end_markers_in_json Yes Both Yes

enforce_gtid_consistencyYes Yes Yes Global No

enforce-gtid-
consistency

Yes Yes Yes Global No

eq_range_index_dive_limit Yes Both Yes

error_count Yes Session No

event-scheduler Yes Yes Yes

- Variable:
event_scheduler

 Yes Global Yes

expire_logs_days Yes Yes Yes Global Yes

explicit_defaults_for_timestampYes Yes Yes Session No

external_user Yes Session No

flush Yes Yes Yes Global Yes

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntax Yes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

general-log Yes Yes Yes

- Variable:
general_log

 Yes Global Yes

general_log_file Yes Yes Yes Global Yes

group_concat_max_lenYes Yes Yes Both Yes

gtid_executed Yes Both No

Server System Variables

480

Name Cmd-Line Option file System Var Var Scope Dynamic

gtid_mode Yes Global No

gtid-mode Yes Yes No

- Variable:
gtid_mode

 Yes Global No

gtid_next Yes Session Yes

gtid_owned Yes Both No

gtid_purged Yes Global Yes

have_compress Yes Global No

have_crypt Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_symlink Yes Global No

host_cache_size Yes Global Yes

hostname Yes Global No

identity Yes Session Yes

ignore-builtin-innodb Yes Yes No

- Variable:
ignore_builtin_innodb

 Yes Global No

ignore_db_dirs Yes Global No

init_connect Yes Yes Yes Global Yes

init-file Yes Yes No

- Variable: init_file Yes Global No

init_slave Yes Yes Yes Global Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_level Yes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

Server System Variables

481

Name Cmd-Line Option file System Var Var Scope Dynamic

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

innodb_buffer_pool_sizeYes Yes Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksums Yes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

innodb_data_home_dirYes Yes Yes Global No

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewrite Yes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_file_format Yes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_flush_log_at_timeout Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_table Yes Yes Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Global Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

Server System Variables

482

Name Cmd-Line Option file System Var Var Scope Dynamic

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

innodb_io_capacity Yes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefix Yes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_size Yes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_files Yes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

innodb_page_cleanersYes Yes Yes Global No

innodb_page_size Yes Yes Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_only Yes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

Server System Variables

483

Name Cmd-Line Option file System Var Var Scope Dynamic

innodb_rollback_segmentsYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_mode Yes Yes Yes Both Yes

innodb_support_xa Yes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locks Yes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_logs Yes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

insert_id Yes Session Yes

interactive_timeout Yes Yes Yes Both Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

large-pages Yes Yes No

- Variable:
large_pages

 Yes Global No

Server System Variables

484

Name Cmd-Line Option file System Var Var Scope Dynamic

last_insert_id Yes Session Yes

lc-messages Yes Yes Yes

- Variable:
lc_messages

 Yes Both Yes

lc-messages-dir Yes Yes No

- Variable:
lc_messages_dir

 Yes Global No

lc_time_names Yes Both Yes

license Yes Global No

local_infile Yes Global Yes

lock_wait_timeout Yes Yes Yes Both Yes

locked_in_memory Yes Global No

log_bin Yes Global No

log-bin Yes Yes Yes Global No

log_bin_basename Yes Global No

log_bin_index Yes Global No

log-bin-trust-
function-creators

Yes Yes Yes

- Variable:
log_bin_trust_function_creators

 Yes Global Yes

log_bin_use_v1_row_eventsYes Yes Yes Global No

log-bin-use-v1-row-
events

Yes Yes No

- Variable:
log_bin_use_v1_row_events

 Yes Global No

log-error Yes Yes No

- Variable: log_error Yes Global No

log_error_verbosity Yes Yes Yes Global Yes

log-output Yes Yes Yes

- Variable:
log_output

 Yes Global Yes

log-queries-not-
using-indexes

Yes Yes Yes

- Variable:
log_queries_not_using_indexes

 Yes Global Yes

log-slave-updates Yes Yes No

- Variable:
log_slave_updates

 Yes Global No

log_slave_updates Yes Yes Yes Global No

log_slow_admin_statements Yes Global Yes

log_slow_slave_statements Yes Global Yes

log_throttle_queries_not_using_indexes Yes Global Yes

log_timestamps Yes Yes Yes Global Yes

log-warnings Yes Yes Yes

Server System Variables

485

Name Cmd-Line Option file System Var Var Scope Dynamic

- Variable:
log_warnings

 Yes Global Yes

long_query_time Yes Yes Yes Both Yes

low-priority-updates Yes Yes Yes

- Variable:
low_priority_updates

 Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

master_info_repositoryYes Yes Yes Global Yes

master_verify_checksum Yes Global Yes

max_allowed_packet Yes Yes Yes Global Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max_binlog_size Yes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errors Yes Yes Yes Global Yes

max_connections Yes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_error_count Yes Yes Yes Both Yes

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_size Yes Yes Yes Global Yes

max_seeks_for_key Yes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_statement_time Yes Yes Yes Both Yes

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

memlock Yes Yes Yes Global No

metadata_locks_cache_size Yes Global No

metadata_locks_hash_instances Yes Global No

min-examined-row-
limit

Yes Yes Yes Both Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_size Yes Yes Yes Global No

myisam_recover_options Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

Server System Variables

486

Name Cmd-Line Option file System Var Var Scope Dynamic

myisam_use_mmap Yes Yes Yes Global Yes

named_pipe Yes Global No

net_buffer_length Yes Yes Yes Both Yes

net_read_timeout Yes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeout Yes Yes Yes Both Yes

new Yes Yes Yes Both Yes

old Yes Yes Yes Global No

old-alter-table Yes Yes Yes

- Variable:
old_alter_table

 Yes Both Yes

old_passwords Yes Both Yes

open-files-limit Yes Yes No

- Variable:
open_files_limit

 Yes Global No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switch Yes Yes Yes Both Yes

optimizer_trace Yes Both Yes

optimizer_trace_features Yes Both Yes

optimizer_trace_limit Yes Both Yes

optimizer_trace_max_mem_size Yes Both Yes

optimizer_trace_offset Yes Both Yes

performance_schemaYes Yes Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

Server System Variables

487

Name Cmd-Line Option file System Var Var Scope Dynamic

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

pid-file Yes Yes No

- Variable: pid_file Yes Global No

plugin_dir Yes Yes Yes Global No

port Yes Yes Yes Global No

preload_buffer_size Yes Yes Yes Both Yes

profiling Yes Both Yes

profiling_history_size Yes Yes Yes Both Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limit Yes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_size Yes Yes Yes Global Yes

query_cache_type Yes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_size Yes Yes Yes Both Yes

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

Server System Variables

488

Name Cmd-Line Option file System Var Var Scope Dynamic

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_size Yes Yes Yes Both Yes

relay-log Yes Yes No

- Variable: relay_log Yes Global No

relay_log_basename Yes Global No

relay-log-index Yes Yes No

- Variable:
relay_log_index

 Yes Global No

relay_log_index Yes Yes Yes Global No

relay_log_info_file Yes Yes Yes Global No

relay_log_info_repository Yes Global Yes

relay_log_purge Yes Yes Yes Global Yes

relay_log_recovery Yes Yes Yes Global No

relay_log_space_limitYes Yes Yes Global No

report-host Yes Yes No

- Variable:
report_host

 Yes Global No

report-password Yes Yes No

- Variable:
report_password

 Yes Global No

report-port Yes Yes No

- Variable:
report_port

 Yes Global No

report-user Yes Yes No

- Variable:
report_user

 Yes Global No

rpl_semi_sync_master_enabled Yes Global Yes

rpl_semi_sync_master_timeout Yes Global Yes

rpl_semi_sync_master_trace_level Yes Global Yes

rpl_semi_sync_master_wait_for_slave_count Yes Global Yes

rpl_semi_sync_master_wait_no_slave Yes Global Yes

rpl_semi_sync_master_wait_point Yes Global Yes

rpl_semi_sync_slave_enabled Yes Global Yes

rpl_semi_sync_slave_trace_level Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

secure-auth Yes Yes Yes

- Variable:
secure_auth

 Yes Global Yes

secure-file-priv Yes Yes No

- Variable:
secure_file_priv

 Yes Global No

server-id [2037] Yes Yes Yes

Server System Variables

489

Name Cmd-Line Option file System Var Var Scope Dynamic

- Variable: server_id Yes Global Yes

server_uuid [2037] Yes Global No

session_track_schemaYes Yes Yes Both Yes

session_track_state_changeYes Yes Yes Both Yes

session_track_system_variablesYes Yes Yes Both Yes

sha256_password_private_key_path Yes Global No

sha256_password_public_key_path Yes Global No

shared_memory Yes Global No

shared_memory_base_name Yes Global No

skip_external_lockingYes Yes Yes Global No

skip-name-resolve Yes Yes No

- Variable:
skip_name_resolve

 Yes Global No

skip-networking Yes Yes No

- Variable:
skip_networking

 Yes Global No

skip-show-database Yes Yes No

- Variable:
skip_show_database

 Yes Global No

slave_allow_batchingYes Yes Yes Global Yes

slave_checkpoint_groupYes Yes Yes Global Yes

slave_checkpoint_periodYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_mode Yes Yes Yes Global Yes

slave-load-tmpdir Yes Yes No

- Variable:
slave_load_tmpdir

 Yes Global No

slave_max_allowed_packet Yes Global Yes

slave-net-timeout Yes Yes Yes

- Variable:
slave_net_timeout

 Yes Global Yes

slave_parallel_type Yes Global Yes

slave_parallel_workers Yes Global Yes

slave_pending_jobs_size_max Yes Global Yes

slave_rows_search_algorithms Yes Global Yes

slave-skip-errors Yes Yes No

- Variable:
slave_skip_errors

 Yes Global No

slave_sql_verify_checksum Yes Global Yes

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global No

slow_launch_time Yes Yes Yes Global Yes

slow-query-log Yes Yes Yes

Server System Variables

490

Name Cmd-Line Option file System Var Var Scope Dynamic

- Variable:
slow_query_log

 Yes Global Yes

slow_query_log_file Yes Yes Yes Global Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

sql_auto_is_null Yes Both Yes

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

sql_log_bin Yes Both Yes

sql_log_off Yes Both Yes

sql-mode Yes Yes Yes

- Variable: sql_mode Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl-ca Yes Yes No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes No

- Variable:
ssl_capath

 Yes Global No

ssl-cert Yes Yes No

- Variable: ssl_cert Yes Global No

ssl-cipher Yes Yes No

- Variable:
ssl_cipher

 Yes Global No

ssl-crl Yes Yes No

- Variable: ssl_crl Yes Global No

ssl-crlpath Yes Yes No

- Variable:
ssl_crlpath

 Yes Global No

ssl-key Yes Yes No

- Variable: ssl_key Yes Global No

storage_engine Yes Both Yes

stored_program_cacheYes Yes Yes Global Yes

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

sync_master_info Yes Yes Yes Global Yes

sync_relay_log Yes Yes Yes Global Yes

sync_relay_log_info Yes Yes Yes Global Yes

Server System Variables

491

Name Cmd-Line Option file System Var Var Scope Dynamic

system_time_zone Yes Global No

table_definition_cache Yes Global Yes

table_open_cache Yes Global Yes

table_open_cache_instances Yes Global No

thread_cache_size Yes Yes Yes Global Yes

thread_concurrency Yes Yes Yes Global No

thread_handling Yes Yes Yes Global No

thread_stack Yes Yes Yes Global No

time_format Yes Global No

time_zone Yes Both Yes

timed_mutexes Yes Yes Yes Global Yes

timestamp Yes Session Yes

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_prealloc_sizeYes Yes Yes Both Yes

tx_isolation Yes Both Yes

tx_read_only Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

validate_password_dictionary_file Yes Global No

validate_password_length Yes Global Yes

validate_password_mixed_case_count Yes Global Yes

validate_password_number_count Yes Global Yes

validate_password_policy Yes Global Yes

validate_password_special_char_count Yes Global Yes

validate_user_plugins Yes Global No

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No
aThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.
bThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.

For additional system variable information, see these sections:

• Section 5.1.5, “Using System Variables”, discusses the syntax for setting and displaying system
variable values.

• Section 5.1.5.2, “Dynamic System Variables”, lists the variables that can be set at runtime.

• Information on tuning system variables can be found in Section 8.11.2, “Tuning Server Parameters”.

• Section 14.2.13, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.

Server System Variables

492

• For information on server system variables specific to replication, see Section 16.1.4, “Replication
and Binary Logging Options and Variables”.

Note

Some of the following variable descriptions refer to “enabling” or “disabling” a
variable. These variables can be enabled with the SET statement by setting
them to ON or 1, or disabled by setting them to OFF or 0. In MySQL 5.7, boolean
variables can be set at startup to the values ON, TRUE, OFF, and FALSE (not
case sensitive), as well as 1 and 0. See Section 4.2.3.2, “Program Option
Modifiers”.

Some system variables control the size of buffers or caches. For a given buffer, the server might need
to allocate internal data structures. These structures typically are allocated from the total memory
allocated to the buffer, and the amount of space required might be platform dependent. This means
that when you assign a value to a system variable that controls a buffer size, the amount of space
actually available might differ from the value assigned. In some cases, the amount might be less than
the value assigned. It is also possible that the server will adjust a value upward. For example, if you
assign a value of 0 to a variable for which the minimal value is 1024, the server will set the value to
1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some system variables take file name values. Unless otherwise specified, the default file location is
the data directory if the value is a relative path name. To specify the location explicitly, use an absolute
path name. Suppose that the data directory is /var/mysql/data. If a file-valued variable is given
as a relative path name, it will be located under /var/mysql/data. If the value is an absolute path
name, its location is as given by the path name.

• autocommit

Command-Line Format --autocommit[=#]

Option-File Format autocommit

System Variable Name autocommit

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

The autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0, you
must use COMMIT to accept a transaction or ROLLBACK to cancel it. If autocommit is 0 and you
change it to 1, MySQL performs an automatic COMMIT of any open transaction. Another way to begin
a transaction is to use a START TRANSACTION or BEGIN statement. See Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Syntax”.

By default, client connections begin with autocommit set to 1. To cause clients to begin with a
default of 0, set the global autocommit value by starting the server with the --autocommit=0
option. To set the variable using an option file, include these lines:

[mysqld]
autocommit=0

• automatic_sp_privileges

System Variable Name automatic_sp_privileges

Variable Scope Global

Server System Variables

493

Dynamic Variable Yes

Permitted Values

Type boolean

Default TRUE

When this variable has a value of 1 (the default), the server automatically grants the EXECUTE and
ALTER ROUTINE privileges to the creator of a stored routine, if the user cannot already execute
and alter or drop the routine. (The ALTER ROUTINE privilege is required to drop the routine.) The
server also automatically drops those privileges from the creator when the routine is dropped. If
automatic_sp_privileges is 0, the server does not automatically add or drop these privileges.

The creator of a routine is the account used to execute the CREATE statement for it. This might not
be the same as the account named as the DEFINER in the routine definition.

See also Section 18.2.2, “Stored Routines and MySQL Privileges”.

• back_log

System Variable Name back_log

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

Range 1 .. 65535

The number of outstanding connection requests MySQL can have. This comes into play when the
main MySQL thread gets very many connection requests in a very short time. It then takes some
time (although very little) for the main thread to check the connection and start a new thread. The
back_log value indicates how many requests can be stacked during this short time before MySQL
momentarily stops answering new requests. You need to increase this only if you expect a large
number of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your
operating system has its own limit on the size of this queue. The manual page for the Unix
listen() system call should have more details. Check your OS documentation for the maximum
value for this variable. back_log cannot be set higher than your operating system limit.

The default value is based on the following formula, capped to a limit of 900:

50 + (max_connections / 5)

• basedir

Command-Line Format --basedir=path

 -b

Option-File Format basedir

System Variable Name basedir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

Server System Variables

494

The MySQL installation base directory. This variable can be set with the --basedir option. Relative
path names for other variables usually are resolved relative to the base directory.

• big_tables

Command-Line Format --big-tables

Option-File Format big-tables

System Variable Name big_tables

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

 If set to 1, all temporary tables are stored on disk rather than in memory. This is a little slower, but
the error The table tbl_name is full does not occur for SELECT operations that require a
large temporary table. The default value for a new connection is 0 (use in-memory temporary tables).
Normally, you should never need to set this variable, because in-memory tables are automatically
converted to disk-based tables as required.

• bind_address

Command-Line Format --bind-address=addr

Option-File Format bind-address

System Variable Name bind_address

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

Default *

The value of the --bind-address option.

This variable has no effect for the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• block_encryption_mode

Introduced 5.7.4

Command-Line Format --block_encryption_mode=#

Option-File Format block_encryption_mode=#

System Variable Name block_encryption_mode

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

Default aes-128-ecb

This variable controls the block encryption mode for block-based algorithms such as AES. It affects
encryption for AES_ENCRYPT() and AES_DECRYPT().

Server System Variables

495

block_encryption_mode takes a value in aes-keylen-mode format, where keylen is the key
length in bits and mode is the encryption mode. The value is not case sensitive. Permitted keylen
values are 128, 192, and 256. Permitted encryption modes depend on whether MySQL was built
using OpenSSL or yaSSL:

• For OpenSSL, permitted mode values are: ECB, CBC, CFB1, CFB8, CFB128, OFB

• For yaSSL, permitted mode values are: ECB, CBC

For example, this statement causes the AES encryption functions to use a key length of 256 bits and
the CBC mode:

SET block_encryption_mode = 'aes-256-cbc';

An error occurs for attempts to set block_encryption_mode to a value containing an unsupported
key length or a mode that the SSL library does not support.

This variable was added in MySQL 5.7.4.

• bulk_insert_buffer_size

Command-Line Format --bulk_insert_buffer_size=#

Option-File Format bulk_insert_buffer_size

System Variable Name bulk_insert_buffer_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 8388608

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 8388608

Range 0 .. 18446744073709547520

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT,
INSERT ... VALUES (...), (...), ..., and LOAD DATA INFILE when adding data to
nonempty tables. This variable limits the size of the cache tree in bytes per thread. Setting it to 0
disables this optimization. The default value is 8MB.

• character_set_client

System Variable Name character_set_client

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

Server System Variables

496

The character set for statements that arrive from the client. The session value of this variable is
set using the character set requested by the client when the client connects to the server. (Many
clients support a --default-character-set option to enable this character set to be specified
explicitly. See also Section 10.1.4, “Connection Character Sets and Collations”.) The global value of
the variable is used to set the session value in cases when the client-requested value is unknown or
not available, or the server is configured to ignore client requests:

• The client is from a version of MySQL older than MySQL 4.1, and thus does not request a
character set.

• The client requests a character set not known to the server. For example, a Japanese-enabled
client requests sjis when connecting to a server not configured with sjis support.

• mysqld was started with the --skip-character-set-client-handshake option, which
causes it to ignore client character set configuration. This reproduces MySQL 4.0 behavior and is
useful should you wish to upgrade the server without upgrading all the clients.

ucs2, utf16, utf16le, and utf32 cannot be used as a client character set, which means that they
also do not work for SET NAMES or SET CHARACTER SET.

• character_set_connection

System Variable Name character_set_connection

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

The character set used for literals that do not have a character set introducer and for number-to-
string conversion.

• character_set_database

System Variable Name character_set_database

Variable Scope Global, Session

Dynamic Variable Yes

Footnote This option is dynamic, but only the server should set this information.
You should not set the value of this variable manually.

Permitted Values

Type string

The character set used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
character_set_server.

• character_set_filesystem

Command-Line Format --character-set-filesystem=name

Option-File Format character-set-filesystem

System Variable Name character_set_filesystem

Variable Scope Global, Session

Dynamic Variable Yes

 Permitted Values

Server System Variables

497

Type string

Default binary

The file system character set. This variable is used to interpret string literals that refer to file
names, such as in the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements
and the LOAD_FILE() function. Such file names are converted from character_set_client
to character_set_filesystem before the file opening attempt occurs. The default value is
binary, which means that no conversion occurs. For systems on which multi-byte file names are
permitted, a different value may be more appropriate. For example, if the system represents file
names using UTF-8, set character_set_filesystem to 'utf8'.

• character_set_results

System Variable Name character_set_results

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

The character set used for returning query results such as result sets or error messages to the client.

• character_set_server

Command-Line Format --character-set-server

Option-File Format character-set-server

System Variable Name character_set_server

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

Default latin1

The server's default character set.

• character_set_system

System Variable Name character_set_system

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

Default utf8

The character set used by the server for storing identifiers. The value is always utf8.

• character_sets_dir

Command-Line Format --character-sets-dir=path

Option-File Format character-sets-dir

System Variable Name character_sets_dir

Variable Scope Global

Server System Variables

498

Dynamic Variable No

Permitted Values

Type directory name

The directory where character sets are installed.

• collation_connection

System Variable Name collation_connection

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

The collation of the connection character set.

• collation_database

System Variable Name collation_database

Variable Scope Global, Session

Dynamic Variable Yes

Footnote This option is dynamic, but only the server should set this information.
You should not set the value of this variable manually.

Permitted Values

Type string

The collation used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
collation_server.

• collation_server

Command-Line Format --collation-server

Option-File Format collation-server

System Variable Name collation_server

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

Default latin1_swedish_ci

The server's default collation.

• completion_type

Command-Line Format --completion_type=#

Option-File Format completion_type

System Variable Name completion_type

Variable Scope Global, Session

Dynamic Variable Yes

Server System Variables

499

Permitted Values

Type enumeration

Default NO_CHAIN

NO_CHAIN

CHAIN

RELEASE

0

1

Valid
Values

2

The transaction completion type. This variable can take the values shown in the following table. The
variable can be assigned using either the name values or corresponding integer values.

Value Description

NO_CHAIN
(or 0)

COMMIT and ROLLBACK are unaffected. This is the default value.

CHAIN (or
1)

COMMIT and ROLLBACK are equivalent to COMMIT AND CHAIN and ROLLBACK AND
CHAIN, respectively. (A new transaction starts immediately with the same isolation level
as the just-terminated transaction.)

RELEASE
(or 2)

COMMIT and ROLLBACK are equivalent to COMMIT RELEASE and ROLLBACK
RELEASE, respectively. (The server disconnects after terminating the transaction.)

completion_type affects transactions that begin with START TRANSACTION or BEGIN and end
with COMMIT or ROLLBACK. It does not apply to implicit commits resulting from execution of the
statements listed in Section 13.3.3, “Statements That Cause an Implicit Commit”. It also does not
apply for XA COMMIT, XA ROLLBACK, or when autocommit=1.

• concurrent_insert

Command-Line Format --concurrent_insert[=#]

Option-File Format concurrent_insert

System Variable Name concurrent_insert

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default AUTO

NEVER

AUTO

ALWAYS

0

1

Valid
Values

2

If AUTO (the default), MySQL permits INSERT and SELECT statements to run concurrently for
MyISAM tables that have no free blocks in the middle of the data file. If you start mysqld with --
skip-new, this variable is set to NEVER.

Server System Variables

500

This variable can take the values shown in the following table. The variable can be assigned using
either the name values or corresponding integer values.

Value Description

NEVER (or
0)

Disables concurrent inserts

AUTO (or
1)

(Default) Enables concurrent insert for MyISAM tables that do not have holes

ALWAYS
(or 2)

Enables concurrent inserts for all MyISAM tables, even those that have holes. For a
table with a hole, new rows are inserted at the end of the table if it is in use by another
thread. Otherwise, MySQL acquires a normal write lock and inserts the row into the
hole.

See also Section 8.10.3, “Concurrent Inserts”.

• connect_timeout

Command-Line Format --connect_timeout=#

Option-File Format connect_timeout

System Variable Name connect_timeout

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 10

The number of seconds that the mysqld server waits for a connect packet before responding with
Bad handshake. The default value is 10 seconds.

Increasing the connect_timeout value might help if clients frequently encounter errors of the form
Lost connection to MySQL server at 'XXX', system error: errno.

• core_file

System Variable Name core_file

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

Whether to write a core file if the server crashes. This variable is set by the --core-file option.

• datadir

Command-Line Format --datadir=path

 -h

Option-File Format datadir

System Variable Name datadir

Variable Scope Global

Server System Variables

501

Dynamic Variable No

Permitted Values

Type directory name

The MySQL data directory. This variable can be set with the --datadir option.

• date_format

This variable is unused. It is deprecated and will be removed in a future MySQL release.

• datetime_format

This variable is unused. It is deprecated and will be removed in a future MySQL release.

• debug

Command-Line Format --debug[=debug_options]

Option-File Format debug

System Variable Name debug

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type
(Unix)

string

Default d:t:i:o,/tmp/mysqld.trace

Permitted Values

Type
(Windows)

string

Default d:t:i:O,\mysqld.trace

This variable indicates the current debugging settings. It is available only for servers built with
debugging support. The initial value comes from the value of instances of the --debug option
given at server startup. The global and session values may be set at runtime; the SUPER privilege is
required, even for the session value.

Assigning a value that begins with + or - cause the value to added to or subtracted from the current
value:

mysql> SET debug = 'T';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+

mysql> SET debug = '+P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| P:T |
+---------+

mysql> SET debug = '-P';
mysql> SELECT @@debug;
+---------+
| @@debug |

Server System Variables

502

+---------+
| T |
+---------+

For more information, see Section 22.4.3, “The DBUG Package”.

• debug_sync

System Variable Name debug_sync

Variable Scope Session

Dynamic Variable Yes

Permitted Values

Type string

This variable is the user interface to the Debug Sync facility. Use of Debug Sync requires that
MySQL be configured with the -DENABLE_DEBUG_SYNC=1 option (see Section 2.8.4, “MySQL
Source-Configuration Options”). If Debug Sync is not compiled in, this system variable is not
available.

The global variable value is read only and indicates whether the facility is enabled. By default, Debug
Sync is disabled and the value of debug_sync is OFF. If the server is started with --debug-sync-
timeout=N, where N is a timeout value greater than 0, Debug Sync is enabled and the value of
debug_sync is ON - current signal followed by the signal name. Also, N becomes the default
timeout for individual synchronization points.

The session value can be read by any user and will have the same value as the global variable. The
session value can be set by users that have the SUPER privilege to control synchronization points.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• default_authentication_plugin

Introduced 5.7.2

Command-Line Format --default-authentication-plugin=plugin_name

Option-File Format default-authentication-plugin=plugin_name

System Variable Name default_authentication_plugin

Variable Scope Global

Dynamic Variable No

Permitted Values

Type enumeration

Default mysql_native_password

mysql_native_password

Valid
Values sha256_password

The default authentication plugin. Permitted values are mysql_native_password (use MySQL
native passwords; this is the default) and sha256_password (use SHA-256 passwords). For
more information about these plugins, see Section 6.3.9.1, “The Native Authentication Plugin”, and
Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

Note

If you use this variable to change the default authentication plugin to a value
other than mysql_native_password, clients older than MySQL 5.5.6 will

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html

Server System Variables

503

no longer be able to connect because they will not understand the resulting
change to the authentication protocol.

The value of default_authentication_plugin affects these aspects of server operation:

• It determines which authentication plugin the server assigns to new accounts created by CREATE
USER and GRANT statements that do not name a plugin explicitly with an IDENTIFIED WITH
clause.

• It sets the old_passwords system variable at startup to the value that is consistent with the
password hashing method required by the default plugin. The old_passwords value affects
hashing of passwords specified in the IDENTIFIED BY clause of CREATE USER and GRANT, and
passwords specified as the argument to the PASSWORD() function.

• For an account created with either of the following statements, the server associates the account
with the default authentication plugin and assigns the account the given password, hashed
according to the value of old_passwords.

CREATE USER ... IDENTIFIED BY 'cleartext password';
GRANT ... IDENTIFIED BY 'cleartext password';

• For an account created with either of the following statements, the statement fails if the password
hash is not encrypted using the hash format required by the default authentication plugin.
Otherwise, the server associates the account with the default authentication plugin and assigns the
account the given password hash.

CREATE USER ... IDENTIFIED BY PASSWORD 'encrypted password';
GRANT ... IDENTIFIED BY PASSWORD 'encrypted password';

This variable was added in MySQL 5.7.2. Earlier in MySQL 5.7, use the --default-
authentication-plugin command-line option instead, which is used the same way at server
startup, but cannot be accessed at runtime.

• default_password_lifetime

Introduced 5.7.4

Command-Line Format --default_password_lifetime=#

Option-File Format default_password_lifetime=#

System Variable Name default_password_lifetime

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type integer

Default 360

Range 0 .. 65535

This variable defines the global automatic password expiration policy. It applies to accounts
that use MySQL built-in authentication methods (accounts that use an authentication plugin of
mysql_native_password, mysql_old_password, or sha256_password).

If the value of default_password_lifetime is a positive integer N, it indicates the permitted
password lifetime; passwords must be changed every N days. A value of 0 disables automatic
password expiration. The default is 360; passwords must be changed approximately once per year.

Server System Variables

504

The global password expiration policy can be overridden as desired for individual accounts using the
ALTER USER statement. See Section 6.3.6, “Password Expiration Policy”.

This variable was added in MySQL 5.7.4.

• default_storage_engine

Command-Line Format --default-storage-engine=name

Option-File Format default-storage-engine

System Variable Name default_storage_engine

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default InnoDB

The default storage engine. This variable sets the storage engine for permanent tables only. To
set the storage engine for TEMPORARY tables, set the default_tmp_storage_engine system
variable.

To see which storage engines are available and enabled, use the SHOW ENGINES statement or
query the INFORMATION_SCHEMA ENGINES table.

default_storage_engine should be used in preference to storage_engine, which is
deprecated and was removed in MySQL 5.7.5.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server will not start.

• default_tmp_storage_engine

Command-Line Format --default_tmp_storage_engine=name

Option-File Format default_tmp_storage_engine

System Variable Name default_tmp_storage_engine

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default InnoDB

The default storage engine for TEMPORARY tables (created with CREATE TEMPORARY TABLE). To
set the storage engine for permanent tables, set the default_storage_engine system variable.
Also see the discussion of that variable regarding possible values.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server will not start.

• default_week_format

Command-Line Format --default_week_format=#

Option-File Format default_week_format

System Variable Name default_week_format

Server System Variables

505

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 7

The default mode value to use for the WEEK() function. See Section 12.7, “Date and Time
Functions”.

• delay_key_write

Command-Line Format --delay-key-write[=name]

Option-File Format delay-key-write

System Variable Name delay_key_write

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default ON

ON

OFF

Valid
Values

ALL

This option applies only to MyISAM tables. It can have one of the following values to affect handling
of the DELAY_KEY_WRITE table option that can be used in CREATE TABLE statements.

Option Description

OFF DELAY_KEY_WRITE is ignored.

ON MySQL honors any DELAY_KEY_WRITE option specified in CREATE TABLE
statements. This is the default value.

ALL All new opened tables are treated as if they were created with the DELAY_KEY_WRITE
option enabled.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on every
index update, but only when the table is closed. This speeds up writes on keys a lot, but if
you use this feature, you should add automatic checking of all MyISAM tables by starting the
server with the --myisam-recover-options option (for example, --myisam-recover-
options=BACKUP,FORCE). See Section 5.1.3, “Server Command Options”, and Section 14.3.1,
“MyISAM Startup Options”.

Warning

If you enable external locking with --external-locking, there is no
protection against index corruption for tables that use delayed key writes.

• delayed_insert_limit

Deprecated 5.6.7

Command-Line Format --delayed_insert_limit=#

Option-File Format delayed_insert_limit

Server System Variables

506

System Variable Name delayed_insert_limit

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 100

Range 1 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 100

Range 1 .. 18446744073709547520

In MySQL 5.7, this system variable is deprecated (because DELAYED inserts are not supported), and
will be removed in a future release.

• delayed_insert_timeout

Deprecated 5.6.7

Command-Line Format --delayed_insert_timeout=#

Option-File Format delayed_insert_timeout

System Variable Name delayed_insert_timeout

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 300

In MySQL 5.7, this system variable is deprecated (because DELAYED inserts are not supported), and
will be removed in a future release.

• delayed_queue_size

Deprecated 5.6.7

Command-Line Format --delayed_queue_size=#

Option-File Format delayed_queue_size

System Variable Name delayed_queue_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 1000

Server System Variables

507

Range 1 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1000

Range 1 .. 18446744073709547520

In MySQL 5.7, this system variable is deprecated (because DELAYED inserts are not supported), and
will be removed in a future release.

• disconnect_on_expired_password

Introduced 5.7.1

Command-Line Format --disconnect_on_expired_password=#

Option-File Format disconnect_on_expired_password

System Variable Name disconnect_on_expired_password

Variable Scope Session

Dynamic Variable No

Permitted Values

Type boolean

Default ON

This variable controls how the server handles clients with expired passwords:

• If the client indicates that it can handle expires passwords, the value of
disconnect_on_expired_password is irrelevant. The server permits the client to connect but
puts it in sandbox mode.

• If the client does not indicate that it can handle expires passwords, the server handles the client
according to the value of disconnect_on_expired_password:

• If disconnect_on_expired_password: is enabled, the server disconnects the client.

• If disconnect_on_expired_password: is disabled, the server permits the client to connect
but puts it in sandbox mode.

For more information about the interaction of client and server settings relating to expired-password
handling, see Section 6.3.7, “Password Expiration and Sandbox Mode”.

• div_precision_increment

Command-Line Format --div_precision_increment=#

Option-File Format div_precision_increment

System Variable Name div_precision_increment

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 4

Range 0 .. 30

Server System Variables

508

This variable indicates the number of digits by which to increase the scale of the result of division
operations performed with the / operator. The default value is 4. The minimum and maximum values
are 0 and 30, respectively. The following example illustrates the effect of increasing the default value.

mysql> SELECT 1/7;
+--------+
| 1/7 |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7 |
+----------------+
| 0.142857142857 |
+----------------+

• end_markers_in_json

System Variable Name end_markers_in_json

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Whether optimizer JSON output should add end markers.

• eq_range_index_dive_limit

System Variable Name eq_range_index_dive_limit

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values (<= 5.7.3)

Type numeric

Default 10

Range 0 .. 4294967295

Permitted Values (>= 5.7.4)

Type numeric

Default 200

Range 0 .. 4294967295

This variable indicates the number of equality ranges in an equality comparison condition when
the optimizer should switch from using index dives to index statistics in estimating the number of
qualifying rows. It applies to evaluation of expressions that have either of these equivalent forms,
where the optimizer uses a nonunique index to look up col_name values:

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

In both cases, the expression contains N equality ranges. The optimizer can make row
estimates using index dives or index statistics. If eq_range_index_dive_limit is
greater than 0, the optimizer uses existing index statistics instead of index dives if there

Server System Variables

509

are eq_range_index_dive_limit or more equality ranges. Thus, to permit use of
index dives for up to N equality ranges, set eq_range_index_dive_limit to N + 1. Set
eq_range_index_dive_limit to 0 to disable use of index statistics and always use index dives
regardless of N.

For more information, see Equality Range Optimization of Many-Valued Comparisons.

To update table index statistics for best estimates, use ANALYZE TABLE.

• error_count

The number of errors that resulted from the last statement that generated messages. This variable is
read only. See Section 13.7.5.16, “SHOW ERRORS Syntax”.

• event_scheduler

Command-Line Format --event-scheduler[=value]

Option-File Format event-scheduler

System Variable Name event_scheduler

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default OFF

ON

OFF

Valid
Values

DISABLED

This variable indicates the status of the Event Scheduler; possible values are ON, OFF, and
DISABLED, with the default being OFF. This variable and its effects on the Event Scheduler's
operation are discussed in greater detail in the Overview section of the Events chapter [2249].

• expire_logs_days

Command-Line Format --expire_logs_days=#

Option-File Format expire_logs_days

System Variable Name expire_logs_days

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 99

The number of days for automatic binary log file removal. The default is 0, which means “no
automatic removal.” Possible removals happen at startup and when the binary log is flushed. Log
flushing occurs as indicated in Section 5.2, “MySQL Server Logs”.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

• explicit_defaults_for_timestamp

Server System Variables

510

Command-Line Format --explicit_defaults_for_timestamp=#

Option-File Format explicit_defaults_for_timestamp

System Variable Name explicit_defaults_for_timestamp

Variable Scope Session

Dynamic Variable No

Permitted Values

Type boolean

Default FALSE

In MySQL, the TIMESTAMP data type differs in nonstandard ways from other data types:

• TIMESTAMP columns not explicitly declared with the NULL attribute are assigned the NOT NULL
attribute. (Columns of other data types, if not explicitly declared as NOT NULL, permit NULL
values.) Setting such a column to NULL sets it to the current timestamp.

• The first TIMESTAMP column in a table, if not declared with the NULL attribute or an explicit
DEFAULT or ON UPDATE clause, is automatically assigned the DEFAULT CURRENT_TIMESTAMP
and ON UPDATE CURRENT_TIMESTAMP attributes.

• TIMESTAMP columns following the first one, if not declared with the NULL attribute or an explicit
DEFAULT clause, are automatically assigned DEFAULT '0000-00-00 00:00:00' (the “zero”
timestamp). For inserted rows that specify no explicit value for such a column, the column is
assigned '0000-00-00 00:00:00' and no warning occurs.

Those nonstandard behaviors remain the default for TIMESTAMP but as of MySQL 5.6.6 are
deprecated and this warning appears at startup:

[Warning] TIMESTAMP with implicit DEFAULT value is deprecated.
Please use --explicit_defaults_for_timestamp server option (see
documentation for more details).

As indicated by the warning, to turn off the nonstandard behaviors, enable the new
explicit_defaults_for_timestamp system variable at server startup. With this variable
enabled, the server handles TIMESTAMP as follows instead:

• TIMESTAMP columns not explicitly declared as NOT NULL permit NULL values. Setting such a
column to NULL sets it to NULL, not the current timestamp.

• No TIMESTAMP column is assigned the DEFAULT CURRENT_TIMESTAMP or ON UPDATE
CURRENT_TIMESTAMP attributes automatically. Those attributes must be explicitly specified.

• TIMESTAMP columns declared as NOT NULL and without an explicit DEFAULT clause are
treated as having no default value. For inserted rows that specify no explicit value for such a
column, the result depends on the SQL mode. If strict SQL mode is enabled, an error occurs.
If strict SQL mode is not enabled, the column is assigned the implicit default of '0000-00-00
00:00:00' and a warning occurs. This is similar to how MySQL treats other temporal types such
as DATETIME.

Note

explicit_defaults_for_timestamp is itself deprecated because its
only purpose is to permit control over now-deprecated TIMESTAMP behaviors
that will be removed in a future MySQL release. When that removal occurs,
explicit_defaults_for_timestamp will have no purpose and will be
removed as well.

Server System Variables

511

• external_user

System Variable Name external_user

Variable Scope Session

Dynamic Variable No

Permitted Values

Type string

The external user name used during the authentication process, as set by the plugin used to
authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set the
value, this variable is NULL. See Section 6.3.10, “Proxy Users”.

• flush

Command-Line Format --flush

Option-File Format flush

System Variable Name flush

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally,
MySQL does a write of all changes to disk only after each SQL statement and lets the operating
system handle the synchronizing to disk. See Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”. This variable is set to ON if you start mysqld with the --flush option.

• flush_time

Command-Line Format --flush_time=#

Option-File Format flush_time

System Variable Name flush_time

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type
(Windows)

numeric

Default 0

Min
Value

0

If this is set to a nonzero value, all tables are closed every flush_time seconds to free up
resources and synchronize unflushed data to disk. This option is best used only on systems with
minimal resources.

• foreign_key_checks

If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0, they are
ignored. Typically you leave this setting enabled during normal operation, to enforce referential
integrity. Disabling foreign key checking can be useful for reloading InnoDB tables in an order

Server System Variables

512

different from that required by their parent/child relationships. See Section 14.2.6.6, “InnoDB and
FOREIGN KEY Constraints”.

Setting foreign_key_checks to 0 also affects data definition statements: DROP SCHEMA drops
a schema even if it contains tables that have foreign keys that are referred to by tables outside the
schema, and DROP TABLE drops tables that have foreign keys that are referred to by other tables.

Note

Setting foreign_key_checks to 1 does not trigger a scan of the existing
table data. Therefore, rows added to the table while foreign_key_checks
= 0 will not be verified for consistency.

• ft_boolean_syntax

Command-Line Format --ft_boolean_syntax=name

Option-File Format ft_boolean_syntax

System Variable Name ft_boolean_syntax

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Default + -><()~*:""&|

The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE.
See Section 12.9.2, “Boolean Full-Text Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as follows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII nonalphanumeric character.

• Either the first or second character must be a space.

• No duplicates are permitted except the phrase quoting operators in positions 11 and 12. These two
characters are not required to be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to “:”, “&”, and “|”) are reserved for future
extensions.

• ft_max_word_len

Command-Line Format --ft_max_word_len=#

Option-File Format ft_max_word_len

System Variable Name ft_max_word_len

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Min
Value

10

Server System Variables

513

The maximum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this
variable. Use REPAIR TABLE tbl_name QUICK.

• ft_min_word_len

Command-Line Format --ft_min_word_len=#

Option-File Format ft_min_word_len

System Variable Name ft_min_word_len

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 4

Min
Value

1

The minimum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this
variable. Use REPAIR TABLE tbl_name QUICK.

• ft_query_expansion_limit

Command-Line Format --ft_query_expansion_limit=#

Option-File Format ft_query_expansion_limit

System Variable Name ft_query_expansion_limit

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 20

Range 0 .. 1000

The number of top matches to use for full-text searches performed using WITH QUERY EXPANSION.

• ft_stopword_file

Command-Line Format --ft_stopword_file=file_name

Option-File Format ft_stopword_file

System Variable Name ft_stopword_file

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Server System Variables

514

The file from which to read the list of stopwords for full-text searches on MyISAM tables. The server
looks for the file in the data directory unless an absolute path name is given to specify a different
directory. All the words from the file are used; comments are not honored. By default, a built-in list of
stopwords is used (as defined in the storage/myisam/ft_static.c file). Setting this variable to
the empty string ('') disables stopword filtering. See also Section 12.9.4, “Full-Text Stopwords”.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this
variable or the contents of the stopword file. Use REPAIR TABLE tbl_name
QUICK.

• general_log

Command-Line Format --general-log

Option-File Format general-log

System Variable Name general_log

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Whether the general query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON)
to enable the log. The default value depends on whether the --general_log option is given. The
destination for log output is controlled by the log_output system variable; if that value is NONE, no
log entries are written even if the log is enabled.

• general_log_file

Command-Line Format --general-log-file=file_name

Option-File Format general_log_file

System Variable Name general_log_file

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type file name

Default host_name.log

The name of the general query log file. The default value is host_name.log, but the initial value
can be changed with the --general_log_file option.

• group_concat_max_len

Command-Line Format --group_concat_max_len=#

Option-File Format group_concat_max_len

System Variable Name group_concat_max_len

Variable Scope Global, Session

Dynamic Variable Yes

 Permitted Values

Server System Variables

515

Platform
Bit Size

32

Type numeric

Default 1024

Range 4 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1024

Range 4 .. 18446744073709547520

The maximum permitted result length in bytes for the GROUP_CONCAT() function. The default is
1024.

• have_compress

YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS() and
UNCOMPRESS() functions cannot be used.

• have_crypt

YES if the crypt() system call is available to the server, NO if not. If not, the ENCRYPT() function
cannot be used.

• have_dynamic_loading

YES if mysqld supports dynamic loading of plugins, NO if not.

• have_geometry

YES if the server supports spatial data types, NO if not.

• have_openssl

This variable is an alias for have_ssl.

• have_profiling

YES if statement profiling capability is present, NO if not. If present, the profiling system variable
controls whether this capability is enabled or disabled. See Section 13.7.5.30, “SHOW PROFILES
Syntax”.

This variable is deprecated and will be removed in a future MySQL release.

• have_query_cache

YES if mysqld supports the query cache, NO if not.

• have_rtree_keys

YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM tables.)

• have_ssl

YES if mysqld supports SSL connections, NO if not. DISABLED indicates that the server was
compiled with SSL support, but but was not started with the appropriate --ssl-xxx options. For
more information, see Section 6.3.11.2, “Configuring MySQL for SSL”.

Server System Variables

516

• have_symlink

YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA
DIRECTORY and INDEX DIRECTORY table options. If the server is started with the --skip-
symbolic-links option, the value is DISABLED.

This variable has no meaning on Windows.

• host_cache_size

System Variable Name host_cache_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default -1 (autosized)

Range 0 .. 65536

The size of the internal host cache (see Section 8.11.5.2, “DNS Lookup Optimization and the Host
Cache”). Setting the size to 0 disables the host cache. Changing the cache size at runtime implicitly
causes a FLUSH HOSTS operation to clear the host cache and truncate the host_cache table.

The default value is 128, plus 1 for a value of max_connections up to 500, plus 1 for every
increment of 20 over 500 in the max_connections value, capped to a limit of 2000.

Use of --skip-host-cache is similar to setting the host_cache_size system variable to 0, but
host_cache_size is more flexible because it can also be used to resize, enable, or disable the
host cache at runtime, not just at server startup.

If you start the server with --skip-host-cache, that does not prevent changes to the value of
host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

• hostname

System Variable Name hostname

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The server sets this variable to the server host name at startup.

• identity

This variable is a synonym for the last_insert_id variable. It exists for compatibility with
other database systems. You can read its value with SELECT @@identity, and set it using SET
identity.

• ignore_db_dirs

System Variable Name ignore_db_dirs

Variable Scope Global

Dynamic Variable No

 Permitted Values

Server System Variables

517

Type string

A comma-separated list of names that are not considered as database directories in the data
directory. The value is set from any instances of --ignore-db-dir given at server startup.

• init_connect

Command-Line Format --init-connect=name

Option-File Format init_connect

System Variable Name init_connect

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

A string to be executed by the server for each client that connects. The string consists of one or more
SQL statements, separated by semicolon characters. For example, each client session begins by
default with autocommit mode enabled. For older servers (before MySQL 5.5.8), there is no global
autocommit system variable to specify that autocommit should be disabled by default, but as a
workaround init_connect can be used to achieve the same effect:

SET GLOBAL init_connect='SET autocommit=0';

The init_connect variable can also be set on the command line or in an option file. To set the
variable as just shown using an option file, include these lines:

[mysqld]
init_connect='SET autocommit=0'

The content of init_connect is not executed for users that have the SUPER privilege. This is
done so that an erroneous value for init_connect does not prevent all clients from connecting.
For example, the value might contain a statement that has a syntax error, thus causing client
connections to fail. Not executing init_connect for users that have the SUPER privilege enables
them to open a connection and fix the init_connect value.

• init_file

Command-Line Format --init-file=file_name

Option-File Format init-file

System Variable Name init_file

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The name of the file specified with the --init-file option when you start the server. This should
be a file containing SQL statements that you want the server to execute when it starts. Each
statement must be on a single line and should not include comments. No statement terminator such
as ;, \g, or \G should be given at the end of each statement.

• innodb_xxx

Server System Variables

518

InnoDB system variables are listed in Section 14.2.13, “InnoDB Startup Options and System
Variables”. These variables control many aspects of storage, memory use, and I/O patterns for
InnoDB tables, and are especially important now that InnoDB is the default storage engine.

• insert_id

The value to be used by the following INSERT or ALTER TABLE statement when inserting an
AUTO_INCREMENT value. This is mainly used with the binary log.

• interactive_timeout

Command-Line Format --interactive_timeout=#

Option-File Format interactive_timeout

System Variable Name interactive_timeout

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 28800

Min
Value

1

The number of seconds the server waits for activity on an interactive connection before closing
it. An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to
mysql_real_connect(). See also wait_timeout.

• join_buffer_size

Command-Line Format --join_buffer_size=#

Option-File Format join_buffer_size

System Variable Name join_buffer_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type
(Other)

numeric

Default 262144

Range 128 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type
(Other)

numeric

Default 262144

Range 128 .. 18446744073709547520

 Permitted Values

Server System Variables

519

Type
(Windows)

numeric

Default 262144

Range 128 .. 4294967295

The minimum size of the buffer that is used for plain index scans, range index scans, and joins that
do not use indexes and thus perform full table scans. Normally, the best way to get fast joins is to
add indexes. Increase the value of join_buffer_size to get a faster full join when adding indexes
is not possible. One join buffer is allocated for each full join between two tables. For a complex join
between several tables for which indexes are not used, multiple join buffers might be necessary.

Unless Batched Key Access (BKA) is used, there is no gain from setting the buffer larger than
required to hold each matching row, and all joins allocate at least the minimum size, so use caution
in setting this variable to a large value globally. It is better to keep the global setting small and
change to a larger setting only in sessions that are doing large joins. Memory allocation time can
cause substantial performance drops if the global size is larger than needed by most queries that use
it.

When BKA is used, the value of join_buffer_size defines how large the batch of keys is in each
request to the storage engine. The larger the buffer, the more sequential access will be to the right
hand table of a join operation, which can significantly improve performance.

The default is 256KB. The maximum permissible setting for join_buffer_size is 4GB–1.
Larger values are permitted for 64-bit platforms (except 64-bit Windows, for which large values are
truncated to 4GB–1 with a warning).

For additional information about join buffering, see Section 8.2.1.10, “Nested-Loop Join Algorithms”.
For information about Batched Key Access, see Section 8.2.1.14, “Block Nested-Loop and Batched
Key Access Joins”.

• keep_files_on_create

Command-Line Format --keep_files_on_create=#

Option-File Format keep_files_on_create

System Variable Name keep_files_on_create

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the
database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it.
The same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress
this behavior, set the keep_files_on_create variable to ON (1), in which case MyISAM will not
overwrite existing files and returns an error instead. The default value is OFF (0).

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified
directory.

• key_buffer_size

Command-Line Format --key_buffer_size=#

Option-File Format key_buffer_size

Server System Variables

520

System Variable Name key_buffer_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 8388608

Range 8 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 8388608

Range 8 .. OS_PER_PROCESS_LIMIT

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is
the size of the buffer used for index blocks. The key buffer is also known as the key cache.

The maximum permissible setting for key_buffer_size is 4GB–1 on 32-bit platforms. Larger
values are permitted for 64-bit platforms. The effective maximum size might be less, depending
on your available physical RAM and per-process RAM limits imposed by your operating system or
hardware platform. The value of this variable indicates the amount of memory requested. Internally,
the server allocates as much memory as possible up to this amount, but the actual allocation might
be less.

You can increase the value to get better index handling for all reads and multiple writes; on a system
whose primary function is to run MySQL using the MyISAM storage engine, 25% of the machine's
total memory is an acceptable value for this variable. However, you should be aware that, if you
make the value too large (for example, more than 50% of the machine's total memory), your system
might start to page and become extremely slow. This is because MySQL relies on the operating
system to perform file system caching for data reads, so you must leave some room for the file
system cache. You should also consider the memory requirements of any other storage engines that
you may be using in addition to MyISAM.

For even more speed when writing many rows at the same time, use LOCK TABLES. See
Section 8.2.2.1, “Speed of INSERT Statements”.

You can check the performance of the key buffer by issuing a SHOW STATUS statement and
examining the Key_read_requests, Key_reads, Key_write_requests, and Key_writes
status variables. (See Section 13.7.5, “SHOW Syntax”.) The Key_reads/Key_read_requests ratio
should normally be less than 0.01. The Key_writes/Key_write_requests ratio is usually near 1
if you are using mostly updates and deletes, but might be much smaller if you tend to do updates that
affect many rows at the same time or if you are using the DELAY_KEY_WRITE table option.

The fraction of the key buffer in use can be determined using key_buffer_size in conjunction
with the Key_blocks_unused status variable and the buffer block size, which is available from the
key_cache_block_size system variable:

1 - ((Key_blocks_unused * key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer is allocated internally for
administrative structures. Factors that influence the amount of overhead for these structures
include block size and pointer size. As block size increases, the percentage of the key buffer lost to

Server System Variables

521

overhead tends to decrease. Larger blocks results in a smaller number of read operations (because
more keys are obtained per read), but conversely an increase in reads of keys that are not examined
(if not all keys in a block are relevant to a query).

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache
individually, not as a group. See Section 8.9.2, “The MyISAM Key Cache”.

• key_cache_age_threshold

Command-Line Format --key_cache_age_threshold=#

Option-File Format key_cache_age_threshold

System Variable Name key_cache_age_threshold

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 300

Range 100 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 300

Range 100 .. 18446744073709547520

This value controls the demotion of buffers from the hot sublist of a key cache to the warm sublist.
Lower values cause demotion to happen more quickly. The minimum value is 100. The default value
is 300. See Section 8.9.2, “The MyISAM Key Cache”.

• key_cache_block_size

Command-Line Format --key_cache_block_size=#

Option-File Format key_cache_block_size

System Variable Name key_cache_block_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1024

Range 512 .. 16384

The size in bytes of blocks in the key cache. The default value is 1024. See Section 8.9.2, “The
MyISAM Key Cache”.

• key_cache_division_limit

Command-Line Format --key_cache_division_limit=#

Option-File Format key_cache_division_limit

Server System Variables

522

System Variable Name key_cache_division_limit

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 100

Range 1 .. 100

The division point between the hot and warm sublists of the key cache buffer list. The value is the
percentage of the buffer list to use for the warm sublist. Permissible values range from 1 to 100. The
default value is 100. See Section 8.9.2, “The MyISAM Key Cache”.

• large_files_support

System Variable Name large_files_support

Variable Scope Global

Dynamic Variable No

Whether mysqld was compiled with options for large file support.

• large_pages

Command-Line Format --large-pages

Option-File Format large-pages

System Variable Name large_pages

Variable Scope Global

Dynamic Variable No

Platform Specific Linux

Permitted Values

Type
(Linux)

boolean

Default FALSE

Whether large page support is enabled (via the --large-pages option). See Section 8.11.4.2,
“Enabling Large Page Support”.

• large_page_size

System Variable Name large_page_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type
(Linux)

numeric

Default 0

If large page support is enabled, this shows the size of memory pages. Currently, large memory
pages are supported only on Linux; on other platforms, the value of this variable is always 0. See
Section 8.11.4.2, “Enabling Large Page Support”.

• last_insert_id

Server System Variables

523

The value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you use
LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not update the
value returned by the mysql_insert_id() C API function.

• lc_messages

Command-Line Format --lc-messages=name

Option-File Format lc-messages

System Variable Name lc_messages

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

The locale to use for error messages. The server converts the value to a language name and
combines it with the value of the lc_messages_dir to produce the location for the error message
file. See Section 10.2, “Setting the Error Message Language”.

• lc_messages_dir

Command-Line Format --lc-messages-dir=path

Option-File Format lc-messages-dir

System Variable Name lc_messages_dir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

The directory where error messages are located. The value is used together with the value of
lc_messages to produce the location for the error message file. See Section 10.2, “Setting the
Error Message Language”.

• lc_time_names

System Variable Name lc_time_names

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

This variable specifies the locale that controls the language used to display day and month names
and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and
MONTHNAME() functions. Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'.
The default value is 'en_US' regardless of your system's locale setting. For further information, see
Section 10.7, “MySQL Server Locale Support”.

• license

System Variable Name license

Variable Scope Global

Dynamic Variable No

Server System Variables

524

Permitted Values

Type string

Default GPL

The type of license the server has.

• local_infile

System Variable Name local_infile

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Whether LOCAL is supported for LOAD DATA INFILE statements. If this variable is disabled, clients
cannot use LOCAL in LOAD DATA statements. See Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”.

• lock_wait_timeout

Command-Line Format --lock_wait_timeout=#

Option-File Format lock_wait_timeout

System Variable Name lock_wait_timeout

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 31536000

Range 1 .. 31536000

This variable specifies the timeout in seconds for attempts to acquire metadata locks. The
permissible values range from 1 to 31536000 (1 year). The default is 31536000.

This timeout applies to all statements that use metadata locks. These include DML and DDL
operations on tables, views, stored procedures, and stored functions, as well as LOCK TABLES,
FLUSH TABLES WITH READ LOCK, and HANDLER statements.

This timeout does not apply to implicit accesses to system tables in the mysql database, such as
grant tables modified by GRANT or REVOKE statements or table logging statements. The timeout does
apply to system tables accessed directly, such as with SELECT or UPDATE.

The timeout value applies separately for each metadata lock attempt. A given statement can
require more than one lock, so it is possible for the statement to block for longer than the
lock_wait_timeout value before reporting a timeout error. When lock timeout occurs,
ER_LOCK_WAIT_TIMEOUT is reported.

lock_wait_timeout does not apply to delayed inserts, which always execute with a timeout of
1 year. This is done to avoid unnecessary timeouts because a session that issues a delayed insert
receives no notification of delayed insert timeouts.

• locked_in_memory

System Variable Name locked_in_memory

Server System Variables

525

Variable Scope Global

Dynamic Variable No

Whether mysqld was locked in memory with --memlock.

• log_bin_trust_function_creators

Command-Line Format --log-bin-trust-function-creators

Option-File Format log-bin-trust-function-creators

System Variable Name log_bin_trust_function_creators

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default FALSE

This variable applies when binary logging is enabled. It controls whether stored function creators
can be trusted not to create stored functions that will cause unsafe events to be written to the binary
log. If set to 0 (the default), users are not permitted to create or alter stored functions unless they
have the SUPER privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A
setting of 0 also enforces the restriction that a function must be declared with the DETERMINISTIC
characteristic, or with the READS SQL DATA or NO SQL characteristic. If the variable is set to 1,
MySQL does not enforce these restrictions on stored function creation. This variable also applies to
trigger creation. See Section 18.7, “Binary Logging of Stored Programs”.

• log_error

Command-Line Format --log-error[=name]

Option-File Format log-error

System Variable Name log_error

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The location of the error log, or stderr if the server is writing error message to the standard error
output. See Section 5.2.2, “The Error Log”.

• log_error_verbosity

Introduced 5.7.2

Command-Line Format --log_error_verbosity=#

Option-File Format log_error_verbosity=#

System Variable Name log_error_verbosity

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 3

Range 1 .. 3

Server System Variables

526

This variable controls verbosity of the server in writing error, warning, and note messages to the error
log. The following table shows the permitted values. The default is 3.

Verbosity Value Message Types Logged

1 Errors only

2 Errors and warnings

3 Errors, warnings, and notes

log_error_verbosity was added in MySQL 5.7.2. It is preferred over, and should be used
instead of, the older log_warnings system variable. See the description of log_warnings for
information about how that variable relates to log_error_verbosity.

• log_output

Command-Line Format --log-output=name

Option-File Format log-output

System Variable Name log_output

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type set

Default FILE

TABLE

FILE

Valid
Values

NONE

The destination for general query log and slow query log output. The value can be a comma-
separated list of one or more of the words TABLE (log to tables), FILE (log to files), or NONE (do not
log to tables or files). The default value is FILE. NONE, if present, takes precedence over any other
specifiers. If the value is NONE log entries are not written even if the logs are enabled. If the logs are
not enabled, no logging occurs even if the value of log_output is not NONE. For more information,
see Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”.

• log_queries_not_using_indexes

Command-Line Format --log-queries-not-using-indexes

Option-File Format log-queries-not-using-indexes

System Variable Name log_queries_not_using_indexes

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Whether queries that do not use indexes are logged to the slow query log. See Section 5.2.5, “The
Slow Query Log”.

• log_timestamps

Introduced 5.7.2

Server System Variables

527

Command-Line Format --log_timestamps=#

Option-File Format log_timestamps=#

System Variable Name log_timestamps

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default UTC

UTC

Valid
Values SYSTEM

This variable controls the timestamp time zone of error log messages, and of general query log
and slow query log messages written to files. It does not affect the time zone of general query log
and slow query log messages written to tables (mysql.general_log, mysql.slow_log). Rows
retrieved from those tables can be converted from the local system time zone to any desired time
zone with CONVERT_TZ() or by setting the session time_zone system variable.

Permitted log_timestamps values are UTC (the default) and SYSTEM (local system time zone).

Timestamps are written using ISO 8601 / RFC 3339 format: YYYY-MM-DDThh:mm:ss.uuuuuu plus
a tail value of Z signifying Zulu time (UTC) or ±hh:mm (an offset from UTC).

This variable was added in MySQL 5.7.2. Before 5.7.2, timestamps in log messages were written
using the local system time zone by default, not UTC. If you want the previous log message time
zone default, set log_timestamps=SYSTEM.

• log_throttle_queries_not_using_indexes

System Variable Name log_throttle_queries_not_using_indexes

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

If log_queries_not_using_indexes is enabled, the
log_throttle_queries_not_using_indexes variable limits the number of such queries per
minute that can be written to the slow query log. A value of 0 (the default) means “no limit”. For more
information, see Section 5.2.5, “The Slow Query Log”.

• log_slow_admin_statements

Introduced 5.7.1

System Variable Name log_slow_admin_statements

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Server System Variables

528

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP
INDEX, OPTIMIZE TABLE, and REPAIR TABLE.

This variable was added in MySQL 5.7.1.

• log_warnings

Deprecated 5.7.2

Command-Line Format --log-warnings[=#]

 -W [#]

Option-File Format log-warnings[=#]

System Variable Name log_warnings

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 1

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1

Range 0 .. 18446744073709547520

Whether to produce additional warning messages to the error log. Before MySQL 5.7.2, this variable
is enabled (1) by default and can be disabled by setting it to 0. The server logs messages about
statements that are unsafe for statement-based logging if the value is greater than 0. Aborted
connections and access-denied errors for new connection attempts are logged if the value is greater
than 1.

As of MySQL 5.7.2, information items previously governed by log_warnings are governed
by log_error_verbosity, which is preferred over, and should be used instead of, the older
log_warnings system variable. (The log_warnings system variable and --log-warnings
command-line option are deprecated and will be removed in a future MySQL release.) The
log_warnings and log_error_verbosity variables are related as follows:

• Suppression of all log_warnings items, previously achieved with log_warnings=0, is now
achieved with log_error_verbosity=1 (errors only).

• Items previously printed for log_warnings=1 or higher now count as warnings and are printed
for log_error_verbosity=2 or higher.

• Items previously printed for log_warnings=2 now count as notes and are printed for
log_error_verbosity=3.

As of MySQL 5.7.2, the default log level is controlled by log_error_verbosity, which
has a default of 3. This is a change from the default logging level before 5.7.2: The default for

Server System Variables

529

log_warnings is 1, which corresponds to log_error_verbosity=2. To achieve a logging level
similar to the previous default, set log_error_verbosity=2.

In MySQL 5.7.2 and up, use of log_warnings is still permitted but maps onto use of
log_error_verbosity as follows:

• Setting log_warnings=0 is equivalent to log_error_verbosity=1 (errors only).

• Setting log_warnings=1 is equivalent to log_error_verbosity=2 (errors, warnings).

• Setting log_warnings=2 (or higher) is equivalent to log_error_verbosity=3 (errors,
warnings, notes), and the server sets log_warnings to 2 if a larger value is specified.

• long_query_time

Command-Line Format --long_query_time=#

Option-File Format long_query_time

System Variable Name long_query_time

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 10

Min
Value

0

If a query takes longer than this many seconds, the server increments the Slow_queries status
variable. If the slow query log is enabled, the query is logged to the slow query log file. This value
is measured in real time, not CPU time, so a query that is under the threshold on a lightly loaded
system might be above the threshold on a heavily loaded one. The minimum and default values
of long_query_time are 0 and 10, respectively. The value can be specified to a resolution of
microseconds. For logging to a file, times are written including the microseconds part. For logging to
tables, only integer times are written; the microseconds part is ignored. See Section 5.2.5, “The Slow
Query Log”.

• low_priority_updates

Command-Line Format --low-priority-updates

Option-File Format low-priority-updates

System Variable Name low_priority_updates

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default FALSE

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there is no
pending SELECT or LOCK TABLE READ on the affected table. This affects only storage engines that
use only table-level locking (such as MyISAM, MEMORY, and MERGE).

• lower_case_file_system

System Variable Name lower_case_file_system

Server System Variables

530

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

This variable describes the case sensitivity of file names on the file system where the data directory
is located. OFF means file names are case sensitive, ON means they are not case sensitive. This
variable is read only because it reflects a file system attribute and setting it would have no effect on
the file system.

• lower_case_table_names

Command-Line Format --lower_case_table_names[=#]

Option-File Format lower_case_table_names

System Variable Name lower_case_table_names

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 0

Range 0 .. 2

If set to 0, table names are stored as specified and comparisons are case sensitive. If set to 1, table
names are stored in lowercase on disk and comparisons are not case sensitive. If set to 2, table
names are stored as given but compared in lowercase. This option also applies to database names
and table aliases. For additional information, see Section 9.2.2, “Identifier Case Sensitivity”.

You should not set this variable to 0 if you are running MySQL on a system that has case-insensitive
file names (such as Windows or Mac OS X). If you set this variable to 0 on such a system and
access MyISAM tablenames using different lettercases, index corruption may result. On Windows the
default value is 1. On Mac OS X, the default value is 2.

If you are using InnoDB tables, you should set this variable to 1 on all platforms to force names to be
converted to lowercase.

The setting of this variable in MySQL 5.7 affects the behavior of replication filtering options with
regard to case sensitivity. (Bug #51639) See Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”, for more information.

• max_allowed_packet

Command-Line Format --max_allowed_packet=#

Option-File Format max_allowed_packet

System Variable Name max_allowed_packet

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 4194304

Range 1024 .. 1073741824

Server System Variables

531

The maximum size of one packet or any generated/intermediate string, or any parameter sent by the
mysql_stmt_send_long_data() C API function. The default is 4MB.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to
max_allowed_packet bytes when needed. This value by default is small, to catch large (possibly
incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as
big as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB. The
value should be a multiple of 1024; nonmultiples are rounded down to the nearest multiple.

When you change the message buffer size by changing the value of the max_allowed_packet
variable, you should also change the buffer size on the client side if your client program permits
it. The default max_allowed_packet value built in to the client library is 1GB, but individual
client programs might override this. For example, mysql and mysqldump have defaults of
16MB and 24MB, respectively. They also enable you to change the client-side value by setting
max_allowed_packet on the command line or in an option file.

The session value of this variable is read only.

• max_connect_errors

Command-Line Format --max_connect_errors=#

Option-File Format max_connect_errors

System Variable Name max_connect_errors

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 100

Range 1 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 100

Range 1 .. 18446744073709547520

If more than this many successive connection requests from a host are interrupted without a
successful connection, the server blocks that host from further connections. You can unblock
blocked hosts by flushing the host cache. To do so, issue a FLUSH HOSTS statement or execute a
mysqladmin flush-hosts command. If a connection is established successfully within fewer than
max_connect_errors attempts after a previous connection was interrupted, the error count for the
host is cleared to zero. However, once a host is blocked, flushing the host cache is the only way to
unblock it. The default is 100.

• max_connections

Command-Line Format --max_connections=#

Option-File Format max_connections

Server System Variables

532

System Variable Name max_connections

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 151

Range 1 .. 100000

The maximum permitted number of simultaneous client connections. By default, this is 151. See
Section C.5.2.7, “Too many connections”, for more information.

Increasing this value increases the number of file descriptors that mysqld requires. If the required
number of descriptors are not available, the server reduces the value of max_connections. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”, for comments on file descriptor limits.

Connections refused because the max_connections limit is reached increment the
Connection_errors_max_connections status variable.

• max_delayed_threads

Deprecated 5.6.7

Command-Line Format --max_delayed_threads=#

Option-File Format max_delayed_threads

System Variable Name max_delayed_threads

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 20

Range 0 .. 16384

In MySQL 5.7, this system variable is deprecated (because DELAYED inserts are not supported), and
will be removed in a future release.

• max_error_count

Command-Line Format --max_error_count=#

Option-File Format max_error_count

System Variable Name max_error_count

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 64

Range 0 .. 65535

The maximum number of error, warning, and note messages to be stored for display by the SHOW
ERRORS and SHOW WARNINGS statements. This is the same as the number of condition areas in the
diagnostics area, and thus the number of conditions that can be inspected by GET DIAGNOSTICS.

Server System Variables

533

• max_heap_table_size

Command-Line Format --max_heap_table_size=#

Option-File Format max_heap_table_size

System Variable Name max_heap_table_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 16777216

Range 16384 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 16777216

Range 16384 .. 1844674407370954752

This variable sets the maximum size to which user-created MEMORY tables are permitted to grow.
The value of the variable is used to calculate MEMORY table MAX_ROWS values. Setting this variable
has no effect on any existing MEMORY table, unless the table is re-created with a statement such as
CREATE TABLE or altered with ALTER TABLE or TRUNCATE TABLE. A server restart also sets the
maximum size of existing MEMORY tables to the global max_heap_table_size value.

This variable is also used in conjunction with tmp_table_size to limit the size of internal in-
memory tables. See Section 8.4.4, “How MySQL Uses Internal Temporary Tables”.

max_heap_table_size is not replicated. See Section 16.4.1.21, “Replication and MEMORY Tables”,
and Section 16.4.1.34, “Replication and Variables”, for more information.

• max_insert_delayed_threads

Deprecated 5.6.7

System Variable Name max_insert_delayed_threads

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

This variable is a synonym for max_delayed_threads.

In MySQL 5.7, this system variable is deprecated (because DELAYED inserts are not supported), and
will be removed in a future release.

• max_join_size

Command-Line Format --max_join_size=#

Option-File Format max_join_size

System Variable Name max_join_size

Server System Variables

534

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 18446744073709551615

Range 1 .. 18446744073709551615

Do not permit statements that probably need to examine more than max_join_size rows (for
single-table statements) or row combinations (for multiple-table statements) or that are likely to do
more than max_join_size disk seeks. By setting this value, you can catch statements where keys
are not used properly and that would probably take a long time. Set it if your users tend to perform
joins that lack a WHERE clause, that take a long time, or that return millions of rows.

Setting this variable to a value other than DEFAULT resets the value of sql_big_selects to 0. If
you set the sql_big_selects value again, the max_join_size variable is ignored.

If a query result is in the query cache, no result size check is performed, because the result has
previously been computed and it does not burden the server to send it to the client.

• max_length_for_sort_data

Command-Line Format --max_length_for_sort_data=#

Option-File Format max_length_for_sort_data

System Variable Name max_length_for_sort_data

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1024

Range 4 .. 8388608

The cutoff on the size of index values that determines which filesort algorithm to use. See
Section 8.2.1.15, “ORDER BY Optimization”.

• max_prepared_stmt_count

Command-Line Format --max_prepared_stmt_count=#

Option-File Format max_prepared_stmt_count

System Variable Name max_prepared_stmt_count

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 16382

Range 0 .. 1048576

This variable limits the total number of prepared statements in the server. It can be used in
environments where there is the potential for denial-of-service attacks based on running the server
out of memory by preparing huge numbers of statements. If the value is set lower than the current
number of prepared statements, existing statements are not affected and can be used, but no

Server System Variables

535

new statements can be prepared until the current number drops below the limit. The default value
is 16,382. The permissible range of values is from 0 to 1 million. Setting the value to 0 disables
prepared statements.

• max_relay_log_size

Command-Line Format --max_relay_log_size=#

Option-File Format max_relay_log_size

System Variable Name max_relay_log_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 1073741824

If a write by a replication slave to its relay log causes the current log file size to exceed the value
of this variable, the slave rotates the relay logs (closes the current file and opens the next one).
If max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and
the relay log. If max_relay_log_size is greater than 0, it constrains the size of the relay log,
which enables you to have different sizes for the two logs. You must set max_relay_log_size
to between 4096 bytes and 1GB (inclusive), or to 0. The default value is 0. See Section 16.2.1,
“Replication Implementation Details”.

• max_seeks_for_key

Command-Line Format --max_seeks_for_key=#

Option-File Format max_seeks_for_key

System Variable Name max_seeks_for_key

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 4294967295

Range 1 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 18446744073709547520

Range 1 .. 18446744073709547520

Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL
optimizer assumes that no more than this number of key seeks are required when searching for
matching rows in a table by scanning an index, regardless of the actual cardinality of the index (see
Section 13.7.5.21, “SHOW INDEX Syntax”). By setting this to a low value (say, 100), you can force
MySQL to prefer indexes instead of table scans.

Server System Variables

536

• max_sort_length

Command-Line Format --max_sort_length=#

Option-File Format max_sort_length

System Variable Name max_sort_length

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1024

Range 4 .. 8388608

The number of bytes to use when sorting data values. Only the first max_sort_length bytes of
each value are used; the rest are ignored.

max_sort_length is ignored for integer, decimal, floating-point, and temporal data types.

• max_sp_recursion_depth

Command-Line Format --max_sp_recursion_depth[=#]

Option-File Format max_sp_recursion_depth

System Variable Name max_sp_recursion_depth

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Max
Value

255

The number of times that any given stored procedure may be called recursively. The default value
for this option is 0, which completely disables recursion in stored procedures. The maximum value is
255.

Stored procedure recursion increases the demand on thread stack space. If you increase the value
of max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the
value of thread_stack at server startup.

• max_statement_time

Introduced 5.7.4

Command-Line Format --max_statement_time=#

Option-File Format max_statement_time=#

System Variable Name max_statement_time

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Server System Variables

537

The execution timeout for SELECT statements, in milliseconds. If the value is 0, timeouts are not
enabled.

max_statement_time applies as follows:

• The global max_statement_time value provides the default for the session value for new
connections. The session value applies to SELECT statements executed within the session that
include no MAX_STATEMENT_TIME = N option or for which N is 0.

• max_statement_time applies to read-only SELECT statements. Statements that are not read
only are those that invoke a stored function that modifies data as a side effect.

• max_statement_time is ignored for SELECT statements in stored programs.

This variable was added in MySQL 5.7.4.

• max_tmp_tables

This variable is unused. It is deprecated and will be removed in a future MySQL release.

• max_user_connections

Command-Line Format --max_user_connections=#

Option-File Format max_user_connections

System Variable Name max_user_connections

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 4294967295

The maximum number of simultaneous connections permitted to any given MySQL user account. A
value of 0 (the default) means “no limit.”

This variable has a global value that can be set at server startup or runtime. It also has a read-only
session value that indicates the effective simultaneous-connection limit that applies to the account
associated with the current session. The session value is initialized as follows:

• If the user account has a nonzero MAX_USER_CONNECTIONS resource limit, the session
max_user_connections value is set to that limit.

• Otherwise, the session max_user_connections value is set to the global value.

Account resource limits are specified using the GRANT statement. See Section 6.3.4, “Setting
Account Resource Limits”, and Section 13.7.1.4, “GRANT Syntax”.

• max_write_lock_count

Command-Line Format --max_write_lock_count=#

Option-File Format max_write_lock_count

System Variable Name max_write_lock_count

Variable Scope Global

Dynamic Variable Yes

Server System Variables

538

Permitted Values

Platform
Bit Size

32

Type numeric

Default 4294967295

Range 1 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 18446744073709547520

Range 1 .. 18446744073709547520

After this many write locks, permit some pending read lock requests to be processed in between.

• metadata_locks_cache_size

Deprecated 5.7.4

System Variable Name metadata_locks_cache_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 1024

Range 1 .. 1048576

The size of the metadata locks cache. The server uses this cache to avoid creation and destruction
of synchronization objects. This is particularly helpful on systems where such operations are
expensive, such as Windows XP.

In MySQL 5.7.4, metadata locking implementation changes make this variable unnecessary, so it is
deprecated and will be removed in a future MySQL release.

• metadata_locks_hash_instances

Deprecated 5.7.4

System Variable Name metadata_locks_hash_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 8

Range 1 .. 1024

The set of metadata locks can be partitioned into separate hashes to permit connections
accessing different objects to use different locking hashes and reduce contention. The
metadata_locks_hash_instances system variable specifies the number of hashes (default 8).

In MySQL 5.7.4, metadata locking implementation changes make this variable unnecessary, so it is
deprecated and will be removed in a future MySQL release.

Server System Variables

539

• min_examined_row_limit

Command-Line Format --min-examined-row-limit=#

Option-File Format min-examined-row-limit

System Variable Name min_examined_row_limit

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 0

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 0

Range 0 .. 18446744073709547520

Queries that examine fewer than this number of rows are not logged to the slow query log.

• myisam_data_pointer_size

Command-Line Format --myisam_data_pointer_size=#

Option-File Format myisam_data_pointer_size

System Variable Name myisam_data_pointer_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 6

Range 2 .. 7

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no
MAX_ROWS option is specified. This variable cannot be less than 2 or larger than 7. The default value
is 6. See Section C.5.2.12, “The table is full”.

• myisam_max_sort_file_size

Command-Line Format --myisam_max_sort_file_size=#

Option-File Format myisam_max_sort_file_size

System Variable Name myisam_max_sort_file_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Server System Variables

540

Type numeric

Default 2147483648

Permitted Values

Platform
Bit Size

64

Type numeric

Default 9223372036854775807

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be
larger than this value, the index is created using the key cache instead, which is slower. The value is
given in bytes.

The default value is 2GB. If MyISAM index files exceed this size and disk space is available,
increasing the value may help performance. The space must be available in the file system
containing the directory where the original index file is located.

• myisam_mmap_size

Command-Line Format --myisam_mmap_size=#

Option-File Format myisam_mmap_size

System Variable Name myisam_mmap_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Platform
Bit Size

32

Type numeric

Default 4294967295

Range 7 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 18446744073709547520

Range 7 .. 18446744073709547520

The maximum amount of memory to use for memory mapping compressed MyISAM files. If many
compressed MyISAM tables are used, the value can be decreased to reduce the likelihood of
memory-swapping problems.

• myisam_recover_options

System Variable Name myisam_recover_options

Variable Scope Global

Dynamic Variable No

The value of the --myisam-recover-options option. See Section 5.1.3, “Server Command
Options”.

• myisam_repair_threads

Server System Variables

541

Command-Line Format --myisam_repair_threads=#

Option-File Format myisam_repair_threads

System Variable Name myisam_repair_threads

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 1

Range 1 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1

Range 1 .. 18446744073709547520

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own
thread) during the Repair by sorting process. The default value is 1.

Note

Multi-threaded repair is still beta-quality code.

• myisam_sort_buffer_size

Command-Line Format --myisam_sort_buffer_size=#

Option-File Format myisam_sort_buffer_size

System Variable Name myisam_sort_buffer_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type
(Other)

numeric

Default 8388608

Range 4096 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type
(Other)

numeric

Default 8388608

Range 4096 .. 18446744073709547520

Server System Variables

542

Permitted Values

Type
(Windows)

numeric

Default 8388608

Range 4096 .. 4294967295

The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or
when creating indexes with CREATE INDEX or ALTER TABLE.

The maximum permissible setting for myisam_sort_buffer_size is 4GB–1. Larger values are
permitted for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB–1
with a warning).

• myisam_stats_method

Command-Line Format --myisam_stats_method=name

Option-File Format myisam_stats_method

System Variable Name myisam_stats_method

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default nulls_unequal

nulls_equal

nulls_unequal

Valid
Values

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for MyISAM tables. This variable has three possible values, nulls_equal, nulls_unequal, and
nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single
value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values
are considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored,
NULL values are ignored.

The method that is used for generating table statistics influences how the optimizer chooses indexes
for query execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

• myisam_use_mmap

Command-Line Format --myisam_use_mmap

Option-File Format myisam_use_mmap

System Variable Name myisam_use_mmap

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Use memory mapping for reading and writing MyISAM tables.

• named_pipe

Server System Variables

543

System Variable Name named_pipe

Variable Scope Global

Dynamic Variable No

Platform Specific Windows

Permitted Values

Type
(Windows)

boolean

Default OFF

(Windows only.) Indicates whether the server supports connections over named pipes.

• net_buffer_length

Command-Line Format --net_buffer_length=#

Option-File Format net_buffer_length

System Variable Name net_buffer_length

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 16384

Range 1024 .. 1048576

Each client thread is associated with a connection buffer and result buffer. Both begin with a size
given by net_buffer_length but are dynamically enlarged up to max_allowed_packet bytes
as needed. The result buffer shrinks to net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to the
expected length of statements sent by clients. If statements exceed this length, the connection buffer
is automatically enlarged. The maximum value to which net_buffer_length can be set is 1MB.

The session value of this variable is read only.

• net_read_timeout

Command-Line Format --net_read_timeout=#

Option-File Format net_read_timeout

System Variable Name net_read_timeout

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 30

Min
Value

1

The number of seconds to wait for more data from a connection before aborting the read. When the
server is reading from the client, net_read_timeout is the timeout value controlling when to abort.

Server System Variables

544

When the server is writing to the client, net_write_timeout is the timeout value controlling when
to abort. See also slave_net_timeout.

• net_retry_count

Command-Line Format --net_retry_count=#

Option-File Format net_retry_count

System Variable Name net_retry_count

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 10

Range 1 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 10

Range 1 .. 18446744073709547520

If a read or write on a communication port is interrupted, retry this many times before giving up. This
value should be set quite high on FreeBSD because internal interrupts are sent to all threads.

• net_write_timeout

Command-Line Format --net_write_timeout=#

Option-File Format net_write_timeout

System Variable Name net_write_timeout

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 60

Min
Value

1

The number of seconds to wait for a block to be written to a connection before aborting the write.
See also net_read_timeout.

• new

Command-Line Format --new

 -n

Option-File Format new

System Variable Name new

Variable Scope Global, Session

Server System Variables

545

Dynamic Variable Yes

Disabled by skip-new

Permitted Values

Type boolean

Default FALSE

This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward
compatibility. In MySQL 5.7, its value is always OFF.

• old

Command-Line Format --old

Option-File Format old

System Variable Name old

Variable Scope Global

Dynamic Variable No

old is a compatibility variable. It is disabled by default, but can be enabled at startup to revert the
server to behaviors present in older versions.

Currently, when old is enabled, it changes the default scope of index hints to that used prior to
MySQL 5.1.17. That is, index hints with no FOR clause apply only to how indexes are used for row
retrieval and not to resolution of ORDER BY or GROUP BY clauses. (See Section 13.2.9.3, “Index Hint
Syntax”.) Take care about enabling this in a replication setup. With statement-based binary logging,
having different modes for the master and slaves might lead to replication errors.

• old_alter_table

Command-Line Format --old-alter-table

Option-File Format old-alter-table

System Variable Name old_alter_table

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

When this variable is enabled, the server does not use the optimized method of processing
an ALTER TABLE operation. It reverts to using a temporary table, copying over the data, and
then renaming the temporary table to the original, as used by MySQL 5.0 and earlier. For more
information on the operation of ALTER TABLE, see Section 13.1.6, “ALTER TABLE Syntax”.

• old_passwords

System Variable Name old_passwords

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default 0

Server System Variables

546

0

1

Valid
Values

2

This variable controls the password hashing method used by the PASSWORD() function. It also
influences password hashing performed by CREATE USER and GRANT statements that specify a
password using an IDENTIFIED BY clause.

The following table shows the permitted values of old_passwords, the password hashing method
for each value, and which authentication plugins use passwords hashed with each method.

Value Password Hashing Method Associated Authentication Plugin

0 MySQL 4.1 native hashing mysql_native_password

1 Pre-4.1 (“old”) hashing mysql_old_password

2 SHA-256 hashing sha256_password

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The
latter function is not affected by the value of old_passwords.

If you set old_passwords=2, follow the instructions for using the sha256_password plugin at
Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

The server sets the global old_passwords value during startup to be consistent with the
password hashing method required by the default authentication plugin. The default plugin is
mysql_native_password unless the default_authentication_plugin system variable is
set otherwise.

As of MySQL 5.7.1, when a client successfully connects to the server, the server sets the session
old_passwords value appropriately for the account authentication method. For example, if the
account uses the sha256_password authentication plugin, the server sets old_passwords=2.

For additional information about authentication plugins and hashing formats, see Section 6.3.8,
“Pluggable Authentication”, and Section 6.1.2.4, “Password Hashing in MySQL”.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• open_files_limit

Command-Line Format --open-files-limit=#

Option-File Format open-files-limit

System Variable Name open_files_limit

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default (autosized)

Range 0 .. platform dependent

Server System Variables

547

The number of files that the operating system permits mysqld to open. The value of this variable at
runtime is the real value permitted by the system and might be different from the value you specify at
server startup. The value is 0 on systems where MySQL cannot change the number of open files.

The effective open_files_limit value is based on the value specified at system startup (if any)
and the values of max_connections and table_open_cache, using these formulas:

1) 10 + max_connections + (table_open_cache * 2)
2) max_connections * 5
3) open_files_limit value specified at startup, 5000 if none

The server attempts to obtain the number of file descriptors using the maximum of those three
values. If that many descriptors cannot be obtained, the server attempts to obtain as many as the
system will permit.

• optimizer_prune_level

Command-Line Format --optimizer_prune_level[=#]

Option-File Format optimizer_prune_level

System Variable Name optimizer_prune_level

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default 1

Controls the heuristics applied during query optimization to prune less-promising partial plans
from the optimizer search space. A value of 0 disables heuristics so that the optimizer performs an
exhaustive search. A value of 1 causes the optimizer to prune plans based on the number of rows
retrieved by intermediate plans.

• optimizer_search_depth

Command-Line Format --optimizer_search_depth[=#]

Option-File Format optimizer_search_depth

System Variable Name optimizer_search_depth

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 62

Range 0 .. 62

The maximum depth of search performed by the query optimizer. Values larger than the number of
relations in a query result in better query plans, but take longer to generate an execution plan for
a query. Values smaller than the number of relations in a query return an execution plan quicker,
but the resulting plan may be far from being optimal. If set to 0, the system automatically picks a
reasonable value.

• optimizer_switch

Command-Line Format --optimizer_switch=value

Server System Variables

548

Option-File Format optimizer_switch

System Variable Name optimizer_switch

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type set

batched_key_access={on|off}

block_nested_loop={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

subquery_materialization_cost_based={on|off}

Valid
Values

use_index_extensions={on|off}

The optimizer_switch system variable enables control over optimizer behavior. The value
of this variable is a set of flags, each of which has a value of on or off to indicate whether the
corresponding optimizer behavior is enabled or disabled. This variable has global and session values
and can be changed at runtime. The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on

For more information about the syntax of this variable and the optimizer behaviors that it controls,
see Section 8.8.6.2, “Controlling Switchable Optimizations”.

• optimizer_trace

System Variable Name optimizer_trace

Variable Scope Global, Session

Server System Variables

549

Dynamic Variable Yes

Permitted Values

Type string

This variable controls optimizer tracing. For details, see MySQL Internals: Tracing the Optimizer.

• optimizer_trace_features

System Variable Name optimizer_trace_features

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

This variable enables or disables selected optimizer tracing features. For details, see MySQL
Internals: Tracing the Optimizer.

• optimizer_trace_limit

System Variable Name optimizer_trace_limit

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1

The maximum number of optimizer traces to display. For details, see MySQL Internals: Tracing the
Optimizer.

• optimizer_trace_max_mem_size

System Variable Name optimizer_trace_max_mem_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 16384

The maximum cumulative size of stored optimizer traces. For details, see MySQL Internals: Tracing
the Optimizer.

• optimizer_trace_offset

System Variable Name optimizer_trace_offset

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default -1

The offset of optimizer traces to display. For details, see MySQL Internals: Tracing the Optimizer.

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

Server System Variables

550

• performance_schema_xxx

Performance Schema system variables are listed in Section 20.12, “Performance Schema System
Variables”. These variables may be used to configure Performance Schema operation.

• pid_file

Command-Line Format --pid-file=file_name

Option-File Format pid-file

System Variable Name pid_file

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The path name of the process ID (PID) file. This variable can be set with the --pid-file option.

• plugin_dir

Command-Line Format --plugin_dir=path

Option-File Format plugin_dir

System Variable Name plugin_dir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

Default BASEDIR/lib/plugin

The path name of the plugin directory.

If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting --secure-file-priv to a directory where
SELECT writes can be made safely.

• port

Command-Line Format --port=#

 -P

Option-File Format port

System Variable Name port

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 3306

Range 0 .. 65535

The number of the port on which the server listens for TCP/IP connections. This variable can be set
with the --port option.

Server System Variables

551

• preload_buffer_size

Command-Line Format --preload_buffer_size=#

Option-File Format preload_buffer_size

System Variable Name preload_buffer_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 32768

Range 1024 .. 1073741824

The size of the buffer that is allocated when preloading indexes.

• profiling

If set to 0 or OFF (the default), statement profiling is disabled. If set to 1 or ON, statement profiling
is enabled and the SHOW PROFILE and SHOW PROFILES statements provide access to profiling
information. See Section 13.7.5.30, “SHOW PROFILES Syntax”.

This variable is deprecated and will be removed in a future MySQL release.

• profiling_history_size

The number of statements for which to maintain profiling information if profiling is enabled. The
default value is 15. The maximum value is 100. Setting the value to 0 effectively disables profiling.
See Section 13.7.5.30, “SHOW PROFILES Syntax”.

This variable is deprecated and will be removed in a future MySQL release.

• protocol_version

System Variable Name protocol_version

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

The version of the client/server protocol used by the MySQL server.

• proxy_user

System Variable Name proxy_user

Variable Scope Session

Dynamic Variable No

Permitted Values

Type string

If the current client is a proxy for another user, this variable is the proxy user account name.
Otherwise, this variable is NULL. See Section 6.3.10, “Proxy Users”.

• pseudo_slave_mode

System Variable Name pseudo_slave_mode

Server System Variables

552

Variable Scope Session

Dynamic Variable Yes

Permitted Values

Type numeric

This variable is for internal server use.

• pseudo_thread_id

System Variable Name pseudo_thread_id

Variable Scope Session

Dynamic Variable Yes

Permitted Values

Type numeric

This variable is for internal server use.

• query_alloc_block_size

Command-Line Format --query_alloc_block_size=#

Option-File Format query_alloc_block_size

System Variable Name query_alloc_block_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 8192

Range 1024 .. 4294967295

Block
Size

1024

Permitted Values

Platform
Bit Size

64

Type numeric

Default 8192

Range 1024 .. 18446744073709547520

Block
Size

1024

The allocation size of memory blocks that are allocated for objects created during statement parsing
and execution. If you have problems with memory fragmentation, it might help to increase this
parameter.

• query_cache_limit

Command-Line Format --query_cache_limit=#

Option-File Format query_cache_limit

Server System Variables

553

System Variable Name query_cache_limit

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 1048576

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1048576

Range 0 .. 18446744073709547520

Do not cache results that are larger than this number of bytes. The default value is 1MB.

• query_cache_min_res_unit

Command-Line Format --query_cache_min_res_unit=#

Option-File Format query_cache_min_res_unit

System Variable Name query_cache_min_res_unit

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 4096

Range 512 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 4096

Range 512 .. 18446744073709547520

The minimum size (in bytes) for blocks allocated by the query cache. The default value is 4096
(4KB). Tuning information for this variable is given in Section 8.9.3.3, “Query Cache Configuration”.

• query_cache_size

Command-Line Format --query_cache_size=#

Option-File Format query_cache_size

System Variable Name query_cache_size

Variable Scope Global

Server System Variables

554

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 1048576

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1048576

Range 0 .. 18446744073709547520

The amount of memory allocated for caching query results. By default, the query cache is
disabled. This is achieved using a default value of 1M, with a default for query_cache_type of
0. (To reduce overhead significantly if you set the size to 0, you should also start the server with
query_cache_type=0.

The permissible values are multiples of 1024; other values are rounded down to the nearest multiple.
Note that query_cache_size bytes of memory are allocated even if query_cache_type is set to
0. See Section 8.9.3.3, “Query Cache Configuration”, for more information.

The query cache needs a minimum size of about 40KB to allocate its structures. (The exact size
depends on system architecture.) If you set the value of query_cache_size too small, a warning
will occur, as described in Section 8.9.3.3, “Query Cache Configuration”.

• query_cache_type

Command-Line Format --query_cache_type=#

Option-File Format query_cache_type

System Variable Name query_cache_type

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default 0

0

1

Valid
Values

2

Set the query cache type. Setting the GLOBAL value sets the type for all clients that connect
thereafter. Individual clients can set the SESSION value to affect their own use of the query cache.
Possible values are shown in the following table.

Option Description

0 or OFF Do not cache results in or retrieve results from the query cache. Note that
this does not deallocate the query cache buffer. To do that, you should set
query_cache_size to 0.

Server System Variables

555

Option Description

1 or ON Cache all cacheable query results except for those that begin with SELECT
SQL_NO_CACHE.

2 or DEMAND Cache results only for cacheable queries that begin with SELECT SQL_CACHE.

This variable defaults to OFF.

If the server is started with query_cache_type set to 0, it does not acquire the query cache
mutex at all, which means that the query cache cannot be enabled at runtime and there is reduced
overhead in query execution.

• query_cache_wlock_invalidate

Command-Line Format --query_cache_wlock_invalidate

Option-File Format query_cache_wlock_invalidate

System Variable Name query_cache_wlock_invalidate

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default FALSE

Normally, when one client acquires a WRITE lock on a MyISAM table, other clients are not blocked
from issuing statements that read from the table if the query results are present in the query cache.
Setting this variable to 1 causes acquisition of a WRITE lock for a table to invalidate any queries in
the query cache that refer to the table. This forces other clients that attempt to access the table to
wait while the lock is in effect.

• query_prealloc_size

Command-Line Format --query_prealloc_size=#

Option-File Format query_prealloc_size

System Variable Name query_prealloc_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 8192

Range 8192 .. 4294967295

Block
Size

1024

Permitted Values

Platform
Bit Size

64

Type numeric

Default 8192

Range 8192 .. 18446744073709547520

Server System Variables

556

Block
Size

1024

The size of the persistent buffer used for statement parsing and execution. This buffer is not freed
between statements. If you are running complex queries, a larger query_prealloc_size value
might be helpful in improving performance, because it can reduce the need for the server to perform
memory allocation during query execution operations.

• rand_seed1

The rand_seed1 and rand_seed2 variables exist as session variables only, and can be set but not
read. The variables—but not their values—are shown in the output of SHOW VARIABLES.

The purpose of these variables is to support replication of the RAND() function. For statements
that invoke RAND(), the master passes two values to the slave, where they are used to seed the
random number generator. The slave uses these values to set the session variables rand_seed1
and rand_seed2 so that RAND() on the slave generates the same value as on the master.

• rand_seed2

See the description for rand_seed1.

• range_alloc_block_size

Command-Line Format --range_alloc_block_size=#

Option-File Format range_alloc_block_size

System Variable Name range_alloc_block_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 4096

Range 4096 .. 4294967295

Block
Size

1024

Permitted Values

Platform
Bit Size

64

Type numeric

Default 4096

Range 4096 .. 18446744073709547520

Block
Size

1024

The size of blocks that are allocated when doing range optimization.

• read_buffer_size

Command-Line Format --read_buffer_size=#

Option-File Format read_buffer_size

Server System Variables

557

System Variable Name read_buffer_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 131072

Range 8200 .. 2147479552

Each thread that does a sequential scan for a MyISAM table allocates a buffer of this size (in bytes)
for each table it scans. If you do many sequential scans, you might want to increase this value, which
defaults to 131072. The value of this variable should be a multiple of 4KB. If it is set to a value that is
not a multiple of 4KB, its value will be rounded down to the nearest multiple of 4KB.

This option is also used in the following context for all search engines:

• For caching the indexes in a temporary file (not a temporary table), when sorting rows for ORDER
BY.

• For bulk insert into partitions.

• For caching results of nested queries.

and in one other storage engine-specific way: to determine the memory block size for MEMORY
tables.

The maximum permissible setting for read_buffer_size is 2GB.

For more information about memory use during different operations, see Section 8.11.4.1, “How
MySQL Uses Memory”.

• read_only

Command-Line Format --read-only

Option-File Format read_only

System Variable Name read_only

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default false

This variable is off by default. When it is enabled, the server permits no updates except from users
that have the SUPER privilege or (on a slave server) from updates performed by slave threads. In
replication setups, it can be useful to enable read_only on slave servers to ensure that slaves
accept updates only from the master server and not from clients.

read_only does not apply to TEMPORARY tables, nor does it prevent the server from inserting
rows into the log tables (see Section 5.2.1, “Selecting General Query and Slow Query Log Output
Destinations”). This variable does not prevent the use of ANALYZE TABLE or OPTIMIZE TABLE
statements because its purpose is to prevent changes to table structure or contents. Analysis and
optimization do not qualify as such changes. This means, for example, that consistency checks on
read-only slaves can be performed with mysqlcheck --all-databases --analyze.

Server System Variables

558

read_only exists only as a GLOBAL variable, so changes to its value require the SUPER privilege.
Changes to read_only on a master server are not replicated to slave servers. The value can be set
on a slave server independent of the setting on the master.

Important

In MySQL 5.7, enabling read_only prevents the use of the SET PASSWORD
statement by any user not having the SUPER privilege. This is not necessarily
the case for all MySQL release series. When replicating from one MySQL
release series to another (for example, from a MySQL 5.0 master to a MySQL
5.1 or later slave), you should check the documentation for the versions
running on both master and slave to determine whether the behavior of
read_only in this regard is or is not the same, and, if it is different, whether
this has an impact on your applications.

The following conditions apply:

• If you attempt to enable read_only while you have any explicit locks (acquired with LOCK
TABLES) or have a pending transaction, an error occurs.

• If you attempt to enable read_only while other clients hold explicit table locks or have pending
transactions, the attempt blocks until the locks are released and the transactions end. While the
attempt to enable read_only is pending, requests by other clients for table locks or to begin
transactions also block until read_only has been set.

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES
WITH READ LOCK) because that does not involve table locks.

In MySQL 5.7, attempts to set read_only block for active transactions that hold metadata locks
until those transactions end.

• read_rnd_buffer_size

Command-Line Format --read_rnd_buffer_size=#

Option-File Format read_rnd_buffer_size

System Variable Name read_rnd_buffer_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 262144

Range 1 .. 2147483647

This variable is used for reads from MyISAM tables, and, for any storage engine, for Multi-Range
Read optimization.

When reading rows from a MyISAM table in sorted order following a key-sorting operation, the rows
are read through this buffer to avoid disk seeks. See Section 8.2.1.15, “ORDER BY Optimization”.
Setting the variable to a large value can improve ORDER BY performance by a lot. However, this is
a buffer allocated for each client, so you should not set the global variable to a large value. Instead,
change the session variable only from within those clients that need to run large queries.

The maximum permissible setting for read_rnd_buffer_size is 2GB.

Server System Variables

559

For more information about memory use during different operations, see Section 8.11.4.1, “How
MySQL Uses Memory”. For information about Multi-Range Read optimization, see Section 8.2.1.13,
“Multi-Range Read Optimization”.

• relay_log_purge

Command-Line Format --relay_log_purge

Option-File Format relay_log_purge

System Variable Name relay_log_purge

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default TRUE

Disables or enables automatic purging of relay log files as soon as they are not needed any more.
The default value is 1 (ON).

• relay_log_space_limit

Command-Line Format --relay_log_space_limit=#

Option-File Format relay_log_space_limit

System Variable Name relay_log_space_limit

Variable Scope Global

Dynamic Variable No

Permitted Values

Platform
Bit Size

32

Type numeric

Default 0

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 0

Range 0 .. 18446744073709547520

The maximum amount of space to use for all relay logs.

• report_host

Command-Line Format --report-host=host_name

Option-File Format report-host

System Variable Name report_host

Variable Scope Global

Dynamic Variable No

 Permitted Values

Server System Variables

560

Type string

The value of the --report-host option.

• report_password

Command-Line Format --report-password=name

Option-File Format report-password

System Variable Name report_password

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The value of the --report-password option. Not the same as the password used for the MySQL
replication user account.

• report_port

Command-Line Format --report-port=#

Option-File Format report-port

System Variable Name report_port

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default [slave_port]

Range 0 .. 65535

The value of the --report-port option.

• report_user

Command-Line Format --report-user=name

Option-File Format report-user

System Variable Name report_user

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The value of the --report-user option. Not the same as the name for the MySQL replication user
account.

• rpl_semi_sync_master_enabled

System Variable Name rpl_semi_sync_master_enabled

Variable Scope Global

Dynamic Variable Yes

 Permitted Values

Server System Variables

561

Type boolean

Default OFF

Controls whether semisynchronous replication is enabled on the master. To enable or disable the
plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_timeout

System Variable Name rpl_semi_sync_master_timeout

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 10000

A value in milliseconds that controls how long the master waits on a commit for acknowledgment
from a slave before timing out and reverting to asynchronous replication. The default value is 10000
(10 seconds).

This variable is available only if the master-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_trace_level

System Variable Name rpl_semi_sync_master_trace_level

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 32

The semisynchronous replication debug trace level on the master. Currently, four levels are defined:

• 1 = general level (for example, time function failures)

• 16 = detail level (more verbose information)

• 32 = net wait level (more information about network waits)

• 64 = function level (information about function entry and exit)

This variable is available only if the master-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_for_slave_count

Introduced 5.7.3

System Variable Name rpl_semi_sync_master_wait_for_slave_count

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1

Server System Variables

562

Range 1 .. 65535

The number of slave acknowledgments the master must receive per transaction before proceeding.
The default is to proceed after receiving a single acknowledgment. Performance is best for small
values of this variable.

This variable is available only if the master-side semisynchronous replication plugin is installed. It
was added in MySQL 5.7.3.

• rpl_semi_sync_master_wait_no_slave

System Variable Name rpl_semi_sync_master_wait_no_slave

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

With semisynchronous replication, for each transaction, the master waits until timeout for
acknowledgment of receipt from some semisynchronous slave. If no response occurs during this
period, the master reverts to normal replication. This variable controls whether the master waits
for the timeout to expire before reverting to normal replication even if the slave count drops to zero
during the timeout period.

If the value is ON (the default), it is permissible for the slave count to drop to zero during the timeout
period (for example, if slaves disconnect). The master still waits for the timeout, so as long as some
slave reconnects and acknowledges the transaction within the timeout interval, semisynchronous
replication continues.

If the value is OFF, the master reverts to normal replication if the slave count drops to zero during the
timeout period.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_point

Introduced 5.7.2

System Variable Name rpl_semi_sync_master_wait_point

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default AFTER_SYNC

AFTER_SYNC

Valid
Values AFTER_COMMIT

This variable controls the point at which a semisynchronous replication master waits for slave
acknowledgment of transaction receipt before returning a status to the client that committed the
transaction. These values are permitted:

• AFTER_SYNC (the default): The master writes each transaction to its binary log and the slave, and
syncs the binary log to disk. The master waits for slave acknowledgment of transaction receipt
after the sync. Upon receiving acknowledgment, the master commits the transaction to the storage
engine and returns a result to the client, which then can proceed.

Server System Variables

563

• AFTER_COMMIT: The master writes each transaction to its binary log and the slave, syncs
the binary log, and commits the transaction to the storage engine. The master waits for slave
acknowledgment of transaction receipt after the commit. Upon receiving acknowledgment, the
master returns a result to the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the slave and committed to the storage engine on the master. Thus, all clients
see the same data on the master.

In the event of master failure, all transactions committed on the master have been replicated to the
slave (saved to its relay log). A crash of the master and failover to the slave is lossless because
the slave is up to date.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives slave acknowledgment. After the commit and before
slave acknowledgment, other clients can see the committed transaction before the committing
client.

If something goes wrong such that the slave does not process the transaction, then in the event
of a master crash and failover to the slave, it is possible that such clients will see a loss of data
relative to what they saw on the master.

This variable is available only if the master-side semisynchronous replication plugin is installed.

rpl_semi_sync_master_wait_point was added in MySQL 5.7.2. For older versions,
semisynchronous master behavior is equivalent to a setting of AFTER_COMMIT.

This change introduces a version compatibility constraint because it increments the
semisynchronous interface version: Servers for MySQL 5.7.2 and up do not work with
semisynchronous replication plugins from older versions, nor do servers from older versions work
with semisynchronous replication plugins for MySQL 5.7.2 and up.

• rpl_semi_sync_slave_enabled

System Variable Name rpl_semi_sync_slave_enabled

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Controls whether semisynchronous replication is enabled on the slave. To enable or disable the
plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the slave-side semisynchronous replication plugin is installed.

• rpl_semi_sync_slave_trace_level

System Variable Name rpl_semi_sync_slave_trace_level

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Server System Variables

564

Default 32

The semisynchronous replication debug trace level on the slave. See
rpl_semi_sync_master_trace_level for the permissible values.

This variable is available only if the slave-side semisynchronous replication plugin is installed.

• secure_auth

Command-Line Format --secure-auth

Option-File Format secure-auth

System Variable Name secure_auth

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

If this variable is enabled, the server blocks connections by clients that attempt to use accounts that
have passwords stored in the old (pre-4.1) format.

Enable this variable to prevent all use of passwords employing the old format (and hence insecure
communication over the network). This variable enabled by default.

Server startup fails with an error if this variable is enabled and the privilege tables are in pre-4.1
format. See Section C.5.2.4, “Client does not support authentication protocol”.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release.

• secure_file_priv

Command-Line Format --secure-file-priv=path

Option-File Format secure-file-priv

System Variable Name secure_file_priv

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

By default, this variable is empty. If set to the name of a directory, it limits the effect of the
LOAD_FILE() function and the LOAD DATA and SELECT ... INTO OUTFILE statements to work
only with files in that directory.

• server_id

Command-Line Format --server-id=#

Option-File Format server-id

System Variable Name server_id

Server System Variables

565

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 4294967295

The server ID, used in replication to give each master and slave a unique identity. This variable is set
by the --server-id [2037] option. For each server participating in replication, you should pick a
positive integer in the range from 1 to 232 – 1 to act as that server's ID.

• session_track_schema

Introduced 5.7.4

Command-Line Format --session_track_schema=#

Option-File Format session_track_schema=#

System Variable Name session_track_schema

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

The server can track changes to the default schema (database) name within the current session
and make this information available to the client when changes occur. This variable controls whether
notification occurs.

If notification is enabled, any setting of the default schema is reported, even if the new schema name
is the same as the old.

For information about obtaining session state-change information within client programs, see
Section 21.8.7.64, “mysql_session_track_get_first()”.

This variable was added in MySQL 5.7.4.

• session_track_state_change

Introduced 5.7.4

Command-Line Format --session_track_state_change=#

Option-File Format session_track_state_change=#

System Variable Name session_track_state_change

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Whether the server tracks changes to the session state and notifies the client when changes to state
information occur. Session state consists of these values:

• The default schema (database)

Server System Variables

566

• Session-specific values for system variables

• User-defined variables

• Temporary tables

• Prepared statements

If notification is enabled, any assignments to session state values are reported, even if the new
values are the same as the old.

The session_track_state_change variable controls only notification of when changes
occur, not what the changes are. To receive notification for changes to the default schema
name and session system variable values, use the session_track_schema and
session_track_system_variables system variables.

For information about obtaining session state-change information within client programs, see
Section 21.8.7.64, “mysql_session_track_get_first()”.

This variable was added in MySQL 5.7.4.

• session_track_system_variables

Introduced 5.7.4

Command-Line Format --session_track_system_variables=#

Option-File Format session_track_system_variables=#

System Variable Name session_track_system_variables

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

Default time_zone, autocommit,
character_set_client, character_set_results,
character_set_connection

The server can track changes to the session system variables and make this information available
to the client when changes occur. The variable value is a comma-separated list of variables
for which to track changes. By default, notification is enabled for time_zone, autocommit,
character_set_client, character_set_results, and character_set_connection. (The
latter three variables are those affected by SET NAMES.)

The special value * causes the server to track changes to all session variables. If given, this value
must be specified by itself without specific system variable names.

Notification occurs for all assignments to tracked session system variables, even if the new values
are the same as the old.

For information about obtaining session state-change information within client programs, see
Section 21.8.7.64, “mysql_session_track_get_first()”.

This variable was added in MySQL 5.7.4.

• sha256_password_private_key_path

System Variable Name sha256_password_private_key_path

Variable Scope Global

Server System Variables

567

Dynamic Variable No

Permitted Values

Type file name

Default private_key.pem

The path name of the RSA private key file for the sha256_password authentication plugin. If the file
is named as a relative path, it is interpreted relative to the server data directory. The file must be in
PEM format. Because this file stores a private key, its access mode should be restricted so that only
the MySQL server can read it.

For information about sha256_password, including instructions for creating the RSA key files, see
Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

This variable is available only if MySQL was built using OpenSSL.

• sha256_password_public_key_path

System Variable Name sha256_password_public_key_path

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Default public_key.pem

The path name of the RSA public key file for the sha256_password authentication plugin. If the
file is named as a relative path, it is interpreted relative to the server data directory. The file must
be in PEM format. Because this file stores a public key, copies can be freely distributed to client
users. (Clients that explicitly specify a public key when connecting to the server using RSA password
encryption must use the same public key as that used by the server.)

For information about sha256_password, including instructions for creating the RSA key files and
how clients specify the RSA public key, see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

This variable is available only if MySQL was built using OpenSSL.

• shared_memory

System Variable Name shared_memory

Variable Scope Global

Dynamic Variable No

Platform Specific Windows

(Windows only.) Whether the server permits shared-memory connections.

• shared_memory_base_name

System Variable Name shared_memory_base_name

Variable Scope Global

Dynamic Variable No

Platform Specific Windows

(Windows only.) The name of shared memory to use for shared-memory connections. This is useful
when running multiple MySQL instances on a single physical machine. The default name is MYSQL.
The name is case sensitive.

Server System Variables

568

• skip_external_locking

Command-Line Format --skip-external-locking

Option-File Format skip_external_locking

System Variable Name skip_external_locking

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default ON

This is OFF if mysqld uses external locking (system locking), ON if external locking is disabled. This
affects only MyISAM table access.

This variable is set by the --external-locking or --skip-external-locking option.
External locking has been disabled by default as of MySQL 4.0.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.10.5, “External Locking”.

• skip_name_resolve

Command-Line Format --skip-name-resolve

Option-File Format skip-name-resolve

System Variable Name skip_name_resolve

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

This variable is set from the value of the --skip-name-resolve option. If it is ON, mysqld
resolves host names when checking client connections. If OFF, mysqld uses only IP numbers
and all Host column values in the grant tables must be IP addresses or localhost. See
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”.

• skip_networking

Command-Line Format --skip-networking

Option-File Format skip-networking

System Variable Name skip_networking

Variable Scope Global

Dynamic Variable No

This is ON if the server permits only local (non-TCP/IP) connections. On Unix, local connections
use a Unix socket file. On Windows, local connections use a named pipe or shared memory. This
variable can be set to ON with the --skip-networking option.

• skip_show_database

Command-Line Format --skip-show-database

Option-File Format skip-show-database

Server System Variables

569

System Variable Name skip_show_database

Variable Scope Global

Dynamic Variable No

This prevents people from using the SHOW DATABASES statement if they do not have the SHOW
DATABASES privilege. This can improve security if you have concerns about users being able to see
databases belonging to other users. Its effect depends on the SHOW DATABASES privilege: If the
variable value is ON, the SHOW DATABASES statement is permitted only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW
DATABASES is permitted to all users, but displays the names of only those databases for which the
user has the SHOW DATABASES or other privilege. (Note that any global privilege is considered a
privilege for the database.)

• slow_launch_time

Command-Line Format --slow_launch_time=#

Option-File Format slow_launch_time

System Variable Name slow_launch_time

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 2

If creating a thread takes longer than this many seconds, the server increments the
Slow_launch_threads status variable.

• slow_query_log

Command-Line Format --slow-query-log

Option-File Format slow-query-log

System Variable Name slow_query_log

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Whether the slow query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to
enable the log. The default value depends on whether the --slow_query_log option is given. The
destination for log output is controlled by the log_output system variable; if that value is NONE, no
log entries are written even if the log is enabled.

“Slow” is determined by the value of the long_query_time variable. See Section 5.2.5, “The Slow
Query Log”.

• slow_query_log_file

Command-Line Format --slow-query-log-file=file_name

Option-File Format slow_query_log_file

System Variable Name slow_query_log_file

Server System Variables

570

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type file name

Default host_name-slow.log

The name of the slow query log file. The default value is host_name-slow.log, but the initial value
can be changed with the --slow_query_log_file option.

• socket

Command-Line Format --socket=name

Option-File Format socket

System Variable Name socket

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Default /tmp/mysql.sock

On Unix platforms, this variable is the name of the socket file that is used for local client connections.
The default is /tmp/mysql.sock. (For some distribution formats, the directory might be different,
such as /var/lib/mysql for RPMs.)

On Windows, this variable is the name of the named pipe that is used for local client connections.
The default value is MySQL (not case sensitive).

• sort_buffer_size

Command-Line Format --sort_buffer_size=#

Option-File Format sort_buffer_size

System Variable Name sort_buffer_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type
(Other)

numeric

Default 262144

Range 32768 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type
(Other)

numeric

Default 262144

Range 32768 .. 18446744073709551615

Server System Variables

571

Permitted Values

Type
(Windows)

numeric

Default 262144

Range 32768 .. 4294967295

Each session that needs to do a sort allocates a buffer of this size. sort_buffer_size
is not specific to any storage engine and applies in a general manner for optimization. See
Section 8.2.1.15, “ORDER BY Optimization”, for example.

If you see many Sort_merge_passes per second in SHOW GLOBAL STATUS output, you can
consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations
that cannot be improved with query optimization or improved indexing.

The optimizer tries to work out how much space is needed but can allocate more, up to the limit.
Setting it larger than required globally will slow down most queries that sort. It is best to increase it as
a session setting, and only for the sessions that need a larger size. On Linux, there are thresholds of
256KB and 2MB where larger values may significantly slow down memory allocation, so you should
consider staying below one of those values. Experiment to find the best value for your workload. See
Section C.5.4.4, “Where MySQL Stores Temporary Files”.

The maximum permissible setting for sort_buffer_size is 4GB–1. Larger values are permitted
for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB–1 with a
warning).

• sql_auto_is_null

System Variable Name sql_auto_is_null

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default 0

If this variable is set to 1, then after a statement that successfully inserts an automatically generated
AUTO_INCREMENT value, you can find that value by issuing a statement of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert, see
Section 12.14, “Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the
SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison is used by
some ODBC programs, such as Access. See Obtaining Auto-Increment Values. This behavior can
be disabled by setting sql_auto_is_null to 0.

The default value of sql_auto_is_null is 0 in MySQL 5.7.

• sql_big_selects

System Variable Name sql_big_selects

Variable Scope Global, Session

Dynamic Variable Yes

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

Server System Variables

572

Permitted Values

Type boolean

Default 1

If set to 0, MySQL aborts SELECT statements that are likely to take a very long time to execute (that
is, statements for which the optimizer estimates that the number of examined rows exceeds the
value of max_join_size). This is useful when an inadvisable WHERE statement has been issued.
The default value for a new connection is 1, which permits all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT, sql_big_selects
is set to 0.

• sql_buffer_result

System Variable Name sql_buffer_result

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default 0

If set to 1, sql_buffer_result forces results from SELECT statements to be put into temporary
tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes a
long time to send results to the client. The default value is 0.

• sql_log_bin

System Variable Name sql_log_bin

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

This variable controls whether logging to the binary log is done. The default value is 1 (do logging).
To change logging for the current session, change the session value of this variable. The session
user must have the SUPER privilege to set this variable.

In MySQL 5.7, it is not possible to set @@session.sql_log_bin within a transaction or subquery.
(Bug #53437)

• sql_log_off

System Variable Name sql_log_off

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default 0

This variable controls whether logging to the general query log is done. The default value is 0 (do
logging). To change logging for the current session, change the session value of this variable. The
session user must have the SUPER privilege to set this option. The default value is 0.

Server System Variables

573

• sql_mode

Command-Line Format --sql-mode=name

Option-File Format sql-mode

System Variable Name sql_mode

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type set

Default NO_ENGINE_SUBSTITUTION

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

Valid
Values

STRICT_TRANS_TABLES

The current server SQL mode, which can be set dynamically. See Section 5.1.7, “Server SQL
Modes”.

Note

MySQL installation programs may configure the SQL mode during the
installation process. For example, mysql_install_db creates a default
option file named my.cnf in the base installation directory. This file contains
a line that sets the SQL mode; see Section 4.4.3, “mysql_install_db —
Initialize MySQL Data Directory”.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

• sql_notes

Server System Variables

574

If set to 1 (the default), warnings of Note level increment warning_count and the server records
them. If set to 0, Note warnings do not increment warning_count and the server does not record
them. mysqldump includes output to set this variable to 0 so that reloading the dump file does not
produce warnings for events that do not affect the integrity of the reload operation.

• sql_quote_show_create

If set to 1 (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CREATE
DATABASE statements. If set to 0, quoting is disabled. This option is enabled by default so that
replication works for identifiers that require quoting. See Section 13.7.5.10, “SHOW CREATE TABLE
Syntax”, and Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”.

• sql_safe_updates

If set to 1, MySQL aborts UPDATE or DELETE statements that do not use a key in the WHERE clause
or a LIMIT clause. (Specifically, UPDATE statements must have a WHERE clause that uses a key or a
LIMIT clause, or both. DELETE statements must have both.) This makes it possible to catch UPDATE
or DELETE statements where keys are not used properly and that would probably change or delete a
large number of rows. The default value is 0.

• sql_select_limit

System Variable Name sql_select_limit

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

The maximum number of rows to return from SELECT statements. The default value for a new
connection is the maximum number of rows that the server permits per table. Typical default values
are (232)–1 or (264)–1. If you have changed the limit, the default value can be restored by assigning a
value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of
sql_select_limit.

• sql_warnings

This variable controls whether single-row INSERT statements produce an information string if
warnings occur. The default is 0. Set the value to 1 to produce an information string.

• ssl_ca

Command-Line Format --ssl-ca=name

Option-File Format ssl-ca

System Variable Name ssl_ca

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The path to a file with a list of trusted SSL CAs.

• ssl_capath

Server System Variables

575

Command-Line Format --ssl-capath=name

Option-File Format ssl-capath

System Variable Name ssl_capath

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

The path to a directory that contains trusted SSL CA certificates in PEM format.

• ssl_cert

Command-Line Format --ssl-cert=name

Option-File Format ssl-cert

System Variable Name ssl_cert

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The name of the SSL certificate file to use for establishing a secure connection.

• ssl_cipher

Command-Line Format --ssl-cipher=name

Option-File Format ssl-cipher

System Variable Name ssl_cipher

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

A list of permissible ciphers to use for SSL encryption.

• ssl_crl

Command-Line Format --ssl-crl=name

Option-File Format ssl-crl

System Variable Name ssl_crl

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The path to a file containing certificate revocation lists in PEM format. Revocation lists work for
MySQL distributions compiled against OpenSSL (but not yaSSL).

• ssl_crlpath

Server System Variables

576

Command-Line Format --ssl-crlpath=name

Option-File Format ssl-crlpath

System Variable Name ssl_crlpath

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

The path to a directory that contains files containing certificate revocation lists in PEM format.
Revocation lists work for MySQL distributions compiled against OpenSSL (but not yaSSL).

• ssl_key

Command-Line Format --ssl-key=name

Option-File Format ssl-key

System Variable Name ssl_key

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The name of the SSL key file to use for establishing a secure connection.

• storage_engine

Removed 5.7.5

System Variable Name storage_engine

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default InnoDB

This variable is deprecated and was removed in MySQL 5.7.5. Use default_storage_engine
instead.

• stored_program_cache

Command-Line Format --stored-program-cache=#

Option-File Format stored_program_cache

System Variable Name stored_program_cache

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 256

Range 256 .. 524288

Server System Variables

577

Sets a soft upper limit for the number of cached stored routines per connection. The value of
this variable is specified in terms of the number of stored routines held in each of the two caches
maintained by the MySQL Server for, respectively, stored procedures and stored functions.

Whenever a stored routine is executed this cache size is checked before the first or top-level
statement in the routine is parsed; if the number of routines of the same type (stored procedures or
stored functions according to which is being executed) exceeds the limit specified by this variable,
the corresponding cache is flushed and memory previously allocated for cached objects is freed.
This allows the cache to be flushed safely, even when there are dependencies between stored
routines.

• sync_frm

Command-Line Format --sync-frm

Option-File Format sync_frm

System Variable Name sync_frm

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default TRUE

If this variable is set to 1, when any nontemporary table is created its .frm file is synchronized to
disk (using fdatasync()). This is slower but safer in case of a crash. The default is 1.

• system_time_zone

System Variable Name system_time_zone

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The server system time zone. When the server begins executing, it inherits a time zone setting from
the machine defaults, possibly modified by the environment of the account used for running the
server or the startup script. The value is used to set system_time_zone. Typically the time zone is
specified by the TZ environment variable. It also can be specified using the --timezone option of
the mysqld_safe script.

The system_time_zone variable differs from time_zone. Although they might have the same
value, the latter variable is used to initialize the time zone for each client that connects. See
Section 10.6, “MySQL Server Time Zone Support”.

• table_definition_cache

System Variable Name table_definition_cache

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default -1 (autosized)

Server System Variables

578

Range 400 .. 524288

The number of table definitions (from .frm files) that can be stored in the definition cache. If you use
a large number of tables, you can create a large table definition cache to speed up opening of tables.
The table definition cache takes less space and does not use file descriptors, unlike the normal table
cache. The minimum value is 400. The default value is based on the following formula, capped to a
limit of 2000:

400 + (table_open_cache / 2)

For InnoDB, table_definition_cache acts as a soft limit for the number of open table
instances in the InnoDB data dictionary cache. If the number of open table instances exceeds
the table_definition_cache setting, the LRU mechanism begins to mark table instances
for eviction and eventually removes them from the data dictionary cache. The limit helps address
situations in which significant amounts of memory would be used to cache rarely used table
instances until the next server restart. The number of table instances with cached metadata could
be higher than the limit defined by table_definition_cache, because InnoDB system table
instances and parent and child table instances with foreign key relationships are not placed on the
LRU list and are not subject to eviction from memory.

Additionally, table_definition_cache defines a soft limit for the number of InnoDB file-per-
table tablespaces that can be open at one time, which is also controlled by innodb_open_files. If
both table_definition_cache and innodb_open_files are set, the highest setting is used. If
neither variable is set, table_definition_cache, which has a higher default value, is used. If the
number of open tablespace file handles exceeds the limit defined by table_definition_cache
or innodb_open_files, the LRU mechanism searches the tablespace file LRU list for files that
are fully flushed and are not currently being extended. This process is performed each time a new
tablespace is opened. If there are no “inactive” tablespaces, no tablespace files are closed.

• table_open_cache

System Variable Name table_open_cache

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 2000 (autosized)

Range 1 .. 524288

The number of open tables for all threads. Increasing this value increases the number of file
descriptors that mysqld requires. You can check whether you need to increase the table cache by
checking the Opened_tables status variable. See Section 5.1.6, “Server Status Variables”. If the
value of Opened_tables is large and you do not use FLUSH TABLES often (which just forces all
tables to be closed and reopened), then you should increase the value of the table_open_cache
variable. For more information about the table cache, see Section 8.4.3.1, “How MySQL Opens and
Closes Tables”.

• table_open_cache_instances

System Variable Name table_open_cache_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Server System Variables

579

Default 1

The number of open tables cache instances (default 1). To improve scalability by reducing contention
among sessions, the open tables cache can be partitioned into several smaller cache instances of
size table_open_cache / table_open_cache_instances . A session needs to lock only one
instance to access it for DML statements. This segments cache access among instances, permitting
higher performance for operations that use the cache when there are many sessions accessing
tables. (DDL statements still require a lock on the entire cache, but such statements are much less
frequent than DML statements.)

A value of 8 or 16 is recommended on systems that routinely use 16 or more cores.

• thread_cache_size

Command-Line Format --thread_cache_size=#

Option-File Format thread_cache_size

System Variable Name thread_cache_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default -1 (autosized)

Range 0 .. 16384

How many threads the server should cache for reuse. When a client disconnects, the client's
threads are put in the cache if there are fewer than thread_cache_size threads there. Requests
for threads are satisfied by reusing threads taken from the cache if possible, and only when the
cache is empty is a new thread created. This variable can be increased to improve performance
if you have a lot of new connections. Normally, this does not provide a notable performance
improvement if you have a good thread implementation. However, if your server sees hundreds of
connections per second you should normally set thread_cache_size high enough so that most
new connections use cached threads. By examining the difference between the Connections and
Threads_created status variables, you can see how efficient the thread cache is. For details, see
Section 5.1.6, “Server Status Variables”.

The default value is based on the following formula, capped to a limit of 100:

8 + (max_connections / 100)

This variable has no effect for the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• thread_concurrency

Deprecated 5.6.1

Removed 5.7.2

Command-Line Format --thread_concurrency=#

Option-File Format thread_concurrency

System Variable Name thread_concurrency

Variable Scope Global

Dynamic Variable No

 Permitted Values

Server System Variables

580

Type numeric

Default 10

Range 1 .. 512

This variable is specific to Solaris 8 and earlier systems, for which mysqld invokes the
thr_setconcurrency() function with the variable value. This function enables applications to
give the threads system a hint about the desired number of threads that should be run at the same
time. Current Solaris versions document this as having no effect.

This variable was removed in MySQL 5.7.2.

• thread_handling

Command-Line Format --thread_handling=name

Option-File Format thread_handling

System Variable Name thread_handling

Variable Scope Global

Dynamic Variable No

Permitted Values

Type enumeration

Default one-thread-per-connection

no-threads

one-thread-per-connection

Valid
Values

dynamically-loaded

The thread-handling model used by the server for connection threads. The permissible values are
no-threads (the server uses a single thread to handle one connection) and one-thread-per-
connection (the server uses one thread to handle each client connection). no-threads is useful
for debugging under Linux; see Section 22.4, “Debugging and Porting MySQL”.

This variable has no effect for the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• thread_stack

Command-Line Format --thread_stack=#

Option-File Format thread_stack

System Variable Name thread_stack

Variable Scope Global

Dynamic Variable No

Permitted Values

Platform
Bit Size

32

Type numeric

Default 196608

Range 131072 .. 4294967295

Block
Size

1024

 Permitted Values

Server System Variables

581

Platform
Bit Size

64

Type numeric

Default 262144

Range 131072 .. 18446744073709547520

Block
Size

1024

The stack size for each thread. Many of the limits detected by the crash-me test are dependent on
this value. See Section 8.12.2, “The MySQL Benchmark Suite”. The default of 192KB (256KB for
64-bit systems) is large enough for normal operation. If the thread stack size is too small, it limits
the complexity of the SQL statements that the server can handle, the recursion depth of stored
procedures, and other memory-consuming actions.

• time_format

This variable is unused. It is deprecated and will be removed in a future MySQL release.

• time_zone

System Variable Name time_zone

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

The current time zone. This variable is used to initialize the time zone for each client that
connects. By default, the initial value of this is 'SYSTEM' (which means, “use the value of
system_time_zone”). The value can be specified explicitly at server startup with the --default-
time-zone option. See Section 10.6, “MySQL Server Time Zone Support”.

• timed_mutexes

Deprecated 5.5.36

Command-Line Format --timed_mutexes

Option-File Format timed_mutexes

System Variable Name timed_mutexes

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

In MySQL 5.7, this variable is deprecated; it has no use. It will be removed in a future MySQL
release.

• timestamp

System Variable Name timestamp

Variable Scope Session

Dynamic Variable Yes

 Permitted Values

Server System Variables

582

Type numeric

Set the time for this client. This is used to get the original timestamp if you use the binary log to
restore rows. timestamp_value should be a Unix epoch timestamp (a value like that returned by
UNIX_TIMESTAMP(), not a value in 'YYYY-MM-DD hh:mm:ss' format) or DEFAULT.

Setting timestamp to a constant value causes it to retain that value until it is changed again.
Setting timestamp to DEFAULT causes its value to be the current date and time as of the time it is
accessed.

In MySQL 5.7, timestamp is a DOUBLE rather than BIGINT because its value includes a
microseconds part.

SET timestamp affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE(). The server can be
started with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW(), in which
case SET timestamp affects both functions.

• tmp_table_size

Command-Line Format --tmp_table_size=#

Option-File Format tmp_table_size

System Variable Name tmp_table_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 16777216

Range 1024 .. 18446744073709551615

The maximum size of internal in-memory temporary tables. (The actual limit is determined as the
minimum of tmp_table_size and max_heap_table_size.) If an in-memory temporary table
exceeds the limit, MySQL automatically converts it to an on-disk MyISAM table. Increase the value
of tmp_table_size (and max_heap_table_size if necessary) if you do many advanced GROUP
BY queries and you have lots of memory. This variable does not apply to user-created MEMORY
tables.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “How MySQL Uses Internal Temporary Tables”.

• tmpdir

Command-Line Format --tmpdir=path

 -t

Option-File Format tmpdir

System Variable Name tmpdir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

Server System Variables

583

The directory used for temporary files and temporary tables. This variable can be set to a list of
several paths that are used in round-robin fashion. Paths should be separated by colon characters
(“:”) on Unix and semicolon characters (“;”) on Windows.

The multiple-directory feature can be used to spread the load between several physical disks. If
the MySQL server is acting as a replication slave, you should not set tmpdir to point to a directory
on a memory-based file system or to a directory that is cleared when the server host restarts. A
replication slave needs some of its temporary files to survive a machine restart so that it can replicate
temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost
when the server restarts, replication fails. You can set the slave's temporary directory using the
slave_load_tmpdir variable. In that case, the slave will not use the general tmpdir value and
you can set tmpdir to a nonpermanent location.

• transaction_alloc_block_size

Command-Line Format --transaction_alloc_block_size=#

Option-File Format transaction_alloc_block_size

System Variable Name transaction_alloc_block_size

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 8192

Range 1024 .. 4294967295

Block
Size

1024

Permitted Values

Platform
Bit Size

64

Type numeric

Default 8192

Range 1024 .. 18446744073709547520

Block
Size

1024

The amount in bytes by which to increase a per-transaction memory pool which needs memory. See
the description of transaction_prealloc_size.

• transaction_prealloc_size

Command-Line Format --transaction_prealloc_size=#

Option-File Format transaction_prealloc_size

System Variable Name transaction_prealloc_size

Variable Scope Global, Session

Dynamic Variable Yes

 Permitted Values

Server System Variables

584

Platform
Bit Size

32

Type numeric

Default 4096

Range 1024 .. 4294967295

Block
Size

1024

Permitted Values

Platform
Bit Size

64

Type numeric

Default 4096

Range 1024 .. 18446744073709547520

Block
Size

1024

There is a per-transaction memory pool from which various transaction-related allocations take
memory. The initial size of the pool in bytes is transaction_prealloc_size. For every
allocation that cannot be satisfied from the pool because it has insufficient memory available, the
pool is increased by transaction_alloc_block_size bytes. When the transaction ends, the
pool is truncated to transaction_prealloc_size bytes.

By making transaction_prealloc_size sufficiently large to contain all statements within a
single transaction, you can avoid many malloc() calls.

• tx_isolation

System Variable Name tx_isolation

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default REPEATABLE-READ

READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

Valid
Values

SERIALIZABLE

The default transaction isolation level. Defaults to REPEATABLE-READ.

This variable can be set directly, or indirectly using the SET TRANSACTION statement. See
Section 13.3.6, “SET TRANSACTION Syntax”. If you set tx_isolation directly to an isolation level
name that contains a space, the name should be enclosed within quotation marks, with the space
replaced by a dash. For example:

SET tx_isolation = 'READ-COMMITTED';

Any unique prefix of a valid value may be used to set the value of this variable.

The default transaction isolation level can also be set at startup using the --transaction-
isolation server option.

Server System Variables

585

• tx_read_only

System Variable Name tx_read_only

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

The default transaction access mode. The value can be OFF (read/write, the default) or ON (read
only).

This variable can be set directly, or indirectly using the SET TRANSACTION statement. See
Section 13.3.6, “SET TRANSACTION Syntax”.

To set the default transaction access mode at startup, use the --transaction-read-only server
option.

• unique_checks

System Variable Name unique_checks

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default 1

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If
set to 0, storage engines are permitted to assume that duplicate keys are not present in input data.
If you know for certain that your data does not contain uniqueness violations, you can set this to 0 to
speed up large table imports to InnoDB.

Note that setting this variable to 0 does not require storage engines to ignore duplicate keys. An
engine is still permitted to check for them and issue duplicate-key errors if it detects them.

• updatable_views_with_limit

Command-Line Format --updatable_views_with_limit=#

Option-File Format updatable_views_with_limit

System Variable Name updatable_views_with_limit

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default 1

This variable controls whether updates to a view can be made when the view does not contain
all columns of the primary key defined in the underlying table, if the update statement contains a
LIMIT clause. (Such updates often are generated by GUI tools.) An update is an UPDATE or DELETE
statement. Primary key here means a PRIMARY KEY, or a UNIQUE index in which no column can
contain NULL.

Server System Variables

586

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

• validate_password_xxx

The validate_password plugin implements a set of system variables having names of the form
validate_password_xxx. These variables affect password testing by that plugin; see Password
Validation Plugin Options and Variables.

• validate_user_plugins

System Variable Name validate_user_plugins

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default ON

If this variable is enabled (the default), the server checks each user account and produces a warning
if conditions are found that would make the account unusable:

• The account requires an authentication plugin that is not loaded.

• The account requires the sha256_password authentication plugin but the server was started with
neither SSL nor RSA enabled as required by this plugin.

Enabling validate_user_plugins slows down server initialization and FLUSH PRIVILEGES.
If you do not require the additional checking, you can disable this variable at startup to avoid the
performance decrement.

This variable was added in MySQL 5.7.1.

• version

The version number for the server. The value might also include a suffix indicating server build or
configuration information. -log indicates that one or more of the general log, slow query log, or
binary log are enabled. -debug indicates that the server was built with debugging support enabled.

• version_comment

System Variable Name version_comment

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The CMake configuration program has a COMPILATION_COMMENT option that permits a comment
to be specified when building MySQL. This variable contains the value of that comment. See
Section 2.8.4, “MySQL Source-Configuration Options”.

• version_compile_machine

System Variable Name version_compile_machine

Using System Variables

587

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The type of the server binary.

• version_compile_os

System Variable Name version_compile_os

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The type of operating system on which MySQL was built.

• wait_timeout

Command-Line Format --wait_timeout=#

Option-File Format wait_timeout

System Variable Name wait_timeout

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type
(Other)

numeric

Default 28800

Range 1 .. 31536000

Permitted Values

Type
(Windows)

numeric

Default 28800

Range 1 .. 2147483

The number of seconds the server waits for activity on a noninteractive connection before closing it.

On thread startup, the session wait_timeout value is initialized from the global wait_timeout
value or from the global interactive_timeout value, depending on the type of client (as
defined by the CLIENT_INTERACTIVE connect option to mysql_real_connect()). See also
interactive_timeout.

• warning_count

The number of errors, warnings, and notes that resulted from the last statement that generated
messages. This variable is read only. See Section 13.7.5.39, “SHOW WARNINGS Syntax”.

5.1.5 Using System Variables

The MySQL server maintains many system variables that indicate how it is configured. Section 5.1.4,
“Server System Variables”, describes the meaning of these variables. Each system variable has a
default value. System variables can be set at server startup using options on the command line or in

Using System Variables

588

an option file. Most of them can be changed dynamically while the server is running by means of the
SET statement, which enables you to modify operation of the server without having to stop and restart
it. You can refer to system variable values in expressions.

The server maintains two kinds of system variables. Global variables affect the overall operation of
the server. Session variables affect its operation for individual client connections. A given system
variable can have both a global and a session value. Global and session system variables are related
as follows:

• When the server starts, it initializes all global variables to their default values. These defaults can
be changed by options specified on the command line or in an option file. (See Section 4.2.3,
“Specifying Program Options”.)

• The server also maintains a set of session variables for each client that connects. The client's
session variables are initialized at connect time using the current values of the corresponding global
variables. For example, the client's SQL mode is controlled by the session sql_mode value, which is
initialized when the client connects to the value of the global sql_mode value.

System variable values can be set globally at server startup by using options on the command line or
in an option file. When you use a startup option to set a variable that takes a numeric value, the value
can be given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024,
10242 or 10243; that is, units of kilobytes, megabytes, or gigabytes, respectively. Thus, the following
command starts the server with a query cache size of 16 megabytes and a maximum packet size of
one gigabyte:

mysqld --query_cache_size=16M --max_allowed_packet=1G

Within an option file, those variables are set like this:

[mysqld]
query_cache_size=16M
max_allowed_packet=1G

The lettercase of suffix letters does not matter; 16M and 16m are equivalent, as are 1G and 1g.

If you want to restrict the maximum value to which a system variable can be set at runtime
with the SET statement, you can specify this maximum by using an option of the form
--maximum-var_name=value at server startup. For example, to prevent the value of
query_cache_size from being increased to more than 32MB at runtime, use the option --
maximum-query_cache_size=32M.

Many system variables are dynamic and can be changed while the server runs by using the SET
statement. For a list, see Section 5.1.5.2, “Dynamic System Variables”. To change a system variable
with SET, refer to it as var_name, optionally preceded by a modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global..
The SUPER privilege is required to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION,
@@session., or @@. Setting a session variable requires no special privilege, but a client can change
only its own session variables, not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

A SET statement can contain multiple variable assignments, separated by commas. If you set several
system variables, the most recent GLOBAL or SESSION modifier in the statement is used for following
variables that have no modifier specified.

Examples:

Using System Variables

589

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

The @@var_name syntax for system variables is supported for compatibility with some other database
systems.

If you change a session system variable, the value remains in effect until your session ends or until you
change the variable to a different value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until
the server restarts. (To make a global system variable setting permanent, you should set it in an option
file.) The change is visible to any client that accesses that global variable. However, the change affects
the corresponding session variable only for clients that connect after the change. The global variable
change does not affect the session variable for any client that is currently connected (not even that of
the client that issues the SET GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that
can only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a
global variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default
value, use the DEFAULT keyword. For example, the following two statements are identical in setting the
session value of max_join_size to the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

You can refer to the values of specific global or session system variables in expressions by using one
of the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not
specify @@global. or @@session.), MySQL returns the session value if it exists and the global value
otherwise. (This differs from SET @@var_name = value, which always refers to the session value.)

Note

Some variables displayed by SHOW VARIABLES may not be available using
SELECT @@var_name syntax; an Unknown system variable occurs.
As a workaround in such cases, you can use SHOW VARIABLES LIKE
'var_name'.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

Using System Variables

590

Note

Some system variables can be enabled with the SET statement by setting
them to ON or 1, or disabled by setting them to OFF or 0. However, to set such
a variable on the command line or in an option file, you must set it to 1 or 0;
setting it to ON or OFF will not work. For example, on the command line, --
delay_key_write=1 works but --delay_key_write=ON does not.

To display system variable names and values, use the SHOW VARIABLES statement:

mysql> SHOW VARIABLES;
+---------------------------------+-----------------------------------+
| Variable_name | Value |
+---------------------------------+-----------------------------------+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	/home/mysql/
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/home/mysql/share/mysql/charsets/
collation_connection	latin1_swedish_ci
collation_database	latin1_swedish_ci
collation_server	latin1_swedish_ci
...	
innodb_autoextend_increment	8
innodb_buffer_pool_size	8388608
innodb_checksums	ON
innodb_commit_concurrency	0
innodb_concurrency_tickets	500
innodb_data_file_path	ibdata1:10M:autoextend
innodb_data_home_dir	
...	
version	5.1.6-alpha-log
version_comment	Source distribution
version_compile_machine	i686
version_compile_os	suse-linux
wait_timeout	28800
+---------------------------------+-----------------------------------+

With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a
specific variable name, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because “_” is a wildcard that matches any single character, you should escape it as “_” to match it
literally. In practice, this is rarely necessary.

For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION values.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when
retrieving them is to prevent problems in the future. If we were to remove a SESSION variable that has

Using System Variables

591

the same name as a GLOBAL variable, a client with the SUPER privilege might accidentally change the
GLOBAL variable rather than just the SESSION variable for its own connection. If we add a SESSION
variable with the same name as a GLOBAL variable, a client that intends to change the GLOBAL variable
might find only its own SESSION variable changed.

5.1.5.1 Structured System Variables

A structured variable differs from a regular system variable in two respects:

• Its value is a structure with components that specify server parameters considered to be closely
related.

• There might be several instances of a given type of structured variable. Each one has a different
name and refers to a different resource maintained by the server.

MySQL 5.7 supports one structured variable type, which specifies parameters governing the operation
of key caches. A key cache structured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

This section describes the syntax for referring to structured variables. Key cache variables are used
for syntax examples, but specific details about how key caches operate are found elsewhere, in
Section 8.9.2, “The MyISAM Key Cache”.

To refer to a component of a structured variable instance, you can use a compound name in
instance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If
you refer to a component of a structured variable without any instance name, the default instance
is used. Thus, default.key_buffer_size and key_buffer_size both refer to the same system
variable.

Structured variable instances and components follow these naming rules:

• For a given type of structured variable, each instance must have a name that is unique within
variables of that type. However, instance names need not be unique across structured variable
types. For example, each structured variable has an instance named default, so default is not
unique across variable types.

• The names of the components of each structured variable type must be unique across all system
variable names. If this were not true (that is, if two different types of structured variables could
share component member names), it would not be clear which default structured variable to use for
references to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted
identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.

• global, session, and local are not legal instance names. This avoids a conflict with notation
such as @@global.var_name for referring to nonstructured system variables.

Currently, the first two rules have no possibility of being violated because the only structured variable
type is the one for key caches. These rules will assume greater significance if some other type of
structured variable is created in the future.

Using System Variables

592

With one exception, you can refer to structured variable components using compound names in any
context where simple variable names can occur. For example, you can assign a value to a structured
variable using a command-line option:

shell> mysqld --hot_cache.key_buffer_size=64K

In an option file, use this syntax:

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in
addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

shell> mysqld --key_buffer_size=256K \
 --extra_cache.key_buffer_size=128K \
 --extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written
--default.key_buffer_size=256K.) In addition, the server creates a second key cache named
extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks
set to 2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

shell> mysqld --key_buffer_size=6M \
 --hot_cache.key_buffer_size=2M \
 --cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache
named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@global.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@global.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound name,
but as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable name
may occur.

5.1.5.2 Dynamic System Variables

Many server system variables are dynamic and can be set at runtime using SET GLOBAL or SET
SESSION. You can also obtain their values using SELECT. See Section 5.1.5, “Using System
Variables”.

The following table shows the full list of all dynamic system variables. The last column indicates for
each variable whether GLOBAL or SESSION (or both) apply. The table also lists session options that
can be set with the SET statement. Section 5.1.4, “Server System Variables”, discusses these options.

Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take
a numeric value. Variables that have a type of “boolean” can be set to 0, 1, ON or OFF. (If you set

Using System Variables

593

them on the command line or in an option file, use the numeric values.) Variables that are marked
as “enumeration” normally should be set to one of the available values for the variable, but can also
be set to the number that corresponds to the desired enumeration value. For enumerated system
variables, the first enumeration value corresponds to 0. This differs from ENUM columns, for which the
first enumeration value corresponds to 1.

Table 5.3 Dynamic Variable Summary

Variable Name Variable Type Variable Scope

auto_increment_increment numeric GLOBAL | SESSION

auto_increment_offset numeric GLOBAL | SESSION

autocommit boolean GLOBAL | SESSION

automatic_sp_privileges boolean GLOBAL

big_tables boolean GLOBAL | SESSION

binlog_cache_size numeric GLOBAL

binlog_checksum string GLOBAL

binlog_direct_non_transactional_updatesboolean GLOBAL | SESSION

binlog_format enumeration GLOBAL | SESSION

binlog_max_flush_queue_time numeric GLOBAL

binlog_order_commits boolean GLOBAL

binlog_row_image=image_type enumeration GLOBAL | SESSION

binlog_rows_query_log_events boolean GLOBAL | SESSION

binlog_stmt_cache_size numeric GLOBAL

block_encryption_mode string GLOBAL | SESSION

bulk_insert_buffer_size numeric GLOBAL | SESSION

character_set_client string GLOBAL | SESSION

character_set_connection string GLOBAL | SESSION

character_set_database string GLOBAL | SESSION

character_set_filesystem string GLOBAL | SESSION

character_set_results string GLOBAL | SESSION

character_set_server string GLOBAL | SESSION

collation_connection string GLOBAL | SESSION

collation_database string GLOBAL | SESSION

collation_server string GLOBAL | SESSION

completion_type numeric GLOBAL | SESSION

concurrent_insert boolean GLOBAL

connect_timeout numeric GLOBAL

debug string GLOBAL | SESSION

debug_sync string SESSION

default_password_lifetime integer GLOBAL

default_storage_engine enumeration GLOBAL | SESSION

default_tmp_storage_engine enumeration GLOBAL | SESSION

default_week_format numeric GLOBAL | SESSION

delay_key_write enumeration GLOBAL

delayed_insert_limit numeric GLOBAL

Using System Variables

594

Variable Name Variable Type Variable Scope

delayed_insert_timeout numeric GLOBAL

delayed_queue_size numeric GLOBAL

div_precision_increment numeric GLOBAL | SESSION

end_markers_in_json boolean GLOBAL | SESSION

eq_range_index_dive_limit numeric GLOBAL | SESSION

event_scheduler enumeration GLOBAL

expire_logs_days numeric GLOBAL

flush boolean GLOBAL

flush_time numeric GLOBAL

foreign_key_checks boolean GLOBAL | SESSION

ft_boolean_syntax string GLOBAL

general_log boolean GLOBAL

general_log_file filename GLOBAL

group_concat_max_len numeric GLOBAL | SESSION

gtid_next enumeration SESSION

gtid_purged string GLOBAL

host_cache_size numeric GLOBAL

identity numeric SESSION

init_connect string GLOBAL

init_slave string GLOBAL

innodb_adaptive_flushing boolean GLOBAL

innodb_adaptive_flushing_lwm numeric GLOBAL

innodb_adaptive_hash_index boolean GLOBAL

innodb_adaptive_max_sleep_delay numeric GLOBAL

innodb_api_bk_commit_interval numeric GLOBAL

innodb_api_trx_level numeric GLOBAL

innodb_autoextend_increment numeric GLOBAL

innodb_buffer_pool_dump_at_shutdown boolean GLOBAL

innodb_buffer_pool_dump_now boolean GLOBAL

innodb_buffer_pool_dump_pct numeric GLOBAL

innodb_buffer_pool_filename filename GLOBAL

innodb_buffer_pool_load_abort boolean GLOBAL

innodb_buffer_pool_load_now boolean GLOBAL

innodb_change_buffer_max_size numeric GLOBAL

innodb_change_buffering enumeration GLOBAL

innodb_checksum_algorithm enumeration GLOBAL

innodb_cmp_per_index_enabled boolean GLOBAL

innodb_commit_concurrency numeric GLOBAL

innodb_compression_failure_threshold_pctnumeric GLOBAL

innodb_compression_level numeric GLOBAL

innodb_compression_pad_pct_max numeric GLOBAL

Using System Variables

595

Variable Name Variable Type Variable Scope

innodb_concurrency_tickets numeric GLOBAL

innodb_disable_sort_file_cache boolean GLOBAL

innodb_fast_shutdown numeric GLOBAL

innodb_file_format string GLOBAL

innodb_file_format_max string GLOBAL

innodb_file_per_table boolean GLOBAL

innodb_flush_log_at_timeout numeric GLOBAL

innodb_flush_log_at_trx_commit enumeration GLOBAL

innodb_flush_neighbors enumeration GLOBAL

innodb_flushing_avg_loops numeric GLOBAL

innodb_ft_aux_table string GLOBAL

innodb_ft_enable_diag_print boolean GLOBAL

innodb_ft_enable_stopword boolean GLOBAL

innodb_ft_num_word_optimize numeric GLOBAL

innodb_ft_result_cache_limit numeric GLOBAL

innodb_ft_server_stopword_table string GLOBAL

innodb_ft_user_stopword_table string GLOBAL | SESSION

innodb_io_capacity numeric GLOBAL

innodb_io_capacity_max numeric GLOBAL

innodb_large_prefix boolean GLOBAL

innodb_lock_wait_timeout numeric GLOBAL | SESSION

innodb_log_compressed_pages boolean GLOBAL

innodb_log_write_ahead_size numeric GLOBAL

innodb_lru_scan_depth numeric GLOBAL

innodb_max_dirty_pages_pct numeric GLOBAL

innodb_max_dirty_pages_pct_lwm numeric GLOBAL

innodb_max_purge_lag numeric GLOBAL

innodb_max_purge_lag_delay numeric GLOBAL

innodb_monitor_disable string GLOBAL

innodb_monitor_enable string GLOBAL

innodb_monitor_reset string GLOBAL

innodb_monitor_reset_all string GLOBAL

innodb_old_blocks_pct numeric GLOBAL

innodb_old_blocks_time numeric GLOBAL

innodb_online_alter_log_max_size numeric GLOBAL

innodb_optimize_fulltext_only boolean GLOBAL

innodb_print_all_deadlocks boolean GLOBAL

innodb_purge_batch_size numeric GLOBAL

innodb_random_read_ahead boolean GLOBAL

innodb_read_ahead_threshold numeric GLOBAL

innodb_replication_delay numeric GLOBAL

Using System Variables

596

Variable Name Variable Type Variable Scope

innodb_rollback_segments numeric GLOBAL

innodb_spin_wait_delay numeric GLOBAL

innodb_stats_auto_recalc boolean GLOBAL

innodb_stats_method enumeration GLOBAL

innodb_stats_on_metadata boolean GLOBAL

innodb_stats_persistent boolean GLOBAL

innodb_stats_persistent_sample_pages numeric GLOBAL

innodb_stats_sample_pages numeric GLOBAL

innodb_stats_transient_sample_pages numeric GLOBAL

innodb_status_output boolean GLOBAL

innodb_status_output_locks boolean GLOBAL

innodb_strict_mode boolean GLOBAL | SESSION

innodb_support_xa boolean GLOBAL | SESSION

innodb_sync_spin_loops numeric GLOBAL

innodb_table_locks boolean GLOBAL | SESSION

innodb_thread_concurrency numeric GLOBAL

innodb_thread_sleep_delay numeric GLOBAL

innodb_undo_logs numeric GLOBAL

insert_id numeric SESSION

interactive_timeout numeric GLOBAL | SESSION

join_buffer_size numeric GLOBAL | SESSION

keep_files_on_create boolean GLOBAL | SESSION

key_buffer_size numeric GLOBAL

key_cache_age_threshold numeric GLOBAL

key_cache_block_size numeric GLOBAL

key_cache_division_limit numeric GLOBAL

last_insert_id numeric SESSION

lc_messages string GLOBAL | SESSION

lc_time_names string GLOBAL | SESSION

local_infile boolean GLOBAL

lock_wait_timeout numeric GLOBAL | SESSION

log_bin_trust_function_creators boolean GLOBAL

log_error_verbosity numeric GLOBAL

log_output set GLOBAL

log_queries_not_using_indexes boolean GLOBAL

log_slow_admin_statements boolean GLOBAL

log_slow_slave_statements boolean GLOBAL

log_throttle_queries_not_using_indexesnumeric GLOBAL

log_timestamps enumeration GLOBAL

log_warnings numeric GLOBAL

long_query_time numeric GLOBAL | SESSION

Using System Variables

597

Variable Name Variable Type Variable Scope

low_priority_updates boolean GLOBAL | SESSION

master_info_repository string GLOBAL

master_verify_checksum boolean GLOBAL

max_allowed_packet numeric GLOBAL

max_binlog_cache_size numeric GLOBAL

max_binlog_size numeric GLOBAL

max_binlog_stmt_cache_size numeric GLOBAL

max_connect_errors numeric GLOBAL

max_connections numeric GLOBAL

max_delayed_threads numeric GLOBAL | SESSION

max_error_count numeric GLOBAL | SESSION

max_heap_table_size numeric GLOBAL | SESSION

max_insert_delayed_threads numeric GLOBAL | SESSION

max_join_size numeric GLOBAL | SESSION

max_length_for_sort_data numeric GLOBAL | SESSION

max_prepared_stmt_count numeric GLOBAL

max_relay_log_size numeric GLOBAL

max_seeks_for_key numeric GLOBAL | SESSION

max_sort_length numeric GLOBAL | SESSION

max_sp_recursion_depth numeric GLOBAL | SESSION

max_statement_time numeric GLOBAL | SESSION

max_user_connections numeric GLOBAL | SESSION

max_write_lock_count numeric GLOBAL

min_examined_row_limit numeric GLOBAL | SESSION

myisam_data_pointer_size numeric GLOBAL

myisam_max_sort_file_size numeric GLOBAL

myisam_repair_threads numeric GLOBAL | SESSION

myisam_sort_buffer_size numeric GLOBAL | SESSION

myisam_stats_method enumeration GLOBAL | SESSION

myisam_use_mmap boolean GLOBAL

net_buffer_length numeric GLOBAL | SESSION

net_read_timeout numeric GLOBAL | SESSION

net_retry_count numeric GLOBAL | SESSION

net_write_timeout numeric GLOBAL | SESSION

new boolean GLOBAL | SESSION

old_alter_table boolean GLOBAL | SESSION

old_passwords boolean GLOBAL | SESSION

optimizer_prune_level boolean GLOBAL | SESSION

optimizer_search_depth numeric GLOBAL | SESSION

optimizer_switch set GLOBAL | SESSION

optimizer_trace string GLOBAL | SESSION

Using System Variables

598

Variable Name Variable Type Variable Scope

optimizer_trace_features string GLOBAL | SESSION

optimizer_trace_limit numeric GLOBAL | SESSION

optimizer_trace_max_mem_size numeric GLOBAL | SESSION

optimizer_trace_offset numeric GLOBAL | SESSION

preload_buffer_size numeric GLOBAL | SESSION

profiling boolean GLOBAL | SESSION

profiling_history_size numeric GLOBAL | SESSION

pseudo_slave_mode numeric SESSION

pseudo_thread_id numeric SESSION

query_alloc_block_size numeric GLOBAL | SESSION

query_cache_limit numeric GLOBAL

query_cache_min_res_unit numeric GLOBAL

query_cache_size numeric GLOBAL

query_cache_type enumeration GLOBAL | SESSION

query_cache_wlock_invalidate boolean GLOBAL | SESSION

query_prealloc_size numeric GLOBAL | SESSION

rand_seed1 numeric SESSION

rand_seed2 numeric SESSION

range_alloc_block_size numeric GLOBAL | SESSION

read_buffer_size numeric GLOBAL | SESSION

read_only boolean GLOBAL

read_rnd_buffer_size numeric GLOBAL | SESSION

relay_log_info_repository string GLOBAL

relay_log_purge boolean GLOBAL

rpl_semi_sync_master_enabled boolean GLOBAL

rpl_semi_sync_master_timeout numeric GLOBAL

rpl_semi_sync_master_trace_level numeric GLOBAL

rpl_semi_sync_master_wait_for_slave_countnumeric GLOBAL

rpl_semi_sync_master_wait_no_slave boolean GLOBAL

rpl_semi_sync_master_wait_point enumeration GLOBAL

rpl_semi_sync_slave_enabled boolean GLOBAL

rpl_semi_sync_slave_trace_level numeric GLOBAL

rpl_stop_slave_timeout integer GLOBAL

secure_auth boolean GLOBAL

server_id [2037] numeric GLOBAL

session_track_schema boolean GLOBAL | SESSION

session_track_state_change boolean GLOBAL | SESSION

session_track_system_variables string GLOBAL | SESSION

slave_allow_batching boolean GLOBAL

slave_checkpoint_group=# numeric GLOBAL

slave_checkpoint_period=# numeric GLOBAL

Using System Variables

599

Variable Name Variable Type Variable Scope

slave_compressed_protocol boolean GLOBAL

slave_exec_mode enumeration GLOBAL

slave_max_allowed_packet numeric GLOBAL

slave_net_timeout numeric GLOBAL

slave_parallel_type enumeration GLOBAL

slave_parallel_workers numeric GLOBAL

slave_pending_jobs_size_max numeric GLOBAL

slave_rows_search_algorithms=list set GLOBAL

slave_sql_verify_checksum boolean GLOBAL

slave_transaction_retries numeric GLOBAL

slow_launch_time numeric GLOBAL

slow_query_log boolean GLOBAL

slow_query_log_file filename GLOBAL

sort_buffer_size numeric GLOBAL | SESSION

sql_auto_is_null boolean GLOBAL | SESSION

sql_big_selects boolean GLOBAL | SESSION

sql_buffer_result boolean GLOBAL | SESSION

sql_log_bin boolean GLOBAL | SESSION

sql_log_off boolean GLOBAL | SESSION

sql_mode set GLOBAL | SESSION

sql_notes boolean GLOBAL | SESSION

sql_quote_show_create boolean GLOBAL | SESSION

sql_safe_updates boolean GLOBAL | SESSION

sql_select_limit numeric GLOBAL | SESSION

sql_slave_skip_counter numeric GLOBAL

sql_warnings boolean GLOBAL | SESSION

storage_engine enumeration GLOBAL | SESSION

stored_program_cache numeric GLOBAL

sync_binlog numeric GLOBAL

sync_frm boolean GLOBAL

sync_master_info numeric GLOBAL

sync_relay_log numeric GLOBAL

sync_relay_log_info numeric GLOBAL

table_definition_cache numeric GLOBAL

table_open_cache numeric GLOBAL

thread_cache_size numeric GLOBAL

time_zone string GLOBAL | SESSION

timed_mutexes boolean GLOBAL

timestamp numeric SESSION

tmp_table_size numeric GLOBAL | SESSION

transaction_alloc_block_size numeric GLOBAL | SESSION

Server Status Variables

600

Variable Name Variable Type Variable Scope

transaction_prealloc_size numeric GLOBAL | SESSION

tx_isolation enumeration GLOBAL | SESSION

tx_read_only boolean GLOBAL | SESSION

unique_checks boolean GLOBAL | SESSION

updatable_views_with_limit boolean GLOBAL | SESSION

validate_password_length numeric GLOBAL

validate_password_mixed_case_count numeric GLOBAL

validate_password_number_count numeric GLOBAL

validate_password_policy enumeration GLOBAL

validate_password_special_char_count numeric GLOBAL

wait_timeout numeric GLOBAL | SESSION

5.1.6 Server Status Variables

The server maintains many status variables that provide information about its operation. You can view
these variables and their values by using the SHOW [GLOBAL | SESSION] STATUS statement (see
Section 13.7.5.34, “SHOW STATUS Syntax”). The optional GLOBAL keyword aggregates the values over
all connections, and SESSION shows the values for the current connection.

mysql> SHOW GLOBAL STATUS;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
...	
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_files	3
Created_tmp_tables	2
...	
Threads_created	217
Threads_running	88
Uptime	1389872
+-----------------------------------+------------+

Many status variables are reset to 0 by the FLUSH STATUS statement.

The following table lists all available server status variables:

Table 5.4 Status Variable Summary

Variable Name Variable Type Variable Scope

Aborted_clients numeric GLOBAL

Aborted_connects numeric GLOBAL

Binlog_cache_disk_use numeric GLOBAL

Binlog_cache_use numeric GLOBAL

Binlog_stmt_cache_disk_use numeric GLOBAL

Binlog_stmt_cache_use numeric GLOBAL

Bytes_received numeric GLOBAL | SESSION

Bytes_sent numeric GLOBAL | SESSION

Server Status Variables

601

Variable Name Variable Type Variable Scope

Com_admin_commands numeric GLOBAL | SESSION

Com_alter_db numeric GLOBAL | SESSION

Com_alter_db_upgrade numeric GLOBAL | SESSION

Com_alter_event numeric GLOBAL | SESSION

Com_alter_function numeric GLOBAL | SESSION

Com_alter_procedure numeric GLOBAL | SESSION

Com_alter_server numeric GLOBAL | SESSION

Com_alter_table numeric GLOBAL | SESSION

Com_alter_tablespace numeric GLOBAL | SESSION

Com_alter_user numeric GLOBAL | SESSION

Com_analyze numeric GLOBAL | SESSION

Com_assign_to_keycache numeric GLOBAL | SESSION

Com_begin numeric GLOBAL | SESSION

Com_binlog numeric GLOBAL | SESSION

Com_call_procedure numeric GLOBAL | SESSION

Com_change_db numeric GLOBAL | SESSION

Com_change_master numeric GLOBAL | SESSION

Com_change_repl_filter numeric GLOBAL | SESSION

Com_check numeric GLOBAL | SESSION

Com_checksum numeric GLOBAL | SESSION

Com_commit numeric GLOBAL | SESSION

Com_create_db numeric GLOBAL | SESSION

Com_create_event numeric GLOBAL | SESSION

Com_create_function numeric GLOBAL | SESSION

Com_create_index numeric GLOBAL | SESSION

Com_create_procedure numeric GLOBAL | SESSION

Com_create_server numeric GLOBAL | SESSION

Com_create_table numeric GLOBAL | SESSION

Com_create_trigger numeric GLOBAL | SESSION

Com_create_udf numeric GLOBAL | SESSION

Com_create_user numeric GLOBAL | SESSION

Com_create_view numeric GLOBAL | SESSION

Com_dealloc_sql numeric GLOBAL | SESSION

Com_delete numeric GLOBAL | SESSION

Com_delete_multi numeric GLOBAL | SESSION

Com_do numeric GLOBAL | SESSION

Com_drop_db numeric GLOBAL | SESSION

Com_drop_event numeric GLOBAL | SESSION

Com_drop_function numeric GLOBAL | SESSION

Com_drop_index numeric GLOBAL | SESSION

Com_drop_procedure numeric GLOBAL | SESSION

Server Status Variables

602

Variable Name Variable Type Variable Scope

Com_drop_server numeric GLOBAL | SESSION

Com_drop_table numeric GLOBAL | SESSION

Com_drop_trigger numeric GLOBAL | SESSION

Com_drop_user numeric GLOBAL | SESSION

Com_drop_view numeric GLOBAL | SESSION

Com_empty_query numeric GLOBAL | SESSION

Com_execute_sql numeric GLOBAL | SESSION

Com_flush numeric GLOBAL | SESSION

Com_get_diagnostics numeric GLOBAL | SESSION

Com_grant numeric GLOBAL | SESSION

Com_ha_close numeric GLOBAL | SESSION

Com_ha_open numeric GLOBAL | SESSION

Com_ha_read numeric GLOBAL | SESSION

Com_help numeric GLOBAL | SESSION

Com_insert numeric GLOBAL | SESSION

Com_insert_select numeric GLOBAL | SESSION

Com_install_plugin numeric GLOBAL | SESSION

Com_kill numeric GLOBAL | SESSION

Com_load numeric GLOBAL | SESSION

Com_lock_tables numeric GLOBAL | SESSION

Com_optimize numeric GLOBAL | SESSION

Com_preload_keys numeric GLOBAL | SESSION

Com_prepare_sql numeric GLOBAL | SESSION

Com_purge numeric GLOBAL | SESSION

Com_purge_before_date numeric GLOBAL | SESSION

Com_release_savepoint numeric GLOBAL | SESSION

Com_rename_table numeric GLOBAL | SESSION

Com_rename_user numeric GLOBAL | SESSION

Com_repair numeric GLOBAL | SESSION

Com_replace numeric GLOBAL | SESSION

Com_replace_select numeric GLOBAL | SESSION

Com_reset numeric GLOBAL | SESSION

Com_resignal numeric GLOBAL | SESSION

Com_revoke numeric GLOBAL | SESSION

Com_revoke_all numeric GLOBAL | SESSION

Com_rollback numeric GLOBAL | SESSION

Com_rollback_to_savepoint numeric GLOBAL | SESSION

Com_savepoint numeric GLOBAL | SESSION

Com_select numeric GLOBAL | SESSION

Com_set_option numeric GLOBAL | SESSION

Com_show_authors numeric GLOBAL | SESSION

Server Status Variables

603

Variable Name Variable Type Variable Scope

Com_show_binlog_events numeric GLOBAL | SESSION

Com_show_binlogs numeric GLOBAL | SESSION

Com_show_charsets numeric GLOBAL | SESSION

Com_show_collations numeric GLOBAL | SESSION

Com_show_contributors numeric GLOBAL | SESSION

Com_show_create_db numeric GLOBAL | SESSION

Com_show_create_event numeric GLOBAL | SESSION

Com_show_create_func numeric GLOBAL | SESSION

Com_show_create_proc numeric GLOBAL | SESSION

Com_show_create_table numeric GLOBAL | SESSION

Com_show_create_trigger numeric GLOBAL | SESSION

Com_show_databases numeric GLOBAL | SESSION

Com_show_engine_logs numeric GLOBAL | SESSION

Com_show_engine_mutex numeric GLOBAL | SESSION

Com_show_engine_status numeric GLOBAL | SESSION

Com_show_errors numeric GLOBAL | SESSION

Com_show_events numeric GLOBAL | SESSION

Com_show_fields numeric GLOBAL | SESSION

Com_show_function_code numeric GLOBAL | SESSION

Com_show_function_status numeric GLOBAL | SESSION

Com_show_grants numeric GLOBAL | SESSION

Com_show_keys numeric GLOBAL | SESSION

Com_show_master_status numeric GLOBAL | SESSION

Com_show_new_master numeric GLOBAL | SESSION

Com_show_open_tables numeric GLOBAL | SESSION

Com_show_plugins numeric GLOBAL | SESSION

Com_show_privileges numeric GLOBAL | SESSION

Com_show_procedure_code numeric GLOBAL | SESSION

Com_show_procedure_status numeric GLOBAL | SESSION

Com_show_processlist numeric GLOBAL | SESSION

Com_show_profile numeric GLOBAL | SESSION

Com_show_profiles numeric GLOBAL | SESSION

Com_show_relaylog_events numeric GLOBAL | SESSION

Com_show_slave_hosts numeric GLOBAL | SESSION

Com_show_slave_status numeric GLOBAL | SESSION

Com_show_status numeric GLOBAL | SESSION

Com_show_storage_engines numeric GLOBAL | SESSION

Com_show_table_status numeric GLOBAL | SESSION

Com_show_tables numeric GLOBAL | SESSION

Com_show_triggers numeric GLOBAL | SESSION

Com_show_variables numeric GLOBAL | SESSION

Server Status Variables

604

Variable Name Variable Type Variable Scope

Com_show_warnings numeric GLOBAL | SESSION

Com_signal numeric GLOBAL | SESSION

Com_slave_start numeric GLOBAL | SESSION

Com_slave_stop numeric GLOBAL | SESSION

Com_stmt_close numeric GLOBAL | SESSION

Com_stmt_execute numeric GLOBAL | SESSION

Com_stmt_fetch numeric GLOBAL | SESSION

Com_stmt_prepare numeric GLOBAL | SESSION

Com_stmt_reprepare numeric GLOBAL | SESSION

Com_stmt_reset numeric GLOBAL | SESSION

Com_stmt_send_long_data numeric GLOBAL | SESSION

Com_truncate numeric GLOBAL | SESSION

Com_uninstall_plugin numeric GLOBAL | SESSION

Com_unlock_tables numeric GLOBAL | SESSION

Com_update numeric GLOBAL | SESSION

Com_update_multi numeric GLOBAL | SESSION

Com_xa_commit numeric GLOBAL | SESSION

Com_xa_end numeric GLOBAL | SESSION

Com_xa_prepare numeric GLOBAL | SESSION

Com_xa_recover numeric GLOBAL | SESSION

Com_xa_rollback numeric GLOBAL | SESSION

Com_xa_start numeric GLOBAL | SESSION

Compression numeric SESSION

Connection_errors_accept numeric GLOBAL

Connection_errors_internal numeric GLOBAL

Connection_errors_max_connections numeric GLOBAL

Connection_errors_peer_addr numeric GLOBAL

Connection_errors_select numeric GLOBAL

Connection_errors_tcpwrap numeric GLOBAL

Connections numeric GLOBAL

Created_tmp_disk_tables numeric GLOBAL | SESSION

Created_tmp_files numeric GLOBAL

Created_tmp_tables numeric GLOBAL | SESSION

Delayed_errors numeric GLOBAL

Delayed_insert_threads numeric GLOBAL

Delayed_writes numeric GLOBAL

Flush_commands numeric GLOBAL

Handler_commit numeric GLOBAL | SESSION

Handler_delete numeric GLOBAL | SESSION

Handler_discover numeric GLOBAL | SESSION

Handler_external_lock numeric GLOBAL | SESSION

Server Status Variables

605

Variable Name Variable Type Variable Scope

Handler_mrr_init numeric GLOBAL | SESSION

Handler_prepare numeric GLOBAL | SESSION

Handler_read_first numeric GLOBAL | SESSION

Handler_read_key numeric GLOBAL | SESSION

Handler_read_last numeric GLOBAL | SESSION

Handler_read_next numeric GLOBAL | SESSION

Handler_read_prev numeric GLOBAL | SESSION

Handler_read_rnd numeric GLOBAL | SESSION

Handler_read_rnd_next numeric GLOBAL | SESSION

Handler_rollback numeric GLOBAL | SESSION

Handler_savepoint numeric GLOBAL | SESSION

Handler_savepoint_rollback numeric GLOBAL | SESSION

Handler_update numeric GLOBAL | SESSION

Handler_write numeric GLOBAL | SESSION

Innodb_available_undo_logs numeric GLOBAL

Innodb_buffer_pool_bytes_data numeric GLOBAL

Innodb_buffer_pool_bytes_dirty numeric GLOBAL

Innodb_buffer_pool_dump_status numeric GLOBAL

Innodb_buffer_pool_load_status numeric GLOBAL

Innodb_buffer_pool_pages_data numeric GLOBAL

Innodb_buffer_pool_pages_dirty numeric GLOBAL

Innodb_buffer_pool_pages_flushed numeric GLOBAL

Innodb_buffer_pool_pages_free numeric GLOBAL

Innodb_buffer_pool_pages_latched numeric GLOBAL

Innodb_buffer_pool_pages_misc numeric GLOBAL

Innodb_buffer_pool_pages_total numeric GLOBAL

Innodb_buffer_pool_read_ahead numeric GLOBAL

Innodb_buffer_pool_read_ahead_evicted numeric GLOBAL

Innodb_buffer_pool_read_requests numeric GLOBAL

Innodb_buffer_pool_reads numeric GLOBAL

Innodb_buffer_pool_wait_free numeric GLOBAL

Innodb_buffer_pool_write_requests numeric GLOBAL

Innodb_data_fsyncs numeric GLOBAL

Innodb_data_pending_fsyncs numeric GLOBAL

Innodb_data_pending_reads numeric GLOBAL

Innodb_data_pending_writes numeric GLOBAL

Innodb_data_read numeric GLOBAL

Innodb_data_reads numeric GLOBAL

Innodb_data_writes numeric GLOBAL

Innodb_data_written numeric GLOBAL

Innodb_dblwr_pages_written numeric GLOBAL

Server Status Variables

606

Variable Name Variable Type Variable Scope

Innodb_dblwr_writes numeric GLOBAL

Innodb_have_atomic_builtins numeric GLOBAL

Innodb_log_waits numeric GLOBAL

Innodb_log_write_requests numeric GLOBAL

Innodb_log_writes numeric GLOBAL

Innodb_num_open_files numeric GLOBAL

Innodb_os_log_fsyncs numeric GLOBAL

Innodb_os_log_pending_fsyncs numeric GLOBAL

Innodb_os_log_pending_writes numeric GLOBAL

Innodb_os_log_written numeric GLOBAL

Innodb_page_size numeric GLOBAL

Innodb_pages_created numeric GLOBAL

Innodb_pages_read numeric GLOBAL

Innodb_pages_written numeric GLOBAL

Innodb_row_lock_current_waits numeric GLOBAL

Innodb_row_lock_time numeric GLOBAL

Innodb_row_lock_time_avg numeric GLOBAL

Innodb_row_lock_time_max numeric GLOBAL

Innodb_row_lock_waits numeric GLOBAL

Innodb_rows_deleted numeric GLOBAL

Innodb_rows_inserted numeric GLOBAL

Innodb_rows_read numeric GLOBAL

Innodb_rows_updated numeric GLOBAL

Innodb_truncated_status_writes numeric GLOBAL

Key_blocks_not_flushed numeric GLOBAL

Key_blocks_unused numeric GLOBAL

Key_blocks_used numeric GLOBAL

Key_read_requests numeric GLOBAL

Key_reads numeric GLOBAL

Key_write_requests numeric GLOBAL

Key_writes numeric GLOBAL

Last_query_cost numeric SESSION

Last_query_partial_plans numeric SESSION

Max_statement_time_exceeded numeric GLOBAL | SESSION

Max_statement_time_set numeric GLOBAL | SESSION

Max_statement_time_set_failed numeric GLOBAL | SESSION

Max_used_connections numeric GLOBAL

Max_used_connections_time datetime GLOBAL

Ndb_conflict_fn_max numeric GLOBAL

Ndb_conflict_fn_old numeric GLOBAL

Ndb_number_of_data_nodes numeric GLOBAL

Server Status Variables

607

Variable Name Variable Type Variable Scope

Not_flushed_delayed_rows numeric GLOBAL

Open_files numeric GLOBAL

Open_streams numeric GLOBAL

Open_table_definitions numeric GLOBAL

Open_tables numeric GLOBAL | SESSION

Opened_files numeric GLOBAL

Opened_table_definitions numeric GLOBAL | SESSION

Opened_tables numeric GLOBAL | SESSION

Performance_schema_accounts_lost numeric GLOBAL

Performance_schema_cond_classes_lost numeric GLOBAL

Performance_schema_cond_instances_lostnumeric GLOBAL

Performance_schema_digest_lost numeric GLOBAL

Performance_schema_file_classes_lost numeric GLOBAL

Performance_schema_file_handles_lost numeric GLOBAL

Performance_schema_file_instances_lostnumeric GLOBAL

Performance_schema_hosts_lost numeric GLOBAL

Performance_schema_locker_lost numeric GLOBAL

Performance_schema_memory_classes_lostnumeric GLOBAL

Performance_schema_metadata_lock_lost numeric GLOBAL

Performance_schema_mutex_classes_lost numeric GLOBAL

Performance_schema_mutex_instances_lostnumeric GLOBAL

Performance_schema_nested_statement_lostnumeric GLOBAL

Performance_schema_prepared_statements_lostnumeric GLOBAL

Performance_schema_program_lost numeric GLOBAL

Performance_schema_rwlock_classes_lostnumeric GLOBAL

Performance_schema_rwlock_instances_lostnumeric GLOBAL

Performance_schema_session_connect_attrs_lostnumeric GLOBAL

Performance_schema_socket_classes_lostnumeric GLOBAL

Performance_schema_socket_instances_lostnumeric GLOBAL

Performance_schema_stage_classes_lost numeric GLOBAL

Performance_schema_statement_classes_lostnumeric GLOBAL

Performance_schema_table_handles_lost numeric GLOBAL

Performance_schema_table_instances_lostnumeric GLOBAL

Performance_schema_thread_classes_lostnumeric GLOBAL

Performance_schema_thread_instances_lostnumeric GLOBAL

Performance_schema_users_lost numeric GLOBAL

Prepared_stmt_count numeric GLOBAL

Qcache_free_blocks numeric GLOBAL

Qcache_free_memory numeric GLOBAL

Qcache_hits numeric GLOBAL

Qcache_inserts numeric GLOBAL

Server Status Variables

608

Variable Name Variable Type Variable Scope

Qcache_lowmem_prunes numeric GLOBAL

Qcache_not_cached numeric GLOBAL

Qcache_queries_in_cache numeric GLOBAL

Qcache_total_blocks numeric GLOBAL

Queries numeric GLOBAL | SESSION

Questions numeric GLOBAL | SESSION

Rpl_semi_sync_master_clients numeric GLOBAL

Rpl_semi_sync_master_net_avg_wait_timenumeric GLOBAL

Rpl_semi_sync_master_net_wait_time numeric GLOBAL

Rpl_semi_sync_master_net_waits numeric GLOBAL

Rpl_semi_sync_master_no_times numeric GLOBAL

Rpl_semi_sync_master_no_tx numeric GLOBAL

Rpl_semi_sync_master_status boolean GLOBAL

Rpl_semi_sync_master_timefunc_failuresnumeric GLOBAL

Rpl_semi_sync_master_tx_avg_wait_time numeric GLOBAL

Rpl_semi_sync_master_tx_wait_time numeric GLOBAL

Rpl_semi_sync_master_tx_waits numeric GLOBAL

Rpl_semi_sync_master_wait_pos_backtraversenumeric GLOBAL

Rpl_semi_sync_master_wait_sessions numeric GLOBAL

Rpl_semi_sync_master_yes_tx numeric GLOBAL

Rpl_semi_sync_slave_status boolean GLOBAL

Rsa_public_key string GLOBAL

Select_full_join numeric GLOBAL | SESSION

Select_full_range_join numeric GLOBAL | SESSION

Select_range numeric GLOBAL | SESSION

Select_range_check numeric GLOBAL | SESSION

Select_scan numeric GLOBAL | SESSION

Slave_heartbeat_period GLOBAL

Slave_last_heartbeat GLOBAL

Slave_open_temp_tables numeric GLOBAL

Slave_received_heartbeats GLOBAL

Slave_retried_transactions numeric GLOBAL

Slave_running boolean GLOBAL

Slow_launch_threads numeric GLOBAL | SESSION

Slow_queries numeric GLOBAL | SESSION

Sort_merge_passes numeric GLOBAL | SESSION

Sort_range numeric GLOBAL | SESSION

Sort_rows numeric GLOBAL | SESSION

Sort_scan numeric GLOBAL | SESSION

Ssl_accept_renegotiates numeric GLOBAL

Ssl_accepts numeric GLOBAL

Server Status Variables

609

Variable Name Variable Type Variable Scope

Ssl_callback_cache_hits numeric GLOBAL

Ssl_cipher string GLOBAL | SESSION

Ssl_cipher_list string GLOBAL | SESSION

Ssl_client_connects numeric GLOBAL

Ssl_connect_renegotiates numeric GLOBAL

Ssl_ctx_verify_depth numeric GLOBAL

Ssl_ctx_verify_mode numeric GLOBAL

Ssl_default_timeout numeric GLOBAL | SESSION

Ssl_finished_accepts numeric GLOBAL

Ssl_finished_connects numeric GLOBAL

Ssl_server_not_after numeric GLOBAL | SESSION

Ssl_server_not_before numeric GLOBAL | SESSION

Ssl_session_cache_hits numeric GLOBAL

Ssl_session_cache_misses numeric GLOBAL

Ssl_session_cache_mode string GLOBAL

Ssl_session_cache_overflows numeric GLOBAL

Ssl_session_cache_size numeric GLOBAL

Ssl_session_cache_timeouts numeric GLOBAL

Ssl_sessions_reused numeric GLOBAL | SESSION

Ssl_used_session_cache_entries numeric GLOBAL

Ssl_verify_depth numeric GLOBAL | SESSION

Ssl_verify_mode numeric GLOBAL | SESSION

Ssl_version string GLOBAL | SESSION

Table_locks_immediate numeric GLOBAL

Table_locks_waited numeric GLOBAL

Table_open_cache_hits numeric GLOBAL | SESSION

Table_open_cache_misses numeric GLOBAL | SESSION

Table_open_cache_overflows numeric GLOBAL | SESSION

Tc_log_max_pages_used numeric GLOBAL

Tc_log_page_size numeric GLOBAL

Tc_log_page_waits numeric GLOBAL

Threads_cached numeric GLOBAL

Threads_connected numeric GLOBAL

Threads_created numeric GLOBAL

Threads_running numeric GLOBAL

Uptime numeric GLOBAL

Uptime_since_flush_status numeric GLOBAL

The status variables have the following meanings.

• Aborted_clients

Server Status Variables

610

The number of connections that were aborted because the client died without closing the connection
properly. See Section C.5.2.11, “Communication Errors and Aborted Connections”.

• Aborted_connects

The number of failed attempts to connect to the MySQL server. See Section C.5.2.11,
“Communication Errors and Aborted Connections”.

For additional connection-related information, check the Connection_errors_xxx status variables
and the host_cache table.

As of MySQL 5.7.3, Aborted_connects is not visible in the embedded server because for that
server it is not updated and is not meaningful.

• Binlog_cache_disk_use

The number of transactions that used the temporary binary log cache but that exceeded the value of
binlog_cache_size and used a temporary file to store statements from the transaction.

The number of nontransactional statements that caused the binary log transaction cache to be
written to disk is tracked separately in the Binlog_stmt_cache_disk_use status variable.

• Binlog_cache_use

The number of transactions that used the binary log cache.

• Binlog_stmt_cache_disk_use

The number of nontransaction statements that used the binary log statement cache but that
exceeded the value of binlog_stmt_cache_size and used a temporary file to store those
statements.

• Binlog_stmt_cache_use

The number of nontransactional statements that used the binary log statement cache.

• Bytes_received

The number of bytes received from all clients.

• Bytes_sent

The number of bytes sent to all clients.

• Com_xxx

The Com_xxx statement counter variables indicate the number of times each xxx statement has
been executed. There is one status variable for each type of statement. For example, Com_delete
and Com_update count DELETE and UPDATE statements, respectively. Com_delete_multi and
Com_update_multi are similar but apply to DELETE and UPDATE statements that use multiple-
table syntax.

If a query result is returned from query cache, the server increments the Qcache_hits status
variable, not Com_select. See Section 8.9.3.4, “Query Cache Status and Maintenance”.

All of the Com_stmt_xxx variables are increased even if a prepared statement argument is
unknown or an error occurred during execution. In other words, their values correspond to the
number of requests issued, not to the number of requests successfully completed.

The Com_stmt_xxx status variables are as follows:

• Com_stmt_prepare

Server Status Variables

611

• Com_stmt_execute

• Com_stmt_fetch

• Com_stmt_send_long_data

• Com_stmt_reset

• Com_stmt_close

Those variables stand for prepared statement commands. Their names refer to the COM_xxx
command set used in the network layer. In other words, their values increase whenever prepared
statement API calls such as mysql_stmt_prepare(), mysql_stmt_execute(), and so forth
are executed. However, Com_stmt_prepare, Com_stmt_execute and Com_stmt_close
also increase for PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally, the
values of the older statement counter variables Com_prepare_sql, Com_execute_sql, and
Com_dealloc_sql increase for the PREPARE, EXECUTE, and DEALLOCATE PREPARE statements.
Com_stmt_fetch stands for the total number of network round-trips issued when fetching from
cursors.

Com_stmt_reprepare indicates the number of times statements were automatically reprepared
by the server after metadata changes to tables or views referred to by the statement. A reprepare
operation increments Com_stmt_reprepare, and also Com_stmt_prepare.

Com_change_repl_filter indicates the number of CHANGE REPLICATION FILTER statements
executed. It was introduced in MySQL 5.7.3.

• Compression

Whether the client connection uses compression in the client/server protocol.

• Connection_errors_xxx

These variables provide information about errors that occur during the client connection process.
They are global only and represent error counts aggregated across connections from all hosts.
These variables track errors not accounted for by the host cache (see Section 8.11.5.2, “DNS
Lookup Optimization and the Host Cache”), such as errors that are not associated with TCP
connections, occur very early in the connection process (even before an IP address is known), or are
not specific to any particular IP address (such as out-of-memory conditions).

As of MySQL 5.7.3, the Connection_errors_xxx status variables are not visible in the embedded
server because for that server they are not updated and are not meaningful.

• Connection_errors_accept

The number of errors that occurred during calls to accept() on the listening port.

• Connection_errors_internal

The number of connections refused due to internal errors in the server, such as failure to start a
new thread or an out-of-memory condition.

• Connection_errors_max_connections

The number of connections refused because the server max_connections limit was reached.

• Connection_errors_peer_addr

The number of errors that occurred while searching for connecting client IP addresses.

• Connection_errors_select

Server Status Variables

612

The number of errors that occurred during calls to select() or poll() on the listening port.
(Failure of this operation does not necessarily means a client connection was rejected.)

• Connection_errors_tcpwrap

The number of connections refused by the libwrap library.

• Connections

The number of connection attempts (successful or not) to the MySQL server.

• Created_tmp_disk_tables

The number of internal on-disk temporary tables created by the server while executing statements.

If an internal temporary table is created initially as an in-memory table but becomes too large,
MySQL automatically converts it to an on-disk table. The maximum size for in-memory temporary
tables is the minimum of the tmp_table_size and max_heap_table_size values. If
Created_tmp_disk_tables is large, you may want to increase the tmp_table_size or
max_heap_table_size value to lessen the likelihood that internal temporary tables in memory will
be converted to on-disk tables.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “How MySQL Uses Internal Temporary Tables”.

• Created_tmp_files

How many temporary files mysqld has created.

• Created_tmp_tables

The number of internal temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “How MySQL Uses Internal Temporary Tables”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments
the global Created_tmp_tables value.

• Delayed_errors

In MySQL 5.7, this status variable is deprecated (because DELAYED inserts are not supported), and
will be removed in a future release.

• Delayed_insert_threads

In MySQL 5.7, this status variable is deprecated (because DELAYED inserts are not supported), and
will be removed in a future release.

• Delayed_writes

In MySQL 5.7, this status variable is deprecated (because DELAYED inserts are not supported), and
will be removed in a future release.

• Flush_commands

Server Status Variables

613

The number of times the server flushes tables, whether because a user executed a FLUSH TABLES
statement or due to internal server operation. It is also incremented by receipt of a COM_REFRESH
packet. This is in contrast to Com_flush, which indicates how many FLUSH statements have been
executed, whether FLUSH TABLES, FLUSH LOGS, and so forth.

• Handler_commit

The number of internal COMMIT statements.

• Handler_delete

The number of times that rows have been deleted from tables.

• Handler_external_lock

The server increments this variable for each call to its external_lock() function, which generally
occurs at the beginning and end of access to a table instance. There might be differences among
storage engines. This variable can be used, for example, to discover for a statement that accesses
a partitioned table how many partitions were pruned before locking occurred: Check how much the
counter increased for the statement, subtract 2 (2 calls for the table itself), then divide by 2 to get the
number of partitions locked.

• Handler_mrr_init

The number of times the server uses a storage engine's own Multi-Range Read implementation for
table access.

• Handler_prepare

A counter for the prepare phase of two-phase commit operations.

• Handler_read_first

The number of times the first entry in an index was read. If this value is high, it suggests that the
server is doing a lot of full index scans; for example, SELECT col1 FROM foo, assuming that col1
is indexed.

• Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that
your tables are properly indexed for your queries.

• Handler_read_last

The number of requests to read the last key in an index. With ORDER BY, the server will issue a first-
key request followed by several next-key requests, whereas with With ORDER BY DESC, the server
will issue a last-key request followed by several previous-key requests.

• Handler_read_next

The number of requests to read the next row in key order. This value is incremented if you are
querying an index column with a range constraint or if you are doing an index scan.

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used to
optimize ORDER BY ... DESC.

• Handler_read_rnd

Server Status Variables

614

The number of requests to read a row based on a fixed position. This value is high if you are doing a
lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL
to scan entire tables or you have joins that do not use keys properly.

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This value is high if you are doing a lot
of table scans. Generally this suggests that your tables are not properly indexed or that your queries
are not written to take advantage of the indexes you have.

• Handler_rollback

The number of requests for a storage engine to perform a rollback operation.

• Handler_savepoint

The number of requests for a storage engine to place a savepoint.

• Handler_savepoint_rollback

The number of requests for a storage engine to roll back to a savepoint.

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_available_undo_logs

The total number of available InnoDB undo logs. Supplements the innodb_undo_logs system
variable, which reports the number of active undo logs.

• Innodb_buffer_pool_dump_status

The progress of an operation to record the pages held in the InnoDB buffer pool, triggered by the
setting of innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now.

• Innodb_buffer_pool_load_status

The progress of an operation to warm up the InnoDB buffer pool by reading in a
set of pages corresponding to an earlier point in time, triggered by the setting of
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now.
If the operation introduces too much overhead, you can cancel it by setting
innodb_buffer_pool_load_abort.

• Innodb_buffer_pool_bytes_data

The total number of bytes in the InnoDB buffer pool containing data. The number includes
both dirty and clean pages. For more accurate memory usage calculations than with
Innodb_buffer_pool_pages_data, when compressed tables cause the buffer pool to hold
pages of different sizes.

• Innodb_buffer_pool_pages_data

The number of pages in the InnoDB buffer pool containing data. The number includes both dirty and
clean pages.

• Innodb_buffer_pool_bytes_dirty

Server Status Variables

615

The total current number of bytes held in dirty pages in the InnoDB buffer pool. For more accurate
memory usage calculations than with Innodb_buffer_pool_pages_dirty, when compressed
tables cause the buffer pool to hold pages of different sizes.

• Innodb_buffer_pool_pages_dirty

The current number of dirty pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_flushed

The number of requests to flush pages from the InnoDB buffer pool.

• Innodb_buffer_pool_pages_free

The number of free pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_latched

The number of latched pages in the InnoDB buffer pool. These are pages currently being read or
written, or that cannot be flushed or removed for some other reason. Calculation of this variable is
expensive, so it is available only when the UNIV_DEBUG system is defined at server build time.

• Innodb_buffer_pool_pages_misc

The number of pages in the InnoDB buffer pool that are busy because they have been allocated
for administrative overhead, such as row locks or the adaptive hash index. This value can also be
calculated as Innodb_buffer_pool_pages_total – Innodb_buffer_pool_pages_free –
Innodb_buffer_pool_pages_data.

• Innodb_buffer_pool_pages_total

The total size of the InnoDB buffer pool, in pages.

• Innodb_buffer_pool_read_ahead

The number of pages read into the InnoDB buffer pool by the read-ahead background thread.

• Innodb_buffer_pool_read_ahead_evicted

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that
were subsequently evicted without having been accessed by queries.

• Innodb_buffer_pool_read_requests

The number of logical read requests.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from the buffer pool, and had to read
directly from disk.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. When InnoDB needs
to read or create a page and no clean pages are available, InnoDB flushes some dirty pages
first and waits for that operation to finish. This counter counts instances of these waits. If
innodb_buffer_pool_size has been set properly, this value should be small.

• Innodb_buffer_pool_write_requests

The number of writes done to the InnoDB buffer pool.

• Innodb_data_fsyncs

Server Status Variables

616

The number of fsync() operations so far. The frequency of fsync() calls is influenced by the
setting of the innodb_flush_method configuration option.

• Innodb_data_pending_fsyncs

The current number of pending fsync() operations. The frequency of fsync() calls is influenced
by the setting of the innodb_flush_method configuration option.

• Innodb_data_pending_reads

The current number of pending reads.

• Innodb_data_pending_writes

The current number of pending writes.

• Innodb_data_read

The amount of data read since the server was started.

• Innodb_data_reads

The total number of data reads.

• Innodb_data_writes

The total number of data writes.

• Innodb_data_written

The amount of data written so far, in bytes.

• Innodb_dblwr_pages_written

The number of pages that have been written to the doublewrite buffer. See Section 14.2.10.1,
“InnoDB Disk I/O”.

• Innodb_dblwr_writes

The number of doublewrite operations that have been performed. See Section 14.2.10.1, “InnoDB
Disk I/O”.

• Innodb_have_atomic_builtins

Indicates whether the server was built with atomic instructions.

• Innodb_log_waits

The number of times that the log buffer was too small and a wait was required for it to be flushed
before continuing.

• Innodb_log_write_requests

The number of write requests for the InnoDB redo log.

• Innodb_log_writes

The number of physical writes to the InnoDB redo log file.

• Innodb_num_open_files

The number of files InnoDB currently holds open.

Server Status Variables

617

• Innodb_os_log_fsyncs

The number of fsync() writes done to the InnoDB redo log files.

• Innodb_os_log_pending_fsyncs

The number of pending fsync() operations for the InnoDB redo log files.

• Innodb_os_log_pending_writes

The number of pending writes to the InnoDB redo log files.

• Innodb_os_log_written

The number of bytes written to the InnoDB redo log files.

• Innodb_page_size

The compiled-in InnoDB page size (default 16KB). Many values are counted in pages; the page size
enables them to be easily converted to bytes.

• Innodb_pages_created

The number of pages created by operations on InnoDB tables.

• Innodb_pages_read

The number of pages read by operations on InnoDB tables.

• Innodb_pages_written

The number of pages written by operations on InnoDB tables.

• Innodb_row_lock_current_waits

The number of row locks currently being waited for by operations on InnoDB tables.

• Innodb_row_lock_time

The total time spent in acquiring row locks for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_avg

The average time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_waits

The number of times operations on InnoDB tables had to wait for a row lock.

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables.

• Innodb_rows_inserted

The number of rows inserted into InnoDB tables.

• Innodb_rows_read

The number of rows read from InnoDB tables.

Server Status Variables

618

• Innodb_rows_updated

The number of rows updated in InnoDB tables.

• Innodb_truncated_status_writes

The number of times output from the SHOW ENGINE INNODB STATUS statement has been
truncated.

• Key_blocks_not_flushed

The number of key blocks in the MyISAM key cache that have changed but have not yet been
flushed to disk.

• Key_blocks_unused

The number of unused blocks in the MyISAM key cache. You can use this value to determine how
much of the key cache is in use; see the discussion of key_buffer_size in Section 5.1.4, “Server
System Variables”.

• Key_blocks_used

The number of used blocks in the MyISAM key cache. This value is a high-water mark that indicates
the maximum number of blocks that have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the MyISAM key cache.

• Key_reads

The number of physical reads of a key block from disk into the MyISAM key cache. If Key_reads
is large, then your key_buffer_size value is probably too small. The cache miss rate can be
calculated as Key_reads/Key_read_requests.

• Key_write_requests

The number of requests to write a key block to the MyISAM key cache.

• Key_writes

The number of physical writes of a key block from the MyISAM key cache to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. This is useful for
comparing the cost of different query plans for the same query. The default value of 0 means that no
query has been compiled yet. The default value is 0. Last_query_cost has session scope.

The Last_query_cost value can be computed accurately only for simple “flat” queries, not
complex queries such as those with subqueries or UNION. For the latter, the value is set to 0.

• Last_query_partial_plans

The number of iterations the query optimizer made in execution plan construction for the previous
query. Last_query_cost has session scope.

• Max_statement_time_exceeded

The number of SELECT statements for which the execution timeout was exceeded. This variable was
added in MySQL 5.7.4.

• Max_statement_time_set

Server Status Variables

619

The number of SELECT statements for which a nonzero execution timeout was set. This includes
statements that include a nonzero MAX_STATEMENT_TIME option, and statements that include no
such option but execute while the timeout indicated by the max_statement_time system variable
is nonzero. This variable was added in MySQL 5.7.4.

• Max_statement_time_set_failed

The number of SELECT statements for which the attempt to set an execution timeout failed. This
variable was added in MySQL 5.7.4.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

• Max_used_connections_time

The time at which Max_used_connections reached its current value. This variable was added in
MySQL 5.7.5.

• Not_flushed_delayed_rows

In MySQL 5.7, this status variable is deprecated (because DELAYED inserts are not supported), and
will be removed in a future release.

• Open_files

The number of files that are open. This count includes regular files opened by the server. It does
not include other types of files such as sockets or pipes. Also, the count does not include files that
storage engines open using their own internal functions rather than asking the server level to do so.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_table_definitions

The number of cached .frm files.

• Open_tables

The number of tables that are open.

• Opened_files

The number of files that have been opened with my_open() (a mysys library function). Parts of the
server that open files without using this function do not increment the count.

• Opened_table_definitions

The number of .frm files that have been cached.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_open_cache
value is probably too small.

• Performance_schema_xxx

Performance Schema status variables are listed in Section 20.13, “Performance Schema Status
Variables”. These variables provide information about instrumentation that could not be loaded or
created due to memory constraints.

• Prepared_stmt_count

Server Status Variables

620

The current number of prepared statements. (The maximum number of statements is given by the
max_prepared_stmt_count system variable.)

• Qcache_free_blocks

The number of free memory blocks in the query cache.

• Qcache_free_memory

The amount of free memory for the query cache.

• Qcache_hits

The number of query cache hits.

• Qcache_inserts

The number of queries added to the query cache.

• Qcache_lowmem_prunes

The number of queries that were deleted from the query cache because of low memory.

• Qcache_not_cached

The number of noncached queries (not cacheable, or not cached due to the query_cache_type
setting).

• Qcache_queries_in_cache

The number of queries registered in the query cache.

• Qcache_total_blocks

The total number of blocks in the query cache.

• Queries

The number of statements executed by the server. This variable includes statements executed within
stored programs, unlike the Questions variable. It does not count COM_PING or COM_STATISTICS
commands.

• Questions

The number of statements executed by the server. This includes only statements sent to the server
by clients and not statements executed within stored programs, unlike the Queries variable. This
variable does not count COM_PING, COM_STATISTICS, COM_STMT_PREPARE, COM_STMT_CLOSE,
or COM_STMT_RESET commands.

• Rpl_semi_sync_master_clients

The number of semisynchronous slaves.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_avg_wait_time

The average time in microseconds the master waited for a slave reply.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_wait_time

Server Status Variables

621

The total time in microseconds the master waited for slave replies.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_waits

The total number of times the master waited for slave replies.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_no_times

The number of times the master turned off semisynchronous replication.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a slave.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the master. The value is ON if the
plugin has been enabled and a commit acknowledgment has occurred. It is OFF if the plugin is not
enabled or the master has fallen back to asynchronous replication due to commit acknowledgment
timeout.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_timefunc_failures

The number of times the master failed when calling time functions such as gettimeofday().

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_avg_wait_time

The average time in microseconds the master waited for each transaction.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_wait_time

The total time in microseconds the master waited for transactions.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_waits

The total number of times the master waited for transactions.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_wait_pos_backtraverse

The total number of times the master waited for an event with binary coordinates lower than events
waited for previously. This can occur when the order in which transactions start waiting for a reply is
different from the order in which their binary log events are written.

This variable is available only if the master-side semisynchronous replication plugin is installed.

Server Status Variables

622

• Rpl_semi_sync_master_wait_sessions

The number of sessions currently waiting for slave replies.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a slave.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the slave. This is ON if the plugin
has been enabled and the slave I/O thread is running, OFF otherwise.

This variable is available only if the slave-side semisynchronous replication plugin is installed.

• Rsa_public_key

The RSA public key value used by the sha256_password authentication plugin. The value is
nonempty only if the server successfully initializes the private and public keys in the files named
by the sha256_password_private_key_path and sha256_password_public_key_path
system variables. The value of Rsa_public_key comes from the latter file.

For information about sha256_password, see Section 6.3.9.4, “The SHA-256 Authentication
Plugin”.

This variable is available only if MySQL was built using OpenSSL.

• Select_full_join

The number of joins that perform table scans because they do not use indexes. If this value is not 0,
you should carefully check the indexes of your tables.

• Select_full_range_join

The number of joins that used a range search on a reference table.

• Select_range

The number of joins that used ranges on the first table. This is normally not a critical issue even if the
value is quite large.

• Select_range_check

The number of joins without keys that check for key usage after each row. If this is not 0, you should
carefully check the indexes of your tables.

• Select_scan

The number of joins that did a full scan of the first table.

• Slave_heartbeat_period

Shows the replication heartbeat interval (in seconds) on a replication slave.

• Slave_last_heartbeat

Shows when the most recent heartbeat signal was received by a replication slave, as a TIMESTAMP
value.

• Slave_open_temp_tables

Server Status Variables

623

The number of temporary tables that the slave SQL thread currently has open. If the value is greater
than zero, it is not safe to shut down the slave; see Section 16.4.1.22, “Replication and Temporary
Tables”.

• Slave_received_heartbeats

This counter increments with each replication heartbeat received by a replication slave since the last
time that the slave was restarted or reset, or a CHANGE MASTER TO statement was issued.

• Slave_retried_transactions

The total number of times since startup that the replication slave SQL thread has retried transactions.

• Slave_running

This is ON if this server is a replication slave that is connected to a replication master, and both the I/
O and SQL threads are running; otherwise, it is OFF.

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.

This variable is not meaningful in the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. This counter
increments regardless of whether the slow query log is enabled. For information about that log, see
Section 5.2.5, “The Slow Query Log”.

• Sort_merge_passes

The number of merge passes that the sort algorithm has had to do. If this value is large, you should
consider increasing the value of the sort_buffer_size system variable.

• Sort_range

The number of sorts that were done using ranges.

• Sort_rows

The number of sorted rows.

• Sort_scan

The number of sorts that were done by scanning the table.

• Ssl_accept_renegotiates

The number of negotiates needed to establish the connection.

• Ssl_accepts

The number of accepted SSL connections.

• Ssl_callback_cache_hits

The number of callback cache hits.

• Ssl_cipher

The current SSL cipher (empty for non-SSL connections).

Server Status Variables

624

• Ssl_cipher_list

The list of possible SSL ciphers.

• Ssl_client_connects

The number of SSL connection attempts to an SSL-enabled master.

• Ssl_connect_renegotiates

The number of negotiates needed to establish the connection to an SSL-enabled master.

• Ssl_ctx_verify_depth

The SSL context verification depth (how many certificates in the chain are tested).

• Ssl_ctx_verify_mode

The SSL context verification mode.

• Ssl_default_timeout

The default SSL timeout.

• Ssl_finished_accepts

The number of successful SSL connections to the server.

• Ssl_finished_connects

The number of successful slave connections to an SSL-enabled master.

• Ssl_server_not_after

The last date for which the SSL certificate is valid.

• Ssl_server_not_before

The first date for which the SSL certificate is valid.

• Ssl_session_cache_hits

The number of SSL session cache hits.

• Ssl_session_cache_misses

The number of SSL session cache misses.

• Ssl_session_cache_mode

The SSL session cache mode.

• Ssl_session_cache_overflows

The number of SSL session cache overflows.

• Ssl_session_cache_size

The SSL session cache size.

• Ssl_session_cache_timeouts

The number of SSL session cache timeouts.

• Ssl_sessions_reused

Server Status Variables

625

How many SSL connections were reused from the cache.

• Ssl_used_session_cache_entries

How many SSL session cache entries were used.

• Ssl_verify_depth

The verification depth for replication SSL connections.

• Ssl_verify_mode

The verification mode for replication SSL connections.

• Ssl_version

The SSL protocol version of the connection.

• Table_locks_immediate

The number of times that a request for a table lock could be granted immediately.

• Table_locks_waited

The number of times that a request for a table lock could not be granted immediately and a wait was
needed. If this is high and you have performance problems, you should first optimize your queries,
and then either split your table or tables or use replication.

• Table_open_cache_hits

The number of hits for open tables cache lookups.

• Table_open_cache_misses

The number of misses for open tables cache lookups.

• Table_open_cache_overflows

The number of overflows for the open tables cache. This is the number of times, after a table is
opened or closed, a cache instance has an unused entry and the size of the instance is larger than
table_open_cache / table_open_cache_instances.

• Tc_log_max_pages_used

For the memory-mapped implementation of the log that is used by mysqld when it acts as
the transaction coordinator for recovery of internal XA transactions, this variable indicates
the largest number of pages used for the log since the server started. If the product of
Tc_log_max_pages_used and Tc_log_page_size is always significantly less than the log size,
the size is larger than necessary and can be reduced. (The size is set by the --log-tc-size
option. Currently, this variable is unused: It is unneeded for binary log-based recovery, and the
memory-mapped recovery log method is not used unless the number of storage engines capable of
two-phase commit is greater than one. (InnoDB is the only applicable engine.)

• Tc_log_page_size

The page size used for the memory-mapped implementation of the XA recovery log. The default
value is determined using getpagesize(). Currently, this variable is unused for the same reasons
as described for Tc_log_max_pages_used.

• Tc_log_page_waits

For the memory-mapped implementation of the recovery log, this variable increments each time
the server was not able to commit a transaction and had to wait for a free page in the log. If this

Server SQL Modes

626

value is large, you might want to increase the log size (with the --log-tc-size option). For binary
log-based recovery, this variable increments each time the binary log cannot be closed because
there are two-phase commits in progress. (The close operation waits until all such transactions are
finished.)

• Threads_cached

The number of threads in the thread cache.

This variable is not meaningful in the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• Threads_connected

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may
want to increase the thread_cache_size value. The cache miss rate can be calculated as
Threads_created/Connections.

• Threads_running

The number of threads that are not sleeping.

• Uptime

The number of seconds that the server has been up.

• Uptime_since_flush_status

The number of seconds since the most recent FLUSH STATUS statement.

5.1.7 Server SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. DBAs can set the global
SQL mode to match site server operating requirements, and each application can set its session SQL
mode to its own requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes
it easier to use MySQL in different environments and to use MySQL together with other database
servers.

• Setting the SQL Mode

• The Most Important SQL Modes

• Full List of SQL Modes

• Strict SQL Mode

• Combination SQL Modes

• SQL Mode Changes in MySQL 5.7

For answers to questions often asked about server SQL modes in MySQL, see Section B.3, “MySQL
5.7 FAQ: Server SQL Mode”.

When working with InnoDB tables, consider also the innodb_strict_mode system variable. It
enables additional error checks for InnoDB tables.

Server SQL Modes

627

Setting the SQL Mode

The default SQL mode in MySQL 5.7 is NO_ENGINE_SUBSTITUTION.

To set the SQL mode at server startup, use the --sql-mode="modes" option on the command
line, or sql-mode="modes" in an option file such as my.cnf (Unix operating systems) or my.ini
(Windows). modes is a list of different modes separated by commas. To clear the SQL mode explicitly,
set it to an empty string using --sql-mode="" on the command line, or sql-mode="" in an option
file.

Note

MySQL installation programs may configure the SQL mode during the
installation process. For example, mysql_install_db creates a default option
file named my.cnf in the base installation directory. This file contains a line
that sets the SQL mode; see Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

To change the SQL mode at runtime, set the global or session sql_mode system variable using a SET
statement:

SET GLOBAL sql_mode = 'modes';
SET SESSION sql_mode = 'modes';

Setting the GLOBAL variable requires the SUPER privilege and affects the operation of all clients that
connect from that time on. Setting the SESSION variable affects only the current client. Each client can
change its session sql_mode value at any time.

To determine the current global or session sql_mode value, use the following statements:

SELECT @@GLOBAL.sql_mode;
SELECT @@SESSION.sql_mode;

Important

SQL mode and user-defined partitioning. Changing the server SQL
mode after creating and inserting data into partitioned tables can cause major
changes in the behavior of such tables, and could lead to loss or corruption of
data. It is strongly recommended that you never change the SQL mode once
you have created tables employing user-defined partitioning.

When replicating partitioned tables, differing SQL modes on master and slave
can also lead to problems. For best results, you should always use the same
server SQL mode on the master and on the slave.

See Section 17.6, “Restrictions and Limitations on Partitioning”, for more
information.

The Most Important SQL Modes

The most important sql_mode values are probably these:

• ANSI

This mode changes syntax and behavior to conform more closely to standard SQL. It is one of the
special combination modes listed at the end of this section.

• STRICT_TRANS_TABLES

Server SQL Modes

628

If a value could not be inserted as given into a transactional table, abort the statement. For a
nontransactional table, abort the statement if the value occurs in a single-row statement or the first
row of a multiple-row statement. More details are given later in this section.

• TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is
“give an error instead of a warning” when inserting an incorrect value into a column. It is one of the
special combination modes listed at the end of this section.

Note

The INSERT or UPDATE aborts as soon as the error is noticed. This may
not be what you want if you are using a nontransactional storage engine,
because data changes made prior to the error may not be rolled back,
resulting in a “partially done” update.

When this manual refers to “strict mode,” it means a mode with either or both STRICT_TRANS_TABLES
or STRICT_ALL_TABLES enabled.

Full List of SQL Modes

The following list describes all supported SQL modes:

• ALLOW_INVALID_DATES

Do not perform full checking of dates. Check only that the month is in the range from 1 to 12 and the
day is in the range from 1 to 31. This is very convenient for Web applications where you obtain year,
month, and day in three different fields and you want to store exactly what the user inserted (without
date validation). This mode applies to DATE and DATETIME columns. It does not apply TIMESTAMP
columns, which always require a valid date.

The server requires that month and day values be legal, and not merely in the range 1 to 12 and 1
to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted
to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate an
error. To permit such dates, enable ALLOW_INVALID_DATES.

• ANSI_QUOTES

Treat “"” as an identifier quote character (like the “`” quote character) and not as a string quote
character. You can still use “`” to quote identifiers with this mode enabled. With ANSI_QUOTES
enabled, you cannot use double quotation marks to quote literal strings, because it is interpreted as
an identifier.

• ERROR_FOR_DIVISION_BY_ZERO

As of MySQL 5.7.4, the ERROR_FOR_DIVISION_BY_ZERO mode does nothing. Instead, its pre-5.7.4
effect is included in the effects of strict SQL mode.

Before MySQL 5.7.4, the ERROR_FOR_DIVISION_BY_ZERO mode affects handling of division by
zero, which includes MOD(N,0). For data-change operations (INSERT, UPDATE), its effect also
depends on whether strict mode is enabled.

• If this mode is not enabled, division by zero inserts NULL and produces no warning.

• If this mode is enabled, division by zero inserts NULL and produces a warning.

• If this mode and strict mode are enabled, division by zero produces an error, unless IGNORE is
given as well. For INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and
produces a warning.

Server SQL Modes

629

For SELECT, division by zero returns NULL. Enabling ERROR_FOR_DIVISION_BY_ZERO causes a
warning to be produced as well, regardless of whether strict mode is enabled.

• HIGH_NOT_PRECEDENCE

The precedence of the NOT operator is such that expressions such as NOT a BETWEEN b AND c
are parsed as NOT (a BETWEEN b AND c). In some older versions of MySQL, the expression was
parsed as (NOT a) BETWEEN b AND c. The old higher-precedence behavior can be obtained by
enabling the HIGH_NOT_PRECEDENCE SQL mode.

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 1

• IGNORE_SPACE

Permit spaces between a function name and the “(” character. This causes built-in function names
to be treated as reserved words. As a result, identifiers that are the same as function names must
be quoted as described in Section 9.2, “Schema Object Names”. For example, because there is a
COUNT() function, the use of count as a table name in the following statement causes an error:

mysql> CREATE TABLE count (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax

The table name should be quoted:

mysql> CREATE TABLE `count` (i INT);
Query OK, 0 rows affected (0.00 sec)

The IGNORE_SPACE SQL mode applies to built-in functions, not to user-defined functions or stored
functions. It is always permissible to have spaces after a UDF or stored function name, regardless of
whether IGNORE_SPACE is enabled.

For further discussion of IGNORE_SPACE, see Section 9.2.4, “Function Name Parsing and
Resolution”.

• NO_AUTO_CREATE_USER

Prevent the GRANT statement from automatically creating new users if it would otherwise do so,
unless authentication information is specified. The statement must specify a nonempty password
using IDENTIFIED BY or an authentication plugin using IDENTIFIED WITH.

• NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you
generate the next sequence number for the column by inserting either NULL or 0 into it.
NO_AUTO_VALUE_ON_ZERO suppresses this behavior for 0 so that only NULL generates the next
sequence number.

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing 0
is not a recommended practice, by the way.) For example, if you dump the table with mysqldump
and then reload it, MySQL normally generates new sequence numbers when it encounters the
0 values, resulting in a table with contents different from the one that was dumped. Enabling
NO_AUTO_VALUE_ON_ZERO before reloading the dump file solves this problem. mysqldump now
automatically includes in its output a statement that enables NO_AUTO_VALUE_ON_ZERO, to avoid
this problem.

Server SQL Modes

630

• NO_BACKSLASH_ESCAPES

Disable the use of the backslash character (“\”) as an escape character within strings. With this
mode enabled, backslash becomes an ordinary character like any other.

• NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option
is useful on slave replication servers.

• NO_ENGINE_SUBSTITUTION

Control automatic substitution of the default storage engine when a statement such as CREATE
TABLE or ALTER TABLE specifies a storage engine that is disabled or not compiled in.

Because storage engines can be pluggable at runtime, unavailable engines are treated the same
way:

With NO_ENGINE_SUBSTITUTION disabled, for CREATE TABLE the default engine is used and a
warning occurs if the desired engine is unavailable. For ALTER TABLE, a warning occurs and the
table is not altered.

With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if
the desired engine is unavailable.

• NO_FIELD_OPTIONS

Do not print MySQL-specific column options in the output of SHOW CREATE TABLE. This mode is
used by mysqldump in portability mode.

• NO_KEY_OPTIONS

Do not print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode is used
by mysqldump in portability mode.

• NO_TABLE_OPTIONS

Do not print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE TABLE.
This mode is used by mysqldump in portability mode.

• NO_UNSIGNED_SUBTRACTION

By default, subtraction between integer operands produces an UNSIGNED result if any operand
isUNSIGNED. When NO_UNSIGNED_SUBTRACTION is enabled, the subtraction result is signed, even
if any operand is unsigned. For example, compare the type of column c2 in table t1 with that of
column c2 in table t2:

mysql> SET sql_mode='';
mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c2 | bigint(21) unsigned | | | 0 | |
+-------+---------------------+------+-----+---------+-------+

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2 | bigint(21) | | | 0 | |

Server SQL Modes

631

+-------+------------+------+-----+---------+-------+

Note that this means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 12.10,
“Cast Functions and Operators”.

mysql> SET sql_mode = '';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| 18446744073709551615 |
+-------------------------+

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

• NO_ZERO_DATE

As of MySQL 5.7.4, the NO_ZERO_DATE mode does nothing. Instead, its pre-5.7.4 effect is included
in the effects of strict SQL mode.

Before MySQL 5.7.4, the NO_ZERO_DATE mode affects whether the server permits '0000-00-00'
as a valid date. Its effect also depends on whether strict mode is enabled.

• If this mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If this mode is enabled, '0000-00-00' is permitted and inserts produce a warning.

• If this mode and strict mode are enabled, '0000-00-00' is not permitted and inserts produce
an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE,
'0000-00-00' is permitted and inserts produce a warning.

• NO_ZERO_IN_DATE

As of MySQL 5.7.4, the NO_ZERO_IN_DATE mode does nothing. Instead, its pre-5.7.4 effect is
included in the effects of strict SQL mode.

Before MySQL 5.7.4, the NO_ZERO_IN_DATE mode affects whether the server permits dates in
which the year part is nonzero but the month or day part is 0. (This mode affects dates such as
'2010-00-01' or '2010-01-00', but not '0000-00-00'. To control whether the server permits
'0000-00-00', use the NO_ZERO_DATE mode.) The effect of NO_ZERO_IN_DATE also depends on
whether strict mode is enabled.

• If this mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If this mode is enabled, dates with zero parts are inserted as '0000-00-00' and produce a
warning.

• If this mode and strict mode are enabled, dates with zero parts are not permitted and inserts
produce an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE,
dates with zero parts are inserted as '0000-00-00' and produce a warning.

• ONLY_FULL_GROUP_BY

Do not permit queries for which the select list or HAVING list or ORDER BY list refers to
nonaggregated columns that are not named in the GROUP BY clause.

Server SQL Modes

632

The following queries are invalid with ONLY_FULL_GROUP_BY enabled. The first is invalid because
address in the select list is not named in the GROUP BY clause, and the second because max_age
in the HAVING clause is not named in the GROUP BY clause:

mysql> SELECT name, address, MAX(age) FROM t GROUP BY name;
ERROR 1055 (42000): 't.address' isn't in GROUP BY

mysql> SELECT name, MAX(age) AS max_age FROM t GROUP BY name
 -> HAVING max_age < 30;
Empty set (0.00 sec)
ERROR 1463 (42000): Non-grouping field 'max_age' is used in HAVING clause

In the second example, the query could be rewritten to use HAVING MAX(age) instead, so that the
reference is to a column named in an aggregate function. (max_age fails because it is an aggregate
function.)

In addition, if a query has aggregate functions and no GROUP BY clause, it cannot have
nonaggregated columns in the select list or ORDER BY list:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
with no GROUP columns is illegal if there is no GROUP BY clause

For more information, see Section 12.17.3, “MySQL Extensions to GROUP BY”.

• PAD_CHAR_TO_FULL_LENGTH

By default, trailing spaces are trimmed from CHAR column values on retrieval. If
PAD_CHAR_TO_FULL_LENGTH is enabled, trimming does not occur and retrieved CHAR values are
padded to their full length. This mode does not apply to VARCHAR columns, for which trailing spaces
are retained on retrieval.

mysql> CREATE TABLE t1 (c1 CHAR(10));
Query OK, 0 rows affected (0.37 sec)

mysql> INSERT INTO t1 (c1) VALUES('xy');
Query OK, 1 row affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------+-----------------+
| xy | 2 |
+------+-----------------+
1 row in set (0.00 sec)

mysql> SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------------+-----------------+
| xy | 10 |
+------------+-----------------+
1 row in set (0.00 sec)

Server SQL Modes

633

• PIPES_AS_CONCAT

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.

• REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.

• STRICT_ALL_TABLES

Enable strict mode for all storage engines. Invalid data values are rejected. Additional details follow.

• STRICT_TRANS_TABLES

Enable strict mode for transactional storage engines, and when possible for nontransactional storage
engines. Additional details follow.

Strict SQL Mode

Strict mode controls how MySQL handles invalid or missing values in data-change statements such as
INSERT or UPDATE. A value can be invalid for several reasons. For example, it might have the wrong
data type for the column, or it might be out of range. A value is missing when a new row to be inserted
does not contain a value for a non-NULL column that has no explicit DEFAULT clause in its definition.
(For a NULL column, NULL is inserted if the value is missing.)

If strict mode is in effect, MySQL inserts adjusted values for invalid or missing values and produces
warnings (see Section 13.7.5.39, “SHOW WARNINGS Syntax”). In strict mode, you can produce this
behavior by using INSERT IGNORE or UPDATE IGNORE.

For statements such as SELECT that do not change data, invalid values generate a warning in strict
mode, not an error.

Strict mode does not affect whether foreign key constraints are checked. foreign_key_checks can
be used for that. (See Section 5.1.4, “Server System Variables”.)

Strict SQL mode is in effect if either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled,
although the effects of these modes differ somewhat:

• For transactional tables, an error occurs for invalid or missing values in a data-change statement
when either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled. The statement is
aborted and rolled back.

• For nontransactional tables, the behavior is the same for either mode if the bad value occurs in the
first row to be inserted or updated: The statement is aborted and the table remains unchanged. If the
statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the
result depends on which strict mode is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However,
because the earlier rows have been inserted or updated, the result is a partial update. To avoid
this, use single-row statements, which can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the
column and inserts the adjusted value. If a value is missing, MySQL inserts the implicit default
value for the column data type. In either case, MySQL generates a warning rather than an error
and continues processing the statement. Implicit defaults are described in Section 11.5, “Data
Type Default Values”.

As of MySQL 5.7.4, strict mode affects handling of division by zero, zero dates, and zeros in dates, as
follows:

• Strict mode affects handling of division by zero, which includes MOD(N,0):

Server SQL Modes

634

For data-change operations (INSERT, UPDATE):

• If strict mode is not enabled, division by zero inserts NULL and produces no warning.

• If strict mode is enabled, division by zero produces an error, unless IGNORE is given as well. For
INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and produces a warning.

For SELECT, division by zero returns NULL. Enabling strict mode causes a warning to be produced
as well.

• Strict mode affects whether the server permits '0000-00-00' as a valid date:

• If strict mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If strict mode is enabled, '0000-00-00' is not permitted and inserts produce an error, unless
IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, '0000-00-00' is
permitted and inserts produce a warning.

• Strict mode affects whether the server permits dates in which the year part is nonzero but the month
or day part is 0 (dates such as '2010-00-01' or '2010-01-00'):

• If strict mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If strict mode is enabled, dates with zero parts are not permitted and inserts produce an error,
unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, dates with zero parts
are inserted as '0000-00-00' (which is considered valid with IGNORE) and produce a warning.

Before MySQL 5.7.4, strict mode affects handling of division by zero, zero dates, and zeros in dates,
in conjunction with the ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE
modes. For details, see the descriptions of those modes.

Combination SQL Modes

The following special modes are provided as shorthand for combinations of mode values from the
preceding list.

• ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE.

ANSI mode also causes the server to return an error for queries where a set function S with an
outer reference S(outer_ref) cannot be aggregated in the outer query against which the outer
reference has been resolved. This is such a query:

SELECT * FROM t1 WHERE t1.a IN (SELECT MAX(t1.b) FROM t2 WHERE ...);

Here, MAX(t1.b) cannot aggregated in the outer query because it appears in the WHERE clause of
that query. Standard SQL requires an error in this situation. If ANSI mode is not enabled, the server
treats S(outer_ref) in such queries the same way that it would interpret S(const).

See Section 1.8, “MySQL Standards Compliance”.

• DB2

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MAXDB

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

Server SQL Modes

635

• MSSQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MYSQL323

Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

• MYSQL40

Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

• ORACLE

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• POSTGRESQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• TRADITIONAL

Before MySQL 5.7.4, TRADITIONAL is equivalent to STRICT_TRANS_TABLES,
STRICT_ALL_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO,
NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION.

As of MySQL 5.7.4, TRADITIONAL is equivalent to STRICT_TRANS_TABLES,
STRICT_ALL_TABLES, NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION. The
NO_ZERO_IN_DATE, NO_ZERO_DATE, and ERROR_FOR_DIVISION_BY_ZERO modes are not
included as of MySQL 5.7.4 because they do nothing. Instead, their pre-5.7.4 effects are included in
the effects of strict SQL mode (STRICT_ALL_TABLES or STRICT_TRANS_TABLES).

SQL Mode Changes in MySQL 5.7

As of MySQL 5.7.4, the deprecated ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and
NO_ZERO_IN_DATE SQL modes do nothing. Instead, their previous effects are included in
the effects of strict SQL mode (STRICT_ALL_TABLES or STRICT_TRANS_TABLES). In other
words, strict mode means the same thing as the pre-5.7.4 meaning of strict mode plus the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. This change
reduces the number of SQL modes with an effect dependent on strict mode and makes them part of
strict mode itself.

This section describes the SQL mode settings to use in MySQL 5.7.4 and up to achieve the same
statement execution as before 5.7.4, including the cases for INSERT and UPDATE in which IGNORE is
given. It also provides guidelines for determining whether applications need modification to behave the
same before and after the SQL mode changes.

The following table shows how to control handling of division by zero before and after the SQL mode
changes in MySQL 5.7.4.

Desired Behavior Old Settings New Settings

insert NULL, produce no
warning

ERROR_FOR_DIVISION_BY_ZERO not enabled strict mode not enabled

insert NULL, produce
warning

ERROR_FOR_DIVISION_BY_ZERO, or
ERROR_FOR_DIVISION_BY_ZERO + strict mode
+ IGNORE

strict mode + IGNORE

Server SQL Modes

636

Desired Behavior Old Settings New Settings

error ERROR_FOR_DIVISION_BY_ZERO + strict mode strict mode

The following table shows how to control whether the server permits '0000-00-00' as a valid date
before and after the SQL mode changes in MySQL 5.7.4.

Desired Behavior Old Settings New Settings

insert '0000-00-00',
produce no warning

NO_ZERO_DATE not enabled strict mode not enabled

insert '0000-00-00',
produce warning

NO_ZERO_DATE, or NO_ZERO_DATE + strict mode
+ IGNORE

strict mode + IGNORE

error NO_ZERO_DATE + strict mode strict mode

The following table shows how to control whether the server permits dates with zero parts before and
after the SQL mode changes in MySQL 5.7.4.

Desired Behavior Old Settings New Settings

insert date, produce no
warning

NO_ZERO_IN_DATE not enabled strict mode not enabled

insert '0000-00-00',
produce warning

NO_ZERO_IN_DATE, or NO_ZERO_IN_DATE +
strict mode + IGNORE

strict mode + IGNORE

error NO_ZERO_IN_DATE + strict mode strict mode

The following discussion describes the conditions under which a given statement produces the
same or different result as of the SQL mode changes in MySQL 5.7.4. It considers only strict
mode (STRICT_ALL_TABLES or STRICT_TRANS_TABLES) and the three deprecated modes
(ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE). Other SQL modes
such as ANSI_QUOTES or ONLY_FULL_GROUP_BY are assumed to be held constant before and after
an upgrade.

This discussion also describes how to prepare for an upgrade to 5.7.4 or later from a version older than
5.7.4. Any modifications should be made before upgrading.

There is no change in behavior between MySQL 5.6 and 5.7 for the following SQL mode settings. A
statement that executes under one of these settings needs no modification to produce the same result
in 5.6 and 5.7:

• Strict mode and the three deprecated modes are all not enabled.

• Strict mode and the three deprecated modes are all enabled.

A change from warnings in MySQL 5.6 to no warnings in MySQL 5.7 occurs for the following SQL
mode settings. The result of statement execution is the same in 5.6 and 5.7, so statements need no
modification unless warnings are considered significant:

• Strict mode is not enabled, but either of the deprecated ERROR_FOR_DIVISION_BY_ZERO and
NO_ZERO_DATE modes are enabled.

A behavior change occurs under the following SQL mode settings. A statement that executes under
one of these settings must be modified to produce the same result in 5.6 and 5.7:

• Strict mode is not enabled, NO_ZERO_IN_DATE is enabled. For this mode setting, expect these
differences in statement execution:

• In 5.6, the server inserts dates with zero parts as '0000-00-00' and produces a warning.

• In 5.7, the server inserts dates with zero parts as is and produces no warning.

Server SQL Modes

637

• Strict mode is enabled, with some but not all of the three deprecated modes enabled. For this mode
setting, expect these differences in statement execution:

Statements that would be affected by enabling the not-enabled deprecated modes produce errors in
5.7 but not in 5.6. Suppose that strict mode, NO_ZERO_DATE, and NO_ZERO_IN_DATE are enabled,
and a data-change statement performs division by zero:

• In 5.6, the statement inserts NULL and produces no warning. Enabling
ERROR_FOR_DIVISION_BY_ZERO would cause an error instead.

• In 5.7, an error occurs because strict mode implicitly includes the effect of
ERROR_FOR_DIVISION_BY_ZERO. Enabling ERROR_FOR_DIVISION_BY_ZERO explicitly would
not change that.

To prepare for an upgrade to MySQL 5.7.4 or later, the main principle is to make sure that your
applications will operate the same way in MySQL 5.6 and 5.7. For example, you can adopt either of
these approaches to application compatibility:

• Modify the application to set the SQL mode on a version-specific basis. If we assume that an
application will not be used with development versions of MySQL 5.7 prior to 5.7.4, it is possible to
set the sql_mode value for the application based on the current server version as follows:

SET sql_mode = IF(LEFT(VERSION(),3)<'5.7',5.6 mode,5.7 mode);

The tables shown earlier in this section serve as a guide to the appropriate equivalent modes for
MySQL 5.6 and 5.7.

• Modify the application to execute under a SQL mode for which statements produce the same result
in MySQL 5.6 and 5.7.

Tip

TRADITIONAL SQL mode in MySQL 5.6 includes strict mode and the three
deprecated modes. If you write applications to operate in TRADITIONAL
mode in MySQL 5.6, there is no change to make for MySQL 5.7.

When assessing SQL mode compatibility between MySQL 5.6 and 5.7, consider particularly these
statement execution contexts:

• Replication. You will encounter replication incompatibility related to the SQL mode changes under
the following conditions:

• MySQL 5.6 master and 5.7 slave

• Statement-based replication

• A SQL mode setting for which statements produce different results in MySQL 5.6 and 5.7, as
described earlier

To handle this incompatibility, use one of these workarounds:

• Use row-based replication

• Use IGNORE

• Use a SQL mode for which statements do not produce different results in MySQL 5.6 and 5.7

• Stored programs (stored procedures and functions, triggers, and events). Each stored program
executes using the SQL mode in effect at the time it was created. To identify stored programs that
may be affected by differences between MySQL 5.6 and 5.7 in SQL mode handling, use these
queries:

Server Plugins

638

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, ROUTINE_TYPE, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES
WHERE SQL_MODE LIKE '%STRICT%'
OR SQL_MODE LIKE '%DIVISION%'
OR SQL_MODE LIKE '%NO_ZERO%';

SELECT TRIGGER_SCHEMA, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS
WHERE SQL_MODE LIKE '%STRICT%'
OR SQL_MODE LIKE '%DIVISION%'
OR SQL_MODE LIKE '%NO_ZERO%';

SELECT EVENT_SCHEMA, EVENT_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.EVENTS
WHERE SQL_MODE LIKE '%STRICT%'
OR SQL_MODE LIKE '%DIVISION%'
OR SQL_MODE LIKE '%NO_ZERO%';

5.1.8 Server Plugins

MySQL supports a plugin API that enables creation of server components. Plugins can be loaded
at server startup, or loaded and unloaded at runtime without restarting the server. The components
supported by this interface include, but are not limited to, storage engines, full-text parser plugins,
partitioning support, and server extensions.

5.1.8.1 Installing and Uninstalling Plugins

Server plugins must be loaded in to the server before they can be used. MySQL enables you to load
a plugin at server startup or at runtime. It is also possible to control the activation of loaded plugins at
startup, and to unload them at runtime.

• Installing plugins

• Controlling plugin activation

• Uninstalling plugins

Installing Plugins

Server plugins must be known to the server before they can be used. A plugin can be made known
several ways, as described here. In the following descriptions, plugin_name stands for a plugin name
such as innodb or csv.

Built-in plugins:

A plugin that is built in to the server is known by the server automatically. Normally, the server enables
the plugin at startup, although this can be changed with the --plugin_name option.

Plugins registered in the mysql.plugin table:

The mysql.plugin table serves as a registry of plugins. The server normally enables each plugin
listed in the table at startup, although whether a given plugin is enabled can be changed with the
--plugin_name option. If the server is started with the --skip-grant-tables option, it does not
consult this table and does not load the plugins listed there.

Plugins named with command-line options:

A plugin that is located in a plugin library file can be loaded at server startup with the --plugin-
load option. Normally, the server enables the plugin at startup, although this can be changed with the
--plugin_name option.

The option value is a semicolon-separated list of name=plugin_library pairs. Each name is the
name of the plugin, and plugin_library is the name of the shared library that contains the plugin

Server Plugins

639

code. If a plugin library is named without any preceding plugin name, the server loads all plugins in the
library. Each library file must be located in the directory named by the plugin_dir system variable.

This option does not register any plugin in the mysql.plugin table. For subsequent restarts, the
server loads the plugin again only if --plugin-load is given again. That is, this option effects a one-
time installation that persists only for one server invocation.

--plugin-load enables plugins to be loaded even when --skip-grant-tables is given (which
causes the server to ignore the mysql.plugin table). --plugin-load also enables plugins to be
loaded at startup under configurations when plugins cannot be loaded at runtime.

The --plugin-load-add option complements the --plugin-load option. --plugin-load-
add adds a plugin or plugins to the set of plugins to be loaded at startup. The argument format is the
same as for --plugin-load. --plugin-load-add can be used to avoid specifying a large set of
plugins as a single long unwieldy --plugin-load. argument. --plugin-load-add can be given
in the absence of --plugin-load, but any instance of --plugin-load-add that appears before
--plugin-load. has no effect because --plugin-load resets the set of plugins to load. In other
words, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to this option:

--plugin-load="x;y"

But these options:

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

Plugins installed with the INSTALL PLUGIN statement:

A plugin that is located in a plugin library file can be loaded at runtime with the INSTALL PLUGIN
statement. The statement also registers the plugin in the mysql.plugin table to cause the server to
load it on subsequent restarts. For this reason, INSTALL PLUGIN requires the INSERT privilege for
the mysql.plugin table.

If a plugin is named both using a --plugin-load option and in the mysql.plugin table, the server
starts but writes these messages to the error log:

2013-09-24T12:35:29.584584Z 0 [ERROR] Function 'plugin_name'
already exists
2013-09-24T12:35:29.584616Z 0 [Warning] Couldn't load plugin named
'plugin_name' with soname 'plugin_object_file'.

Example: The --plugin-load option installs a plugin at server startup. To install a plugin named
myplugin in a plugin library file named somepluglib.so, use these lines in a my.cnf file:

[mysqld]
plugin-load=myplugin=somepluglib.so

In this case, the plugin is not registered in mysql.plugin. Restarting the server without the --
plugin-load option causes the plugin not to be loaded at startup.

Alternatively, the INSTALL PLUGIN statement causes the server to load the plugin code from the
library file at runtime:

Server Plugins

640

mysql> INSTALL PLUGIN myplugin SONAME 'somepluglib.so';

INSTALL PLUGIN also causes “permanent” plugin registration: The server lists the plugin in the
mysql.plugin table to ensure that it is loaded on subsequent server restarts.

Many plugins can be loaded either at server startup or at runtime. However, if a plugin is designed such
that it must be loaded and initialized during server startup, use --plugin-load rather than INSTALL
PLUGIN.

While a plugin is loaded, information about it is available at runtime from several sources, such as the
INFORMATION_SCHEMA.PLUGINS table and the SHOW PLUGINS statement. For more information,
see Section 5.1.8.2, “Obtaining Server Plugin Information”.

Controlling Plugin Activation

If the server knows about a plugin when it starts (for example, because the plugin is named
using a --plugin-load option or registered in the mysql.plugin table), the server loads
and enables the plugin by default. It is possible to control activation for such a plugin using a
--plugin_name[=value] startup option named after the plugin. In the following descriptions,
plugin_name stands for a plugin name such as innodb or csv. As with other options, dashes
and underscores are interchangeable in option names. For example, --my_plugin=ON and --my-
plugin=ON are equivalent.

• --plugin_name=OFF

Tells the server to disable the plugin.

• --plugin_name[=ON]

Tells the server to enable the plugin. (Specifying the option as --plugin_name without a value has
the same effect.) If the plugin fails to initialize, the server runs with the plugin disabled.

• --plugin_name=FORCE

Tells the server to enable the plugin, but if plugin initialization fails, the server does not start. In other
words, this option forces the server to run with the plugin enabled or not at all.

• --plugin_name=FORCE_PLUS_PERMANENT

Like FORCE, but in addition prevents the plugin from being unloaded at runtime. If a user attempts to
do so with UNINSTALL PLUGIN, an error occurs.

The values OFF, ON, FORCE, and FORCE_PLUS_PERMANENT are not case sensitive.

The activation state for plugins is visible in the LOAD_OPTION column of the
INFORMATION_SCHEMA.PLUGINS table.

Suppose that CSV, BLACKHOLE, and ARCHIVE are built-in pluggable storage engines and that you
want the server to load them at startup, subject to these conditions: The server is permitted to run if
CSV initialization fails, but must require that BLACKHOLE initialization succeeds, and ARCHIVE should
be disabled. To accomplish that, use these lines in an option file:

[mysqld]
csv=ON
blackhole=FORCE
archive=OFF

The --enable-plugin_name option format is supported as a synonym for --plugin_name=ON.
The --disable-plugin_name and --skip-plugin_name option formats are supported as
synonyms for --plugin_name=OFF.

Server Plugins

641

If a plugin is disabled, either explicitly with OFF or implicitly because it was enabled with ON but failed
to initialize, aspects of server operation that require the plugin will change. For example, if the plugin
implements a storage engine, existing tables for the storage engine become inaccessible, and attempts
to create new tables for the storage engine result in tables that use the default storage engine unless
the NO_ENGINE_SUBSTITUTION SQL mode has been enabled to cause an error to occur instead.

Disabling a plugin may require adjustment to other options. For example, if you start the server using
--skip-innodb to disable InnoDB, other innodb_xxx options likely will need to be omitted from the
startup command. In addition, because InnoDB is the default storage engine, it will not start unless you
specify another available storage engine with --default_storage_engine. You must also set --
default_tmp_storage_engine.

Uninstalling Plugins

A plugin known to the server can be uninstalled to disable it at runtime with the UNINSTALL PLUGIN
statement. The statement unloads the plugin and removes it from the mysql.plugin table if it is
registered there. For this reason, UNINSTALL PLUGIN statement requires the DELETE privilege for
the mysql.plugin table. With the plugin no longer registered in the table, the server will not load the
plugin automatically for subsequent restarts.

UNINSTALL PLUGIN can unload plugins regardless of whether they were loaded with INSTALL
PLUGIN or --plugin-load.

UNINSTALL PLUGIN is subject to these exceptions:

• It cannot unload plugins that are built in to the server. These can be identified as those that have a
library name of NULL in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.

• It cannot unload plugins for which the server was started with
--plugin_name=FORCE_PLUS_PERMANENT, which prevents plugin unloading at runtime. These
can be identified from the LOAD_OPTION column of the INFORMATION_SCHEMA.PLUGINS table.

5.1.8.2 Obtaining Server Plugin Information

There are several ways to determine which plugins are installed in the server:

• The INFORMATION_SCHEMA.PLUGINS table contains a row for each loaded plugin. Any that have a
PLUGIN_LIBRARY value of NULL are built in and cannot be unloaded.

mysql> SELECT * FROM information_schema.PLUGINS\G
*************************** 1. row ***************************
 PLUGIN_NAME: binlog
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: MySQL AB
 PLUGIN_DESCRIPTION: This is a pseudo storage engine to represent the binlog in a transaction
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: FORCE
...
*************************** 10. row ***************************
 PLUGIN_NAME: InnoDB
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: ha_innodb_plugin.so
PLUGIN_LIBRARY_VERSION: 1.0
 PLUGIN_AUTHOR: Innobase Oy
 PLUGIN_DESCRIPTION: Supports transactions, row-level locking,

IPv6 Support

642

 and foreign keys
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
...

• The SHOW PLUGINS statement displays a row for each loaded plugin. Any that have a Library
value of NULL are built in and cannot be unloaded.

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...
*************************** 10. row ***************************
 Name: InnoDB
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: ha_innodb_plugin.so
License: GPL
...

• The mysql.plugin table shows which plugins have been registered with INSTALL PLUGIN. The
table contains only plugin names and library file names, so it does not provide as much information
as the PLUGINS table or the SHOW PLUGINS statement.

5.1.9 IPv6 Support

Support for IPv6 in MySQL includes these capabilities:

• MySQL Server can accept TCP/IP connections from clients connecting over IPv6. For example, this
command connects over IPv6 to the MySQL server on the local host:

shell> mysql -h ::1

To use this capability, two things must be true:

• Your system must be configured to support IPv6. See Section 5.1.9.1, “Verifying System Support
for IPv6”.

• The default MySQL server configuration permits only IPv4 connections, so the server must be
configured for IPv6 connections. To permit IPv6 connections in addition to or instead of IPv4
connections, start the server with an appropriate --bind-address option. See Section 5.1.4,
“Server System Variables”.

• MySQL account names permit IPv6 addresses to enable DBAs to specify privileges for clients that
connect to the server over IPv6. See Section 6.2.3, “Specifying Account Names”. IPv6 addresses
can be specified in account names in statements such as CREATE USER, GRANT, and REVOKE. For
example:

mysql> CREATE USER 'bill'@'::1' IDENTIFIED BY 'secret';
mysql> GRANT SELECT ON mydb.* TO 'bill'@'::1';

• IPv6 functions enable conversion between string and internal format IPv6 address formats, and
checking whether values represent valid IPv6 addresses. For example, INET6_ATON() and
INET6_NTOA() are similar to INET_ATON() and INET_NTOA(), but handle IPv6 addresses in
addition to IPv4 addresses. See Section 12.16, “Miscellaneous Functions”.

The following sections describe how to set up MySQL so that clients can connect to the server over
IPv6.

IPv6 Support

643

5.1.9.1 Verifying System Support for IPv6

Before MySQL Server can accept IPv6 connections, the operating system on your server host must
support IPv6. As a simple test to determine whether that is true, try this command:

shell> ping6 ::1
16 bytes from ::1, icmp_seq=0 hlim=64 time=0.171 ms
16 bytes from ::1, icmp_seq=1 hlim=64 time=0.077 ms
...

To produce a description of your system's network interfaces, invoke ifconfig -a and look for IPv6
addresses in the output.

If your host does not support IPv6, consult your system documentation for instructions on enabling it.
It might be that you need only reconfigure an existing network interface to add an IPv6 address. Or a
more extensive change might be needed, such as rebuilding the kernel with IPv6 options enabled.

These links may be helpful in setting up IPv6 on various platforms:

• Windows XP

• Gentoo Linux

• Ubuntu Linux

• Linux (Generic)

• Mac OS X

5.1.9.2 Configuring the MySQL Server to Permit IPv6 Connections

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound to
a single address, but it is possible for an address to map onto multiple network interfaces. To specify
an address, use the --bind-address=addr option at server startup, where addr is an IPv4 or IPv6
address or a host name. (IPv6 addresses are not supported before MySQL 5.5.3.) If addr is a host
name, the server resolves the name to an IP address and binds to that address.

The server treats different types of addresses as follows:

• If the address is *, the server accepts TCP/IP connections on all server host IPv6 and IPv4
interfaces if the server host supports IPv6, or accepts TCP/IP connections on all IPv4 addresses
otherwise. Use this address to permit both IPv4 and IPv6 connections on all server interfaces. This
value is the default.

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4 interfaces.

• If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces. Use this address to permit both IPv4 and IPv6 connections on all server interfaces.

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that address,
in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1, clients can
connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

If you intend to bind the server to a specific address, be sure that the mysql.user grant table contains
an account with administrative privileges that you can use to connect to that address. Otherwise, you
will not be able to shut down the server. For example, if you bind the server to *, you can connect
to it using all existing accounts. But if you bind the server to ::1, it accepts connections only on that

http://support.microsoft.com/kb/2478747
http://www.gentoo.org/doc/en/ipv6.xml
https://wiki.ubuntu.com/IPv6
http://www.redhat.com/mirrors/LDP/HOWTO/html_single/Linux+IPv6-HOWTO/
http://support.apple.com/kb/HT4667?viewlocale=en_US

IPv6 Support

644

address. In that case, first make sure that the 'root'@'::1' account is present in the mysql.user
table so you can still connect to the server to shut it down.

5.1.9.3 Connecting Using the IPv6 Local Host Address

The following procedure shows how to configure MySQL to permit IPv6 connections by clients that
connect to the local server using the ::1 local host address. The instructions given here assume that
your system supports IPv6.

1. Start the MySQL server with an appropriate --bind-address option to permit it to accept IPv6
connections. For example, put the following lines in your server option file and restart the server:

[mysqld]
bind-address = *

Alternatively, you can bind the server to ::1, but that makes the server more restrictive for
TCP/IP connections. It accepts only IPv6 connections for that single address and rejects IPv4
connections. For more information, see Section 5.1.9.2, “Configuring the MySQL Server to Permit
IPv6 Connections”.

2. As an administrator, connect to the server and create an account for a local user who will connect
from the ::1 local IPv6 host address:

mysql> CREATE USER 'ipv6user'@'::1' IDENTIFIED BY 'ipv6pass';

For the permitted syntax of IPv6 addresses in account names, see Section 6.2.3, “Specifying
Account Names”. In addition to the CREATE USER statement, you can issue GRANT statements that
give specific privileges to the account, although that is not necessary for the remaining steps in this
procedure.

3. Invoke the mysql client to connect to the server using the new account:

shell> mysql -h ::1 -u ipv6user -pipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: ::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+----------------+----------------+
| CURRENT_USER() | @@bind_address |
+----------------+----------------+
| ipv6user@::1 | :: |
+----------------+----------------+

5.1.9.4 Connecting Using IPv6 Nonlocal Host Addresses

The following procedure shows how to configure MySQL to permit IPv6 connections by remote clients.
It is similar to the preceding procedure for local clients, but the server and client hosts are distinct and
each has its own nonlocal IPv6 address. The example uses these addresses:

Server host: 2001:db8:0:f101::1
Client host: 2001:db8:0:f101::2

These addresses are chosen from the nonroutable address range recommended by IANA for
documentation purposes and suffice for testing on your local network. To accept IPv6 connections from

http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xml

IPv6 Support

645

clients outside the local network, the server host must have a public address. If your network provider
assigns you an IPv6 address, you can use that. Otherwise, another way to obtain an address is to use
an IPv6 broker; see Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”.

1. Start the MySQL server with an appropriate --bind-address option to permit it to accept IPv6
connections. For example, put the following lines in your server option file and restart the server:

[mysqld]
bind-address = *

Alternatively, you can bind the server to 2001:db8:0:f101::1, but that makes the server more
restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address and
rejects IPv4 connections. For more information, see Section 5.1.9.2, “Configuring the MySQL
Server to Permit IPv6 Connections”.

2. On the server host (2001:db8:0:f101::1), create an account for a user who will connect from
the client host (2001:db8:0:f101::2):

mysql> CREATE USER 'remoteipv6user'@'2001:db8:0:f101::2' IDENTIFIED BY 'remoteipv6pass';

3. On the client host (2001:db8:0:f101::2), invoke the mysql client to connect to the server using
the new account:

shell> mysql -h 2001:db8:0:f101::1 -u remoteipv6user -premoteipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: 2001:db8:0:f101::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+-----------------------------------+----------------+
| CURRENT_USER() | @@bind_address |
+-----------------------------------+----------------+
| remoteipv6user@2001:db8:0:f101::2 | :: |
+-----------------------------------+----------------+

5.1.9.5 Obtaining an IPv6 Address from a Broker

If you do not have a public IPv6 address that enables your system to communicate over IPv6 outside
your local network, you can obtain one from an IPv6 broker. The Wikipedia IPv6 Tunnel Broker
page lists several brokers and their features, such as whether they provide static addresses and the
supported routing protocols.

After configuring your server host to use a broker-supplied IPv6 address, start the MySQL server with
an appropriate --bind-address option to permit the server to accept IPv6 connections. For example,
put the following lines in the server option file and restart the server:

[mysqld]
bind-address = *

Alternatively, you can bind the server to to the specific IPv6 address provided by the broker, but that
makes the server more restrictive for TCP/IP connections. It accepts only IPv6 connections for that
single address and rejects IPv4 connections. For more information, see Section 5.1.9.2, “Configuring
the MySQL Server to Permit IPv6 Connections”. In addition, if the broker allocates dynamic addresses,
the address provided for your system might change the next time you connect to the broker. If so, any
accounts you create that name the original address become invalid. To bind to a specific address but

http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers
http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers

Server-Side Help

646

avoid this change-of-address problem, you may be able to arrange with the broker for a static IPv6
address.

The following example shows how to use Freenet6 as the broker and the gogoc IPv6 client package
on Gentoo Linux.

1. Create a account at Freenet6 by visiting this URL and signing up:

http://gogonet.gogo6.com

2. After creating the account, go to this URL, sign in, and create a user ID and password for the IPv6
broker:

http://gogonet.gogo6.com/page/freenet6-registration

3. As root, install gogoc:

shell> emerge gogoc

4. Edit /etc/gogoc/gogoc.conf to set the userid and password values. For example:

userid=gogouser
passwd=gogopass

5. Start gogoc:

shell> /etc/init.d/gogoc start

To start gogoc each time your system boots, execute this command:

shell> rc-update add gogoc default

6. Use ping6 to try to ping a host:

shell> ping6 ipv6.google.com

7. To see your IPv6 address:

shell> ifconfig tun

5.1.10 Server-Side Help

MySQL Server supports a HELP statement that returns online information from the MySQL Reference
manual (see Section 13.8.3, “HELP Syntax”). The proper operation of this statement requires that
the help tables in the mysql database be initialized with help topic information, which is done by
processing the contents of the fill_help_tables.sql script.

If you install MySQL using a binary or source distribution on Unix, help table content initialization
occurs when you run mysql_install_db. For an RPM distribution on Linux or binary distribution on
Windows, content initialization occurs as part of the MySQL installation process.

If you upgrade MySQL using a binary distribution, help table content is not upgraded automatically, but
you can upgrade it manually. Locate the fill_help_tables.sql file in the share or share/mysql
directory. Change location into that directory and process the file with the mysql client as follows:

shell> mysql -u root mysql < fill_help_tables.sql

http://gogonet.gogo6.com
http://gogonet.gogo6.com/page/freenet6-registration

Server Response to Signals

647

You can also obtain the latest fill_help_tables.sql at any time to upgrade your help tables.
Download the proper file for your version of MySQL from http://dev.mysql.com/doc/index-other.html.
After downloading and uncompressing the file, process it with mysql as described previously.

If you are working with Bazaar and a MySQL development source tree, you must use a downloaded
copy of the fill_help_tables.sql file because the source tree contains only a “stub” version.

Note

For a server that participates in replication, the help table content upgrade
process involves multiple servers. For details, see Section 16.4.1.27,
“Replication of Server-Side Help Tables”.

5.1.11 Server Response to Signals

On Unix, signals can be sent to processes. mysqld responds to signals sent to it as follows:

• SIGTERM causes the server to shut down.

• SIGHUP causes the server to reload the grant tables and to flush tables, logs, the thread cache, and
the host cache. These actions are like various forms of the FLUSH statement. The server also writes
a status report to the error log that has this format:

Status information:

Current dir: /var/mysql/data/
Running threads: 0 Stack size: 196608
Current locks:

Key caches:
default
Buffer_size: 8388600
Block_size: 1024
Division_limit: 100
Age_limit: 300
blocks used: 0
not flushed: 0
w_requests: 0
writes: 0
r_requests: 0
reads: 0

handler status:
read_key: 0
read_next: 0
read_rnd 0
read_first: 1
write: 0
delete 0
update: 0

Table status:
Opened tables: 5
Open tables: 0
Open files: 7
Open streams: 0

Alarm status:
Active alarms: 1
Max used alarms: 2
Next alarm time: 67

On some Mac OS X 10.3 versions, mysqld ignores SIGHUP and SIGQUIT.

5.1.12 The Shutdown Process

http://dev.mysql.com/doc/index-other.html

The Shutdown Process

648

The server shutdown process takes place as follows:

1. The shutdown process is initiated.

This can occur initiated several ways. For example, a user with the SHUTDOWN privilege can
execute a mysqladmin shutdown command. mysqladmin can be used on any platform
supported by MySQL. Other operating system-specific shutdown initiation methods are possible
as well: The server shuts down on Unix when it receives a SIGTERM signal. A server running as a
service on Windows shuts down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

Depending on how shutdown was initiated, the server might create a thread to handle the shutdown
process. If shutdown was requested by a client, a shutdown thread is created. If shutdown is the
result of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or it might
create a separate thread to do so. If the server tries to create a shutdown thread and cannot (for
example, if memory is exhausted), it issues a diagnostic message that appears in the error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new
client connections by closing the handlers for the network interfaces to which it normally listens for
connections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared memory
on Windows.

4. The server terminates current activity.

For each thread associated with a client connection, the server breaks the connection to the client
and marks the thread as killed. Threads die when they notice that they are so marked. Threads
for idle connections die quickly. Threads that currently are processing statements check their
state periodically and take longer to die. For additional information about thread termination, see
Section 13.7.6.4, “KILL Syntax”, in particular for the instructions about killed REPAIR TABLE or
OPTIMIZE TABLE operations on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back. Note that if a thread is
updating a nontransactional table, an operation such as a multiple-row UPDATE or INSERT may
leave the table partially updated because the operation can terminate before completion.

If the server is a master replication server, it treats threads associated with currently connected
slaves like other client threads. That is, each one is marked as killed and exits when it next checks
its state.

If the server is a slave replication server, it stops the I/O and SQL threads, if they are active, before
marking client threads as killed. The SQL thread is permitted to finish its current statement (to avoid
causing replication problems), and then stops. If the SQL thread is in the middle of a transaction at
this point, the server waits until the current replication event group (if any) has finished executing, or
until the user issues a KILL QUERY or KILL CONNECTION statement. See also Section 13.4.2.7,
“STOP SLAVE Syntax”. Since nontransactional statements cannot be rolled back, in order to
guarantee crash-safe replication, only transactional tables should be used.

Note

In order to guarantee crash safety on the slave, you must also run the slave
with --relay-log-recovery enabled.

See also Section 16.2.2, “Replication Relay and Status Logs”).

5. The server shuts down or closes storage engines.

MySQL Server Logs

649

At this stage, the server flushes the table cache and closes all open tables.

Each storage engine performs any actions necessary for tables that it manages. InnoDB flushes
its buffer pool to disk (unless innodb_fast_shutdown is 2), writes the current LSN to the
tablespace, and terminates its own internal threads. MyISAM flushes any pending index writes for a
table.

6. The server exits.

5.2 MySQL Server Logs

MySQL Server has several logs that can help you find out what activity is taking place.

Log Type Information Written to Log

Error log Problems encountered starting, running, or stopping mysqld

General query log Established client connections and statements received from clients

Binary log Statements that change data (also used for replication)

Relay log Data changes received from a replication master server

Slow query log Queries that took more than long_query_time seconds to execute

By default, no logs are enabled (except the error log on Windows). The following log-specific sections
provide information about the server options that enable logging.

By default, the server writes files for all enabled logs in the data directory. You can force the server
to close and reopen the log files (or in some cases switch to a new log file) by flushing the logs. Log
flushing occurs when you issue a FLUSH LOGS statement; execute mysqladmin with a flush-logs
or refresh argument; or execute mysqldump with a --flush-logs or --master-data option. See
Section 13.7.6.3, “FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL
Server”, and Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is
flushed when its size reaches the value of the max_binlog_size system variable.

You can control the general query and slow query logs during runtime. You can enable or disable
logging, or change the log file name. You can tell the server to write general query and slow query
entries to log tables, log files, or both. For details, see Section 5.2.1, “Selecting General Query and
Slow Query Log Output Destinations”, Section 5.2.3, “The General Query Log”, and Section 5.2.5, “The
Slow Query Log”.

The relay log is used only on slave replication servers, to hold data changes from the master server
that must also be made on the slave. For discussion of relay log contents and configuration, see
Section 16.2.2.1, “The Slave Relay Log”.

For information about log maintenance operations such as expiration of old log files, see Section 5.2.6,
“Server Log Maintenance”.

For information about keeping logs secure, see Section 6.1.2.3, “Passwords and Logging”.

5.2.1 Selecting General Query and Slow Query Log Output Destinations

MySQL Server provides flexible control over the destination of output to the general query log and
the slow query log, if those logs are enabled. Possible destinations for log entries are log files or the
general_log and slow_log tables in the mysql database. Either or both destinations can be
selected.

Log control at server startup. The --log-output option specifies the destination for log output.
This option does not in itself enable the logs. Its syntax is --log-output[=value,...]:

Selecting General Query and Slow Query Log Output Destinations

650

• If --log-output is given with a value, the value should be a comma-separated list of one or more
of the words TABLE (log to tables), FILE (log to files), or NONE (do not log to tables or files). NONE, if
present, takes precedence over any other specifiers.

• If --log-output is omitted, the default logging destination is FILE.

The general_log system variable controls logging to the general query log for the selected log
destinations. If specified at server startup, general_log takes an optional argument of 1 or 0
to enable or disable the log. To specify a file name other than the default for file logging, set the
general_log_file variable. Similarly, the slow_query_log variable controls logging to the slow
query log for the selected destinations and setting slow_query_log_file specifies a file name
for file logging. If either log is enabled, the server opens the corresponding log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected.

Examples:

• To write general query log entries to the log table and the log file, use --log-output=TABLE,FILE
to select both log destinations and --general_log to enable the general query log.

• To write general and slow query log entries only to the log tables, use --log-output=TABLE to
select tables as the log destination and --general_log and --slow_query_log to enable both
logs.

• To write slow query log entries only to the log file, use --log-output=FILE to select files as the
log destination and --slow_query_log to enable the slow query log. (In this case, because the
default log destination is FILE, you could omit the --log-output option.)

Log control at runtime. The system variables associated with log tables and files enable runtime
control over logging:

• The global log_output system variable indicates the current logging destination. It can be modified
at runtime to change the destination.

• The global general_log and slow_query_log variables indicate whether the general query log
and slow query log are enabled (ON) or disabled (OFF). You can set these variables at runtime to
control whether the logs are enabled.

• The global general_log_file and slow_query_log_file variables indicate the names of the
general query log and slow query log files. You can set these variables at server startup or at runtime
to change the names of the log files.

• To disable or enable general query logging for the current connection, set the session sql_log_off
variable to ON or OFF.

The use of tables for log output offers the following benefits:

• Log entries have a standard format. To display the current structure of the log tables, use these
statements:

SHOW CREATE TABLE mysql.general_log;
SHOW CREATE TABLE mysql.slow_log;

• Log contents are accessible through SQL statements. This enables the use of queries that select
only those log entries that satisfy specific criteria. For example, to select log contents associated with
a particular client (which can be useful for identifying problematic queries from that client), it is easier
to do this using a log table than a log file.

• Logs are accessible remotely through any client that can connect to the server and issue queries (if
the client has the appropriate log table privileges). It is not necessary to log in to the server host and
directly access the file system.

The Error Log

651

The log table implementation has the following characteristics:

• In general, the primary purpose of log tables is to provide an interface for users to observe the
runtime execution of the server, not to interfere with its runtime execution.

• CREATE TABLE, ALTER TABLE, and DROP TABLE are valid operations on a log table. For ALTER
TABLE and DROP TABLE, the log table cannot be in use and must be disabled, as described later.

• By default, the log tables use the CSV storage engine that writes data in comma-separated values
format. For users who have access to the .CSV files that contain log table data, the files are easy to
import into other programs such as spreadsheets that can process CSV input.

The log tables can be altered to use the MyISAM storage engine. You cannot use ALTER TABLE to
alter a log table that is in use. The log must be disabled first. No engines other than CSV or MyISAM
are legal for the log tables.

• To disable logging so that you can alter (or drop) a log table, you can use the following strategy.
The example uses the general query log; the procedure for the slow query log is similar but uses the
slow_log table and slow_query_log system variable.

SET @old_log_state = @@global.general_log;
SET GLOBAL general_log = 'OFF';
ALTER TABLE mysql.general_log ENGINE = MyISAM;
SET GLOBAL general_log = @old_log_state;

• TRUNCATE TABLE is a valid operation on a log table. It can be used to expire log entries.

• RENAME TABLE is a valid operation on a log table. You can atomically rename a log table (to
perform log rotation, for example) using the following strategy:

USE mysql;
DROP TABLE IF EXISTS general_log2;
CREATE TABLE general_log2 LIKE general_log;
RENAME TABLE general_log TO general_log_backup, general_log2 TO general_log;

• CHECK TABLE is a valid operation on a log table.

• LOCK TABLES cannot be used on a log table.

• INSERT, DELETE, and UPDATE cannot be used on a log table. These operations are permitted only
internally to the server itself.

• FLUSH TABLES WITH READ LOCK and the state of the global read_only system variable have no
effect on log tables. The server can always write to the log tables.

• Entries written to the log tables are not written to the binary log and thus are not replicated to slave
servers.

• To flush the log tables or log files, use FLUSH TABLES or FLUSH LOGS, respectively.

• Partitioning of log tables is not permitted.

• A mysqldump dump includes statements to recreate those tables so that they are not missing after
reloading the dump file. Log table contents are not dumped.

5.2.2 The Error Log

The error log contains information indicating when mysqld was started and stopped and also any
critical errors that occur while the server is running. If mysqld notices a table that needs to be
automatically checked or repaired, it writes a message to the error log.

On some operating systems, the error log contains a stack trace if mysqld dies. The trace can be used
to determine where mysqld died. See Section 22.4, “Debugging and Porting MySQL”.

The Error Log

652

In the following discussion, “console” means stderr, the standard error output; this is your terminal or
console window unless the standard error output has been redirected. (For example, if invoked with the
--syslog option, mysqld_safe arranges for the server's stderr to be sent to the syslog facility,
as described later.)

On Windows, the --log-error and --console options both affect error logging:

• Without --log-error, mysqld writes error messages to host_name.err in the data directory.

• With --log-error[=file_name], mysqld writes error messages to an error log file. The server
uses the named file if present, creating it in in the data directory unless an absolute path name is
given to specify a different directory. If no file is named, the default name is host_name.err in the
data directory.

• If --console is given, mysqld writes error messages to the console. --log-error, if given,
is ignored and has no effect. If both options are present, their order does not matter: --console
takes precedence and error messages go to the console. (In MySQL 5.5 and 5.6, the precedence is
reversed: --log-error causes --console to be ignored.)

In addition, on Windows, events and error messages are written to the Windows Event Log within
the Application log. Entries marked as Warning and Note are written to the Event Log, but not
informational messages such as information statements from individual storage engines. These log
entries have a source of MySQL. You cannot disable writing information to the Windows Event Log.

On Unix and Unix-like systems, mysqld writes error log messages as follows:

• Without --log-error, mysqld writes error messages to the console.

• With --log-error[=file_name], mysqld writes error messages to an error log file. The server
uses the named file if present, creating it in the data directory unless an absolute path name is given
to specify a different directory. If no file is named, the default name is host_name.err in the data
directory.

At runtime, if the server writes error messages to the console, it sets the log_error system variable
to stderr. Otherwise, log_error indicates the error log file name. In particular, on Windows, --
console overrides use of an error log file and sends error messages to the console, so log_error is
set to stderr. This occurs even if --log-error is also given.

If you flush the logs using FLUSH LOGS or mysqladmin flush-logs and mysqld is writing the
error log to a file (for example, if it was started with the --log-error option), the server closes and
reopens the log file. To rename the file, do so manually before flushing. Then flushing the logs reopens
a new file with the original file name. For example, you can rename the file and create a new one using
the following commands:

shell> mv host_name.err host_name.err-old
shell> mysqladmin flush-logs
shell> mv host_name.err-old backup-directory

On Windows, use rename rather than mv.

No error log renaming occurs when the logs are flushed if the server is not writing to a named file.

If you use mysqld_safe to start mysqld, mysqld_safe arranges for mysqld to write error
messages to a log file or to syslog. mysqld_safe has three error-logging options, --syslog, --
skip-syslog, and --log-error. The default with no logging options or with --skip-syslog is to
use the default log file. To explicitly specify use of an error log file, specify --log-error=file_name
to mysqld_safe, and mysqld_safe will arrange for mysqld to write messages to a log file. To use
syslog instead, specify the --syslog option.

If you specify --log-error in an option file in a [mysqld], [server], or [mysqld_safe] section,
mysqld_safe will find and use the option.

The General Query Log

653

If mysqld_safe is used to start mysqld and mysqld dies unexpectedly, mysqld_safe notices that it
needs to restart mysqld and writes a restarted mysqld message to the error log.

As of MySQL 5.7.2, the log_error_verbosity system variable controls verbosity of the server
in writing error, warning, and note messages to the error log. Permitted values are 1 (errors only), 2
(errors and warnings), 3 (errors, warnings, and notes), with a default of 3. If the value is greater than 2,
aborted connections are written to the error log, and access-denied errors for new connection attempts
are written. See Section C.5.2.11, “Communication Errors and Aborted Connections”.

Before MySQL 5.7.2, the log_warnings system variable can be used to control warning logging to
the error log. The default value is enabled (1). Warning logging can be disabled using a value of 0.

As of MySQL 5.7.2, the log_timestamps system variable controls the timestamp time zone of
messages written to the error log (as well as to general query log and slow query log files). Permitted
values are UTC (the default) and SYSTEM (local system time zone). Before MySQL 5.7.2, messages
use the local system time zone.

As of MySQL 5.7.2, the ID included in error log messages is that of the thread within mysqld
responsible for writing the message. This indicates which part of the server produced the message,
and is consistent with general query log and slow query log messages, which include the connection
thread ID. Before MySQL 5.7.2, the ID in error log messages is that of the mysqld process ID.

5.2.3 The General Query Log

The general query log is a general record of what mysqld is doing. The server writes information to
this log when clients connect or disconnect, and it logs each SQL statement received from clients. The
general query log can be very useful when you suspect an error in a client and want to know exactly
what the client sent to mysqld.

mysqld writes statements to the query log in the order that it receives them, which might differ from the
order in which they are executed. This logging order is in contrast with that of the binary log, for which
statements are written after they are executed but before any locks are released. In addition, the query
log may contain statements that only select data while such statements are never written to the binary
log.

When using statement-based logging all statements are written to the query log, but when using
row-based logging, updates are sent as row changes rather than SQL statements, and thus these
statements are never written to the query log when binlog_format is ROW. A given update also
might not be written to the query log when this variable is set to MIXED, depending on the statement
used. See Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”, for more information.

By default, the general query log is disabled. To specify the initial general query log state explicitly,
use --general_log[={0|1}]. With no argument or an argument of 1, --general_log enables
the log. With an argument of 0, this option disables the log. To specify a log file name, use --
general_log_file=file_name. To specify the log destination, use --log-output (as described
in Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).

If you specify no name for the general query log file, the default name is host_name.log. The server
creates the file in the data directory unless an absolute path name is given to specify a different
directory.

To disable or enable the general query log or change the log file name at runtime, use the global
general_log and general_log_file system variables. Set general_log to 0 (or OFF) to disable
the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the log file. If a log
file already is open, it is closed and the new file is opened.

When the general query log is enabled, the server writes output to any destinations specified by the
--log-output option or log_output system variable. If you enable the log, the server opens
the log file and writes startup messages to it. However, further logging of queries to the file does not
occur unless the FILE log destination is selected. If the destination is NONE, the server writes no

The Binary Log

654

queries even if the general log is enabled. Setting the log file name has no effect on logging if the log
destination value does not contain FILE.

Server restarts and log flushing do not cause a new general query log file to be generated (although
flushing closes and reopens it). To rename the file and create a new one, use the following commands:

shell> mv host_name.log host_name-old.log
shell> mysqladmin flush-logs
shell> mv host_name-old.log backup-directory

On Windows, use rename rather than mv.

You can also rename the general query log file at runtime by disabling the log:

SET GLOBAL general_log = 'OFF';

With the log disabled, rename the log file externally; for example, from the command line. Then enable
the log again:

SET GLOBAL general_log = 'ON';

This method works on any platform and does not require a server restart.

The session sql_log_off variable can be set to ON or OFF to disable or enable general query logging
for the current connection.

Passwords in statements written to the general query log are rewritten by the server not to occur
literally in plain text. Password rewriting can be suppressed for the general query log by starting the
server with the --log-raw option. This option may be useful for diagnostic purposes, to see the
exact text of statements as received by the server, but for security reasons is not recommended for
production use. See also Section 6.1.2.3, “Passwords and Logging”.

An implication of password rewriting is that statements that cannot be parsed (due, for example, to
syntax errors) are not written to the general query log because they cannot be known to be password
free. Use cases that require logging of all statements including those with errors should use the --
log-raw option, bearing in mind that this also bypasses password writing.

As of MySQL 5.7.2, the log_timestamps system variable controls the timestamp time zone of
messages written to the general query log file (as well as to the slow query log file and the error log). It
does not affect the time zone of general query log and slow query log messages written to log tables,
but rows retrieved from those tables can be converted from the local system time zone to any desired
time zone with CONVERT_TZ() or by setting the session time_zone system variable. Before MySQL
5.7.2, messages use the local system time zone.

5.2.4 The Binary Log

The binary log contains “events” that describe database changes such as table creation operations or
changes to table data. It also contains events for statements that potentially could have made changes
(for example, a DELETE which matched no rows), unless row-based logging is used. The binary log
also contains information about how long each statement took that updated data. The binary log has
two important purposes:

• For replication, the binary log on a master replication server provides a record of the data changes to
be sent to slave servers. The master server sends the events contained in its binary log to its slaves,
which execute those events to make the same data changes that were made on the master. See
Section 16.2, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 7.5, “Point-in-Time
(Incremental) Recovery Using the Binary Log”.

The Binary Log

655

The binary log is not used for statements such as SELECT or SHOW that do not modify data. To log all
statements (for example, to identify a problem query), use the general query log. See Section 5.2.3,
“The General Query Log”.

Running a server with binary logging enabled makes performance slightly slower. However, the
benefits of the binary log in enabling you to set up replication and for restore operations generally
outweigh this minor performance decrement.

The binary log is crash-safe. Only complete events or transactions are logged or read back.

Passwords in statements written to the binary log are rewritten by the server not to occur literally in
plain text. See also Section 6.1.2.3, “Passwords and Logging”.

The following discussion describes some of the server options and variables that affect the operation of
binary logging. For a complete list, see Section 16.1.4.4, “Binary Log Options and Variables”.

To enable the binary log, start the server with the --log-bin[=base_name] option. If no
base_name value is given, the default name is the value of the pid-file option (which by default is
the name of host machine) followed by -bin. If the basename is given, the server writes the file in the
data directory unless the basename is given with a leading absolute path name to specify a different
directory. It is recommended that you specify a basename explicitly rather than using the default of the
host name; see Section C.5.8, “Known Issues in MySQL”, for the reason.

If you supply an extension in the log name (for example, --log-bin=base_name.extension), the
extension is silently removed and ignored.

mysqld appends a numeric extension to the binary log basename to generate binary log file names.
The number increases each time the server creates a new log file, thus creating an ordered series of
files. The server creates a new file in the series each time it starts or flushes the logs. The server also
creates a new binary log file automatically after the current log's size reaches max_binlog_size. A
binary log file may become larger than max_binlog_size if you are using large transactions because
a transaction is written to the file in one piece, never split between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file that
contains the names of all used binary log files. By default, this has the same basename as the binary
log file, with the extension '.index'. You can change the name of the binary log index file with the
--log-bin-index[=file_name] option. You should not manually edit this file while mysqld is
running; doing so would confuse mysqld.

The term “binary log file” generally denotes an individual numbered file containing database events.
The term “binary log” collectively denotes the set of numbered binary log files plus the index file.

A client that has the SUPER privilege can disable binary logging of its own statements by using a SET
sql_log_bin=0 statement. See Section 5.1.4, “Server System Variables”.

By default, the server logs the length of the event as well as the event itself and uses this to verify that
the event was written correctly. You can also cause the server to write checksums for the events by
setting the binlog_checksum system variable. When reading back from the binary log, the master
uses the event length by default, but can be made to use checksums if available by enabling the
master_verify_checksum system variable. The slave I/O thread also verifies events received from
the master. You can cause the slave SQL thread to use checksums if available when reading from the
relay log by enabling the slave_sql_verify_checksum system variable.

The format of the events recorded in the binary log is dependent on the binary logging format. Three
format types are supported, row-based logging, statement-based logging and mixed-base logging. The
binary logging format used depends on the MySQL version. For general descriptions of the logging
formats, see Section 5.2.4.1, “Binary Logging Formats”. For detailed information about the format of the
binary log, see MySQL Internals: The Binary Log.

The server evaluates the --binlog-do-db and --binlog-ignore-db options in the same way
as it does the --replicate-do-db and --replicate-ignore-db options. For information about

http://dev.mysql.com/doc/internals/en/binary-log.html

The Binary Log

656

how this is done, see Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging
Options”.

A replication slave server by default does not write to its own binary log any data modifications that
are received from the replication master. To log these modifications, start the slave with the --log-
slave-updates option in addition to the --log-bin option (see Section 16.1.4.3, “Replication Slave
Options and Variables”). This is done when a slave is also to act as a master to other slaves in chained
replication.

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE
BINARY LOGS. See Section 13.7.6.6, “RESET Syntax”, and Section 13.4.1.1, “PURGE BINARY LOGS
Syntax”.

If you are using replication, you should not delete old binary log files on the master until you are sure
that no slave still needs to use them. For example, if your slaves never run more than three days
behind, once a day you can execute mysqladmin flush-logs on the master and then remove any
logs that are more than three days old. You can remove the files manually, but it is preferable to use
PURGE BINARY LOGS, which also safely updates the binary log index file for you (and which can take
a date argument). See Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when
you want to reprocess statements in the log for a recovery operation. For example, you can update a
MySQL server from the binary log as follows:

shell> mysqlbinlog log_file | mysql -h server_name

mysqlbinlog also can be used to display replication slave relay log file contents because they are
written using the same format as binary log files. For more information on the mysqlbinlog utility and
how to use it, see Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”. For more
information about the binary log and recovery operations, see Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Binary logging is done immediately after a statement or transaction completes but before any locks are
released or any commit is done. This ensures that the log is logged in commit order.

Updates to nontransactional tables are stored in the binary log immediately after execution.

Within an uncommitted transaction, all updates (UPDATE, DELETE, or INSERT) that change
transactional tables such as InnoDB tables are cached until a COMMIT statement is received by the
server. At that point, mysqld writes the entire transaction to the binary log before the COMMIT is
executed.

Modifications to nontransactional tables cannot be rolled back. If a transaction that is rolled back
includes modifications to nontransactional tables, the entire transaction is logged with a ROLLBACK
statement at the end to ensure that the modifications to those tables are replicated.

When a thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to
buffer statements. If a statement is bigger than this, the thread opens a temporary file to store the
transaction. The temporary file is deleted when the thread ends.

The Binlog_cache_use status variable shows the number of transactions that used this buffer (and
possibly a temporary file) for storing statements. The Binlog_cache_disk_use status variable
shows how many of those transactions actually had to use a temporary file. These two variables can be
used for tuning binlog_cache_size to a large enough value that avoids the use of temporary files.

The max_binlog_cache_size system variable (default 4GB, which is also the maximum) can be
used to restrict the total size used to cache a multiple-statement transaction. If a transaction is larger
than this many bytes, it fails and rolls back. The minimum value is 4096.

If you are using the binary log and row based logging, concurrent inserts are converted to normal
inserts for CREATE ... SELECT or INSERT ... SELECT statements. This is done to ensure that

The Binary Log

657

you can re-create an exact copy of your tables by applying the log during a backup operation. If you are
using statement-based logging, the original statement is written to the log.

The binary log format has some known limitations that can affect recovery from backups. See
Section 16.4.1, “Replication Features and Issues”.

Binary logging for stored programs is done as described in Section 18.7, “Binary Logging of Stored
Programs”.

Note that the binary log format differs in MySQL 5.7 from previous versions of MySQL, due to
enhancements in replication. See Section 16.4.2, “Replication Compatibility Between MySQL
Versions”.

Writes to the binary log file and binary log index file are handled in the same way as writes to MyISAM
tables. See Section C.5.4.3, “How MySQL Handles a Full Disk”.

By default, the binary log is not synchronized to disk at each write. So if the operating system or
machine (not only the MySQL server) crashes, there is a chance that the last statements of the
binary log are lost. To prevent this, you can make the binary log be synchronized to disk after every N
writes to the binary log, with the sync_binlog system variable. See Section 5.1.4, “Server System
Variables”. 1 is the safest value for sync_binlog, but also the slowest. Even with sync_binlog
set to 1, there is still the chance of an inconsistency between the table content and binary log
content in case of a crash. For example, if you are using InnoDB tables and the MySQL server
processes a COMMIT statement, it writes the whole transaction to the binary log and then commits
this transaction into InnoDB. If the server crashes between those two operations, the transaction is
rolled back by InnoDB at restart but still exists in the binary log. To resolve this, you should set --
innodb_support_xa to 1. Although this option is related to the support of XA transactions in InnoDB,
it also ensures that the binary log and InnoDB data files are synchronized.

For this option to provide a greater degree of safety, the MySQL server should also be configured to
synchronize the binary log and the InnoDB logs to disk before committing the transaction. The InnoDB
logs are synchronized by default, and sync_binlog=1 can be used to synchronize the binary log.
The effect of this option is that at restart after a crash, after doing a rollback of transactions, the MySQL
server cuts rolled back InnoDB transactions from the binary log. This ensures that the binary log
reflects the exact data of InnoDB tables, and so, that the slave remains in synchrony with the master
(not receiving a statement which has been rolled back).

If the MySQL server discovers at crash recovery that the binary log is shorter than it should have
been, it lacks at least one successfully committed InnoDB transaction. This should not happen if
sync_binlog=1 and the disk/file system do an actual sync when they are requested to (some do
not), so the server prints an error message The binary log file_name is shorter than its
expected size. In this case, this binary log is not correct and replication should be restarted from a
fresh snapshot of the master's data.

The session values of the following system variables are written to the binary log and honored by the
replication slave when parsing the binary log:

• sql_mode (except that the NO_DIR_IN_CREATE mode is not replicated; see Section 16.4.1.34,
“Replication and Variables”)

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

The Binary Log

658

5.2.4.1 Binary Logging Formats

The server uses several logging formats to record information in the binary log. The exact format
employed depends on the version of MySQL being used. There are three logging formats:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from
master to slave. This is called statement-based logging. You can cause this format to be used by
starting the server with --binlog-format=STATEMENT.

• In row-based logging, the master writes events to the binary log that indicate how individual table
rows are affected. You can cause the server to use row-based logging by starting it with --binlog-
format=ROW.

• A third option is also available: mixed logging. With mixed logging, statement-based logging is used
by default, but the logging mode switches automatically to row-based in certain cases as described
below. You can cause MySQL to use mixed logging explicitly by starting mysqld with the option --
binlog-format=MIXED.

In MySQL 5.7, the default binary logging format is STATEMENT.

The logging format can also be set or limited by the storage engine being used. This helps to eliminate
issues when replicating certain statements between a master and slave which are using different
storage engines.

With statement-based replication, there may be issues with replicating nondeterministic statements. In
deciding whether or not a given statement is safe for statement-based replication, MySQL determines
whether it can guarantee that the statement can be replicated using statement-based logging. If
MySQL cannot make this guarantee, it marks the statement as potentially unreliable and issues the
warning, Statement may not be safe to log in statement format.

You can avoid these issues by using MySQL's row-based replication instead.

5.2.4.2 Setting The Binary Log Format

You can select the binary logging format explicitly by starting the MySQL server with --binlog-
format=type. The supported values for type are:

• STATEMENT causes logging to be statement based.

• ROW causes logging to be row based.

• MIXED causes logging to use mixed format.

In MySQL 5.7, the default binary logging format is STATEMENT.

The logging format also can be switched at runtime. To specify the format globally for all clients, set the
global value of the binlog_format system variable:

mysql> SET GLOBAL binlog_format = 'STATEMENT';
mysql> SET GLOBAL binlog_format = 'ROW';
mysql> SET GLOBAL binlog_format = 'MIXED';

An individual client can control the logging format for its own statements by setting the session value of
binlog_format:

mysql> SET SESSION binlog_format = 'STATEMENT';
mysql> SET SESSION binlog_format = 'ROW';
mysql> SET SESSION binlog_format = 'MIXED';

Note

Each MySQL Server can set its own and only its own binary logging format (true
whether binlog_format is set with global or session scope). This means

The Binary Log

659

that changing the logging format on a replication master does not cause a
slave to change its logging format to match. (When using STATEMENT mode,
the binlog_format system variable is not replicated; when using MIXED or
ROW logging mode, it is replicated but is ignored by the slave.) Changing the
binary logging format on the master while replication is ongoing, or without also
changing it on the slave can thus cause unexpected results, or even cause
replication to fail altogether.

To change the global or session binlog_format value, you must have the SUPER privilege.

In addition to switching the logging format manually, a slave server may switch the format
automatically. This happens when the server is running in either STATEMENT or MIXED format and
encounters an event in the binary log that is written in ROW logging format. In that case, the slave
switches to row-based replication temporarily for that event, and switches back to the previous format
afterward.

There are several reasons why a client might want to set binary logging on a per-session basis:

• A session that makes many small changes to the database might want to use row-based logging.

• A session that performs updates that match many rows in the WHERE clause might want to use
statement-based logging because it will be more efficient to log a few statements than many rows.

• Some statements require a lot of execution time on the master, but result in just a few rows being
modified. It might therefore be beneficial to replicate them using row-based logging.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger

• If the session is currently in row-based replication mode and has open temporary tables

Trying to switch the format in any of these cases results in an error.

If you are using InnoDB tables and the transaction isolation level is READ COMMITTED or READ
UNCOMMITTED, only row-based logging can be used. It is possible to change the logging format to
STATEMENT, but doing so at runtime leads very rapidly to errors because InnoDB can no longer
perform inserts.

Switching the replication format at runtime is not recommended when any temporary tables exist,
because temporary tables are logged only when using statement-based replication, whereas with row-
based replication they are not logged. With mixed replication, temporary tables are usually logged;
exceptions happen with user-defined functions (UDFs) and with the UUID() function.

With the binary log format set to ROW, many changes are written to the binary log using the row-based
format. Some changes, however, still use the statement-based format. Examples include all DDL (data
definition language) statements such as CREATE TABLE, ALTER TABLE, or DROP TABLE.

The --binlog-row-event-max-size option is available for servers that are capable of row-based
replication. Rows are stored into the binary log in chunks having a size in bytes not exceeding the
value of this option. The value must be a multiple of 256. The default value is 1024.

Warning

When using statement-based logging for replication, it is possible for the data
on the master and slave to become different if a statement is designed in such
a way that the data modification is nondeterministic; that is, it is left to the will
of the query optimizer. In general, this is not a good practice even outside of
replication. For a detailed explanation of this issue, see Section C.5.8, “Known
Issues in MySQL”.

For information about logs kept by replication slaves, see Section 16.2.2, “Replication Relay and Status
Logs”.

The Binary Log

660

5.2.4.3 Mixed Binary Logging Format

When running in MIXED logging format, the server automatically switches from statement-based to
row-based logging under the following conditions:

• When a function contains UUID().

• When one or more tables with AUTO_INCREMENT columns are updated and a trigger or stored
function is invoked. Like all other unsafe statements, this generates a warning if binlog_format =
STATEMENT.

For more information, see Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

• When the body of a view requires row-based replication, the statement creating the view also uses it.
For example, this occurs when the statement creating a view uses the UUID() function.

• When a call to a UDF is involved.

• If a statement is logged by row and the session that executed the statement has any temporary
tables, logging by row is used for all subsequent statements (except for those accessing temporary
tables) until all temporary tables in use by that session are dropped.

This is true whether or not any temporary tables are actually logged.

Temporary tables cannot be logged using row-based format; thus, once row-based logging is used,
all subsequent statements using that table are unsafe. The server approximates this condition by
treating all statements executed during the session as unsafe until the session no longer holds any
temporary tables.

• When FOUND_ROWS() or ROW_COUNT() is used. (Bug #12092, Bug #30244)

• When USER(), CURRENT_USER(), or CURRENT_USER is used. (Bug #28086)

• When a statement refers to one or more system variables. (Bug #31168)

Exception. The following system variables, when used with session scope (only), do not cause
the logging format to switch:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

The Binary Log

661

• pseudo_thread_id

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

For information about determining system variable scope, see Section 5.1.5, “Using System
Variables”.

For information about how replication treats sql_mode, see Section 16.4.1.34, “Replication and
Variables”.

• When one of the tables involved is a log table in the mysql database.

• When the LOAD_FILE() function is used. (Bug #39701)

Note

A warning is generated if you try to execute a statement using statement-based
logging that should be written using row-based logging. The warning is shown
both in the client (in the output of SHOW WARNINGS) and through the mysqld
error log. A warning is added to the SHOW WARNINGS table each time such a
statement is executed. However, only the first statement that generated the
warning for each client session is written to the error log to prevent flooding the
log.

In addition to the decisions above, individual engines can also determine the logging format used when
information in a table is updated. The logging capabilities of an individual engine can be defined as
follows:

• If an engine supports row-based logging, the engine is said to be row-logging capable.

• If an engine supports statement-based logging, the engine is said to be statement-logging capable.

A given storage engine can support either or both logging formats. The following table lists the formats
supported by each engine.

Storage Engine Row Logging
Supported

Statement Logging
Supported

ARCHIVE Yes Yes

BLACKHOLE Yes Yes

CSV Yes Yes

EXAMPLE Yes No

FEDERATED Yes Yes

HEAP Yes Yes

InnoDB Yes Yes when the
transaction
isolation level is
REPEATABLE READ or
SERIALIZABLE; No
otherwise.

MyISAM Yes Yes

MERGE Yes Yes

The Binary Log

662

Storage Engine Row Logging
Supported

Statement Logging
Supported

NDBCLUSTER Yes No

In MySQL 5.7, whether a statement is to be logged and the logging mode to be used is determined
according to the type of statement (safe, unsafe, or binary injected), the binary logging format
(STATEMENT, ROW, or MIXED), and the logging capabilities of the storage engine (statement capable,
row capable, both, or neither). (Binary injection refers to logging a change that must be logged using
ROW format.)

Statements may be logged with or without a warning; failed statements are not logged, but generate
errors in the log. This is shown in the following decision table, where SLC stands for “statement-logging
capable” and RLC stands for “row-logging capable”.

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as

* * No No Error: Cannot
execute
statement:
Binary logging is
impossible since at
least one engine
is involved that is
both row-incapable
and statement-
incapable.

-

Safe STATEMENT Yes No - STATEMENT

Safe MIXED Yes No - STATEMENT

Safe ROW Yes No Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at least
one table uses a
storage engine that
is not capable of
row-based logging.

-

Unsafe STATEMENT Yes No Warning:
Unsafe
statement
binlogged
in statement
format, since
BINLOG_FORMAT
= STATEMENT

STATEMENT

Unsafe MIXED Yes No Error: Cannot
execute
statement:
Binary logging
of an unsafe
statement is
impossible when
the storage

-

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

The Binary Log

663

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as
engine is limited to
statement-based
logging, even if
BINLOG_FORMAT
= MIXED.

Unsafe ROW Yes No Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at least
one table uses a
storage engine that
is not capable of
row-based logging.

-

Row
Injection

STATEMENT Yes No Error: Cannot
execute row
injection:
Binary logging is
not possible since
at least one table
uses a storage
engine that is not
capable of row-
based logging.

-

Row
Injection

MIXED Yes No Error: Cannot
execute row
injection:
Binary logging is
not possible since
at least one table
uses a storage
engine that is not
capable of row-
based logging.

-

Row
Injection

ROW Yes No Error: Cannot
execute row
injection:
Binary logging is
not possible since
at least one table
uses a storage
engine that is not
capable of row-
based logging.

-

Safe STATEMENT No Yes Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT and

-

The Binary Log

664

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as
at least one table
uses a storage
engine that is
not capable of
statement-based
logging.

Safe MIXED No Yes - ROW

Safe ROW No Yes - ROW

Unsafe STATEMENT No Yes Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT and
at least one table
uses a storage
engine that is
not capable of
statement-based
logging.

-

Unsafe MIXED No Yes - ROW

Unsafe ROW No Yes - ROW

Row
Injection

STATEMENT No Yes Error: Cannot
execute row
injection:
Binary logging is
not possible since
BINLOG_FORMAT
= STATEMENT.

-

Row
Injection

MIXED No Yes - ROW

Row
Injection

ROW No Yes - ROW

Safe STATEMENT Yes Yes - STATEMENT

Safe MIXED Yes Yes - STATEMENT

Safe ROW Yes Yes - ROW

Unsafe STATEMENT Yes Yes Warning:
Unsafe
statement
binlogged
in statement
format since
BINLOG_FORMAT
= STATEMENT.

STATEMENT

Unsafe MIXED Yes Yes - ROW

Unsafe ROW Yes Yes - ROW

Row
Injection

STATEMENT Yes Yes Error: Cannot
execute row

-

The Slow Query Log

665

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as
injection:
Binary logging
is not possible
because
BINLOG_FORMAT
= STATEMENT.

Row
Injection

MIXED Yes Yes - ROW

Row
Injection

ROW Yes Yes - ROW

When a warning is produced by the determination, a standard MySQL warning is produced (and
is available using SHOW WARNINGS). The information is also written to the mysqld error log. Only
one error for each error instance per client connection is logged to prevent flooding the log. The log
message includes the SQL statement that was attempted.

If a slave server was started with log_error_verbosity set to display warnings, the slave prints
messages to the error log to provide information about its status, such as the binary log and relay log
coordinates where it starts its job, when it is switching to another relay log, when it reconnects after a
disconnect, statements that are unsafe for statement-based logging, and so forth.

5.2.4.4 Logging Format for Changes to mysql Database Tables

The contents of the grant tables in the mysql database can be modified directly (for example, with
INSERT or DELETE) or indirectly (for example, with GRANT or CREATE USER). Statements that affect
mysql database tables are written to the binary log using the following rules:

• Data manipulation statements that change data in mysql database tables directly are logged
according to the setting of the binlog_format system variable. This pertains to statements such as
INSERT, UPDATE, DELETE, REPLACE, DO, LOAD DATA INFILE, SELECT, and TRUNCATE TABLE.

• Statements that change the mysql database indirectly are logged as statements regardless of the
value of binlog_format. This pertains to statements such as GRANT, REVOKE, SET PASSWORD,
RENAME USER, CREATE (all forms except CREATE TABLE ... SELECT), ALTER (all forms), and
DROP (all forms).

CREATE TABLE ... SELECT is a combination of data definition and data manipulation. The CREATE
TABLE part is logged using statement format and the SELECT part is logged according to the value of
binlog_format.

5.2.5 The Slow Query Log

The slow query log consists of SQL statements that took more than long_query_time seconds
to execute and required at least min_examined_row_limit rows to be examined. The minimum
and default values of long_query_time are 0 and 10, respectively. The value can be specified to a
resolution of microseconds. For logging to a file, times are written including the microseconds part. For
logging to tables, only integer times are written; the microseconds part is ignored.

By default, administrative statements are not logged, nor are queries that do not use indexes
for lookups. This behavior can be changed using log_slow_admin_statements and
log_queries_not_using_indexes, as described later.

The time to acquire the initial locks is not counted as execution time. mysqld writes a statement to the
slow query log after it has been executed and after all locks have been released, so log order might
differ from execution order.

The Slow Query Log

666

By default, the slow query log is disabled. To specify the initial slow query log state explicitly, use
--slow_query_log[={0|1}]. With no argument or an argument of 1, --slow_query_log
enables the log. With an argument of 0, this option disables the log. To specify a log file name, use
--slow_query_log_file=file_name. To specify the log destination, use --log-output (as
described in Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).

If you specify no name for the slow query log file, the default name is host_name-slow.log. The
server creates the file in the data directory unless an absolute path name is given to specify a different
directory.

To disable or enable the slow query log or change the log file name at runtime, use the global
slow_query_log and slow_query_log_file system variables. Set slow_query_log to 0 (or
OFF) to disable the log or to 1 (or ON) to enable it. Set slow_query_log_file to specify the name of
the log file. If a log file already is open, it is closed and the new file is opened.

When the slow query log is enabled, the server writes output to any destinations specified by the --
log-output option or log_output system variable. If you enable the log, the server opens the log
file and writes startup messages to it. However, further logging of queries to the file does not occur
unless the FILE log destination is selected. If the destination is NONE, the server writes no queries
even if the slow query log is enabled. Setting the log file name has no effect on logging if the log
destination value does not contain FILE.

The server writes less information to the slow query log (and binary log) if you use the --log-short-
format option.

To include slow administrative statements in the statements written to the slow query log, use the
log_slow_admin_statements system variable. Administrative statements include ALTER TABLE,
ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR
TABLE.

To include queries that do not use indexes for row lookups in the statements written to the slow query
log, enable the log_queries_not_using_indexes system variable. When such queries are
logged, the slow query log may grow quickly. It is possible to put a rate limit on these queries by setting
the log_throttle_queries_not_using_indexes system variable. By default, this variable is 0,
which means there is no limit. Positive values impose a per-minute limit on logging of queries that do
not use indexes. The first such query opens a 60-second window within which the server logs queries
up to the given limit, then suppresses additional queries. If there are suppressed queries when the
window ends, the server logs a summary that indicates how many there were and the aggregate time
spent in them. The next 60-second window begins when the server logs the next query that does not
use indexes.

The server uses the controlling parameters in the following order to determine whether to write a query
to the slow query log:

1. The query must either not be an administrative statement, or log_slow_admin_statements
must be enabled.

2. The query must have taken at least long_query_time seconds, or
log_queries_not_using_indexes must be enabled and the query used no indexes for row
lookups.

3. The query must have examined at least min_examined_row_limit rows.

4. The query must not be suppressed according to the
log_throttle_queries_not_using_indexes setting.

As of MySQL 5.7.2, the log_timestamps system variable controls the timestamp time zone of
messages written to the slow query log file (as well as to the general query log file and the error log). It
does not affect the time zone of general query log and slow query log messages written to log tables,
but rows retrieved from those tables can be converted from the local system time zone to any desired

Server Log Maintenance

667

time zone with CONVERT_TZ() or by setting the session time_zone system variable. Before MySQL
5.7.2, messages use the local system time zone.

The server does not write queries handled by the query cache to the slow query log, nor queries that
would not benefit from the presence of an index because the table has zero rows or one row.

By default, a replication slave does not write replicated queries to the slow query log. To change this,
use the log_slow_slave_statements system variable.

Passwords in statements written to the slow query log are rewritten by the server not to occur literally in
plain text. See also Section 6.1.2.3, “Passwords and Logging”.

The slow query log can be used to find queries that take a long time to execute and are therefore
candidates for optimization. However, examining a long slow query log can become a difficult task.
To make this easier, you can process a slow query log file using the mysqldumpslow command to
summarize the queries that appear in the log. See Section 4.6.8, “mysqldumpslow — Summarize
Slow Query Log Files”.

5.2.6 Server Log Maintenance

As described in Section 5.2, “MySQL Server Logs”, MySQL Server can create several different log files
to help you see what activity is taking place. However, you must clean up these files regularly to ensure
that the logs do not take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from time
to time and tell MySQL to start logging to new files. See Section 7.2, “Database Backup Methods”.

On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for this. If you installed
MySQL from an RPM distribution, this script should have been installed automatically. Be careful with
this script if you are using the binary log for replication. You should not remove binary logs until you are
certain that their contents have been processed by all slaves.

On other systems, you must install a short script yourself that you start from cron (or its equivalent) for
handling log files.

For the binary log, you can set the expire_logs_days system variable to expire binary log files
automatically after a given number of days (see Section 5.1.4, “Server System Variables”). If you
are using replication, you should set the variable no lower than the maximum number of days your
slaves might lag behind the master. To remove binary logs on demand, use the PURGE BINARY LOGS
statement (see Section 13.4.1.1, “PURGE BINARY LOGS Syntax”).

You can force MySQL to start using new log files by flushing the logs. Log flushing occurs when you
issue a FLUSH LOGS statement or execute a mysqladmin flush-logs, mysqladmin refresh,
mysqldump --flush-logs, or mysqldump --master-data command. See Section 13.7.6.3,
“FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”, and
Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is flushed
when its size reaches the value of the max_binlog_size system variable.

FLUSH LOGS supports optional modifiers to enable selective flushing of individual logs (for example,
FLUSH BINARY LOGS).

A log-flushing operation does the following:

• If general query logging or slow query logging to a log file is enabled, the server closes and reopens
the general query log file or slow query log file.

• If binary logging is enabled, the server closes the current binary log file and opens a new log file with
the next sequence number.

• If the server was started with the --log-error option to cause the error log to be written to a file,
the server closes and reopens the log file.

Running Multiple MySQL Instances on One Machine

668

The server creates a new binary log file when you flush the logs. However, it just closes and reopens
the general and slow query log files. To cause new files to be created on Unix, rename the current log
files before flushing them. At flush time, the server opens new log files with the original names. For
example, if the general and slow query log files are named mysql.log and mysql-slow.log, you
can use a series of commands like this:

shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mv mysql-slow.log mysql-slow.old
shell> mysqladmin flush-logs

On Windows, use rename rather than mv.

At this point, you can make a backup of mysql.old and mysql-slow.old and then remove them
from disk.

A similar strategy can be used to back up the error log file, if there is one.

You can rename the general query log or slow query log at runtime by disabling the log:

SET GLOBAL general_log = 'OFF';
SET GLOBAL slow_query_log = 'OFF';

With the logs disabled, rename the log files externally; for example, from the command line. Then
enable the logs again:

SET GLOBAL general_log = 'ON';
SET GLOBAL slow_query_log = 'ON';

This method works on any platform and does not require a server restart.

5.3 Running Multiple MySQL Instances on One Machine
In some cases, you might want to run multiple instances of MySQL on a single machine. You might
want to test a new MySQL release while leaving an existing production setup undisturbed. Or you
might want to give different users access to different mysqld servers that they manage themselves.
(For example, you might be an Internet Service Provider that wants to provide independent MySQL
installations for different customers.)

It is possible to use a different MySQL server binary per instance, or use the same binary for multiple
instances, or any combination of the two approaches. For example, you might run a server from
MySQL 5.6 and one from MySQL 5.7, to see how different versions handle a given workload. Or
you might run multiple instances of the current production version, each managing a different set of
databases.

Whether or not you use distinct server binaries, each instance that you run must be configured with
unique values for several operating parameters. This eliminates the potential for conflict between
instances. Parameters can be set on the command line, in option files, or by setting environment
variables. See Section 4.2.3, “Specifying Program Options”. To see the values used by a given
instance, connect to it and execute a SHOW VARIABLES statement.

The primary resource managed by a MySQL instance is the data directory. Each instance should use
a different data directory, the location of which is specified using the --datadir=path option. For
methods of configuring each instance with its own data directory, and warnings about the dangers of
failing to do so, see Section 5.3.1, “Setting Up Multiple Data Directories”.

In addition to using different data directories, several other options must have different values for each
server instance:

• --port=port_num

Setting Up Multiple Data Directories

669

--port controls the port number for TCP/IP connections. Alternatively, if the host has multiple
network addresses, you can use --bind-address to cause each server to listen to a different
address.

• --socket=path

--socket controls the Unix socket file path on Unix or the named pipe name on Windows. On
Windows, it is necessary to specify distinct pipe names only for those servers configured to permit
named-pipe connections.

• --shared-memory-base-name=name

This option is used only on Windows. It designates the shared-memory name used by a Windows
server to permit clients to connect using shared memory. It is necessary to specify distinct shared-
memory names only for those servers configured to permit shared-memory connections.

• --pid-file=file_name

This option indicates the path name of the file in which the server writes its process ID.

If you use the following log file options, their values must differ for each server:

• --general_log_file=file_name

• --log-bin[=file_name]

• --slow_query_log_file=file_name

• --log-error[=file_name]

For further discussion of log file options, see Section 5.2, “MySQL Server Logs”.

To achieve better performance, you can specify the following option differently for each server, to
spread the load between several physical disks:

• --tmpdir=path

Having different temporary directories also makes it easier to determine which MySQL server created
any given temporary file.

If you have multiple MySQL installations in different locations, you can specify the base directory
for each installation with the --basedir=path option. This causes each instance to automatically
use a different data directory, log files, and PID file because the default for each of those parameters
is relative to the base directory. In that case, the only other options you need to specify are the --
socket and --port options. Suppose that you install different versions of MySQL using tar file
binary distributions. These install in different locations, so you can start the server for each installation
using the command bin/mysqld_safe under its corresponding base directory. mysqld_safe
determines the proper --basedir option to pass to mysqld, and you need specify only the --
socket and --port options to mysqld_safe.

As discussed in the following sections, it is possible to start additional servers by specifying appropriate
command options or by setting environment variables. However, if you need to run multiple servers
on a more permanent basis, it is more convenient to use option files to specify for each server those
option values that must be unique to it. The --defaults-file option is useful for this purpose.

5.3.1 Setting Up Multiple Data Directories

Each MySQL Instance on a machine should have its own data directory. The location is specified using
the --datadir=path option.

There are different methods of setting up a data directory for a new instance:

Setting Up Multiple Data Directories

670

• Create a new data directory.

• Copy an existing data directory.

The following discussion provides more detail about each method.

Warning

Normally, you should never have two servers that update data in the same
databases. This may lead to unpleasant surprises if your operating system does
not support fault-free system locking. If (despite this warning) you run multiple
servers using the same data directory and they have logging enabled, you must
use the appropriate options to specify log file names that are unique to each
server. Otherwise, the servers try to log to the same files.

Even when the preceding precautions are observed, this kind of setup works
only with MyISAM and MERGE tables, and not with any of the other storage
engines. Also, this warning against sharing a data directory among servers
always applies in an NFS environment. Permitting multiple MySQL servers
to access a common data directory over NFS is a very bad idea. The primary
problem is that NFS is the speed bottleneck. It is not meant for such use.
Another risk with NFS is that you must devise a way to ensure that two or more
servers do not interfere with each other. Usually NFS file locking is handled
by the lockd daemon, but at the moment there is no platform that performs
locking 100% reliably in every situation.

Create a New Data Directory

With this method, the data directory will be in the same state as when you first install MySQL. It will
have the default set of MySQL accounts and no user data.

On Unix, initialize the data directory by running mysql_install_db. See Section 2.9.1,
“Postinstallation Procedures for Unix-like Systems”.

On Windows, the data directory is included in the MySQL distribution:

• MySQL Zip archive distributions for Windows contain an unmodified data directory. You can unpack
such a distribution into a temporary location, then copy it data directory to where you are setting up
the new instance.

• Windows MSI package installers create and set up the data directory that the installed server will
use, but also create a pristine “template” data directory named data under the installation directory.
After an installation has been performed using an MSI package, the template data directory can be
copied to set up additional MySQL instances.

Copy an Existing Data Directory

With this method, any MySQL accounts or user data present in the data directory are carried over to
the new data directory.

1. Stop the existing MySQL instance using the data directory. This must be a clean shutdown so that
the instance flushes any pending changes to disk.

2. Copy the data directory to the location where the new data directory should be.

3. Copy the my.cnf or my.ini option file used by the existing instance. This serves as a basis for
the new instance.

4. Modify the new option file so that any pathnames referring to the original data directory refer to the
new data directory. Also, modify any other options that must be unique per instance, such as the
TCP/IP port number and the log files. For a list of parameters that must be unique per instance, see
Section 5.3, “Running Multiple MySQL Instances on One Machine”.

Running Multiple MySQL Instances on Windows

671

5. Start the new instance, telling it to use the new option file.

5.3.2 Running Multiple MySQL Instances on Windows

You can run multiple servers on Windows by starting them manually from the command line, each with
appropriate operating parameters, or by installing several servers as Windows services and running
them that way. General instructions for running MySQL from the command line or as a service are
given in Section 2.3, “Installing MySQL on Microsoft Windows”. The following sections describe how
to start each server with different values for those options that must be unique per server, such as the
data directory. These options are listed in Section 5.3, “Running Multiple MySQL Instances on One
Machine”.

5.3.2.1 Starting Multiple MySQL Instances at the Windows Command Line

The procedure for starting a single MySQL server manually from the command line is described in
Section 2.3.5.5, “Starting MySQL from the Windows Command Line”. To start multiple servers this way,
you can specify the appropriate options on the command line or in an option file. It is more convenient
to place the options in an option file, but it is necessary to make sure that each server gets its own set
of options. To do this, create an option file for each server and tell the server the file name with a --
defaults-file option when you run it.

Suppose that you want to run mysqld on port 3307 with a data directory of C:\mydata1, and
mysqld-debug on port 3308 with a data directory of C:\mydata2. Use this procedure:

1. Make sure that each data directory exists, including its own copy of the mysql database that
contains the grant tables.

2. Create two option files. For example, create one file named C:\my-opts1.cnf that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

3. Use the --defaults-file option to start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld-debug --defaults-file=C:\my-opts2.cnf

Each server starts in the foreground (no new prompt appears until the server exits later), so you will
need to issue those two commands in separate console windows.

To shut down the servers, connect to each using the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 shutdown

Servers configured as just described permit clients to connect over TCP/IP. If your version of Windows
supports named pipes and you also want to permit named-pipe connections, use the mysqld or
mysqld-debug server and specify options that enable the named pipe and specify its name. Each
server that supports named-pipe connections must use a unique pipe name. For example, the C:\my-
opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1

Running Multiple MySQL Instances on Windows

672

port = 3307
enable-named-pipe
socket = mypipe1

Modify C:\my-opts2.cnf similarly for use by the second server. Then start the servers as described
previously.

A similar procedure applies for servers that you want to permit shared-memory connections. Enable
such connections with the --shared-memory option and specify a unique shared-memory name for
each server with the --shared-memory-base-name option.

5.3.2.2 Starting Multiple MySQL Instances as Windows Services

On Windows, a MySQL server can run as a Windows service. The procedures for installing, controlling,
and removing a single MySQL service are described in Section 2.3.5.7, “Starting MySQL as a Windows
Service”.

To set up multiple MySQL services, you must make sure that each instance uses a different service
name in addition to the other parameters that must be unique per instance.

For the following instructions, suppose that you want to run the mysqld server from two different
versions of MySQL that are installed at C:\mysql-5.5.9 and C:\mysql-5.7.5, respectively. (This
might be the case if you are running 5.5.9 as your production server, but also want to conduct tests
using 5.7.5.)

To install MySQL as a Windows service, use the --install or --install-manual option. For
information about these options, see Section 2.3.5.7, “Starting MySQL as a Windows Service”.

Based on the preceding information, you have several ways to set up multiple services. The following
instructions describe some examples. Before trying any of them, shut down and remove any existing
MySQL services.

• Approach 1: Specify the options for all services in one of the standard option files. To do this, use
a different service name for each server. Suppose that you want to run the 5.5.9 mysqld using the
service name of mysqld1 and the 5.7.5 mysqld using the service name mysqld2. In this case, you
can use the [mysqld1] group for 5.5.9 and the [mysqld2] group for 5.7.5. For example, you can
set up C:\my.cnf like this:

options for mysqld1 service
[mysqld1]
basedir = C:/mysql-5.5.9
port = 3307
enable-named-pipe
socket = mypipe1

options for mysqld2 service
[mysqld2]
basedir = C:/mysql-5.7.5
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server path names to ensure that Windows registers the
correct executable program for each service:

C:\> C:\mysql-5.5.9\bin\mysqld --install mysqld1
C:\> C:\mysql-5.7.5\bin\mysqld --install mysqld2

To start the services, use the services manager, or use NET START with the appropriate service
names:

C:\> NET START mysqld1
C:\> NET START mysqld2

Running Multiple MySQL Instances on Unix

673

To stop the services, use the services manager, or use NET STOP with the appropriate service
names:

C:\> NET STOP mysqld1
C:\> NET STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file when
you install the services to tell each server what file to use. In this case, each file should list options
using a [mysqld] group.

With this approach, to specify options for the 5.5.9 mysqld, create a file C:\my-opts1.cnf that
looks like this:

[mysqld]
basedir = C:/mysql-5.5.9
port = 3307
enable-named-pipe
socket = mypipe1

For the 5.7.5 mysqld, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-5.7.5
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-5.5.9\bin\mysqld --install mysqld1
 --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql-5.7.5\bin\mysqld --install mysqld2
 --defaults-file=C:\my-opts2.cnf

When you install a MySQL server as a service and use a --defaults-file option, the service
name must precede the option.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use mysqld --remove for each one, specifying a service name
following the --remove option. If the service name is the default (MySQL), you can omit it.

5.3.3 Running Multiple MySQL Instances on Unix

One way is to run multiple MySQL instances on Unix is to compile different servers with different
default TCP/IP ports and Unix socket files so that each one listens on different network interfaces.
Compiling in different base directories for each installation also results automatically in a separate,
compiled-in data directory, log file, and PID file location for each server.

Assume that an existing 5.6 server is configured for the default TCP/IP port number (3306) and
Unix socket file (/tmp/mysql.sock). To configure a new 5.7.5 server to have different operating
parameters, use a CMake command something like this:

shell> cmake . -DMYSQL_TCP_PORT=port_number \
 -DMYSQL_UNIX_ADDR=file_name \
 -DCMAKE_INSTALL_PREFIX=/usr/local/mysql-5.7.5

Here, port_number and file_name must be different from the default TCP/IP port number and Unix
socket file path name, and the CMAKE_INSTALL_PREFIX value should specify an installation directory
different from the one under which the existing MySQL installation is located.

Using Client Programs in a Multiple-Server Environment

674

If you have a MySQL server listening on a given port number, you can use the following command to
find out what operating parameters it is using for several important configurable variables, including the
base directory and Unix socket file name:

shell> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when
configuring an additional server.

If you specify localhost as the host name, mysqladmin defaults to using a Unix socket
file connection rather than TCP/IP. To explicitly specify the connection protocol, use the --
protocol={TCP|SOCKET|PIPE|MEMORY} option.

You need not compile a new MySQL server just to start with a different Unix socket file and TCP/IP port
number. It is also possible to use the same server binary and start each invocation of it with different
parameter values at runtime. One way to do so is by using command-line options:

shell> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a --
datadir=path option to mysqld_safe so that the server uses a different data directory.

Alternatively, put the options for each server in a different option file, then start each server using a --
defaults-file option that specifies the path to the appropriate option file. For example, if the option
files for two server instances are named /usr/local/mysql/my.cnf and /usr/local/mysql/
my.cnf2, start the servers like this: command:

shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf
shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf2

Another way to achieve a similar effect is to use environment variables to set the Unix socket file name
and TCP/IP port number:

shell> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
shell> MYSQL_TCP_PORT=3307
shell> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
shell> mysql_install_db --user=mysql
shell> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is
that the environment variable settings apply to any client programs that you invoke from the same shell.
Thus, connections for those clients are automatically directed to the second server.

Section 2.11, “Environment Variables”, includes a list of other environment variables you can use to
affect MySQL programs.

On Unix, the mysqld_multi script provides another way to start multiple servers. See Section 4.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”.

5.3.4 Using Client Programs in a Multiple-Server Environment

To connect with a client program to a MySQL server that is listening to different network interfaces from
those compiled into your client, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect using TCP/IP to a
remote server, with --host=127.0.0.1 --port=port_number to connect using TCP/IP to a
local server, or with --host=localhost --socket=file_name to connect to a local server using
a Unix socket file or a Windows named pipe.

• Start the client with --protocol=TCP to connect using TCP/IP, --protocol=SOCKET to
connect using a Unix socket file, --protocol=PIPE to connect using a named pipe, or --

Tracing mysqld Using DTrace

675

protocol=MEMORY to connect using shared memory. For TCP/IP connections, you may also need
to specify --host and --port options. For the other types of connections, you may need to specify
a --socket option to specify a Unix socket file or Windows named-pipe name, or a --shared-
memory-base-name option to specify the shared-memory name. Shared-memory connections are
supported only on Windows.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to the
Unix socket file and TCP/IP port number before you start your clients. If you normally use a specific
socket file or port number, you can place commands to set these environment variables in your
.login file so that they apply each time you log in. See Section 2.11, “Environment Variables”.

• Specify the default Unix socket file and TCP/IP port number in the [client] group of an option
file. For example, you can use C:\my.cnf on Windows, or the .my.cnf file in your home directory
on Unix. See Section 4.2.3.3, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the
mysql_real_connect() call. You can also have the program read option files by calling
mysql_options(). See Section 21.8.7, “C API Function Descriptions”.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For
example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
 . "mysql_read_default_file=/usr/local/mysql/data/my.cnf";
$dbh = DBI->connect($dsn, $user, $password);

See Section 21.10, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

5.4 Tracing mysqld Using DTrace
The DTrace probes in the MySQL server are designed to provide information about the execution of
queries within MySQL and the different areas of the system being utilized during that process. The
organization and triggering of the probes means that the execution of an entire query can be monitored
with one level of probes (query-start and query-done) but by monitoring other probes you can get
successively more detailed information about the execution of the query in terms of the locks used, sort
methods and even row-by-row and storage-engine level execution information.

The DTrace probes are organized so that you can follow the entire query process, from the point
of connection from a client, through the query execution, row-level operations, and back out again.
You can think of the probes as being fired within a specific sequence during a typical client connect/
execute/disconnect sequence, as shown in the following figure.

Figure 5.1 The MySQL Architecture Using Pluggable Storage Engines

mysqld DTrace Probe Reference

676

Global information is provided in the arguments to the DTrace probes at various levels. Global
information, that is, the connection ID and user/host and where relevant the query string, is provided at
key levels (connection-start, command-start, query-start, and query-exec-start). As
you go deeper into the probes, it is assumed either you are only interested in the individual executions
(row-level probes provide information on the database and table name only), or that you will combine
the row-level probes with the notional parent probes to provide the information about a specific query.
Examples of this will be given as the format and arguments of each probe are provided.

For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

MySQL 5.7 includes support for DTrace probes on Solaris 10 Update 5 (Solaris 5/08) on SPARC, x86
and x86_64 platforms. Probes are also supported on Mac OS X 10.4 and higher. Enabling the probes
should be automatic on these platforms. To explicitly enable or disable the probes during building, use
the -DENABLE_DTRACE=1 or -DENABLE_DTRACE=0 option to CMake.

If a non-Solaris platform includes DTrace support, building mysqld on that platform will include DTrace
support.

5.4.1 mysqld DTrace Probe Reference

MySQL supports the following static probes, organized into groups of functionality.

Table 5.5 MySQL DTrace Probes

Group Probes

Connection connection-start, connection-done

Command command-start, command-done

Query query-start, query-done

Query Parsing query-parse-start, query-parse-done

Query Cache query-cache-hit, query-cache-miss

Query Execution query-exec-start, query-exec-done

Row Level insert-row-start, insert-row-done

 update-row-start, update-row-done

 delete-row-start, delete-row-done

Row Reads read-row-start, read-row-done

Index Reads index-read-row-start, index-read-row-done

Lock handler-rdlock-start, handler-rdlock-done

 handler-wrlock-start, handler-wrlock-done

 handler-unlock-start, handler-unlock-done

Filesort filesort-start, filesort-done

Statement select-start, select-done

 insert-start, insert-done

 insert-select-start, insert-select-done

 update-start, update-done

 multi-update-start, multi-update-done

 delete-start, delete-done

 multi-delete-start, multi-delete-done

Network net-read-start, net-read-done, net-write-start, net-write-done

Keycache keycache-read-start, keycache-read-block, keycache-read-done,
keycache-read-hit, keycache-read-miss, keycache-write-start,
keycache-write-block, keycache-write-done

http://docs.oracle.com/cd/E19253-01/819-5488/

mysqld DTrace Probe Reference

677

Note

When extracting the argument data from the probes, each argument is available
as argN, starting with arg0. To identify each argument within the definitions
they are provided with a descriptive name, but you must access the information
using the corresponding argN parameter.

5.4.1.1 Connection Probes

The connection-start and connection-done probes enclose a connection from a client,
regardless of whether the connection is through a socket or network connection.

connection-start(connectionid, user, host)
connection-done(status, connectionid)

• connection-start: Triggered after a connection and successful login/authentication have been
completed by a client. The arguments contain the connection information:

• connectionid: An unsigned long containing the connection ID. This is the same as the
process ID shown as the Id value in the output from SHOW PROCESSLIST.

• user: The username used when authenticating. The value will be blank for the anonymous user.

• host: The host of the client connection. For a connection made using UNIX sockets, the value will
be blank.

• connection-done: Triggered just as the connection to the client has been closed. The arguments
are:

• status: The status of the connection when it was closed. A logout operation will have a value of
0; any other termination of the connection has a nonzero value.

• connectionid: The connection ID of the connection that was closed.

The following D script will quantify and summarize the average duration of individual connections, and
provide a count, dumping the information every 60 seconds:

#!/usr/sbin/dtrace -s

mysql*:::connection-start
{
 self->start = timestamp;
}

mysql*:::connection-done
/self->start/
{
 @ = quantize(((timestamp - self->start)/1000000));
 self->start = 0;
}

tick-60s
{
 printa(@);
}

When executed on a server with a large number of clients you might see output similar to this:

 1 57413 :tick-60s

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 30011
 1 | 59
 2 | 5

mysqld DTrace Probe Reference

678

 4 | 20
 8 | 29
 16 | 18
 32 | 27
 64 | 30
 128 | 11
 256 | 10
 512 | 1
 1024 | 6
 2048 | 8
 4096 | 9
 8192 | 8
 16384 | 2
 32768 | 1
 65536 | 1
 131072 | 0
 262144 | 1
 524288 | 0

5.4.1.2 Command Probes

The command probes are executed before and after a client command is executed, including any
SQL statement that might be executed during that period. Commands include operations such as the
initialization of the DB, use of the COM_CHANGE_USER operation (supported by the MySQL protocol),
and manipulation of prepared statements. Many of these commands are used only by the MySQL client
API from various connectors such as PHP and Java.

command-start(connectionid, command, user, host)
command-done(status)

• command-start: Triggered when a command is submitted to the server.

• connectionid: The connection ID of the client executing the command.

• command: An integer representing the command that was executed. Possible values are shown in
the following table.

Value Name Description

00 COM_SLEEP Internal thread state

01 COM_QUIT Close connection

02 COM_INIT_DB Select database (USE ...)

03 COM_QUERY Execute a query

04 COM_FIELD_LIST Get a list of fields

05 COM_CREATE_DBCreate a database (deprecated)

06 COM_DROP_DB Drop a database (deprecated)

07 COM_REFRESH Refresh connection

08 COM_SHUTDOWNShutdown server

09 COM_STATISTICSGet statistics

10 COM_PROCESS_INFOGet processes (SHOW PROCESSLIST)

11 COM_CONNECT Initialize connection

12 COM_PROCESS_KILLKill process

13 COM_DEBUG Get debug information

14 COM_PING Ping

15 COM_TIME Internal thread state

16 COM_DELAYED_INSERTInternal thread state

17 COM_CHANGE_USERChange user

mysqld DTrace Probe Reference

679

Value Name Description

18 COM_BINLOG_DUMPUsed by a replication slave or mysqlbinlog to initiate a binary log
read

19 COM_TABLE_DUMPUsed by a replication slave to get the master table information

20 COM_CONNECT_OUTUsed by a replication slave to log a connection to the server

21 COM_REGISTER_SLAVEUsed by a replication slave during registration

22 COM_STMT_PREPAREPrepare a statement

23 COM_STMT_EXECUTEExecute a statement

24 COM_STMT_SEND_LONG_DATAUsed by a client when requesting extended data

25 COM_STMT_CLOSEClose a prepared statement

26 COM_STMT_RESETReset a prepared statement

27 COM_SET_OPTIONSet a server option

28 COM_STMT_FETCHFetch a prepared statement

• user: The user executing the command.

• host: The client host.

• command-done: Triggered when the command execution completes. The status argument
contains 0 if the command executed successfully, or 1 if the statement was terminated before normal
completion.

The command-start and command-done probes are best used when combined with the statement
probes to get an idea of overall execution time.

5.4.1.3 Query Probes

The query-start and query-done probes are triggered when a specific query is received by the
server and when the query has been completed and the information has been successfully sent to the
client.

query-start(query, connectionid, database, user, host)
query-done(status)

• query-start: Triggered after the query string has been received from the client. The arguments
are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID
equals the connection ID returned when the client first connects and the Id value in the output
from SHOW PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

• host: The hostname of the client.

• query-done: Triggered once the query has been executed and the information has been returned
to the client. The probe includes a single argument, status, which returns 0 when the query is
successfully executed and 1 if there was an error.

You can get a simple report of the execution time for each query using the following D script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysqld DTrace Probe Reference

680

dtrace:::BEGIN
{
 printf("%-20s %-20s %-40s %-9s\n", "Who", "Database", "Query", "Time(ms)");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
}

mysql*:::query-done
{
 printf("%-20s %-20s %-40s %-9d\n",self->who,self->db,self->query,
 (timestamp - self->querystart) / 1000000);
}

When executing the above script you should get a basic idea of the execution time of your queries:

shell> ./query.d
Who Database Query Time(ms)
root@localhost test select * from t1 order by i limit 10 0
root@localhost test set global query_cache_size=0 0
root@localhost test select * from t1 order by i limit 10 776
root@localhost test select * from t1 order by i limit 10 773
root@localhost test select * from t1 order by i desc limit 10 795

5.4.1.4 Query Parsing Probes

The query parsing probes are triggered before the original SQL statement is parsed and when the
parsing of the statement and determination of the execution model required to process the statement
has been completed:

query-parse-start(query)
query-parse-done(status)

• query-parse-start: Triggered just before the statement is parsed by the MySQL query parser.
The single argument, query, is a string containing the full text of the original query.

• query-parse-done: Triggered when the parsing of the original statement has been completed.
The status is an integer describing the status of the operation. A 0 indicates that the query was
successfully parsed. A 1 indicates that the parsing of the query failed.

For example, you could monitor the execution time for parsing a given query using the following D
script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::query-parse-start
{
 self->parsestart = timestamp;
 self->parsequery = copyinstr(arg0);
}

mysql*:::query-parse-done
/arg0 == 0/
{
 printf("Parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));
}

mysql*:::query-parse-done
/arg0 != 0/
{
 printf("Error parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));

mysqld DTrace Probe Reference

681

}

In the above script a predicate is used on query-parse-done so that different output is generated
based on the status value of the probe.

When running the script and monitoring the execution:

shell> ./query-parsing.d
Error parsing select from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 36 ms
Parsing select * from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 176 ms

5.4.1.5 Query Cache Probes

The query cache probes are fired when executing any query. The query-cache-hit query
is triggered when a query exists in the query cache and can be used to return the query cache
information. The arguments contain the original query text and the number of rows returned from the
query cache for the query. If the query is not within the query cache, or the query cache is not enabled,
then the query-cache-miss probe is triggered instead.

query-cache-hit(query, rows)
query-cache-miss(query)

• query-cache-hit: Triggered when the query has been found within the query cache. The first
argument, query, contains the original text of the query. The second argument, rows, is an integer
containing the number of rows in the cached query.

• query-cache-miss: Triggered when the query is not found within the query cache. The first
argument, query, contains the original text of the query.

The query cache probes are best combined with a probe on the main query so that you can determine
the differences in times between using or not using the query cache for specified queries. For example,
in the following D script, the query and query cache information are combined into the information
output during monitoring:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-20s %-20s %-40s %2s %-9s\n", "Who", "Database", "Query", "QC", "Time(ms)");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
 self->qc = 0;
}

mysql*:::query-cache-hit
{
 self->qc = 1;
}

mysql*:::query-cache-miss
{
 self->qc = 0;
}

mysql*:::query-done
{
 printf("%-20s %-20s %-40s %-2s %-9d\n",self->who,self->db,self->query,(self->qc ? "Y" : "N"),
 (timestamp - self->querystart) / 1000000);
}

mysqld DTrace Probe Reference

682

When executing the script you can see the effects of the query cache. Initially the query cache is
disabled. If you set the query cache size and then execute the query multiple times you should see that
the query cache is being used to return the query data:

shell> ./query-cache.d
root@localhost test select * from t1 order by i limit 10 N 1072
root@localhost set global query_cache_size=262144 N 0
root@localhost test select * from t1 order by i limit 10 N 781
root@localhost test select * from t1 order by i limit 10 Y 0

5.4.1.6 Query Execution Probes

The query execution probe is triggered when the actual execution of the query starts, after the parsing
and checking the query cache but before any privilege checks or optimization. By comparing the
difference between the start and done probes you can monitor the time actually spent servicing the
query (instead of just handling the parsing and other elements of the query).

query-exec-start(query, connectionid, database, user, host, exec_type)
query-exec-done(status)

Note

The information provided in the arguments for query-start and query-
exec-start are almost identical and designed so that you can choose to
monitor either the entire query process (using query-start) or only the
execution (using query-exec-start) while exposing the core information
about the user, client, and query being executed.

• query-exec-start: Triggered when the execution of a individual query is started. The arguments
are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID
equals the connection ID returned when the client first connects and the Id value in the output
from SHOW PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

• host: The hostname of the client.

• exec_type: The type of execution. Execution types are determined based on the contents of the
query and where it was submitted. The values for each type are shown in the following table.

Value Description

0 Executed query from sql_parse, top-level query.

1 Executed prepared statement

2 Executed cursor statement

3 Executed query in stored procedure

• query-exec-done: Triggered when the execution of the query has completed. The probe includes
a single argument, status, which returns 0 when the query is successfully executed and 1 if there
was an error.

5.4.1.7 Row-Level Probes

The *row-{start,done} probes are triggered each time a row operation is pushed down to a
storage engine. For example, if you execute an INSERT statement with 100 rows of data, then the

mysqld DTrace Probe Reference

683

insert-row-start and insert-row-done probes will be triggered 100 times each, for each row
insert.

insert-row-start(database, table)
insert-row-done(status)

update-row-start(database, table)
update-row-done(status)

delete-row-start(database, table)
delete-row-done(status)

• insert-row-start: Triggered before a row is inserted into a table.

• insert-row-done: Triggered after a row is inserted into a table.

• update-row-start: Triggered before a row is updated in a table.

• update-row-done: Triggered before a row is updated in a table.

• delete-row-start: Triggered before a row is deleted from a table.

• delete-row-done: Triggered before a row is deleted from a table.

The arguments supported by the probes are consistent for the corresponding start and done probes
in each case:

• database: The database name.

• table: The table name.

• status: The status; 0 for success or 1 for failure.

Because the row-level probes are triggered for each individual row access, these probes can be
triggered many thousands of times each second, which may have a detrimental effect on both the
monitoring script and MySQL. The DTrace environment should limit the triggering on these probes
to prevent the performance being adversely affected. Either use the probes sparingly, or use counter
or aggregation functions to report on these probes and then provide a summary when the script
terminates or as part of a query-done or query-exec-done probes.

The following example script summarizes the duration of each row operation within a larger query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-2s %-10s %-10s %9s %9s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur ms", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->rowdur = 0;
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000000;
 printf("%2d %-10s %-10s %9d %9d %s\n",
 arg0, self->who, self->db,

mysqld DTrace Probe Reference

684

 self->connid, this->elapsed, self->query);
}

mysql*:::query-done
/ self->rowdur /
{
 printf("%34s %9d %s\n", "", (self->rowdur/1000000), "-> Row ops");
}

mysql*:::insert-row-start
{
 self->rowstart = timestamp;
}

mysql*:::delete-row-start
{
 self->rowstart = timestamp;
}

mysql*:::update-row-start
{
 self->rowstart = timestamp;
}

mysql*:::insert-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

mysql*:::delete-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

mysql*:::update-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

Running the above script with a query that inserts data into a table, you can monitor the exact time
spent performing the raw row insertion:

St Who DB ConnID Dur ms Query
 0 @localhost test 13 20767 insert into t1(select * from t2)
 4827 -> Row ops

5.4.1.8 Read Row Probes

The read row probes are triggered at a storage engine level each time a row read operation occurs.
These probes are specified within each storage engine (as opposed to the *row-start probes which
are in the storage engine interface). These probes can therefore be used to monitor individual storage
engine row-level operations and performance. Because these probes are triggered around the storage
engine row read interface, they may be hit a significant number of times during a basic query.

read-row-start(database, table, scan_flag)
read-row-done(status)

• read-row-start: Triggered when a row is read by the storage engine from the specified
database and table. The scan_flag is set to 1 (true) when the read is part of a table scan (that
is, a sequential read), or 0 (false) when the read is of a specific record.

• read-row-done: Triggered when a row read operation within a storage engine completes. The
status returns 0 on success, or a positive value on failure.

5.4.1.9 Index Probes

The index probes are triggered each time a a row is read using one of the indexes for the specified
table. The probe is triggered within the corresponding storage engine for the table.

mysqld DTrace Probe Reference

685

index-read-row-start(database, table)
index-read-row-done(status)

• index-read-row-start: Triggered when a row is read by the storage engine from the specified
database and table.

• index-read-row-done: Triggered when an indexed row read operation within a storage engine
completes. The status returns 0 on success, or a positive value on failure.

5.4.1.10 Lock Probes

The lock probes are called whenever an external lock is requested by MySQL for a table using the
corresponding lock mechanism on the table as defined by the table's engine type. There are three
different types of lock, the read lock, write lock, and unlock operations. Using the probes you can
determine the duration of the external locking routine (that is, the time taken by the storage engine to
implement the lock, including any time waiting for another lock to become free) and the total duration of
the lock/unlock process.

handler-rdlock-start(database, table)
handler-rdlock-done(status)

handler-wrlock-start(database, table)
handler-wrlock-done(status)

handler-unlock-start(database, table)
handler-unlock-done(status)

• handler-rdlock-start: Triggered when a read lock is requested on the specified database and
table.

• handler-wrlock-start: Triggered when a write lock is requested on the specified database
and table.

• handler-unlock-start: Triggered when an unlock request is made on the specified database
and table.

• handler-rdlock-done: Triggered when a read lock request completes. The status is 0 if the
lock operation succeeded, or >0 on failure.

• handler-wrlock-done: Triggered when a write lock request completes. The status is 0 if the
lock operation succeeded, or >0 on failure.

• handler-unlock-done: Triggered when an unlock request completes. The status is 0 if the
unlock operation succeeded, or >0 on failure.

You can use arrays to monitor the locking and unlocking of individual tables and then calculate the
duration of the entire table lock using the following script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::handler-rdlock-start
{
 self->rdlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 self->lockmap[this->lockref] = self->rdlockstart;
 printf("Start: Lock->Read %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}

mysql*:::handler-wrlock-start
{
 self->wrlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 self->lockmap[this->lockref] = self->rdlockstart;
 printf("Start: Lock->Write %s.%s\n",copyinstr(arg0),copyinstr(arg1));

mysqld DTrace Probe Reference

686

}

mysql*:::handler-unlock-start
{
 self->unlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 printf("Start: Lock->Unlock %s.%s (%d ms lock duration)\n",
 copyinstr(arg0),copyinstr(arg1),
 (timestamp - self->lockmap[this->lockref])/1000000);
}

mysql*:::handler-rdlock-done
{
 printf("End: Lock->Read %d ms\n",
 (timestamp - self->rdlockstart)/1000000);
}

mysql*:::handler-wrlock-done
{
 printf("End: Lock->Write %d ms\n",
 (timestamp - self->wrlockstart)/1000000);
}

mysql*:::handler-unlock-done
{
 printf("End: Lock->Unlock %d ms\n",
 (timestamp - self->unlockstart)/1000000);
}

When executed, you should get information both about the duration of the locking process itself, and of
the locks on a specific table:

Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (25743 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms

5.4.1.11 Filesort Probes

The filesort probes are triggered whenever a filesort operation is applied to a table. For more
information on filesort and the conditions under which it occurs, see Section 8.2.1.15, “ORDER BY
Optimization”.

filesort-start(database, table)
filesort-done(status, rows)

• filesort-start: Triggered when the filesort operation starts on a table. The two arguments to the
probe, database and table, will identify the table being sorted.

• filesort-done: Triggered when the filesort operation completes. Two arguments are supplied, the
status (0 for success, 1 for failure), and the number of rows sorted during the filesort process.

An example of this is in the following script, which tracks the duration of the filesort process in addition
to the duration of the main query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

mysqld DTrace Probe Reference

687

{
 printf("%-2s %-10s %-10s %9s %18s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->filesort = 0;
 self->fsdb = "";
 self->fstable = "";
}

mysql*:::filesort-start
{
 self->filesort = timestamp;
 self->fsdb = copyinstr(arg0);
 self->fstable = copyinstr(arg1);
}

mysql*:::filesort-done
{
 this->elapsed = (timestamp - self->filesort) /1000;
 printf("%2d %-10s %-10s %9d %18d Filesort on %s\n",
 arg0, self->who, self->fsdb,
 self->connid, this->elapsed, self->fstable);
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000;
 printf("%2d %-10s %-10s %9d %18d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
}

Executing a query on a large table with an ORDER BY clause that triggers a filesort, and then creating
an index on the table and then repeating the same query, you can see the difference in execution
speed:

St Who DB ConnID Dur microsec Query
 0 @localhost test 14 11335469 Filesort on t1
 0 @localhost test 14 11335787 select * from t1 order by i limit 100
 0 @localhost test 14 466734378 create index t1a on t1 (i)
 0 @localhost test 14 26472 select * from t1 order by i limit 100

5.4.1.12 Statement Probes

The individual statement probes are provided to give specific information about different statement
types. For the start probes the string of the query is provided as a the only argument. Depending on
the statement type, the information provided by the corresponding done probe will differ. For all done
probes the status of the operation (0 for success, >0 for failure) is provided. For SELECT, INSERT,
INSERT ... (SELECT FROM ...), DELETE, and DELETE FROM t1,t2 operations the number of
rows affected is returned.

For UPDATE and UPDATE t1,t2 ... statements the number of rows matched and the number
of rows actually changed is provided. This is because the number of rows actually matched by the
corresponding WHERE clause, and the number of rows changed can differ. MySQL does not update the
value of a row if the value already matches the new setting.

select-start(query)
select-done(status,rows)

insert-start(query)
insert-done(status,rows)

mysqld DTrace Probe Reference

688

insert-select-start(query)
insert-select-done(status,rows)

update-start(query)
update-done(status,rowsmatched,rowschanged)

multi-update-start(query)
multi-update-done(status,rowsmatched,rowschanged)

delete-start(query)
delete-done(status,rows)

multi-delete-start(query)
multi-delete-done(status,rows)

• select-start: Triggered before a SELECT statement.

• select-done: Triggered at the end of a SELECT statement.

• insert-start: Triggered before a INSERT statement.

• insert-done: Triggered at the end of an INSERT statement.

• insert-select-start: Triggered before an INSERT ... SELECT statement.

• insert-select-done: Triggered at the end of an INSERT ... SELECT statement.

• update-start: Triggered before an UPDATE statement.

• update-done: Triggered at the end of an UPDATE statement.

• multi-update-start: Triggered before an UPDATE statement involving multiple tables.

• multi-update-done: Triggered at the end of an UPDATE statement involving multiple tables.

• delete-start: Triggered before a DELETE statement.

• delete-done: Triggered at the end of a DELETE statement.

• multi-delete-start: Triggered before a DELETE statement involving multiple tables.

• multi-delete-done: Triggered at the end of a DELETE statement involving multiple tables.

The arguments for the statement probes are:

• query: The query string.

• status: The status of the query. 0 for success, and >0 for failure.

• rows: The number of rows affected by the statement. This returns the number rows found for
SELECT, the number of rows deleted for DELETE, and the number of rows successfully inserted for
INSERT.

• rowsmatched: The number of rows matched by the WHERE clause of an UPDATE operation.

• rowschanged: The number of rows actually changed during an UPDATE operation.

You use these probes to monitor the execution of these statement types without having to monitor the
user or client executing the statements. A simple example of this is to track the execution times:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-60s %-8s %-8s %-8s\n", "Query", "RowsU", "RowsM", "Dur (ms)");

mysqld DTrace Probe Reference

689

}

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
 self->query = copyinstr(arg0);
 self->querystart = timestamp;
}

mysql*:::insert-done, mysql*:::select-done,
mysql*:::delete-done, mysql*:::multi-delete-done, mysql*:::insert-select-done
/ self->querystart /
{
 this->elapsed = ((timestamp - self->querystart)/1000000);
 printf("%-60s %-8d %-8d %d\n",
 self->query,
 0,
 arg1,
 this->elapsed);
 self->querystart = 0;
}

mysql*:::update-done, mysql*:::multi-update-done
/ self->querystart /
{
 this->elapsed = ((timestamp - self->querystart)/1000000);
 printf("%-60s %-8d %-8d %d\n",
 self->query,
 arg1,
 arg2,
 this->elapsed);
 self->querystart = 0;
}

When executed you can see the basic execution times and rows matches:

Query RowsU RowsM Dur (ms)
select * from t2 0 275 0
insert into t2 (select * from t2) 0 275 9
update t2 set i=5 where i > 75 110 110 8
update t2 set i=5 where i < 25 254 134 12
delete from t2 where i < 5 0 0 0

Another alternative is to use the aggregation functions in DTrace to aggregate the execution time of
individual statements together:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
 self->querystart = timestamp;
}

mysql*:::select-done
{
 @statements["select"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::insert-done, mysql*:::insert-select-done
{
 @statements["insert"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::update-done, mysql*:::multi-update-done

mysqld DTrace Probe Reference

690

{
 @statements["update"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::delete-done, mysql*:::multi-delete-done
{
 @statements["delete"] = sum(((timestamp - self->querystart)/1000000));
}

tick-30s
{
 printa(@statements);
}

The script just shown aggregates the times spent doing each operation, which could be used to help
benchmark a standard suite of tests.

 delete 0
 update 0
 insert 23
 select 2484

 delete 0
 update 0
 insert 39
 select 10744

 delete 0
 update 26
 insert 56
 select 10944

 delete 0
 update 26
 insert 2287
 select 15985

5.4.1.13 Network Probes

The network probes monitor the transfer of information from the MySQL server and clients of all types
over the network. The probes are defined as follows:

net-read-start()
net-read-done(status, bytes)
net-write-start(bytes)
net-write-done(status)

• net-read-start: Triggered when a network read operation is started.

• net-read-done: Triggered when the network read operation completes. The status is an
integer representing the return status for the operation, 0 for success and 1 for failure. The bytes
argument is an integer specifying the number of bytes read during the process.

• net-start-bytes: Triggered when data is written to a network socket. The single argument,
bytes, specifies the number of bytes written to the network socket.

• net-write-done: Triggered when the network write operation has completed. The single
argument, status, is an integer representing the return status for the operation, 0 for success and 1
for failure.

You can use the network probes to monitor the time spent reading from and writing to network clients
during execution. The following D script provides an example of this. Both the cumulative time for the
read or write is calculated, and the number of bytes. Note that the dynamic variable size has been
increased (using the dynvarsize option) to cope with the rapid firing of the individual probes for the
network reads/writes.

#!/usr/sbin/dtrace -s

mysqld DTrace Probe Reference

691

#pragma D option quiet
#pragma D option dynvarsize=4m

dtrace:::BEGIN
{
 printf("%-2s %-30s %-10s %9s %18s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->netwrite = 0;
 self->netwritecum = 0;
 self->netwritebase = 0;
 self->netread = 0;
 self->netreadcum = 0;
 self->netreadbase = 0;
}

mysql*:::net-write-start
{
 self->netwrite += arg0;
 self->netwritebase = timestamp;
}

mysql*:::net-write-done
{
 self->netwritecum += (timestamp - self->netwritebase);
 self->netwritebase = 0;
}

mysql*:::net-read-start
{
 self->netreadbase = timestamp;
}

mysql*:::net-read-done
{
 self->netread += arg1;
 self->netreadcum += (timestamp - self->netreadbase);
 self->netreadbase = 0;
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000000;
 printf("%2d %-30s %-10s %9d %18d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
 printf("Net read: %d bytes (%d ms) write: %d bytes (%d ms)\n",
 self->netread, (self->netreadcum/1000000),
 self->netwrite, (self->netwritecum/1000000));
}

When executing the above script on a machine with a remote client, you can see that approximately a
third of the time spent executing the query is related to writing the query results back to the client.

St Who DB ConnID Dur microsec Query
 0 root@::ffff:192.168.0.108 test 31 3495 select * from t1 limit 1000000
Net read: 0 bytes (0 ms) write: 10000075 bytes (1220 ms)

5.4.1.14 Keycache Probes

The keycache probes are triggered when using the index key cache used with the MyISAM storage
engine. Probes exist to monitor when data is read into the keycache, cached key data is written from
the cache into a cached file, or when accessing the keycache.

mysqld DTrace Probe Reference

692

Keycache usage indicates when data is read or written from the index files into the cache, and can be
used to monitor how efficient the memory allocated to the keycache is being used. A high number of
keycache reads across a range of queries may indicate that the keycache is too small for size of data
being accessed.

keycache-read-start(filepath, bytes, mem_used, mem_free)
keycache-read-block(bytes)
keycache-read-hit()
keycache-read-miss()
keycache-read-done(mem_used, mem_free)
keycache-write-start(filepath, bytes, mem_used, mem_free)
keycache-write-block(bytes)
keycache-write-done(mem_used, mem_free)

When reading data from the index files into the keycache, the process first initializes the read operation
(indicated by keycache-read-start), then loads blocks of data (keycache-read-block), and
then the read block is either matches the data being identified (keycache-read-hit) or more data
needs to be read (keycache-read-miss). Once the read operation has completed, reading stops
with the keycache-read-done.

Data will be read from the index file into the keycache only when the specified key is not already within
the keycache.

• keycache-read-start: Triggered when the keycache read operation is started. Data is read from
the specified filepath, reading the specified number of bytes. The mem_used and mem_avail
indicate memory currently used by the keycache and the amount of memory available within the
keycache.

• keycache-read-block: Triggered when the keycache reads a block of data, of the specified
number of bytes, from the index file into the keycache.

• keycache-read-hit: Triggered when the block of data read from the index file matches the key
data requested.

• keycache-read-miss: Triggered when the block of data read from the index file does not match
the key data needed.

• keycache-read-done: Triggered when the keycache read operation has completed. The
mem_used and mem_avail indicate memory currently used by the keycache and the amount of
memory available within the keycache.

Keycache writes occur when the index information is updated during an INSERT, UPDATE, or DELETE
operation, and the cached key information is flushed back to the index file.

• keycache-write-start: Triggered when the keycache write operation is started. Data is written
to the specified filepath, reading the specified number of bytes. The mem_used and mem_avail
indicate memory currently used by the keycache and the amount of memory available within the
keycache.

• keycache-write-block: Triggered when the keycache writes a block of data, of the specified
number of bytes, to the index file from the keycache.

• keycache-write-done: Triggered when the keycache write operation has completed. The
mem_used and mem_avail indicate memory currently used by the keycache and the amount of
memory available within the keycache.

693

Chapter 6 Security

Table of Contents
6.1 General Security Issues ... 694

6.1.1 Security Guidelines ... 694
6.1.2 Keeping Passwords Secure .. 695
6.1.3 Making MySQL Secure Against Attackers .. 708
6.1.4 Security-Related mysqld Options and Variables .. 710
6.1.5 How to Run MySQL as a Normal User .. 710
6.1.6 Security Issues with LOAD DATA LOCAL .. 711
6.1.7 Client Programming Security Guidelines .. 712

6.2 The MySQL Access Privilege System .. 713
6.2.1 Privileges Provided by MySQL .. 714
6.2.2 Privilege System Grant Tables .. 718
6.2.3 Specifying Account Names ... 724
6.2.4 Access Control, Stage 1: Connection Verification ... 726
6.2.5 Access Control, Stage 2: Request Verification .. 729
6.2.6 When Privilege Changes Take Effect .. 730
6.2.7 Causes of Access-Denied Errors ... 731

6.3 MySQL User Account Management ... 736
6.3.1 User Names and Passwords ... 736
6.3.2 Adding User Accounts .. 738
6.3.3 Removing User Accounts .. 741
6.3.4 Setting Account Resource Limits ... 741
6.3.5 Assigning Account Passwords ... 743
6.3.6 Password Expiration Policy ... 744
6.3.7 Password Expiration and Sandbox Mode ... 746
6.3.8 Pluggable Authentication ... 747
6.3.9 Authentication Plugins Available in MySQL .. 750
6.3.10 Proxy Users ... 760
6.3.11 Using SSL for Secure Connections .. 764
6.3.12 Connecting to MySQL Remotely from Windows with SSH ... 776
6.3.13 MySQL Enterprise Audit Log Plugin ... 776
6.3.14 SQL-Based MySQL Account Activity Auditing ... 793

When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

• General factors that affect security. These include choosing good passwords, not granting
unnecessary privileges to users, ensuring application security by preventing SQL injections and data
corruption, and others. See Section 6.1, “General Security Issues”.

• Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized
parties. For more information, see Section 2.9, “Postinstallation Setup and Testing”.

• Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For
more information, see Section 6.2, “The MySQL Access Privilege System”, and Section 6.3, “MySQL
User Account Management”.

• Network security of MySQL and your system. The security is related to the grants for individual
users, but you may also wish to restrict MySQL so that it is available only locally on the MySQL
server host, or to a limited set of other hosts.

General Security Issues

694

• Ensure that you have adequate and appropriate backups of your database files, configuration
and log files. Also be sure that you have a recovery solution in place and test that you are able to
successfully recover the information from your backups. See Chapter 7, Backup and Recovery.

6.1 General Security Issues

This section describes general security issues to be aware of and what you can do to make your
MySQL installation more secure against attack or misuse. For information specifically about the access
control system that MySQL uses for setting up user accounts and checking database access, see
Section 2.9, “Postinstallation Setup and Testing”.

For answers to some questions that are often asked about MySQL Server security issues, see
Section B.9, “MySQL 5.7 FAQ: Security”.

6.1.1 Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to avoid the
most common security mistakes.

In discussing security, it is necessary to consider fully protecting the entire server host (not just the
MySQL server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of
service. We do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL
at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the
mysql database! This is critical.

• Learn how the MySQL access privilege system works (see Section 6.2, “The MySQL Access
Privilege System”). Use the GRANT and REVOKE statements to control access to MySQL. Do not
grant more privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked
for a password, anyone can connect to your MySQL server as the MySQL root user with full
privileges! Review the MySQL installation instructions, paying particular attention to the information
about setting a root password. See Section 2.9.2, “Securing the Initial MySQL Accounts”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store cleartext passwords in your database. If your computer becomes compromised, the
intruder can take the full list of passwords and use them. Instead, use SHA2(), SHA1(), MD5(), or
some other one-way hashing function and store the hash value.

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.

• Do not choose passwords from dictionaries. Special programs exist to break passwords. Even
passwords like “xfish98” are very bad. Much better is “duag98” which contains the same word
“fish” but typed one key to the left on a standard QWERTY keyboard. Another method is to use
a password that is taken from the first characters of each word in a sentence (for example, “Four
score and seven years ago” results in a password of “Fsasya”). The password is easy to remember

Keeping Passwords Secure

695

and type, but difficult to guess for someone who does not know the sentence. In this case, you can
additionally substitute digits for the number words to obtain the phrase “4 score and 7 years ago”,
yielding the password “4sa7ya” which is even more difficult to guess.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306
by default. This port should not be accessible from untrusted hosts. As a simple way to check
whether your MySQL port is open, try the following command from some remote machine, where
server_host is the host name or IP address of the host on which your MySQL server runs:

shell> telnet server_host 3306

If telnet hangs or the connection is refused, the port is blocked, which is how you want it to be.
If you get a connection and some garbage characters, the port is open, and should be closed on
your firewall or router, unless you really have a good reason to keep it open.

• Applications that access MySQL should not trust any data entered by users, and should be written
using proper defensive programming techniques. See Section 6.1.7, “Client Programming Security
Guidelines”.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an
encrypted protocol such as SSL or SSH. MySQL supports internal SSL connections. Another
technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for the
communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL
data streams are unencrypted by issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see cleartext data, this does not always mean that the
information actually is encrypted. If you need high security, consult with a
security expert.

6.1.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that
enable end users and administrators to keep these passwords secure and avoid exposing them. There
is also a discussion of how MySQL uses password hashing internally and of a plugin that you can use
to enforce stricter passwords.

6.1.2.1 End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your
password in a way that exposes it to discovery by other users. The methods you can use to specify
your password when you run client programs are listed here, along with an assessment of the risks of
each method. In short, the safest methods are to have the client program prompt for the password or to
specify the password in a properly protected option file.

Keeping Passwords Secure

696

• Use the mysql_config_editor utility, which enables you to store authentication credentials
in an encrypted login file named .mylogin.cnf. The file can be read later by MySQL client
programs to obtain authentication credentials for connecting to MySQL Server. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• Use a -pyour_pass or --password=your_pass option on the command line. For example:

shell> mysql -u francis -pfrank db_name

This is convenient but insecure. On some systems, your password becomes visible to system
status programs such as ps that may be invoked by other users to display command lines. MySQL
clients typically overwrite the command-line password argument with zeros during their initialization
sequence. However, there is still a brief interval during which the value is visible. Also, on some
systems this overwriting strategy is ineffective and the password remains visible to ps. (SystemV
Unix systems and perhaps others are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your
terminal window, the password remains visible as long as the command is running, even if the
command has scrolled out of view in the window content area.

• Use the -p or --password option on the command line with no password value specified. In this
case, the client program solicits the password interactively:

shell> mysql -u francis -p db_name
Enter password: ********

The “*” characters indicate where you enter your password. The password is not displayed as you
enter it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs
that you run interactively. If you want to invoke a client from a script that runs noninteractively, there
is no opportunity to enter the password from the keyboard. On some systems, you may even find
that the first line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix, you can list your password in the
[client] section of the .my.cnf file in your home directory:

[client]
password=your_pass

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this,
set the file access mode to 400 or 600. For example:

shell> chmod 600 .my.cnf

To name from the command line a specific option file containing the password, use the --
defaults-file=file_name option, where file_name is the full path name to the file. For
example:

shell> mysql --defaults-file=/home/francis/mysql-opts

Section 4.2.3.3, “Using Option Files”, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. See Section 2.11, “Environment
Variables”.

This method of specifying your MySQL password must be considered extremely insecure and should
not be used. Some versions of ps include an option to display the environment of running processes.

Keeping Passwords Secure

697

On some systems, if you set MYSQL_PWD, your password is exposed to any other user who runs
ps. Even on systems without such a version of ps, it is unwise to assume that there are no other
methods by which users can examine process environments.

On Unix, the mysql client writes a record of executed statements to a history file (see Section 4.5.1.3,
“mysql Logging”). By default, this file is named .mysql_history and is created in your home
directory. Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT,
and SET PASSWORD, so if you use these statements, they are logged in the history file. To keep this file
safe, use a restrictive access mode, the same way as described earlier for the .my.cnf file.

If your command interpreter is configured to maintain a history, any file in which the commands
are saved will contain MySQL passwords entered on the command line. For example, bash uses
~/.bash_history. Any such file should have a restrictive access mode.

6.1.2.2 Administrator Guidelines for Password Security

Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user table. Access to this table should
never be granted to any nonadministrative accounts.

Account passwords can be expired so that users must reset them. See Section 6.3.6, “Password
Expiration Policy”, and Section 6.3.7, “Password Expiration and Sandbox Mode”.

The validate_password plugin can be used to enforce a policy on acceptable password. See
Section 6.1.2.6, “The Password Validation Plugin”.

A user who has access to modify the plugin directory (the value of the plugin_dir system variable)
or the my.cnf file that specifies the location of the plugin directory can replace plugins and modify the
capabilities provided by plugins, including authentication plugins.

Files such as log files to which passwords might be written should be protected. See Section 6.1.2.3,
“Passwords and Logging”.

6.1.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, and SET
PASSWORD, or statements that invoke the PASSWORD() function. If these statements are logged by the
MySQL server as written, such passwords become available to anyone with access to the logs.

Passwords in statements written to the general query log, slow query log, and binary log are rewritten
by the server not to occur literally in plain text. Password rewriting can be suppressed for the general
query log by starting the server with the --log-raw option. This option may be useful for diagnostic
purposes, to see the exact text of statements as received by the server, but for security reasons is not
recommended for production use.

In MySQL 5.7, statement logging avoids writing passwords in plain text for the following statements:

CREATE USER ... IDENTIFIED BY ...
GRANT ... IDENTIFIED BY ...
SET PASSWORD ...
SLAVE START ... PASSWORD = ...
CREATE SERVER ... OPTIONS(... PASSWORD ...)
ALTER SERVER ... OPTIONS(... PASSWORD ...)

Passwords in those statements are rewritten not to appear literally in statement text, for the general
query log, slow query log, and binary log. Rewriting does not apply to other statements.

For the general query log, password rewriting can be suppressed by starting the server with the --
log-raw option. This option may be useful for diagnostic purposes, to see the exact text of statements
as received by the server, but for security reasons is not recommended for production use.

Keeping Passwords Secure

698

Contents of the audit log file produced by the audit log plugin are not encrypted. For security reasons,
this file should be written to a directory accessible only to the MySQL server and users with a legitimate
reason to view the log. See Section 6.3.13.2, “Audit Log Plugin Security Considerations”.

To guard log files against unwarranted exposure, they should be located in a directory that restricts
access to only the server and the database administrator. If you log to tables in the mysql database,
access to those tables should never be granted to any nonadministrative accounts.

Replication slaves store the password for the replication master in the master info repository, which can
be either a file or a table (see Section 16.2.2, “Replication Relay and Status Logs”). Ensure that the
repository can be accessed only by the database administrator. An alternative to storing the password
in a file is to use the START SLAVE statement to specify credentials for connecting to the master.

Database backups that include tables or log files containing passwords should be protected using a
restricted access mode.

6.1.2.4 Password Hashing in MySQL

MySQL lists user accounts in the user table of the mysql database. Each MySQL account can be
assigned a password, although the user table does not store the cleartext version of the password, but
a hash value computed from it.

MySQL uses passwords in two phases of client/server communication:

• When a client attempts to connect to the server, there is an initial authentication step in which the
client must present a password that has a hash value matching the hash value stored in the user
table for the account the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hash
for accounts listed in the user table. The client can do this by using the PASSWORD() function to
generate a password hash, or by using a password-generating statement (CREATE USER, GRANT, or
SET PASSWORD).

In other words, the server checks hash values during authentication when a client first attempts to
connect. The server generates hash values if a connected client invokes the PASSWORD() function or
uses a password-generating statement to set or change a password.

Password hashing methods in MySQL have the history described following. These changes are
illustrated by changes in the result from the PASSWORD() function that computes password hash
values and in the structure of the user table where passwords are stored.

The Original (Pre-4.1) Hashing Method

The original hashing method produced a 16-byte string. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

To store account passwords, the Password column of the user table was at this point 16 bytes long.

The 4.1 Hashing Method

MySQL 4.1 introduced password hashing that provides better security and reduces the risk of
passwords being intercepted. There were several aspects to this change:

• Different PASSWORD() function result format

• Widening of the Password column

• Control over the default hashing method

Keeping Passwords Secure

699

• Control over the permitted hashing methods for clients attempting to connect to the server

The changes in MySQL 4.1 took place in two stages:

• MySQL 4.1.0 used a preliminary version of the 4.1 hashing method. Because this method was so
short lived, the following discussion says no more about it.

• In MySQL 4.1.1, the hashing method was modified to produce a longer 41-byte hash value:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+

The longer password hash format has better cryptographic properties, and client authentication
based on long hashes is more secure than that based on the older short hashes.

To accommodate longer password hashes, the Password column in the user table was changed at
this point to be 41 bytes, its current length.

A widened Password column can store password hashes in both the pre-4.1 and 4.1 formats. The
format of any given hash value can be determined two ways:

• The length: 4.1 and pre-4.1 hashes are 41 and 16 bytes, respectively.

• Password hashes in the 4.1 format always begin with a “*” character, whereas passwords in the
pre-4.1 format never do.

To permit explicit generation of pre-4.1 password hashes, two additional changes were made:

• The OLD_PASSWORD() function was added, which returns hash values in the 16-byte format.

• For compatibility purposes, the old_passwords system variable was added, to enable DBAs and
applications control over the hashing method. The default old_passwords value of 0 causes
hashing to use the 4.1 method (41-byte hash values), but setting old_passwords=1 causes
hashing to use the pre-4.1 method. In this case, PASSWORD() produces 16-byte values and is
equivalent to OLD_PASSWORD()

To permit DBAs control over how clients are permitted to connect, the secure_auth system
variable was added. Starting the server with this variable disabled or enabled permits or prohibits
clients to connect using the older pre-4.1 password hashing method. Before MySQL 5.6.5,
secure_auth is disabled by default. As of 5.6.5, secure_auth is enabled by default to
promote a more secure default configuration DBAs can disable it at their discretion, but this is not
recommended), and pre-4.1 password hashes are deprecated and should be avoided. (For account
upgrade instructions, see Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.)

In addition, the mysql client supports a --secure-auth option that is analogous to secure_auth,
but from the client side. It can be used to prevent connections to less secure accounts that
use pre-4.1 password hashing. This option is disabled by default before MySQL 5.6.7, enabled
thereafter.

Compatibility Issues Related to Hashing Methods

The widening of the Password column in MySQL 4.1 from 16 bytes to 41 bytes affects installation or
upgrade operations as follows:

• If you perform a new installation of MySQL, the Password column is made 41 bytes long
automatically.

Keeping Passwords Secure

700

• Upgrades from MySQL 4.1 or later to current versions of MySQL should not give rise to any issues in
regard to the Password column because both versions use the same column length and password
hashing method.

• For upgrades from a pre-4.1 release to 4.1 or later, you must upgrade the system tables after
upgrading. (See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.)

The 4.1 hashing method is understood only by MySQL 4.1 (and newer) servers and clients, which can
result in some compatibility problems. A 4.1 or newer client can connect to a pre-4.1 server, because
the client understands both the pre-4.1 and 4.1 password hashing methods. However, a pre-4.1 client
that attempts to connect to a 4.1 or newer server may run into difficulties. For example, a 4.0 mysql
client may fail with the following error message:

shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

This phenomenon also occurs for attempts to use the older PHP mysql extension after upgrading to
MySQL 4.1 or newer. (See Common Problems with MySQL and PHP.)

The following discussion describes the differences between the pre-4.1 and 4.1 hashing methods, and
what you should do if you upgrade your server but need to maintain backward compatibility with pre-4.1
clients. (However, permitting connections by old clients is not recommended and should be avoided
if possible.) Additional information can be found in Section C.5.2.4, “Client does not support
authentication protocol”. This information is of particular importance to PHP programmers
migrating MySQL databases from versions older than 4.1 to 4.1 or higher.

The differences between short and long password hashes are relevant both for how the server uses
passwords during authentication and for how it generates password hashes for connected clients that
perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the
Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

• Pre-4.1 clients can connect, but because they know only about the pre-4.1 hashing method, they
can authenticate only using accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later
clients than for older clients. In terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width
of the Password column and by the old_passwords system variable. A 4.1 or later server generates
long hashes only if certain conditions are met: The Password column must be wide enough to hold
long values and old_passwords must not be set to 1.

Those conditions apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not
been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes cannot
fit into it and generates only short hashes when a client performs password-changing operations
using the PASSWORD() function or a password-generating statement. This is the behavior that

http://dev.mysql.com/doc/apis-php/en/apis-php-problems.html

Keeping Passwords Secure

701

occurs if you have upgraded from a version of MySQL older than 4.1 to 4.1 or later but have not yet
run the mysql_upgrade program to widen the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case, the
PASSWORD() function and password-generating statements generate long hashes unless the server
was started with the old_passwords system variable set to 1 to force the server to generate short
password hashes instead.

The purpose of the old_passwords system variable is to permit backward compatibility with pre-4.1
clients under circumstances where the server would otherwise generate long password hashes.
The option does not affect authentication (4.1 and later clients can still use accounts that have long
password hashes), but it does prevent creation of a long password hash in the user table as the result
of a password-changing operation. Were that permitted to occur, the account could no longer be used
by pre-4.1 clients. With old_passwords disabled, the following undesirable scenario is possible:

• An old pre-4.1 client connects to an account that has a short password hash.

• The client changes its own password. With old_passwords disabled, this results in the account
having a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has
a long password hash that requires the 4.1 hashing method during authentication. (Once an account
has a long password hash in the user table, only 4.1 and later clients can authenticate for it because
pre-4.1 clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is problematic to run a 4.1
or newer server without old_passwords set to 1. By running the server with old_passwords=1,
password-changing operations do not generate long password hashes and thus do not cause accounts
to become inaccessible to older clients. (Those clients cannot inadvertently lock themselves out by
changing their password and ending up with a long password hash.)

The downside of old_passwords=1 is that any passwords created or changed use short hashes,
even for 4.1 or later clients. Thus, you lose the additional security provided by long password hashes.
To create an account that has a long hash (for example, for use by 4.1 clients) or to change an existing
account to use a long password hash, an administrator can set the session value of old_passwords
set to 0 while leaving the global value set to 1:

mysql> SET @@session.old_passwords = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@session.old_passwords, @@global.old_passwords;
+-------------------------+------------------------+
| @@session.old_passwords | @@global.old_passwords |
+-------------------------+------------------------+
| 0 | 1 |
+-------------------------+------------------------+
1 row in set (0.00 sec)

mysql> CREATE USER 'newuser'@'localhost' IDENTIFIED BY 'newpass';
Query OK, 0 rows affected (0.03 sec)

mysql> SET PASSWORD FOR 'existinguser'@'localhost' = PASSWORD('existingpass');
Query OK, 0 rows affected (0.00 sec)

The following scenarios are possible in MySQL 4.1 or later. The factors are whether the Password
column is short or long, and, if long, whether the server is started with old_passwords enabled or
disabled.

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

Keeping Passwords Secure

702

• For connected clients, password hash-generating operations involving the PASSWORD() function
or password-generating statements use short hashes exclusively. Any change to an account's
password results in that account having a short password hash.

• The value of old_passwords is irrelevant because with a short Password column, the server
generates only short password hashes anyway.

This scenario occurs when a pre-4.1 MySQL installation has been upgraded to 4.1 or later but
mysql_upgrade has not been run to upgrade the system tables in the mysql database. (This is not a
recommended configuration because it does not permit use of more secure 4.1 password hashing.)

Scenario 2: Long Password column; server started with old_passwords=1:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function
or password-generating statements use short hashes exclusively. Any change to an account's
password results in that account having a short password hash.

In this scenario, newly created accounts have short password hashes because old_passwords=1
prevents generation of long hashes. Also, if you create an account with a long hash before setting
old_passwords to 1, changing the account's password while old_passwords=1 results in the
account being given a short password, causing it to lose the security benefits of a longer hash.

To create a new account that has a long password hash, or to change the password of any existing
account to use a long hash, first set the session value of old_passwords set to 0 while leaving the
global value set to 1, as described previously.

In this scenario, the server has an up to date Password column, but is running with the default
password hashing method set to generate pre-4.1 hash values. This is not a recommended
configuration but may be useful during a transitional period in which pre-4.1 clients and passwords
are upgraded to 4.1 or later. When that has been done, it is preferable to run the server with
old_passwords=0 and secure_auth=1.

Scenario 3: Long Password column; server started with old_passwords=0:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use long hashes exclusively. A change to an account's password
results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short
password hash to become inaccessible to pre-4.1 clients. A change to such an account's password
made using the PASSWORD() function or a password-generating statement results in the account being
given a long password hash. From that point on, no pre-4.1 client can connect to the server using that
account. The client must upgrade to 4.1 or later.

If this is a problem, you can change a password in a special way. For example, normally you use SET
PASSWORD as follows to change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

Keeping Passwords Secure

703

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

The disadvantages for each of the preceding scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, old_passwords=1 prevents accounts with short hashes from becoming inaccessible,
but password-changing operations cause accounts with long hashes to revert to short hashes unless
you take care to change the session value of old_passwords to 0 first.

In scenario 3, accounts with short hashes become inaccessible to pre-4.1 clients if you change their
passwords without explicitly using OLD_PASSWORD().

The best way to avoid compatibility problems related to short password hashes is to not use them:

• Upgrade all client programs to MySQL 4.1 or later.

• Run the server with old_passwords=0.

• Reset the password for any account with a short password hash to use a long password hash.

• For additional security, run the server with secure_auth=1.

6.1.2.5 Implications of Password Hashing Changes in MySQL 4.1 for Application
Programs

An upgrade to MySQL version 4.1 or later can cause compatibility issues for applications that use
PASSWORD() to generate passwords for their own purposes. Applications really should not do this,
because PASSWORD() should be used only to manage passwords for MySQL accounts. But some
applications use PASSWORD() for their own purposes anyway.

If you upgrade to 4.1 or later from a pre-4.1 version of MySQL and run the server under conditions
where it generates long password hashes, an application using PASSWORD() for its own passwords
breaks. The recommended course of action in such cases is to modify the application to use another
function, such as SHA2(), SHA1(), or MD5(), to produce hashed values. If that is not possible, you
can use the OLD_PASSWORD() function, which is provided for generate short hashes in the old format.
However, you should note that OLD_PASSWORD() may one day no longer be supported.

If the server is running with old_passwords=1, it generates short hashes and OLD_PASSWORD() is
equivalent to PASSWORD().

PHP programmers migrating their MySQL databases from version 4.0 or lower to version 4.1 or higher
should see MySQL and PHP.

6.1.2.6 The Password Validation Plugin

The validate_password plugin can be used to test passwords and improve security. This plugin
implements two capabilities:

• In statements that assign a password supplied as a cleartext value, the value is checked
against the current password policy and rejected if it is weak (the statement returns an
ER_NOT_VALID_PASSWORD error). This affects the CREATE USER, GRANT, and SET PASSWORD
statements. Passwords given as arguments to the PASSWORD() and OLD_PASSWORD() functions
are checked as well.

• The strength of potential passwords can be assessed using the
VALIDATE_PASSWORD_STRENGTH() SQL function, which takes a password argument and returns
an integer from 0 (weak) to 100 (strong).

For example, the cleartext password in the following statement is checked. Under the default password
policy, which requires passwords to be at least 8 characters long, the password is weak and the
statement produces an error:

http://dev.mysql.com/doc/apis-php/en/index.html

Keeping Passwords Secure

704

mysql> SET PASSWORD = PASSWORD('abc');
ERROR 1819 (HY000): Your password does not satisfy the current policy
requirements

Passwords specified as already hashed values are not checked because the original password value is
not available:

mysql> SET PASSWORD = '*0D3CED9BEC10A777AEC23CCC353A8C08A633045E';
Query OK, 0 rows affected (0.01 sec)

The parameters that control password checking are available as the values of the system variables
having names of the form validate_password_xxx. These variables can be modified to configure
password checking; see Password Validation Plugin Options and Variables.

The three levels of password checking are LOW, MEDIUM, and STRONG. The default is MEDIUM; to
change this, modify the value of validate_password_policy. The policies implement increasingly
strict password tests. The following descriptions refer to default parameter values; these can be
modified by changing the appropriate system variables.

• LOW policy tests password length only. Passwords must be at least 8 characters long.

• MEDIUM policy adds the conditions that passwords must contain at least 1 numeric character, 1
lowercase and uppercase character, and 1 special (nonalphanumeric) character.

• STRONG policy adds the condition that password substrings of length 4 or longer must not match
words in the dictionary file, if one has been specified.

If the validate_password plugin is not installed, the validate_password_xxx system variables
are not available, passwords in statements are not checked, and VALIDATE_PASSWORD_STRENGTH()
always returns 0. For example, accounts can be assigned passwords shorter than 8 characters.

Password Validation Plugin Installation

The password-validation plugin is named validate_password. To be usable by the server, the
plugin library object file must be located in the MySQL plugin directory (the directory named by the
plugin_dir system variable). If necessary, set the value of plugin_dir at server startup to tell the
server the location of the plugin directory.

To load the plugin at server startup, use the --plugin-load option to name the object file that
contains the plugin. With this plugin-loading method, the option must be given each time the server
starts. For example, put these lines in your my.cnf file:

[mysqld]
plugin-load=validate_password.so

If object files have a suffix different from .so on your system, substitute the correct suffix (for example,
.dll on Windows).

Alternatively, to register the plugin at runtime, use this statement (changing the extension as
necessary):

mysql> INSTALL PLUGIN validate_password SONAME 'validate_password.so';

INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins table to cause the
plugin to be loaded for each subsequent normal server startup.

If the plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load,
you can use the --validate-password option at server startup to control plugin activation. For
example, to load the plugin and prevent it from being removed at runtime, use these options:

Keeping Passwords Secure

705

[mysqld]
plugin-load=validate_password.so
validate-password=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without the password-validation plugin, use --
validate-password with a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to
fail if the plugin does not initialize successfully.

For general information about installing plugins, see Section 5.1.8, “Server Plugins”. To verify plugin
installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS
statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.

Password Validation Plugin Options and Variables

To control the activation of the validate_password plugin, use this option:

• --validate-password[=value]

Command-Line Format --validate-password[=value]

Option-File Format validate-password

Permitted Values

Type enumeration

Default ON

ON

OFF

FORCE

Valid
Values

FORCE_PLUS_PERMANENT

This option controls how the server loads the validate_password plugin at startup.
The value should be one of those available for plugin-loading options, as described
in Section 5.1.8.1, “Installing and Uninstalling Plugins”. For example, --validate-
password=FORCE_PLUS_PERMANENT tells the server to load the plugin and prevent it from being
removed while the server is running.

This option is available only if the validate_password plugin has been previously registered with
INSTALL PLUGIN or is loaded with --plugin-load. See Password Validation Plugin Installation.

If the validate_password plugin is installed, it exposes several system variables that indicate the
parameters that control password checking:

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	8
validate_password_mixed_case_count	1
validate_password_number_count	1
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+

To change how passwords are checked, you can set any of these variables at server startup, and most
of them at runtime. The following list describes the meaning of each variable.

• validate_password_dictionary_file

System Variable Name validate_password_dictionary_file

Variable Scope Global

Keeping Passwords Secure

706

Dynamic Variable No

Permitted Values

Type file name

The path name of the dictionary file used by the validate_password plugin for checking
passwords. This variable is unavailable unless that plugin is installed.

By default, this variable has an empty value and dictionary checks are not performed. To enable
dictionary checks, you must set this variable to a nonempty value. If the file is named as a relative
path, it is interpreted relative to the server data directory. Its contents should be lowercase, one word
per line. Contents are treated as having a character set of utf8. The maximum permitted file size is
1MB.

For the dictionary file to be used during password checking, the password policy must be set to 2
(STRONG); see the description of the validate_password_policy system variable. Assuming
that is true, each substring of the password of length 4 up to 100 is compared to the words in the
dictionary file. Any match causes the password to be rejected. Comparisons are not case sensitive.

For VALIDATE_PASSWORD_STRENGTH() the password is checked against all policies,
including STRONG, so the strength assessment includes the dictionary check regardless of the
validate_password_policy value.

Changes to the dictionary file while the server is running require a restart for the server to recognize
the changes.

• validate_password_length

System Variable Name validate_password_length

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 8

Min
Value

0

The minimum number of characters that passwords checked by the validate_password plugin
must have. This variable is unavailable unless that plugin is installed.

The validate_password_length minimum value is a function of several other related system
variables. The server will not set the value less than the value of this expression:

validate_password_number_count
+ validate_password_special_char_count
+ (2 * validate_password_mixed_case_count)

If the validate_password plugin adjusts the value of validate_password_length due to the
preceding constraint, it writes a message to the error log.

• validate_password_mixed_case_count

System Variable Name validate_password_mixed_case_count

Variable Scope Global

Dynamic Variable Yes

 Permitted Values

Keeping Passwords Secure

707

Type numeric

Default 1

Min
Value

0

The minimum number of lowercase and uppercase characters that passwords checked by the
validate_password plugin must have if the password policy is MEDIUM or stronger. This variable
is unavailable unless that plugin is installed.

• validate_password_number_count

System Variable Name validate_password_number_count

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1

Min
Value

0

The minimum number of numeric (digit) characters that passwords checked by the
validate_password plugin must have if the password policy is MEDIUM or stronger. This variable
is unavailable unless that plugin is installed.

• validate_password_policy

System Variable Name validate_password_policy

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default 1

0

1

Valid
Values

2

The password policy enforced by the validate_password plugin. This variable is unavailable
unless that plugin is installed.

The validate_password_policy value can be specified using numeric values 0, 1, 2,
or the corresponding symbolic values LOW, MEDIUM, STRONG. The following table describes
the tests performed for each policy. For the length test, the required length is the value of the
validate_password_length system variable. Similarly, the required values for the other tests
are given by other validate_password_xxx variables.

Policy Tests Performed

0 or LOW Length

1 or MEDIUM Length; numeric, lowercase/uppercase, and special characters

2 or STRONG Length; numeric, lowercase/uppercase, and special characters; dictionary file

• validate_password_special_char_count

Making MySQL Secure Against Attackers

708

System Variable Name validate_password_special_char_count

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1

Min
Value

0

The minimum number of nonalphanumeric characters that passwords checked by the
validate_password plugin must have if the password policy is MEDIUM or stronger. This variable
is unavailable unless that plugin is installed.

6.1.3 Making MySQL Secure Against Attackers

When you connect to a MySQL server, you should use a password. The password is not transmitted in
clear text over the connection. Password handling during the client connection sequence was upgraded
in MySQL 4.1.1 to be very secure. If you are still using pre-4.1.1-style passwords, the encryption
algorithm is not as strong as the newer algorithm. With some effort, a clever attacker who can sniff
the traffic between the client and the server can crack the password. (See Section 6.1.2.4, “Password
Hashing in MySQL”, for a discussion of the different password handling methods.)

All other information is transferred as text, and can be read by anyone who is able to watch the
connection. If the connection between the client and the server goes through an untrusted network,
and you are concerned about this, you can use the compressed protocol to make traffic much more
difficult to decipher. You can also use MySQL's internal SSL support to make the connection even
more secure. See Section 6.3.11, “Using SSL for Secure Connections”. Alternatively, use SSH to get
an encrypted TCP/IP connection between a MySQL server and a MySQL client. You can find an Open
Source SSH client at http://www.openssh.org/, and a commercial SSH client at http://www.ssh.com/.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know
the identity of the person running it. It is common for client/server applications that the user can
specify any user name to the client program. For example, anyone can use the mysql program
to connect as any other person simply by invoking it as mysql -u other_user db_name if
other_user has no password. If all accounts have a password, connecting using another user's
account becomes much more difficult.

For a discussion of methods for setting passwords, see Section 6.3.5, “Assigning Account
Passwords”.

• Make sure that the only Unix user account with read or write privileges in the database directories is
the account that is used for running mysqld.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any
user with the FILE privilege is able to cause the server to create files as root (for example,
~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified explicitly
using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a
separate Unix account named mysql to make everything even more secure. Use this account only
for administering MySQL. To start mysqld as a different Unix user, add a user option that specifies
the user name in the [mysqld] group of the my.cnf option file where you specify server options.
For example:

http://www.openssh.org/
http://www.ssh.com/

Making MySQL Secure Against Attackers

709

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section 6.1.5, “How to Run MySQL as a
Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root
user name in the user table. User names for MySQL accounts have nothing to do with user names
for Unix accounts.

• Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can
write a file anywhere in the file system with the privileges of the mysqld daemon. This includes
the server's data directory containing the files that implement the privilege tables. To make FILE-
privilege operations a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite
existing files and are writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This
could be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which then
can be displayed with SELECT.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.4, “Server System Variables”.

• Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of
mysqladmin processlist and SHOW PROCESSLIST shows the text of any statements
currently being executed, so any user who is permitted to see the server process list
might be able to see statements issued by other users such as UPDATE user SET
password=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL
root user can log in and check server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by
changing the value of system variables, and control replication servers.

• Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-
symbolic-links option.) This is especially important if you run mysqld as root, because anyone
that has write access to the server's data directory then could delete any file in the system! See
Using Symbolic Links for MyISAM Tables on Unix.

• Stored programs and views should be written using the security guidelines discussed in
Section 18.6, “Access Control for Stored Programs and Views”.

• If you do not trust your DNS, you should use IP addresses rather than host names in the grant
tables. In any case, you should be very careful about creating grant table entries using host name
values that contain wildcards.

• If you want to restrict the number of connections permitted to a single account, you can do
so by setting the max_user_connections variable in mysqld. The GRANT statement also
supports resource control options for limiting the extent of server use permitted to an account. See
Section 13.7.1.4, “GRANT Syntax”.

• If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting --secure-file-priv to a directory where
SELECT writes can be made safely.

Security-Related mysqld Options and Variables

710

6.1.4 Security-Related mysqld Options and Variables

The following table shows mysqld options and system variables that affect security. For descriptions
of each of these, see Section 5.1.3, “Server Command Options”, and Section 5.1.4, “Server System
Variables”.

Table 6.1 Security Option/Variable Summary

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

allow-suspicious-
udfs

Yes Yes

automatic_sp_privileges Yes Global Yes

chroot Yes Yes

des-key-file Yes Yes

local_infile Yes Global Yes

old_passwords Yes Both Yes

safe-user-create Yes Yes

secure-auth Yes Yes Global Yes

- Variable:
secure_auth

 Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable:
secure_file_priv

 Yes Global No

skip-grant-tables Yes Yes

skip-name-
resolve

Yes Yes Global No

- Variable:
skip_name_resolve

 Yes Global No

skip-networking Yes Yes Global No

- Variable:
skip_networking

 Yes Global No

skip-show-
database

Yes Yes Global No

- Variable:
skip_show_database

 Yes Global No

6.1.5 How to Run MySQL as a Normal User

On Windows, you can run the server as a Windows service using a normal user account.

On Unix, the MySQL server mysqld can be started and run by any user. However, you should avoid
running the server as the Unix root user for security reasons. To change mysqld to run as a normal
unprivileged Unix user user_name, you must do the following:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files
in them (you might need to do this as the Unix root user):

shell> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server will not be able to access databases or tables when it runs as
user_name.

Security Issues with LOAD DATA LOCAL

711

If directories or files within the MySQL data directory are symbolic links, chown -R might not
follow symbolic links for you. If it does not, you will also need to follow those links and change the
directories and files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user
and use the --user=user_name option. mysqld starts up, then switches to run as the Unix user
user_name before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the user name
by adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf
option file in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself is not secured, you should assign passwords to the MySQL root accounts
in the grant tables. Otherwise, any user with a login account on that machine can run the mysql client
with a --user=root option and perform any operation. (It is a good idea to assign passwords to
MySQL accounts in any case, but especially so when other login accounts exist on the server host.)
See Section 2.9.2, “Securing the Initial MySQL Accounts”.

6.1.6 Security Issues with LOAD DATA LOCAL

The LOAD DATA statement can load a file that is located on the server host, or it can load a file that is
located on the client host when the LOCAL keyword is specified.

There are two potential security issues with supporting the LOCAL version of LOAD DATA statements:

• The transfer of the file from the client host to the server host is initiated by the MySQL server. In
theory, a patched server could be built that would tell the client program to transfer a file of the
server's choosing rather than the file named by the client in the LOAD DATA statement. Such a
server could access any file on the client host to which the client user has read access.

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a
user could run any command against the SQL server). In this environment, the client with respect
to the MySQL server actually is the Web server, not the remote program being run by the user who
connects to the Web server.

To deal with these problems, we changed how LOAD DATA LOCAL is handled as of MySQL 3.23.49
and MySQL 4.0.2 (4.0.13 on Windows):

• By default, all MySQL clients and libraries in binary distributions are compiled with the -
DENABLED_LOCAL_INFILE=1 option, to be compatible with MySQL 3.23.48 and before.

• If you build MySQL from source but do not invoke CMake with the -DENABLED_LOCAL_INFILE=1
option, LOAD DATA LOCAL cannot be used by any client unless it is written explicitly to
invoke mysql_options(... MYSQL_OPT_LOCAL_INFILE, 0). See Section 21.8.7.50,
“mysql_options()”.

• You can disable all LOAD DATA LOCAL statements from the server side by starting mysqld with the
--local-infile=0 option.

• For the mysql command-line client, enable LOAD DATA LOCAL by specifying the --local-
infile[=1] option, or disable it with the --local-infile=0 option. For mysqlimport, local
data file loading is off by default; enable it with the --local or -L option. In any case, successful
use of a local load operation requires that the server permits it.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group from
option files, you can add the local-infile=1 option to that group. However, to keep this from

Client Programming Security Guidelines

712

causing problems for programs that do not understand local-infile, specify it using the loose-
prefix:

[client]
loose-local-infile=1

• If LOAD DATA LOCAL is disabled, either in the server or the client, a client that attempts to issue
such a statement receives the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

6.1.7 Client Programming Security Guidelines

Applications that access MySQL should not trust any data entered by users, who can try to trick your
code by entering special or escaped character sequences in Web forms, URLs, or whatever application
you have built. Be sure that your application remains secure if a user enters something like “; DROP
DATABASE mysql;”. This is an extreme example, but large security leaks and data loss might occur
as a result of hackers using similar techniques, if you do not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM table WHERE ID=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the
query SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server retrieves every row
in the table. This exposes every row and causes excessive server load. The simplest way to protect
from this type of attack is to use single quotation marks around the numeric constants: SELECT *
FROM table WHERE ID='234'. If the user enters extra information, it all becomes part of the string.
In a numeric context, MySQL automatically converts this string to a number and strips any trailing
nonnumeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be
protected. This is incorrect. Even if it is permissible to display any row in the database, you should still
protect against denial of service attacks (for example, those that are based on the technique in the
preceding paragraph that causes the server to waste resources). Otherwise, your server becomes
unresponsive to legitimate users.

Checklist:

• Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Section 5.1.7, “Server SQL Modes”.

• Try to enter single and double quotation marks (“'” and “"”) in all of your Web forms. If you get any
kind of MySQL error, investigate the problem right away.

• Try to modify dynamic URLs by adding %22 (“"”), %23 (“#”), and %27 (“'”) to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters
shown in the previous examples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

Many application programming interfaces provide a means of escaping special characters in data
values. Properly used, this prevents application users from entering values that cause the application to
generate statements that have a different effect than you intend:

The MySQL Access Privilege System

713

• MySQL C API: Use the mysql_real_escape_string() API call.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use either the mysqli or pdo_mysql extensions, and not the older ext/mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also Choosing an API.

If the older ext/mysql extension must be used, then for escaping use the
mysql_real_escape_string() function and not mysql_escape_string() or addslashes()
because only mysql_real_escape_string() is character set-aware; the other functions can be
“bypassed” when using (invalid) multi-byte character sets.

• Perl DBI: Use placeholders or the quote() method.

• Ruby DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

6.2 The MySQL Access Privilege System

The primary function of the MySQL privilege system is to authenticate a user who connects from a
given host and to associate that user with privileges on a database such as SELECT, INSERT, UPDATE,
and DELETE. Additional functionality includes the ability to have anonymous users and to grant
privileges for MySQL-specific functions such as LOAD DATA INFILE and administrative operations.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create
or drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object
such as a database, table, or routine.

The user interface to the MySQL privilege system consists of SQL statements such as CREATE USER,
GRANT, and REVOKE. See Section 13.7.1, “Account Management Statements”.

Internally, the server stores privilege information in the grant tables of the mysql database (that is, in
the database named mysql). The MySQL server reads the contents of these tables into memory when
it starts and bases access-control decisions on the in-memory copies of the grant tables.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which
you connect and the user name you specify. When you issue requests after connecting, the system
grants privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason
to assume that a given user name belongs to the same person on all hosts. For example, the user
joe who connects from office.example.com need not be the same person as the user joe who
connects from home.example.com. MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by joe from office.example.com, and a different set of privileges for connections by joe from
home.example.com. To see what privileges a given account has, use the SHOW GRANTS statement.
For example:

http://dev.mysql.com/doc/apis-php/en/apis-php-mysqlinfo.api.choosing.html

Privileges Provided by MySQL

714

SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can
verify your identity by supplying the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table
in a database or drop a table from the database, the server verifies that you have the SELECT privilege
for the table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 6.2.4, “Access
Control, Stage 1: Connection Verification”, and Section 6.2.5, “Access Control, Stage 2: Request
Verification”.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details
about the conditions under which the server reloads the grant tables, see Section 6.2.6, “When
Privilege Changes Take Effect”.

For general security-related advice, see Section 6.1, “General Security Issues”. For help in diagnosing
privilege-related problems, see Section 6.2.7, “Causes of Access-Denied Errors”.

6.2.1 Privileges Provided by MySQL

MySQL provides privileges that apply in different contexts and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges
are global because they are not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted
for specific databases, or globally so that they apply to all databases.

• Privileges for database objects such as tables, indexes, views, and stored routines can be granted
for specific objects within a database, for all objects of a given type within a database (for example,
all tables in a database), or globally for all objects of a given type in all databases).

Information about account privileges is stored in the user, db, tables_priv, columns_priv, and
procs_priv tables in the mysql database (see Section 6.2.2, “Privilege System Grant Tables”). The
MySQL server reads the contents of these tables into memory when it starts and reloads them under
the circumstances indicated in Section 6.2.6, “When Privilege Changes Take Effect”. Access-control
decisions are based on the in-memory copies of the grant tables.

Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges
or features. To make sure that you can take advantage of any new capabilities, update your
grant tables to have the current structure whenever you update to a new version of MySQL. See
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

The following table shows the privilege names used at the SQL level in the GRANT and REVOKE
statements, along with the column name associated with each privilege in the grant tables and the
context in which the privilege applies.

Table 6.2 Permissible Privileges for GRANT and REVOKE

Privilege Column Context

CREATE Create_priv databases, tables, or indexes

Privileges Provided by MySQL

715

Privilege Column Context

DROP Drop_priv databases, tables, or views

GRANT OPTION Grant_priv databases, tables, or stored routines

LOCK TABLES Lock_tables_priv databases

REFERENCES References_priv databases or tables

EVENT Event_priv databases

ALTER Alter_priv tables

DELETE Delete_priv tables

INDEX Index_priv tables

INSERT Insert_priv tables or columns

SELECT Select_priv tables or columns

UPDATE Update_priv tables or columns

CREATE TEMPORARY
TABLES

Create_tmp_table_priv tables

TRIGGER Trigger_priv tables

CREATE VIEW Create_view_priv views

SHOW VIEW Show_view_priv views

ALTER ROUTINE Alter_routine_priv stored routines

CREATE ROUTINE Create_routine_priv stored routines

EXECUTE Execute_priv stored routines

FILE File_priv file access on server host

CREATE TABLESPACE Create_tablespace_priv server administration

CREATE USER Create_user_priv server administration

PROCESS Process_priv server administration

PROXY see proxies_priv table server administration

RELOAD Reload_priv server administration

REPLICATION CLIENT Repl_client_priv server administration

REPLICATION SLAVE Repl_slave_priv server administration

SHOW DATABASES Show_db_priv server administration

SHUTDOWN Shutdown_priv server administration

SUPER Super_priv server administration

ALL [PRIVILEGES] server administration

USAGE server administration

The following list provides a general description of each privilege available in MySQL. Particular SQL
statements might have more specific privilege requirements than indicated here. If so, the description
for the statement in question provides the details.

• The ALL or ALL PRIVILEGES privilege specifier is shorthand. It stands for “all privileges available
at a given privilege level” (except GRANT OPTION). For example, granting ALL at the global or table
level grants all global privileges or all table-level privileges.

• The ALTER privilege enables use of ALTER TABLE to change the structure of tables. ALTER TABLE
also requires the CREATE and INSERT privileges. Renaming a table requires ALTER and DROP on
the old table, ALTER, CREATE, and INSERT on the new table.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines (procedures and functions).

Privileges Provided by MySQL

716

• The CREATE privilege enables creation of new databases and tables.

• The CREATE ROUTINE privilege is needed to create stored routines (procedures and functions).

• The CREATE TABLESPACE privilege is needed to create, alter, or drop tablespaces and log file
groups.

• The CREATE TEMPORARY TABLES privilege enables the creation of temporary tables using the
CREATE TEMPORARY TABLE statement.

After a session has created a temporary table, the server performs no further privilege checks on the
table. The creating session can perform any operation on the table, such as DROP TABLE, INSERT,
UPDATE, or SELECT.

One implication of this behavior is that a session can manipulate its temporary tables even if the
current user has no privilege to create them. Suppose that the current user does not have the
CREATE TEMPORARY TABLES privilege but is able to execute a DEFINER-context stored procedure
that executes with the privileges of a user who does have CREATE TEMPORARY TABLES and that
creates a temporary table. While the procedure executes, the session uses the privileges of the
defining user. After the procedure returns, the effective privileges revert to those of the current user,
which can still see the temporary table and perform any operation on it.

To keep privileges for temporary and nontemporary tables separate, a common workaround for this
situation is to create a database dedicated to the use of temporary tables. Then for that database,
a user can be granted the CREATE TEMPORARY TABLES privilege, along with any other privileges
required for temporary table operations done by that user.

• The CREATE USER privilege enables use of CREATE USER, DROP USER, RENAME USER, and
REVOKE ALL PRIVILEGES.

• The CREATE VIEW privilege enables use of CREATE VIEW.

• The DELETE privilege enables rows to be deleted from tables in a database.

• The DROP privilege enables you to drop (remove) existing databases, tables, and views. The DROP
privilege is required in order to use the statement ALTER TABLE ... DROP PARTITION on a
partitioned table. The DROP privilege is also required for TRUNCATE TABLE. If you grant the DROP
privilege for the mysql database to a user, that user can drop the database in which the MySQL
access privileges are stored.

• The EVENT privilege is required to create, alter, drop, or see events for the Event Scheduler.

• The EXECUTE privilege is required to execute stored routines (procedures and functions).

• The FILE privilege gives you permission to read and write files on the server host using the LOAD
DATA INFILE and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. A
user who has the FILE privilege can read any file on the server host that is either world-readable or
readable by the MySQL server. (This implies the user can read any file in any database directory,
because the server can access any of those files.) The FILE privilege also enables the user to
create new files in any directory where the MySQL server has write access. This includes the
server's data directory containing the files that implement the privilege tables. As a security measure,
the server will not overwrite existing files.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.4, “Server System Variables”.

• The GRANT OPTION privilege enables you to give to other users or remove from other users those
privileges that you yourself possess.

• The INDEX privilege enables you to create or drop (remove) indexes. INDEX applies to existing
tables. If you have the CREATE privilege for a table, you can include index definitions in the CREATE
TABLE statement.

Privileges Provided by MySQL

717

• The INSERT privilege enables rows to be inserted into tables in a database. INSERT is also required
for the ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

• The LOCK TABLES privilege enables the use of explicit LOCK TABLES statements to lock tables
for which you have the SELECT privilege. This includes the use of write locks, which prevents other
sessions from reading the locked table.

• The PROCESS privilege pertains to display of information about the threads executing within the
server (that is, information about the statements being executed by sessions). The privilege enables
use of SHOW PROCESSLIST or mysqladmin processlist to see threads belonging to other
accounts; you can always see your own threads. The PROCESS privilege also enables use of SHOW
ENGINE.

• The PROXY privilege enables a user to impersonate or become known as another user. See
Section 6.3.10, “Proxy Users”.

• The REFERENCES privilege currently is unused.

• The RELOAD privilege enables use of the FLUSH statement. It also enables mysqladmin commands
that are equivalent to FLUSH operations: flush-hosts, flush-logs, flush-privileges,
flush-status, flush-tables, flush-threads, refresh, and reload.

The reload command tells the server to reload the grant tables into memory. flush-privileges
is a synonym for reload. The refresh command closes and reopens the log files and flushes
all tables. The other flush-xxx commands perform functions similar to refresh, but are more
specific and may be preferable in some instances. For example, if you want to flush just the log files,
flush-logs is a better choice than refresh.

• The REPLICATION CLIENT privilege enables the use of SHOW MASTER STATUS, SHOW SLAVE
STATUS, and SHOW BINARY LOGS.

• The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers to
connect to the current server as their master. Without this privilege, the slave cannot request updates
that have been made to databases on the master server.

• The SELECT privilege enables you to select rows from tables in a database. SELECT statements
require the SELECT privilege only if they actually retrieve rows from a table. Some SELECT
statements do not access tables and can be executed without permission for any database.
For example, you can use SELECT as a simple calculator to evaluate expressions that make no
reference to tables:

SELECT 1+1;
SELECT PI()*2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col_name=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

• The SHOW DATABASES privilege enables the account to see database names by issuing the SHOW
DATABASE statement. Accounts that do not have this privilege see only databases for which they
have some privileges, and cannot use the statement at all if the server was started with the --skip-
show-database option. Note that any global privilege is a privilege for the database.

• The SHOW VIEW privilege enables use of SHOW CREATE VIEW.

• The SHUTDOWN privilege enables use of the mysqladmin shutdown command. There is no
corresponding SQL statement.

• The SUPER privilege enables an account to use CHANGE MASTER TO, KILL or mysqladmin
kill to kill threads belonging to other accounts (you can always kill your own threads), PURGE
BINARY LOGS, configuration changes using SET GLOBAL to modify global system variables,
the mysqladmin debug command, enabling or disabling logging, performing updates even if

Privilege System Grant Tables

718

the read_only system variable is enabled, starting and stopping replication on slave servers,
specification of any account in the DEFINER attribute of stored programs and views, and enables you
to connect (once) even if the connection limit controlled by the max_connections system variable
is reached.

To create or alter stored functions if binary logging is enabled, you may also need the SUPER
privilege, as described in Section 18.7, “Binary Logging of Stored Programs”.

• The TRIGGER privilege enables trigger operations. You must have this privilege for a table to create,
drop, or execute triggers for that table.

• The UPDATE privilege enables rows to be updated in tables in a database.

• The USAGE privilege specifier stands for “no privileges.” It is used at the global level with GRANT to
modify account attributes such as resource limits or SSL characteristics without affecting existing
account privileges.

It is a good idea to grant to an account only those privileges that it needs. You should exercise
particular caution in granting the FILE and administrative privileges:

• The FILE privilege can be abused to read into a database table any files that the MySQL server can
read on the server host. This includes all world-readable files and files in the server's data directory.
The table can then be accessed using SELECT to transfer its contents to the client host.

• The GRANT OPTION privilege enables users to give their privileges to other users. Two users that
have different privileges and with the GRANT OPTION privilege are able to combine privileges.

• The ALTER privilege may be used to subvert the privilege system by renaming tables.

• The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating the
server.

• The PROCESS privilege can be used to view the plain text of currently executing statements, including
statements that set or change passwords.

• The SUPER privilege can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql database itself can be used to change passwords and other access
privilege information. Passwords are stored encrypted, so a malicious user cannot simply read them
to know the plain text password. However, a user with write access to the user table Password
column can change an account's password, and then connect to the MySQL server using that
account.

6.2.2 Privilege System Grant Tables

Normally, you manipulate the contents of the grant tables in the mysql database indirectly by using
statements such as GRANT and REVOKE to set up accounts and control the privileges available to
each one. See Section 13.7.1, “Account Management Statements”. The discussion here describes the
underlying structure of the grant tables and how the server uses their contents when interacting with
clients.

These mysql database tables contain grant information:

• user: Contains user accounts, global privileges, and other non-privilege columns.

• db: Contains database-level privileges.

• host: Obsolete. New MySQL installations no longer create this table.

• tables_priv: Contains table-level privileges.

• columns_priv: Contains column-level privileges.

• procs_priv: Contains stored procedure and function privileges.

Privilege System Grant Tables

719

• proxies_priv: Contains proxy-user privileges.

Other tables in the mysql database do not hold grant information and are discussed elsewhere:

• event: Contains information about Event Scheduler events: See Section 18.4, “Using the Event
Scheduler”.

• func: Contains information about user-defined functions: See Section 22.3, “Adding New Functions
to MySQL”.

• help_xxx: These tables are used for server-side help: See Section 5.1.10, “Server-Side Help”.

• plugin: Contains information about server plugins: See Section 5.1.8.1, “Installing and Uninstalling
Plugins”, and Section 22.2, “The MySQL Plugin API”.

• proc: Contains information about stored procedures and functions: See Section 18.2, “Using Stored
Routines (Procedures and Functions)”.

• servers: Used by the FEDERATED storage engine: See Section 14.9.2.2, “Creating a FEDERATED
Table Using CREATE SERVER”.

• time_zone_xxx: These tables contain time zone information: See Section 10.6, “MySQL Server
Time Zone Support”.

• Tables with _log in their name are used for logging: See Section 5.2, “MySQL Server Logs”.

Note

Modifications to tables in the mysql database normally are made by the
server in response to statements such as CREATE USER, GRANT, or CREATE
PROCEDURE. Direct modification of these tables using statements such as
INSERT, UPDATE, or DELETE is not encouraged. The server is free to ignore
rows that become malformed as a result of such modifications.

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row (entry) in the tables; that is, the context in which
the row applies. For example, a user table row with Host and User values of 'thomas.loc.gov'
and 'bob' would be used for authenticating connections made to the server from the host
thomas.loc.gov by a client that specifies a user name of bob. Similarly, a db table row with
Host, User, and Db column values of 'thomas.loc.gov', 'bob' and 'reports' would be
used when bob connects from the host thomas.loc.gov to access the reports database. The
tables_priv and columns_priv tables contain scope columns indicating tables or table/column
combinations to which each row applies. The procs_priv scope columns indicate the stored
routine to which each row applies.

• Privilege columns indicate which privileges are granted by a table row; that is, what operations can
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 6.2.5, “Access Control, Stage 2: Request Verification”,
describes the rules that are used to do this.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's global privileges.
Any privilege granted in this table applies to all databases on the server.

Note

Because any global privilege is considered a privilege for all databases,
any global privilege enables a user to see all database names with SHOW
DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA.

Privilege System Grant Tables

720

• The db table scope columns determine which users can access which databases from which hosts.
The privilege columns determine which operations are permitted. A privilege granted at the database
level applies to the database and to all objects in the database, such as tables and stored programs.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies
only to a specific column.

• The procs_priv table applies to stored routines. A privilege granted at the routine level applies
only to a single routine.

• The proxies_priv table indicates which users can act as proxies for other users and whether
proxy users can grant the PROXY privilege to other users.

The server uses the user and db tables in the mysql database at both the first and second stages of
access control (see Section 6.2, “The MySQL Access Privilege System”). The columns in the user and
db tables are shown here.

Table 6.3 user and db Table Columns

Table Name user db

Scope columns Host Host

 User Db

 Password User

Privilege columns Select_priv Select_priv

 Insert_priv Insert_priv

 Update_priv Update_priv

 Delete_priv Delete_priv

 Index_priv Index_priv

 Alter_priv Alter_priv

 Create_priv Create_priv

 Drop_priv Drop_priv

 Grant_priv Grant_priv

 Create_view_priv Create_view_priv

 Show_view_priv Show_view_priv

 Create_routine_priv Create_routine_priv

 Alter_routine_priv Alter_routine_priv

 Execute_priv Execute_priv

 Trigger_priv Trigger_priv

 Event_priv Event_priv

 Create_tmp_table_priv Create_tmp_table_priv

 Lock_tables_priv Lock_tables_priv

 References_priv References_priv

 Reload_priv

 Shutdown_priv

 Process_priv

 File_priv

 Show_db_priv

Privilege System Grant Tables

721

Table Name user db

 Super_priv

 Repl_slave_priv

 Repl_client_priv

 Create_user_priv

 Create_tablespace_priv

Security columns ssl_type

 ssl_cipher

 x509_issuer

 x509_subject

 plugin

 authentication_string

 password_expired

 password_last_changed

 password_lifetime

Resource control columns max_questions

 max_updates

 max_connections

 max_user_connections

The mysql.user table plugin and authentication_string columns store authentication plugin
information.

As of MySQL 5.7.2, the plugin column must be nonempty, and the server uses the named plugin to
authenticate connection attempts for the account. Whether the plugin uses the value in the Password
column is up to the plugin.

Before MySQL 5.7.2, the plugin column for an account row is permitted to be empty. In this case, the
server authenticates the account using the mysql_native_password or mysql_old_password
plugin implicitly, depending on the format of the password hash in the Password column.
If the Password value is empty or a 4.1 password hash (41 characters), the server uses
mysql_native_password. If the password value is a pre-4.1 password hash (16 characters),
the server uses mysql_old_password. (For additional information about these hash formats, see
Section 6.1.2.4, “Password Hashing in MySQL”.) Clients must match the password in the Password
column of the account row.

At startup, and at runtime when FLUSH PRIVILEGES is executed, the server checks user table rows.
As of MySQL 5.7.2, for any row with an empty plugin column, the server writes a warning to the error
log of this form:

[Warning] User entry 'user_name'@'host_name' has an empty plugin
value. The user will be ignored and no one can login with this user
anymore.

To address this issue, execute mysql_upgrade.

If an account row names a plugin in the plugin column, the server uses it to authenticate connection
attempts for the account. Whether the plugin uses the value in the Password column is up to the
plugin.

The password_expired column permits DBAs to expire account passwords and require users to
reset their password. The default password_expired value is 'N', but can be set to 'Y' with the

Privilege System Grant Tables

722

ALTER USER statement. After an account's password has been expired, all operations performed
by the account in subsequent connections to the server result in an error until the user issues a SET
PASSWORD statement to establish a new account password. See Section 13.7.1.1, “ALTER USER
Syntax”.

It is possible after password expiration to “reset” a password by using SET PASSWORD to set it to its
current value. As a matter of good policy, it is preferable to choose a different password.

password_last_changed (added in MySQL 5.7.4) is a TIMESTAMP column indicating when
the password was last changed. The value is non-NULL only for accounts that use MySQL built-in
authentication methods (accounts that use an authentication plugin of mysql_native_password,
mysql_old_password, or sha256_password). The value is NULL for other accounts, such as those
authenticated using an external authentication system.

password_last_changed is updated by the CREATE USER and SET PASSWORD statements, and by
GRANT statements that create an account or change an account password.

password_lifetime (added in MySQL 5.7.4) indicates the account password lifetime, in days. If
the password is past its lifetime (assessed using the password_last_changed column), the server
considers the password expired when clients connect using the account. A value of N greater than zero
means that the password must be changed every N days. A value of 0 disables automatic password
expiration. If the value is NULL (the default), the global expiration policy applies, as defined by the
default_password_lifetime system variable.

During the second stage of access control, the server performs request verification to make sure that
each client has sufficient privileges for each request that it issues. In addition to the user and db grant
tables, the server may also consult the tables_priv and columns_priv tables for requests that
involve tables. The latter tables provide finer privilege control at the table and column levels. They have
the columns shown in the following table.

Table 6.4 tables_priv and columns_priv Table Columns

Table Name tables_priv columns_priv

Scope columns Host Host

 Db Db

 User User

 Table_name Table_name

 Column_name

Privilege columns Table_priv Column_priv

 Column_priv

Other columns Timestamp Timestamp

 Grantor

The Timestamp and Grantor columns are set to the current timestamp and the CURRENT_USER
value, respectively. However, they are unused and are discussed no further here.

For verification of requests that involve stored routines, the server may consult the procs_priv table,
which has the columns shown in the following table.

Table 6.5 procs_priv Table Columns

Table Name procs_priv

Scope columns Host

 Db

Privilege System Grant Tables

723

Table Name procs_priv

 User

 Routine_name

 Routine_type

Privilege columns Proc_priv

Other columns Timestamp

 Grantor

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to
indicate the type of routine the row refers to. This column enables privileges to be granted separately
for a function and a procedure with the same name.

The Timestamp and Grantor columns currently are unused and are discussed no further here.

The proxies_priv table records information about proxy users. It has these columns:

• Host, User: These columns indicate the user account that has the PROXY privilege for the proxied
account.

• Proxied_host, Proxied_user: These columns indicate the account of the proxied user.

• Grantor: Currently unused.

• Timestamp: Currently unused.

• With_grant: This column indicates whether the proxy account can grant the PROXY privilege to
other accounts.

Scope columns in the grant tables contain strings. They are declared as shown here; the default value
for each is the empty string.

Table 6.6 Grant Table Scope Column Types

Column Name Type

Host, Proxied_host CHAR(60)

User, Proxied_user CHAR(16)

Password CHAR(41)

Db CHAR(64)

Table_name CHAR(64)

Column_name CHAR(64)

Routine_name CHAR(64)

For access-checking purposes, comparisons of User, Proxied_user, Password, Db, and
Table_name values are case sensitive. Comparisons of Host, Proxied_host, Column_name, and
Routine_name values are not case sensitive.

In the user and db tables, each privilege is listed in a separate column that is declared as
ENUM('N','Y') DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with the
default being disabled.

In the tables_priv, columns_priv, and procs_priv tables, the privilege columns are declared as
SET columns. Values in these columns can contain any combination of the privileges controlled by the
table. Only those privileges listed in the column value are enabled.

Specifying Account Names

724

Table 6.7 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert', 'Update',
'Delete', 'Create', 'Drop', 'Grant',
'References', 'Index', 'Alter',
'Create View', 'Show view', 'Trigger'

tables_priv Column_priv 'Select', 'Insert', 'Update',
'References'

columns_priv Column_priv 'Select', 'Insert', 'Update',
'References'

procs_priv Proc_priv 'Execute', 'Alter Routine', 'Grant'

Administrative privileges (such as RELOAD or SHUTDOWN) are specified only in the user table.
Administrative operations are operations on the server itself and are not database-specific, so there is
no reason to list these privileges in the other grant tables. Consequently, to determine whether you can
perform an administrative operation, the server need consult only the user table.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as
such, but your ability to read or write files on the server host is independent of the database you are
accessing.

The mysqld server reads the contents of the grant tables into memory when it starts. You can tell it to
reload the tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin flush-
privileges or mysqladmin reload command. Changes to the grant tables take effect as indicated
in Section 6.2.6, “When Privilege Changes Take Effect”.

When you modify an account's privileges, it is a good idea to verify that the changes set up privileges
the way you want. To check the privileges for a given account, use the SHOW GRANTS statement
(see Section 13.7.5.20, “SHOW GRANTS Syntax”). For example, to determine the privileges that are
granted to an account with user name and host name values of bob and pc84.example.com, use
this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

6.2.3 Specifying Account Names

MySQL account names consist of a user name and a host name. This enables creation of accounts for
users with the same name who can connect from different hosts. This section describes how to write
account names, including special values and wildcard rules.

In SQL statements such as CREATE USER, GRANT, and SET PASSWORD, write account names using
the following rules:

• Syntax for account names is 'user_name'@'host_name'.

• An account name consisting only of a user name is equivalent to 'user_name'@'%'. For example,
'me' is equivalent to 'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes
are necessary to specify a user_name string containing special characters (such as “-”), or a
host_name string containing special characters or wildcard characters (such as “%”); for example,
'test-user'@'%.com'.

• Quote user names and host names as identifiers or as strings, using either backticks (“`”), single
quotation marks (“'”), or double quotation marks (“"”).

• The user name and host name parts, if quoted, must be quoted separately. That is, write
'me'@'localhost', not 'me@localhost'; the latter is interpreted as 'me@localhost'@'%'.

Specifying Account Names

725

• A reference to the CURRENT_USER or CURRENT_USER() function is equivalent to specifying the
current client's user name and host name literally.

MySQL stores account names in grant tables in the mysql database using separate columns for the
user name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user
name and host name. This table also indicates which global privileges the account has.

• Other grant tables indicate privileges an account has for databases and objects within databases.
These tables have User and Host columns to store the account name. Each row in these tables
associates with the account in the user table that has the same User and Host values.

For additional detail about grant table structure, see Section 6.2.2, “Privilege System Grant Tables”.

User names and host names have certain special values or wildcard conventions, as described
following.

A user name is either a nonblank value that literally matches the user name for incoming connection
attempts, or a blank value (empty string) that matches any user name. An account with a blank user
name is an anonymous user. To specify an anonymous user in SQL statements, use a quoted empty
user name part, such as ''@'localhost'.

The host name part of an account name can take many forms, and wildcards are permitted:

• A host value can be a host name or an IP address (IPv4 or IPv6). The name 'localhost'
indicates the local host. The IP address '127.0.0.1' indicates the IPv4 loopback interface. The IP
address '::1' indicates the IPv6 loopback interface.

• You can use the wildcard characters “%” and “_” in host name or IP address values. These have the
same meaning as for pattern-matching operations performed with the LIKE operator. For example, a
host value of '%' matches any host name, whereas a value of '%.mysql.com' matches any host
in the mysql.com domain. '192.168.1.%' matches any host in the 192.168.1 class C network.

Because you can use IP wildcard values in host values (for example, '192.168.1.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
192.168.1.somewhere.com. To foil such attempts, MySQL disallows matching on host names
that start with digits and a dot. Thus, if you have a host named something like 1.2.example.com,
its name never matches the host part of account names. An IP wildcard value can match only IP
addresses, not host names.

• For a host value specified as an IPv4 address, you can specify a netmask indicating how many
address bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.

The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'192.58.197.0/255.255.255.0';

This enables david to connect from any client host having an IP address client_ip for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 192.58.197.0

IP addresses that satisfy this condition and can connect to the MySQL server are those in the range
from 192.58.197.0 to 192.58.197.255.

Access Control, Stage 1: Connection Verification

726

The netmask can only be used to tell the server to use 8, 16, 24, or 32 bits of the address. Examples:

• 192.0.0.0/255.0.0.0: Any host on the 192 class A network

• 192.168.0.0/255.255.0.0: Any host on the 192.168 class B network

• 192.168.1.0/255.255.255.0: Any host on the 192.168.1 class C network

• 192.168.1.1: Only the host with this specific IP address

The following netmask will not work because it masks 28 bits, and 28 is not a multiple of 8:

192.168.0.1/255.255.255.240

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, this comparison is performed as a string match,
even for an account host value given as an IP address. This means that you should specify account
host values in the same format used by DNS. Here are examples of problems to watch out for:

• Suppose that a host on the local network has a fully qualified name of host1.example.com. If DNS
returns name lookups for this host as host1.example.com, use that name in account host values.
But if DNS returns just host1, use host1 instead.

• If DNS returns the IP address for a given host as 192.168.1.2, that will match an account host
value of 192.168.1.2 but not 192.168.01.2. Similarly, it will match an account host pattern like
192.168.1.% but not 192.168.01.%.

To avoid problems like this, it is advisable to check the format in which your DNS returns host names
and addresses, and use values in the same format in MySQL account names.

6.2.4 Access Control, Stage 1: Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based
on your identity and whether you can verify your identity by supplying the correct password. If not, the
server denies access to you completely. Otherwise, the server accepts the connection, and then enters
Stage 2 and waits for requests.

Your identity is based on two pieces of information:

• The client host from which you connect

• Your MySQL user name

Identity checking is performed using the three user table scope columns (Host, User, and
Password). The server accepts the connection only if the Host and User columns in some user
table row match the client host name and user name and the client supplies the password specified
in that row. The rules for permissible Host and User values are given in Section 6.2.3, “Specifying
Account Names”.

If the User column value is nonblank, the user name in an incoming connection must match exactly.
If the User value is blank, it matches any user name. If the user table row that matches an incoming
connection has a blank user name, the user is considered to be an anonymous user with no name, not
a user with the name that the client actually specified. This means that a blank user name is used for
all further access checking for the duration of the connection (that is, during Stage 2).

The Password column can be blank. This is not a wildcard and does not mean that any password
matches. It means that the user must connect without specifying a password. If the server
authenticates a client using a plugin, the authentication method that the plugin implements may or may

Access Control, Stage 1: Connection Verification

727

not use the password in the Password column. In this case, it is possible that an external password is
also used to authenticate to the MySQL server.

Nonblank Password values in the user table represent encrypted passwords. MySQL does not
store passwords in plaintext form for anyone to see. Rather, the password supplied by a user who is
attempting to connect is encrypted (using the PASSWORD() function). The encrypted password then
is used during the connection process when checking whether the password is correct. This is done
without the encrypted password ever traveling over the connection. See Section 6.3.1, “User Names
and Passwords”.

From MySQL's point of view, the encrypted password is the real password, so you should never give
anyone access to it. In particular, do not give nonadministrative users read access to tables in the
mysql database.

The following table shows how various combinations of Host and User values in the user table apply
to incoming connections.

Host Value User Value Permissible Connections

'thomas.loc.gov' 'fred' fred, connecting from thomas.loc.gov

'thomas.loc.gov' '' Any user, connecting from thomas.loc.gov

'%' 'fred' fred, connecting from any host

'%' '' Any user, connecting from any host

'%.loc.gov' 'fred' fred, connecting from any host in the loc.gov
domain

'x.y.%' 'fred' fred, connecting from x.y.net, x.y.com,
x.y.edu, and so on; this is probably not useful

'144.155.166.177' 'fred' fred, connecting from the host with IP address
144.155.166.177

'144.155.166.%' 'fred' fred, connecting from any host in the
144.155.166 class C subnet

'144.155.166.0/255.255.255.0''fred' Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than
one row in the user table. The preceding set of examples demonstrates this: Several of the entries
shown match a connection from thomas.loc.gov by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this
issue as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first. Literal host
names and IP addresses are the most specific. (The specificity of a literal IP address is not affected by
whether it has a netmask, so 192.168.1.13 and 192.168.1.0/255.255.255.0 are considered
equally specific.) The pattern '%' means “any host” and is least specific. The empty string '' also
means “any host” but sorts after '%'. Rows with the same Host value are ordered with the most-
specific User values first (a blank User value means “any user” and is least specific).

To see how this works, suppose that the user table looks like this:

+-----------+----------+-

Access Control, Stage 1: Connection Verification

728

| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it sorts the rows using the rules just described. The
result after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from localhost by jeffrey, two of the rows from the table match: the
one with Host and User values of 'localhost' and '', and the one with values of '%' and
'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-

A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a connection
by jeffrey from any host is matched by the second.

Note

It is a common misconception to think that, for a given user name, all rows
that explicitly name that user are used first when the server attempts to find a
match for the connection. This is not true. The preceding example illustrates
this, where a connection from thomas.loc.gov by jeffrey is first matched
not by the row containing 'jeffrey' as the User column value, but by the row
with no user name. As a result, jeffrey is authenticated as an anonymous
user, even though he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are
being authenticated as some other account. To find out what account the server used to authenticate
you, use the CURRENT_USER() function. (See Section 12.14, “Information Functions”.) It returns a
value in user_name@host_name format that indicates the User and Host values from the matching
user table row. Suppose that jeffrey connects and issues the following query:

Access Control, Stage 2: Request Verification

729

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In
other words, the server is treating jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to
see where the first match is being made.

6.2.5 Access Control, Stage 2: Request Verification

After you establish a connection, the server enters Stage 2 of access control. For each request that you
issue through that connection, the server determines what operation you want to perform, then checks
whether you have sufficient privileges to do so. This is where the privilege columns in the grant tables
come into play. These privileges can come from any of the user, db, tables_priv, columns_priv,
or procs_priv tables. (You may find it helpful to refer to Section 6.2.2, “Privilege System Grant
Tables”, which lists the columns present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter
what the default database is. For example, if the user table grants you the DELETE privilege, you can
delete rows from any table in any database on the server host! It is wise to grant privileges in the user
table only to people who need them, such as database administrators. For other users, you should
leave all privileges in the user table set to 'N' and grant privileges at more specific levels only. You
can grant privileges for particular databases, tables, columns, or routines.

The db table grants database-specific privileges. Values in the scope columns of this table can take the
following forms:

• A blank User value matches the anonymous user. A nonblank value matches literally; there are no
wildcards in user names.

• The wildcard characters “%” and “_” can be used in the Host and Db columns. These have the same
meaning as for pattern-matching operations performed with the LIKE operator. If you want to use
either character literally when granting privileges, you must escape it with a backslash. For example,
to include the underscore character (“_”) as part of a database name, specify it as “_” in the GRANT
statement.

• A '%' or blank Host value means “any host.”

• A '%' or blank Db value means “any database.”

The server reads the db table into memory and sorts it at the same time that it reads the user table.
The server sorts the db table based on the Host, Db, and User scope columns. As with the user
table, sorting puts the most-specific values first and least-specific values last, and when the server
looks for matching entries, it uses the first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific,
and routine-specific privileges. Values in the scope columns of these tables can take the following
forms:

• The wildcard characters “%” and “_” can be used in the Host column. These have the same meaning
as for pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

When Privilege Changes Take Effect

730

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be
blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host,
Db, and User columns. This is similar to db table sorting, but simpler because only the Host column
can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user table row
because that is the only table that specifies administrative privileges. The server grants access if the
row permits the requested operation and denies access otherwise. For example, if you want to execute
mysqladmin shutdown but your user table row does not grant the SHUTDOWN privilege to you, the
server denies access without even checking the db table. (It contains no Shutdown_priv column, so
there is no need to do so.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global
privileges by looking in the user table row. If the row permits the requested operation, access is
granted. If the global privileges in the user table are insufficient, the server determines the user's
database-specific privileges by checking the db table:

The server looks in the db table for a match on the Host, Db, and User columns. The Host and User
columns are matched to the connecting user's host name and MySQL user name. The Db column
is matched to the database that the user wants to access. If there is no row for the Host and User,
access is denied.

After determining the database-specific privileges granted by the db table entries, the server adds
them to the global privileges granted by the user table. If the result permits the requested operation,
access is granted. Otherwise, the server successively checks the user's table and column privileges
in the tables_priv and columns_priv tables, adds those to the user's privileges, and permits or
denies access based on the result. For stored-routine operations, the server uses the procs_priv
table rather than tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global user row privileges are initially found to be insufficient for the
requested operation, the server adds those privileges to the database, table, and column privileges
later. The reason is that a request might require more than one type of privilege. For example, if you
execute an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT
privileges. Your privileges might be such that the user table row grants one privilege and the db table
row grants the other. In this case, you have the necessary privileges to perform the request, but the
server cannot tell that from either table by itself; the privileges granted by the entries in both tables
must be combined.

6.2.6 When Privilege Changes Take Effect

When mysqld starts, it reads all grant table contents into memory. The in-memory tables become
effective for access control at that point.

If you modify the grant tables indirectly using account-management statements such as GRANT,
REVOKE, SET PASSWORD, or RENAME USER, the server notices these changes and loads the grant
tables into memory again immediately.

Causes of Access-Denied Errors

731

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE, your
changes have no effect on privilege checking until you either restart the server or tell it to reload
the tables. If you change the grant tables directly but forget to reload them, your changes have no
effect until you restart the server. This may leave you wondering why your changes seem to make no
difference!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRIVILEGES statement or by executing a mysqladmin flush-privileges or
mysqladmin reload command.

A grant table reload affects privileges for each existing client connection as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not
be visible to them without actually changing to a different database or flushing
the privileges.

• Global privileges and passwords are unaffected for a connected client. These changes take effect
only for subsequent connections.

If the server is started with the --skip-grant-tables option, it does not read the grant tables or
implement any access control. Anyone can connect and do anything, which is insecure. To cause a
server thus started to read the tables and enable access checking, flush the privileges.

6.2.7 Causes of Access-Denied Errors

If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an
attempt to connect to the server fails with a message such as one of those following, one cause
might be that the server is not running:

shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe,
or Unix socket file different from the one on which the server is listening. To correct this when you
invoke a client program, specify a --port option to indicate the proper port number, or a --socket
option to indicate the proper named pipe or Unix socket file. To find out where the socket file is, you
can use this command:

shell> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you
are attempting to connect remotely) that it has not been configured to listen only locally on its
network interfaces. If the server was started with --skip-networking, it will not accept TCP/IP
connections at all. If the server was started with --bind-address=127.0.0.1, it will listen for
TCP/IP connections only locally on the loopback interface and will not accept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for

Causes of Access-Denied Errors

732

communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration
to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or
the Windows XP personal firewall may need to be configured not to block the MySQL port.

• The grant tables must be properly set up so that the server can use them for access control. For
some distribution types (such as binary distributions on Windows, or RPM distributions on Linux),
the installation process initializes the mysql database containing the grant tables. For distributions
that do not do this, you must initialize the grant tables manually by running the mysql_install_db
script. For details, see Section 2.9.1, “Postinstallation Procedures for Unix-like Systems”.

To determine whether you need to initialize the grant tables, look for a mysql directory under the
data directory. (The data directory normally is named data or var and is located under your MySQL
installation directory.) Make sure that you have a file named user.MYD in the mysql database
directory. If not, execute the mysql_install_db script. After running this script and starting the
server, test the initial privileges by executing this command:

shell> mysql -u root test

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access
permissions:

shell> mysql -u root mysql

The server should let you connect because the MySQL root user has no password initially. That is
also a security risk, so setting the password for the root accounts is something you should do while
you're setting up your other MySQL accounts. For instructions on setting the initial passwords, see
Section 2.9.2, “Securing the Initial MySQL Accounts”.

• If you have updated an existing MySQL installation to a newer version, did you run the
mysql_upgrade script? If not, do so. The structure of the grant tables changes occasionally when
new capabilities are added, so after an upgrade you should always make sure that your tables have
the current structure. For instructions, see Section 4.4.7, “mysql_upgrade — Check and Upgrade
MySQL Tables”.

• If a client program receives the following error message when it tries to connect, it means that the
server expects passwords in a newer format than the client is capable of generating:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 6.1.2.4, “Password Hashing in MySQL”, and
Section C.5.2.4, “Client does not support authentication protocol”.

• Remember that client programs use connection parameters specified in option files or
environment variables. If a client program seems to be sending incorrect default connection
parameters when you have not specified them on the command line, check any applicable option
files and your environment. For example, if you get Access denied when you run a client without
any options, make sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults
option. For example:

shell> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Section 4.2.3.3, “Using Option Files”. Environment
variables are listed in Section 2.11, “Environment Variables”.

Causes of Access-Denied Errors

733

• If you get the following error, it means that you are using an incorrect root password:

shell> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the --no-defaults option as described in the
previous item.

For information on changing passwords, see Section 6.3.5, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see Section C.5.4.1, “How to Reset the Root
Password”.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the
password using the PASSWORD() function. If you do not use PASSWORD() for these statements, the
password will not work. For example, the following statement assigns a password, but fails to encrypt
it, so the user is not able to connect afterward:

SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the CREATE USER
or GRANT statements or the mysqladmin password command. Each of those automatically uses
PASSWORD() to encrypt the password. See Section 6.3.5, “Assigning Account Passwords”, and
Section 13.7.1.2, “CREATE USER Syntax”.

• localhost is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

To avoid this problem on such systems, you can use a --host=127.0.0.1 option to name the
server host explicitly. This will make a TCP/IP connection to the local mysqld server. You can also
use TCP/IP by specifying a --host option that uses the actual host name of the local host. In this
case, the host name must be specified in a user table row on the server host, even though you are
running the client program on the same host as the server.

• The Access denied error message tells you who you are trying to log in as, the client host from
which you are trying to connect, and whether you were using a password. Normally, you should have
one row in the user table that exactly matches the host name and user name that were given in the
error message. For example, if you get an error message that contains using password: NO, it
means that you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -u
root mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name
and your MySQL user name.

• If the following error occurs when you try to connect from a host other than the one on which the
MySQL server is running, it means that there is no row in the user table with a Host value that
matches the client host:

Host ... is not allowed to connect to this MySQL server

Causes of Access-Denied Errors

734

You can fix this by setting up an account for the combination of client host name and user name that
you are using when trying to connect.

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with '%' as the Host column value in the user table. After trying to connect from
the client machine, use a SELECT USER() query to see how you really did connect. Then change
the '%' in the user table row to the actual host name that shows up in the log. Otherwise, your
system is left insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version
that is compiled with a different version of the glibc library than the one you are using. In this case,
you should either upgrade your operating system or glibc, or download a source distribution of
MySQL version and compile it yourself. A source RPM is normally trivial to compile and install, so
this is not a big problem.

• If you specify a host name when trying to connect, but get an error message where the host name
is not shown or is an IP address, it means that the MySQL server got an error when trying to resolve
the IP address of the client host to a name:

shell> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

If you try to connect as root and get the following error, it means that you do not have a row in the
user table with a User column value of 'root' and that mysqld cannot resolve the host name for
your client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the
internal DNS host cache. See Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP addresses rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on
Windows.

• Start mysqld with the --skip-name-resolve option.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to
localhost. Unix connections to localhost use a Unix socket file rather than TCP/IP.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

• If mysql -u root test works but mysql -h your_hostname -u root test results in
Access denied (where your_hostname is the actual host name of the local host), you may
not have the correct name for your host in the user table. A common problem here is that the
Host value in the user table row specifies an unqualified host name, but your system's name
resolution routines return a fully qualified domain name (or vice versa). For example, if you have
an entry with host 'pluto' in the user table, but your DNS tells MySQL that your host name
is 'pluto.example.com', the entry does not work. Try adding an entry to the user table that
contains the IP address of your host as the Host column value. (Alternatively, you could add an

Causes of Access-Denied Errors

735

entry to the user table with a Host value that contains a wildcard; for example, 'pluto.%'.
However, use of Host values ending with “%” is insecure and is not recommended!)

• If mysql -u user_name test works but mysql -u user_name other_db does not, you have
not granted access to the given user for the database named other_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -
u user_name does not work when executed on a remote client host, you have not enabled access
to the server for the given user name from the remote host.

• If you cannot figure out why you get Access denied, remove from the user table all entries that
have Host values containing wildcards (entries that contain '%' or '_' characters). A very common
error is to insert a new entry with Host='%' and User='some_user', thinking that this enables
you to specify localhost to connect from the same machine. The reason that this does not work
is that the default privileges include an entry with Host='localhost' and User=''. Because that
entry has a Host value 'localhost' that is more specific than '%', it is used in preference to the
new entry when connecting from localhost! The correct procedure is to insert a second entry with
Host='localhost' and User='some_user', or to delete the entry with Host='localhost'
and User=''. After deleting the entry, remember to issue a FLUSH PRIVILEGES statement to
reload the grant tables. See also Section 6.2.4, “Access Control, Stage 1: Connection Verification”.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you
issue a SELECT ... INTO OUTFILE or LOAD DATA INFILE statement, your entry in the user
table does not have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE
statements) and your changes seem to be ignored, remember that you must execute a FLUSH
PRIVILEGES statement or a mysqladmin flush-privileges command to cause the server to
reload the privilege tables. Otherwise, your changes have no effect until the next time the server is
restarted. Remember that after you change the root password with an UPDATE statement, you will
not need to specify the new password until after you flush the privileges, because the server will not
know you've changed the password yet!

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL
administrator has changed them. Reloading the grant tables affects new client connections, but
it also affects existing connections as indicated in Section 6.2.6, “When Privilege Changes Take
Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to
the server with mysql -u user_name db_name or mysql -u user_name -pyour_pass
db_name. If you are able to connect using the mysql client, the problem lies with your program, not
with the access privileges. (There is no space between -p and the password; you can also use the
--password=your_pass syntax to specify the password. If you use the -p or --password option
with no password value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then
you can change the MySQL grant tables and use the SHOW GRANTS statement to check whether
your modifications have the desired effect. When you are satisfied with your changes, execute
mysqladmin flush-privileges to tell the mysqld server to reload the privileges. This enables
you to begin using the new grant table contents without stopping and restarting the server.

• If everything else fails, start the mysqld server with a debugging option (for example, --
debug=d,general,query). This prints host and user information about attempted connections, as
well as information about each command issued. See Section 22.4.3, “The DBUG Package”.

• If you have any other problems with the MySQL grant tables and feel you must post the problem to
the mailing list, always provide a dump of the MySQL grant tables. You can dump the tables with
the mysqldump mysql command. To file a bug report, see the instructions at Section 1.7, “How to
Report Bugs or Problems”. In some cases, you may need to restart mysqld with --skip-grant-
tables to run mysqldump.

MySQL User Account Management

736

6.3 MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the
following topics:

• The meaning of account names and passwords as used in MySQL and how that compares to names
and passwords used by your operating system

• How to set up new accounts and remove existing accounts

• How to change passwords

• Guidelines for using passwords securely

• How to use secure connections with SSL

See also Section 13.7.1, “Account Management Statements”, which describes the syntax and use for
all user-management SQL statements.

6.3.1 User Names and Passwords

MySQL stores accounts in the user table of the mysql database. An account is defined in terms of
a user name and the client host or hosts from which the user can connect to the server. The account
may also have a password. For information about account representation in the user table, see
Section 6.2.2, “Privilege System Grant Tables”. MySQL 5.7 supports authentication plugins, so it is
possible that an account authenticates using some external authentication method. See Section 6.3.8,
“Pluggable Authentication”.

There are several distinctions between the way user names and passwords are used by MySQL and
the way they are used by your operating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names
(login names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in
using the current Unix user name as the MySQL user name, but that is for convenience only. The
default can be overridden easily, because client programs permit any user name to be specified
with a -u or --user option. Because this means that anyone can attempt to connect to the server
using any user name, you cannot make a database secure in any way unless all MySQL accounts
have passwords. Anyone who specifies a user name for an account that has no password is able to
connect successfully to the server.

• MySQL user names can be up to 16 characters long. Operating system user names, because
they are completely unrelated to MySQL user names, may be of a different maximum length. For
example, Unix user names typically are limited to eight characters.

Warning

The limit on MySQL user name length is hard-coded in the MySQL servers
and clients, and trying to circumvent it by modifying the definitions of the
tables in the mysql database does not work.

You should never alter any of the tables in the mysql database in any
manner whatsoever except by means of the procedure that is described in
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
Attempting to redefine MySQL's system tables in any other fashion results in
undefined (and unsupported!) behavior.

• The server uses MySQL passwords stored in the user table to authenticate client connections
using MySQL native authentication (against passwords stored in the mysql.user table). These
passwords have nothing to do with passwords for logging in to your operating system. There is
no necessary connection between the “external” password you use to log in to a Windows or Unix
machine and the password you use to access the MySQL server on that machine.

User Names and Passwords

737

If the server authenticates a client using a plugin, the authentication method that the plugin
implements may or may not use the password in the user table. In this case, it is possible that an
external password is also used to authenticate to the MySQL server.

• MySQL encrypts passwords stored in the user table using its own algorithm. This encryption is the
same as that implemented by the PASSWORD() SQL function but differs from that used during the
Unix login process. Unix password encryption is the same as that implemented by the ENCRYPT()
SQL function. See the descriptions of the PASSWORD() and ENCRYPT() functions in Section 12.13,
“Encryption and Compression Functions”.

From version 4.1 on, MySQL employs a stronger authentication method that has better password
protection during the connection process than in earlier versions. It is secure even if TCP/IP packets
are sniffed or the mysql database is captured. (In earlier versions, even though passwords are
stored in encrypted form in the user table, knowledge of the encrypted password value could be
used to connect to the MySQL server.) Section 6.1.2.4, “Password Hashing in MySQL”, discusses
password encryption further.

• It is possible to connect to the server regardless of character set settings if the user name and
password contain only ASCII characters. To connect when the user name or password contain
non-ASCII characters, the client should call the mysql_options() C API function with the
MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments. This causes
authentication to take place using the specified character set. Otherwise, authentication will fail
unless the server default character set is the same as the encoding in the authentication defaults.

Standard MySQL client programs support a --default-character-set option that causes
mysql_options() to be called as just described. In addition, character set autodetection is
supported as described in Section 10.1.4, “Connection Character Sets and Collations”. For programs
that use a connector that is not based on the C API, the connector may provide an equivalent to
mysql_options() that can be used instead. Check the connector documentation.

The preceding notes do not apply for ucs2, utf16, and utf32, which are not permitted as client
character sets.

When you install MySQL, the grant tables are populated with an initial set of accounts. The names
and access privileges for these accounts are described in Section 2.9.2, “Securing the Initial MySQL
Accounts”, which also discusses how to assign passwords to them. Thereafter, you normally set up,
modify, and remove MySQL accounts using statements such as CREATE USER, GRANT, and REVOKE.
See Section 13.7.1, “Account Management Statements”.

When you connect to a MySQL server with a command-line client, specify the user name and
password as necessary for the account that you want to use:

shell> mysql --user=monty --password=password db_name

If you prefer short options, the command looks like this:

shell> mysql -u monty -ppassword db_name

There must be no space between the -p option and the following password value.

If you omit the password value following the --password or -p option on the command line, the
client prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

For additional information about specifying user names, passwords, and other connection parameters,
see Section 4.2.2, “Connecting to the MySQL Server”.

Adding User Accounts

738

6.3.2 Adding User Accounts

You can create MySQL accounts in two ways:

• By using statements intended for creating accounts, such as CREATE USER or GRANT. These
statements cause the server to make appropriate modifications to the grant tables.

• By manipulating the MySQL grant tables directly with statements such as INSERT, UPDATE, or
DELETE.

The preferred method is to use account-creation statements because they are more concise and less
error-prone than manipulating the grant tables directly. CREATE USER and GRANT are described in
Section 13.7.1, “Account Management Statements”.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Or one of several
available third-party programs that offer capabilities for MySQL account administration. phpMyAdmin is
one such program.

The following examples show how to use the mysql client program to set up new accounts. These
examples assume that privileges have been set up according to the defaults described in Section 2.9.2,
“Securing the Initial MySQL Accounts”. This means that to make changes, you must connect to the
MySQL server as the MySQL root user, and the root account must have the INSERT privilege for
the mysql database and the RELOAD administrative privilege.

As noted in the examples where appropriate, some of the statements will fail if the server's SQL
mode has been set to enable certain restrictions. In particular, strict mode (STRICT_TRANS_TABLES,
STRICT_ALL_TABLES) and NO_AUTO_CREATE_USER will prevent the server from accepting some
of the statements. Workarounds are indicated for these cases. For more information about SQL
modes and their effect on grant table manipulation, see Section 5.1.7, “Server SQL Modes”, and
Section 13.7.1.4, “GRANT Syntax”.

First, use the mysql program to connect to the server as the MySQL root user:

shell> mysql --user=root mysql

If you have assigned a password to the root account, you will also need to supply a --password or -
p option, both for this mysql command and for those later in this section.

After connecting to the server as root, you can add new accounts. The following statements use
GRANT to set up four new accounts:

mysql> CREATE USER 'monty'@'localhost' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost'
 -> WITH GRANT OPTION;
mysql> CREATE USER 'monty'@'%' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'%'
 -> WITH GRANT OPTION;
mysql> CREATE USER 'admin'@'localhost';
mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> CREATE USER 'dummy'@'localhost';

The accounts created by these statements have the following properties:

• Two of the accounts have a user name of monty and a password of some_pass. Both accounts are
superuser accounts with full privileges to do anything. The 'monty'@'localhost' account can be
used only when connecting from the local host. The 'monty'@'%' account uses the '%' wildcard
for the host part, so it can be used to connect from any host.

It is necessary to have both accounts for monty to be able to connect from anywhere as monty.
Without the localhost account, the anonymous-user account for localhost that is created

Adding User Accounts

739

by mysql_install_db would take precedence when monty connects from the local host. As a
result, monty would be treated as an anonymous user. The reason for this is that the anonymous-
user account has a more specific Host column value than the 'monty'@'%' account and thus
comes earlier in the user table sort order. (user table sorting is discussed in Section 6.2.4, “Access
Control, Stage 1: Connection Verification”.)

• The 'admin'@'localhost' account has no password. This account can be used only by admin
to connect from the local host. It is granted the RELOAD and PROCESS administrative privileges.
These privileges enable the admin user to execute the mysqladmin reload, mysqladmin
refresh, and mysqladmin flush-xxx commands, as well as mysqladmin processlist . No
privileges are granted for accessing any databases. You could add such privileges later by issuing
other GRANT statements.

• The 'dummy'@'localhost' account has no password. This account can be used only to connect
from the local host. No privileges are granted. It is assumed that you will grant specific privileges to
the account later.

The statements that create accounts with no password will fail if the NO_AUTO_CREATE_USER SQL
mode is enabled. To deal with this, use an IDENTIFIED BY clause that specifies a nonempty
password.

To check the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT RELOAD, PROCESS ON *.* TO 'admin'@'localhost' |
+---+

As an alternative to CREATE USER and GRANT, you can create the same accounts directly by issuing
INSERT statements and then telling the server to reload the grant tables using FLUSH PRIVILEGES:

shell> mysql --user=root mysql
mysql> INSERT INTO user
 -> VALUES('localhost','monty',PASSWORD('some_pass'),
 -> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');
mysql> INSERT INTO user
 -> VALUES('%','monty',PASSWORD('some_pass'),
 -> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
 -> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
 -> '','','','',0,0,0,0);
mysql> INSERT INTO user SET Host='localhost',User='admin',
 -> Reload_priv='Y', Process_priv='Y';
mysql> INSERT INTO user (Host,User,Password)
 -> VALUES('localhost','dummy','');
mysql> FLUSH PRIVILEGES;

When you create accounts with INSERT, it is necessary to use FLUSH PRIVILEGES to tell the server
to reload the grant tables. Otherwise, the changes go unnoticed until you restart the server. With
CREATE USER, FLUSH PRIVILEGES is unnecessary.

The reason for using the PASSWORD() function with INSERT is to encrypt the password. The CREATE
USER statement encrypts the password for you, so PASSWORD() is unnecessary.

The 'Y' values enable privileges for the accounts. Depending on your MySQL version, you may have
to use a different number of 'Y' values in the first two INSERT statements. The INSERT statement for
the admin account employs the more readable extended INSERT syntax using SET.

In the INSERT statement for the dummy account, only the Host, User, and Password columns in
the user table row are assigned values. None of the privilege columns are set explicitly, so MySQL
assigns them all the default value of 'N'. This is equivalent to what CREATE USER does.

Adding User Accounts

740

If strict SQL mode is enabled, all columns that have no default value must have a value specified. In
this case, INSERT statements must explicitly specify values for the ssl_cipher, x509_issuer, and
x509_subject columns.

To set up a superuser account, it is necessary only to insert a user table row with all privilege columns
set to 'Y'. The user table privileges are global, so no entries in any of the other grant tables are
needed.

The next examples create three accounts and give them access to specific databases. Each of them
has a user name of custom and password of obscure.

To create the accounts with CREATE USER and GRANT, use the following statements:

shell> mysql --user=root mysql
mysql> CREATE USER 'custom'@'localhost' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 -> ON bankaccount.*
 -> TO 'custom'@'localhost';
mysql> CREATE USER 'custom'@'host47.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 -> ON expenses.*
 -> TO 'custom'@'host47.example.com';
mysql> CREATE USER 'custom'@'server.domain' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 -> ON customer.*
 -> TO 'custom'@'server.domain';

The three accounts can be used as follows:

• The first account can access the bankaccount database, but only from the local host.

• The second account can access the expenses database, but only from the host
host47.example.com.

• The third account can access the customer database, but only from the host server.domain.

To set up the custom accounts without GRANT, use INSERT statements as follows to modify the grant
tables directly:

shell> mysql --user=root mysql
mysql> INSERT INTO user (Host,User,Password)
 -> VALUES('localhost','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)
 -> VALUES('host47.example.com','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)
 -> VALUES('server.domain','custom',PASSWORD('obscure'));
mysql> INSERT INTO db
 -> (Host,Db,User,Select_priv,Insert_priv,
 -> Update_priv,Delete_priv,Create_priv,Drop_priv)
 -> VALUES('localhost','bankaccount','custom',
 -> 'Y','Y','Y','Y','Y','Y');
mysql> INSERT INTO db
 -> (Host,Db,User,Select_priv,Insert_priv,
 -> Update_priv,Delete_priv,Create_priv,Drop_priv)
 -> VALUES('host47.example.com','expenses','custom',
 -> 'Y','Y','Y','Y','Y','Y');
mysql> INSERT INTO db
 -> (Host,Db,User,Select_priv,Insert_priv,
 -> Update_priv,Delete_priv,Create_priv,Drop_priv)
 -> VALUES('server.domain','customer','custom',
 -> 'Y','Y','Y','Y','Y','Y');
mysql> FLUSH PRIVILEGES;

The first three INSERT statements add user table entries that permit the user custom to connect from
the various hosts with the given password, but grant no global privileges (all privileges are set to the
default value of 'N'). The next three INSERT statements add db table entries that grant privileges to

Removing User Accounts

741

custom for the bankaccount, expenses, and customer databases, but only when accessed from
the proper hosts. As usual when you modify the grant tables directly, you must tell the server to reload
them with FLUSH PRIVILEGES so that the privilege changes take effect.

To create a user who has access from all machines in a given domain (for example, mydomain.com),
you can use the “%” wildcard character in the host part of the account name:

mysql> CREATE USER 'myname'@'%.mydomain.com' IDENTIFIED BY 'mypass';

To do the same thing by modifying the grant tables directly, do this:

mysql> INSERT INTO user (Host,User,Password,...)
 -> VALUES('%.mydomain.com','myname',PASSWORD('mypass'),...);
mysql> FLUSH PRIVILEGES;

6.3.3 Removing User Accounts

To remove an account, use the DROP USER statement, which is described in Section 13.7.1.3, “DROP
USER Syntax”.

6.3.4 Setting Account Resource Limits

One means of limiting use of MySQL server resources is to set the global max_user_connections
system variable to a nonzero value. This limits the number of simultaneous connections that can be
made by any given account, but places no limits on what a client can do once connected. In addition,
setting max_user_connections does not enable management of individual accounts. Both types of
control are of interest to many MySQL administrators, particularly those working for Internet Service
Providers.

In MySQL 5.7, you can limit use of the following server resources for individual accounts:

• The number of queries that an account can issue per hour

• The number of updates that an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit (unless its results are served from
the query cache). Only statements that modify databases or tables count against the update limit.

An “account” in this context corresponds to a row in the mysql.user table. That is, a connection is
assessed against the User and Host values in the user table row that applies to the connection. For
example, an account 'usera'@'%.example.com' corresponds to a row in the user table that has
User and Host values of usera and %.example.com, to permit usera to connect from any host in
the example.com domain. In this case, the server applies resource limits in this row collectively to all
connections by usera from any host in the example.com domain because all such connections use
the same account.

Before MySQL 5.0.3, an “account” was assessed against the actual host from which a user connects.
This older method accounting may be selected by starting the server with the --old-style-user-
limits option. In this case, if usera connects simultaneously from host1.example.com and
host2.example.com, the server applies the account resource limits separately to each connection.
If usera connects again from host1.example.com, the server applies the limits for that connection
together with the existing connection from that host.

To set resource limits for an account, use the GRANT statement (see Section 13.7.1.4, “GRANT
Syntax”). Provide a WITH clause that names each resource to be limited. The default value for each
limit is zero (no limit). For example, to create a new account that can access the customer database,
but only in a limited fashion, issue these statements:

Setting Account Resource Limits

742

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank';
mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'
 -> WITH MAX_QUERIES_PER_HOUR 20
 -> MAX_UPDATES_PER_HOUR 10
 -> MAX_CONNECTIONS_PER_HOUR 5
 -> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any
order. The value for each per-hour limit should be an integer representing a count per hour. For
MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user_connections system
variable value determines the number of simultaneous connections. If max_user_connections is
also zero, there is no limit for the account.

To modify existing limits for an account, use a GRANT USAGE statement at the global level (ON *.*).
The following statement changes the query limit for francis to 100:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
 -> WITH MAX_QUERIES_PER_HOUR 100;

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
francis can connect, use this statement:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
 -> WITH MAX_CONNECTIONS_PER_HOUR 0;

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTIONS limit and the max_user_connections system variable. Suppose that the
global max_user_connections value is 10 and three accounts have resource limits specified with
GRANT:

GRANT ... TO 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
GRANT ... TO 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
GRANT ... TO 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;

user1 has a connection limit of 10 (the global max_user_connections value) because it has a zero
MAX_USER_CONNECTIONS limit). user2 and user3 have connection limits of 5 and 20, respectively,
because they have nonzero MAX_USER_CONNECTIONS limits.

The server stores resource limits for an account in the user table row corresponding to the account.
The max_questions, max_updates, and max_connections columns store the per-hour limits, and
the max_user_connections column stores the MAX_USER_CONNECTIONS limit. (See Section 6.2.2,
“Privilege System Grant Tables”.)

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of
the resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, further connections for the account are rejected
until that hour is up. Similarly, if the account reaches its limit on the number of queries or updates,
further queries or updates are rejected until the hour is up. In all such cases, an appropriate error
message is issued.

Resource counting is done per account, not per client. For example, if your account has a query limit of
50, you cannot increase your limit to 100 by making two simultaneous client connections to the server.
Queries issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a
given account:

Assigning Account Passwords

743

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIVILEGES
statement or a mysqladmin reload command).

• The counts for an individual account can be set to zero by re-granting it any of its limits. To do this,
use GRANT USAGE as described earlier and specify a limit value equal to the value that the account
currently has.

Counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts; counts are not carried over through a restart.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result
in an error (ER_TOO_MANY_USER_CONNECTIONS or ER_USER_LIMIT_REACHED) if the server has not
fully processed the disconnect by the time the connect occurs. When the server finishes disconnect
processing, another connection will once more be permitted.

6.3.5 Assigning Account Passwords

Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts. Client authentication occurs using plugins;
see Section 6.3.8, “Pluggable Authentication”.

To assign a password when you create a new account with CREATE USER, include an IDENTIFIED
BY clause:

mysql> CREATE USER 'jeffrey'@'localhost'
 -> IDENTIFIED BY 'mypass';

To assign or change a password for an existing account, one way is to issue a SET PASSWORD
statement:

mysql> SET PASSWORD FOR
 -> 'jeffrey'@'localhost' = PASSWORD('mypass');

MySQL stores passwords in the user table in the mysql database. Only users such as root that
have the UPDATE privilege for the mysql database can change the password for other users. If you are
not connected as an anonymous user, you can change your own password by omitting the FOR clause:

mysql> SET PASSWORD = PASSWORD('mypass');

The old_passwords system variable value determines the hashing method used by PASSWORD().
If you specify the password using that function and SET PASSWORD rejects the password as not being
in the correct format, it may be necessary to set old_passwords to change the hashing method. For
descriptions of the permitted values, see Section 5.1.4, “Server System Variables”.

Enabling the read_only system variable prevents the use of the SET PASSWORD statement by any
user not having the SUPER privilege.

You can also use a GRANT USAGE statement at the global level (ON *.*) to assign a password to an
account without affecting the account's current privileges:

mysql> GRANT USAGE ON *.* TO 'jeffrey'@'localhost'
 -> IDENTIFIED BY 'mypass';

To assign a password from the command line, use the mysqladmin command:

shell> mysqladmin -u user_name -h host_name password "newpwd"

Password Expiration Policy

744

The account for which this command sets the password is the one with a user table row that matches
user_name in the User column and the client host from which you connect in the Host column.

During authentication when a client connects to the server, MySQL treats the password in the user
table as an encrypted hash value (the value that PASSWORD() would return for the password). When
assigning a password to an account, it is important to store an encrypted value, not the plaintext
password. Use the following guidelines:

• When you assign a password using CREATE USER, GRANT with an IDENTIFIED BY clause, or the
mysqladmin password command, they encrypt the password for you. Specify the literal plaintext
password:

mysql> CREATE USER 'jeffrey'@'localhost'
 -> IDENTIFIED BY 'mypass';

• For CREATE USER or GRANT, you can avoid sending the plaintext password if you know the hash
value that PASSWORD() would return for the password. Specify the hash value preceded by the
keyword PASSWORD:

mysql> CREATE USER 'jeffrey'@'localhost'
 -> IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';

• When you assign an account a nonempty password using SET PASSWORD, you must use the
PASSWORD() function to encrypt the password, otherwise the password is stored as plaintext.
Suppose that you assign a password like this:

mysql> SET PASSWORD FOR
 -> 'jeffrey'@'localhost' = 'mypass';

The result is that the literal value 'mypass' is stored as the password in the user table, not the
encrypted value. When jeffrey attempts to connect to the server using this password, the value
is encrypted and compared to the value stored in the user table. However, the stored value is
the literal string 'mypass', so the comparison fails and the server rejects the connection with an
Access denied error.

Note

PASSWORD() encryption differs from Unix password encryption. See
Section 6.3.1, “User Names and Passwords”.

It is preferable to assign passwords using SET PASSWORD, GRANT, or mysqladmin, but it is also
possible to modify the user table directly. In this case, you must also use FLUSH PRIVILEGES to
cause the server to reread the grant tables. Otherwise, the change remains unnoticed by the server
until you restart it.

6.3.6 Password Expiration Policy

MySQL enables database administrators to expire account passwords manually, and to establish a
policy for automatic password expiration.

To expire a password manually, the database administratior uses the ALTER USER statement:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

This operation marks the password expired in the corresponding mysql.user table row.

Automatic password expiration is available in MySQL 5.7.4 and later. The mysql.user table indicates
for each account when its password was last changed, and the server automatically the server treats
the password as expired at client connection time if it is past its permitted lifetime. This works with no
explicit manual password expiration.

Password Expiration Policy

745

The default_password_lifetime system variable defines the global automatic password
expiration policy. It applies to accounts that use MySQL built-in authentication methods (accounts
that use an authentication plugin of mysql_native_password, mysql_old_password, or
sha256_password).

The default global policy is that passwords have a lifetime of 360 days. To change the policy, change
the value of The default_password_lifetime. If the value is a positive integer, it indicates the
permitted password lifetime in days. A value of 0 disables automatic expiration.

Examples:

• To establish a global policy that passwords have a lifetime of approximately six months, start the
server with these lines in an option file:

[mysqld]
default_password_lifetime=180

• To establish a global policy such that passwords never expire, set default_password_lifetime
to 0:

[mysqld]
default_password_lifetime=0

• default_password_lifetime can also be changed at runtime (this requires the SUPER
privilege):

SET GLOBAL default_password_lifetime = 180;

No matter the global policy, it can be overridden for individual accounts with ALTER USER:

• Require the password to be changed every 90 days:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 90 DAY;

• Disable password expiration:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

• Defer to the global expiration policy:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

These ALTER USER statements update the corresponding mysql.user table row.

When a client successfully connects, the server determines whether the account password is expired:

• The server checks whether the password has been manually expired and, if so, restricts the session.

• Otherwise, the server checks whether the password is past its lifetime according to the automatic
password expiration policy. If so, the server considers the password expired and restricts the
session.

A restricted session remains that way until the client executes a SET PASSWORD statement to change
the account password. In restricted mode, operations result in an error until the user issues a SET
PASSWORD statement to establish a new account password:

mysql> SELECT 1;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

Password Expiration and Sandbox Mode

746

mysql> SET PASSWORD = PASSWORD('new_password');
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

This restricted mode of operation permits SET statements, which is useful if the account password uses
a hashing format that requires old_passwords to be set to a value different from its default.

It is also possible for an administrative user to reset the account password, but any existing sessions
for the account remain restricted. Clients using the account must disconnect and reconnect before
statements can be executed successfully.

Note

It is possible to “reset” a password with SET PASSWORD by setting it to its
current value. As a matter of good policy, it is preferable to choose a different
password.

6.3.7 Password Expiration and Sandbox Mode

MySQL 5.7 provides a password-expiration capability, to enable database administrators to expire
account passwords and require users to reset their password. This section describes how password
expiration works.

To expire an account password, use the ALTER USER statement. For example:

ALTER USER 'myuser'@'localhost' PASSWORD EXPIRE;

This statement modifies the row of the mysql.user table associated with the named account, setting
the password_expired column to 'Y'. This does not affect any current connections the account has
open. For each subsequent connection that uses the account, the server either disconnects the client
or handles the client in “sandbox mode,” in which the server permits the client only those operations
necessary to reset the expired password. (The action taken by the server depends on both client and
server settings.)

If the server disconnects the client, it returns an ER_MUST_CHANGE_PASSWORD_LOGIN error:

shell> mysql -u myuser -p
Password: ******
ERROR 1862 (HY000): Your password has expired. To log in you must
change it using a client that supports expired passwords.

If the server puts the client in sandbox mode, these operations are permitted within the client session:

• The client can reset the account password with SET PASSWORD. This modifies the row of the
mysql.user table associated with the current account, setting the password_expired column to
'N'. After the password has been reset, the server restores normal access for the session, as well
as for subsequent connections that use the account.

It is possible to “reset” a password by setting it to its current value. As a matter of good policy, it is
preferable to choose a different password.

• The client can use SET statements. This might be necessary prior to resetting the password; for
example, if the account password uses a hashing format that requires the old_passwords system
variable to be set to a value different from its default.

Pluggable Authentication

747

For any operation not permitted within the session, the server returns an
ER_MUST_CHANGE_PASSWORD error:

mysql> USE test;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

As mentioned previously, whether the server disconnects an expired-password client or puts it in
sandbox mode depends on a combination of client and server settings. The following discussion
describes the relevant settings and how they interact.

On the client side, a given client indicates whether it can handle sandbox mode for expired passwords.
For clients that use the C client library, there are two ways to do this:

• Pass the MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_options() prior to
connecting:

arg = 1;
result = mysql_options(mysql,
 MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS, &arg);

• Pass the CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_real_connect() at
connection time:

mysql = mysql_real_connect(mysql,
 host, user, password, "test",
 port, unix_socket,
 CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS);

Other MySQL Connectors have their own conventions for indicating readiness to handle sandbox
mode. See the relevant Connector documentation.

On the server side, if a client indicates that it can handle expired passwords, the server puts it in
sandbox mode.

If a client does not indicate that it can handle expired passwords (or uses an older version
of the client library that cannot so indicate), the server action depends on the value of the
disconnect_on_expired_password system variable:

• If disconnect_on_expired_password is enabled (the default), the server disconnects the client
with an ER_MUST_CHANGE_PASSWORD_LOGIN error.

• If disconnect_on_expired_password is disabled, the server puts the client in sandbox mode.

The preceding client and server settings apply only for accounts with expired passwords. If a client
connects using a nonexpired password, the server handles the client normally.

6.3.8 Pluggable Authentication

When a client connects to the MySQL server, the server uses the user name provided by the client
and the client host to select the appropriate account row from the mysql.user table. The server then
authenticates the client, determining from the account row which authentication plugin applies for the
client:

• If the account row specifies a plugin, the server invokes it to authenticate the user. If the server
cannot find the plugin, an error occurs.

• If the account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password
hash value in the Password column used native hashing or the older pre-4.1 hashing method.

Pluggable Authentication

748

Clients must match the password in the Password column of the account row. As of MySQL 5.7.2,
the server requires the plugin value to be nonempty.

The plugin returns a status to the server indicating whether the user is permitted to connect.

Pluggable authentication enables two important capabilities:

• External authentication: Pluggable authentication makes it possible for clients to connect to the
MySQL server with credentials that are appropriate for authentication methods other than native
authentication based on passwords stored in the mysql.user table. For example, plugins can
be created to use external authentication methods such as PAM, Windows login IDs, LDAP, or
Kerberos.

• Proxy users: If a user is permitted to connect, an authentication plugin can return to the server a
user name different from the name of the connecting user, to indicate that the connecting user is a
proxy for another user. While the connection lasts, the proxy user is treated, for purposes of access
control, as having the privileges of a different user. In effect, one user impersonates another. For
more information, see Section 6.3.10, “Proxy Users”.

Several authentication plugins are available in MySQL:

• Plugins that perform native authentication that matches the password against the Password column
of the account row. The mysql_native_password plugin implements authentication based
on the native password hashing method. The mysql_old_password plugin implements native
authentication based on the older (pre-4.1) password hashing method (and is now deprecated).
See Section 6.3.9.1, “The Native Authentication Plugin”, and Section 6.3.9.2, “The “Old” Native
Authentication Plugin”. Native authentication using mysql_native_password is the default for new
accounts, unless the default_authentication_plugin system variable is set otherwise.

• A plugin that performs authentication using SHA-256 password hashing. This plugin matches the
password against the authentication_string column of the account row. This is stronger
encryption than that available with native authentication. See Section 6.3.9.4, “The SHA-256
Authentication Plugin”.

• A client-side plugin that sends the password to the server without hashing or encryption. This plugin
can be used by server-side plugins that require access to the password exactly as provided by the
client user. See Section 6.3.9.5, “The Cleartext Client-Side Authentication Plugin”.

• A plugin that authenticates clients that connect from the local host through the Unix socket file. See
Section 6.3.9.6, “The Socket Peer-Credential Authentication Plugin”.

• A test plugin that authenticates using MySQL native authentication. This plugin is intended for
testing and development purposes, and as an example of how to write an authentication plugin. See
Section 6.3.9.7, “The Test Authentication Plugin”.

Note

For information about current restrictions on the use of pluggable authentication,
including which connectors support which plugins, see Section E.9,
“Restrictions on Pluggable Authentication”.

Third-party connector developers should read that section to determine the
extent to which a connector can take advantage of pluggable authentication
capabilities and what steps to take to become more compliant.

If you are interested in writing your own authentication plugins, see Section 22.2.4.9, “Writing
Authentication Plugins”.

Authentication Plugin Usage Instructions

This section provides general instructions for installing and using authentication plugins.

Pluggable Authentication

749

In general, pluggable authentication uses corresponding plugins on the server and client sides, so you
use a given authentication method like this:

• On the server host, install the library containing the appropriate server plugin, if necessary, so that
the server can use it to authenticate client connections. Similarly, on each client host, install the
library containing the appropriate client plugin for use by client programs.

• Create MySQL accounts that specify use of the plugin for authentication.

• When a client connects, the server plugin tells the client program which client plugin to use for
authentication.

The instructions here use an an example authentication plugin included in MySQL distributions (see
Section 6.3.9.7, “The Test Authentication Plugin”). The procedure is similar for other authentication
plugins; substitute the appropriate plugin and file names.

The example authentication plugin has these characteristics:

• The server-side plugin name is test_plugin_server.

• The client-side plugin name is auth_test_plugin.

• Both plugins are located in the shared library object file named auth_test_plugin.so in the
plugin directory (the directory named by the plugin_dir system variable). The file name suffix
might differ on your system.

Install and use the example authentication plugin as follows:

1. Make sure that the plugin library is installed on the server and client hosts.

2. Install the server-side test plugin at server startup or at runtime:

• To install the plugin at startup, use the --plugin-load option. With this plugin-loading method,
the option must be given each time you start the server. For example, use these lines in a
my.cnf option file:

[mysqld]
plugin-load=test_plugin_server=auth_test_plugin.so

• To install the plugin at runtime, use the INSTALL PLUGIN statement:

mysql> INSTALL PLUGIN test_plugin_server SONAME 'auth_test_plugin.so';

This installs the plugin permanently and need be done only once.

3. Verify that the plugin is installed. For example, use SHOW PLUGINS:

mysql> SHOW PLUGINS\G
...
*************************** 21. row ***************************
 Name: test_plugin_server
 Status: ACTIVE
 Type: AUTHENTICATION
Library: auth_test_plugin.so
License: GPL

For other ways to check the plugin, see Section 5.1.8.2, “Obtaining Server Plugin Information”.

4. To specify that a MySQL user must be authenticated using a specific server plugin, name the plugin
in the IDENTIFIED WITH clause of the CREATE USER statement that creates the user:

CREATE USER 'testuser'@'localhost' IDENTIFIED WITH test_plugin_server;

Authentication Plugins Available in MySQL

750

5. Connect to the server using a client program. The test plugin authenticates the same way as native
MySQL authentication, so provide the usual --user and --password options that you normally
use to connect to the server. For example:

shell> mysql --user=your_name --password=your_pass

For connections by testuser, the server sees that the account must be authenticated using the
server-side plugin named test_plugin_server and communicates to the client program which
client-side plugin it must use—in this case, auth_test_plugin.

In the case that the account uses the authentication method that is the default for both the server
and the client program, the server need not communicate to the client which plugin to use, and a
round trip in client/server negotiation can be avoided. Currently this is true for accounts that use
native MySQL authentication (mysql_native_password).

The --default-auth=plugin_name option can be specified on the mysql command line
to make explicit which client-side plugin the program can expect to use, although the server will
override this if the user account requires a different plugin.

If the client program does not find the plugin, specify a --plugin-dir=dir_name option to
indicate where the plugin is located.

Note

If you start the server with the --skip-grant-tables option, authentication
plugins are not used even if loaded because the server performs no client
authentication and permits any client to connect. Because this is insecure,
you might want to use --skip-grant-tables in conjunction with --skip-
networking to prevent remote clients from connecting.

6.3.9 Authentication Plugins Available in MySQL

The following sections describe the authentication plugins available in MySQL.

6.3.9.1 The Native Authentication Plugin

MySQL includes two plugins that implement native authentication; that is, authentication against
passwords stored in the Password column of the mysql.user table. This section describes
mysql_native_password, which implements authentication against the mysql.user table
using the native password hashing method. For information about mysql_old_password, which
implements authentication using the older (pre-4.1) password hashing method, see Section 6.3.9.2,
“The “Old” Native Authentication Plugin”. For information about these password hashing methods, see
Section 6.1.2.4, “Password Hashing in MySQL”.

The mysql_native_password native authentication plugin is backward compatible. Clients older
than MySQL 5.5.7 do not support authentication plugins but do use the native authentication protocol,
so they can connect to servers from MySQL 5.5.7 and up.

The following table shows the plugin names on the server and client sides.

Table 6.8 MySQL Native Password Authentication Plugin

Server-side plugin name mysql_native_password

Client-side plugin name mysql_native_password

Library object file name None (plugins are built in)

The plugin exists in both client and server form:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

Authentication Plugins Available in MySQL

751

• The client-side plugin is built into the libmysqlclient client library as of MySQL 5.5.7 and
available to any program linked against libmysqlclient from that version or newer.

• MySQL client programs use mysql_native_password by default. The --default-auth option
can be used to specify the plugin explicitly:

shell> mysql --default-auth=mysql_native_password ...

If an account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password
hash value in the Password column used native hashing or the older pre-4.1 hashing method. Clients
must match the password in the Password column of the account row. As of MySQL 5.7.2, the server
requires the plugin value to be nonempty.

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

6.3.9.2 The “Old” Native Authentication Plugin

MySQL includes two plugins that implement native authentication; that is, authentication against
passwords stored in the Password column of the mysql.user table. This section describes
mysql_old_password, which implements authentication against the mysql.user table using the
older (pre-4.1) password hashing method. For information about mysql_native_password, which
implements authentication using the native password hashing method, see Section 6.3.9.1, “The Native
Authentication Plugin”. For information about these password hashing methods, see Section 6.1.2.4,
“Password Hashing in MySQL”.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

The mysql_old_password native authentication plugin is backward compatible. Clients older than
MySQL 5.5.7 do not support authentication plugins but do use the native authentication protocol, so
they can connect to servers from MySQL 5.5.7 and up.

The following table shows the plugin names on the server and client sides.

Table 6.9 MySQL “Old” Native Authentication Plugin

Server-side plugin name mysql_old_password

Client-side plugin name mysql_old_password

Library object file name None (plugins are built in)

The plugin exists in both client and server form:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library as of MySQL 5.5.7 and
available to any program linked against libmysqlclient from that version or newer.

• MySQL client programs can use the --default-auth option to specify the
mysql_old_password plugin explicitly:

shell> mysql --default-auth=mysql_old_password ...

Authentication Plugins Available in MySQL

752

If an account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password
hash value in the Password column used native hashing or the older pre-4.1 hashing method. Clients
must match the password in the Password column of the account row. As of MySQL 5.7.2, the server
requires the plugin value to be nonempty.

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

6.3.9.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password
Plugin

The MySQL server authenticates connection attempts for each account listed in the mysql.user
table using the authentication plugin named in the plugin column. If the plugin column is empty, the
server authenticates as follows:

• Before MySQL 5.7.2, the server uses the mysql_native_password or mysql_old_password
plugin implicitly, depending on the format of the password hash in the Password column.
If the Password value is empty or a 4.1 password hash (41 characters), the server uses
mysql_native_password. If the password value is a pre-4.1 password hash (16 characters),
the server uses mysql_old_password. (For additional information about these hash formats, see
Section 6.1.2.4, “Password Hashing in MySQL”.)

• As of MySQL 5.7.2, the server requires the plugin column to be nonempty and disables accounts
that have an empty plugin value.

Pre-4.1 password hashes and the mysql_old_password plugin are deprecated as of MySQL
5.6.5; they provide a level of security inferior to that offered by 4.1 password hashing and the
mysql_native_password plugin. Coupled with the requirement in MySQL 5.7.2 that the plugin
column must be nonempty, DBAs are advised to upgrade accounts as follows:

• Upgrade accounts that use mysql_native_password implicitly to use it explicitly

• Upgrade accounts that use mysql_old_password (either implicitly or explicitly) to use
mysql_native_password explicitly

The instructions in this section describe how perform those upgrades. The result is that no
account has an empty plugin value and no account uses pre-4.1 password hashing or the
mysql_old_password plugin.

As a variant on these instructions, DBAs might offer users the choice to upgrade to the
sha256_password plugin, which authenticates using SHA-256 password hashes. For information
about this plugin, see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

The following table lists the types of mysql.user accounts considered in this discussion.

plugin Column Password
Column

Authentication Result Upgrade Action

Empty Empty Implicitly uses
mysql_native_password

Assign plugin

Empty 4.1 hash Implicitly uses
mysql_native_password

Assign plugin

Empty Pre-4.1 hash Implicitly uses
mysql_old_password

Assign plugin,
rehash password

mysql_native_password Empty Explicitly uses
mysql_native_password

None

mysql_native_password 4.1 hash Explicitly uses
mysql_native_password

None

Authentication Plugins Available in MySQL

753

plugin Column Password
Column

Authentication Result Upgrade Action

mysql_old_password Empty Explicitly uses
mysql_old_password

Upgrade plugin

mysql_old_password Pre-4.1 hash Explicitly uses
mysql_old_password

Upgrade plugin,
rehash password

Accounts corresponding to lines for the mysql_native_password plugin require no upgrade action
(because no change of plugin or hash format is required). For accounts corresponding to lines for
which the password is empty, the DBA should consider asking the account owners to choose a
password (or require it by expiring empty account passwords with ALTER USER).

Upgrading Accounts from Implicit to Explicit mysql_native_password Use

Accounts that have an empty plugin and a 4.1 password hash use mysql_native_password
implicitly. To upgrade these accounts to use mysql_native_password explicitly, the DBA should
execute these statements:

UPDATE mysql.user SET plugin = 'mysql_native_password'
WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRIVILEGES;

In MySQL 5.7.2 or later, the DBA can run mysql_upgrade, which does the same thing among its
upgrade actions. Before 5.7.2, the DBA can execute those statements to uprade accounts proactively.

Notes:

• This step is safe to execute at any time because it makes the mysql_native_password plugin
explicit only for accounts that use it implicitly already.

• This step requires no password changes, so the DBA can take this action without affecting users or
requiring them to be involved in the upgrade process.

Upgrading Accounts from mysql_old_password to mysql_native_password

Accounts that use mysql_old_password (either implicitly or explicitly) should be upgraded to use
mysql_native_password explicitly. This requires changing the plugin and changing the password
from pre-4.1 to 4.1 hash format.

For the accounts covered in this step that must be upgraded, one of these conditions is true:

• The account uses mysql_old_password implicitly because the plugin column is empty and the
password has the pre-4.1 hash format (16 characters).

• The account uses mysql_old_password explicitly.

To identify such accounts, use this query:

SELECT User, Host, Password FROM mysql.user
WHERE (plugin = '' AND LENGTH(Password) = 16)
OR plugin = 'mysql_old_password';

The following discussion provides two methods for updating that set of accounts. They have differing
characteristics, so DBAs should read both and decide which is most suitable for a given MySQL
installation.

Method 1.

Characteristics of this method:

Authentication Plugins Available in MySQL

754

• Requires that server and clients be run with secure_auth=0 until all users have been upgraded to
mysql_native_password. (Otherwise, users cannot connect to the server using their old-format
password hashes for the purpose of upgrading to a new-format hash.)

• Works for MySQL 5.5 through 5.7.1. As of 5.7.2, it does not work because the server requires
accounts to have a nonempty plugin and disables them otherwise. Therefore, if you have already
upgraded to 5.7.2 or later, choose Method 2.

The DBA should ensure that the server is running with secure_auth=0.

For all accounts that use mysql_old_password explicitly, the DBA should set them to the empty
plugin:

UPDATE mysql.user SET plugin = ''
WHERE plugin = 'mysql_old_password';
FLUSH PRIVILEGES;

To also expire the password for affected accounts, use these statements instead:

UPDATE mysql.user SET plugin = '', password_expired = 'Y'
WHERE plugin = 'mysql_old_password';
FLUSH PRIVILEGES;

Now affected users can connect to the server and reset their password to use 4.1 hashing. The DBA
should ask each user who now has an empty plugin to connect and execute these statements:

SET old_passwords = 0;
SET PASSWORD = PASSWORD('user-chosen-password');

Note

In MySQL 5.6.5 or later, the client-side --secure-auth is enabled by default,
so the DBA should remind users to disable it or they will be unable to connect:

shell> mysql -u user_name -p --secure-auth=0

After an affected user has executed those statements, the DBA can set the corresponding account
plugin to mysql_native_password to make the plugin explicit. Or the DBA can periodically run these
statements to find and fix any accounts for which affected users have reset their password:

UPDATE mysql.user SET plugin = 'mysql_native_password'
WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRIVILEGES;

When there are no more accounts with an empty plugin, this query returns an empty result:

SELECT User, Host, Password FROM mysql.user
WHERE (plugin = '' AND LENGTH(Password) = 16);

At that point, all accounts have been migrated away from pre-4.1 password hashing and the server no
longer need be run with secure_auth=0.

Method 2.

Characteristics of this method:

• The DBA assigns each affected account a new password, so the DBA must tell each such user the
new password and ask the user to choose a new one. Communication of the password from DBA to
users is outside the scope of MySQL. DBAs should communicate passwords carefully.

• Does not require server or clients to be run with secure_auth=0.

Authentication Plugins Available in MySQL

755

• Works for any version of MySQL 5.5 or later.

With this method, the DBA updates each account separately due to the need to set passwords
individually. The DBA should choose a different password for each account.

Suppose that 'user1'@'localhost' is one of the accounts to be upgraded. The DBA should modify
it like this:

SET old_passwords = 0;
UPDATE mysql.user SET plugin = 'mysql_native_password',
Password = PASSWORD('DBA-chosen-password')
WHERE (User, Host) = ('user1', 'localhost');
FLUSH PRIVILEGES;

To also expire the password, use these statements instead:

SET old_passwords = 0;
UPDATE mysql.user SET plugin = 'mysql_native_password',
Password = PASSWORD('DBA-chosen-password'), password_expired = 'Y'
WHERE (User, Host) = ('user1', 'localhost');
FLUSH PRIVILEGES;

Then the DBA should tell the user the new password and ask the user to connect to the server with that
password and execute these statements to choose a new password:

SET old_passwords = 0;
SET PASSWORD = PASSWORD('user-chosen-password');

Repeat for each account to be upgraded.

6.3.9.4 The SHA-256 Authentication Plugin

MySQL provides an authentication plugin that implements SHA-256 hashing for user account
passwords.

Important

To connect to the server using an account that authenticates with the
sha256_password plugin, you must use either an SSL connection or a plain
connection that encrypts the password using RSA, as described later in this
section. Either way, use of the sha256_password plugin requires that MySQL
be built with SSL capabilities. See Section 6.3.11, “Using SSL for Secure
Connections”.

The following table shows the plugin names on the server and client sides.

Table 6.10 MySQL SHA-256 Authentication Plugin

Server-side plugin name sha256_password

Client-side plugin name sha256_password

Library object file name None (plugins are built in)

The server-side sha256_password plugin is built into the server, need not be loaded explicitly, and
cannot be disabled by unloading it. Similarly, clients need not specify the location of the client-side
plugin.

To set up an account that uses SHA-256 password hashing, use the following procedure.

1. Create the account and specify that it authenticates using the sha256_password plugin:

CREATE USER 'sha256user'@'localhost' IDENTIFIED WITH sha256_password;

Authentication Plugins Available in MySQL

756

2. Set the old_passwords system variable to 2 to cause the PASSWORD() function to use SHA-256
hashing of password strings:

SET old_passwords = 2;

3. Set the account password:

SET PASSWORD FOR 'sha256user'@'localhost' = PASSWORD('Sh@256Pa33');

Alternatively, start the server with the default authentication plugin set to sha256_password. For
example, put these lines in the server option file:

[mysqld]
default-authentication-plugin=sha256_password

That causes the sha256_password plugin to be used by default for new accounts and sets
old_passwords to 2. As a result, it is possible to set the password at account-creation time using the
IDENTIFIED BY clause in the CREATE USER statement:

mysql> CREATE USER 'sha256user2'@'localhost' IDENTIFIED BY 'Sh@256Pa33';
Query OK, 0 rows affected (0.06 sec)

In this case, the server assigns the sha256_password plugin to the account and encrypts the
password using SHA-256. (Another consequence is that to create an account that uses a different
authentication plugin, you must specify that plugin using an IDENTIFIED BY clause in the CREATE
USER statement, then set old_passwords appropriately for the plugin before using SET PASSWORD
to set the account password.)

For more information about old_passwords and PASSWORD(), see Section 5.1.4, “Server System
Variables”, and Section 12.13, “Encryption and Compression Functions”.

To change the password for any account that that authenticates using the sha256_password plugin,
be sure that the value of old_passwords is 2 before using SET PASSWORD. If old_passwords has
a value other than 2, an error occurs for attempts to set the password:

mysql> SET old_passwords = 0;
mysql> SET PASSWORD FOR 'sha256user'@'localhost' = PASSWORD('NewSh@256Pa33');
ERROR 1827 (HY000): The password hash doesn't have the expected format.
Check if the correct password algorithm is being used with the
PASSWORD() function.

Accounts in the mysql.user table that use SHA-256 passwords can be identified as rows
with 'sha256_password' in the plugin column and a SHA-256 password hash in the
authentication_string column.

MySQL can be built with either yaSSL or OpenSSL and the sha256_password plugin works with
distributions built using either package. The default is to use yaSSL. If MySQL is built using OpenSSL
instead, RSA encryption is available and sha256_password implements the additional capabilities in
the following list. (To enable these capabilities, you must also follow the RSA configuration procedure
given later in this section.)

• It is possible for the client to transmit passwords to the server using RSA encryption during the client
connection process, as described later.

• The server exposes two additional system variables, sha256_password_private_key_path
and sha256_password_public_key_path. It is intended that the database administrator will set
these to the names of the RSA private and public key files at server startup.

• The server exposes a status variable, Rsa_public_key, that displays the RSA public key value.

Authentication Plugins Available in MySQL

757

• The mysql and mysqltest client programs support a --server-public-key-path option for
specifying an RSA public key file explicitly.

For clients that use the sha256_password plugin, passwords are never exposed as cleartext when
connecting to the server. How password transmission occurs depends on whether an SSL connection
is used and whether RSA encryption is available:

• If an SSL connection is used, the password is sent as cleartext but cannot be snooped because the
connection is encrypted using SSL.

• If an SSL connection is not used but RSA encryption is available, the password is sent within an
unencrypted connection, but the password is RSA-encrypted to prevent snooping. When the server
receives the password, it decrypts it. A scramble is used in the encryption to prevent repeat attacks.

• If an SSL connection is not used and RSA encryption is not available, the sha256_password plugin
causes the connection attempt to fail because the password cannot be sent without being exposed
as cleartext.

As mentioned previously, RSA password encryption is available only if MySQL was built using
OpenSSL. The implication for MySQL distributions built using yaSSL is that SHA-256 passwords
can be used only when clients access the server using an SSL connection. For information about
connecting to the server using SSL, see Section 6.3.11, “Using SSL for Secure Connections”.

Assuming that MySQL has been built with OpenSSL, the following procedure describes how to enable
RSA encryption of passwords during the client connection process:

1. Create the RSA private and public key files. Run these commands while logged into the system
account used to run the MySQL server so the files will be owned by that account:

openssl genrsa -out mykey.pem 1024
openssl rsa -in mykey.pem -pubout > mykey.pub

2. Set the access modes for the key files. The private key should be readable only by the server,
whereas the public key can be freely distributed to client users:

chmod 400 mykey.pem
chmod 444 mykey.pub

3. In the server option file, configure the appropriate system variables with the names of the key files.
If you place the files in the server data directory, you need not specify their full path names:

[mysqld]
sha256_password_private_key_path=mykey.pem
sha256_password_public_key_path=mykey.pub

If the files are not in the data directory, or to make their locations explicit in the option values, use
full path names:

[mysqld]
sha256_password_private_key_path=/usr/local/mysql/mykey.pem
sha256_password_public_key_path=/usr/local/mysql/mykey.pub

4. Restart the server, then connect to it and check the Rsa_public_key status variable value. The
value will differ from that shown here, but should be nonempty:

mysql> SHOW STATUS LIKE 'Rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Rsa_public_key
 Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa

Authentication Plugins Available in MySQL

758

aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, clients have the option of using them
to connect to the server using accounts that authenticate with the sha256_password plugin. As
mentioned previously, such accounts can use either an SSL connection (in which case RSA is not
used) or a plain connection that encrypts the password using RSA. Assume for the following discussion
that SSL is not used. Connecting to the server involves no special preparation on the client side. For
example:

shell> mysql -u sha256user -p
Enter password: Sh@256Pa33

For connection attempts by sha256user, the server determines that sha256_password is the
appropriate authentication plugin and invokes it. The plugin finds that the connection does not use SSL
and thus requires the password to be transmitted using RSA encryption. It sends the RSA public key to
the client, which uses it to encrypt the password and returns the result to the server. The plugin uses
the RSA key on the server side to decrypt the password and accepts or rejects the connection based
on whether the password is correct.

The server sends the public key to the client as needed, but if a copy of the RSA public key is available
on the client host, the client can use it to save a round trip in the client/server protocol:

shell> mysql -u sha256user -p --server-public-key-path=file_name

The public key value in the file named by the --server-public-key-path option should be the
same as the key value in the server-side file named by the sha256_password_public_key_path
system variable. If the key file contains a valid public key value but the value is incorrect, an access-
denied error occurs. If the key file does not contain a valid public key, the client program cannot use
it. In this case, the server sends the public key to the client as if no --server-public-key-path
option had been specified.

Client users can get the RSA public key two ways:

• The database administrator can provide a copy of the public key file.

• A client user who can connect to the server some other way can use a SHOW STATUS LIKE
'Rsa_public_key' statement and save the returned key value in a file.

6.3.9.5 The Cleartext Client-Side Authentication Plugin

A client-side authentication plugin is available that sends the password to the server without hashing or
encryption. This plugin is built into the MySQL client library.

The following table shows the plugin name.

Table 6.11 MySQL Cleartext Authentication Plugin

Server-side plugin name None, see discussion

Client-side plugin name mysql_clear_password

Library object file name None (plugin is built in)

With native MySQL authentication, the client performs one-way hashing on the password before
sending it to the server. This enables the client to avoid sending the password in clear text. See
Section 6.1.2.4, “Password Hashing in MySQL”. However, because the hash algorithm is one way, the
original password cannot be recovered on the server side.

Authentication Plugins Available in MySQL

759

One-way hashing cannot be done for authentication schemes that require the server to receive the
password as entered on the client side. In such cases, the mysql_clear_password client-side plugin
can be used to send the password to the server in clear text. There is no corresponding server-side
plugin. Rather, the client-side plugin can be used by any server-side plugin that needs a clear text
password. (The PAM authentication plugin is one such; see The PAM Authentication Plugin.)

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

Note

Sending passwords in clear text may be a security problem in some
configurations. To avoid problems if there is any possibility that the password
would be intercepted, clients should connect to MySQL Server using a method
that protects the password. Possibilities include SSL (see Section 6.3.11, “Using
SSL for Secure Connections”), IPsec, or a private network.

To make inadvertent use of this plugin less likely, it is required that clients explicitly enable it. This can
be done several ways:

• Set the LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable to a value that begins with
1, Y, or y. This enables the plugin for all client connections.

• The mysql, mysqladmin, and mysqlslap client programs support an --enable-cleartext-
plugin option that enables the plugin on a per-invocation basis.

• The mysql_options() C API function supports a MYSQL_ENABLE_CLEARTEXT_PLUGIN option
that enables the plugin on a per-connection basis. Also, any program that uses libmysqlclient
and reads option files can enable the plugin by including an enable-cleartext-plugin option in
an option group read by the client library.

6.3.9.6 The Socket Peer-Credential Authentication Plugin

A server-side authentication plugin is available that authenticates clients that connect from the local
host through the Unix socket file.

The source code for this plugin can be examined as a relatively simple example demonstrating how to
write a loadable authentication plugin.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file location is the directory named by the plugin_dir system variable. For installation
information, see Section 6.3.8, “Pluggable Authentication”.

Table 6.12 MySQL Socket Peer-Credential Authentication Plugin

Server-side plugin name auth_socket

Client-side plugin name None, see discussion

Library object file name auth_socket.so

The auth_socket authentication plugin authenticates clients that connect from the local host through
the Unix socket file. The plugin uses the SO_PEERCRED socket option to obtain information about
the user running the client program. The plugin checks whether the user name matches the MySQL
user name specified by the client program to the server, and permits the connection only if the names
match. The plugin can be built only on systems that support the SO_PEERCRED option, such as Linux.

Suppose that a MySQL account is created for a user named valerie who is to be authenticated by
the auth_socket plugin for connections from the local host through the socket file:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;

If a user on the local host with a login name of stefanie invokes mysql with the option --
user=valerie to connect through the socket file, the server uses auth_socket to authenticate the

http://dev.mysql.com/doc/refman/5.6/en/pam-authentication-plugin.html

Proxy Users

760

client. The plugin determines that the --user option value (valerie) differs from the client user's
name (stephanie) and refuses the connection. If a user named valerie tries the same thing,
the plugin finds that the user name and the MySQL user name are both valerie and permits the
connection. However, the plugin refuses the connection even for valerie if the connection is made
using a different protocol, such as TCP/IP.

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

6.3.9.7 The Test Authentication Plugin

MySQL includes a test plugin that authenticates using MySQL native authentication, but is a loadable
plugin (not built in) and must be installed prior to use. It can authenticate against either normal or older
(shorter) password hash values.

This plugin is intended for testing and development purposes, and not for use in production
environments. The test plugin source code is separate from the server source, unlike the built-in native
plugin, so it can be examined as a relatively simple example demonstrating how to write a loadable
authentication plugin.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file location is the directory named by the plugin_dir system variable. For installation
information, see Section 6.3.8, “Pluggable Authentication”.

Table 6.13 MySQL Test Authentication Plugin

Server-side plugin name test_plugin_server

Client-side plugin name auth_test_plugin

Library object file name auth_test_plugin.so

Because the test plugin authenticates the same way as native MySQL authentication, provide the usual
--user and --password options that you normally use for accounts that use native authentication
when you connect to the server. For example:

shell> mysql --user=your_name --password=your_pass

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

6.3.10 Proxy Users

When authentication to the MySQL server occurs by means of an authentication plugin, the plugin
may request that the connecting (external) user be treated as a different user for privilege-checking
purposes. This enables the external user to be a proxy for the second user; that is, to have the
privileges of the second user. In other words, the external user is a “proxy user” (a user who can
impersonate or become known as another user) and the second user is a “proxied user” (a user whose
identity can be taken on by a proxy user).

This section describes how the proxy user capability works. For general information about
authentication plugins, see Section 6.3.8, “Pluggable Authentication”. If you are interested in writing
your own authentication plugins that support proxy users, see Implementing Proxy User Support in
Authentication Plugins.

For proxying to occur, these conditions must be satisfied:

• When a connecting client should be treated as a proxy user, the plugin must return a different name,
to indicate the proxied user name.

• A proxy user account must be set up to be authenticated by the plugin. Use the CREATE USER or
GRANT statement to associate an account with a plugin.

Proxy Users

761

• A proxy user account must have the PROXY privilege for the proxied account. Use the GRANT
statement for this.

Consider the following definitions:

CREATE USER 'empl_external'@'localhost'
 IDENTIFIED WITH auth_plugin AS 'auth_string';
CREATE USER 'employee'@'localhost'
 IDENTIFIED BY 'employee_pass';
GRANT PROXY
 ON 'employee'@'localhost'
 TO 'empl_external'@'localhost';

When a client connects as empl_external from the local host, MySQL uses auth_plugin to
perform authentication. If auth_plugin returns the employee user name to the server (based on
the content of 'auth_string' and perhaps by consulting some external authentication system),
that serves as a request to the server to treat this client, for purposes of privilege checking, as the
employee local user.

In this case, empl_external is the proxy user and employee is the proxied user.

The server verifies that proxy authentication for employee is possible for the empl_external user
by checking whether empl_external has the PROXY privilege for employee. (If this privilege had not
been granted, an error would occur.)

When proxying occurs, the USER() and CURRENT_USER() functions can be used to see the difference
between the connecting user and the account whose privileges apply during the current session. For
the example just described, those functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+-------------------------+--------------------+
| USER() | CURRENT_USER() |
+-------------------------+--------------------+
| empl_external@localhost | employee@localhost |
+-------------------------+--------------------+

The IDENTIFIED WITH clause that names the authentication plugin may be followed by an AS clause
specifying a string that the server passes to the plugin when the user connects. It is up to each plugin
whether the AS clause is required. If it is required, the format of the authentication string depends on
how the plugin intends to use it. Consult the documentation for a given plugin for information about the
authentication string values it accepts.

Granting the Proxy Privilege

A special PROXY privilege is needed to enable an external user to connect as and have the privileges of
another user. To grant this privilege, use the GRANT statement. For example:

GRANT PROXY ON 'proxied_user' TO 'proxy_user';

proxy_user must represent a valid externally authenticated MySQL user at connection time
or connection attempts fail. proxied_user must represent a valid locally authenticated user at
connection time or connection attempts fail.

The corresponding REVOKE syntax is:

REVOKE PROXY ON 'proxied_user' FROM 'proxy_user';

MySQL GRANT and REVOKE syntax extensions work as usual. For example:

GRANT PROXY ON 'a' TO 'b', 'c', 'd';
GRANT PROXY ON 'a' TO 'd' IDENTIFIED BY ...;

Proxy Users

762

GRANT PROXY ON 'a' TO 'd' WITH GRANT OPTION;
GRANT PROXY ON 'a' TO ''@'';
REVOKE PROXY ON 'a' FROM 'b', 'c', 'd';

In the preceding example, ''@'' is the default proxy user and means “any user.” The default proxy
user is discussed later in this section.

The PROXY privilege can be granted in these cases:

• By proxied_user for itself: The value of USER() must exactly match CURRENT_USER() and
proxied_user, for both the user name and host name parts of the account name.

• By a user that has GRANT PROXY ... WITH GRANT OPTION for proxied_user.

The root account created by default during MySQL installation has the PROXY ... WITH GRANT
OPTION privilege for ''@'', that is, for all users. This enables root to set up proxy users, as well as
to delegate to other accounts the authority to set up proxy users. For example, root can do this:

CREATE USER 'admin'@'localhost' IDENTIFIED BY 'test';
GRANT PROXY ON ''@'' TO 'admin'@'localhost' WITH GRANT OPTION;

Now the admin user can manage all the specific GRANT PROXY mappings. For example, admin can
do this:

GRANT PROXY ON sally TO joe;

Default Proxy Users

To specify that some or all users should connect using a given external plugin, create a “blank” MySQL
user, set it up to use that plugin for authentication, and let the plugin return the real authenticated user
name (if different from the blank user). For example, suppose that there exists a hypothetical plugin
named ldap_auth that implements LDAP authentication:

CREATE USER ''@'' IDENTIFIED WITH ldap_auth AS 'O=Oracle, OU=MySQL';
CREATE USER 'developer'@'localhost' IDENTIFIED BY 'developer_pass';
CREATE USER 'manager'@'localhost' IDENTIFIED BY 'manager_pass';
GRANT PROXY ON 'manager'@'localhost' TO ''@'';
GRANT PROXY ON 'developer'@'localhost' TO ''@'';

Now assume that a client tries to connect as follows:

mysql --user=myuser --password='myuser_pass' ...

The server will not find myuser defined as a MySQL user. But because there is a blank user account
(''@''), that matches the client user name and host name, the server authenticates the client against
that account: The server invokes ldap_auth, passing it myuser and myuser_pass as the user name
and password.

If the ldap_auth plugin finds in the LDAP directory that myuser_pass is not the correct password for
myuser, authentication fails and the server rejects the connection.

If the password is correct and ldap_auth finds that myuser is a developer, it returns the user
name developer to the MySQL server, rather than myuser. The server verifies that ''@'' can
authenticate as developer (because it has the PROXY privilege to do so) and accepts the connection.
The session proceeds with myuser having the privileges of developer. (These privileges should be
set up by the DBA using GRANT statements, not shown.) The USER() and CURRENT_USER() functions
return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------+---------------------+
| USER() | CURRENT_USER() |

Proxy Users

763

+------------------+---------------------+
| myuser@localhost | developer@localhost |
+------------------+---------------------+

If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the
user name and the session proceeds with myuser having the privileges of manager.

mysql> SELECT USER(), CURRENT_USER();
+------------------+-------------------+
| USER() | CURRENT_USER() |
+------------------+-------------------+
| myuser@localhost | manager@localhost |
+------------------+-------------------+

For simplicity, external authentication cannot be multilevel: Neither the credentials for developer nor
those for manager are taken into account in the preceding example. However, they are still used if a
client tries to authenticate directly against the developer or manager account, which is why those
accounts should be assigned passwords.

The default proxy account uses '' in the host part, which matches any host. If you set up a default
proxy user, take care to also check for accounts with '%' in the host part, because that also matches
any host, but has precedence over '' by the rules that the server uses to sort account rows internally
(see Section 6.2.4, “Access Control, Stage 1: Connection Verification”).

Suppose that a MySQL installation includes these two accounts:

CREATE USER ''@'' IDENTIFIED WITH some_plugin;
CREATE USER ''@'%' IDENTIFIED BY 'some_password';

The intent of the first account is to serve as the default proxy user, to be used to authenticate
connections for users who do not otherwise match a more-specific account. The second account might
have been created, for example, to enable users without their own account as the anonymous user.

However, in this configuration, the first account will never be used because the matching rules sort
''@'%' ahead of ''@''. For accounts that do not match any more-specific account, the server will
attempt to authenticate them against ''@'%' rather than ''@''.

If you intend to create a default proxy user, check for other existing “match any user” accounts that will
take precedence over the default proxy user and thus prevent that user from working as intended. It
may be necessary to remove any such accounts.

Proxy User System Variables

Two system variables help trace the proxy login process:

• proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user
account. For example, if a client authenticates through the default proxy account, this variable will be
set as follows:

mysql> SELECT @@proxy_user;
+--------------+
| @@proxy_user |
+--------------+
| ''@'' |
+--------------+

• external_user: Sometimes the authentication plugin may use an external user to authenticate
to the MySQL server. For example, when using Windows native authentication, a plugin that
authenticates using the windows API does not need the login ID passed to it. However, it still uses an
Windows user ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8
bytes of it) to the server using the external_user read-only session variable. If the plugin does not
set this variable, its value is NULL.

Using SSL for Secure Connections

764

6.3.11 Using SSL for Secure Connections

MySQL supports secure (encrypted) connections between MySQL clients and the server using the
Secure Sockets Layer (SSL) protocol. This section discusses how to use SSL connections. For
information on how to require users to use SSL connections, see the discussion of the REQUIRE clause
of the GRANT statement in Section 13.7.1.4, “GRANT Syntax”.

The standard configuration of MySQL is intended to be as fast as possible, so encrypted connections
are not used by default. For applications that require the security provided by encrypted connections,
the extra computation to encrypt the data is worthwhile.

MySQL enables encryption on a per-connection basis. You can choose an unencrypted connection or
a secure encrypted SSL connection according the requirements of individual applications.

Secure connections are based on the OpenSSL API and are available through the MySQL C API.
Replication uses the C API, so secure connections can be used between master and slave servers.
See Section 16.3.7, “Setting Up Replication Using SSL”.

Another way to connect securely is from within an SSH connection to the MySQL server host. For an
example, see Section 6.3.12, “Connecting to MySQL Remotely from Windows with SSH”.

6.3.11.1 Basic SSL Concepts

To understand how MySQL uses SSL, it is necessary to explain some basic SSL and X509 concepts.
People who are familiar with these concepts can skip this part of the discussion.

By default, MySQL uses unencrypted connections between the client and the server. This means that
someone with access to the network could watch all your traffic and look at the data being sent or
received. They could even change the data while it is in transit between client and server. To improve
security a little, you can compress client/server traffic by using the --compress option when invoking
client programs. However, this does not foil a determined attacker.

When you need to move information over a network in a secure fashion, an unencrypted connection
is unacceptable. Encryption is the way to make any kind of data unreadable. Encryption algorithms
must include security elements to resist many kinds of known attacks such as changing the order of
encrypted messages or replaying data twice.

SSL is a protocol that uses different encryption algorithms to ensure that data received over a public
network can be trusted. It has mechanisms to detect any data change, loss, or replay. SSL also
incorporates algorithms that provide identity verification using the X509 standard.

X509 makes it possible to identify someone on the Internet. It is most commonly used in e-commerce
applications. In basic terms, there should be some entity called a “Certificate Authority” (or CA) that
assigns electronic certificates to anyone who needs them. Certificates rely on asymmetric encryption
algorithms that have two encryption keys (a public key and a secret key). A certificate owner can show
the certificate to another party as proof of identity. A certificate consists of its owner's public key. Any
data encrypted with this public key can be decrypted only using the corresponding secret key, which is
held by the owner of the certificate.

For more information about SSL, X509, encryption, or public-key cryptography, perform an Internet
search for the keywords in which you are interested.

6.3.11.2 Configuring MySQL for SSL

To use SSL connections between the MySQL server and client programs, your system must support
either OpenSSL or yaSSL, and your version of MySQL must be built with SSL support. To make it
easier to use secure connections, MySQL is bundled with yaSSL, which uses the same licensing
model as MySQL. (OpenSSL uses an Apache-style license.) yaSSL support is available on all MySQL
platforms supported by Oracle Corporation.

To get secure connections to work with MySQL and SSL, you must do the following:

Using SSL for Secure Connections

765

1. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support,
and you are going to use OpenSSL rather than the bundled yaSSL library, install OpenSSL if it has
not already been installed. We have tested MySQL with OpenSSL 1.0.0. To obtain OpenSSL, visit
http://www.openssl.org.

Building MySQL using OpenSSL requires a shared OpenSSL library, otherwise linker errors occur.
Alternatively, build MySQL using yaSSL.

2. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support,
configure a MySQL source distribution to use SSL. When you configure MySQL, invoke CMake like
this:

shell> cmake . -DWITH_SSL=bundled

That command configures the distribution to use the bundled yaSSL library. To use the system SSL
library instead, specify the option like this instead:

shell> cmake . -DWITH_SSL=system

See Section 2.8.4, “MySQL Source-Configuration Options”.

Then compile and install the distribution.

On Unix platforms, yaSSL retrieves true random numbers from either /dev/urandom or /dev/
random. Bug#13164 lists workarounds for some very old platforms which do not support these
devices.

3. To check whether a mysqld server supports SSL, examine the value of the have_ssl system
variable:

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+

If the value is YES, the server supports SSL connections. If the value is DISABLED, the server
is capable of supporting SSL connections but was not started with the appropriate --ssl-xxx
options to enable them to be used; see Section 6.3.11.3, “Using SSL Connections”.

6.3.11.3 Using SSL Connections

To enable SSL connections, your MySQL distribution must be built with SSL support, as described
in Section 6.3.11.2, “Configuring MySQL for SSL”. In addition, the proper SSL-related options must
be used to specify the appropriate certificate and key files. For a complete list of SSL options, see
Section 6.3.11.4, “SSL Command Options”.

To start the MySQL server so that it permits clients to connect using SSL, use the options that identify
the certificate and key files the server uses when establishing a secure connection:

• --ssl-ca identifies the Certificate Authority (CA) certificate.

• --ssl-cert identifies the server public key certificate. This can be sent to the client and
authenticated against the CA certificate that it has.

• --ssl-key identifies the server private key.

For example, start the server like this:

shell> mysqld --ssl-ca=ca-cert.pem \

http://www.openssl.org

Using SSL for Secure Connections

766

 --ssl-cert=server-cert.pem \
 --ssl-key=server-key.pem

Each option names a file in PEM format. For instructions on generating the required SSL certificate
and key files, see Section 6.3.11.5, “Setting Up SSL Certificates and Keys for MySQL”. If you have a
MySQL source distribution, you can also test your setup using the demonstration certificate and key
files in the mysql-test/std_data directory of the distribution.

Similar options are used on the client side, but --ssl-cert and --ssl-key identify the client public
and private key. The Certificate Authority certificate, if specified, must be the same as used by the
server.

To establish a secure connection to a MySQL server with SSL support, the options that a client must
specify depend on the SSL requirements of the MySQL account used by the client. (See the discussion
of the REQUIRE clause in Section 13.7.1.4, “GRANT Syntax”.)

Suppose that you want to connect using an account that has no special SSL requirements or was
created using a GRANT statement that includes the REQUIRE SSL option. As a recommended set of
SSL options, start the server with at least --ssl-cert and --ssl-key, and invoke the client with --
ssl-ca. A client can connect securely like this:

shell> mysql --ssl-ca=ca-cert.pem

To require that a client certificate also be specified, create the account using the REQUIRE X509
option. Then the client must also specify the proper client key and certificate files or the server will
reject the connection:

shell> mysql --ssl-ca=ca-cert.pem \
 --ssl-cert=client-cert.pem \
 --ssl-key=client-key.pem

To prevent use of SSL and override other SSL options, invoke the client program with --ssl=0 or a
synonym (--skip-ssl, --disable-ssl):

shell> mysql --ssl=0

A client can determine whether the current connection with the server uses SSL by checking the value
of the Ssl_cipher status variable. The value is nonempty if SSL is used, and empty otherwise. For
example:

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

For the mysql client, an alternative is to use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...

Or:

mysql> \s
...
SSL: Not in use
...

The C API enables application programs to use SSL:

Using SSL for Secure Connections

767

• To establish a secure connection, use the mysql_ssl_set() C API function to set the
appropriate certificate options before calling mysql_real_connect(). See Section 21.8.7.72,
“mysql_ssl_set()”. To require the use of SSL, call mysql_options() with the
MYSQL_OPT_SSL_ENFORCE option.

• To determine whether SSL is in use after the connection is established, use
mysql_get_ssl_cipher(). A non-NULL return value indicates a secure connection and names
the SSL cipher used for encryption. A NULL return value indicates that SSL is not being used. See
Section 21.8.7.34, “mysql_get_ssl_cipher()”.

Replication uses the C API, so secure connections can be used between master and slave servers.
See Section 16.3.7, “Setting Up Replication Using SSL”.

6.3.11.4 SSL Command Options

This section describes options that specify whether to use SSL and the names of SSL certificate
and key files. These options can be given on the command line or in an option file. For examples of
suggested use and how to check whether a connection is secure, see Section 6.3.11.3, “Using SSL
Connections”.

Table 6.14 SSL Option/Variable Summary

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

have_openssl Yes Global No

have_ssl Yes Global No

skip-ssl Yes Yes

ssl Yes Yes

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes Global No

- Variable:
ssl_capath

 Yes Global No

ssl-cert Yes Yes Global No

- Variable:
ssl_cert

 Yes Global No

ssl-cipher Yes Yes Global No

- Variable:
ssl_cipher

 Yes Global No

ssl-crl Yes Yes Global No

- Variable: ssl_crl Yes Global No

ssl-crlpath Yes Yes Global No

- Variable:
ssl_crlpath

 Yes Global No

ssl-key Yes Yes Global No

- Variable:
ssl_key

 Yes Global No

ssl-verify-server-
cert

Yes Yes

• --ssl

For the server, this option specifies that the server permits but does not require SSL connections.

Using SSL for Secure Connections

768

For clients, the option meaning is version specific:

• As of MySQL 5.7.3, --ssl requires the client to connect to the server using SSL. If an encrypted
connection cannot be established, the connection attempt fails. If the connection attempt
succeeds, the connection is guaranteed to use SSL.

• Before MySQL 5.7.3, --ssl permits but does not require the client to connect to the server using
SSL. Therefore, this option is not sufficient in itself to cause an SSL connection to be used. For
example, if you specify this option for a client program but the server has not been configured to
permit SSL connections, an unencrypted connection is used.

--ssl is implied by other --ssl-xxx options, as indicated in the descriptions for those options.

If other --ssl-xxx options are given in the absence of --ssl, the client attempts to connect using
SSL. If the server is not configured to permit SSL, the client falls back to an unencrypted connection.

As a recommended set of options to enable SSL connections, use at least --ssl-cert and --
ssl-key on the server side and --ssl-ca on the client side. See Section 6.3.11.3, “Using SSL
Connections”.

The --ssl option can be given in its negated form to override other SSL options and indicate that
SSL should not be used. To do this, specify the option as --ssl=0 or a synonym (--skip-ssl, --
disable-ssl). For example, you might have SSL options specified in the [client] group of your
option file to use SSL connections by default when you invoke MySQL client programs. To use an
unencrypted connection instead, invoke the client program with --skip-ssl on the command line
to override the options in the option file.

To require use of an SSL connection for a MySQL account, issue a GRANT statement for the account
that includes at least a REQUIRE SSL clause. Connections for the account will be rejected unless
MySQL supports SSL connections and the server and client have been started with the proper SSL
options.

The REQUIRE clause permits other SSL-related options, which can be used to enforce stricter
requirements than REQUIRE SSL. For additional details about which SSL command options may
or must be specified by clients that connect using accounts configured using the various REQUIRE
options, see the description of REQUIRE in Section 13.7.1.4, “GRANT Syntax”.

• --ssl-ca=file_name

The path to a file in PEM format that contains a list of trusted SSL certificate authorities. This option
implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

If you use SSL when establishing a client connection, to tell the client not to authenticate the
server certificate, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client
according to any applicable requirements established using GRANT statements for the client account,
and it still uses any --ssl-ca or --ssl-capath option values specified at server startup.

• --ssl-capath=dir_name

The path to a directory that contains trusted SSL certificate authority certificates in PEM format. This
option implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

If you use SSL when establishing a client connection, to tell the client not to authenticate the
server certificate, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client
according to any applicable requirements established using GRANT statements for the client account,
and it still uses any --ssl-ca or --ssl-capath option values specified at server startup.

MySQL distributions built with OpenSSL support the --ssl-capath option. Distributions built with
yaSSL do not because yaSSL does not look in any directory and does not follow a chained certificate
tree. yaSSL requires that all components of the CA certificate tree be contained within a single CA

Using SSL for Secure Connections

769

certificate tree and that each certificate in the file has a unique SubjectName value. To work around
this yaSSL limitation, concatenate the individual certificate files comprising the certificate tree into a
new file and specify that file as the value of the --ssl-ca option.

• --ssl-cert=file_name

The name of the SSL certificate file in PEM format to use for establishing a secure connection. This
option implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

• --ssl-cipher=cipher_list

A list of permissible ciphers to use for SSL encryption. If no cipher in the list is supported, SSL
connections will not work. This option implies --ssl when used on the server side, and on the client
side before MySQL 5.7.3.

For greatest portability, cipher_list should be a list of one or more cipher names, separated by
colons. This format is understood both by OpenSSL and yaSSL. Examples:

--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES256-SHA:AES128-SHA

OpenSSL supports a more flexible syntax for specifying ciphers, as described in the OpenSSL
documentation at http://www.openssl.org/docs/apps/ciphers.html. However, yaSSL does not, so
attempts to use that extended syntax fail for a MySQL distribution built with yaSSL.

For OpenSSL, the supported ciphers may depend on which version your server is linked against. For
example, the list might include these ciphers:

AES256-GCM-SHA384
AES256-SHA
AES256-SHA256
CAMELLIA256-SHA
DES-CBC3-SHA
DHE-DSS-AES256-GCM-SHA384
DHE-DSS-AES256-SHA
DHE-DSS-AES256-SHA256
DHE-DSS-CAMELLIA256-SHA
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES256-SHA
DHE-RSA-AES256-SHA256
DHE-RSA-CAMELLIA256-SHA
ECDH-ECDSA-AES256-GCM-SHA384
ECDH-ECDSA-AES256-SHA
ECDH-ECDSA-AES256-SHA384
ECDH-ECDSA-DES-CBC3-SHA
ECDH-RSA-AES256-GCM-SHA384
ECDH-RSA-AES256-SHA
ECDH-RSA-AES256-SHA384
ECDH-RSA-DES-CBC3-SHA
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA384
ECDHE-ECDSA-DES-CBC3-SHA
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES256-SHA
ECDHE-RSA-AES256-SHA384
ECDHE-RSA-DES-CBC3-SHA
EDH-DSS-DES-CBC3-SHA
EDH-RSA-DES-CBC3-SHA
PSK-3DES-EDE-CBC-SHA

http://www.openssl.org/docs/apps/ciphers.html

Using SSL for Secure Connections

770

PSK-AES256-CBC-SHA
SRP-DSS-3DES-EDE-CBC-SHA
SRP-DSS-AES-128-CBC-SHA
SRP-DSS-AES-256-CBC-SHA
SRP-RSA-3DES-EDE-CBC-SHA
SRP-RSA-AES-128-CBC-S
SRP-RSA-AES-256-CBC-SHA

yaSSL supports these ciphers:

AES128-RMD
AES128-SHA
AES256-RMD
AES256-SHA
DES-CBC-SHA
DES-CBC3-RMD
DES-CBC3-SHA
DHE-RSA-AES128-RMD
DHE-RSA-AES128-SHA
DHE-RSA-AES256-RMD
DHE-RSA-AES256-SHA
DHE-RSA-DES-CBC3-RMD
EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC3-SHA
RC4-MD5
RC4-SHA

To verify exactly which ciphers a given server supports, check the value of the Ssl_cipher_list
status variable using this query:

SHOW STATUS LIKE 'Ssl_cipher_list';

• --ssl-crl=file_name

The path to a file containing certificate revocation lists in PEM format. This option implies --ssl
when used on the server side, and on the client side before MySQL 5.7.3.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA
path contains certificate revocation lists.

MySQL distributions built with OpenSSL support the --ssl-crl option. Distributions built with
yaSSL do not because revocation lists do not work with yaSSL.

• --ssl-crlpath=dir_name

The path to a directory that contains files containing certificate revocation lists in PEM format. This
option implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA
path contains certificate revocation lists.

MySQL distributions built with OpenSSL support the --ssl-crlpath option. Distributions built with
yaSSL do not because revocation lists do not work with yaSSL.

• --ssl-key=file_name

The name of the SSL key file in PEM format to use for establishing a secure connection. This option
implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

If the key file is protected by a passphrase, the program prompts the user for the passphrase. The
password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect, the
program continues as if it could not read the key.

• --ssl-verify-server-cert

Using SSL for Secure Connections

771

This option is available for client programs only, not the server. It causes the client to check the
server's Common Name value in the certificate that the server sends to the client. The client verifies
that name against the host name the client uses for connecting to the server, and the connection fails
if there is a mismatch. This feature can be used to prevent man-in-the-middle attacks. Verification is
disabled by default.

6.3.11.5 Setting Up SSL Certificates and Keys for MySQL

This section demonstrates how to set up SSL certificate and key files for use by MySQL servers and
clients. The first example shows a simplified procedure such as you might use from the command line.
The second shows a script that contains more detail. The first two examples are intended for use on
Unix and both use the openssl command that is part of OpenSSL. The third example describes how
to set up SSL files on Windows.

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ
from the Common Name value used for the CA certificate. Otherwise, the
certificate and key files will not work for servers compiled using OpenSSL. A
typical error in this case is:

ERROR 2026 (HY000): SSL connection error:
error:00000001:lib(0):func(0):reason(1)

Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and key
files. You will need to respond to several prompts by the openssl commands. To generate test files,
you can press Enter to all prompts. To generate files for production use, you should provide nonempty
responses.

Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

Create CA certificate
shell> openssl genrsa 2048 > ca-key.pem
shell> openssl req -new -x509 -nodes -days 3600 \
 -key ca-key.pem -out ca-cert.pem

Create server certificate, remove passphrase, and sign it
server-cert.pem = public key, server-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout server-key.pem -out server-req.pem
shell> openssl rsa -in server-key.pem -out server-key.pem
shell> openssl x509 -req -in server-req.pem -days 3600 \
 -CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem

Create client certificate, remove passphrase, and sign it
client-cert.pem = public key, client-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout client-key.pem -out client-req.pem
shell> openssl rsa -in client-key.pem -out client-key.pem
shell> openssl x509 -req -in client-req.pem -days 3600 \
 -CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

shell> openssl verify -CAfile ca-cert.pem server-cert.pem client-cert.pem
server-cert.pem: OK
client-cert.pem: OK

Using SSL for Secure Connections

772

Now you have a set of files that can be used as follows:

• ca-cert.pem: Use this as the argument to --ssl-ca on the server and client sides. (The CA
certificate, if used, must be the same on both sides.)

• server-cert.pem, server-key.pem: Use these as the arguments to --ssl-cert and --ssl-
key on the server side.

• client-cert.pem, client-key.pem: Use these as the arguments to --ssl-cert and --ssl-
key on the client side.

To use the files to test SSL connections, see Section 6.3.11.3, “Using SSL Connections”.

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files to test SSL connections as described in Section 6.3.11.3, “Using SSL
Connections”.

DIR=`pwd`/openssl
PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

Create necessary files: $database, $serial and $new_certs_dir
directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
Generation of Certificate Authority(CA)
#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca-cert.pem \
 -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/monty/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:

#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \
 $DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

Using SSL for Secure Connections

773

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to '/home/monty/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
Sign server cert
#
openssl ca -cert $DIR/ca-cert.pem -policy policy_anything \
 -out $DIR/server-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/server-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \
 $DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++

Using SSL for Secure Connections

774

writing new private key to '/home/monty/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
Sign client cert
#

openssl ca -cert $DIR/ca-cert.pem -policy policy_anything \
 -out $DIR/client-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/client-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create a my.cnf file that you can use to test the certificates
#

cat <<EOF > $DIR/my.cnf
[client]
ssl-ca=$DIR/ca-cert.pem
ssl-cert=$DIR/client-cert.pem
ssl-key=$DIR/client-key.pem
[mysqld]
ssl-ca=$DIR/ca-cert.pem
ssl-cert=$DIR/server-cert.pem
ssl-key=$DIR/server-key.pem
EOF

Using SSL for Secure Connections

775

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available
packages can be seen here:

http://www.slproweb.com/products/Win32OpenSSL.html

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture
(32-bit or 64-bit). The default installation location will be C:\OpenSSL-Win32 or C:\OpenSSL-Win64,
depending on which package you downloaded. The following instructions assume a default location of
C:\OpenSSL-Win32. Modify this as necessary if you are using the 64-bit package.

If a message occurs during setup indicating '...critical component is missing:
Microsoft Visual C++ 2008 Redistributables', cancel the setup and download one of the
following packages as well, again depending on your architecture (32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF

• Visual C++ 2008 Redistributables (x64), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the
default option 'Copy OpenSSL DLL files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path
variable of your server:

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the Environment
Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable
dialogue should appear.

4. Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).

5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Windows\system32>cd \

C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.

C:\>

Depending on your version of Windows, the preceding path-setting instructions might differ slightly.

After OpenSSL has been installed, use instructions similar to those from from Example 1 (shown earlier
in this section), with the following changes:

http://www.slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

Connecting to MySQL Remotely from Windows with SSH

776

• Change the following Unix commands:

Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

On Windows, use these commands instead:

Create clean environment
shell> md c:\newcerts
shell> cd c:\newcerts

• When a '\' character is shown at the end of a command line, this '\' character must be removed
and the command lines entered all on a single line.

After generating the certificate and key files, to use them to test SSL connections, see Section 6.3.11.3,
“Using SSL Connections”.

6.3.12 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get a secure connection to a remote MySQL server with SSH. The
information was provided by David Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. As a user, the best nonfree one I have found is
from SecureCRT from http://www.vandyke.com/. Another option is f-secure from http://www.f-
secure.com/. You can also find some free ones on Google at http://directory.google.com/Top/
Computers/Internet/Protocols/SSH/Clients/Windows/.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value might not be the same as the
user name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host:
yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set port: 3306,
host: localhost, remote port: 3306).

4. Save everything, otherwise you will have to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally
do, except type in localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

6.3.13 MySQL Enterprise Audit Log Plugin

Note

MySQL Enterprise Audit is a commercial extension. To learn more about
commercial products (MySQL Enterprise Edition), see http://www.mysql.com/
products/.

In MySQL 5.7, MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a
server plugin named audit_log. MySQL Enterprise Audit uses the open MySQL Audit API to enable
standard, policy-based monitoring and logging of connection and query activity executed on specific
MySQL servers. Designed to meet the Oracle audit specification, MySQL Enterprise Audit provides
an out of box, easy to use auditing and compliance solution for applications that are governed by both
internal and external regulatory guidelines.

http://www.vandyke.com/
http://www.f-secure.com/
http://www.f-secure.com/
http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/
http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/

MySQL Enterprise Audit Log Plugin

777

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

After you install the plugin (see Section 6.3.13.1, “Installing the Audit Log Plugin”), it writes an audit log
file. By default, the file is named audit.log in the server data directory. To change the name of the
file, set the audit_log_file system variable at server startup.

Audit log file contents are not encrypted. See Section 6.3.13.2, “Audit Log Plugin Security
Considerations”.

The audit log file is written in XML, with auditable events encoded as <AUDIT_RECORD> elements. To
select the file format, set the audit_log_format system variable at server startup. For details on file
format and contents, see Section 6.3.13.3, “The Audit Log File”.

To control what information audit_log writes to its log file, set the audit_log_policy system
variable. By default, this variable is set to ALL (write all auditable events), but also permits values of
LOGINS or QUERIES to log only login or query events, or NONE to disable logging.

For more information about controlling how logging occurs, see Section 6.3.13.4, “Audit Log Plugin
Logging Control”. For descriptions of the parameters used to configure the audit log plugin, see
Section 6.3.13.5, “Audit Log Plugin Options and Variables”.

The Performance Schema (see Chapter 20, MySQL Performance Schema) has instrumentation for the
audit log plugin. To identify the relevant instruments, use this query:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE '%/alog/%';

Changes from Older Audit Log Plugin Versions

Several changes were made to the audit log plugin in MySQL 5.7 for better compatibility with Oracle
Audit Vault.

MySQL 5.7 changed audit log file output to a new format. Subsequently, in 5.7.3, it became possible
to select either the old or new format using the audit_log_format system variable, which has
permitted values of OLD and NEW (default NEW). The two formats differ as follows:

• Information within <AUDIT_RECORD> elements written in the old format using attributes is written in
the new format using subelements.

• The new format includes more information in <AUDIT_RECORD> elements. Every element includes
a RECORD_ID value providing a unique identifier. The TIMESTAMP value includes time zone
information. Query records include HOST, IP, OS_LOGIN, and USER information, as well as
COMMAND_CLASS and STATUS_CODE values.

Example of old <AUDIT_RECORD> format:

<AUDIT_RECORD
 TIMESTAMP="2013-09-15T15:27:27"
 NAME="Query"
 CONNECTION_ID="3"
 STATUS="0"
 SQLTEXT="SELECT 1"
/>

Example of new <AUDIT_RECORD> format:

<AUDIT_RECORD>
 <TIMESTAMP>2013-09-15T15:27:27 UTC</TIMESTAMP>
 <RECORD_ID>3998_2013-09-15T15:27:27</RECORD_ID>
 <NAME>Query</NAME>

MySQL Enterprise Audit Log Plugin

778

 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>select</COMMAND_CLASS>
 <SQLTEXT>SELECT 1</SQLTEXT>
</AUDIT_RECORD>

When the audit log plugin rotates the audit log file, it uses a different file name format. For a log file
named audit.log, the plugin previously renamed the file to audit.log.TIMESTAMP. The plugin
now renames the file to audit.log.TIMESTAMP.xml to indicate that it is an XML file.

If you previously used an older version of the audit log plugin, use this procedure to avoid writing new-
format log entries to an existing log file that contains old-format entries:

1. Stop the server.

2. Rename the current audit log file manually. This file will contain only old-format log entries.

3. Update the server and restart it. The audit log plugin will create a new log file, which will contain
only new-format log entries.

Similarly, to change the value of audit_log_format, stop the server and rename the current audit
log file manually before restarting the server with the new audit_log_format value.

The API for writing audit plugins has also changed. The mysql_event_general structure has new
members to represent client host name and IP address, command class, and external user. For more
information, see Section 22.2.4.8, “Writing Audit Plugins”.

6.3.13.1 Installing the Audit Log Plugin

The audit log plugin is named audit_log. To be usable by the server, the plugin library object file
must be located in the MySQL plugin directory (the directory named by the plugin_dir system
variable). If necessary, set the value of plugin_dir at server startup to tell the server the location of
the plugin directory.

To load the plugin at server startup, use the --plugin-load option to name the object file that
contains the plugin. With this plugin-loading method, the option must be given each time the server
starts. For example, put the following lines in your my.cnf file:

[mysqld]
plugin-load=audit_log.so

If object files have a suffix different from .so on your system, substitute the correct suffix (for example,
.dll on Windows).

Alternatively, to register the plugin at runtime, use this statement (changing the suffix as necessary):

mysql> INSTALL PLUGIN audit_log SONAME 'audit_log.so';

INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins table to cause the
plugin to be loaded for each subsequent normal server startup.

If the plugin is loaded with --plugin-load or has been previously registered with INSTALL PLUGIN,
you can use the --audit-log option at server startup to control plugin activation. For example, to
load the plugin and prevent it from being removed at runtime, use these options:

[mysqld]
plugin-load=audit_log.so
audit-log=FORCE_PLUS_PERMANENT

MySQL Enterprise Audit Log Plugin

779

If it is desired to prevent the server from running without the audit plugin, use --audit-log with
a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not
initialize successfully.

For general information about installing plugins, see Section 5.1.8, “Server Plugins”. To verify plugin
installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS
statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.

Audit log file contents are not encrypted. See Section 6.3.13.2, “Audit Log Plugin Security
Considerations”.

For additional information about the parameters used to configure operation of the audit_log plugin,
see Section 6.3.13.5, “Audit Log Plugin Options and Variables”.

6.3.13.2 Audit Log Plugin Security Considerations

Contents of the audit log file produced by the audit_log audit log plugin are not encrypted and may
contain sensitive information, such as the text of SQL statements. For security reasons, this file should
be written to a directory accessible only to the MySQL server and users with a legitimate reason to
view the log. The default file is audit.log in the data directory. This can be changed by setting the
audit_log_file system variable at server startup.

6.3.13.3 The Audit Log File

Audit log file contents are not encrypted. See Section 6.3.13.2, “Audit Log Plugin Security
Considerations”.

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element
is <AUDIT>. The closing </AUDIT> tag of the root element is written when the audit log plugin
terminates, so the tag is not present in the file while the plugin is active.

The root element contains <AUDIT_RECORD> elements, each of which contains other elements that
provide information about the audited event.

MySQL 5.7 changed audit log file output to a new format. Subsequently, in 5.7.3, it became possible
to select either the old or new format using the audit_log_format system variable, which has
permitted values of OLD and NEW (default NEW).

If you change the value of audit_log_format, use this procedure to avoid writing log entries in one
format to an existing log file that contains entries in a different format:

1. Stop the server.

2. Rename the current audit log file manually.

3. Restart the server with the new value of audit_log_format. The audit log plugin will create a
new log file, which will contain log entries in the selected format.

Here is a sample log file in the default (new) format, reformatted slightly for readability:

<?xml version="1.0" encoding="UTF-8"?>
<AUDIT>
 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:24 UTC</TIMESTAMP>
 <RECORD_ID>1_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Audit</NAME>
 <SERVER_ID>1</SERVER_ID>
 <VERSION>1</VERSION>
 <STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --socket=/usr/local/mysql/mysql.sock
 --port=3306</STARTUP_OPTIONS>
 <OS_VERSION>x86_64-osx10.6</OS_VERSION>
 <MYSQL_VERSION>5.7.2-m12-log</MYSQL_VERSION>
 </AUDIT_RECORD>
 <AUDIT_RECORD>

MySQL Enterprise Audit Log Plugin

780

 <TIMESTAMP>2013-09-17T15:03:40 UTC</TIMESTAMP>
 <RECORD_ID>2_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Connect</NAME>
 <CONNECTION_ID>2</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <PRIV_USER>root</PRIV_USER>
 <PROXY_USER></PROXY_USER>
 <DB>test</DB>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:41 UTC</TIMESTAMP>
 <RECORD_ID>4_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>2</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>drop_table</COMMAND_CLASS>
 <SQLTEXT>DROP TABLE IF EXISTS t</SQLTEXT>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:41 UTC</TIMESTAMP>
 <RECORD_ID>5_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>2</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>create_table</COMMAND_CLASS>
 <SQLTEXT>CREATE TABLE t (i INT)</SQLTEXT>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:41 UTC</TIMESTAMP>
 <RECORD_ID>7_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>2</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER></USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST></HOST>
 <IP></IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:47 UTC</TIMESTAMP>
 <RECORD_ID>9_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Shutdown</NAME>
 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>

MySQL Enterprise Audit Log Plugin

781

 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS></COMMAND_CLASS>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:47 UTC</TIMESTAMP>
 <RECORD_ID>10_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER></USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST></HOST>
 <IP></IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:49 UTC</TIMESTAMP>
 <RECORD_ID>11_2013-09-17T15:03:24</RECORD_ID>
 <NAME>NoAudit</NAME>
 <SERVER_ID>1</SERVER_ID>
 </AUDIT_RECORD>
</AUDIT>

Elements within <AUDIT_RECORD> elements have these characteristics:

• Some elements appear in every <AUDIT_RECORD> element, but many are optional and do not
necessarily appear in every element.

• Order of elements within an <AUDIT_RECORD> element is not guaranteed.

• Element values are not fixed length. Long values may be truncated as indicated in the element
descriptions given later.

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

New Audit Log File Format

Every <AUDIT_RECORD> element contains a set of mandatory elements. Other optional elements may
appear, depending on the audit record type.

The following elements are mandatory in every <AUDIT_RECORD> element:

• <NAME>

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example:

<NAME>Query</NAME>

Some common <NAME> values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)

MySQL Enterprise Audit Log Plugin

782

Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects
NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics,
Table Dump, Time.

With the exception of Audit and NoAudit, these values correspond to the COM_xxx command
values listed in the mysql_com.h header file. For example, Create DB and Shutdown correspond
to COM_CREATE_DB and COM_SHUTDOWN, respectively.

• <RECORD_ID>

A unique identifier for the audit record. The value is composed from a sequence number and
timestamp, in the format SEQ_TIMESTAMP. The sequence number is initialized to the size of the
audit log file at the time the audit log plugin opens it and increments by 1 for each record logged. The
timestamp is a UTC value in yyyy-mm-ddThh:mm:ss format indicating the time when the audit log
plugin opened the file.

Example:

<RECORD_ID>28743_2013-09-18T21:03:24</RECORD_ID>

• <TIMESTAMP>

The date and time that the audit event was generated. For example, the event corresponding to
execution of an SQL statement received from a client has a <TIMESTAMP> value occurring after the
statement finishes, not when it is received. The value has the format yyyy-mm-ddThh:mm:ss UTC
(with T, no decimals). The format includes a time zone specifier at the end. Currently, the time zone
is always UTC.

Example:

<TIMESTAMP>2013-09-17T15:03:49 UTC</TIMESTAMP>

The following elements are optional in <AUDIT_RECORD> elements. Many of them occur only with
specific <NAME> values.

• <COMMAND_CLASS>

A string that indicates the type of action performed.

Example:

<COMMAND_CLASS>drop_table</COMMAND_CLASS>

The values come from the com_status_vars array in the sql/mysqld.cc file in a MySQL source
distribution. They correspond to the status variables displayed by this statment:

SHOW STATUS LIKE 'Com%';

• <CONNECTION_ID>

An unsigned integer representing the client connection identifier. This is the same as the
CONNECTION_ID() function value within the session.

MySQL Enterprise Audit Log Plugin

783

Example:

<CONNECTION_ID>127</CONNECTION_ID>

• <DB>

A string representing the default database name. This element appears only if the <NAME> value is
Connect or Change user.

• <HOST>

A string representing the client host name. This element appears only if the <NAME> value is
Connect, Change user, or Query.

Example:

<HOST>localhost</HOST>

• <IP>

A string representing the client IP address. This element appears only if the <NAME> value is
Connect, Change user, or Query.

Example:

<IP>127.0.0.1</IP>

• <MYSQL_VERSION>

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable. This element appears only if the <NAME> value is Audit.

Example:

<MYSQL_VERSION>5.7.1-m11-log</MYSQL_VERSION>

• <OS_LOGIN>

A string representing the external user (empty if none). The value may differ from the <USER> value,
for example, if the server authenticates the client using an external authentication method. This
element appears only if the <NAME> value is Connect, Change user, or Query.

• <OS_VERSION>

A string representing the operating system on which the server was built or is running. This element
appears only if the <NAME> value is Audit.

Example:

<OS_VERSION>x86_64-Linux</OS_VERSION>

• <PRIV_USER>

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and may differ from the <USER> value. This element appears
only if the <NAME> value is Connect or Change user.

• <PROXY_USER>

MySQL Enterprise Audit Log Plugin

784

A string representing the proxy user. The value is empty if user proxying is not in effect. This element
appears only if the <NAME> value is Connect or Change user.

• <SERVER_ID>

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable. This element appears only if the <NAME> value is Audit or NoAudit.

Example:

<SERVER_ID>1</SERVER_ID>

• <SQLTEXT>

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. This element appears only if the <NAME> value is Query or Execute.

The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so the
value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example:

<SQLTEXT>DELETE FROM t1</SQLTEXT>

• <STARTUP_OPTIONS>

A string representing the options that were given on the command line or in option files when the
MySQL server was started. This element appears only if the <NAME> value is Audit.

Example:

<STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --port=3306 --log-output=FILE</STARTUP_OPTIONS>

• <STATUS>

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Section C.3, “Server Error Codes and
Messages”.

Warnings are not logged.

See the description for <STATUS_CODE> for information about how it differs from <STATUS>.

Example:

<STATUS>1051</STATUS>

• <STATUS_CODE>

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of

MySQL Enterprise Audit Log Plugin

785

the mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not
necessarily 1 for error.

Example:

<STATUS_CODE>0</STATUS_CODE>

• <USER>

A string representing the user name sent by the client. This may differ from the <PRIV_USER> value.
This element appears only if the <NAME> value is Connect, Change user, or Query.

Example:

<USER>root[root] @ localhost [127.0.0.1]</USER>

• <VERSION>

An unsigned integer representing the version of the audit log file format. This element appears only if
the <NAME> value is Audit.

Example:

<VERSION>1</VERSION>

Old Audit Log File Format

Every <AUDIT_RECORD> element contains a set of mandatory attributes. Other optional attributes may
appear depending on the audit record type.

The following attributes are mandatory in every <AUDIT_RECORD> element:

• NAME

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example: NAME="Query"

Some common NAME values:

"Audit" When auditing starts, which may be server startup time
"Connect" When a client connects, also known as logging in
"Query" An SQL statement (executed directly)
"Prepare" Preparation of an SQL statement; usually followed by Execute
"Execute" Execution of an SQL statement; usually follows Prepare
"Shutdown" Server shutdown
"Quit" When a client disconnects
"NoAudit" Auditing has been turned off

The possible values are "Audit", "Binlog Dump", "Change user", "Close stmt",
"Connect Out", "Connect", "Create DB", "Daemon", "Debug", "Delayed insert",
"Drop DB", "Execute", "Fetch", "Field List", "Init DB", "Kill", "Long Data",
"NoAudit", "Ping", "Prepare", "Processlist", "Query", "Quit", "Refresh", "Register
Slave", "Reset stmt", "Set option", "Shutdown", "Sleep", "Statistics", "Table
Dump", "Time".

With the exception of "Audit" and "NoAudit", these values correspond to the COM_xxx
command values listed in the mysql_com.h header file. For example, "Create DB" and
"Shutdown" correspond to COM_CREATE_DB and COM_SHUTDOWN, respectively.

MySQL Enterprise Audit Log Plugin

786

• TIMESTAMP

The date and time that the audit event was generated. For example, the event corresponding to
execution of an SQL statement received from a client has a TIMESTAMP value occurring after the
statement finishes, not when it is received. The value is UTC, in the format yyyy-mm-ddThh:mm:ss
(with T, no decimals).

Example: TIMESTAMP="2012-08-09T12:55:16"

The following attributes are optional in <AUDIT_RECORD> elements. Many of them occur only for
elements with specific values of the NAME attribute.

• CONNECTION_ID

An unsigned integer representing the client connection identifier. This is the same as the
CONNECTION_ID() function value within the session.

Example: CONNECTION_ID="127"

• DB

A string representing the default database name. This attribute appears only if the NAME value is
"Connect" or "Change user".

• HOST

A string representing the client host name. This attribute appears only if the NAME value is
"Connect" or "Change user".

Example: HOST="localhost"

• IP

A string representing the client IP address. This attribute appears only if the NAME value is
"Connect" or "Change user".

Example: IP="127.0.0.1"

• MYSQL_VERSION

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable. This attribute appears only if the NAME value is "Audit".

Example: MYSQL_VERSION="5.6.11-log"

• OS_LOGIN

A string representing the external user (empty if none). The value may differ from USER, for example,
if the server authenticates the client using an external authentication method. This attribute appears
only if the NAME value is "Connect" or "Change user".

• OS_VERSION

A string representing the operating system on which the server was built or is running. This attribute
appears only if the NAME value is "Audit".

Example: OS_VERSION="x86_64-Linux"

• PRIV_USER

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and may be different from the USER value. This attribute
appears only if the NAME value is "Connect" or "Change user".

MySQL Enterprise Audit Log Plugin

787

• PROXY_USER

A string representing the proxy user. The value is empty if user proxying is not in effect. This attribute
appears only if the NAME value is "Connect" or "Change user".

• SERVER_ID

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable. This attribute appears only if the NAME value is "Audit" or "NoAudit".

Example: SERVER_ID="1"

• SQLTEXT

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. This attribute appears only if the NAME value is "Query" or "Execute".

The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so the
value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example: SQLTEXT="DELETE FROM t1"

• STARTUP_OPTIONS

A string representing the options that were given on the command line or in option files when the
MySQL server was started. This attribute appears only if the NAME value is "Audit".

Example: STARTUP_OPTIONS="--port=3306 --log-output=FILE"

• STATUS

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Section C.3, “Server Error Codes and
Messages”.

Warnings are not logged.

Example: STATUS="1051"

• USER

A string representing the user name sent by the client. This may be different from the PRIV_USER
value. This attribute appears only if the NAME value is "Connect" or "Change user".

• VERSION

An unsigned integer representing the version of the audit log file format. This attribute appears only if
the NAME value is "Audit".

Example: VERSION="1"

6.3.13.4 Audit Log Plugin Logging Control

This section describes how the audit_log plugin performs logging and the system variables that
control how logging occurs. It assumes familiarity with the log file format described in Section 6.3.13.3,
“The Audit Log File”.

MySQL Enterprise Audit Log Plugin

788

When the audit log plugin opens its log file, it checks whether the XML declaration and opening
<AUDIT> root element tag need to be written and writes them if so. When the audit log plugin
terminates, it writes a closing </AUDIT> tag to the file.

If the log file exists at open time, the plugin checks whether the file ends with an </AUDIT> tag and
truncates it if so before writing any <AUDIT_RECORD> elements. If the log file exists but does not end
with </AUDIT> or the </AUDIT> tag cannot be truncated, the plugin considers the file malformed and
fails to initialize. This can occur if the server crashes or is killed with the audit log plugin running. No
logging occurs until the problem is rectified. Check the error log for diagnostic information:

[ERROR] Plugin 'audit_log' init function returned error.

To deal with this problem, you must either remove or rename the malformed log file and restart the
server.

The MySQL server calls the audit log plugin to write an <AUDIT_RECORD> element whenever an
auditable event occurs, such as when it completes execution of an SQL statement received from
a client. Typically the first <AUDIT_RECORD> element written after server startup has the server
description and startup options. Elements following that one represent events such as client connect
and disconnect events, executed SQL statements, and so forth. Only top-level statements are logged,
not statements within stored programs such as triggers or stored procedures. Contents of files
referenced by statements such as LOAD DATA INFILE are not logged.

To permit control over how logging occurs, the audit_log plugin provides several system variables,
described following. For more information, see Section 6.3.13.5, “Audit Log Plugin Options and
Variables”.

• audit_log_file: The name of the log file. By default, the name is audit.log in the server data
directory. For security reasons, the audit log file should be written to a directory accessible only to
the MySQL server and users with a legitimate reason to view the log.

• audit_log_policy: What kinds of information the plugin writes. By default, this variable is set to
ALL (write all auditable events), but also permits values of LOGINS or QUERIES to log only login or
query events, or NONE to disable logging.

• audit_log_strategy: The method used for log writes. By default, the strategy value is
ASYNCHRONOUS and the plugin logs asynchronously to a buffer, waiting if the buffer is full. It's
possible to tell the plugin not to wait (PERFORMANCE) or to log synchronously, either using file
system caching (SEMISYNCHRONOUS) or forcing output with a sync() call after each write request
(SYNCHRONOUS).

Asynchronous logging strategy has these characteristics:

• Minimal impact on server performance and scalability.

• Blocking of threads that generate audit events for the shortest possible time; that is, time to
allocate the buffer plus time to copy the event to the buffer.

• Output goes to the buffer. Writes from the buffer to the log file are handled by a separate thread.

A disadvantage of PERFORMANCE strategy is that it drops events when the buffer is full. For a heavily
loaded server, it is more likely that the audit log will be missing events.

With asynchronous logging, the integrity of the log file may be compromised if a problem occurs
during a write to the file or if the plugin does not shut down cleanly (for example, in the event that
the server host crashes). To reduce this risk, set audit_log_strategy use synchronous logging.
Regardless of strategy, logging occurs on a best-effort basis, with no guarantee of consistency.

• audit_log_buffer_size: The size of the buffer for asynchronous logging. The plugin uses
a single buffer, which it allocates when it initializes and removes when it terminates. The plugin
allocates this buffer only if logging is asynchronous.

MySQL Enterprise Audit Log Plugin

789

• audit_log_rotate_on_size, audit_log_flush: These variables permit audit log file rotation
and flushing. The audit log file has the potential to grow very large and consume a lot of disk space.
To manage the space used, either enable automatic log rotation, or manually rename the audit file
and flush the log to open a new file. The renamed file can be removed or backed up as desired.

By default, audit_log_rotate_on_size=0 and there is no log rotation. In this case, the audit log
plugin closes and reopens the log file when the audit_log_flush value changes from disabled
to enabled. Log file renaming must be done externally to the server. Suppose that you want to
maintain the three most recent log files, which cycle through the names audit.log.1.xml through
audit.log.3.xml. On Unix, perform rotation manually like this:

1. From the command line, rename the current log files:

shell> mv audit.log.2.xml audit.log.3.xml
shell> mv audit.log.1.xml audit.log.2.xml
shell> mv audit.log audit.log.1.xml

At this point, the plugin is still writing to the current log file, which has been renamed to
audit.log.1.xml.

2. Connect to the server and flush the log file so the plugin closes it and reopens a new audit.log
file:

mysql> SET GLOBAL audit_log_flush = ON;

If audit_log_rotate_on_size is greater than 0, setting audit_log_flush has no effect. In
this case, the audit log plugin closes and reopens its log file whenever a write to the file causes
its size to exceed the audit_log_rotate_on_size value. The plugin renames the original file
to have an extension consisting of a timestamp and .xml suffix. For example, audit.log might
be renamed to audit.log.13792588477726520.xml. The last 7 digits of the timestamp are a
fractional second part. The first 10 digits are a Unix timestamp value that can be interpreted using
the FROM_UNIXTIME() function:

mysql> SELECT FROM_UNIXTIME(1379258847);
+---------------------------+
| FROM_UNIXTIME(1379258847) |
+---------------------------+
| 2013-09-15 10:27:27 |
+---------------------------+

6.3.13.5 Audit Log Plugin Options and Variables

This section describes the command options and system variables that control operation of the audit
log plugin. If values specified at startup time are incorrect, the plugin may fail to initialize properly and
the server does not load it. In this case, the server may also produce error messages for other audit log
settings because it will not recognize them.

To control the activation of the audit_log plugin, use this option:

• --audit-log[=value]

Command-Line Format --audit-log[=value]

Option-File Format audit-log

Permitted Values

Type enumeration

Default ON

Valid
Values

ON

MySQL Enterprise Audit Log Plugin

790

OFF

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads the audit_log plugin at startup. It is available only if the
audit log plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-
load. See Section 6.3.13.1, “Installing the Audit Log Plugin”.

The option value should be one of those available for plugin-loading options, as described
in Section 5.1.8.1, “Installing and Uninstalling Plugins”. For example, --audit-
log=FORCE_PLUS_PERMANENT tells the server to load the plugin and prevent it from being removed
while the server is running.

If the audit_log plugin is installed, it exposes several system variables that permit control over
logging:

mysql> SHOW VARIABLES LIKE 'audit_log%';
+--------------------------+--------------+
| Variable_name | Value |
+--------------------------+--------------+
audit_log_buffer_size	1048576
audit_log_file	audit.log
audit_log_flush	OFF
audit_log_policy	ALL
audit_log_rotate_on_size	0
audit_log_strategy	ASYNCHRONOUS
+--------------------------+--------------+

You can set any of these variables at server startup, and some of them at runtime.

• audit_log_buffer_size

System Variable Name audit_log_buffer_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Platform
Bit Size

32

Type numeric

Default 1048576

Range 4096 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1048576

Range 4096 .. 18446744073709547520

When the audit log plugin writes events to the log asynchronously, it uses a buffer to store event
contents prior to writing them. This variable controls the size of that buffer, in bytes. The server
adjusts the value to a multiple of 4096. The plugin uses a single buffer, which it allocates when
it initializes and removes when it terminates. The plugin allocates this buffer only if logging is
asynchronous.

This variable is available only if the audit_log plugin is enabled.

MySQL Enterprise Audit Log Plugin

791

• audit_log_file

System Variable Name audit_log_file

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Default audit.log

The name of the file to which the audit log plugin writes events. The default value is audit.log.
If the file name is a relative path, the server interprets it relative to the data directory. For security
reasons, the audit log file should be written to a directory accessible only to the MySQL server and
users with a legitimate reason to view the log.

This variable is available only if the audit_log plugin is enabled.

• audit_log_flush

System Variable Name audit_log_flush

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

When this variable is set to enabled (1 or ON), the audit log plugin closes and reopens its log file to
flush it. (The value remains OFF so that you need not disable it explicitly before enabling it again to
perform another flush.) Enabling this variable has no effect unless audit_log_rotate_on_size
is 0.

This variable is available only if the audit_log plugin is enabled.

• audit_log_format

Introduced 5.7.3

System Variable Name audit_log_format

Variable Scope Global

Dynamic Variable No

Permitted Values (>= 5.7.3)

Type enumeration

Default NEW

OLD

Valid
Values NEW

The audit log file format. Permitted values are OLD and NEW (default NEW). For details about each
format, see Section 6.3.13.3, “The Audit Log File”.

If you change the value of audit_log_format, use this procedure to avoid writing log entries in
one format to an existing log file that contains entries in a different format:

1. Stop the server.

MySQL Enterprise Audit Log Plugin

792

2. Rename the current audit log file manually.

3. Restart the server with the new value of audit_log_format. The audit log plugin will create a
new log file, which will contain log entries in the selected format.

This variable was added in MySQL 5.7.3. It is available only if the audit_log plugin is enabled.

• audit_log_policy

System Variable Name audit_log_policy

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default ALL

ALL

NONE

LOGINS

Valid
Values

QUERIES

The policy controlling the information written by the audit log plugin to its log file. The following table
shows the permitted values.

Value Description

ALL Log all events

NONE Log nothing (disable the audit stream)

LOGINS Log only login events

QUERIES Log only query events

This variable is available only if the audit_log plugin is enabled.

• audit_log_rotate_on_size

System Variable Name audit_log_rotate_on_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

If the audit_log_rotate_on_size value is greater than 0, the audit log plugin closes and
reopens its log file if a write to the file causes its size to exceed this value. The original file is
renamed to have a timestamp extension.

If the audit_log_rotate_on_size value is 0, the plugin does not close and reopen its log based
on size. Instead, use audit_log_flush to close and reopen the log on demand. In this case,
rename the file externally to the server before flushing it.

For more information about audit log file rotation and timestamp interpretation, see Section 6.3.13.4,
“Audit Log Plugin Logging Control”.

SQL-Based MySQL Account Activity Auditing

793

If you set this variable to a value that is not a multiple of 4096, it is truncated to the nearest multiple.
(Thus, setting it to a value less than 4096 has the effect of setting it to 0 and no rotation occurs.)

This variable is available only if the audit_log plugin is enabled.

• audit_log_strategy

System Variable Name audit_log_strategy

Variable Scope Global

Dynamic Variable No

Permitted Values

Type enumeration

Default ASYNCHRONOUS

ASYNCHRONOUS

PERFORMANCE

SEMISYNCHRONOUS

Valid
Values

SYNCHRONOUS

The logging method used by the audit log plugin. The following table describes the permitted values.

Table 6.15 Audit Log Strategies

Value Meaning

ASYNCHRONOUS Log asynchronously, wait for space in output buffer

PERFORMANCE Log asynchronously, drop request if insufficient space in output buffer

SEMISYNCHRONOUS Log synchronously, permit caching by operating system

SYNCHRONOUS Log synchronously, call sync() after each request

This variable is available only if the audit_log plugin is enabled.

6.3.13.6 Audit Log Plugin Restrictions

The audit log plugin is subject to these restrictions:

• Only top-level statements are logged, not statements within stored programs such as triggers or
stored procedures.

• Contents of files referenced by statements such as LOAD DATA INFILE are not logged.

6.3.14 SQL-Based MySQL Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity
to MySQL accounts.

MySQL accounts correspond to rows in the mysql.user table. When a client connects successfully,
the server authenticates the client to a particular row in this table. The User and Host column values
in this row uniquely identify the account and correspond to the 'user_name'@'host_name' format in
which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT_USER() function can be invoked to determine which account this is for the client user. Its
value is constructed from the User and Host columns of the user table row for the account.

SQL-Based MySQL Account Activity Auditing

794

However, there are circumstances under which the CURRENT_USER() value corresponds not to the
client user but to a different account. This occurs in contexts when privilege checking is not based the
client's account:

• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic

• Views defined with the SQL SECURITY DEFINER characteristic

• Triggers and events

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER()
refers to that account, not to the account for the client who invoked the stored routine or view or who
caused the trigger to activate. To determine the invoking user, you can call the USER() function, which
returns a value indicating the actual user name provided by the client and the host from which the client
connected. However, this value does not necessarily correspond directly to an account in the user
table, because the USER() value never contains wildcards, whereas account values (as returned by
CURRENT_USER()) may contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables
clients to connect as an anonymous user from the local host with any user name. If this case, if a client
connects as user1 from the local host, USER() and CURRENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+

The host name part of an account can contain wildcards, too. If the host name contains a '%' or
'_' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT_USER() value will not indicate which one. For example, the account
'user2'@'%.example.com' can be used by user2 to connect from any host in the example.com
domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return
different values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within
triggers) but must also be able to associate the USER() value with an account in the user table, it
is necessary to avoid accounts that contain wildcards in the User or Host column. Specifically, do
not permit User to be empty (which creates an anonymous-user account), and do not permit pattern
characters or netmask notation in Host values. All accounts must have a nonempty User value and
literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com'
accounts should be changed not to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the
SUBSTRING_INDEX() function:

SQL-Based MySQL Account Activity Auditing

795

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+--+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+--+
| localhost |
+--+

796

797

Chapter 7 Backup and Recovery

Table of Contents
7.1 Backup and Recovery Types ... 798
7.2 Database Backup Methods .. 801
7.3 Example Backup and Recovery Strategy .. 803

7.3.1 Establishing a Backup Policy .. 804
7.3.2 Using Backups for Recovery ... 805
7.3.3 Backup Strategy Summary .. 806

7.4 Using mysqldump for Backups .. 806
7.4.1 Dumping Data in SQL Format with mysqldump ... 807
7.4.2 Reloading SQL-Format Backups ... 808
7.4.3 Dumping Data in Delimited-Text Format with mysqldump ... 808
7.4.4 Reloading Delimited-Text Format Backups ... 809
7.4.5 mysqldump Tips .. 810

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log ... 812
7.5.1 Point-in-Time Recovery Using Event Times ... 813
7.5.2 Point-in-Time Recovery Using Event Positions ... 814

7.6 MyISAM Table Maintenance and Crash Recovery ... 815
7.6.1 Using myisamchk for Crash Recovery .. 815
7.6.2 How to Check MyISAM Tables for Errors ... 816
7.6.3 How to Repair MyISAM Tables .. 816
7.6.4 MyISAM Table Optimization ... 819
7.6.5 Setting Up a MyISAM Table Maintenance Schedule .. 819

It is important to back up your databases so that you can recover your data and be up and running
again in case problems occur, such as system crashes, hardware failures, or users deleting data by
mistake. Backups are also essential as a safeguard before upgrading a MySQL installation, and they
can be used to transfer a MySQL installation to another system or to set up replication slave servers.

MySQL offers a variety of backup strategies from which you can choose the methods that best suit
the requirements for your installation. This chapter discusses several backup and recovery topics with
which you should be familiar:

• Types of backups: Logical versus physical, full versus incremental, and so forth.

• Methods for creating backups.

• Recovery methods, including point-in-time recovery.

• Backup scheduling, compression, and encryption.

• Table maintenance, to enable recovery of corrupt tables.

Additional Resources

Resources related to backup or to maintaining data availability include the following:

• Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product for backups.
For an overview of the MySQL Enterprise Backup product, see Section 23.2, “MySQL Enterprise
Backup”.

• A forum dedicated to backup issues is available at http://forums.mysql.com/list.php?28.

• Details for mysqldump, mysqlhotcopy, and other MySQL backup programs can be found in
Chapter 4, MySQL Programs.

• The syntax of the SQL statements described here is given in Chapter 13, SQL Statement Syntax.

http://forums.mysql.com/list.php?28

Backup and Recovery Types

798

• For additional information about InnoDB backup procedures, see Section 14.2.14, “InnoDB Backup
and Recovery”.

• Replication enables you to maintain identical data on multiple servers. This has several benefits,
such as enabling client query load to be distributed over servers, availability of data even if a given
server is taken offline or fails, and the ability to make backups with no impact on the master by using
a slave server. See Chapter 16, Replication.

• MySQL Cluster provides a high-availability, high-redundancy version of MySQL adapted for the
distributed computing environment. See MySQL Cluster NDB 7.3, which provides information about
MySQL Cluster NDB 7.3 (based on MySQL 5.6 but containing the latest improvements and fixes for
the NDBCLUSTER storage engine).

Note

The NDBCLUSTER storage engine is currently not supported in MySQL 5.7.

• Distributed Replicated Block Device (DRBD) is another high-availability solution. It works by
replicating a block device from a primary server to a secondary server at the block level. See
Chapter 15, High Availability and Scalability

7.1 Backup and Recovery Types
This section describes the characteristics of different types of backups.

Physical (Raw) Versus Logical Backups

Physical backups consist of raw copies of the directories and files that store database contents. This
type of backup is suitable for large, important databases that need to be recovered quickly when
problems occur.

Logical backups save information represented as logical database structure (CREATE DATABASE,
CREATE TABLE statements) and content (INSERT statements or delimited-text files). This type of
backup is suitable for smaller amounts of data where you might edit the data values or table structure,
or recreate the data on a different machine architecture.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or
part of the MySQL data directory.

• Physical backup methods are faster than logical because they involve only file copying without
conversion.

• Output is more compact than for logical backup.

• Because backup speed and compactness are important for busy, important databases, the MySQL
Enterprise Backup product performs physical backups. For an overview of the MySQL Enterprise
Backup product, see Section 23.2, “MySQL Enterprise Backup”.

• Backup and restore granularity ranges from the level of the entire data directory down to the level of
individual files. This may or may not provide for table-level granularity, depending on storage engine.
For example, InnoDB tables can each be in a separate file, or share file storage with other InnoDB
tables; each MyISAM table corresponds uniquely to a set of files.

• In addition to databases, the backup can include any related files such as log or configuration files.

• Data from MEMORY tables is tricky to back up this way because their contents are not stored on disk.
(The MySQL Enterprise Backup product has a feature where you can retrieve data from MEMORY
tables during a backup.)

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Online Versus Offline Backups

799

• Backups are portable only to other machines that have identical or similar hardware characteristics.

• Backups can be performed while the MySQL server is not running. If the server is running, it is
necessary to perform appropriate locking so that the server does not change database contents
during the backup. MySQL Enterprise Backup does this locking automatically for tables that require
it.

• Physical backup tools include the mysqlbackup of MySQL Enterprise Backup for InnoDB or any
other tables, file system-level commands (such as cp, scp, tar, rsync), or mysqlhotcopy for
MyISAM tables.

• For restore:

• MySQL Enterprise Backup restores InnoDB and other tables that it backed up.

• ndb_restore restores NDB tables.

• Files copied at the file system level or with mysqlhotcopy can be copied back to their original
locations with file system commands.

Logical backup methods have these characteristics:

• The backup is done by querying the MySQL server to obtain database structure and content
information.

• Backup is slower than physical methods because the server must access database information and
convert it to logical format. If the output is written on the client side, the server must also send it to
the backup program.

• Output is larger than for physical backup, particularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all
tables in a particular database), or table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not
part of databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running. The server is not taken offline.

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE
statement. These work for any storage engine, even MEMORY.

• To restore logical backups, SQL-format dump files can be processed using the mysql client. To load
delimited-text files, use the LOAD DATA INFILE statement or the mysqlimport client.

Online Versus Offline Backups

Online backups take place while the MySQL server is running so that the database information can be
obtained from the server. Offline backups take place while the server is stopped. This distinction can
also be described as “hot” versus “cold” backups; a “warm” backup is one where the server remains
running but locked against modifying data while you access database files externally.

Online backup methods have these characteristics:

• The backup is less intrusive to other clients, which can connect to the MySQL server during the
backup and may be able to access data depending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that
would compromise backup integrity. The MySQL Enterprise Backup product does such locking
automatically.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Local Versus Remote Backups

800

Offline backup methods have these characteristics:

• Clients can be affected adversely because the server is unavailable during backup. For that reason,
such backups are often taken from a replication slave server that can be taken offline without
harming availability.

• The backup procedure is simpler because there is no possibility of interference from client activity.

A similar distinction between online and offline applies for recovery operations, and similar
characteristics apply. However, it is more likely that clients will be affected for online recovery than for
online backup because recovery requires stronger locking. During backup, clients might be able to read
data while it is being backed up. Recovery modifies data and does not just read it, so clients must be
prevented from accessing data while it is being restored.

Local Versus Remote Backups

A local backup is performed on the same host where the MySQL server runs, whereas a remote
backup is done from a different host. For some types of backups, the backup can be initiated from a
remote host even if the output is written locally on the server. host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT
statements), local or remote dumps can be done and generate output on the client. For delimited-text
output (with the --tab option), data files are created on the server host.

• mysqlhotcopy performs only local backups: It connects to the server to lock it against data
modifications and then copies local table files.

• SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file
is created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server
can be taken offline, although the destination for copied files might be remote.

Snapshot Backups

Some file system implementations enable “snapshots” to be taken. These provide logical copies of
the file system at a given point in time, without requiring a physical copy of the entire file system. (For
example, the implementation may use copy-on-write techniques so that only parts of the file system
modified after the snapshot time need be copied.) MySQL itself does not provide the capability for
taking file system snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.

Full Versus Incremental Backups

A full backup includes all data managed by a MySQL server at a given point in time. An incremental
backup consists of the changes made to the data during a given time span (from one point in time to
another). MySQL has different ways to perform full backups, such as those described earlier in this
section. Incremental backups are made possible by enabling the server's binary log, which the server
uses to record data changes.

Full Versus Point-in-Time (Incremental) Recovery

A full recovery restores all data from a full backup. This restores the server instance to the state that it
had when the backup was made. If that state is not sufficiently current, a full recovery can be followed
by recovery of incremental backups made since the full backup, to bring the server to a more up-to-
date state.

Incremental recovery is recovery of changes made during a given time span. This is also called point-
in-time recovery because it makes a server's state current up to a given time. Point-in-time recovery
is based on the binary log and typically follows a full recovery from the backup files that restores the
server to its state when the backup was made. Then the data changes written in the binary log files are

Table Maintenance

801

applied as incremental recovery to redo data modifications and bring the server up to the desired point
in time.

Table Maintenance

Data integrity can be compromised if tables become corrupt. For InnoDB tables, this is not a typical
issue. For programs to check MyISAM tables and repair them if problems are found, see Section 7.6,
“MyISAM Table Maintenance and Crash Recovery”.

Backup Scheduling, Compression, and Encryption

Backup scheduling is valuable for automating backup procedures. Compression of backup
output reduces space requirements, and encryption of the output provides better security against
unauthorized access of backed-up data. MySQL itself does not provide these capabilities. The MySQL
Enterprise Backup product can compress InnoDB backups, and compression or encryption of backup
output can be achieved using file system utilities. Other third-party solutions may be available.

7.2 Database Backup Methods
This section summarizes some general methods for making backups.

Making a Hot Backup with MySQL Enterprise Backup

Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product to do physical
backups of entire instances or selected databases, tables, or both. This product includes features
for incremental and compressed backups. Backing up the physical database files makes restore
much faster than logical techniques such as the mysqldump command. InnoDB tables are copied
using a hot backup mechanism. (Ideally, the InnoDB tables should represent a substantial majority
of the data.) Tables from other storage engines are copied using a warm backup mechanism. For an
overview of the MySQL Enterprise Backup product, see Section 23.2, “MySQL Enterprise Backup”.

Making Backups with mysqldump or mysqlhotcopy

The mysqldump program and the mysqlhotcopy script can make backups. mysqldump is more
general because it can back up all kinds of tables. mysqlhotcopy works only with some storage
engines. (See Section 7.4, “Using mysqldump for Backups”, and Section 4.6.9, “mysqlhotcopy — A
Database Backup Program”.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables using the --
single-transaction option to mysqldump. See Section 7.3.1, “Establishing a Backup Policy”.

Making Backups by Copying Table Files

For storage engines that represent each table using its own files, tables can be backed up by copying
those files. For example, MyISAM tables are stored as files, so it is easy to do a backup by copying files
(*.frm, *.MYD, and *.MYI files). To get a consistent backup, stop the server or lock and flush the
relevant tables:

FLUSH TABLES tbl_list WITH READ LOCK;

You need only a read lock; this enables other clients to continue to query the tables while you are
making a copy of the files in the database directory. The flush is needed to ensure that the all active
index pages are written to disk before you start the backup. See Section 13.3.5, “LOCK TABLES and
UNLOCK TABLES Syntax”, and Section 13.7.6.3, “FLUSH Syntax”.

You can also create a binary backup simply by copying all table files, as long as the server isn't
updating anything. The mysqlhotcopy script uses this method. (But note that table file copying
methods do not work if your database contains InnoDB tables. mysqlhotcopy does not work for

Making Delimited-Text File Backups

802

InnoDB tables because InnoDB does not necessarily store table contents in database directories.
Also, even if the server is not actively updating data, InnoDB may still have modified data cached in
memory and not flushed to disk.)

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name'
FROM tbl_name. The file is created on the MySQL server host, not the client host. For this statement,
the output file cannot already exist because permitting files to be overwritten constitutes a security risk.
See Section 13.2.9, “SELECT Syntax”. This method works for any kind of data file, but saves only table
data, not the table structure.

Another way to create text data files (along with files containing CREATE TABLE statements for the
backed up tables) is to use mysqldump with the --tab option. See Section 7.4.3, “Dumping Data in
Delimited-Text Format with mysqldump”.

To reload a delimited-text data file, use LOAD DATA INFILE or mysqlimport.

Making Incremental Backups by Enabling the Binary Log

MySQL supports incremental backups: You must start the server with the --log-bin option to
enable binary logging; see Section 5.2.4, “The Binary Log”. The binary log files provide you with the
information you need to replicate changes to the database that are made subsequent to the point at
which you performed a backup. At the moment you want to make an incremental backup (containing
all changes that happened since the last full or incremental backup), you should rotate the binary log
by using FLUSH LOGS. This done, you need to copy to the backup location all binary logs which range
from the one of the moment of the last full or incremental backup to the last but one. These binary logs
are the incremental backup; at restore time, you apply them as explained in Section 7.5, “Point-in-
Time (Incremental) Recovery Using the Binary Log”. The next time you do a full backup, you should
also rotate the binary log using FLUSH LOGS, mysqldump --flush-logs, or mysqlhotcopy --
flushlog. See Section 4.5.4, “mysqldump — A Database Backup Program”, and Section 4.6.9,
“mysqlhotcopy — A Database Backup Program”.

Making Backups Using Replication Slaves

If you have performance problems with your master server while making backups, one strategy that
can help is to set up replication and perform backups on the slave rather than on the master. See
Section 16.3.1, “Using Replication for Backups”.

If you are backing up a slave replication server, you should back up its master info and relay log info
repositories (see Section 16.2.2, “Replication Relay and Status Logs”) when you back up the slave's
databases, regardless of the backup method you choose. These information files are always needed to
resume replication after you restore the slave's data. If your slave is replicating LOAD DATA INFILE
statements, you should also back up any SQL_LOAD-* files that exist in the directory that the slave
uses for this purpose. The slave needs these files to resume replication of any interrupted LOAD DATA
INFILE operations. The location of this directory is the value of the --slave-load-tmpdir option.
If the server was not started with that option, the directory location is the value of the tmpdir system
variable.

Recovering Corrupt Tables

If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR
TABLE or myisamchk -r first. That should work in 99.9% of all cases. If myisamchk fails, see
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.

Making Backups Using a File System Snapshot

If you are using a Veritas file system, you can make a backup like this:

Example Backup and Recovery Strategy

803

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.

7.3 Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that enables you to recover data after
several types of crashes:

• Operating system crash

• Power failure

• File system crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysqldump
and mysql client programs. You should include such options as necessary to enable client programs
to connect to the MySQL server.

Assume that data is stored in the InnoDB storage engine, which has support for transactions and
automatic crash recovery. Assume also that the MySQL server is under load at the time of the crash. If
it were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is
available after a restart. The InnoDB data files might not contain consistent data due to the crash, but
InnoDB reads its logs and finds in them the list of pending committed and noncommitted transactions
that have not been flushed to the data files. InnoDB automatically rolls back those transactions that
were not committed, and flushes to its data files those that were committed. Information about this
recovery process is conveyed to the user through the MySQL error log. The following is an example log
excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data
is not available after a restart. This means that MySQL fails to start successfully because some blocks

Establishing a Backup Policy

804

of disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one,
or otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from
backups, which means that backups must already have been made. To make sure that is the case,
design and implement a backup policy.

7.3.1 Establishing a Backup Policy

To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in
time) can be done in MySQL with several tools. For example, MySQL Enterprise Backup can perform
a physical backup of an entire instance, with optimizations to minimize overhead and avoid disruption
when backing up InnoDB data files; mysqldump provides online logical backup. This discussion uses
mysqldump.

Assume that we make a full backup of all our InnoDB tables in all databases using the following
command on Sunday at 1 p.m., when load is low:

shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be
used to reload the dumped tables at a later time.

This backup operation acquires a global read lock on all tables at the beginning of the dump (using
FLUSH TABLES WITH READ LOCK). As soon as this lock has been acquired, the binary log
coordinates are read and the lock is released. If long updating statements are running when the FLUSH
statement is issued, the backup operation may stall until those statements finish. After that, the dump
becomes lock-free and does not disturb reads and writes on the tables.

It was assumed earlier that the tables to back up are InnoDB tables, so --single-transaction
uses a consistent read and guarantees that data seen by mysqldump does not change. (Changes
made by other clients to InnoDB tables are not seen by the mysqldump process.) If the backup
operation includes nontransactional tables, consistency requires that they do not change during the
backup. For example, for the MyISAM tables in the mysql database, there must be no administrative
changes to MySQL accounts during the backup.

Full backups are necessary, but it is not always convenient to create them. They produce large backup
files and take time to generate. They are not optimal in the sense that each successive full backup
includes all data, even that part that has not changed since the previous full backup. It is more efficient
to make an initial full backup, and then to make incremental backups. The incremental backups are
smaller and take less time to produce. The tradeoff is that, at recovery time, you cannot restore your
data just by reloading the full backup. You must also process the incremental backups to recover the
incremental changes.

To make incremental backups, we need to save the incremental changes. In MySQL, these changes
are represented in the binary log, so the MySQL server should always be started with the --log-bin
option to enable that log. With binary logging enabled, the server writes each data change into a file
while it updates data. Looking at the data directory of a MySQL server that was started with the --
log-bin option and that has been running for some days, we find these MySQL binary log files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the
sequence. While the server is running, you can also tell it to close the current binary log file and begin
a new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-logs

Using Backups for Recovery

805

command. mysqldump also has an option to flush the logs. The .index file in the data directory
contains the list of all MySQL binary logs in the directory.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If
you make sure to flush the logs when you make your full backup, the binary log files created afterward
contain all the data changes made since the backup. Let's modify the previous mysqldump command
a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the dump
file contains the name of the new current binary log:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases > backup_sunday_1_PM.sql

After executing this command, the data directory contains a new binary log file, gbichot2-
bin.000007, because the --flush-logs option causes the server to flush its logs. The --master-
data option causes mysqldump to write binary log information to its output, so the resulting .sql
dump file includes these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The dump file contains all changes made before any changes written to the gbichot2-
bin.000007 binary log file or newer.

• All data changes logged after the backup are not present in the dump file, but are present in the
gbichot2-bin.000007 binary log file or newer.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new
binary log file. For example, executing a mysqladmin flush-logs command creates gbichot2-
bin.000008. All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. will be in the
gbichot2-bin.000007 file. This incremental backup is important, so it is a good idea to copy it to
a safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday
at 1 p.m., execute another mysqladmin flush-logs command. All changes between Monday 1
p.m. and Tuesday 1 p.m. will be in the gbichot2-bin.000008 file (which also should be copied
somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One
way to do this is by deleting the binary logs that are no longer needed, such as when we make a full
backup:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note

Deleting the MySQL binary logs with mysqldump --delete-master-logs
can be dangerous if your server is a replication master server, because slave
servers might not yet fully have processed the contents of the binary log. The
description for the PURGE BINARY LOGS statement explains what should be
verified before deleting the MySQL binary logs. See Section 13.4.1.1, “PURGE
BINARY LOGS Syntax”.

7.3.2 Using Backups for Recovery

Now, suppose that we have a catastrophic crash on Wednesday at 8 a.m. that requires recovery from
backups. To recover, first we restore the last full backup we have (the one from Sunday 1 p.m.). The
full backup file is just a set of SQL statements, so restoring it is very easy:

Backup Strategy Summary

806

shell> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since
then, we must use the incremental backups; that is, the gbichot2-bin.000007 and gbichot2-
bin.000008 binary log files. Fetch the files if necessary from where they were backed up, and then
process their contents like this:

shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes
from that date to the date of the crash. To not lose them, we would have needed to have the MySQL
server store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place
where it stores its data files, so that these logs were not on the destroyed disk. (That is, we can start
the server with a --log-bin option that specifies a location on a different physical device from the
one on which the data directory resides. That way, the logs are safe even if the device containing
the directory is lost.) If we had done this, we would have the gbichot2-bin.000009 file (and any
subsequent files) at hand, and we could apply them using mysqlbinlog and mysql to restore the
most recent data changes with no loss up to the moment of the crash:

shell> mysqlbinlog gbichot2-bin.000009 ... | mysql

For more information about using mysqlbinlog to process binary log files, see Section 7.5, “Point-in-
Time (Incremental) Recovery Using the Binary Log”.

7.3.3 Backup Strategy Summary

In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data.
But to make sure that you can sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where
the log file name is located on some safe media different from the drive on which the data directory is
located. If you have such safe media, this technique can also be good for disk load balancing (which
results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 7.3.1,
“Establishing a Backup Policy”, that makes an online, nonblocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-
logs.

7.4 Using mysqldump for Backups
This section describes how to use mysqldump to produce dump files, and how to reload dump files. A
dump file can be used in several ways:

• As a backup to enable data recovery in case of data loss.

• As a source of data for setting up replication slaves.

• As a source of data for experimentation:

• To make a copy of a database that you can use without changing the original data.

• To test potential upgrade incompatibilities.

mysqldump produces two types of output, depending on whether the --tab option is given:

• Without --tab, mysqldump writes SQL statements to the standard output. This output consists of
CREATE statements to create dumped objects (databases, tables, stored routines, and so forth), and
INSERT statements to load data into tables. The output can be saved in a file and reloaded later

Dumping Data in SQL Format with mysqldump

807

using mysql to recreate the dumped objects. Options are available to modify the format of the SQL
statements, and to control which objects are dumped.

• With --tab, mysqldump produces two output files for each dumped table. The server writes one
file as tab-delimited text, one line per table row. This file is named tbl_name.txt in the output
directory. The server also sends a CREATE TABLE statement for the table to mysqldump, which
writes it as a file named tbl_name.sql in the output directory.

7.4.1 Dumping Data in SQL Format with mysqldump

This section describes how to use mysqldump to create SQL-format dump files. For information about
reloading such dump files, see Section 7.4.2, “Reloading SQL-Format Backups”.

By default, mysqldump writes information as SQL statements to the standard output. You can save the
output in a file:

shell> mysqldump [arguments] > file_name

To dump all databases, invoke mysqldump with the --all-databases option:

shell> mysqldump --all-databases > dump.sql

To dump only specific databases, name them on the command line and use the --databases option:

shell> mysqldump --databases db1 db2 db3 > dump.sql

The --databases option causes all names on the command line to be treated as database names.
Without this option, mysqldump treats the first name as a database name and those following as table
names.

With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE
statements prior to the dump output for each database. This ensures that when the dump file is
reloaded, it creates each database if it does not exist and makes it the default database so database
contents are loaded into the same database from which they came. If you want to cause the dump file
to force a drop of each database before recreating it, use the --add-drop-database option as well.
In this case, mysqldump writes a DROP DATABASE statement preceding each CREATE DATABASE
statement.

To dump a single database, name it on the command line:

shell> mysqldump --databases test > dump.sql

In the single-database case, it is permissible to omit the --databases option:

shell> mysqldump test > dump.sql

The difference between the two preceding commands is that without --databases, the dump output
contains no CREATE DATABASE or USE statements. This has several implications:

• When you reload the dump file, you must specify a default database name so that the server knows
which database to reload.

• For reloading, you can specify a database name different from the original name, which enables you
to reload the data into a different database.

• If the database to be reloaded does not exist, you must create it first.

• Because the output will contain no CREATE DATABASE statement, the --add-drop-database
option has no effect. If you use it, it produces no DROP DATABASE statement.

Reloading SQL-Format Backups

808

To dump only specific tables from a database, name them on the command line following the database
name:

shell> mysqldump test t1 t3 t7 > dump.sql

7.4.2 Reloading SQL-Format Backups

To reload a dump file written by mysqldump that consists of SQL statements, use it as input to
the mysql client. If the dump file was created by mysqldump with the --all-databases or --
databases option, it contains CREATE DATABASE and USE statements and it is not necessary to
specify a default database into which to load the data:

shell> mysql < dump.sql

Alternatively, from within mysql, use a source command:

mysql> source dump.sql

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the
database first (if necessary):

shell> mysqladmin create db1

Then specify the database name when you load the dump file:

shell> mysql db1 < dump.sql

Alternatively, from within mysql, create the database, select it as the default database, and load the
dump file:

mysql> CREATE DATABASE IF NOT EXISTS db1;
mysql> USE db1;
mysql> source dump.sql

7.4.3 Dumping Data in Delimited-Text Format with mysqldump

This section describes how to use mysqldump to create delimited-text dump files. For information
about reloading such dump files, see Section 7.4.4, “Reloading Delimited-Text Format Backups”.

If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory
and dumps tables individually in that directory using two files for each table. The table name is the
basename for these files. For a table named t1, the files are named t1.sql and t1.txt. The .sql
file contains a CREATE TABLE statement for the table. The .txt file contains the table data, one line
per table row.

The following command dumps the contents of the db1 database to files in the /tmp database:

shell> mysqldump --tab=/tmp db1

The .txt files containing table data are written by the server, so they are owned by the system
account used for running the server. The server uses SELECT ... INTO OUTFILE to write the files,
so you must have the FILE privilege to perform this operation, and an error occurs if a given .txt file
already exists.

The server sends the CREATE definitions for dumped tables to mysqldump, which writes them to .sql
files. These files therefore are owned by the user who executes mysqldump.

Reloading Delimited-Text Format Backups

809

It is best that --tab be used only for dumping a local server. If you use it with a remote server, the
--tab directory must exist on both the local and remote hosts, and the .txt files will be written
by the server in the remote directory (on the server host), whereas the .sql files will be written by
mysqldump in the local directory (on the client host).

For mysqldump --tab, the server by default writes table data to .txt files one line per row with tabs
between column values, no quotation marks around column values, and newline as the line terminator.
(These are the same defaults as for SELECT ... INTO OUTFILE.)

To enable data files to be written using a different format, mysqldump supports these options:

• --fields-terminated-by=str

The string for separating column values (default: tab).

• --fields-enclosed-by=char

The character within which to enclose column values (default: no character).

• --fields-optionally-enclosed-by=char

The character within which to enclose non-numeric column values (default: no character).

• --fields-escaped-by=char

The character for escaping special characters (default: no escaping).

• --lines-terminated-by=str

The line-termination string (default: newline).

Depending on the value you specify for any of these options, it might be necessary on the command
line to quote or escape the value appropriately for your command interpreter. Alternatively, specify the
value using hex notation. Suppose that you want mysqldump to quote column values within double
quotation marks. To do so, specify double quote as the value for the --fields-enclosed-by option.
But this character is often special to command interpreters and must be treated specially. For example,
on Unix, you can quote the double quote like this:

--fields-enclosed-by='"'

On any platform, you can specify the value in hex:

--fields-enclosed-by=0x22

It is common to use several of the data-formatting options together. For example, to dump tables in
comma-separated values format with lines terminated by carriage-return/newline pairs (\r\n), use this
command (enter it on a single line):

shell> mysqldump --tab=/tmp --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1

Should you use any of the data-formatting options to dump table data, you will need to specify the
same format when you reload data files later, to ensure proper interpretation of the file contents.

7.4.4 Reloading Delimited-Text Format Backups

For backups produced with mysqldump --tab, each table is represented in the output directory by an
.sql file containing the CREATE TABLE statement for the table, and a .txt file containing the table
data. To reload a table, first change location into the output directory. Then process the .sql file with
mysql to create an empty table and process the .txt file to load the data into the table:

mysqldump Tips

810

shell> mysql db1 < t1.sql
shell> mysqlimport db1 t1.txt

An alternative to using mysqlimport to load the data file is to use the LOAD DATA INFILE statement
from within the mysql client:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1;

If you used any data-formatting options with mysqldump when you initially dumped the table, you must
use the same options with mysqlimport or LOAD DATA INFILE to ensure proper interpretation of
the data file contents:

shell> mysqlimport --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt

Or:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1
 -> FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"'
 -> LINES TERMINATED BY '\r\n';

7.4.5 mysqldump Tips

This section surveys techniques that enable you to use mysqldump to solve specific problems:

• How to make a copy a database

• How to copy a database from one server to another

• How to dump stored programs (stored procedures and functions, triggers, and events)

• How to dump definitions and data separately

7.4.5.1 Making a Copy of a Database

shell> mysqldump db1 > dump.sql
shell> mysqladmin create db2
shell> mysql db2 < dump.sql

Do not use --databases on the mysqldump command line because that causes USE db1 to be
included in the dump file, which overrides the effect of naming db2 on the mysql command line.

7.4.5.2 Copy a Database from one Server to Another

On Server 1:

shell> mysqldump --databases db1 > dump.sql

Copy the dump file from Server 1 to Server 2.

On Server 2:

shell> mysql < dump.sql

Use of --databases with the mysqldump command line causes the dump file to include CREATE
DATABASE and USE statements that create the database if it does exist and make it the default
database for the reloaded data.

mysqldump Tips

811

Alternatively, you can omit --databases from the mysqldump command. Then you will need to
create the database on Server 2 (if necessary) and specify it as the default database when you reload
the dump file.

On Server 1:

shell> mysqldump db1 > dump.sql

On Server 2:

shell> mysqladmin create db1
shell> mysql db1 < dump.sql

You can specify a different database name in this case, so omitting --databases from the
mysqldump command enables you to dump data from one database and load it into another.

7.4.5.3 Dumping Stored Programs

Several options control how mysqldump handles stored programs (stored procedures and functions,
triggers, and events):

• --events: Dump Event Scheduler events

• --routines: Dump stored procedures and functions

• --triggers: Dump triggers for tables

The --triggers option is enabled by default so that when tables are dumped, they are accompanied
by any triggers they have. The other options are disabled by default and must be specified explicitly to
dump the corresponding objects. To disable any of these options explicitly, use its skip form: --skip-
events, --skip-routines, or --skip-triggers.

7.4.5.4 Dumping Table Definitions and Content Separately

The --no-data option tells mysqldump not to dump table data, resulting in the dump file containing
only statements to create the tables. Conversely, the --no-create-info option tells mysqldump to
suppress CREATE statements from the output, so that the dump file contains only table data.

For example, to dump table definitions and data separately for the test database, use these
commands:

shell> mysqldump --no-data test > dump-defs.sql
shell> mysqldump --no-create-info test > dump-data.sql

For a definition-only dump, add the --routines and --events options to also include stored routine
and event definitions:

shell> mysqldump --no-data --routines --events test > dump-defs.sql

7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your
current production version. Then you can dump the database and database object definitions from the
production server and load them into the new server to verify that they are handled properly. (This is
also useful for testing downgrades.)

On the production server:

Point-in-Time (Incremental) Recovery Using the Binary Log

812

shell> mysqldump --all-databases --no-data --routines --events > dump-defs.sql

On the upgraded server:

shell> mysql < dump-defs.sql

Because the dump file does not contain table data, it can be processed quickly. This enables you to
spot potential incompatibilities without waiting for lengthy data-loading operations. Look for warnings or
errors while the dump file is being processed.

After you have verified that the definitions are handled properly, dump the data and try to load it into the
upgraded server.

On the production server:

shell> mysqldump --all-databases --no-create-info > dump-data.sql

On the upgraded server:

shell> mysql < dump-data.sql

Now check the table contents and run some test queries.

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log

Point-in-time recovery refers to recovery of data changes made since a given point in time. Typically,
this type of recovery is performed after restoring a full backup that brings the server to its state as of
the time the backup was made. (The full backup can be made in several ways, such as those listed
in Section 7.2, “Database Backup Methods”.) Point-in-time recovery then brings the server up to date
incrementally from the time of the full backup to a more recent time.

Point-in-time recovery is based on these principles:

• The source of information for point-in-time recovery is the set of incremental backups represented by
the binary log files generated subsequent to the full backup operation. Therefore, the server must be
started with the --log-bin option to enable binary logging (see Section 5.2.4, “The Binary Log”).

To restore data from the binary log, you must know the name and location of the current binary log
files. By default, the server creates binary log files in the data directory, but a path name can be
specified with the --log-bin option to place the files in a different location. Section 5.2.4, “The
Binary Log”.

To see a listing of all binary log files, use this statement:

mysql> SHOW BINARY LOGS;

To determine the name of the current binary log file, issue the following statement:

mysql> SHOW MASTER STATUS;

• The mysqlbinlog utility converts the events in the binary log files from binary format to text so
that they can be executed or viewed. mysqlbinlog has options for selecting sections of the binary
log based on event times or position of events within the log. See Section 4.6.7, “mysqlbinlog —
Utility for Processing Binary Log Files”.

• Executing events from the binary log causes the data modifications they represent to be redone. This
enables recovery of data changes for a given span of time. To execute events from the binary log,
process mysqlbinlog output using the mysql client:

Point-in-Time Recovery Using Event Times

813

shell> mysqlbinlog binlog_files | mysql -u root -p

• Viewing log contents can be useful when you need to determine event times or positions to select
partial log contents prior to executing events. To view events from the log, send mysqlbinlog
output into a paging program:

shell> mysqlbinlog binlog_files | more

Alternatively, save the output in a file and view the file in a text editor:

shell> mysqlbinlog binlog_files > tmpfile
shell> ... edit tmpfile ...

• Saving the output in a file is useful as a preliminary to executing the log contents with certain events
removed, such as an accidental DROP DATABASE. You can delete from the file any statements not to
be executed before executing its contents. After editing the file, execute the contents as follows:

shell> mysql -u root -p < tmpfile

If you have more than one binary log to execute on the MySQL server, the safe method is to process
them all using a single connection to the server. Here is an example that demonstrates what may be
unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using different connections to the server causes problems if the
first log file contains a CREATE TEMPORARY TABLE statement and the second log contains a
statement that uses the temporary table. When the first mysql process terminates, the server drops
the temporary table. When the second mysql process attempts to use the table, the server reports
“unknown table.”

To avoid problems like this, use a single connection to execute the contents of all binary logs that you
want to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"

When writing to a dump file while reading back from a binary log containing GTIDs (see Section 16.1.3,
“Replication with Global Transaction Identifiers”), use the --skip-gtids option with mysqlbinlog,
like this:

shell> mysqlbinlog --skip-gtids binlog.000001 > /tmp/dump.sql
shell> mysqlbinlog --skip-gtids binlog.000002 >> /tmp/dump.sql
shell> mysql -u root -p -e "source /tmp/dump.sql"

7.5.1 Point-in-Time Recovery Using Event Times

To indicate the start and end times for recovery, specify the --start-datetime and --stop-
datetime options for mysqlbinlog, in DATETIME format. As an example, suppose that exactly at
10:00 a.m. on April 20, 2005 an SQL statement was executed that deleted a large table. To restore

Point-in-Time Recovery Using Event Positions

814

the table and data, you could restore the previous night's backup, and then execute the following
command:

shell> mysqlbinlog --stop-datetime="2005-04-20 9:59:59" \
 /var/log/mysql/bin.123456 | mysql -u root -p

This command recovers all of the data up until the date and time given by the --stop-datetime
option. If you did not detect the erroneous SQL statement that was entered until hours later, you
will probably also want to recover the activity that occurred afterward. Based on this, you could run
mysqlbinlog again with a start date and time, like so:

shell> mysqlbinlog --start-datetime="2005-04-20 10:01:00" \
 /var/log/mysql/bin.123456 | mysql -u root -p

In this command, the SQL statements logged from 10:01 a.m. on will be re-executed. The combination
of restoring of the previous night's dump file and the two mysqlbinlog commands restores everything
up until one second before 10:00 a.m. and everything from 10:01 a.m. on.

To use this method of point-in-time recovery, you should examine the log to be sure of the exact
times to specify for the commands. To display the log file contents without executing them, use this
command:

shell> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

Then open the /tmp/mysql_restore.sql file with a text editor to examine it.

Excluding specific changes by specifying times for mysqlbinlog does not work well if multiple
statements executed at the same time as the one to be excluded.

7.5.2 Point-in-Time Recovery Using Event Positions

Instead of specifying dates and times, the --start-position and --stop-position options for
mysqlbinlog can be used for specifying log positions. They work the same as the start and stop
date options, except that you specify log position numbers rather than dates. Using positions may
enable you to be more precise about which part of the log to recover, especially if many transactions
occurred around the same time as a damaging SQL statement. To determine the position numbers, run
mysqlbinlog for a range of times near the time when the unwanted transaction was executed, but
redirect the results to a text file for examination. This can be done like so:

shell> mysqlbinlog --start-datetime="2005-04-20 9:55:00" \
 --stop-datetime="2005-04-20 10:05:00" \
 /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

This command creates a small text file in the /tmp directory that contains the SQL statements around
the time that the deleterious SQL statement was executed. Open this file with a text editor and look
for the statement that you do not want to repeat. Determine the positions in the binary log for stopping
and resuming the recovery and make note of them. Positions are labeled as log_pos followed by a
number. After restoring the previous backup file, use the position numbers to process the binary log
file. For example, you would use commands something like these:

shell> mysqlbinlog --stop-position=368312 /var/log/mysql/bin.123456 \
 | mysql -u root -p

shell> mysqlbinlog --start-position=368315 /var/log/mysql/bin.123456 \
 | mysql -u root -p

The first command recovers all the transactions up until the stop position given. The second command
recovers all transactions from the starting position given until the end of the binary log. Because the
output of mysqlbinlog includes SET TIMESTAMP statements before each SQL statement recorded,

MyISAM Table Maintenance and Crash Recovery

815

the recovered data and related MySQL logs will reflect the original times at which the transactions were
executed.

7.6 MyISAM Table Maintenance and Crash Recovery

This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have
.MYD and .MYI files for storing data and indexes). For general myisamchk background, see
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Other table-repair information can
be found at Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.

You can use myisamchk to check, repair, or optimize database tables. The following sections describe
how to perform these operations and how to set up a table maintenance schedule. For information
about using myisamchk to get information about your tables, see Section 4.6.3.5, “Obtaining Table
Information with myisamchk”.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup
before doing a repair or any maintenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause MyISAM FULLTEXT indexes to be rebuilt with
full-text parameters that are incompatible with the values used by the MySQL server. To avoid this
problem, follow the guidelines in Section 4.6.3.1, “myisamchk General Options”.

MyISAM table maintenance can also be done using the SQL statements that perform operations similar
to what myisamchk can do:

• To check MyISAM tables, use CHECK TABLE.

• To repair MyISAM tables, use REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

For additional information about these statements, see Section 13.7.2, “Table Maintenance
Statements”.

These statements can be used directly or by means of the mysqlcheck client program. One
advantage of these statements over myisamchk is that the server does all the work. With myisamchk,
you must make sure that the server does not use the tables at the same time so that there is no
unwanted interaction between myisamchk and the server.

7.6.1 Using myisamchk for Crash Recovery

This section describes how to check for and deal with data corruption in MySQL databases. If your
tables become corrupted frequently, you should try to find the reason why. See Section C.5.4.2, “What
to Do If MySQL Keeps Crashing”.

For an explanation of how MyISAM tables can become corrupted, see Section 14.3.4, “MyISAM Table
Problems”.

If you run mysqld with external locking disabled (which is the default), you cannot reliably use
myisamchk to check a table when mysqld is using the same table. If you can be certain that no
one will access the tables through mysqld while you run myisamchk, you only have to execute
mysqladmin flush-tables before you start checking the tables. If you cannot guarantee this, you
must stop mysqld while you check the tables. If you run myisamchk to check tables that mysqld is
updating at the same time, you may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any
time. In this case, if the server tries to update a table that myisamchk is using, the server will wait for
myisamchk to finish before it continues.

How to Check MyISAM Tables for Errors

816

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server
is not using the table (this also applies if external locking is disabled). If you do not stop mysqld, you
should at least do a mysqladmin flush-tables before you run myisamchk. Your tables may
become corrupted if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a
database corresponds to the three files in the database directory shown in the following table.

File Purpose

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in
data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by
removing the old .MYD file and renaming the new file to the original file name. If you use --quick,
myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD file is correct
and generates only a new index file without touching the .MYD file. This is safe, because myisamchk
automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify
the --quick option twice to myisamchk. In this case, myisamchk does not abort on some errors
(such as duplicate-key errors) but instead tries to resolve them by modifying the .MYD file. Normally
the use of two --quick options is useful only if you have too little free disk space to perform a normal
repair. In this case, you should at least make a backup of the table before running myisamchk.

7.6.2 How to Check MyISAM Tables for Errors

To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which
is very unusual). If you want to check a table, you should normally run myisamchk without options or
with the -s (silent) option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all
rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches
the checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-
read of every key for each row to verify that they indeed point to the correct row. This may take a
long time for a large table that has many indexes. Normally, myisamchk stops after the first error
it finds. If you want to obtain more information, you can add the -v (verbose) option. This causes
myisamchk to keep going, up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

This is like the previous command, but the -i option tells myisamchk to print additional statistical
information.

In most cases, a simple myisamchk command with no arguments other than the table name is
sufficient to check a table.

7.6.3 How to Repair MyISAM Tables

How to Repair MyISAM Tables

817

The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI
and .MYD).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM
tables. See Section 13.7.2.2, “CHECK TABLE Syntax”, and Section 13.7.2.5, “REPAIR TABLE Syntax”.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as
these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The
following example shows how to use perror to find the meanings for the most common error numbers
that indicate a problem with a table:

shell> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not
errors that can be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the
MAX_ROWS and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems
that occur.

The repair process involves up to four stages, described here. Before you begin, you should change
location to the database directory and check the permissions of the table files. On Unix, make sure that
they are readable by the user that mysqld runs as (and to you, because you need to access the files
you are checking). If it turns out you need to modify files, they must also be writable by you.

This section is for the cases where a table check fails (such as those described in Section 7.6.2, “How
to Check MyISAM Tables for Errors”), or you want to use the extended features that myisamchk
provides.

The myisamchk options used for table maintenance with are described in Section 4.6.3, “myisamchk
— MyISAM Table-Maintenance Utility”. myisamchk also has variables that you can set to control
memory allocation that may improve performance. See Section 4.6.3.6, “myisamchk Memory Usage”.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note
that when you do mysqladmin shutdown on a remote server, the mysqld server is still available for
a while after mysqladmin returns, until all statement-processing has stopped and all index changes
have been flushed to disk.

How to Repair MyISAM Tables

818

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option
to suppress unnecessary information.

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to
mark the table as “checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables,
proceed to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to
repair the index file without touching the data file. If the data file contains everything that it should and
the delete links point at the correct locations within the data file, this should work, and the table is fixed.
Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and
deleted rows from the data file and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode
uses an old recovery method that handles a few cases that regular recovery mode does not (but is
slower).

Note

If you want a repair operation to go much faster, you should set the values of
the sort_buffer_size and key_buffer_size variables each to about 25%
of your available memory when running myisamchk.

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains
incorrect information, or if the index file is missing. In this case, it is necessary to create a new index
file. Do so as follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto
the new file. You want to retain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above
procedure, since it involves file system operations, and these are not logged by
MySQL.

MyISAM Table Optimization

819

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs
the whole procedure automatically. There is also no possibility of unwanted interaction between
a utility and the server, because the server does all the work when you use REPAIR TABLE. See
Section 13.7.2.5, “REPAIR TABLE Syntax”.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never
happen, because the description file is not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index
file and go back to Stage 2. In the latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table
in another database. Remove the new data file, and then move the .frm description and .MYI
index files from the other database to your crashed database. This gives you new description and
index files, but leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct the
index file.

7.6.4 MyISAM Table Optimization

To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows,
run myisamchk in recovery mode:

shell> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE
TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are
faster. There is also no possibility of unwanted interaction between a utility and the server, because the
server does all the work when you use OPTIMIZE TABLE. See Section 13.7.2.4, “OPTIMIZE TABLE
Syntax”.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze or -a: Perform key distribution analysis. This improves join performance by enabling the
join optimizer to better choose the order in which to join the tables and which indexes it should use.

• --sort-index or -S: Sort the index blocks. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=index_num or -R index_num: Sort data rows according to a given index.
This makes your data much more localized and may speed up range-based SELECT and ORDER BY
operations that use this index.

For a full description of all available options, see Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

7.6.5 Setting Up a MyISAM Table Maintenance Schedule

It is a good idea to perform table checks on a regular basis rather than waiting for problems to
occur. One way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE
statements. See Section 13.7.2, “Table Maintenance Statements”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use
myisamchk -s. The -s option (short for --silent) causes myisamchk to run in silent mode,
printing messages only when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine
has done a restart in the middle of an update, you usually need to check each table that could have

Setting Up a MyISAM Table Maintenance Schedule

820

been affected before it is used further. (These are “expected crashed tables.”) To cause the server
to check MyISAM tables automatically, start it with the --myisam-recover-options option. See
Section 5.1.3, “Server Command Options”.

You should also check your tables regularly during normal system operation. For example, you can run
a cron job to check important tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that you can examine and repair them as
necessary.

To start with, execute myisamchk -s each night on all tables that have been updated during the last
24 hours. As you see that problems occur infrequently, you can back off the checking frequency to
once a week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables
with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many
deleted rows you may want to defragment/reclaim space from the tables from time to time. You can do
this by using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop the mysqld
server for a while, change location into the data directory and use this command while the server is
stopped:

shell> myisamchk -r -s --sort-index --myisam_sort_buffer_size=16M */*.MYI

821

Chapter 8 Optimization

Table of Contents
8.1 Optimization Overview ... 822
8.2 Optimizing SQL Statements ... 823

8.2.1 Optimizing SELECT Statements ... 823
8.2.2 Optimizing DML Statements .. 871
8.2.3 Optimizing Database Privileges ... 872
8.2.4 Optimizing INFORMATION_SCHEMA Queries .. 873
8.2.5 Other Optimization Tips .. 877

8.3 Optimization and Indexes .. 880
8.3.1 How MySQL Uses Indexes ... 880
8.3.2 Using Primary Keys .. 881
8.3.3 Using Foreign Keys .. 881
8.3.4 Column Indexes ... 882
8.3.5 Multiple-Column Indexes ... 883
8.3.6 Verifying Index Usage ... 884
8.3.7 InnoDB and MyISAM Index Statistics Collection ... 884
8.3.8 Comparison of B-Tree and Hash Indexes .. 886

8.4 Optimizing Database Structure ... 887
8.4.1 Optimizing Data Size .. 887
8.4.2 Optimizing MySQL Data Types ... 889
8.4.3 Optimizing for Many Tables .. 890
8.4.4 How MySQL Uses Internal Temporary Tables .. 892

8.5 Optimizing for InnoDB Tables ... 893
8.5.1 Optimizing Storage Layout for InnoDB Tables ... 893
8.5.2 Optimizing InnoDB Transaction Management .. 894
8.5.3 Optimizing InnoDB Logging .. 895
8.5.4 Bulk Data Loading for InnoDB Tables ... 895
8.5.5 Optimizing InnoDB Queries .. 896
8.5.6 Optimizing InnoDB DDL Operations .. 897
8.5.7 Optimizing InnoDB Disk I/O .. 897
8.5.8 Optimizing InnoDB Configuration Variables ... 898
8.5.9 Optimizing InnoDB for Systems with Many Tables ... 900

8.6 Optimizing for MyISAM Tables ... 900
8.6.1 Optimizing MyISAM Queries .. 900
8.6.2 Bulk Data Loading for MyISAM Tables ... 901
8.6.3 Speed of REPAIR TABLE Statements ... 902

8.7 Optimizing for MEMORY Tables ... 904
8.8 Understanding the Query Execution Plan ... 904

8.8.1 Optimizing Queries with EXPLAIN ... 904
8.8.2 EXPLAIN Output Format ... 905
8.8.3 Obtaining Execution Plan Information for a Named Connection 916
8.8.4 EXPLAIN EXTENDED Output Format ... 917
8.8.5 Estimating Query Performance .. 919
8.8.6 Controlling the Query Optimizer .. 919

8.9 Buffering and Caching ... 922
8.9.1 The InnoDB Buffer Pool ... 923
8.9.2 The MyISAM Key Cache ... 925
8.9.3 The MySQL Query Cache ... 929
8.9.4 Caching of Prepared Statements and Stored Programs .. 936

8.10 Optimizing Locking Operations ... 937
8.10.1 Internal Locking Methods .. 937
8.10.2 Table Locking Issues .. 939
8.10.3 Concurrent Inserts .. 940

Optimization Overview

822

8.10.4 Metadata Locking ... 941
8.10.5 External Locking ... 942

8.11 Optimizing the MySQL Server .. 943
8.11.1 System Factors and Startup Parameter Tuning .. 943
8.11.2 Tuning Server Parameters .. 943
8.11.3 Optimizing Disk I/O ... 948
8.11.4 Optimizing Memory Use .. 952
8.11.5 Optimizing Network Use .. 955

8.12 Measuring Performance (Benchmarking) .. 957
8.12.1 Measuring the Speed of Expressions and Functions ... 957
8.12.2 The MySQL Benchmark Suite ... 958
8.12.3 Using Your Own Benchmarks .. 958
8.12.4 Measuring Performance with performance_schema .. 959
8.12.5 Examining Thread Information ... 959

This chapter explains how to optimize MySQL performance and provides examples. Optimization
involves configuring, tuning, and measuring performance, at several levels. Depending on your job
role (developer, DBA, or a combination of both), you might optimize at the level of individual SQL
statements, entire applications, a single database server, or multiple networked database servers.
Sometimes you can be proactive and plan in advance for performance, while other times you might
troubleshoot a configuration or code issue after a problem occurs. Optimizing CPU and memory usage
can also improve scalability, allowing the database to handle more load without slowing down.

8.1 Optimization Overview

Database performance depends on several factors at the database level, such as tables, queries,
and configuration settings. These software constructs result in CPU and I/O operations at the
hardware level, which you must minimize and make as efficient as possible. As you work on database
performance, you start by learning the high-level rules and guidelines for the software side, and
measuring performance using wall-clock time. As you become an expert, you learn more about what
happens internally, and start measuring things such as CPU cycles and I/O operations.

Typical users aim to get the best database performance out of their existing software and hardware
configurations. Advanced users look for opportunities to improve the MySQL software itself, or develop
their own storage engines and hardware appliances to expand the MySQL ecosystem.

Optimizing at the Database Level

The most important factor in making a database application fast is its basic design:

• Are the tables structured properly? In particular, do the columns have the right data types, and
does each table have the appropriate columns for the type of work? For example, applications that
perform frequent updates often have many tables with few columns, while applications that analyze
large amounts of data often have few tables with many columns.

• Are the right indexes in place to make queries efficient?

• Are you using the appropriate storage engine for each table, and taking advantage of the strengths
and features of each storage engine you use? In particular, the choice of a transactional storage
engine such as InnoDB or a nontransactional one such as MyISAM can be very important for
performance and scalability.

Note

In MySQL 5.5 and higher, InnoDB is the default storage engine for new
tables. In practice, the advanced InnoDB performance features mean that
InnoDB tables often outperform the simpler MyISAM tables, especially for a
busy database.

Optimizing at the Hardware Level

823

• Does each table use an appropriate row format? This choice also depends on the storage engine
used for the table. In particular, compressed tables use less disk space and so require less disk I/O
to read and write the data. Compression is available for all kinds of workloads with InnoDB tables,
and for read-only MyISAM tables.

• Does the application use an appropriate locking strategy? For example, by allowing shared access
when possible so that database operations can run concurrently, and requesting exclusive access
when appropriate so that critical operations get top priority. Again, the choice of storage engine is
significant. The InnoDB storage engine handles most locking issues without involvement from you,
allowing for better concurrency in the database and reducing the amount of experimentation and
tuning for your code.

• Are all memory areas used for caching sized correctly? That is, large enough to hold frequently
accessed data, but not so large that they overload physical memory and cause paging. The main
memory areas to configure are the InnoDB buffer pool, the MyISAM key cache, and the MySQL
query cache.

Optimizing at the Hardware Level

Any database application eventually hits hardware limits as the database becomes more and more
busy. A DBA must evaluate whether it is possible to tune the application or reconfigure the server
to avoid these bottlenecks, or whether more hardware resources are required. System bottlenecks
typically arise from these sources:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time
for this is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time
improves slowly with new disks and is very hard to optimize for a single table. The way to optimize
seek time is to distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read or write the data.
With modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than
seeks because you can read in parallel from multiple disks.

• CPU cycles. When the data is in main memory, we must process it to get our result. Having small
tables compared to the amount of memory is the most common limiting factor. But with small tables,
speed is usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory
bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one to be
aware of.

Balancing Portability and Performance

To use performance-oriented SQL extensions in a portable MySQL program, you can wrap MySQL-
specific keywords in a statement within /*! */ comment delimiters. Other SQL servers ignore the
commented keywords. For information about writing comments, see Section 9.6, “Comment Syntax”.

8.2 Optimizing SQL Statements
The core logic of a database application is performed through SQL statements, whether issued directly
through an interpreter or submitted behind the scenes through an API. The tuning guidelines in this
section help to speed up all kinds of MySQL applications. The guidelines cover SQL operations that
read and write data, the behind-the-scenes overhead for SQL operations in general, and operations
used in specific scenarios such as database monitoring.

8.2.1 Optimizing SELECT Statements

Queries, in the form of SELECT statements, perform all the lookup operations in the database. Tuning
these statements is a top priority, whether to achieve sub-second response times for dynamic web
pages, or to chop hours off the time to generate huge overnight reports.

Optimizing SELECT Statements

824

8.2.1.1 Speed of SELECT Statements

The main considerations for optimizing queries are:

• To make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add
an index. Set up indexes on columns used in the WHERE clause, to speed up evaluation, filtering, and
the final retrieval of results. To avoid wasted disk space, construct a small set of indexes that speed
up many related queries used in your application.

Indexes are especially important for queries that reference different tables, using features such as
joins and foreign keys. You can use the EXPLAIN statement to determine which indexes are used for
a SELECT. See Section 8.3.1, “How MySQL Uses Indexes” and Section 8.8.1, “Optimizing Queries
with EXPLAIN”.

• Isolate and tune any part of the query, such as a function call, that takes excessive time. Depending
on how the query is structured, a function could be called once for every row in the result set, or even
once for every row in the table, greatly magnifying any inefficiency.

• Minimize the number of full table scans in your queries, particularly for big tables.

• Keep table statistics up to date by using the ANALYZE TABLE statement periodically, so the
optimizer has the information needed to construct an efficient execution plan.

• Learn the tuning techniques, indexing techniques, and configuration parameters that are specific to
the storage engine for each table. Both InnoDB and MyISAM have sets of guidelines for enabling
and sustaining high performance in queries. For details, see Section 8.5.5, “Optimizing InnoDB
Queries” and Section 8.6.1, “Optimizing MyISAM Queries”.

• You can optimize single-query transactions for InnoDB tables, using the technique in Optimizations
for Read-Only Transactions.

• Avoid transforming the query in ways that make it hard to understand, especially if the optimizer does
some of the same transformations automatically.

• If a performance issue is not easily solved by one of the basic guidelines, investigate the internal
details of the specific query by reading the EXPLAIN plan and adjusting your indexes, WHERE
clauses, join clauses, and so on. (When you reach a certain level of expertise, reading the EXPLAIN
plan might be your first step for every query.)

• Adjust the size and properties of the memory areas that MySQL uses for caching. With efficient use
of the InnoDB buffer pool, MyISAM key cache, and the MySQL query cache, repeated queries run
faster because the results are retrieved from memory the second and subsequent times.

• Even for a query that runs fast using the cache memory areas, you might still optimize further so that
they require less cache memory, making your application more scalable. Scalability means that your
application can handle more simultaneous users, larger requests, and so on without experiencing a
big drop in performance.

• Deal with locking issues, where the speed of your query might be affected by other sessions
accessing the tables at the same time.

8.2.1.2 How MySQL Optimizes WHERE Clauses

This section discusses optimizations that can be made for processing WHERE clauses. The examples
use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE
statements.

Note

Because work on the MySQL optimizer is ongoing, not all of the optimizations
that MySQL performs are documented here.

Optimizing SELECT Statements

825

You might be tempted to rewrite your queries to make arithmetic operations faster, while sacrificing
readability. Because MySQL does similar optimizations automatically, you can often avoid this work,
and leave the query in a more understandable and maintainable form. Some of the optimizations
performed by MySQL follow:

• Removal of unnecessary parentheses:

 ((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

 (a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal (needed because of constant folding):

 (B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
-> B=5 OR B=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information for
MyISAM and MEMORY tables. This is also done for any NOT NULL expression when used with only
one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT
statements are impossible and returns no rows.

• HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(),
MIN(), and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table
and also to skip rows as soon as possible.

• All constant tables are read first before any other tables in the query. A constant table is any of the
following:

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all index
parts are compared to constant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2
 WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns in
ORDER BY and GROUP BY clauses come from the same table, that table is preferred first when
joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.

• If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is more
efficient to use a table scan. At one time, a scan was used based on whether the best index spanned
more than 30% of the table, but a fixed percentage no longer determines the choice between using

Optimizing SELECT Statements

826

an index or a scan. The optimizer now is more complex and bases its estimate on additional factors
such as table size, number of rows, and I/O block size.

• In some cases, MySQL can read rows from the index without even consulting the data file. If all
columns used from the index are numeric, only the index tree is used to resolve the query.

• Before each row is output, those that do not match the HAVING clause are skipped.

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;

SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;

SELECT MAX(key_part2) FROM tbl_name
 WHERE key_part1=constant;

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... LIMIT 10;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

MySQL resolves the following queries using only the index tree, assuming that the indexed columns
are numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;

SELECT COUNT(*) FROM tbl_name
 WHERE key_part1=val1 AND key_part2=val2;

SELECT key_part2 FROM tbl_name GROUP BY key_part1;

The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... ;

8.2.1.3 Range Optimization

The range access method uses a single index to retrieve a subset of table rows that are contained
within one or several index value intervals. It can be used for a single-part or multiple-part index. The
following sections give descriptions of conditions under which the optimizer uses range access.

The Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding
conditions in the WHERE clause, so we speak of range conditions rather than “intervals.”

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range
condition when using the =, <=>, IN(), IS NULL, or IS NOT NULL operators.

• Additionally, for BTREE indexes, comparison of a key part with a constant value is a range condition
when using the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE comparisons if the argument to
LIKE is a constant string that does not start with a wildcard character.

• For all types of indexes, multiple range conditions combined with OR or AND form a range condition.

“Constant value” in the preceding descriptions means one of the following:

Optimizing SELECT Statements

827

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1
 WHERE key_col > 1
 AND key_col < 10;

SELECT * FROM t1
 WHERE key_col = 1
 OR key_col IN (15,18,20);

SELECT * FROM t1
 WHERE key_col LIKE 'ab%'
 OR key_col BETWEEN 'bar' AND 'foo';

Note that some nonconstant values may be converted to constants during the constant propagation
phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes.
During the extraction process, conditions that cannot be used for constructing the range condition are
dropped, conditions that produce overlapping ranges are combined, and conditions that produce empty
ranges are removed.

Consider the following statement, where key1 is an indexed column and nonkey is not indexed:

SELECT * FROM t1 WHERE
 (key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
 (key1 < 'bar' AND nonkey = 4) OR
 (key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

1. Start with original WHERE clause:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan. The
correct way to remove them is to replace them with TRUE, so that we do not miss any matching
rows when doing the range scan. Having replaced them with TRUE, we get:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

Replacing these conditions with constants, we get:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Optimizing SELECT Statements

828

Removing unnecessary TRUE and FALSE constants, we obtain:

(key1 < 'abc') OR (key1 < 'bar')

4. Combining overlapping intervals into one yields the final condition to be used for the range scan:

(key1 < 'bar')

In general (and as demonstrated by the preceding example), the condition used for a range scan is
less restrictive than the WHERE clause. MySQL performs an additional check to filter out rows that
satisfy the range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and
its output does not depend on the order in which conditions appear in WHERE clause.

Currently, MySQL does not support merging multiple ranges for the range access method for spatial
indexes. To work around this limitation, you can use a UNION with identical SELECT statements, except
that you put each spatial predicate in a different SELECT.

The Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part index.
A range condition on a multiple-part index restricts index rows to lie within one or several key tuple
intervals. Key tuple intervals are defined over a set of key tuples, using ordering from the index.

For example, consider a multiple-part index defined as key1(key_part1, key_part2,
key_part3), and the following set of key tuples listed in key order:

key_part1 key_part2 key_part3
 NULL 1 'abc'
 NULL 1 'xyz'
 NULL 2 'foo'
 1 1 'abc'
 1 1 'xyz'
 1 2 'abc'
 2 1 'aaa'

The condition key_part1 = 1 defines this interval:

(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range
access method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used
by the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater
detail.

• For HASH indexes, each interval containing identical values can be used. This means that the interval
can be produced only for conditions in the following form:

 key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, … are constants, cmp is one of the =, <=>, or IS NULL comparison
operators, and the conditions cover all index parts. (That is, there are N conditions, one for each part
of an N-part index.) For example, the following is a range condition for a three-part HASH index:

Optimizing SELECT Statements

829

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

For the definition of what is considered to be a constant, see The Range Access Method for Single-
Part Indexes.

• For a BTREE index, an interval might be usable for conditions combined with AND, where each
condition compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>,
BETWEEN, or LIKE 'pattern' (where 'pattern' does not start with a wildcard). An interval can
be used as long as it is possible to determine a single key tuple containing all rows that match the
condition (or two intervals if <> or != is used).

The optimizer attempts to use additional key parts to determine the interval as long as the
comparison operator is =, <=>, or IS NULL. If the operator is >, <, >=, <=, !=, <>, BETWEEN,
or LIKE, the optimizer uses it but considers no more key parts. For the following expression,
the optimizer uses = from the first comparison. It also uses >= from the second comparison but
considers no further key parts and does not use the third comparison for interval construction:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo',10,-inf) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)

It is possible that the created interval contains more rows than the initial condition. For example,
the preceding interval includes the value ('foo', 11, 0), which does not satisfy the original
condition.

• If conditions that cover sets of rows contained within intervals are combined with OR, they form a
condition that covers a set of rows contained within the union of their intervals. If the conditions are
combined with AND, they form a condition that covers a set of rows contained within the intersection
of their intervals. For example, for this condition on a two-part index:

(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)

The intervals are:

(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key parts for
the right bound. The interval on the second line uses only one key part. The key_len column in the
EXPLAIN output indicates the maximum length of the key prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you
would expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len column
displays two key part lengths for the following condition:

key_part1 >= 1 AND key_part2 < 2

But, in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

The Range Access Method for Single-Part Indexes, describes how optimizations are performed
to combine or eliminate intervals for range conditions on a single-part index. Analogous steps are
performed for range conditions on multiple-part indexes.

Optimizing SELECT Statements

830

Equality Range Optimization of Many-Valued Comparisons

Consider these expressions, where col_name is an indexed column:

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

Each expression is true if col_name is equal to any of several values. These comparisons are equality
range comparisons (where the “range” is a single value). The optimizer estimates the cost of reading
qualifying rows for equality range comparisons as follows:

• If there is a unique index on col_name, the row estimate for each range is 1 because at most one
row can have the given value.

• Otherwise, the optimizer can estimate the row count for each range using dives into the index or
index statistics.

With index dives, the optimizer makes a dive at each end of a range and uses the number of rows in
the range as the estimate. For example, the expression col_name IN (10, 20, 30) has three
equality ranges and the optimizer makes two dives per range to generate a row estimate. Each pair of
dives yields an estimate of the number of rows that have the given value.

Index dives provide accurate row estimates, but as the number of comparison values in the expression
increases, the optimizer takes longer to generate a row estimate. Use of index statistics is less
accurate than index dives but permits faster row estimation for large value lists.

The eq_range_index_dive_limit system variable enables you to configure the number of values
at which the optimizer switches from one row estimation strategy to the other. To disable use of
statistics and always use index dives, set eq_range_index_dive_limit to 0. To permit use of
index dives for comparisons of up to N equality ranges, set eq_range_index_dive_limit to N + 1.

To update table index statistics for best estimates, use ANALYZE TABLE.

Range Optimization of Row Constructor Expressions

As of MySQL 5.7.3, the optimizer is able to apply the range scan access method to queries of this form:

SELECT ... FROM t1 WHERE (col_1, col_2) IN (('a', 'b'), ('c', 'd'));

Previously, for range scans to be used it was necessary for the query to be written as:

SELECT ... FROM t1 WHERE (col_1 = 'a' AND col_2 = 'b')
OR (col_1 = 'c' AND col_2 = 'd');

For the optimizer to use a range scan, queries must satisfy these conditions:

• Only IN predicates can be used, not NOT IN.

• There may only be column references in the row constructor on the IN predicate's left hand side.

• There must be more than one row constructor on the IN predicate's right hand side.

• Row constructors on the IN predicate's right hand side must contain only runtime constants, which
are either literals or local column references that are bound to constants during execution.

Compared to similar queries executed before MySQL 5.7.3, EXPLAIN output for applicable queries
changes from full table or index scan to range scan. Changes are also visible by checking the values of
the Handler_read_first, Handler_read_key, and Handler_read_next status variables.

Optimizing SELECT Statements

831

8.2.1.4 Index Merge Optimization

The Index Merge method is used to retrieve rows with several range scans and to merge their results
into one. The merge can produce unions, intersections, or unions-of-intersections of its underlying
scans. This access method merges index scans from a single table; it does not merge scans across
multiple tables.

In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this
case, the key column contains a list of indexes used, and key_len contains a list of the longest key
parts for those indexes.

Examples:

SELECT * FROM tbl_name WHERE key1 = 10 OR key2 = 20;

SELECT * FROM tbl_name
 WHERE (key1 = 10 OR key2 = 20) AND non_key=30;

SELECT * FROM t1, t2
 WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
 AND t2.key1=t1.some_col;

SELECT * FROM t1, t2
 WHERE t1.key1=1
 AND (t2.key1=t1.some_col OR t2.key2=t1.some_col2);

The Index Merge method has several access algorithms (seen in the Extra field of EXPLAIN output):

• Using intersect(...)

• Using union(...)

• Using sort_union(...)

The following sections describe these methods in greater detail.

Note

The Index Merge optimization algorithm has the following known deficiencies:

• If your query has a complex WHERE clause with deep AND/OR nesting and
MySQL doesn't choose the optimal plan, try distributing terms using the
following identity laws:

(x AND y) OR z = (x OR z) AND (y OR z)
(x OR y) AND z = (x AND z) OR (y AND z)

• Index Merge is not applicable to full-text indexes. We plan to extend it to
cover these in a future MySQL release.

The choice between different possible variants of the Index Merge access method and other access
methods is based on cost estimates of various available options.

The Index Merge Intersection Access Algorithm

This access algorithm can be employed when a WHERE clause was converted to several range
conditions on different keys combined with AND, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

Optimizing SELECT Statements

832

• Any range condition over a primary key of an InnoDB table.

Examples:

SELECT * FROM innodb_table WHERE primary_key < 10 AND key_col1=20;

SELECT * FROM tbl_name
 WHERE (key1_part1=1 AND key1_part2=2) AND key2=2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and
produces the intersection of row sequences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table rows are not retrieved
(EXPLAIN output contains Using index in Extra field in this case). Here is an example of such a
query:

SELECT COUNT(*) FROM t1 WHERE key1=1 AND key2=1;

If the used indexes don't cover all columns used in the query, full rows are retrieved only when the
range conditions for all used keys are satisfied.

If one of the merged conditions is a condition over a primary key of an InnoDB table, it is not used for
row retrieval, but is used to filter out rows retrieved using other conditions.

The Index Merge Union Access Algorithm

The applicability criteria for this algorithm are similar to those for the Index Merge method intersection
algorithm. The algorithm can be employed when the table's WHERE clause was converted to several
range conditions on different keys combined with OR, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB table.

• A condition for which the Index Merge method intersection algorithm is applicable.

Examples:

SELECT * FROM t1 WHERE key1=1 OR key2=2 OR key3=3;

SELECT * FROM innodb_table WHERE (key1=1 AND key2=2) OR
 (key3='foo' AND key4='bar') AND key5=5;

The Index Merge Sort-Union Access Algorithm

This access algorithm is employed when the WHERE clause was converted to several range conditions
combined by OR, but for which the Index Merge method union algorithm is not applicable.

Examples:

SELECT * FROM tbl_name WHERE key_col1 < 10 OR key_col2 < 20;

SELECT * FROM tbl_name
 WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col=30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm
must first fetch row IDs for all rows and sort them before returning any rows.

Optimizing SELECT Statements

833

8.2.1.5 Engine Condition Pushdown Optimization

This optimization improves the efficiency of direct comparisons between a nonindexed column and
a constant. In such cases, the condition is “pushed down” to the storage engine for evaluation. This
optimization can be used only by the NDB storage engine.

Note

The NDB storage engine is currently not available in MySQL 5.7. If you are
interested in using MySQL Cluster, see MySQL Cluster NDB 7.2, which
provides information about MySQL Cluster NDB 7.2, which is based on MySQL
5.5 but contains the latest improvements and fixes for NDBCLUSTER.

For MySQL Cluster, this optimization can eliminate the need to send nonmatching rows over the
network between the cluster's data nodes and the MySQL Server that issued the query, and can speed
up queries where it is used by a factor of 5 to 10 times over cases where condition pushdown could be
but is not used.

Suppose that a MySQL Cluster table is defined as follows:

CREATE TABLE t1 (
 a INT,
 b INT,
 KEY(a)
) ENGINE=NDB;

Condition pushdown can be used with queries such as the one shown here, which includes a
comparison between a nonindexed column and a constant:

SELECT a, b FROM t1 WHERE b = 10;

The use of condition pushdown can be seen in the output of EXPLAIN:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where with pushed condition

However, condition pushdown cannot be used with either of these two queries:

SELECT a,b FROM t1 WHERE a = 10;
SELECT a,b FROM t1 WHERE b + 1 = 10;

Condition pushdown is not applicable to the first query because an index exists on column a. (An index
access method would be more efficient and so would be chosen in preference to condition pushdown.)
Condition pushdown cannot be employed for the second query because the comparison involving the
nonindexed column b is indirect. (However, condition pushdown could be applied if you were to reduce
b + 1 = 10 to b = 9 in the WHERE clause.)

Condition pushdown may also be employed when an indexed column is compared with a constant
using a > or < operator:

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Optimizing SELECT Statements

834

mysql> EXPLAIN SELECT a, b FROM t1 WHERE a < 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: range
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 2
 Extra: Using where with pushed condition

Other supported comparisons for condition pushdown include the following:

• column [NOT] LIKE pattern

pattern must be a string literal containing the pattern to be matched; for syntax, see
Section 12.5.1, “String Comparison Functions”.

• column IS [NOT] NULL

• column IN (value_list)

Each item in the value_list must be a constant, literal value.

• column BETWEEN constant1 AND constant2

constant1 and constant2 must each be a constant, literal value.

In all of the cases in the preceding list, it is possible for the condition to be converted into the form of
one or more direct comparisons between a column and a constant.

Engine condition pushdown is enabled by default. To disable it at server startup, set the
optimizer_switch system variable. For example, in a my.cnf file, use these lines:

[mysqld]
optimizer_switch=engine_condition_pushdown=off

At runtime, enable condition pushdown like this:

SET optimizer_switch='engine_condition_pushdown=off';

Limitations. Engine condition pushdown is subject to the following limitations:

• Condition pushdown is supported only by the NDB storage engine.

• Columns may be compared with constants only; however, this includes expressions which evaluate
to constant values.

• Columns used in comparisons cannot be of any of the BLOB or TEXT types.

• A string value to be compared with a column must use the same collation as the column.

• Joins are not directly supported; conditions involving multiple tables are pushed separately where
possible. Use EXPLAIN EXTENDED to determine which conditions are actually pushed down.

8.2.1.6 Index Condition Pushdown Optimization

Index Condition Pushdown (ICP) is an optimization for the case where MySQL retrieves rows from a
table using an index. Without ICP, the storage engine traverses the index to locate rows in the base
table and returns them to the MySQL server which evaluates the WHERE condition for the rows. With

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Optimizing SELECT Statements

835

ICP enabled, and if parts of the WHERE condition can be evaluated by using only fields from the index,
the MySQL server pushes this part of the WHERE condition down to the storage engine. The storage
engine then evaluates the pushed index condition by using the index entry and only if this is satisfied is
the row read from the table. ICP can reduce the number of times the storage engine must access the
base table and the number of times the MySQL server must access the storage engine.

Index Condition Pushdown optimization is used for the range, ref, eq_ref, and ref_or_null
access methods when there is a need to access full table rows. This strategy can be used for InnoDB
and MyISAM tables. Beginning with MySQL 5.7.3, it can also be used with partitioned InnoDB and
MyISAM tables (Bug #17306882, Bug #70001). For InnoDB tables, however, ICP is used only for
secondary indexes. The goal of ICP is to reduce the number of full-record reads and thereby reduce IO
operations. For InnoDB clustered indexes, the complete record is already read into the InnoDB buffer.
Using ICP in this case does not reduce IO.

To see how this optimization works, consider first how an index scan proceeds when Index Condition
Pushdown is not used:

1. Get the next row, first by reading the index tuple, and then by using the index tuple to locate and
read the full table row.

2. Test the part of the WHERE condition that applies to this table. Accept or reject the row based on the
test result.

When Index Condition Pushdown is used, the scan proceeds like this instead:

1. Get the next row's index tuple (but not the full table row).

2. Test the part of the WHERE condition that applies to this table and can be checked using only index
columns. If the condition is not satisfied, proceed to the index tuple for the next row.

3. If the condition is satisfied, use the index tuple to locate and read the full table row.

4. Test the remaining part of the WHERE condition that applies to this table. Accept or reject the row
based on the test result.

When Index Condition Pushdown is used, the Extra column in EXPLAIN output shows Using index
condition. It will not show Index only because that does not apply when full table rows must be
read.

Suppose that we have a table containing information about people and their addresses and that the
table has an index defined as INDEX (zipcode, lastname, firstname). If we know a person's
zipcode value but are not sure about the last name, we can search like this:

SELECT * FROM people
 WHERE zipcode='95054'
 AND lastname LIKE '%etrunia%'
 AND address LIKE '%Main Street%';

MySQL can use the index to scan through people with zipcode='95054'. The second part
(lastname LIKE '%etrunia%') cannot be used to limit the number of rows that must be scanned,
so without Index Condition Pushdown, this query must retrieve full table rows for all the people who
have zipcode='95054'.

With Index Condition Pushdown, MySQL will check the lastname LIKE '%etrunia%' part before
reading the full table row. This avoids reading full rows corresponding to all index tuples that do not
match the lastname condition.

Index Condition Pushdown is enabled by default; it can be controlled with the optimizer_switch
system variable by setting the index_condition_pushdown flag. See Section 8.8.6.2, “Controlling
Switchable Optimizations”.

Optimizing SELECT Statements

836

8.2.1.7 Use of Index Extensions

InnoDB automatically extends each secondary index by appending the primary key columns to it.
Consider this table definition:

CREATE TABLE t1 (
 i1 INT NOT NULL DEFAULT 0,
 i2 INT NOT NULL DEFAULT 0,
 d DATE DEFAULT NULL,
 PRIMARY KEY (i1, i2),
 INDEX k_d (d)
) ENGINE = InnoDB;

This table defines the primary key on columns (i1, i2). It also defines a secondary index k_d on
column (d), but internally InnoDB extends this index and treats it as columns (d, i1, i2).

In MySQL 5.7, the optimizer takes into account the primary key columns of the extended secondary
index when determining how and whether to use that index. This can result in more efficient query
execution plans and better performance.

The optimizer can use extended secondary indexes for ref, range, and index_merge index access,
for loose index scans, for join and sorting optimization, and for MIN()/MAX() optimization.

The following example shows how execution plans are affected by whether the optimizer uses
extended secondary indexes. Suppose that t1 is populated with these rows:

INSERT INTO t1 VALUES
(1, 1, '1998-01-01'), (1, 2, '1999-01-01'),
(1, 3, '2000-01-01'), (1, 4, '2001-01-01'),
(1, 5, '2002-01-01'), (2, 1, '1998-01-01'),
(2, 2, '1999-01-01'), (2, 3, '2000-01-01'),
(2, 4, '2001-01-01'), (2, 5, '2002-01-01'),
(3, 1, '1998-01-01'), (3, 2, '1999-01-01'),
(3, 3, '2000-01-01'), (3, 4, '2001-01-01'),
(3, 5, '2002-01-01'), (4, 1, '1998-01-01'),
(4, 2, '1999-01-01'), (4, 3, '2000-01-01'),
(4, 4, '2001-01-01'), (4, 5, '2002-01-01'),
(5, 1, '1998-01-01'), (5, 2, '1999-01-01'),
(5, 3, '2000-01-01'), (5, 4, '2001-01-01'),
(5, 5, '2002-01-01');

Now consider this query:

EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'

The optimizer cannot use the primary key in this case because that comprises columns (i1, i2) and
the query does not refer to i2. Instead, the optimizer can use the secondary index k_d on (d), and
the execution plan depends on whether the extended index is used.

When the optimizer does not consider index extensions, it treats the index k_d as only (d). EXPLAIN
for the query produces this result:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 4
 ref: const

Optimizing SELECT Statements

837

 rows: 5
 Extra: Using where; Using index

When the optimizer takes index extensions into account, it treats k_d as (d, i1, i2). In this case, it
can use the leftmost index prefix (d, i1) to produce a better execution plan:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 8
 ref: const,const
 rows: 1
 Extra: Using index

In both cases, key indicates that the optimizer will use secondary index k_d but the EXPLAIN output
shows these improvements from using the extended index:

• key_len goes from 4 bytes to 8 bytes, indicating that key lookups use columns d and i1, not just d.

• The ref value changes from const to const,const because the key lookup uses two key parts,
not one.

• The rows count decreases from 5 to 1, indicating that InnoDB should need to examine fewer rows
to produce the result.

• The Extra value changes from Using where; Using index to Using index. This means that
rows can be read using only the index, without consulting columns in the data row.

Differences in optimizer behavior for use of extended indexes can also be seen with SHOW STATUS:

FLUSH TABLE t1;
FLUSH STATUS;
SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01';
SHOW STATUS LIKE 'handler_read%'

The preceding statements include FLUSH TABLE and FLUSH STATUS to flush the table cache and
clear the status counters.

Without index extensions, SHOW STATUS produces this result:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	5
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

With index extensions, SHOW STATUS produces this result. The Handler_read_next value
decreases from 5 to 1, indicating more efficient use of the index:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+

Optimizing SELECT Statements

838

Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	1
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

The use_index_extensions flag of the optimizer_switch system variable permits control
over whether the optimizer takes the primary key columns into account when determining how to use
an InnoDB table's secondary indexes. By default, use_index_extensions is enabled. To check
whether disabling use of index extensions will improve performance, use this statement:

SET optimizer_switch = 'use_index_extensions=off';

Use of index extensions by the optimizer is subject to the usual limits on the number of key parts in an
index (16) and the maximum key length (3072 bytes).

8.2.1.8 IS NULL Optimization

MySQL can perform the same optimization on col_name IS NULL that it can use for col_name =
constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS
NULL.

Examples:

SELECT * FROM tbl_name WHERE key_col IS NULL;

SELECT * FROM tbl_name WHERE key_col <=> NULL;

SELECT * FROM tbl_name
 WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT
NULL, that expression is optimized away. This optimization does not occur in cases when the column
might produce NULL anyway; for example, if it comes from a table on the right side of a LEFT JOIN.

MySQL can also optimize the combination col_name = expr OR col_name IS NULL, a form that
is common in resolved subqueries. EXPLAIN shows ref_or_null when this optimization is used.

This optimization can handle one IS NULL for any key part.

Some examples of queries that are optimized, assuming that there is an index on columns a and b of
table t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1, t2
 WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
 OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key, and then a separate search for rows
with a NULL key value.

Optimizing SELECT Statements

839

Note that the optimization can handle only one IS NULL level. In the following query, MySQL uses key
lookups only on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to use the key
part on b:

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL)
 OR (t1.b=t2.b AND t2.b IS NULL);

8.2.1.9 LEFT JOIN and RIGHT JOIN Optimization

MySQL implements an A LEFT JOIN B join_condition as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any
condition in the WHERE clause is not used.)

• All standard join optimizations are performed, with the exception that a table is always read after all
tables on which it depends. If there is a circular dependence, MySQL issues an error.

• All standard WHERE optimizations are performed.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON
condition, an extra B row is generated with all columns set to NULL.

• If you use LEFT JOIN to find rows that do not exist in some table and you have the following test:
col_name IS NULL in the WHERE part, where col_name is a column that is declared as NOT
NULL, MySQL stops searching for more rows (for a particular key combination) after it has found one
row that matches the LEFT JOIN condition.

The implementation of RIGHT JOIN is analogous to that of LEFT JOIN with the roles of the tables
reversed.

 The join optimizer calculates the order in which tables should be joined. The table read order forced by
LEFT JOIN or STRAIGHT_JOIN helps the join optimizer do its work much more quickly, because there
are fewer table permutations to check. Note that this means that if you do a query of the following type,
MySQL does a full scan on b because the LEFT JOIN forces it to be read before d:

SELECT *
 FROM a JOIN b LEFT JOIN c ON (c.key=a.key)
 LEFT JOIN d ON (d.key=a.key)
 WHERE b.key=d.key;

The fix in this case is reverse the order in which a and b are listed in the FROM clause:

SELECT *
 FROM b JOIN a LEFT JOIN c ON (c.key=a.key)
 LEFT JOIN d ON (d.key=a.key)
 WHERE b.key=d.key;

For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT JOIN
is changed to a normal join. For example, the WHERE clause would be false in the following query if
t2.column1 were NULL:

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it is safe to convert the query to a normal join:

Optimizing SELECT Statements

840

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

 This can be made faster because MySQL can use table t2 before table t1 if doing so would result
in a better query plan. To provide a hint about the table join order, use STRAIGHT_JOIN. (See
Section 13.2.9, “SELECT Syntax”.)

8.2.1.10 Nested-Loop Join Algorithms

MySQL executes joins between tables using a nested-loop algorithm or variations on it.

Nested-Loop Join Algorithm

A simple nested-loop join (NLJ) algorithm reads rows from the first table in a loop one at a time,
passing each row to a nested loop that processes the next table in the join. This process is repeated as
many times as there remain tables to be joined.

Assume that a join between three tables t1, t2, and t3 is to be executed using the following join
types:

Table Join Type
t1 range
t2 ref
t3 ALL

If a simple NLJ algorithm is used, the join is processed like this:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 for each row in t3 {
 if row satisfies join conditions,
 send to client
 }
 }
}

Because the NLJ algorithm passes rows one at a time from outer loops to inner loops, it typically reads
tables processed in the inner loops many times.

Block Nested-Loop Join Algorithm

A Block Nested-Loop (BNL) join algorithm uses buffering of rows read in outer loops to reduce the
number of times that tables in inner loops must be read. For example, if 10 rows are read into a buffer
and the buffer is passed to the next inner loop, each row read in the inner loop can be compared
against all 10 rows in the buffer. The reduces the number of times the inner table must be read by an
order of magnitude.

MySQL uses join buffering under these conditions:

• The join_buffer_size system variable determines the size of each join buffer.

• Join buffering can be used when the join is of type ALL or index (in other words, when no possible
keys can be used, and a full scan is done, of either the data or index rows, respectively), or
range. In MySQL 5.7, use of buffering is extended to be applicable to outer joins, as described in
Section 8.2.1.14, “Block Nested-Loop and Batched Key Access Joins”.

• One buffer is allocated for each join that can be buffered, so a given query might be processed using
multiple join buffers.

• A join buffer is never allocated for the first nonconst table, even if it would be of type ALL or index.

Optimizing SELECT Statements

841

• A join buffer is allocated prior to executing the join and freed after the query is done.

• Only columns of interest to the join are stored in the join buffer, not whole rows.

For the example join described previously for the NLJ algorithm (without buffering), the join is done as
follow using join buffering:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 store used columns from t1, t2 in join buffer
 if buffer is full {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions,
 send to client
 }
 }
 empty buffer
 }
 }
}

if buffer is not empty {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions,
 send to client
 }
 }
}

If S is the size of each stored t1, t2 combination is the join buffer and C is the number of combinations
in the buffer, the number of times table t3 is scanned is:

(S * C)/join_buffer_size + 1

The number of t3 scans decreases as the value of join_buffer_size increases, up to the point
when join_buffer_size is large enough to hold all previous row combinations. At that point, there
is no speed to be gained by making it larger.

8.2.1.11 Nested Join Optimization

The syntax for expressing joins permits nested joins. The following discussion refers to the join syntax
described in Section 13.2.9.2, “JOIN Syntax”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts
only table_reference, not a list of them inside a pair of parentheses. This is a conservative
extension if we consider each comma in a list of table_reference items as equivalent to an inner
join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is a syntactic equivalent to INNER JOIN (they can replace each other). In
standard SQL, they are not equivalent. INNER JOIN is used with an ON clause; CROSS JOIN is used
otherwise.

Optimizing SELECT Statements

842

In general, parentheses can be ignored in join expressions containing only inner join operations. After
removing parentheses and grouping operations to the left, the join expression:

t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 ON t1.a=t2.a

transforms into the expression:

(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3
 ON t2.b=t3.b OR t2.b IS NULL

Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have
the following state:

• Table t1 contains rows (1), (2)

• Table t2 contains row (1,101)

• Table t3 contains row (101)

In this case, the first expression returns a result set including the rows (1,1,101,101),
(2,NULL,NULL,NULL), whereas the second expression returns the rows (1,1,101,101),
(2,NULL,NULL,101):

mysql> SELECT *
 -> FROM t1
 -> LEFT JOIN
 -> (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 -> ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 -> FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
 -> LEFT JOIN t3
 -> ON t2.b=t3.b OR t2.b IS NULL;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

In the following example, an outer join operation is used together with an inner join operation:

t1 LEFT JOIN (t2, t3) ON t1.a=t2.a

That expression cannot be transformed into the following expression:

t1 LEFT JOIN t2 ON t1.a=t2.a, t3.

For the given table states, the two expressions return different sets of rows:

mysql> SELECT *
 -> FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+

Optimizing SELECT Statements

843

| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 -> FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

Therefore, if we omit parentheses in a join expression with outer join operators, we might change the
result set for the original expression.

More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in
the left operand of a right join operation. In other words, we cannot ignore parentheses for the inner
table expressions of outer join operations. Parentheses for the other operand (operand for the outer
table) can be ignored.

The following expression:

(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)

is equivalent to this expression:

t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)

for any tables t1,t2,t3 and any condition P over attributes t2.b and t3.b.

Whenever the order of execution of the join operations in a join expression (join_table) is not from
left to right, we talk about nested joins. Consider the following queries:

SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
 WHERE t1.a > 1

SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
 WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1

Those queries are considered to contain these nested joins:

t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3

The nested join is formed in the first query with a left join operation, whereas in the second query it is
formed with an inner join operation.

In the first query, the parentheses can be omitted: The grammatical structure of the join expression will
dictate the same order of execution for join operations. For the second query, the parentheses cannot
be omitted, although the join expression here can be interpreted unambiguously without them. (In our
extended syntax the parentheses in (t2, t3) of the second query are required, although theoretically
the query could be parsed without them: We still would have unambiguous syntactical structure for the
query because LEFT JOIN and ON would play the role of the left and right delimiters for the expression
(t2,t3).)

The preceding examples demonstrate these points:

• For join expressions involving only inner joins (and not outer joins), parentheses can be removed.
You can remove parentheses and evaluate left to right (or, in fact, you can evaluate the tables in any
order).

Optimizing SELECT Statements

844

• The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of
parentheses may change the result.

Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins.
More exactly, a variation of the nested-loop join algorithm is exploited. Recall by what algorithmic
schema the nested-loop join executes a query. Suppose that we have a join query over 3 tables
T1,T2,T3 of the form:

SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
 INNER JOIN T3 ON P2(T2,T3)
 WHERE P(T1,T2,T3).

Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas P(T1,T2,T3)
is a condition over columns of tables T1,T2,T3.

The nested-loop join algorithm would execute this query in the following manner:

FOR each row t1 in T1 {
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

The notation t1||t2||t3 means “a row constructed by concatenating the columns of rows t1,
t2, and t3.” In some of the following examples, NULL where a row name appears means that NULL
is used for each column of that row. For example, t1||t2||NULL means “a row constructed by
concatenating the columns of rows t1 and t2, and NULL for each column of t3.”

Now let's consider a query with nested outer joins:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON P2(T2,T3))
 ON P1(T1,T2)
 WHERE P(T1,T2,T3).

For this query, we modify the nested-loop pattern to get:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF P(t1,t2,NULL) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;

Optimizing SELECT Statements

845

 }
 }
}

In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that
is turned off before the loop and is checked after the loop. The flag is turned on when for the current
row from the outer table a match from the table representing the inner operand is found. If at the end of
the loop cycle the flag is still off, no match has been found for the current row of the outer table. In this
case, the row is complemented by NULL values for the columns of the inner tables. The result row is
passed to the final check for the output or into the next nested loop, but only if the row satisfies the join
condition of all embedded outer joins.

In our example, the outer join table expressed by the following expression is embedded:

(T2 LEFT JOIN T3 ON P2(T2,T3))

Note that for the query with inner joins, the optimizer could choose a different order of nested loops,
such as this one:

FOR each row t3 in T3 {
 FOR each row t2 in T2 such that P2(t2,t3) {
 FOR each row t1 in T1 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

For the queries with outer joins, the optimizer can choose only such an order where loops for outer
tables precede loops for inner tables. Thus, for our query with outer joins, only one nesting order is
possible. For the following query, the optimizer will evaluate two different nestings:

SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
 WHERE P(T1,T2,T3)

The nestings are these:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t1,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

and:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t3 in T3 such that P2(t1,t3) {
 FOR each row t2 in T2 such that P1(t1,t2) {
 IF P(t1,t2,t3) {

Optimizing SELECT Statements

846

 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

In both nestings, T1 must be processed in the outer loop because it is used in an outer join. T2 and T3
are used in an inner join, so that join must be processed in the inner loop. However, because the join is
an inner join, T2 and T3 can be processed in either order.

When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact
on the performance of query execution may be huge. We did not mention so-called “pushed-down”
conditions. Suppose that our WHERE condition P(T1,T2,T3) can be represented by a conjunctive
formula:

P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).

In this case, MySQL actually uses the following nested-loop schema for the execution of the query with
inner joins:

FOR each row t1 in T1 such that C1(t1) {
 FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2) {
 FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to
the most outer loop where it can be evaluated. If C1(T1) is a very restrictive condition, this condition
pushdown may greatly reduce the number of rows from table T1 passed to the inner loops. As a result,
the execution time for the query may improve immensely.

For a query with outer joins, the WHERE condition is to be checked only after it has been found that
the current row from the outer table has a match in the inner tables. Thus, the optimization of pushing
conditions out of the inner nested loops cannot be applied directly to queries with outer joins. Here we
have to introduce conditional pushed-down predicates guarded by the flags that are turned on when a
match has been encountered.

For our example with outer joins with:

P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)

the nested-loop schema using guarded pushed-down conditions looks like this:

FOR each row t1 in T1 such that C1(t1) {
 BOOL f1:=FALSE;
 FOR each row t2 in T2
 such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3
 such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
 IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
 t:=t1||t2||t3; OUTPUT t;

Optimizing SELECT Statements

847

 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }
 }
 IF (!f1 && P(t1,NULL,NULL)) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
}

In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and
P(T2,T3). In this case, a pushed-down predicate is guarded also by a flag that prevents checking the
predicate for the NULL-complemented row generated by the corresponding outer join operation.

Note that access by key from one inner table to another in the same nested join is prohibited if it is
induced by a predicate from the WHERE condition. (We could use conditional key access in this case,
but this technique is not employed yet in MySQL 5.7.)

8.2.1.12 Outer Join Simplification

Table expressions in the FROM clause of a query are simplified in many cases.

At the parser stage, queries with right outer joins operations are converted to equivalent queries
containing only left join operations. In the general case, the conversion is performed according to the
following rule:

(T1, ...) RIGHT JOIN (T2,...) ON P(T1,...,T2,...) =
(T2, ...) LEFT JOIN (T1,...) ON P(T1,...,T2,...)

All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list
T1,T2, P(T1,T2) being joined as a conjunct to the WHERE condition (or to the join condition of the
embedding join, if there is any).

When the optimizer evaluates plans for join queries with outer join operation, it takes into consideration
only the plans where, for each such operation, the outer tables are accessed before the inner tables.
The optimizer options are limited because only such plans enables us to execute queries with outer
joins operations by the nested loop schema.

Suppose that we have a query of the form:

SELECT * T1 LEFT JOIN T2 ON P1(T1,T2)
 WHERE P(T1,T2) AND R(T2)

with R(T2) narrowing greatly the number of matching rows from table T2. If we executed the query as
it is, the optimizer would have no other choice besides to access table T1 before table T2 that may lead
to a very inefficient execution plan.

Fortunately, MySQL converts such a query into a query without an outer join operation if the WHERE
condition is null-rejected. A condition is called null-rejected for an outer join operation if it evaluates to
FALSE or to UNKNOWN for any NULL-complemented row built for the operation.

Thus, for this outer join:

T1 LEFT JOIN T2 ON T1.A=T2.A

Optimizing SELECT Statements

848

Conditions such as these are null-rejected:

T2.B IS NOT NULL,
T2.B > 3,
T2.C <= T1.C,
T2.B < 2 OR T2.C > 1

Conditions such as these are not null-rejected:

T2.B IS NULL,
T1.B < 3 OR T2.B IS NOT NULL,
T1.B < 3 OR T2.B > 3

The general rules for checking whether a condition is null-rejected for an outer join operation are
simple. A condition is null-rejected in the following cases:

• If it is of the form A IS NOT NULL, where A is an attribute of any of the inner tables

• If it is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its
arguments is NULL

• If it is a conjunction containing a null-rejected condition as a conjunct

• If it is a disjunction of null-rejected conditions

A condition can be null-rejected for one outer join operation in a query and not null-rejected for another.
In the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

the WHERE condition is null-rejected for the second outer join operation but is not null-rejected for the
first one.

If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is
replaced by an inner join operation.

For example, the preceding query is replaced with the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

For the original query, the optimizer would evaluate plans compatible with only one access order
T1,T2,T3. For the replacing query, it additionally considers the access sequence T3,T1,T2.

A conversion of one outer join operation may trigger a conversion of another. Thus, the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

will be first converted to the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

which is equivalent to the query:

Optimizing SELECT Statements

849

SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

Now the remaining outer join operation can be replaced by an inner join, too, because the condition
T3.B=T2.B is null-rejected and we get a query without outer joins at all:

SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

Sometimes we succeed in replacing an embedded outer join operation, but cannot convert the
embedding outer join. The following query:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0

is converted to:

SELECT * FROM T1 LEFT JOIN
 (T2 INNER JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0,

That can be rewritten only to the form still containing the embedding outer join operation:

SELECT * FROM T1 LEFT JOIN
 (T2,T3)
 ON (T2.A=T1.A AND T3.B=T2.B)
 WHERE T3.C > 0.

When trying to convert an embedded outer join operation in a query, we must take into account the join
condition for the embedding outer join together with the WHERE condition. In the query:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A AND T3.C=T1.C
 WHERE T3.D > 0 OR T1.D > 0

the WHERE condition is not null-rejected for the embedded outer join, but the join condition of the
embedding outer join T2.A=T1.A AND T3.C=T1.C is null-rejected. So the query can be converted to:

SELECT * FROM T1 LEFT JOIN
 (T2, T3)
 ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B
 WHERE T3.D > 0 OR T1.D > 0

8.2.1.13 Multi-Range Read Optimization

Reading rows using a range scan on a secondary index can result in many random disk accesses to
the base table when the table is large and not stored in the storage engine's cache. With the Disk-
Sweep Multi-Range Read (MRR) optimization, MySQL tries to reduce the number of random disk
access for range scans by first scanning the index only and collecting the keys for the relevant rows.
Then the keys are sorted and finally the rows are retrieved from the base table using the order of the
primary key. The motivation for Disk-sweep MRR is to reduce the number of random disk accesses
and instead achieve a more sequential scan of the base table data.

The Multi-Range Read optimization provides these benefits:

Optimizing SELECT Statements

850

• MRR enables data rows to be accessed sequentially rather than in random order, based on
index tuples. The server obtains a set of index tuples that satisfy the query conditions, sorts them
according to data row ID order, and uses the sorted tuples to retrieve data rows in order. This makes
data access more efficient and less expensive.

• MRR enables batch processing of requests for key access for operations that require access to data
rows through index tuples, such as range index scans and equi-joins that use an index for the join
attribute. MRR iterates over a sequence of index ranges to obtain qualifying index tuples. As these
results accumulate, they are used to access the corresponding data rows. It is not necessary to
acquire all index tuples before starting to read data rows.

The following scenarios illustrate when MRR optimization can be advantageous:

Scenario A: MRR can be used for InnoDB and MyISAM tables for index range scans and equi-join
operations.

1. A portion of the index tuples are accumulated in a buffer.

2. The tuples in the buffer are sorted by their data row ID.

3. Data rows are accessed according to the sorted index tuple sequence.

Scenario B: MRR can be used for NDB tables for multiple-range index scans or when performing an
equi-join by an attribute.

1. A portion of ranges, possibly single-key ranges, is accumulated in a buffer on the central node
where the query is submitted.

2. The ranges are sent to the execution nodes that access data rows.

3. The accessed rows are packed into packages and sent back to the central node.

4. The received packages with data rows are placed in a buffer.

5. Data rows are read from the buffer.

When MRR is used, the Extra column in EXPLAIN output shows Using MRR.

InnoDB and MyISAM do not use MRR if full table rows need not be accessed to produce the query
result. This is the case if results can be produced entirely on the basis on information in the index
tuples (through a covering index); MRR provides no benefit.

Example query for which MRR can be used, assuming that there is an index on (key_part1,
key_part2):

SELECT * FROM t
 WHERE key_part1 >= 1000 AND key_part1 < 2000
 AND key_part2 = 10000;

The index consists of tuples of (key_part1, key_part2) values, ordered first by key_part1 and
then by key_part2.

Without MRR, an index scan covers all index tuples for the key_part1 range from 1000 up to 2000,
regardless of the key_part2 value in these tuples. The scan does extra work to the extent that tuples
in the range contain key_part2 values other than 10000.

With MRR, the scan is broken up into multiple ranges, each for a single value of key_part1 (1000,
1001, ... , 1999). Each of these scans need look only for tuples with key_part2 = 10000. If the index
contains many tuples for which key_part2 is not 10000, MRR results in many fewer index tuples
being read.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Optimizing SELECT Statements

851

To express this using interval notation, the non-MRR scan must examine the index range [{1000,
10000}, {2000, MIN_INT}), which may include many tuples other than those for which
key_part2 = 10000. The MRR scan examines multiple single-point intervals [{1000, 10000}], ...,
[{1999, 10000}], which includes only tuples with key_part2 = 10000.

Two optimizer_switch system variable flags provide an interface to the use of MRR optimization.
The mrr flag controls whether MRR is enabled. If mrr is enabled (on), the mrr_cost_based flag
controls whether the optimizer attempts to make a cost-based choice between using and not using
MRR (on) or uses MRR whenever possible (off). By default, mrr is on and mrr_cost_based is on.
See Section 8.8.6.2, “Controlling Switchable Optimizations”.

For MRR, a storage engine uses the value of the read_rnd_buffer_size system variable
as a guideline for how much memory it can allocate for its buffer. The engine uses up to
read_rnd_buffer_size bytes and determines the number of ranges to process in a single pass.

8.2.1.14 Block Nested-Loop and Batched Key Access Joins

In MySQL 5.7, a Batched Key Access (BKA) Join algorithm is available that uses both index access
to the joined table and a join buffer. The BKA algorithm supports inner join, outer join, and semi-join
operations, including nested outer joins. Benefits of BKA include improved join performance due to
more efficient table scanning. Also, the Block Nested-Loop (BNL) Join algorithm previously used only
for inner joins is extended and can be employed for outer join and semi-join operations, including
nested outer joins.

The following sections discuss the join buffer management that underlies the extension of the original
BNL algorithm, the extended BNL algorithm, and the BKA algorithm. For information about semi-join
strategies, see Optimizing Subqueries with Semi-Join Transformations

Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms

In MySQL 5.7, MySQL Server can employ join buffers to execute not only inner joins without index
access to the inner table, but also outer joins and semi-joins that appear after subquery flattening.
Moreover, a join buffer can be effectively used when there is an index access to the inner table.

The join buffer management code slightly more efficiently utilizes join buffer space when storing the
values of the interesting row columns: No additional bytes are allocated in buffers for a row column if its
value is NULL, and the minimum number of bytes is allocated for any value of the VARCHAR type.

The code supports two types of buffers, regular and incremental. Suppose that join buffer B1 is
employed to join tables t1 and t2 and the result of this operation is joined with table t3 using join
buffer B2:

• A regular join buffer contains columns from each join operand. If B2 is a regular join buffer, each
row r put into B2 is composed of the columns of a row r1 from B1 and the interesting columns of a
matching row r2 from table t2.

• An incremental join buffer contains only columns from rows of the table produced by the second join
operand. That is, it is incremental to a row from the first operand buffer. If B2 is an incremental join
buffer, it contains the interesting columns of the row r2 together with a link to the row r1 from B1.

Incremental join buffers are always incremental relative to a join buffer from an earlier join operation, so
the buffer from the first join operation is always a regular buffer. In the example just given, the buffer B1
used to join tables t1 and t2 must be a regular buffer.

Each row of the incremental buffer used for a join operation contains only the interesting columns of
a row from the table to be joined. These columns are augmented with a reference to the interesting
columns of the matched row from the table produced by the first join operand. Several rows in the
incremental buffer can refer to the same row r whose columns are stored in the previous join buffers
insofar as all these rows match row r.

Optimizing SELECT Statements

852

Incremental buffers enable less frequent copying of columns from buffers used for previous join
operations. This provides a savings in buffer space because in the general case a row produced by
the first join operand can be matched by several rows produced by the second join operand. It is
unnecessary to make several copies of a row from the first operand. Incremental buffers also provide a
savings in processing time due to the reduction in copying time.

The block_nested_loop and batched_key_access flags of the optimizer_switch system
variable control how the optimizer uses the Block Nested-Loop and Batched Key Access join
algorithms. By default, block_nested_loop is on and batched_key_access is off. See
Section 8.8.6.2, “Controlling Switchable Optimizations”.

Before MySQL 5.6.3, the optimizer_join_cache_level system variable controls join buffer
management. For the possible values of this variable and their meanings, see the description in
Section 5.1.4, “Server System Variables”.

For information about semi-join strategies, see Optimizing Subqueries with Semi-Join Transformations

Block Nested-Loop Algorithm for Outer Joins and Semi-Joins

In MySQL 5.7, the original implementation of the BNL algorithm is extended to support outer join and
semi-join operations.

When these operations are executed with a join buffer, each row put into the buffer is supplied with a
match flag.

If an outer join operation is executed using a join buffer, each row of the table produced by the second
operand is checked for a match against each row in the join buffer. When a match is found, a new
extended row is formed (the original row plus columns from the second operand) and sent for further
extensions by the remaining join operations. In addition, the match flag of the matched row in the buffer
is enabled. After all rows of the table to be joined have been examined, the join buffer is scanned. Each
row from the buffer that does not have its match flag enabled is extended by NULL complements (NULL
values for each column in the second operand) and sent for further extensions by the remaining join
operations.

As of MySQL 5.6.3, the block_nested_loop flag of the optimizer_switch system variable
controls how the optimizer uses the Block Nested-Loop algorithm. By default, block_nested_loop is
on. See Section 8.8.6.2, “Controlling Switchable Optimizations”.

Before MySQL 5.6.3, the optimizer_join_cache_level system variable controls join buffer
management. For the possible values of this variable and their meanings, see the description in
Section 5.1.4, “Server System Variables”.

In EXPLAIN output, use of BNL for a table is signified when the Extra value contains Using join
buffer (Block Nested Loop) and the type value is ALL, index, or range.

For information about semi-join strategies, see Optimizing Subqueries with Semi-Join Transformations

Batched Key Access Joins

MySQL Server implements a method of joining tables called the Batched Key Access (BKA) join
algorithm. BKA can be applied when there is an index access to the table produced by the second
join operand. Like the BNL join algorithm, the BKA join algorithm employs a join buffer to accumulate
the interesting columns of the rows produced by the first operand of the join operation. Then the BKA
algorithm builds keys to access the table to be joined for all rows in the buffer and submits these keys
in a batch to the database engine for index lookups. The keys are submitted to the engine through
the Multi-Range Read (MRR) interface (see Section 8.2.1.13, “Multi-Range Read Optimization”). After
submission of the keys, the MRR engine functions perform lookups in the index in an optimal way,
fetching the rows of the joined table found by these keys, and starts feeding the BKA join algorithm with
matching rows. Each matching row is coupled with a reference to a row in the join buffer.

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_optimizer_join_cache_level
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_optimizer_join_cache_level

Optimizing SELECT Statements

853

When BKA is used, the value of join_buffer_size defines how large the batch of keys is in each
request to the storage engine. The larger the buffer, the more sequential access will be to the right
hand table of a join operation, which can significantly improve performance.

For BKA to be used, the batched_key_access flag of the optimizer_switch system variable
must be set to on. BKA uses MRR, so the mrr flag must also be on. Currently, the cost estimation for
MRR is too pessimistic. Hence, it is also necessary for mrr_cost_based to be off for BKA to be
used. The following setting enables BKA:

mysql> SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

There are two scenarios by which MRR functions execute:

• The first scenario is used for conventional disk-based storage engines such as InnoDB and MyISAM.
For these engines, usually the keys for all rows from the join buffer are submitted to the MRR
interface at once. Engine-specific MRR functions perform index lookups for the submitted keys, get
row IDs (or primary keys) from them, and then fetch rows for all these selected row IDs one by one
by request from BKA algorithm. Every row is returned with an association reference that enables
access to the matched row in the join buffer. The rows are fetched by the MRR functions in an
optimal way: They are fetched in the row ID (primary key) order. This improves performance because
reads are in disk order rather than random order.

• The second scenario is used for remote storage engines such as NDB. A package of keys for a
portion of rows from the join buffer, together with their associations, is sent by MySQL Server to NDB
nodes. In return, the Server receives a package (or several packages) of matching rows coupled with
corresponding associations. The BKA join algorithm takes these rows and builds new joined rows.
Then a new portion of keys are sent to the data nodes, and the rows from the returned packages
are used to build new joined rows. The process continues until the last keys from the join buffer are
sent to the data nodes, and the MySQL server receives and joins all rows matching these keys.
This improves performance because the fewer packages with keys the MySQL Server sends to the
Cluster, the fewer round trips between the server and the Cluster nodes are required to perform the
join operation.

With the first scenario, a portion of the join buffer is reserved to store row IDs (primary keys) selected
by index lookups and passed as a parameter to the MRR functions.

There is no special buffer to store keys built for rows from the join buffer. Instead, a function that builds
the key for the next row in the buffer is passed as a parameter to the MRR functions.

In EXPLAIN output, use of BKA for a table is signified when the Extra value contains Using join
buffer (Batched Key Access) and the type value is ref or eq_ref.

8.2.1.15 ORDER BY Optimization

In some cases, MySQL can use an index to satisfy an ORDER BY clause without doing any extra
sorting.

The index can also be used even if the ORDER BY does not match the index exactly, as long as all
of the unused portions of the index and all the extra ORDER BY columns are constants in the WHERE
clause. The following queries use the index to resolve the ORDER BY part:

SELECT * FROM t1
 ORDER BY key_part1,key_part2,... ;

SELECT * FROM t1
 WHERE key_part1 = constant
 ORDER BY key_part2;

SELECT * FROM t1

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Optimizing SELECT Statements

854

 ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
 WHERE key_part1 = 1
 ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
 WHERE key_part1 > constant
 ORDER BY key_part1 ASC;

SELECT * FROM t1
 WHERE key_part1 < constant
 ORDER BY key_part1 DESC;

SELECT * FROM t1
 WHERE key_part1 = constant1 AND key_part2 > constant2
 ORDER BY key_part2;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it still uses indexes to
find the rows that match the WHERE clause. These cases include the following:

• You use ORDER BY on different keys:

SELECT * FROM t1 ORDER BY key1, key2;

• You use ORDER BY on nonconsecutive parts of a key:

SELECT * FROM t1 WHERE key2=constant ORDER BY key_part2;

• You mix ASC and DESC:

SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;

• The key used to fetch the rows is not the same as the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• You use ORDER BY with an expression that includes terms other than the key column name:

SELECT * FROM t1 ORDER BY ABS(key);
SELECT * FROM t1 ORDER BY -key;

• You are joining many tables, and the columns in the ORDER BY are not all from the first nonconstant
table that is used to retrieve rows. (This is the first table in the EXPLAIN output that does not have a
const join type.)

• You have different ORDER BY and GROUP BY expressions.

• You index only a prefix of a column named in the ORDER BY clause. In this case, the index cannot
be used to fully resolve the sort order. For example, if you have a CHAR(20) column, but index only
the first 10 bytes, the index cannot distinguish values past the 10th byte and a filesort will be
needed.

• The type of table index used does not store rows in order. For example, this is true for a HASH index
in a MEMORY table.

Availability of an index for sorting may be affected by the use of column aliases. Suppose that the
column t1.a is indexed. In this statement, the name of the column in the select list is a. It refers to
t1.a, so for the reference to a in the ORDER BY, the index can be used:

SELECT a FROM t1 ORDER BY a;

Optimizing SELECT Statements

855

In this statement, the name of the column in the select list is also a, but it is the alias name. It refers to
ABS(a), so for the reference to a in the ORDER BY, the index cannot be used:

SELECT ABS(a) AS a FROM t1 ORDER BY a;

In the following statement, the ORDER BY refers to a name that is not the name of a column in the
select list. But there is a column in t1 named a, so the ORDER BY uses that, and the index can be
used. (The resulting sort order may be completely different from the order for ABS(a), of course.)

SELECT ABS(a) AS b FROM t1 ORDER BY a;

By default, MySQL sorts all GROUP BY col1, col2, ... queries as if you specified ORDER BY
col1, col2, ... in the query as well. If you include an explicit ORDER BY clause that contains
the same column list, MySQL optimizes it away without any speed penalty, although the sorting still
occurs. If a query includes GROUP BY but you want to avoid the overhead of sorting the result, you can
suppress sorting by specifying ORDER BY NULL. For example:

INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

Note

Relying on implicit GROUP BY sorting in MySQL 5.7 is deprecated. To achieve
a specific sort order of grouped results, it is preferable to use an explicit ORDER
BY clause. GROUP BY sorting is a MySQL extension that may change in a future
release; for example, to make it possible for the optimizer to order groupings in
whatever manner it deems most efficient and to avoid the sorting overhead.

With EXPLAIN SELECT ... ORDER BY, you can check whether MySQL can use indexes to resolve
the query. It cannot if you see Using filesort in the Extra column. See Section 8.8.1, “Optimizing
Queries with EXPLAIN”. Filesort uses a fixed-length row-storage format similar to that used by the
MEMORY storage engine. Variable-length types such as VARCHAR are stored using a fixed length.

MySQL has two filesort algorithms for sorting and retrieving results. The original method uses
only the ORDER BY columns. The modified method uses not just the ORDER BY columns, but all the
columns referenced by the query.

The optimizer selects which filesort algorithm to use. It normally uses the modified algorithm
except when BLOB or TEXT columns are involved, in which case it uses the original algorithm. For both
algorithms, the sort buffer size is the sort_buffer_size system variable value.

The original filesort algorithm works as follows:

1. Read all rows according to key or by table scanning. Skip rows that do not match the WHERE
clause.

2. For each row, store a pair of values (the sort key value and the row ID) in the sort buffer.

3. If all pairs fit into the sort buffer, no temporary file is created. Otherwise, when the sort buffer
becomes full, run a qsort (quicksort) on it in memory and write it to a temporary file. Save a pointer
to the sorted block.

4. Repeat the preceding steps until all rows have been read.

5. Do a multi-merge of up to MERGEBUFF (7) regions to one block in another temporary file. Repeat
until all blocks from the first file are in the second file.

6. Repeat the following until there are fewer than MERGEBUFF2 (15) blocks left.

Optimizing SELECT Statements

856

7. On the last multi-merge, only the row ID (the last part of the value pair) is written to a result file.

8. Read the rows in sorted order using the row IDs in the result file. To optimize this, read in a large
block of row IDs, sort them, and use them to read the rows in sorted order into a row buffer. The
row buffer size is the read_rnd_buffer_size system variable value. The code for this step is in
the sql/records.cc source file.

One problem with this approach is that it reads rows twice: One time during WHERE clause evaluation,
and again after sorting the value pairs. And even if the rows were accessed successively the first time
(for example, if a table scan is done), the second time they are accessed randomly. (The sort keys are
ordered, but the row positions are not.)

The modified filesort algorithm incorporates an optimization to avoid reading the rows twice: It
records the sort key value, but instead of the row ID, it records the columns referenced by the query.
The modified filesort algorithm works like this:

1. Read the rows that match the WHERE clause.

2. For each row, record a tuple of values consisting of the sort key value and the columns referenced
by the query.

3. When the sort buffer becomes full, sort the tuples by sort key value in memory and write it to a
temporary file.

4. After merge-sorting the temporary file, retrieve the rows in sorted order, but read the required
columns directly from the sorted tuples rather than by accessing the table a second time.

Using the modified filesort algorithm, the tuples are longer than the pairs used in the original
method, and fewer of them fit in the sort buffer. As a result, it is possible for the extra I/O to make
the modified approach slower, not faster. To avoid a slowdown, the optimizer uses the modified
algorithm only if the total size of the extra columns in the sort tuple does not exceed the value of the
max_length_for_sort_data system variable. (A symptom of setting the value of this variable too
high is a combination of high disk activity and low CPU activity.)

As of MySQL 5.7.3, the modified filesort algorithm includes an additional optimization designed to
enable more tuples to fit into the sort buffer: For additional columns of type CHAR or VARCHAR, or any
nullable fixed-size data type, the values are packed. For example, without packing, a VARCHAR(255)
column value containing only 3 characters takes 255 characters in the sort buffer. With packing, the
value requires only 3 characters plus a two-byte length indicator. NULL values require only a bitmask.

For data containing packable strings shorter than the maximum column length or many NULL
values, more records fit into the sort buffer. This improves in-memory sorting of the sort buffer and
performance of disk-based temporary file merge sorting.

In edge cases, packing may be disadvantageous: If packable strings are the maximum column length
or there are few NULL values, the space required for the length indicators reduces the number of
records that fit into the sort buffer and sorting is slower in memory and on disk.

If a filesort is done, EXPLAIN output includes Using filesort in the Extra column. Also,
optimizer trace output includes a filesort_summary block. For example:

"filesort_summary": {
 "rows": 100,
 "examined_rows": 100,
 "number_of_tmp_files": 0,
 "sort_buffer_size": 25192,
 "sort_mode": "<sort_key, packed_additional_fields>"
}

The sort_mode value provides information about the algorithm used and the contents of tuples in the
sort buffer:

Optimizing SELECT Statements

857

• <sort_key, rowid>: Sort buffer tuples contain the sort key value and row ID of the original table
row. Tuples are sorted by sort key value and the row ID is used to read the row from the table.

• <sort_key, additional_fields>: Sort buffer tuples contain the sort key value and columns
referenced by the query. Tuples are sorted by sort key value and column values are read directly
from the tuple.

• <sort_key, packed_additional_fields>: Sort buffer tuples contain the sort key value and
packed columns referenced by the query. Tuples are sorted by sort key value and column values are
read directly from the tuple.

For information about the optimizer trace, see MySQL Internals: Tracing the Optimizer.

Suppose that a table t1 has four VARCHAR columns a, b, c, and d and that the optimizer uses
filesort for this query:

SELECT * FROM t1 ORDER BY a, b;

The query sorts by a and b, but returns all columns, so the columns referenced by the query are a,
b, c, and d. Depending on which filesort algorithm the optimizer chooses, the query executes as
follows:

For the original algorithm, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
row ID into t1)

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and
uses the row ID in each tuple to read rows from t1 to obtain the select list column values.

For the modified algorithm without packing, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
a value, b value, c value, d value)

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and
uses the values for a, b, c, and d to obtain the select list column values without reading t1 again.

For the modified algorithm with packing, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
a length, packed a value, b length, packed b value,
c length, packed c value, d length, packed d value)

If any of a, b, c, or d are NULL, they take no space in the sort buffer other than in the bitmask.

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and
uses the values for a, b, c, and d to obtain the select list column values without reading t1 again.

For slow queries for which filesort is not used, try lowering max_length_for_sort_data to a
value that is appropriate to trigger a filesort.

To increase ORDER BY speed, check whether you can get MySQL to use indexes rather than an extra
sorting phase. If this is not possible, you can try the following strategies:

• Increase the sort_buffer_size variable value.

• Increase the read_rnd_buffer_size variable value.

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

Optimizing SELECT Statements

858

• Use less RAM per row by declaring columns only as large as they need to be to hold the values
stored in them. For example, CHAR(16) is better than CHAR(200) if values never exceed 16
characters.

• Change the tmpdir system variable to point to a dedicated file system with large amounts of free
space. The variable value can list several paths that are used in round-robin fashion; you can use
this feature to spread the load across several directories. Paths should be separated by colon
characters (“:”) on Unix and semicolon characters (“;”) on Windows. The paths should name
directories in file systems located on different physical disks, not different partitions on the same disk.

If an index is not used for ORDER BY but a LIMIT clause is also present, the optimizer may be able to
avoid using a merge file and sort the rows in memory. For details, see Section 8.2.1.19, “Optimizing
LIMIT Queries”.

8.2.1.16 GROUP BY Optimization

The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new
temporary table where all rows from each group are consecutive, and then use this temporary table
to discover groups and apply aggregate functions (if any). In some cases, MySQL is able to do much
better than that and to avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns
reference attributes from the same index, and that the index stores its keys in order (for example, this
is a BTREE index and not a HASH index). Whether use of temporary tables can be replaced by index
access also depends on which parts of an index are used in a query, the conditions specified for these
parts, and the selected aggregate functions.

There are two ways to execute a GROUP BY query through index access, as detailed in the following
sections. In the first method, the grouping operation is applied together with all range predicates (if
any). The second method first performs a range scan, and then groups the resulting tuples.

In MySQL, GROUP BY is used for sorting, so the server may also apply ORDER BY optimizations to
grouping. See Section 8.2.1.15, “ORDER BY Optimization”.

Loose Index Scan

The most efficient way to process GROUP BY is when an index is used to directly retrieve the grouping
columns. With this access method, MySQL uses the property of some index types that the keys are
ordered (for example, BTREE). This property enables use of lookup groups in an index without having
to consider all keys in the index that satisfy all WHERE conditions. This access method considers only
a fraction of the keys in an index, so it is called a loose index scan. When there is no WHERE clause, a
loose index scan reads as many keys as the number of groups, which may be a much smaller number
than that of all keys. If the WHERE clause contains range predicates (see the discussion of the range
join type in Section 8.8.1, “Optimizing Queries with EXPLAIN”), a loose index scan looks up the first key
of each group that satisfies the range conditions, and again reads the least possible number of keys.
This is possible under the following conditions:

• The query is over a single table.

• The GROUP BY names only columns that form a leftmost prefix of the index and no other columns.
(If, instead of GROUP BY, the query has a DISTINCT clause, all distinct attributes refer to columns
that form a leftmost prefix of the index.) For example, if a table t1 has an index on (c1,c2,c3),
loose index scan is applicable if the query has GROUP BY c1, c2,. It is not applicable if the query
has GROUP BY c2, c3 (the columns are not a leftmost prefix) or GROUP BY c1, c2, c4 (c4 is
not in the index).

• The only aggregate functions used in the select list (if any) are MIN() and MAX(), and all of them
refer to the same column. The column must be in the index and must follow the columns in the
GROUP BY.

Optimizing SELECT Statements

859

• Any other parts of the index than those from the GROUP BY referenced in the query must be
constants (that is, they must be referenced in equalities with constants), except for the argument of
MIN() or MAX() functions.

• For columns in the index, full column values must be indexed, not just a prefix. For example, with c1
VARCHAR(20), INDEX (c1(10)), the index cannot be used for loose index scan.

If loose index scan is applicable to a query, the EXPLAIN output shows Using index for group-
by in the Extra column.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The loose index scan
access method can be used for the following queries:

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are aggregate functions other than MIN() or MAX():

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The columns in the GROUP BY clause do not form a leftmost prefix of the index:

SELECT c1, c2 FROM t1 GROUP BY c2, c3;

• The query refers to a part of a key that comes after the GROUP BY part, and for which there is no
equality with a constant:

SELECT c1, c3 FROM t1 GROUP BY c1, c2;

Were the query to include WHERE c3 = const, loose index scan could be used.

The loose index scan access method can be applied to other forms of aggregate function references in
the select list, in addition to the MIN() and MAX() references already supported:

• AVG(DISTINCT), SUM(DISTINCT), and COUNT(DISTINCT) are supported. AVG(DISTINCT)
and SUM(DISTINCT) take a single argument. COUNT(DISTINCT) can have more than one column
argument.

• There must be no GROUP BY or DISTINCT clause in the query.

• The loose scan limitations described earlier still apply.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The loose index scan
access method can be used for the following queries:

SELECT COUNT(DISTINCT c1), SUM(DISTINCT c1) FROM t1;

SELECT COUNT(DISTINCT c1, c2), COUNT(DISTINCT c2, c1) FROM t1;

Loose index scan is not applicable for the following queries:

SELECT DISTINCT COUNT(DISTINCT c1) FROM t1;

Optimizing SELECT Statements

860

SELECT COUNT(DISTINCT c1) FROM t1 GROUP BY c1;

Tight Index Scan

A tight index scan may be either a full index scan or a range index scan, depending on the query
conditions.

When the conditions for a loose index scan are not met, it still may be possible to avoid creation of
temporary tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method
reads only the keys that satisfy these conditions. Otherwise, it performs an index scan. Because this
method reads all keys in each range defined by the WHERE clause, or scans the whole index if there
are no range conditions, we term it a tight index scan. With a tight index scan, the grouping operation is
performed only after all keys that satisfy the range conditions have been found.

For this method to work, it is sufficient that there is a constant equality condition for all columns in
a query referring to parts of the key coming before or in between parts of the GROUP BY key. The
constants from the equality conditions fill in any “gaps” in the search keys so that it is possible to form
complete prefixes of the index. These index prefixes then can be used for index lookups. If we require
sorting of the GROUP BY result, and it is possible to form search keys that are prefixes of the index,
MySQL also avoids extra sorting operations because searching with prefixes in an ordered index
already retrieves all the keys in order.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The following queries
do not work with the loose index scan access method described earlier, but still work with the tight
index scan access method.

• There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• The GROUP BY does not begin with the first part of the key, but there is a condition that provides a
constant for that part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

8.2.1.17 DISTINCT Optimization

DISTINCT combined with ORDER BY needs a temporary table in many cases.

Because DISTINCT may use GROUP BY, learn how MySQL works with columns in ORDER BY or
HAVING clauses that are not part of the selected columns. See Section 12.17.3, “MySQL Extensions to
GROUP BY”.

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example,
the following two queries are equivalent:

SELECT DISTINCT c1, c2, c3 FROM t1
WHERE c1 > const;

SELECT c1, c2, c3 FROM t1
WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to
queries with a DISTINCT clause. Thus, for more details on the optimization possibilities for DISTINCT
queries, see Section 8.2.1.16, “GROUP BY Optimization”.

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

Optimizing SELECT Statements

861

If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables
as soon as it finds the first match. In the following case, assuming that t1 is used before t2 (which you
can check with EXPLAIN), MySQL stops reading from t2 (for any particular row in t1) when it finds the
first row in t2:

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

8.2.1.18 Subquery Optimization

The MySQL query optimizer has different strategies available to evaluate subqueries. For IN (or =ANY)
subqueries, the optimizer has these choices:

• Semi-join

• Materialization

• EXISTS strategy

For NOT IN (or <>ALL) subqueries, the optimizer has these choices:

• Materialization

• EXISTS strategy

The following sections provide more information about these optimization strategies.

Optimizing Subqueries with Semi-Join Transformations

The optimizer uses semi-join strategies to improve subquery execution, as described in this section.

For an inner join between two tables, the join returns a row from one table as many times as there are
matches in the other table. But for some questions, the only information that matters is whether there is
a match, not the number of matches. Suppose that there are tables named class and roster that list
classes in a course curriculum and class rosters (students enrolled in each class), respectively. To list
the classes that actually have students enrolled, you could use this join:

SELECT class.class_num, class.class_name
FROM class INNER JOIN roster
WHERE class.class_num = roster.class_num;

However, the result lists each class once for each enrolled student. For the question being asked, this
is unnecessary duplication of information.

Assuming that class_num is a primary key in the class table, duplicate suppression could be
achieved by using SELECT DISTINCT, but it is inefficient to generate all matching rows first only to
eliminate duplicates later.

The same duplicate-free result can be obtained by using a subquery:

SELECT class_num, class_name
FROM class
WHERE class_num IN (SELECT class_num FROM roster);

Here, the optimizer can recognize that the IN clause requires the subquery to return only one instance
of each class number from the roster table. In this case, the query can be executed as a semi-join—
that is, an operation that returns only one instance of each row in class that is matched by rows in
roster.

Before MySQL 5.6.6, the outer query specification was limited to simple table scans or inner joins using
comma syntax, and view references were not possible. As of 5.6.6, outer join and inner join syntax is

Optimizing SELECT Statements

862

permitted in the outer query specification, and the restriction that table references must be base tables
has been lifted.

In MySQL, a subquery must satisfy these criteria to be handled as a semi-join:

• It must be an IN (or =ANY) subquery that appears at the top level of the WHERE or ON clause,
possibly as a term in an AND expression. For example:

SELECT ...
FROM ot1, ...
WHERE (oe1, ...) IN (SELECT ie1, ... FROM it1, ... WHERE ...);

Here, ot_i and it_i represent tables in the outer and inner parts of the query, and oe_i and ie_i
represent expressions that refer to columns in the outer and inner tables.

• It must be a single SELECT without UNION constructs.

• It must not contain a GROUP BY or HAVING clause or aggregate functions.

• It must not have ORDER BY with LIMIT.

• The number of outer and inner tables together must be less than the maximum number of tables
permitted in a join.

The subquery may be correlated or uncorrelated. DISTINCT is permitted, as is LIMIT unless ORDER
BY is also used.

If a subquery meets the preceding criteria, MySQL converts it to a semi-join and makes a cost-based
choice from these strategies:

• Convert the subquery to a join, or use table pullout and run the query as an inner join between
subquery tables and outer tables. Table pullout pulls a table out from the subquery to the outer
query.

• Duplicate Weedout: Run the semi-join as if it was a join and remove duplicate records using a
temporary table.

• FirstMatch: When scanning the inner tables for row combinations and there are multiple instances
of a given value group, choose one rather than returning them all. This "shortcuts" scanning and
eliminates production of unnecessary rows.

• LooseScan: Scan a subquery table using an index that enables a single value to be chosen from
each subquery's value group.

• Materialize the subquery into a temporary table with an index and use the temporary table to perform
a join. The index is used to remove duplicates. The index might also be used later for lookups when
joining the temporary table with the outer tables; if not, the table is scanned.

Each of these strategies except Duplicate Weedout can be enabled or disabled using the
optimizer_switch system variable. The semijoin flag controls whether semi-joins are used. If it
is set to on, the firstmatch, loosescan, and materialization flags enable finer control over
the permitted semi-join strategies. These flags are on by default. See Section 8.8.6.2, “Controlling
Switchable Optimizations”.

The use of semi-join strategies is indicated in EXPLAIN output as follows:

• Semi-joined tables show up in the outer select. EXPLAIN EXTENDED plus SHOW WARNINGS shows
the rewritten query, which displays the semi-join structure. From this you can get an idea about
which tables were pulled out of the semi-join. If a subquery was converted to a semi-join, you will
see that the subquery predicate is gone and its tables and WHERE clause were merged into the outer
query join list and WHERE clause.

Optimizing SELECT Statements

863

• Temporary table use for Duplicate Weedout is indicated by Start temporary and End
temporary in the Extra column. Tables that were not pulled out and are in the range of EXPLAIN
output rows covered by Start temporary and End temporary will have their rowid in the
temporary table.

• FirstMatch(tbl_name) in the Extra column indicates join shortcutting.

• LooseScan(m..n) in the Extra column indicates use of the LooseScan strategy. m and n are key
part numbers.

• Temporary table use for materialization is indicated by rows with a select_type value of
MATERIALIZED and rows with a table value of <subqueryN>.

Optimizing Subqueries with Subquery Materialization

The optimizer uses subquery materialization as a strategy that enables more efficient subquery
processing.

If materialization is not used, the optimizer sometimes rewrites a noncorrelated subquery as a
correlated subquery. For example, the following IN subquery is noncorrelated (where_condition
involves only columns from t2 and not t1):

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

The optimizer might rewrite this as an EXISTS correlated subquery:

SELECT * FROM t1
WHERE EXISTS (SELECT t2.b FROM t2 WHERE where_condition AND t1.a=t2.b);

Subquery materialization using a temporary table avoids such rewrites and makes it possible to
execute the subquery only once rather than once per row of the outer query. Materialization speeds
up query execution by generating a subquery result as a temporary table, normally in memory. The
first time MySQL needs the subquery result, it materializes that result into a temporary table. Any
subsequent time the result is needed, MySQL refers again to the temporary table. The table is indexed
with a hash index to make lookups fast and inexpensive. The index is unique, which makes the table
smaller because it has no duplicates.

Subquery materialization attempts to use an in-memory temporary table when possible, falling back
to on-disk storage if the table becomes too large. See Section 8.4.4, “How MySQL Uses Internal
Temporary Tables”.

For subquery materialization to be used in MySQL, the materialization flag of the
optimizer_switch system variable must be on. Materialization then applies to subquery predicates
that appear anywhere (in the select list, WHERE, ON, GROUP BY, HAVING, or ORDER BY), for predicates
that fall into any of these use cases:

• The predicate has this form, when no outer expression oe_i or inner expression ie_i is nullable. N
can be 1 or larger.

(oe_1, oe_2, ..., oe_N) [NOT] IN (SELECT ie_1, i_2, ..., ie_N ...)

• The predicate has this form, when there is a single outer expression oe and inner expression ie.
The expressions can be nullable.

oe [NOT] IN (SELECT ie ...)

• The predicate is IN or NOT IN and a result of UNKNOWN (NULL) has the same meaning as a result of
FALSE.

Optimizing SELECT Statements

864

The following examples illustrate how the requirement for equivalence of UNKNOWN and FALSE
predicate evaluation affects whether subquery materialization can be used. Assume that
where_condition involves columns only from t2 and not t1 so that the subquery is noncorrelated.

This query is subject to materialization:

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

Here, it does not matter whether the IN predicate returns UNKNOWN or FALSE. Either way, the row from
t1 is not included in the query result.

An example where subquery materialization will not be used is the following query, where t2.b is a
nullable column.

SELECT * FROM t1
WHERE (t1.a,t1.b) NOT IN (SELECT t2.a,t2.b FROM t2
 WHERE where_condition);

Use of EXPLAIN with a query can give some indication of whether the optimizer uses subquery
materialization. Compared to query execution that does not use materialization, select_type may
change from DEPENDENT SUBQUERY to SUBQUERY. This indicates that, for a subquery that would
be executed once per outer row, materialization enables the subquery to be executed just once. In
addition, for EXPLAIN EXTENDED, the text displayed by a following SHOW WARNINGS will include
materialize materialize and materialized-subquery.

Optimizing Subqueries in the FROM Clause (Derived Tables)

As of MySQL 5.6.3, the optimizer more efficiently handles subqueries in the FROM clause (that is,
derived tables):

• Materialization of subqueries in the FROM clause is postponed until their contents are needed during
query execution, which improves performance:

• Previously, subqueries in the FROM clause were materialized for EXPLAIN SELECT statements.
This resulted in partial SELECT execution, even though the purpose of EXPLAIN is to obtain query
plan information, not to execute the query. This materialization no longer occurs, so EXPLAIN is
faster for such queries.

• For non-EXPLAIN queries, delay of materialization may result in not having to do it at all. Consider
a query that joins the result of a subquery in the FROM clause to another table: If the optimizer
processes that other table first and finds that it returns no rows, the join need not be carried out
further and the optimizer can completely skip materializing the subquery.

• During query execution, the optimizer may add an index to a derived table to speed up row retrieval
from it.

Consider the following EXPLAIN statement, for which a subquery appears in the FROM clause of a
SELECT query:

EXPLAIN SELECT * FROM (SELECT * FROM t1);

The optimizer avoids materializing the subquery by delaying it until the result is needed during SELECT
execution. In this case, the query is not executed, so the result is never needed.

Even for queries that are executed, delay of subquery materialization may permit the optimizer to avoid
materialization entirely. Consider the following query, which joins the result of a subquery in the FROM
clause to another table:

Optimizing SELECT Statements

865

SELECT * FROM t1
 JOIN (SELECT t2.f1 FROM t2) AS derived_t2 ON t1.f2=derived_t2.f1
 WHERE t1.f1 > 0;

If the optimization processes t1 first and the WHERE clause produces an empty result, the join must
necessarily be empty and the subquery need not be materialized.

In the worst case (derived tables are materialized), query execution will take the same time as
before MySQL 5.6.3 because no additional work is done. In the best case (derived tables are not
materialized), query execution will be quicker by the time needed to perform materialization.

For cases when materialization is required for a subquery in the FROM clause, the optimizer may speed
up access to the result by adding an index to the materialized table. If such an index would permit ref
access to the table, it can greatly reduce amount of data that must be read during query execution.
Consider the following query:

SELECT * FROM t1
 JOIN (SELECT * FROM t2) AS derived_t2 ON t1.f1=derived_t2.f1;

The optimizer constructs an index over column f1 from derived_t2 if doing so would permit the use
of ref access for the lowest cost execution plan. After adding the index, the optimizer can treat the
materialized derived table the same as a usual table with an index, and it benefits similarly from the
generated index. The overhead of index creation is negligible compared to the cost of query execution
without the index. If ref access would result in higher cost than some other access method, no index
is created and the optimizer loses nothing.

Optimizing Subqueries with EXISTS Strategy

Certain optimizations are applicable to comparisons that use the IN operator to test subquery results
(or that use =ANY, which is equivalent). This section discusses these optimizations, particularly with
regard to the challenges that NULL values present. The last part of the discussion includes suggestions
on what you can do to help the optimizer.

Consider the following subquery comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

MySQL evaluates queries “from outside to inside.” That is, it first obtains the value of the outer
expression outer_expr, and then runs the subquery and captures the rows that it produces.

A very useful optimization is to “inform” the subquery that the only rows of interest are those where the
inner expression inner_expr is equal to outer_expr. This is done by pushing down an appropriate
equality into the subquery's WHERE clause. That is, the comparison is converted to this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

After the conversion, MySQL can use the pushed-down equality to limit the number of rows that it must
examine when evaluating the subquery.

More generally, a comparison of N values to a subquery that returns N-value rows is subject to the
same conversion. If oe_i and ie_i represent corresponding outer and inner expression values, this
subquery comparison:

(oe_1, ..., oe_N) IN
 (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

Becomes:

EXISTS (SELECT 1 FROM ... WHERE subquery_where

Optimizing SELECT Statements

866

 AND oe_1 = ie_1
 AND ...
 AND oe_N = ie_N)

The following discussion assumes a single pair of outer and inner expression values for simplicity.

The conversion just described has its limitations. It is valid only if we ignore possible NULL values. That
is, the “pushdown” strategy works as long as both of these two conditions are true:

• outer_expr and inner_expr cannot be NULL.

• You do not need to distinguish NULL from FALSE subquery results. (If the subquery is a part of an OR
or AND expression in the WHERE clause, MySQL assumes that you do not care.)

When either or both of those conditions do not hold, optimization is more complex.

Suppose that outer_expr is known to be a non-NULL value but the subquery does not produce a row
such that outer_expr = inner_expr. Then outer_expr IN (SELECT ...) evaluates as follows:

• NULL, if the SELECT produces any row where inner_expr is NULL

• FALSE, if the SELECT produces only non-NULL values or produces nothing

In this situation, the approach of looking for rows with outer_expr = inner_expr is no longer valid.
It is necessary to look for such rows, but if none are found, also look for rows where inner_expr is
NULL. Roughly speaking, the subquery can be converted to:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND
 (outer_expr=inner_expr OR inner_expr IS NULL))

The need to evaluate the extra IS NULL condition is why MySQL has the ref_or_null access
method:

mysql> EXPLAIN
 -> SELECT outer_expr IN (SELECT t2.maybe_null_key
 -> FROM t2, t3 WHERE ...)
 -> FROM t1;
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: ref_or_null
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Using index
...

The unique_subquery and index_subquery subquery-specific access methods also have “or
NULL” variants. However, prior to MySQL 5.7.3, they are not visible in EXPLAIN output, so you must
use EXPLAIN EXTENDED followed by SHOW WARNINGS (note the checking NULL in the warning
message):

mysql> EXPLAIN EXTENDED
 -> SELECT outer_expr IN (SELECT maybe_null_key FROM t2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY

Optimizing SELECT Statements

867

 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using index

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select (`test`.`t1`.`outer_expr`,
 (((`test`.`t1`.`outer_expr`) in t2 on
 maybe_null_key checking NULL))) AS `outer_expr IN (SELECT
 maybe_null_key FROM t2)` from `test`.`t1`

The additional OR ... IS NULL condition makes query execution slightly more complicated (and
some optimizations within the subquery become inapplicable), but generally this is tolerable.

The situation is much worse when outer_expr can be NULL. According to the SQL interpretation of
NULL as “unknown value,” NULL IN (SELECT inner_expr ...) should evaluate to:

• NULL, if the SELECT produces any rows

• FALSE, if the SELECT produces no rows

For proper evaluation, it is necessary to be able to check whether the SELECT has produced any rows
at all, so outer_expr = inner_expr cannot be pushed down into the subquery. This is a problem,
because many real world subqueries become very slow unless the equality can be pushed down.

Essentially, there must be different ways to execute the subquery depending on the value of
outer_expr.

The optimizer chooses SQL compliance over speed, so it accounts for the possibility that outer_expr
might be NULL.

If outer_expr is NULL, to evaluate the following expression, it is necessary to run the SELECT to
determine whether it produces any rows:

NULL IN (SELECT inner_expr FROM ... WHERE subquery_where)

It is necessary to run the original SELECT here, without any pushed-down equalities of the kind
mentioned earlier.

On the other hand, when outer_expr is not NULL, it is absolutely essential that this comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

be converted to this expression that uses a pushed-down condition:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

Without this conversion, subqueries will be slow. To solve the dilemma of whether to push down or not
push down conditions into the subquery, the conditions are wrapped in “trigger” functions. Thus, an
expression of the following form:

Optimizing SELECT Statements

868

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

is converted into:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(outer_expr=inner_expr))

More generally, if the subquery comparison is based on several pairs of outer and inner expressions,
the conversion takes this comparison:

(oe_1, ..., oe_N) IN (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

and converts it to this expression:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(oe_1=ie_1)
 AND ...
 AND trigcond(oe_N=ie_N)
)

Each trigcond(X) is a special function that evaluates to the following values:

• X when the “linked” outer expression oe_i is not NULL

• TRUE when the “linked” outer expression oe_i is NULL

Note that trigger functions are not triggers of the kind that you create with CREATE TRIGGER.

Equalities that are wrapped into trigcond() functions are not first class predicates for the query
optimizer. Most optimizations cannot deal with predicates that may be turned on and off at query
execution time, so they assume any trigcond(X) to be an unknown function and ignore it. At the
moment, triggered equalities can be used by those optimizations:

• Reference optimizations: trigcond(X=Y [OR Y IS NULL]) can be used to construct ref,
eq_ref, or ref_or_null table accesses.

• Index lookup-based subquery execution engines: trigcond(X=Y) can be used to construct
unique_subquery or index_subquery accesses.

• Table-condition generator: If the subquery is a join of several tables, the triggered condition will be
checked as soon as possible.

When the optimizer uses a triggered condition to create some kind of index lookup-based access
(as for the first two items of the preceding list), it must have a fallback strategy for the case when the
condition is turned off. This fallback strategy is always the same: Do a full table scan. In EXPLAIN
output, the fallback shows up as Full scan on NULL key in the Extra column:

mysql> EXPLAIN SELECT t1.col1,
 -> t1.col1 IN (SELECT t2.key1 FROM t2 WHERE t2.col2=t1.col2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 ...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: key1
 key: key1
 key_len: 5
 ref: func

Optimizing SELECT Statements

869

 rows: 2
 Extra: Using where; Full scan on NULL key

If you run EXPLAIN EXTENDED followed by SHOW WARNINGS, you can see the triggered condition:

*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select `test`.`t1`.`col1` AS `col1`,
 <in_optimizer>(`test`.`t1`.`col1`,
 <exists>(<index_lookup>(<cache>(`test`.`t1`.`col1`) in t2
 on key1 checking NULL
 where (`test`.`t2`.`col2` = `test`.`t1`.`col2`) having
 trigcond(<is_not_null_test>(`test`.`t2`.`key1`))))) AS
 `t1.col1 IN (select t2.key1 from t2 where t2.col2=t1.col2)`
 from `test`.`t1`

The use of triggered conditions has some performance implications. A NULL IN (SELECT ...)
expression now may cause a full table scan (which is slow) when it previously did not. This is the price
paid for correct results (the goal of the trigger-condition strategy was to improve compliance and not
speed).

For multiple-table subqueries, execution of NULL IN (SELECT ...) will be particularly slow because
the join optimizer does not optimize for the case where the outer expression is NULL. It assumes that
subquery evaluations with NULL on the left side are very rare, even if there are statistics that indicate
otherwise. On the other hand, if the outer expression might be NULL but never actually is, there is no
performance penalty.

To help the query optimizer better execute your queries, use these tips:

• Declare a column as NOT NULL if it really is. (This also helps other aspects of the optimizer by
simplifying condition testing for the column.)

• If you do not need to distinguish a NULL from FALSE subquery result, you can easily avoid the slow
execution path. Replace a comparison that looks like this:

outer_expr IN (SELECT inner_expr FROM ...)

with this expression:

(outer_expr IS NOT NULL) AND (outer_expr IN (SELECT inner_expr FROM ...))

Then NULL IN (SELECT ...) will never be evaluated because MySQL stops evaluating AND
parts as soon as the expression result is clear.

The subquery_materialization_cost_based enables control over the choice between subquery
materialization and IN -> EXISTS subquery transformation. See Section 8.8.6.2, “Controlling
Switchable Optimizations”.

8.2.1.19 Optimizing LIMIT Queries

If you need only a specified number of rows from a result set, use a LIMIT clause in the query, rather
than fetching the whole result set and throwing away the extra data.

MySQL sometimes optimizes a query that has a LIMIT row_count clause and no HAVING clause:

• If you select only a few rows with LIMIT, MySQL uses indexes in some cases when normally it
would prefer to do a full table scan.

• If you use LIMIT row_count with ORDER BY, MySQL ends the sorting as soon as it has found the
first row_count rows of the sorted result, rather than sorting the entire result. If ordering is done
by using an index, this is very fast. If a filesort must be done, all rows that match the query without

Optimizing SELECT Statements

870

the LIMIT clause are selected, and most or all of them are sorted, before the first row_count are
found. After the initial rows have been found, MySQL does not sort any remainder of the result set.

• When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

• In some cases, a GROUP BY can be resolved by reading the key in order (or doing a sort on the key)
and then calculating summaries until the key value changes. In this case, LIMIT row_count does
not calculate any unnecessary GROUP BY values.

• As soon as MySQL has sent the required number of rows to the client, it aborts the query unless you
are using SQL_CALC_FOUND_ROWS.

• LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query. When
using one of the MySQL APIs, it can also be employed for obtaining the types of the result columns.
(This trick does not work in the MySQL Monitor (the mysql program), which merely displays Empty
set in such cases; instead, use SHOW COLUMNS or DESCRIBE for this purpose.)

• When the server uses temporary tables to resolve the query, it uses the LIMIT row_count clause
to calculate how much space is required.

The optimizer does handle queries (and subqueries) of the following form:

SELECT ... FROM single_table ... ORDER BY non_index_column [DESC] LIMIT [M,]N;

That type of query is common in web applications that display only a few rows from a larger result set.
For example:

SELECT col1, ... FROM t1 ... ORDER BY name LIMIT 10;
SELECT col1, ... FROM t1 ... ORDER BY RAND() LIMIT 15;

The sort buffer has a size of sort_buffer_size. If the sort elements for N rows are small enough to
fit in the sort buffer (M+N rows if M was specified), the server can avoid using a merge file and perform
the sort entirely in memory by treating the sort buffer as a priority queue:

• Scan the table, inserting the select list columns from each selected row in sorted order in the queue.
If the queue is full, bump out the last row in the sort order.

• Return the first N rows from the queue. (If M was specified, skip the first M rows and return the next N
rows.)

Previously, the server performed this operation by using a merge file for the sort:

• Scan the table, repeating these steps through the end of the table:

• Select rows until the sort buffer is filled.

• Write the first N rows in the buffer (M+N rows if M was specified) to a merge file.

• Sort the merge file and return the first N rows. (If M was specified, skip the first M rows and return the
next N rows.)

The cost of the table scan is the same for the queue and merge-file methods, so the optimizer chooses
between methods based on other costs:

• The queue method involves more CPU for inserting rows into the queue in order

• The merge-file method has I/O costs to write and read the file and CPU cost to sort it

The optimizer considers the balance between these factors for particular values of N and the row size.

8.2.1.20 How to Avoid Full Table Scans

Optimizing DML Statements

871

The output from EXPLAIN shows ALL in the type column when MySQL uses a full table scan to
resolve a query. This usually happens under the following conditions:

• The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is
common for tables with fewer than 10 rows and a short row length.

• There are no usable restrictions in the ON or WHERE clause for indexed columns.

• You are comparing indexed columns with constant values and MySQL has calculated (based on
the index tree) that the constants cover too large a part of the table and that a table scan would be
faster. See Section 8.2.1.2, “How MySQL Optimizes WHERE Clauses”.

• You are using a key with low cardinality (many rows match the key value) through another column.
In this case, MySQL assumes that by using the key it probably will do many key lookups and that a
table scan would be faster.

For small tables, a table scan often is appropriate and the performance impact is negligible. For large
tables, try the following techniques to avoid having the optimizer incorrectly choose a table scan:

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive
compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
 WHERE t1.col_name=t2.col_name;

See Section 13.2.9.3, “Index Hint Syntax”.

• Start mysqld with the --max-seeks-for-key=1000 option or use SET
max_seeks_for_key=1000 to tell the optimizer to assume that no key scan causes more than
1,000 key seeks. See Section 5.1.4, “Server System Variables”.

8.2.2 Optimizing DML Statements

This section explains how to speed up the data manipulation language (DML) statements, INSERT,
UPDATE, and DELETE. Traditional OLTP applications and modern web applications typically do many
small DML operations, where concurrency is vital. Data analysis and reporting applications typically
run DML operations that affect many rows at once, where the main considerations is the I/O to write
large amounts of data and keep indexes up-to-date. For inserting and updating large volumes of data
(known in the industry as ETL, for “extract-transform-load”), sometimes you use other SQL statements
or external commands, that mimic the effects of INSERT, UPDATE, and DELETE statements.

8.2.2.1 Speed of INSERT Statements

To optimize insert speed, combine many small operations into a single large operation. Ideally, you
make a single connection, send the data for many new rows at once, and delay all index updates and
consistency checking until the very end.

The time required for inserting a row is determined by the following factors, where the numbers indicate
approximate proportions:

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

• Inserting row: (1 × size of row)

Optimizing Database Privileges

872

• Inserting indexes: (1 × number of indexes)

• Closing: (1)

This does not take into consideration the initial overhead to open tables, which is done once for each
concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements with
multiple VALUES lists to insert several rows at a time. This is considerably faster (many times faster
in some cases) than using separate single-row INSERT statements. If you are adding data to a
nonempty table, you can tune the bulk_insert_buffer_size variable to make data insertion
even faster. See Section 5.1.4, “Server System Variables”.

• When loading a table from a text file, use LOAD DATA INFILE. This is usually 20 times faster than
using INSERT statements. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the
value to be inserted differs from the default. This reduces the parsing that MySQL must do and
improves the insert speed.

• See Section 8.5.4, “Bulk Data Loading for InnoDB Tables” for tips specific to InnoDB tables.

• See Section 8.6.2, “Bulk Data Loading for MyISAM Tables” for tips specific to MyISAM tables.

8.2.2.2 Speed of UPDATE Statements

An update statement is optimized like a SELECT query with the additional overhead of a write. The
speed of the write depends on the amount of data being updated and the number of indexes that are
updated. Indexes that are not changed do not get updated.

Another way to get fast updates is to delay updates and then do many updates in a row later.
Performing multiple updates together is much quicker than doing one at a time if you lock the table.

For a MyISAM table that uses dynamic row format, updating a row to a longer total length may
split the row. If you do this often, it is very important to use OPTIMIZE TABLE occasionally. See
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”.

8.2.2.3 Speed of DELETE Statements

The time required to delete individual rows in a MyISAM table is exactly proportional to the number of
indexes. To delete rows more quickly, you can increase the size of the key cache by increasing the
key_buffer_size system variable. See Section 8.11.2, “Tuning Server Parameters”.

To delete all rows from a MyISAM table, TRUNCATE TABLE tbl_name is faster than than DELETE
FROM tbl_name. Truncate operations are not transaction-safe; an error occurs when attempting one
in the course of an active transaction or active table lock. See Section 13.1.27, “TRUNCATE TABLE
Syntax”.

8.2.3 Optimizing Database Privileges

The more complex your privilege setup, the more overhead applies to all SQL statements. Simplifying
the privileges established by GRANT statements enables MySQL to reduce permission-checking
overhead when clients execute statements. For example, if you do not grant any table-level or column-
level privileges, the server need not ever check the contents of the tables_priv and columns_priv
tables. Similarly, if you place no resource limits on any accounts, the server does not have to perform
resource counting. If you have a very high statement-processing load, consider using a simplified grant
structure to reduce permission-checking overhead.

Optimizing INFORMATION_SCHEMA Queries

873

8.2.4 Optimizing INFORMATION_SCHEMA Queries

Applications that monitor the database can make frequent use of the INFORMATION_SCHEMA tables.
Certain types of queries for INFORMATION_SCHEMA tables can be optimized to execute more quickly.
The goal is to minimize file operations (for example, scanning a directory or opening a table file) to
collect the information that makes up these dynamic tables. These optimizations do have an effect
on how collations are used for searches in INFORMATION_SCHEMA tables. For more information, see
Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”.

1) Try to use constant lookup values for database and table names in the WHERE clause

You can take advantage of this principle as follows:

• To look up databases or tables, use expressions that evaluate to a constant, such as literal values,
functions that return a constant, or scalar subqueries.

• Avoid queries that use a nonconstant database name lookup value (or no lookup value) because
they require a scan of the data directory to find matching database directory names.

• Within a database, avoid queries that use a nonconstant table name lookup value (or no lookup
value) because they require a scan of the database directory to find matching table files.

This principle applies to the INFORMATION_SCHEMA tables shown in the following table, which shows
the columns for which a constant lookup value enables the server to avoid a directory scan. For
example, if you are selecting from TABLES, using a constant lookup value for TABLE_SCHEMA in the
WHERE clause enables a data directory scan to be avoided.

Table Column to specify to avoid
data directory scan

Column to specify to avoid
database directory scan

COLUMNS TABLE_SCHEMA TABLE_NAME

KEY_COLUMN_USAGE TABLE_SCHEMA TABLE_NAME

PARTITIONS TABLE_SCHEMA TABLE_NAME

REFERENTIAL_CONSTRAINTS CONSTRAINT_SCHEMA TABLE_NAME

STATISTICS TABLE_SCHEMA TABLE_NAME

TABLES TABLE_SCHEMA TABLE_NAME

TABLE_CONSTRAINTS TABLE_SCHEMA TABLE_NAME

TRIGGERS EVENT_OBJECT_SCHEMA EVENT_OBJECT_TABLE

VIEWS TABLE_SCHEMA TABLE_NAME

The benefit of a query that is limited to a specific constant database name is that checks need be made
only for the named database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

Use of the literal database name test enables the server to check only the test database directory,
regardless of how many databases there might be. By contrast, the following query is less efficient
because it requires a scan of the data directory to determine which database names match the pattern
'test%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE 'test%';

For a query that is limited to a specific constant table name, checks need be made only for the named
table within the corresponding database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES

Optimizing INFORMATION_SCHEMA Queries

874

WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';

Use of the literal table name t1 enables the server to check only the files for the t1 table, regardless of
how many tables there might be in the test database. By contrast, the following query requires a scan
of the test database directory to determine which table names match the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME LIKE 't%';

The following query requires a scan of the database directory to determine matching database names
for the pattern 'test%', and for each matching database, it requires a scan of the database directory
to determine matching table names for the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test%' AND TABLE_NAME LIKE 't%';

2) Write queries that minimize the number of table files that must be opened

For queries that refer to certain INFORMATION_SCHEMA table columns, several optimizations are
available that minimize the number of table files that must be opened. Example:

SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

In this case, after the server has scanned the database directory to determine the names of the
tables in the database, those names become available with no further file system lookups. Thus,
TABLE_NAME requires no files to be opened. The ENGINE (storage engine) value can be determined
by opening the table's .frm file, without touching other table files such as the .MYD or .MYI file.

Some values, such as INDEX_LENGTH for MyISAM tables, require opening the .MYD or .MYI file as
well.

The file-opening optimization types are denoted thus:

• SKIP_OPEN_TABLE: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• OPEN_FRM_ONLY: Only the table's .frm file need be opened.

• OPEN_TRIGGER_ONLY: Only the table's .TRG file need be opened.

• OPEN_FULL_TABLE: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be
opened.

The following list indicates how the preceding optimization types apply to INFORMATION_SCHEMA table
columns. For tables and columns not named, none of the optimizations apply.

• COLUMNS: OPEN_FRM_ONLY applies to all columns

• KEY_COLUMN_USAGE: OPEN_FULL_TABLE applies to all columns

• PARTITIONS: OPEN_FULL_TABLE applies to all columns

• REFERENTIAL_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• STATISTICS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

NON_UNIQUE OPEN_FRM_ONLY

Optimizing INFORMATION_SCHEMA Queries

875

Column Optimization type

INDEX_SCHEMA OPEN_FRM_ONLY

INDEX_NAME OPEN_FRM_ONLY

SEQ_IN_INDEX OPEN_FRM_ONLY

COLUMN_NAME OPEN_FRM_ONLY

COLLATION OPEN_FRM_ONLY

CARDINALITY OPEN_FULL_TABLE

SUB_PART OPEN_FRM_ONLY

PACKED OPEN_FRM_ONLY

NULLABLE OPEN_FRM_ONLY

INDEX_TYPE OPEN_FULL_TABLE

COMMENT OPEN_FRM_ONLY

• TABLES:

Column Optimization type

TABLE_CATALOG SKIP_OPEN_TABLE

TABLE_SCHEMA SKIP_OPEN_TABLE

TABLE_NAME SKIP_OPEN_TABLE

TABLE_TYPE OPEN_FRM_ONLY

ENGINE OPEN_FRM_ONLY

VERSION OPEN_FRM_ONLY

ROW_FORMAT OPEN_FULL_TABLE

TABLE_ROWS OPEN_FULL_TABLE

AVG_ROW_LENGTH OPEN_FULL_TABLE

DATA_LENGTH OPEN_FULL_TABLE

MAX_DATA_LENGTH OPEN_FULL_TABLE

INDEX_LENGTH OPEN_FULL_TABLE

DATA_FREE OPEN_FULL_TABLE

AUTO_INCREMENT OPEN_FULL_TABLE

CREATE_TIME OPEN_FULL_TABLE

UPDATE_TIME OPEN_FULL_TABLE

CHECK_TIME OPEN_FULL_TABLE

TABLE_COLLATION OPEN_FRM_ONLY

CHECKSUM OPEN_FULL_TABLE

CREATE_OPTIONS OPEN_FRM_ONLY

TABLE_COMMENT OPEN_FRM_ONLY

• TABLE_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• TRIGGERS: OPEN_TRIGGER_ONLY applies to all columns

• VIEWS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

Optimizing INFORMATION_SCHEMA Queries

876

Column Optimization type

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

VIEW_DEFINITION OPEN_FRM_ONLY

CHECK_OPTION OPEN_FRM_ONLY

IS_UPDATABLE OPEN_FULL_TABLE

DEFINER OPEN_FRM_ONLY

SECURITY_TYPE OPEN_FRM_ONLY

CHARACTER_SET_CLIENT OPEN_FRM_ONLY

COLLATION_CONNECTION OPEN_FRM_ONLY

3) Use EXPLAIN to determine whether the server can use INFORMATION_SCHEMA optimizations
for a query

This applies particularly for INFORMATION_SCHEMA queries that search for information from more than
one database, which might take a long time and impact performance. The Extra value in EXPLAIN
output indicates which, if any, of the optimizations described earlier the server can use to evaluate
INFORMATION_SCHEMA queries. The following examples demonstrate the kinds of information you can
expect to see in the Extra value.

mysql> EXPLAIN SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS WHERE
 -> TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v1'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: VIEWS
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA,TABLE_NAME
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned 0 databases

Use of constant database and table lookup values enables the server to avoid directory scans. For
references to VIEWS.TABLE_NAME, only the .frm file need be opened.

mysql> EXPLAIN SELECT TABLE_NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.TABLES\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: TABLES
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Open_full_table; Scanned all databases

No lookup values are provided (there is no WHERE clause), so the server must scan the data
directory and each database directory. For each table thus identified, the table name and row format
are selected. TABLE_NAME requires no further table files to be opened (the SKIP_OPEN_TABLE
optimization applies). ROW_FORMAT requires all table files to be opened (OPEN_FULL_TABLE applies).
EXPLAIN reports OPEN_FULL_TABLE because it is more expensive than SKIP_OPEN_TABLE.

mysql> EXPLAIN SELECT TABLE_NAME, TABLE_TYPE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'test'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE

Other Optimization Tips

877

 table: TABLES
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned 1 database

No table name lookup value is provided, so the server must scan the test database directory. For the
TABLE_NAME and TABLE_TYPE columns, the SKIP_OPEN_TABLE and OPEN_FRM_ONLY optimizations
apply, respectively. EXPLAIN reports OPEN_FRM_ONLY because it is more expensive.

mysql> EXPLAIN SELECT B.TABLE_NAME
 -> FROM INFORMATION_SCHEMA.TABLES AS A, INFORMATION_SCHEMA.COLUMNS AS B
 -> WHERE A.TABLE_SCHEMA = 'test'
 -> AND A.TABLE_NAME = 't1'
 -> AND B.TABLE_NAME = A.TABLE_NAME\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: A
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA,TABLE_NAME
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Skip_open_table; Scanned 0 databases
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: B
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned all databases;
 Using join buffer

For the first EXPLAIN output row: Constant database and table lookup values enable the server to
avoid directory scans for TABLES values. References to TABLES.TABLE_NAME require no further table
files.

For the second EXPLAIN output row: All COLUMNS table values are OPEN_FRM_ONLY lookups, so
COLUMNS.TABLE_NAME requires the .frm file to be opened.

mysql> EXPLAIN SELECT * FROM INFORMATION_SCHEMA.COLLATIONS\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: COLLATIONS
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra:

In this case, no optimizations apply because COLLATIONS is not one of the INFORMATION_SCHEMA
tables for which optimizations are available.

8.2.5 Other Optimization Tips

This section lists a number of miscellaneous tips for improving query processing speed:

Other Optimization Tips

878

• Use persistent connections to the database to avoid connection overhead. If you cannot use
persistent connections and you are initiating many new connections to the database, you may want
to change the value of the thread_cache_size variable. See Section 8.11.2, “Tuning Server
Parameters”.

• Always check whether all your queries really use the indexes that you have created in the tables. In
MySQL, you can do this with the EXPLAIN statement. See Section 8.8.1, “Optimizing Queries with
EXPLAIN”.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid
problems with table locking that occur due to contention between readers and writers.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you
can INSERT new rows into it at the same time that other threads are reading from the table. If it is
important to be able to do this, consider using the table in ways that avoid deleting rows. Another
possibility is to run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows
from it. This behavior is altered by setting the concurrent_insert variable. You can force new
rows to be appended (and therefore permit concurrent inserts), even in tables that have deleted
rows. See Section 8.10.3, “Concurrent Inserts”.

• To fix any compression issues that may have occurred with ARCHIVE tables, you can use OPTIMIZE
TABLE. See Section 14.6, “The ARCHIVE Storage Engine”.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1,
expr2, ... order. By using this option after extensive changes to the table, you may be able to get
higher performance.

• In some cases, it may make sense to introduce a column that is “hashed” based on information from
other columns. If this column is short, reasonably unique, and indexed, it may be much faster than a
“wide” index on many columns. In MySQL, it is very easy to use this extra column:

SELECT * FROM tbl_name
 WHERE hash_col=MD5(CONCAT(col1,col2))
 AND col1='constant' AND col2='constant';

• For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB,
and TEXT). The table uses dynamic row format if it includes even a single variable-length column.
See Chapter 14, Storage Engines.

• It is normally not useful to split a table into different tables just because the rows become large. In
accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row.
After finding the data, most modern disks can read the entire row fast enough for most applications.
The only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table
using dynamic row format that you can change to a fixed row size, or if you very often need to scan
the table but do not need most of the columns. See Chapter 14, Storage Engines.

• If you often need to calculate results such as counts based on information from a lot of rows, it may
be preferable to introduce a new table and update the counter in real time. An update of the following
form is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use MySQL storage engines such as MyISAM that has only table-
level locking (multiple readers with single writers). This also gives better performance with most
database systems, because the row locking manager in this case has less to do.

• If you need to collect statistics from large log tables, use summary tables instead of scanning the
entire log table. Maintaining the summaries should be much faster than trying to calculate statistics
“live.” Regenerating new summary tables from the logs when things change (depending on business
decisions) is faster than changing the running application.

Other Optimization Tips

879

• If possible, classify reports as “live” or as “statistical,” where data needed for statistical reports is
created only from summary tables that are generated periodically from the live data.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the
value to be inserted differs from the default. This reduces the parsing that MySQL must do and
improves the insert speed.

• In some cases, it is convenient to pack and store data into a BLOB column. In this case, you must
provide code in your application to pack and unpack information, but this may save a lot of accesses
at some stage. This is practical when you have data that does not conform well to a rows-and-
columns table structure.

• Normally, try to keep all data nonredundant (observing what is referred to in database theory as
third normal form). However, there may be situations in which it can be advantageous to duplicate
information or create summary tables to gain more speed.

• Stored routines or UDFs (user-defined functions) may be a good way to gain performance for some
tasks. See Section 18.2, “Using Stored Routines (Procedures and Functions)”, and Section 22.3,
“Adding New Functions to MySQL”, for more information.

• You can increase performance by caching queries or answers in your application and then executing
many inserts or updates together. If your database system supports table locks (as does MySQL),
this should help to ensure that the index cache is only flushed once after all updates. You can also
take advantage of MySQL's query cache to achieve similar results; see Section 8.9.3, “The MySQL
Query Cache”.

• Use multiple-row INSERT statements to store many rows with one SQL statement. (This is a
relatively portable technique.)

• Use LOAD DATA INFILE to load large amounts of data. This is faster than using INSERT
statements.

• Use AUTO_INCREMENT columns so that each row in a table can be identified by a single unique
value.

• Use OPTIMIZE TABLE once in a while to avoid fragmentation with dynamic-format MyISAM tables.
See Section 14.3.3, “MyISAM Table Storage Formats”.

• Use MEMORY tables when possible to get more speed. See Section 14.4, “The MEMORY Storage
Engine”. MEMORY tables are useful for noncritical data that is accessed often, such as information
about the last displayed banner for users who don't have cookies enabled in their Web browser.
User sessions are another alternative available in many Web application environments for handling
volatile state data.

• With Web servers, images and other binary assets should normally be stored as files. That is, store
only a reference to the file rather than the file itself in the database. Most Web servers are better at
caching files than database contents, so using files is generally faster.

• Columns with identical information in different tables should be declared to have identical data types
so that joins based on the corresponding columns will be faster.

• Try to keep column names simple. For example, in a table named customer, use a column name
of name instead of customer_name. To make your names portable to other SQL servers, consider
keeping them shorter than 18 characters.

• If you need really high speed, look at the low-level interfaces for data storage that the different SQL
servers support. For example, by accessing the MySQL MyISAM storage engine directly, you could
get a speed increase of two to five times compared to using the SQL interface. To be able to do this,
the data must be on the same server as the application, and usually it should only be accessed by
one process (because external file locking is really slow). One could eliminate these problems by
introducing low-level MyISAM commands in the MySQL server (this could be one easy way to get

Optimization and Indexes

880

more performance if needed). By carefully designing the database interface, it should be quite easy
to support this type of optimization.

• If you are using numeric data, it is faster in many cases to access information from a database (using
a live connection) than to access a text file. Information in the database is likely to be stored in a
more compact format than in the text file, so accessing it involves fewer disk accesses. You also
save code in your application because you need not parse your text files to find line and column
boundaries.

• Replication can provide a performance benefit for some operations. You can distribute client
retrievals among replication servers to split up the load. To avoid slowing down the master while
making backups, you can make backups using a slave server. See Chapter 16, Replication.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster
because they are not flushed to disk until the table is closed. The downside is that if something kills
the server while such a table is open, you must ensure that the table is okay by running the server
with the --myisam-recover-options option, or by running myisamchk before restarting the
server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE,
because the key information can always be generated from the data rows.)

• Use INSERT LOW_PRIORITY for supported nontransactional tables when you want to give SELECT
statements higher priority than your inserts.

• Use SELECT HIGH_PRIORITY for supported nontransactional tables to get retrievals that jump the
queue. That is, the SELECT is executed even if there is another client waiting to do a write.

LOW_PRIORITY and HIGH_PRIORITY have an effect only for nontransactional storage engines that
use only table-level locking.

8.3 Optimization and Indexes
The best way to improve the performance of SELECT operations is to create indexes on one or more of
the columns that are tested in the query. The index entries act like pointers to the table rows, allowing
the query to quickly determine which rows match a condition in the WHERE clause, and retrieve the
other column values for those rows. All MySQL data types can be indexed.

Although it can be tempting to create an indexes for every possible column used in a query,
unnecessary indexes waste space and waste time for MySQL to determine which indexes to use. You
must find the right balance to achieve fast queries using the optimal set of indexes.

8.3.1 How MySQL Uses Indexes

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must
begin with the first row and then read through the entire table to find the relevant rows. The larger the
table, the more this costs. If the table has an index for the columns in question, MySQL can quickly
determine the position to seek to in the middle of the data file without having to look at all the data. If a
table has 1,000 rows, this is at least 100 times faster than reading sequentially.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees.
Exceptions are that indexes on spatial data types use R-trees, and that MEMORY tables also support
hash indexes.

In general, indexes are used as described in the following discussion. Characteristics specific to hash
indexes (as used in MEMORY tables) are described at the end of this section.

MySQL uses indexes for these operations:

• To find the rows matching a WHERE clause quickly.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally
uses the index that finds the smallest number of rows (the most selective index).

Using Primary Keys

881

• To retrieve rows from other tables when performing joins. MySQL can use indexes on columns
more efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR
are considered the same if they are declared as the same size. For example, VARCHAR(10) and
CHAR(10) are the same size, but VARCHAR(10) and CHAR(15) are not.

Comparison of dissimilar columns may prevent use of indexes if values cannot be compared directly
without conversion. Suppose that a numeric column is compared to a string column. For a given
value such as 1 in the numeric column, it might compare equal to any number of values in the string
column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for the string
column.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a
preprocessor that checks whether you are using WHERE key_part_N = constant on all key
parts that occur before key_col in the index. In this case, MySQL does a single key lookup for each
MIN() or MAX() expression and replaces it with a constant. If all expressions are replaced with
constants, the query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
 FROM tbl_name WHERE key_part1=10;

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable key (for
example, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key is
read in reverse order. See Section 8.2.1.15, “ORDER BY Optimization”, and Section 8.2.1.16, “GROUP
BY Optimization”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. (An
index that provides all the necessary results for a query is called a covering index.) If a query uses
only columns from a table that are numeric and that form a leftmost prefix for some key, the selected
values can be retrieved from the index tree for greater speed:

SELECT key_part3 FROM tbl_name
 WHERE key_part1=1

Indexes are less important for queries on small tables, or big tables where report queries process most
or all of the rows. When a query needs to access most of the rows, reading sequentially is faster than
working through an index. Sequential reads minimize disk seeks, even if not all the rows are needed for
the query. See Section 8.2.1.20, “How to Avoid Full Table Scans” for details.

8.3.2 Using Primary Keys

The primary key for a table represents the column or set of columns that you use in your most vital
queries. It has an associated index, for fast query performance. Query performance benefits from
the NOT NULL optimization, because it cannot include any NULL values. With the InnoDB storage
engine, the table data is physically organized to do ultra-fast lookups and sorts based on the primary
key column or columns.

If your table is big and important, but does not have an obvious column or set of columns to use as a
primary key, you might create a separate column with auto-increment values to use as the primary key.
These unique IDs can serve as pointers to corresponding rows in other tables when you join tables
using foreign keys.

8.3.3 Using Foreign Keys

If a table has many columns, and you query many different combinations of columns, it might be
efficient to split the less-frequently used data into separate tables with a few columns each, and relate
them back to the main table by duplicating the numeric ID column from the main table. That way,
each small table can have a primary key for fast lookups of its data, and you can query just the set of
columns that you need using a join operation. Depending on how the data is distributed, the queries

Column Indexes

882

might perform less I/O and take up less cache memory because the relevant columns are packed
together on disk. (To maximize performance, queries try to read as few data blocks as possible from
disk; tables with only a few columns can fit more rows in each data block.)

8.3.4 Column Indexes

The most common type of index involves a single column, storing copies of the values from that
column in a data structure, allowing fast lookups for the rows with the corresponding column values.
The B-tree data structure lets the index quickly find a specific value, a set of values, or a range of
values, corresponding to operators such as =, >, ≤, BETWEEN, IN, and so on, in a WHERE clause.

The maximum number of indexes per table and the maximum index length is defined per storage
engine. See Chapter 14, Storage Engines. All storage engines support at least 16 indexes per table
and a total index length of at least 256 bytes. Most storage engines have higher limits.

Prefix Indexes

With col_name(N) syntax in an index specification, you can create an index that uses only the first N
characters of a string column. Indexing only a prefix of column values in this way can make the index
file much smaller. When you index a BLOB or TEXT column, you must specify a prefix length for the
index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables, unless you have
innodb_large_prefix set).

Note

Prefix limits are measured in bytes, while the prefix length in CREATE TABLE
statements is interpreted as number of characters. Take this into account when
specifying a prefix length for a column that uses a multi-byte character set.

FULLTEXT Indexes

You can also create FULLTEXT indexes. These are used for full-text searches. Only the InnoDB and
MyISAM storage engines support FULLTEXT indexes and only for CHAR, VARCHAR, and TEXT columns.
Indexing always takes place over the entire column and column prefix indexing is not supported. For
details, see Section 12.9, “Full-Text Search Functions”.

Optimizations are applied to certain kinds of FULLTEXT queries against single InnoDB tables. Queries
with these characteristics are particularly efficient:

• FULLTEXT queries that only return the document ID, or the document ID and the search rank.

• FULLTEXT queries that sort the matching rows in descending order of score and apply a LIMIT
clause to take the top N matching rows. For this optimization to apply, there must be no WHERE
clauses and only a single ORDER BY clause in descending order.

• FULLTEXT queries that retrieve only the COUNT(*) value of rows matching a search term, with
no additional WHERE clauses. Code the WHERE clause as WHERE MATCH(text) AGAINST
('other_text'), without any > 0 comparison operator.

Spatial Indexes

You can also create indexes on spatial data types. Currently, only MyISAM supports R-tree indexes on
spatial types. Other storage engines use B-trees for indexing spatial types (except for ARCHIVE, which
does not support spatial type indexing).

Multiple-Column Indexes

883

Indexes in the MEMORY Storage Engine

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

8.3.5 Multiple-Column Indexes

MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist
of up to 16 columns. For certain data types, you can index a prefix of the column (see Section 8.3.4,
“Column Indexes”).

MySQL can use multiple-column indexes for queries that test all the columns in the index, or queries
that test just the first column, the first two columns, the first three columns, and so on. If you specify the
columns in the right order in the index definition, a single composite index can speed up several kinds
of queries on the same table.

A multiple-column index can be considered a sorted array, the rows of which contain values that are
created by concatenating the values of the indexed columns.

Note

As an alternative to a composite index, you can introduce a column that is
“hashed” based on information from other columns. If this column is short,
reasonably unique, and indexed, it might be faster than a “wide” index on many
columns. In MySQL, it is very easy to use this extra column:

SELECT * FROM tbl_name
 WHERE hash_col=MD5(CONCAT(val1,val2))
 AND col1=val1 AND col2=val2;

Suppose that a table has the following specification:

CREATE TABLE test (
 id INT NOT NULL,
 last_name CHAR(30) NOT NULL,
 first_name CHAR(30) NOT NULL,
 PRIMARY KEY (id),
 INDEX name (last_name,first_name)
);

The name index is an index over the last_name and first_name columns. The index can be used
for lookups in queries that specify values in a known range for combinations of last_name and
first_name values. It can also be used for queries that specify just a last_name value because that
column is a leftmost prefix of the index (as described later in this section). Therefore, the name index is
used for lookups in the following queries:

SELECT * FROM test WHERE last_name='Widenius';

SELECT * FROM test
 WHERE last_name='Widenius' AND first_name='Michael';

SELECT * FROM test
 WHERE last_name='Widenius'
 AND (first_name='Michael' OR first_name='Monty');

SELECT * FROM test
 WHERE last_name='Widenius'
 AND first_name >='M' AND first_name < 'N';

However, the name index is not used for lookups in the following queries:

SELECT * FROM test WHERE first_name='Michael';

Verifying Index Usage

884

SELECT * FROM test
 WHERE last_name='Widenius' OR first_name='Michael';

Suppose that you issue the following SELECT statement:

mysql> SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly.
If separate single-column indexes exist on col1 and col2, the optimizer attempts to use the Index
Merge optimization (see Section 8.2.1.4, “Index Merge Optimization”), or attempts to find the most
restrictive index by deciding which index excludes more rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to find rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

MySQL cannot use the index to perform lookups if the columns do not form a leftmost prefix of the
index. Suppose that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and
fourth queries do involve indexed columns, but (col2) and (col2, col3) are not leftmost prefixes
of (col1, col2, col3).

8.3.6 Verifying Index Usage

Always check whether all your queries really use the indexes that you have created in the tables. Use
the EXPLAIN statement, as described in Section 8.8.1, “Optimizing Queries with EXPLAIN”.

8.3.7 InnoDB and MyISAM Index Statistics Collection

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based
on value groups, where a value group is a set of rows with the same key prefix value. For optimizer
purposes, an important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

• To estimate how may rows must be read for each ref access

• To estimate how many row a partial join will produce; that is, the number of rows that an operation of
this form will produce:

(...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes
because the average number of rows per lookup increases: For the index to be good for optimization
purposes, it is best that each index value target a small number of rows in the table. When a given
index value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The
SHOW INDEX statement displays a cardinality value based on N/S, where N is the number of rows
in the table and S is the average value group size. That ratio yields an approximate number of value
groups in the table.

InnoDB and MyISAM Index Statistics Collection

885

For a join based on the <=> comparison operator, NULL is not treated differently from any other value:
NULL <=> NULL, just as N <=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2
is not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the
form tbl_name.key = expr: MySQL will not access the table if the current value of expr is NULL,
because the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization
purposes, the relevant value is the average size of the non-NULL value groups. However, MySQL does
not currently enable that average size to be collected or used.

For InnoDB and MyISAM tables, you have some control over collection of table statistics by means
of the innodb_stats_method and myisam_stats_method system variables, respectively. These
variables have three possible values, which differ as follows:

• When the variable is set to nulls_equal, all NULL values are treated as identical (that is, they all
form a single value group).

If the NULL value group size is much higher than the average non-NULL value group size, this
method skews the average value group size upward. This makes index appear to the optimizer to be
less useful than it really is for joins that look for non-NULL values. Consequently, the nulls_equal
method may cause the optimizer not to use the index for ref accesses when it should.

• When the variable is set to nulls_unequal, NULL values are not considered the same. Instead,
each NULL value forms a separate value group of size 1.

If you have many NULL values, this method skews the average value group size downward. If
the average non-NULL value group size is large, counting NULL values each as a group of size 1
causes the optimizer to overestimate the value of the index for joins that look for non-NULL values.
Consequently, the nulls_unequal method may cause the optimizer to use this index for ref
lookups when other methods may be better.

• When the variable is set to nulls_ignored, NULL values are ignored.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons
and one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

The innodb_stats_method system variable has a global value; the myisam_stats_method
system variable has both global and session values. Setting the global value affects statistics
collection for tables from the corresponding storage engine. Setting the session value affects statistics
collection only for the current client connection. This means that you can force a table's statistics to
be regenerated with a given method without affecting other clients by setting the session value of
myisam_stats_method.

To regenerate table statistics, you can use any of the following methods:

• Execute myisamchk --stats_method=method_name --analyze

• Change the table to cause its statistics to go out of date (for example, insert a row and then delete it),
and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of innodb_stats_method and myisam_stats_method:

• You can force table statistics to be collected explicitly, as just described. However, MySQL may also
collect statistics automatically. For example, if during the course of executing statements for a table,
some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk
inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics
are collected using whatever value innodb_stats_method or myisam_stats_method has at
the time. Thus, if you collect statistics using one method, but the system variable is set to the other
method when a table's statistics are collected automatically later, the other method will be used.

Comparison of B-Tree and Hash Indexes

886

• There is no way to tell which method was used to generate statistics for a given table.

• These variables apply only to InnoDB and MyISAM tables. Other storage engines have only one
method for collecting table statistics. Usually it is closer to the nulls_equal method.

8.3.8 Comparison of B-Tree and Hash Indexes

Understanding the B-tree and hash data structures can help predict how different queries perform on
different storage engines that use these data structures in their indexes, particularly for the MEMORY
storage engine that lets you choose B-tree or hash indexes.

B-Tree Index Characteristics

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or
BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is
a constant string that does not start with a wildcard character. For example, the following SELECT
statements use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the
second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the
LIKE value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the
Turbo Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform
the search more quickly.

A search using col_name IS NULL employs indexes if col_name is indexed.

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In
other words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3
 /* index = 1 OR index = 2 */
... WHERE index=1 OR A=10 AND index=2
 /* optimized like "index_part1='hello'" */
... WHERE index_part1='hello' AND index_part3=5
 /* Can use index on index1 but not on index2 or index3 */
... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

 /* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

 /* Index is not used in both parts of the WHERE clause */
... WHERE index=1 OR A=10

 /* No index spans all rows */

Optimizing Database Structure

887

... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One circumstance under which
this occurs is when the optimizer estimates that using the index would require MySQL to access a
very large percentage of the rows in the table. (In this case, a table scan is likely to be much faster
because it requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the
rows, MySQL uses an index anyway, because it can much more quickly find the few rows to return in
the result.

Hash Index Characteristics

Hash indexes have somewhat different characteristics from those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast). They
are not used for comparison operators such as < that find a range of values. Systems that rely on
this type of single-value lookup are known as “key-value stores”; to use MySQL for such applications,
use hash indexes wherever possible.

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot
be used to search for the next entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is used
by the range optimizer to decide which index to use). This may affect some queries if you change a
MyISAM table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key
can be used to find rows.)

8.4 Optimizing Database Structure
In your role as a database designer, look for the most efficient way to organize your schemas, tables,
and columns. As when tuning application code, you minimize I/O, keep related items together, and plan
ahead so that performance stays high as the data volume increases. Starting with an efficient database
design makes it easier for team members to write high-performing application code, and makes the
database likely to endure as applications evolve and are rewritten.

8.4.1 Optimizing Data Size

Design your tables to minimize their space on the disk. This can result in huge improvements by
reducing the amount of data written to and read from disk. Smaller tables normally require less main
memory while their contents are being actively processed during query execution. Any space reduction
for table data also results in smaller indexes that can be processed faster.

MySQL supports many different storage engines (table types) and row formats. For each table, you
can decide which storage and indexing method to use. Choosing the proper table format for your
application can give you a big performance gain. See Chapter 14, Storage Engines.

You can get better performance for a table and minimize storage space by using the techniques listed
here:

Table Columns

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that save
disk space and memory. For example, use the smaller integer types if possible to get smaller tables.
MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.

• Declare columns to be NOT NULL if possible. It makes SQL operations faster, by enabling better use
of indexes and eliminating overhead for testing whether each value is NULL. You also save some
storage space, one bit per column. If you really need NULL values in your tables, use them. Just
avoid the default setting that allows NULL values in every column.

Optimizing Data Size

888

Row Format

• InnoDB tables use a compact storage format. In versions of MySQL earlier than 5.0.3, InnoDB
rows contain some redundant information, such as the number of columns and the length of
each column, even for fixed-size columns. By default, tables are created in the compact format
(ROW_FORMAT=COMPACT). If you wish to downgrade to older versions of MySQL, you can request
the old format with ROW_FORMAT=REDUNDANT.

The presence of the compact row format decreases row storage space by about 20% at the cost of
increasing CPU use for some operations. If your workload is a typical one that is limited by cache hit
rates and disk speed it is likely to be faster. If it is a rare case that is limited by CPU speed, it might
be slower.

The compact InnoDB format also changes how CHAR columns containing UTF-8 data are
stored. With ROW_FORMAT=REDUNDANT, a UTF-8 CHAR(N) occupies 3 × N bytes, given that the
maximum length of a UTF-8 encoded character is three bytes. Many languages can be written
primarily using single-byte UTF-8 characters, so a fixed storage length often wastes space. With
ROW_FORMAT=COMPACT format, InnoDB allocates a variable amount of storage in the range from
N to 3 × N bytes for these columns by stripping trailing spaces if necessary. The minimum storage
length is kept as N bytes to facilitate in-place updates in typical cases.

• To minimize space even further by storing table data in compressed form, specify
ROW_FORMAT=COMPRESSED when creating InnoDB tables, or run the myisampack command on an
existing MyISAM table. (InnoDB tables compressed tables are readable and writable, while MyISAM
compressed tables are read-only.)

• For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB
columns), a fixed-size row format is used. This is faster but may waste some space. See
Section 14.3.3, “MyISAM Table Storage Formats”. You can hint that you want to have fixed length
rows even if you have VARCHAR columns with the CREATE TABLE option ROW_FORMAT=FIXED.

Indexes

• The primary index of a table should be as short as possible. This makes identification of each row
easy and efficient. For InnoDB tables, the primary key columns are duplicated in each secondary
index entry, so a short primary key saves considerable space if you have many secondary indexes.

• Create only the indexes that you need to improve query performance. Indexes are good for retrieval,
but slow down insert and update operations. If you access a table mostly by searching on a
combination of columns, create a single composite index on them rather than a separate index for
each column. The first part of the index should be the column most used. If you always use many
columns when selecting from the table, the first column in the index should be the one with the most
duplicates, to obtain better compression of the index.

• If it is very likely that a long string column has a unique prefix on the first number of characters, it
is better to index only this prefix, using MySQL's support for creating an index on the leftmost part
of the column (see Section 13.1.11, “CREATE INDEX Syntax”). Shorter indexes are faster, not only
because they require less disk space, but because they also give you more hits in the index cache,
and thus fewer disk seeks. See Section 8.11.2, “Tuning Server Parameters”.

Joins

• In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is
especially true if it is a dynamic-format table and it is possible to use a smaller static format table that
can be used to find the relevant rows when scanning the table.

• Declare columns with identical information in different tables with identical data types, to speed up
joins based on the corresponding columns.

• Keep column names simple, so that you can use the same name across different tables and simplify
join queries. For example, in a table named customer, use a column name of name instead of

Optimizing MySQL Data Types

889

customer_name. To make your names portable to other SQL servers, consider keeping them
shorter than 18 characters.

Normalization

• Normally, try to keep all data nonredundant (observing what is referred to in database theory as
third normal form). Instead of repeating lengthy values such as names and addresses, assign them
unique IDs, repeat these IDs as needed across multiple smaller tables, and join the tables in queries
by referencing the IDs in the join clause.

• If speed is more important than disk space and the maintenance costs of keeping multiple copies
of data, for example in a business intelligence scenario where you analyze all the data from large
tables, you can relax the normalization rules, duplicating information or creating summary tables to
gain more speed.

8.4.2 Optimizing MySQL Data Types

8.4.2.1 Optimizing for Numeric Data

• For unique IDs or other values that can be represented as either strings or numbers, prefer numeric
columns to string columns. Since large numeric values can be stored in fewer bytes than the
corresponding strings, it is faster and takes less memory to transfer and compare them.

• If you are using numeric data, it is faster in many cases to access information from a database (using
a live connection) than to access a text file. Information in the database is likely to be stored in a
more compact format than in the text file, so accessing it involves fewer disk accesses. You also
save code in your application because you can avoid parsing the text file to find line and column
boundaries.

8.4.2.2 Optimizing for Character and String Types

For character and string columns, follow these guidelines:

• Use binary collation order for fast comparison and sort operations, when you do not need language-
specific collation features. You can use the BINARY operator to use binary collation within a
particular query.

• When comparing values from different columns, declare those columns with the same character set
and collation wherever possible, to avoid string conversions while running the query.

• For column values less than 8KB in size, use binary VARCHAR instead of BLOB. The GROUP BY and
ORDER BY clauses can generate temporary tables, and these temporary tables can use the MEMORY
storage engine if the original table does not contain any BLOB columns.

• If a table contains string columns such as name and address, but many queries do not retrieve
those columns, consider splitting the string columns into a separate table and using join queries
with a foreign key when necessary. When MySQL retrieves any value from a row, it reads a data
block containing all the columns of that row (and possibly other adjacent rows). Keeping each row
small, with only the most frequently used columns, allows more rows to fit in each data block. Such
compact tables reduce disk I/O and memory usage for common queries.

• When you use a randomly generated value as a primary key in an InnoDB table, prefix it with an
ascending value such as the current date and time if possible. When consecutive primary values are
physically stored near each other, InnoDB can insert and retrieve them faster.

• See Section 8.4.2.1, “Optimizing for Numeric Data” for reasons why a numeric column is usually
preferable to an equivalent string column.

8.4.2.3 Optimizing for BLOB Types

Optimizing for Many Tables

890

• When storing a large blob containing textual data, consider compressing it first. Do not use this
technique when the entire table is compressed by InnoDB or MyISAM.

• For a table with several columns, to reduce memory requirements for queries that do not use the
BLOB column, consider splitting the BLOB column into a separate table and referencing it with a join
query when needed.

• Since the performance requirements to retrieve and display a BLOB value might be very different
from other data types, you could put the BLOB-specific table on a different storage device or even a
separate database instance. For example, to retrieve a BLOB might require a large sequential disk
read that is better suited to a traditional hard drive than to an SSD device.

• See Section 8.4.2.2, “Optimizing for Character and String Types” for reasons why a binary VARCHAR
column is sometimes preferable to an equivalent BLOB column.

• Rather than testing for equality against a very long text string, you can store a hash of the column
value in a separate column, index that column, and test the hashed value in queries. (Use the MD5()
or CRC32() function to produce the hash value.) Since hash functions can produce duplicate results
for different inputs, you still include a clause AND blob_column = long_string_value in
the query to guard against false matches; the performance benefit comes from the smaller, easily
scanned index for the hashed values.

8.4.2.4 Using PROCEDURE ANALYSE

ANALYSE([max_elements[,max_memory]])

ANALYSE() examines the result from a query and returns an analysis of the results that suggests
optimal data types for each column that may help reduce table sizes. To obtain this analysis, append
PROCEDURE ANALYSE to the end of a SELECT statement:

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])

For example:

SELECT col1, col2 FROM table1 PROCEDURE ANALYSE(10, 2000);

The results show some statistics for the values returned by the query, and propose an optimal data
type for the columns. This can be helpful for checking your existing tables, or after importing new data.
You may need to try different settings for the arguments so that PROCEDURE ANALYSE() does not
suggest the ENUM data type when it is not appropriate.

The arguments are optional and are used as follows:

• max_elements (default 256) is the maximum number of distinct values that ANALYSE() notices per
column. This is used by ANALYSE() to check whether the optimal data type should be of type ENUM;
if there are more than max_elements distinct values, then ENUM is not a suggested type.

• max_memory (default 8192) is the maximum amount of memory that ANALYSE() should allocate per
column while trying to find all distinct values.

8.4.3 Optimizing for Many Tables

Some techniques for keeping individual queries fast involve splitting data across many tables. When
the number of tables runs into the thousands or even millions, the overhead of dealing with all these
tables becomes a new performance consideration.

8.4.3.1 How MySQL Opens and Closes Tables

When you execute a mysqladmin status command, you should see something like this:

Optimizing for Many Tables

891

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have only six tables.

MySQL is multi-threaded, so there may be many clients issuing queries for a given table
simultaneously. To minimize the problem with multiple client sessions having different states on the
same table, the table is opened independently by each concurrent session. This uses additional
memory but normally increases performance. With MyISAM tables, one extra file descriptor is required
for the data file for each client that has the table open. (By contrast, the index file descriptor is shared
between all sessions.)

The table_open_cache and max_connections system variables affect the maximum number of
files the server keeps open. If you increase one or both of these values, you may run up against a limit
imposed by your operating system on the per-process number of open file descriptors. Many operating
systems permit you to increase the open-files limit, although the method varies widely from system to
system. Consult your operating system documentation to determine whether it is possible to increase
the limit and how to do so.

table_open_cache is related to max_connections. For example, for 200 concurrent running
connections, specify a table cache size of at least 200 * N, where N is the maximum number of tables
per join in any of the queries which you execute. You must also reserve some extra file descriptors for
temporary tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the
table_open_cache setting. If table_open_cache is set too high, MySQL may run out of file
descriptors and refuse connections, fail to perform queries, and be very unreliable. You also have to
take into account that the MyISAM storage engine needs two file descriptors for each unique open
table. You can increase the number of file descriptors available to MySQL using the --open-files-
limit startup option to mysqld. See Section C.5.2.18, “'File' Not Found and Similar Errors”.

The cache of open tables is kept at a level of table_open_cache entries. The server autosizes the
cache size at startup. To set the size explicitly, set the table_open_cache system variable at startup.
Note that MySQL may temporarily open more tables than this to execute queries.

MySQL closes an unused table and removes it from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_open_cache entries and a table in the cache is no
longer being used by any threads.

• When a table flushing operation occurs. This happens when someone issues a FLUSH TABLES
statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

• Tables that are not currently in use are released, beginning with the table least recently used.

• If a new table needs to be opened, but the cache is full and no tables can be released, the cache is
temporarily extended as necessary. When the cache is in a temporarily extended state and a table
goes from a used to unused state, the table is closed and released from the cache.

A MyISAM table is opened for each concurrent access. This means the table needs to be opened twice
if two threads access the same table or if a thread accesses the table twice in the same query (for
example, by joining the table to itself). Each concurrent open requires an entry in the table cache. The
first open of any MyISAM table takes two file descriptors: one for the data file and one for the index file.
Each additional use of the table takes only one file descriptor for the data file. The index file descriptor
is shared among all threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object
is allocated for the thread. This table object is not shared by other threads and is not closed until the

How MySQL Uses Internal Temporary Tables

892

thread calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put
back in the table cache (if the cache is not full). See Section 13.2.4, “HANDLER Syntax”.

You can determine whether your table cache is too small by checking the mysqld status variable
Opened_tables, which indicates the number of table-opening operations since the server started:

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+

If the value is very large or increases rapidly, even when you have not issued many FLUSH TABLES
statements, increase the table cache size. See Section 5.1.4, “Server System Variables”, and
Section 5.1.6, “Server Status Variables”.

8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

If you have many MyISAM tables in the same database directory, open, close, and create operations
are slow. If you execute SELECT statements on many different tables, there is a little overhead when
the table cache is full, because for every table that has to be opened, another must be closed. You can
reduce this overhead by increasing the number of entries permitted in the table cache.

8.4.4 How MySQL Uses Internal Temporary Tables

In some cases, the server creates internal temporary tables while processing queries. Such a table can
be held in memory and processed by the MEMORY storage engine, or stored on disk and processed by
the MyISAM storage engine. The server may create a temporary table initially as an in-memory table,
then convert it to an on-disk table if it becomes too large. Users have no direct control over when the
server creates an internal temporary table or which storage engine the server uses to manage it.

Temporary tables can be created under conditions such as these:

• UNION queries use temporary tables, with some exceptions described later.

• Some views require temporary tables, such those evaluated using the TEMPTABLE algorithm, or that
use UNION or aggregation.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.

• DISTINCT combined with ORDER BY may require a temporary table.

• If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table, unless the
query also contains elements (described later) that require on-disk storage.

• Derived tables (subqueries in the FROM clause).

• Tables created for subquery or semi-join materialization.

To determine whether a query requires a temporary table, use EXPLAIN and check the Extra column
to see whether it says Using temporary (see Section 8.8.1, “Optimizing Queries with EXPLAIN”).
EXPLAIN will not necessarily say Using temporary for derived or materialized temporary tables.

If an internal temporary table is created initially as an in-memory table but becomes too large, MySQL
automatically converts it to an on-disk table. The maximum size for in-memory temporary tables is the
minimum of the tmp_table_size and max_heap_table_size values. This differs from MEMORY
tables explicitly created with CREATE TABLE: For such tables, only the max_heap_table_size
system variable determines how large the table is permitted to grow and there is no conversion to on-
disk format.

Optimizing for InnoDB Tables

893

When the server creates an internal temporary table (either in memory or on disk), it increments the
Created_tmp_tables status variable. If the server creates the table on disk (either initially or by
converting an in-memory table) it increments the Created_tmp_disk_tables status variable.

Some conditions prevent the use of an in-memory temporary table, in which case the server uses an
on-disk table instead:

• Presence of a BLOB or TEXT column in the table

• Presence of any string column in a GROUP BY or DISTINCT clause larger than 512 bytes for
binary strings or 512 characters for nonbinary strings. (Before MySQL 5.7.3, the limit is 512 bytes
regardless of string type.)

• Presence of any string column with a maximum length larger than 512 (bytes for binary strings,
characters for nonbinary strings) in the SELECT list, if UNION or UNION ALL is used

As of MySQL 5.7.3, the server does not use a temporary table for UNION statements that meet certain
qualifications. Instead, it retains from temporary table creation only the data structures necessary to
perform result column typecasting. The table is not fully instantiated and no rows are written to or
read from it; rows are sent directly to the client. As a result, The result is reduced memory and disk
requirements, and smaller delay before the first row is sent to the client because the server need not
wait until the last query block is executed. EXPLAIN and optimizer trace output will change: The UNION
RESULT query block will not be present because that block is the part that reads from the temporary
table.

The conditions that qualify a UNION for evaluation without a temporary table are:

• The union is UNION ALL, not UNION or UNION DISTINCT.

• There is no global ORDER BY clause.

• The union is not the top-level query block of an {INSERT | REPLACE} ... SELECT ...
statement.

8.5 Optimizing for InnoDB Tables
InnoDB is the storage engine that MySQL customers typically use in production databases where
reliability and concurrency are important. Because InnoDB is the default storage engine in MySQL 5.5
and higher, you can expect to see InnoDB tables more often than before. This section explains how to
optimize database operations for InnoDB tables.

8.5.1 Optimizing Storage Layout for InnoDB Tables

• Once your data reaches a stable size, or a growing table has increased by tens or some hundreds
of megabytes, consider using the OPTIMIZE TABLE statement to reorganize the table and compact
any wasted space. The reorganized tables require less disk I/O to perform full table scans. This is a
straightforward technique that can improve performance when other techniques such as improving
index usage or tuning application code are not practical.

OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The benefits come
from improved packing of data within indexes, and reduced fragmentation within the tablespaces
and on disk. The benefits vary depending on the data in each table. You may find that there are
significant gains for some and not for others, or that the gains decrease over time until you next
optimize the table. This operation can be slow if the table is large or if the indexes being rebuilt don't
fit into the buffer pool. The first run after adding a lot of data to a table is often much slower than later
runs.

• In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or several
columns that form a long composite value) wastes a lot of disk space. The primary key value
for a row is duplicated in all the secondary index records that point to the same row. (See
Section 14.2.2.14, “InnoDB Table and Index Structures”.) Create an AUTO_INCREMENT column as

Optimizing InnoDB Transaction Management

894

the primary key if your primary key is long, or index a prefix of a long VARCHAR column instead of the
entire column.

• Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns with many
NULL values. A CHAR(N) column always takes N characters to store data, even if the string is shorter
or its value is NULL. Smaller tables fit better in the buffer pool and reduce disk I/O.

When using COMPACT row format (the default InnoDB format in MySQL 5.7) and variable-length
character sets, such as utf8 or sjis, CHAR(N) columns occupy a variable amount of space, but
still at least N bytes.

• For tables that are big, or contain lots of repetitive text or numeric data, consider using COMPRESSED
row format. Less disk I/O is required to bring data into the buffer pool, or to perform full table scans.
Before making a permanent decision, measure the amount of compression you can achieve by using
COMPRESSED versus COMPACT row format.

8.5.2 Optimizing InnoDB Transaction Management

To optimize InnoDB transaction processing, find the ideal balance between the performance overhead
of transactional features and the workload of your server. For example, an application might encounter
performance issues if it commits thousands of times per second, and different performance issues if it
commits only every 2-3 hours.

• The default MySQL setting AUTOCOMMIT=1 can impose performance limitations on a busy database
server. Where practical, wrap several related DML operations into a single transaction, by issuing
SET AUTOCOMMIT=0 or a START TRANSACTION statement, followed by a COMMIT statement after
making all the changes.

InnoDB must flush the log to disk at each transaction commit if that transaction made modifications
to the database. When each change is followed by a commit (as with the default autocommit setting),
the I/O throughput of the storage device puts a cap on the number of potential operations per
second.

• Alternatively, for transactions that consist only of a single SELECT statement, turning on
AUTOCOMMIT helps InnoDB to recognize read-only transactions and optimize them. See
Optimizations for Read-Only Transactions for requirements.

• Avoid performing rollbacks after inserting, updating, or deleting huge numbers of rows. If a big
transaction is slowing down server performance, rolling it back can make the problem worse,
potentially taking several times as long to perform as the original DML operations. Killing the
database process does not help, because the rollback starts again on server startup.

To minimize the chance of this issue occurring: increase the size of the buffer pool so
that all the DML changes can be cached rather than immediately written to disk; set
innodb_change_buffering=all so that update and delete operations are buffered in addition to
inserts; and consider issuing COMMIT statements periodically during the big DML operation, possibly
breaking a single delete or update into multiple statements that operate on smaller numbers of rows.

To get rid of a runaway rollback once it occurs, increase the buffer pool so that the rollback becomes
CPU-bound and runs fast, or kill the server and restart with innodb_force_recovery=3, as
explained in Section 14.2.14.1, “The InnoDB Recovery Process”.

This issue is expected to be less prominent in MySQL 5.5 and up, or in MySQL 5.1 with the InnoDB
Plugin, because the default setting innodb_change_buffering=all allows update and delete
operations to be cached in memory, making them faster to perform in the first place, and also faster
to roll back if needed. Make sure to use this parameter setting on servers that process long-running
transactions with many inserts, updates, or deletes.

• If you can afford the loss of some of the latest committed transactions if a crash occurs, you can set
the innodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the log once per

Optimizing InnoDB Logging

895

second anyway, although the flush is not guaranteed. Also, set the value of innodb_support_xa
to 0, which will reduce the number of disk flushes due to synchronizing on disk data and the binary
log.

• When rows are modified or deleted, the rows and associated undo logs are not physically removed
immediately, or even immediately after the transaction commits. The old data is preserved until
transactions that started earlier or concurrently are finished, so that those transactions can access
the previous state of modified or deleted rows. Thus, a long-running transaction can prevent InnoDB
from purging data that was changed by a different transaction.

• When rows are modified or deleted within a long-running transaction, other transactions using the
READ COMMITTED and REPEATABLE READ isolation levels have to do more work to reconstruct the
older data if they read those same rows.

• When a long-running transaction modifies a table, queries against that table from other transactions
do not make use of the covering index technique. Queries that normally could retrieve all the result
columns from a secondary index, instead look up the appropriate values from the table data.

If secondary index pages are found to have a PAGE_MAX_TRX_ID that is too new, or if records in the
secondary index are delete-marked, InnoDB may need to look up records using a clustered index.

8.5.3 Optimizing InnoDB Logging

• Make your log files big, even as big as the buffer pool. When InnoDB has written the log files full, it
must write the modified contents of the buffer pool to disk in a checkpoint. Small log files cause many
unnecessary disk writes. Although historically big log files caused lengthy recovery times, recovery is
now much faster and you can confidently use large log files.

• Make the log buffer quite large as well (on the order of 8MB).

8.5.4 Bulk Data Loading for InnoDB Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.2.1, “Speed of
INSERT Statements”.

• When importing data into InnoDB, turn off autocommit mode, because it performs a log flush to
disk for every insert. To disable autocommit during your import operation, surround it with SET
autocommit and COMMIT statements:

SET autocommit=0;
... SQL import statements ...
COMMIT;

The mysqldump option --opt creates dump files that are fast to import into an InnoDB table, even
without wrapping them with the SET autocommit and COMMIT statements.

• If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily
turning off the uniqueness checks during the import session:

SET unique_checks=0;
... SQL import statements ...
SET unique_checks=1;

For big tables, this saves a lot of disk I/O because InnoDB can use its insert buffer to write
secondary index records in a batch. Be certain that the data contains no duplicate keys.

• If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning off
the foreign key checks for the duration of the import session:

SET foreign_key_checks=0;

Optimizing InnoDB Queries

896

... SQL import statements ...
SET foreign_key_checks=1;

For big tables, this can save a lot of disk I/O.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and the
server if you need to insert many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

• When doing bulk inserts into tables with auto-increment columns, set
innodb_autoinc_lock_mode to 2 instead of the default value 1. See Configurable InnoDB Auto-
Increment Locking for details.

• For optimal performance when loading data into an InnoDB FULLTEXT index, follow this set of
steps:

• Define a column FTS_DOC_ID at table creation time, of type BIGINT UNSIGNED NOT NULL, with
a unique index named FTS_DOC_ID_INDEX. For example:

CREATE TABLE t1 (
FTS_DOC_ID BIGINT unsigned NOT NULL AUTO_INCREMENT,
title varchar(255) NOT NULL DEFAULT ”,
text mediumtext NOT NULL,
PRIMARY KEY (`FTS_DOC_ID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
CREATE UNIQUE INDEX FTS_DOC_ID_INDEX on t1(FTS_DOC_ID);

• Load the data into the table.

• Create the FULLTEXT index after the data is loaded.

Note

When adding FTS_DOC_ID column at table creation time, ensure that the
FTS_DOC_ID column is updated when the FULLTEXT indexed column
is updated, as the FTS_DOC_ID must increase monotonically with each
INSERT or UPDATE. If you choose not to add the FTS_DOC_ID at table
creation time and have InnoDB manage DOC IDs for you, InnoDB will add
the FTS_DOC_ID as a hidden column with the next CREATE FULLTEXT
INDEX call. This approach, however, requires a table rebuild which will impact
performance.

8.5.5 Optimizing InnoDB Queries

To tune queries for InnoDB tables, create an appropriate set of indexes on each table. See
Section 8.3.1, “How MySQL Uses Indexes” for details. Follow these guidelines for InnoDB indexes:

• Because each InnoDB table has a primary key (whether you request one or not), specify a set of
primary key columns for each table, columns that are used in the most important and time-critical
queries.

• Do not specify too many or too long columns in the primary key, because these column values are
duplicated in each secondary index. When an index contains unnecessary data, the I/O to read this
data and memory to cache it reduce the performance and scalability of the server.

• Do not create a separate secondary index for each column, because each query can only make
use of one index. Indexes on rarely tested columns or columns with only a few different values
might not be helpful for any queries. If you have many queries for the same table, testing different

Optimizing InnoDB DDL Operations

897

combinations of columns, try to create a small number of concatenated indexes rather than a large
number of single-column indexes. If an index contains all the columns needed for the result set
(known as a covering index), the query might be able to avoid reading the table data at all.

• If an indexed column cannot contain any NULL values, declare it as NOT NULL when you create the
table. The optimizer can better determine which index is most effective to use for a query, when it
knows whether each column contains NULL values or not.

• You can optimize single-query transactions for InnoDB tables, using the technique in Optimizations
for Read-Only Transactions.

• If you often have recurring queries for tables that are not updated frequently, enable the query cache:

[mysqld]
query_cache_type = 1
query_cache_size = 10M

8.5.6 Optimizing InnoDB DDL Operations

• For DDL operations on tables and indexes (CREATE, ALTER, and DROP statements), the most
significant aspect for InnoDB tables is that creating and dropping secondary indexes is much faster
in MySQL 5.5 and higher, than in MySQL 5.1 and before. See InnoDB Fast Index Creation for
details.

• “Fast index creation” makes it faster in some cases to drop an index before loading data into a table,
then re-create the index after loading the data.

• Use TRUNCATE TABLE to empty a table, not DELETE FROM tbl_name. Foreign key constraints
can make a TRUNCATE statement work like a regular DELETE statement, in which case a sequence
of commands like DROP TABLE and CREATE TABLE might be fastest.

• Because the primary key is integral to the storage layout of each InnoDB table, and changing the
definition of the primary key involves reorganizing the whole table, always set up the primary key as
part of the CREATE TABLE statement, and plan ahead so that you do not need to ALTER or DROP
the primary key afterward.

8.5.7 Optimizing InnoDB Disk I/O

If you follow the best practices for database design and the tuning techniques for SQL operations, but
your database is still slowed by heavy disk I/O activity, explore these low-level techniques related to
disk I/O. If the Unix top tool or the Windows Task Manager shows that the CPU usage percentage with
your workload is less than 70%, your workload is probably disk-bound.

• When table data is cached in the InnoDB buffer pool, it can be processed over and over
by queries without requiring any disk I/O. Specify the size of the buffer pool with the
innodb_buffer_pool_size option. This memory area is important enough that busy databases
often specify a size approximately 80% of the amount of physical memory. For more information, see
Section 8.9.1, “The InnoDB Buffer Pool”.

• In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call (which
InnoDB uses by default) and similar methods is surprisingly slow. If database write performance is
an issue, conduct benchmarks with the innodb_flush_method parameter set to O_DSYNC.

• When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron),
use direct I/O for InnoDB-related files, to avoid degradation of InnoDB performance. To use
direct I/O for an entire UFS file system used for storing InnoDB-related files, mount it with the
forcedirectio option; see mount_ufs(1M). (The default on Solaris 10/x86_64 is not to use
this option.) To apply direct I/O only to InnoDB file operations rather than the whole file system, set
innodb_flush_method = O_DIRECT. With this setting, InnoDB calls directio() instead of
fcntl() for I/O to data files (not for I/O to log files).

http://dev.mysql.com/doc/refman/5.5/en/innodb-create-index.html

Optimizing InnoDB Configuration Variables

898

• When using the InnoDB storage engine with a large innodb_buffer_pool_size value on any
release of Solaris 2.6 and up and any platform (sparc/x86/x64/amd64), conduct benchmarks with
InnoDB data files and log files on raw devices or on a separate direct I/O UFS file system, using the
forcedirectio mount option as described earlier. (It is necessary to use the mount option rather
than setting innodb_flush_method if you want direct I/O for the log files.) Users of the Veritas file
system VxFS should use the convosync=direct mount option.

Do not place other MySQL data files, such as those for MyISAM tables, on a direct I/O file system.
Executables or libraries must not be placed on a direct I/O file system.

• If you have additional storage devices available to set up a RAID configuration or symbolic links to
different disks, Section 8.11.3, “Optimizing Disk I/O” for additional low-level I/O tips.

• If throughput drops periodically because of InnoDB checkpoint operations, consider increasing
the value of the innodb_io_capacity configuration option. Higher values cause more frequent
flushing, avoiding the backlog of work that can cause dips in throughput.

• If the system is not falling behind with InnoDB flushing operations, consider lowering the value of
the innodb_io_capacity configuration option. Typically, you keep this option value as low as
practical, but not so low that it causes periodic drops in throughput as mentioned in the preceding
bullet. In a typical scenario where you could lower the option value, you might see a combination like
this in the output from SHOW ENGINE INNODB STATUS:

• History list length low, below a few thousand.

• Insert buffer merges close to rows inserted.

• Modified pages in buffer pool consistently well below innodb_max_dirty_pages_pct of the
buffer pool. (Measure at a time when the server is not doing bulk inserts; it is normal during bulk
inserts for the modified pages percentage to rise significantly.)

• Log sequence number - Last checkpoint is at less than 7/8 or ideally less than 6/8 of the
total size of the InnoDB log files.

• Other InnoDB configuration options to consider when tuning I/O-bound workloads
include innodb_adaptive_flushing, innodb_change_buffer_max_size,
innodb_change_buffering, innodb_flush_neighbors, innodb_log_buffer_size,
innodb_log_file_size, innodb_lru_scan_depth, innodb_max_dirty_pages_pct,
innodb_max_purge_lag, innodb_open_files, innodb_page_size,
innodb_random_read_ahead, innodb_read_ahead_threshold,
innodb_read_io_threads, innodb_rollback_segments, innodb_write_io_threads,
and sync_binlog.

8.5.8 Optimizing InnoDB Configuration Variables

Different settings work best for servers with light, predictable loads, versus servers that are running
near full capacity all the time, or that experience spikes of high activity.

Because the InnoDB storage engine performs many of its optimizations automatically, many
performance-tuning tasks involve monitoring to ensure that the database is performing well, and
changing configuration options when performance drops. See Integration with the MySQL Performance
Schema for information about detailed InnoDB performance monitoring.

For information about the most important and most recent InnoDB performance features, see
Section 14.2.12.2, “InnoDB Performance and Scalability Enhancements”. Even if you have used
InnoDB tables in prior versions, these features might be new to you, because they are from the
“InnoDB Plugin”. The Plugin co-existed alongside the built-in InnoDB in MySQL 5.1, and becomes the
default storage engine in MySQL 5.5 and higher.

The main configuration steps you can perform include:

Optimizing InnoDB Configuration Variables

899

• Enabling InnoDB to use high-performance memory allocators on systems that include them. See
Using Operating System Memory Allocators.

• Controlling the types of DML operations for which InnoDB buffers the changed data, to avoid
frequent small disk writes. See Controlling InnoDB Change Buffering. Because the default is to buffer
all types of DML operations, only change this setting if you need to reduce the amount of buffering.

• Turning the adaptive hash indexing feature on and off. See Controlling Adaptive Hash Indexing. You
might change this setting during periods of unusual activity, then restore it to its original setting.

• Setting a limit on the number of concurrent threads that InnoDB processes, if context switching is a
bottleneck. See Changes Regarding Thread Concurrency.

• Controlling the amount of prefetching that InnoDB does with its read-ahead operations. When
the system has unused I/O capacity, more read-ahead can improve the performance of queries.
Too much read-ahead can cause periodic drops in performance on a heavily loaded system. See
Changes in the Read-Ahead Algorithm.

• Increasing the number of background threads for read or write operations, if you have a high-end
I/O subsystem that is not fully utilized by the default values. See Multiple Background InnoDB I/O
Threads.

• Controlling how much I/O InnoDB performs in the background. See Controlling the InnoDB Master
Thread I/O Rate. The amount of background I/O is higher than in MySQL 5.1, so you might scale
back this setting if you observe periodic drops in performance.

• Controlling the algorithm that determines when InnoDB performs certain types of background writes.
See Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool. The algorithm works
for some types of workloads but not others, so might turn off this setting if you observe periodic drops
in performance.

• Taking advantage of multicore processors and their cache memory configuration, to minimize delays
in context switching. See Control of Spin Lock Polling.

• Preventing one-time operations such as table scans from interfering with the frequently accessed
data stored in the InnoDB buffer cache. See Making the Buffer Pool Scan Resistant.

• Adjusting your log files to a size that makes sense for reliability and crash recovery. Historically,
people have kept their InnoDB log files small to avoid long startup times after a crash. Internal
improvements in InnoDB make startup much faster, so the log file size is not such a performance
factor anymore. If your log files are artificially small, increasing the size can help performance by
reducing the I/O that occurs as redo log records are recycled.

• Configuring the size and number of instances for the InnoDB buffer pool, especially important for
systems with multi-gigabyte buffer pools. See Improvements to Performance from Multiple Buffer
Pools.

• Increasing the maximum number of concurrent transactions, which dramatically improves scalability
for the busiest databases. See Better Scalability with Multiple Rollback Segments. Although this
feature does not require any action during day-to-day operation, you must perform a slow shutdown
during or after upgrading the database to MySQL 5.5 to enable the higher limit.

• Moving purge operations (a type of garbage collection) into a background thread. See Better
Scalability with Improved Purge Scheduling. To effectively measure the results of this setting, tune
the other I/O-related and thread-related configuration settings first.

• Reducing the amount of switching that InnoDB does between concurrent threads, so that
SQL operations on a busy server do not queue up and form a “traffic jam”. Set a value for the
innodb_thread_concurrency option, up to approximately 32 for a high-powered modern system.
Increase the value for the innodb_concurrency_tickets option, typically to 5000 or so, This
combination of options sets a cap on the number of threads that InnoDB processes at any one time,

Optimizing InnoDB for Systems with Many Tables

900

and allows each thread to do substantial work before being swapped out, so that the number of
waiting threads stays low and operations can complete without excessive context switching.

8.5.9 Optimizing InnoDB for Systems with Many Tables

• InnoDB computes index cardinality values for a table the first time that table is accessed after
startup, instead of storing such values in the table. This step can take significant time on systems
that partition the data into many tables. Since this overhead only applies to the initial table open
operation, to “warm up” a table for later use, access it immediately after startup by issuing a
statement such as SELECT 1 FROM tbl_name LIMIT 1.

8.6 Optimizing for MyISAM Tables

The MyISAM storage engine performs best with read-mostly data or with low-concurrency operations,
because table locks limit the ability to perform simultaneous updates. In MySQL 5.7, InnoDB is the
default storage engine rather than MyISAM.

8.6.1 Optimizing MyISAM Queries

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on
a table after it has been loaded with data. This updates a value for each index part that indicates
the average number of rows that have the same value. (For unique indexes, this is always 1.)
MySQL uses this to decide which index to choose when you join two tables based on a nonconstant
expression. You can check the result from the table analysis by using SHOW INDEX FROM
tbl_name and examining the Cardinality value. myisamchk --description --verbose
shows index distribution information.

• To sort an index and data according to an index, use myisamchk --sort-index --sort-
records=1 (assuming that you want to sort on index 1). This is a good way to make queries faster
if you have a unique index from which you want to read all rows in order according to the index. The
first time you sort a large table this way, it may take a long time.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid
problems with table locking that occur due to contention between readers and writers.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you
can INSERT new rows into it at the same time that other threads are reading from the table. If it is
important to be able to do this, consider using the table in ways that avoid deleting rows. Another
possibility is to run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows
from it. This behavior is altered by setting the concurrent_insert variable. You can force new
rows to be appended (and therefore permit concurrent inserts), even in tables that have deleted
rows. See Section 8.10.3, “Concurrent Inserts”.

• For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB,
and TEXT). The table uses dynamic row format if it includes even a single variable-length column.
See Chapter 14, Storage Engines.

• It is normally not useful to split a table into different tables just because the rows become large. In
accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row.
After finding the data, most modern disks can read the entire row fast enough for most applications.
The only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table
using dynamic row format that you can change to a fixed row size, or if you very often need to scan
the table but do not need most of the columns. See Chapter 14, Storage Engines.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1,
expr2, ... order. By using this option after extensive changes to the table, you may be able to get
higher performance.

Bulk Data Loading for MyISAM Tables

901

• If you often need to calculate results such as counts based on information from a lot of rows, it may
be preferable to introduce a new table and update the counter in real time. An update of the following
form is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use MySQL storage engines such as MyISAM that has only table-
level locking (multiple readers with single writers). This also gives better performance with most
database systems, because the row locking manager in this case has less to do.

• Use OPTIMIZE TABLE periodically to avoid fragmentation with dynamic-format MyISAM tables. See
Section 14.3.3, “MyISAM Table Storage Formats”.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster
because they are not flushed to disk until the table is closed. The downside is that if something kills
the server while such a table is open, you must ensure that the table is okay by running the server
with the --myisam-recover-options option, or by running myisamchk before restarting the
server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE,
because the key information can always be generated from the data rows.)

• Strings are automatically prefix- and end-space compressed in MyISAM indexes. See
Section 13.1.11, “CREATE INDEX Syntax”.

• You can increase performance by caching queries or answers in your application and then executing
many inserts or updates together. Locking the table during this operation ensures that the index
cache is only flushed once after all updates. You can also take advantage of MySQL's query cache
to achieve similar results; see Section 8.9.3, “The MySQL Query Cache”.

8.6.2 Bulk Data Loading for MyISAM Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.2.1, “Speed of
INSERT Statements”.

• For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT
statements are running, if there are no deleted rows in middle of the data file. See Section 8.10.3,
“Concurrent Inserts”.

• With some extra work, it is possible to make LOAD DATA INFILE run even faster for a MyISAM
table when the table has many indexes. Use the following procedure:

1. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

2. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name to remove all use of
indexes for the table.

3. Insert data into the table with LOAD DATA INFILE. This does not update any indexes and
therefore is very fast.

4. If you intend only to read from the table in the future, use myisampack to compress it. See
Section 14.3.3.3, “Compressed Table Characteristics”.

5. Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the index
tree in memory before writing it to disk, which is much faster that updating the index during LOAD
DATA INFILE because it avoids lots of disk seeks. The resulting index tree is also perfectly
balanced.

6. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

LOAD DATA INFILE performs the preceding optimization automatically if the MyISAM table into
which you insert data is empty. The main difference between automatic optimization and using the

Speed of REPAIR TABLE Statements

902

procedure explicitly is that you can let myisamchk allocate much more temporary memory for the
index creation than you might want the server to allocate for index re-creation when it executes the
LOAD DATA INFILE statement.

You can also disable or enable the nonunique indexes for a MyISAM table by using the following
statements rather than myisamchk. If you use these statements, you can skip the FLUSH TABLE
operations:

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;

• To speed up INSERT operations that are performed with multiple statements for nontransactional
tables, lock your tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...
UNLOCK TABLES;

This benefits performance because the index buffer is flushed to disk only once, after all INSERT
statements have completed. Normally, there would be as many index buffer flushes as there are
INSERT statements. Explicit locking statements are not needed if you can insert all rows with a
single INSERT.

Locking also lowers the total time for multiple-connection tests, although the maximum wait time for
individual connections might go up because they wait for locks. Suppose that five clients attempt to
perform inserts simultaneously as follows:

• Connection 1 does 1000 inserts

• Connections 2, 3, and 4 do 1 insert

• Connection 5 does 1000 inserts

If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking,
connections 2, 3, and 4 probably do not finish before 1 or 5, but the total time should be about 40%
faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better overall
performance by adding locks around everything that does more than about five successive inserts
or updates. If you do very many successive inserts, you could do a LOCK TABLES followed by an
UNLOCK TABLES once in a while (each 1,000 rows or so) to permit other threads to access table.
This would still result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA INFILE, even when using the
strategies just outlined.

• To increase performance for MyISAM tables, for both LOAD DATA INFILE and INSERT, enlarge
the key cache by increasing the key_buffer_size system variable. See Section 8.11.2, “Tuning
Server Parameters”.

8.6.3 Speed of REPAIR TABLE Statements

REPAIR TABLE for MyISAM tables is similar to using myisamchk for repair operations, and some of
the same performance optimizations apply:

• myisamchk has variables that control memory allocation. You may be able to its improve
performance by setting these variables, as described in Section 4.6.3.6, “myisamchk Memory
Usage”.

Speed of REPAIR TABLE Statements

903

• For REPAIR TABLE, the same principle applies, but because the repair is done by the server, you
set server system variables instead of myisamchk variables. Also, in addition to setting memory-
allocation variables, increasing the myisam_max_sort_file_size system variable increases the
likelihood that the repair will use the faster filesort method and avoid the slower repair by key cache
method. Set the variable to the maximum file size for your system, after checking to be sure that
there is enough free space to hold a copy of the table files. The free space must be available in the
file system containing the original table files.

Suppose that a myisamchk table-repair operation is done using the following options to set its
memory-allocation variables:

--key_buffer_size=128M --myisam_sort_buffer_size=256M
--read_buffer_size=64M --write_buffer_size=64M

Some of those myisamchk variables correspond to server system variables:

myisamchk Variable System Variable

key_buffer_size key_buffer_size

myisam_sort_buffer_size myisam_sort_buffer_size

read_buffer_size read_buffer_size

write_buffer_size none

Each of the server system variables can be set at runtime, and some of them
(myisam_sort_buffer_size, read_buffer_size) have a session value in addition to a global
value. Setting a session value limits the effect of the change to your current session and does not affect
other users. Changing a global-only variable (key_buffer_size, myisam_max_sort_file_size)
affects other users as well. For key_buffer_size, you must take into account that the buffer
is shared with those users. For example, if you set the myisamchk key_buffer_size variable
to 128MB, you could set the corresponding key_buffer_size system variable larger than that
(if it is not already set larger), to permit key buffer use by activity in other sessions. However,
changing the global key buffer size invalidates the buffer, causing increased disk I/O and slowdown
for other sessions. An alternative that avoids this problem is to use a separate key cache, assign
to it the indexes from the table to be repaired, and deallocate it when the repair is complete. See
Section 8.9.2.2, “Multiple Key Caches”.

Based on the preceding remarks, a REPAIR TABLE operation can be done as follows to use settings
similar to the myisamchk command. Here a separate 128MB key buffer is allocated and the file
system is assumed to permit a file size of at least 100GB.

SET SESSION myisam_sort_buffer_size = 256*1024*1024;
SET SESSION read_buffer_size = 64*1024*1024;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
SET GLOBAL repair_cache.key_buffer_size = 128*1024*1024;
CACHE INDEX tbl_name IN repair_cache;
LOAD INDEX INTO CACHE tbl_name;
REPAIR TABLE tbl_name ;
SET GLOBAL repair_cache.key_buffer_size = 0;

If you intend to change a global variable but want to do so only for the duration of a REPAIR TABLE
operation to minimally affect other users, save its value in a user variable and restore it afterward. For
example:

SET @old_myisam_sort_buffer_size = @@global.myisam_max_sort_file_size;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
REPAIR TABLE tbl_name ;
SET GLOBAL myisam_max_sort_file_size = @old_myisam_max_sort_file_size;

The system variables that affect REPAIR TABLE can be set globally at server startup if you want the
values to be in effect by default. For example, add these lines to the server my.cnf file:

Optimizing for MEMORY Tables

904

[mysqld]
myisam_sort_buffer_size=256M
key_buffer_size=1G
myisam_max_sort_file_size=100G

These settings do not include read_buffer_size. Setting read_buffer_size globally to a
large value does so for all sessions and can cause performance to suffer due to excessive memory
allocation for a server with many simultaneous sessions.

8.7 Optimizing for MEMORY Tables
Consider using MEMORY tables for noncritical data that is accessed often, and is read-only or rarely
updated. Benchmark your application against equivalent InnoDB or MyISAM tables under a realistic
workload, to confirm that any additional performance is worth the risk of losing data, or the overhead of
copying data from a disk-based table at application start.

For best performance with MEMORY tables, examine the kinds of queries against each table, and
specify the type to use for each associated index, either a B-tree index or a hash index. On the CREATE
INDEX statement, use the clause USING BTREE or USING HASH. B-tree indexes are fast for queries
that do greater-than or less-than comparisons through operators such as > or BETWEEN. Hash indexes
are only fast for queries that look up single values through the = operator, or a restricted set of values
through the IN operator. For why USING BTREE is often a better choice than the default USING HASH,
see Section 8.2.1.20, “How to Avoid Full Table Scans”. For implementation details of the different types
of MEMORY indexes, see Section 8.3.8, “Comparison of B-Tree and Hash Indexes”.

8.8 Understanding the Query Execution Plan
Depending on the details of your tables, columns, indexes, and the conditions in your WHERE clause,
the MySQL optimizer considers many techniques to efficiently perform the lookups involved in an SQL
query. A query on a huge table can be performed without reading all the rows; a join involving several
tables can be performed without comparing every combination of rows. The set of operations that the
optimizer chooses to perform the most efficient query is called the “query execution plan”, also known
as the EXPLAIN plan. Your goals are to recognize the aspects of the EXPLAIN plan that indicate a
query is optimized well, and to learn the SQL syntax and indexing techniques to improve the plan if you
see some inefficient operations.

8.8.1 Optimizing Queries with EXPLAIN

The EXPLAIN statement can be used to obtain information about how MySQL executes a statement:

• In MySQL 5.7, permitted explainable statements for EXPLAIN are SELECT, DELETE, INSERT,
REPLACE, and UPDATE.

• When EXPLAIN is used with an explainable statement, MySQL displays information from the
optimizer about the statement execution plan. That is, MySQL explains how it would process the
statement, including information about how tables are joined and in which order. For information
about using EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output
Format”.

• When EXPLAIN is used with FOR CONNECTION connection_id rather than an explainable
statement, it displays the execution plan for the statement executing in the named connection. See
Section 8.8.3, “Obtaining Execution Plan Information for a Named Connection”.

• Before MySQL 5.7.3, EXPLAIN EXTENDED can be used to obtain additional execution plan
information. See Section 8.8.4, “EXPLAIN EXTENDED Output Format”. As of MySQL 5.7.3, extended
output is enabled by default and the EXTENDED keyword is unnecessry.

• Before MySQL 5.7.3, EXPLAIN PARTITIONS is useful for examining queries involving partitioned
tables. See Section 17.3.5, “Obtaining Information About Partitions”. As of MySQL 5.7.3, partition
information is enabled by default and the PARTITIONS keyword is unnecessry.

EXPLAIN Output Format

905

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output
in tabular format. This is the default if no FORMAT option is present. JSON format displays the
information in JSON format. With FORMAT = JSON, the output includes extended and partition
information.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the
optimizer joins the tables in an optimal order. To give a hint to the optimizer to use a join order
corresponding to the order in which the tables are named in a SELECT statement, begin the statement
with SELECT STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Syntax”.)

The optimizer trace may sometimes provide information complementary to that of EXPLAIN. However,
the optimizer trace format and content are subject to change between versions. For details, see
MySQL Internals: Tracing the Optimizer.

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.

Note

EXPLAIN can also be used to obtain information about the columns in a
table. EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name and
SHOW COLUMNS FROM tbl_name. For more information, see Section 13.8.1,
“DESCRIBE Syntax”, and Section 13.7.5.5, “SHOW COLUMNS Syntax”.

8.8.2 EXPLAIN Output Format

The EXPLAIN statement provides information about the execution plan for a SELECT statement.

EXPLAIN returns a row of information for each table used in the SELECT statement. It lists the tables in
the output in the order that MySQL would read them while processing the statement. MySQL resolves
all joins using a nested-loop join method. This means that MySQL reads a row from the first table,
and then finds a matching row in the second table, the third table, and so on. When all tables are
processed, MySQL outputs the selected columns and backtracks through the table list until a table is
found for which there are more matching rows. The next row is read from this table and the process
continues with the next table.

Before MySQL 5.7.3, when the EXTENDED keyword is used, EXPLAIN produces extra information that
can be viewed by issuing a SHOW WARNINGS statement following the EXPLAIN statement. EXPLAIN
EXTENDED also displays the filtered column. See Section 8.8.4, “EXPLAIN EXTENDED Output
Format”. As of MySQL 5.7.3, extended output is enabled by default and the EXTENDED keyword is
unnecessry.

Note

You cannot use the EXTENDED and PARTITIONS keywords together in the
same EXPLAIN statement.

• EXPLAIN Output Columns

• EXPLAIN Join Types

• EXPLAIN Extra Information

• EXPLAIN Output Interpretation

EXPLAIN Output Columns

This section describes the output columns produced by EXPLAIN. Later sections provide additional
information about the type and Extra columns.

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

EXPLAIN Output Format

906

Each output row from EXPLAIN provides information about one table. Each row contains the values
summarized in Table 8.1, “EXPLAIN Output Columns”, and described in more detail following the table.

Table 8.1 EXPLAIN Output Columns

Column Meaning

id The SELECT identifier

select_type The SELECT type

table The table for the output row

partitions The matching partitions

type The join type

possible_keys The possible indexes to choose

key The index actually chosen

key_len The length of the chosen key

ref The columns compared to the index

rows Estimate of rows to be examined

filtered Percentage of rows filtered by table condition

Extra Additional information

• id

The SELECT identifier. This is the sequential number of the SELECT within the query. The value can
be NULL if the row refers to the union result of other rows. In this case, the table column shows a
value like <unionM,N> to indicate that the row refers to the union of the rows with id values of M
and N.

• select_type

The type of SELECT, which can be any of those shown in the following table.

select_type Value Meaning

SIMPLE Simple SELECT (not using UNION or subqueries)

PRIMARY Outermost SELECT

UNION Second or later SELECT statement in a UNION

DEPENDENT UNION Second or later SELECT statement in a UNION, dependent on outer query

UNION RESULT Result of a UNION.

SUBQUERY First SELECT in subquery

DEPENDENT
SUBQUERY

First SELECT in subquery, dependent on outer query

DERIVED Derived table SELECT (subquery in FROM clause)

MATERIALIZED Materialized subquery

UNCACHEABLE
SUBQUERY

A subquery for which the result cannot be cached and must be re-
evaluated for each row of the outer query

UNCACHEABLE UNION The second or later select in a UNION that belongs to an uncacheable
subquery (see UNCACHEABLE SUBQUERY)

DEPENDENT typically signifies the use of a correlated subquery. See Section 13.2.10.7, “Correlated
Subqueries”.

DEPENDENT SUBQUERY evaluation differs from UNCACHEABLE SUBQUERY evaluation. For
DEPENDENT SUBQUERY, the subquery is re-evaluated only once for each set of different values of

EXPLAIN Output Format

907

the variables from its outer context. For UNCACHEABLE SUBQUERY, the subquery is re-evaluated for
each row of the outer context.

Cacheability of subqueries differs from caching of query results in the query cache (which is
described in Section 8.9.3.1, “How the Query Cache Operates”). Subquery caching occurs during
query execution, whereas the query cache is used to store results only after query execution
finishes.

As of MySQL 5.7.2, the select_type value for non-SELECT statements displays the statement
type for affected tables. For example, select_type is DELETE for DELETE statements.

• table

The name of the table to which the row of output refers. This can also be one of the following values:

• <unionM,N>: The row refers to the union of the rows with id values of M and N.

• <derivedN>: The row refers to the derived table result for the row with an id value of N. A
derived table may result, for example, from a subquery in the FROM clause.

• <subqueryN>: The row refers to the result of a materialized subquery for the row with an id value
of N. See Optimizing Subqueries with Subquery Materialization.

• partitions

The partitions from which records would be matched by the query. Before MySQL 5.7.3, this
column is displayed only if the PARTITIONS keyword is used. The value is NULL for nonpartitioned
tables. See Section 17.3.5, “Obtaining Information About Partitions”. As of MySQL 5.7.3, partition
information is enabled by default and the PARTITIONS keyword is unnecessry.

• type

The join type. For descriptions of the different types, see EXPLAIN Join Types.

• possible_keys

The possible_keys column indicates which indexes MySQL can choose from use to find the rows
in this table. Note that this column is totally independent of the order of the tables as displayed in the
output from EXPLAIN. That means that some of the keys in possible_keys might not be usable in
practice with the generated table order.

If this column is NULL, there are no relevant indexes. In this case, you may be able to improve
the performance of your query by examining the WHERE clause to check whether it refers to some
column or columns that would be suitable for indexing. If so, create an appropriate index and check
the query with EXPLAIN again. See Section 13.1.6, “ALTER TABLE Syntax”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key

The key column indicates the key (index) that MySQL actually decided to use. If MySQL decides to
use one of the possible_keys indexes to look up rows, that index is listed as the key value.

It is possible that key will name an index that is not present in the possible_keys value. This
can happen if none of the possible_keys indexes are suitable for looking up rows, but all the
columns selected by the query are columns of some other index. That is, the named index covers
the selected columns, so although it is not used to determine which rows to retrieve, an index scan is
more efficient than a data row scan.

For InnoDB, a secondary index might cover the selected columns even if the query also selects
the primary key because InnoDB stores the primary key value with each secondary index. If key is
NULL, MySQL found no index to use for executing the query more efficiently.

EXPLAIN Output Format

908

To force MySQL to use or ignore an index listed in the possible_keys column, use FORCE
INDEX, USE INDEX, or IGNORE INDEX in your query. See Section 13.2.9.3, “Index Hint Syntax”.

For MyISAM tables, running ANALYZE TABLE helps the optimizer choose better indexes. For
MyISAM tables, myisamchk --analyze does the same. See Section 13.7.2.1, “ANALYZE TABLE
Syntax”, and Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.

• key_len

The key_len column indicates the length of the key that MySQL decided to use. The length is NULL
if the key column says NULL. Note that the value of key_len enables you to determine how many
parts of a multiple-part key MySQL actually uses.

• ref

The ref column shows which columns or constants are compared to the index named in the key
column to select rows from the table.

• rows

The rows column indicates the number of rows MySQL believes it must examine to execute the
query.

For InnoDB tables, this number is an estimate, and may not always be exact.

• filtered

The filtered column indicates an estimated percentage of table rows that will be filtered by the
table condition. That is, rows shows the estimated number of rows examined and rows × filtered
/ 100 shows the number of rows that will be joined with previous tables. Before MySQL 5.7.3, this
column is displayed if you use EXPLAIN EXTENDED. As of MySQL 5.7.3, extended output is enabled
by default and the EXTENDED keyword is unnecessry.

• Extra

This column contains additional information about how MySQL resolves the query. For descriptions
of the different values, see EXPLAIN Extra Information.

EXPLAIN Join Types

The type column of EXPLAIN output describes how tables are joined. The following list describes the
join types, ordered from the best type to the worst:

• system

The table has only one row (= system table). This is a special case of the const join type.

• const

The table has at most one matching row, which is read at the start of the query. Because there is
only one row, values from the column in this row can be regarded as constants by the rest of the
optimizer. const tables are very fast because they are read only once.

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant values.
In the following queries, tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;

SELECT * FROM tbl_name
 WHERE primary_key_part1=1 AND primary_key_part2=2;

• eq_ref

EXPLAIN Output Format

909

One row is read from this table for each combination of rows from the previous tables. Other than the
system and const types, this is the best possible join type. It is used when all parts of an index are
used by the join and the index is a PRIMARY KEY or UNIQUE NOT NULL index.

eq_ref can be used for indexed columns that are compared using the = operator. The comparison
value can be a constant or an expression that uses columns from tables that are read before this
table. In the following examples, MySQL can use an eq_ref join to process ref_table:

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• ref

All rows with matching index values are read from this table for each combination of rows from the
previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is not a
PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row based on the
key value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the
following examples, MySQL can use a ref join to process ref_table:

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• fulltext

The join is performed using a FULLTEXT index.

• ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows that contain
NULL values. This join type optimization is used most often in resolving subqueries. In the following
examples, MySQL can use a ref_or_null join to process ref_table:

SELECT * FROM ref_table
 WHERE key_column=expr OR key_column IS NULL;

See Section 8.2.1.8, “IS NULL Optimization”.

• index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key column in the
output row contains a list of indexes used, and key_len contains a list of the longest key parts for
the indexes used. For more information, see Section 8.2.1.4, “Index Merge Optimization”.

• unique_subquery

This type replaces ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

EXPLAIN Output Format

910

unique_subquery is just an index lookup function that replaces the subquery completely for better
efficiency.

• index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for nonunique
indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

• range

Only rows that are in a given range are retrieved, using an index to select the rows. The key column
in the output row indicates which index is used. The key_len contains the longest key part that was
used. The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =, <>, >, >=, <,
<=, IS NULL, <=>, BETWEEN, or IN() operators:

SELECT * FROM tbl_name
 WHERE key_column = 10;

SELECT * FROM tbl_name
 WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
 WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name
 WHERE key_part1 = 10 AND key_part2 IN (10,20,30);

• index

The index join type is the same as ALL, except that the index tree is scanned. This occurs two
ways:

• If the index is a covering index for the queries and can be used to satisfy all data required from
the table, only the index tree is scanned. In this case, the Extra column says Using index. An
index-only scan usually is faster than ALL because the size of the index usually is smaller than the
table data.

• A full table scan is performed using reads from the index to look up data rows in index order. Uses
index does not appear in the Extra column.

MySQL can use this join type when the query uses only columns that are part of a single index.

• ALL

A full table scan is done for each combination of rows from the previous tables. This is normally
not good if the table is the first table not marked const, and usually very bad in all other cases.
Normally, you can avoid ALL by adding indexes that enable row retrieval from the table based on
constant values or column values from earlier tables.

EXPLAIN Extra Information

The Extra column of EXPLAIN output contains additional information about how MySQL resolves the
query. The following list explains the values that can appear in this column. If you want to make your
queries as fast as possible, look out for Extra values of Using filesort and Using temporary.

• const row not found

For a query such as SELECT ... FROM tbl_name, the table was empty.

EXPLAIN Output Format

911

• Deleting all rows

For DELETE, some storage engines (such as MyISAM) support a handler method that removes
all table rows in a simple and fast way. This Extra value is displayed if the engine uses this
optimization.

• Distinct

MySQL is looking for distinct values, so it stops searching for more rows for the current row
combination after it has found the first matching row.

• FirstMatch(tbl_name)

The semi-join FirstMatch join shortcutting strategy is used for tbl_name.

• Full scan on NULL key

This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-
lookup access method.

• Impossible HAVING

The HAVING clause is always false and cannot select any rows.

• Impossible WHERE

The WHERE clause is always false and cannot select any rows.

• Impossible WHERE noticed after reading const tables

MySQL has read all const (and system) tables and notice that the WHERE clause is always false.

• LooseScan(m..n)

The semi-join LooseScan strategy is used. m and n are key part numbers.

• No matching min/max row

No row satisfies the condition for a query such as SELECT MIN(...) FROM ... WHERE
condition.

• no matching row in const table

For a query with a join, there was an empty table or a table with no rows satisfying a unique index
condition.

• No matching rows after partition pruning

For DELETE or UPDATE, the optimizer found nothing to delete or update after partition pruning. It is
similar in meaning to Impossible WHERE for SELECT statements.

• No tables used

The query has no FROM clause, or has a FROM DUAL clause.

For INSERT or REPLACE statements, EXPLAIN displays this value when there is no SELECT part.
For example, it appears for EXPLAIN INSERT INTO t VALUES(10) because that is equivalent to
EXPLAIN INSERT INTO t SELECT 10 FROM DUAL.

• Not exists

MySQL was able to do a LEFT JOIN optimization on the query and does not examine more rows
in this table for the previous row combination after it finds one row that matches the LEFT JOIN
criteria. Here is an example of the type of query that can be optimized this way:

EXPLAIN Output Format

912

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
 WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the rows
in t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows that t2.id can
never be NULL, and does not scan through the rest of the rows in t2 that have the same id value.
In other words, for each row in t1, MySQL needs to do only a single lookup in t2, regardless of how
many rows actually match in t2.

• Plan isn't ready yet

This value occurs with EXPLAIN FOR CONNECTION when the optimizer has not finished creating
the execution plan for the statement executing in the named connection. If execution plan output
comprises multiple lines, any or all of them could have this Extra value, depending on the progress
of the optimizer in determining the full execution plan.

• Range checked for each record (index map: N)

MySQL found no good index to use, but found that some of indexes might be used after column
values from preceding tables are known. For each row combination in the preceding tables, MySQL
checks whether it is possible to use a range or index_merge access method to retrieve rows. This
is not very fast, but is faster than performing a join with no index at all. The applicability criteria are as
described in Section 8.2.1.3, “Range Optimization”, and Section 8.2.1.4, “Index Merge Optimization”,
with the exception that all column values for the preceding table are known and considered to be
constants.

Indexes are numbered beginning with 1, in the same order as shown by SHOW INDEX for the table.
The index map value N is a bitmask value that indicates which indexes are candidates. For example,
a value of 0x19 (binary 11001) means that indexes 1, 4, and 5 will be considered.

• Scanned N databases

This indicates how many directory scans the server performs when processing a query for
INFORMATION_SCHEMA tables, as described in Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”. The value of N can be 0, 1, or all.

• Select tables optimized away

The query contained only aggregate functions (MIN(), MAX()) that were all resolved using an index,
or COUNT(*) for MyISAM, and no GROUP BY clause. The optimizer determined that only one row
should be returned.

• Skip_open_table, Open_frm_only, Open_trigger_only, Open_full_table

These values indicate file-opening optimizations that apply to queries for INFORMATION_SCHEMA
tables, as described in Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”.

• Skip_open_table: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• Open_frm_only: Only the table's .frm file need be opened.

• Open_trigger_only: Only the table's .TRG file need be opened.

• Open_full_table: The unoptimized information lookup. The .frm, .MYD, and .MYI files must
be opened.

• Start temporary, End temporary

This indicates temporary table use for the semi-join Duplicate Weedout strategy.

EXPLAIN Output Format

913

• unique row not found

For a query such as SELECT ... FROM tbl_name, no rows satisfy the condition for a UNIQUE
index or PRIMARY KEY on the table.

• Using filesort

MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is done
by going through all rows according to the join type and storing the sort key and pointer to the row for
all rows that match the WHERE clause. The keys then are sorted and the rows are retrieved in sorted
order. See Section 8.2.1.15, “ORDER BY Optimization”.

• Using index

The column information is retrieved from the table using only information in the index tree without
having to do an additional seek to read the actual row. This strategy can be used when the query
uses only columns that are part of a single index.

If the Extra column also says Using where, it means the index is being used to perform lookups
of key values. Without Using where, the optimizer may be reading the index to avoid reading data
rows but not using it for lookups. For example, if the index is a covering index for the query, the
optimizer may scan it without using it for lookups.

For InnoDB tables that have a user-defined clustered index, that index can be used even when
Using index is absent from the Extra column. This is the case if type is index and key is
PRIMARY.

• Using index condition

Tables are read by accessing index tuples and testing them first to determine whether to read full
table rows. In this way, index information is used to defer (“push down”) reading full table rows
unless it is necessary. See Section 8.2.1.6, “Index Condition Pushdown Optimization”.

• Using index for group-by

Similar to the Using index table access method, Using index for group-by indicates that
MySQL found an index that can be used to retrieve all columns of a GROUP BY or DISTINCT query
without any extra disk access to the actual table. Additionally, the index is used in the most efficient
way so that for each group, only a few index entries are read. For details, see Section 8.2.1.16,
“GROUP BY Optimization”.

• Using join buffer (Block Nested Loop), Using join buffer (Batched Key
Access)

Tables from earlier joins are read in portions into the join buffer, and then their rows are used from
the buffer to perform the join with the current table. (Block Nested Loop) indicates use of the
Block Nested-Loop algorithm and (Batched Key Access) indicates use of the Batched Key
Access algorithm. That is, the keys from the table on the preceding line of the EXPLAIN output will
be buffered, and the matching rows will be fetched in batches from the table represented by the line
in which Using join buffer appears.

• Using MRR

Tables are read using the Multi-Range Read optimization strategy. See Section 8.2.1.13, “Multi-
Range Read Optimization”.

• Using sort_union(...), Using union(...), Using intersect(...)

These indicate how index scans are merged for the index_merge join type. See Section 8.2.1.4,
“Index Merge Optimization”.

• Using temporary

EXPLAIN Output Format

914

To resolve the query, MySQL needs to create a temporary table to hold the result. This typically
happens if the query contains GROUP BY and ORDER BY clauses that list columns differently.

• Using where

A WHERE clause is used to restrict which rows to match against the next table or send to the client.
Unless you specifically intend to fetch or examine all rows from the table, you may have something
wrong in your query if the Extra value is not Using where and the table join type is ALL or index.

• Using where with pushed condition

This item applies to NDB tables only. It means that MySQL Cluster is using the Condition Pushdown
optimization to improve the efficiency of a direct comparison between a nonindexed column and a
constant. In such cases, the condition is “pushed down” to the cluster's data nodes and is evaluated
on all data nodes simultaneously. This eliminates the need to send nonmatching rows over the
network, and can speed up such queries by a factor of 5 to 10 times over cases where Condition
Pushdown could be but is not used. For more information, see Section 8.2.1.5, “Engine Condition
Pushdown Optimization”.

EXPLAIN Output Interpretation

You can get a good indication of how good a join is by taking the product of the values in the rows
column of the EXPLAIN output. This should tell you roughly how many rows MySQL must examine to
execute the query. If you restrict queries with the max_join_size system variable, this row product
also is used to determine which multiple-table SELECT statements to execute and which to abort. See
Section 8.11.2, “Tuning Server Parameters”.

The following example shows how a multiple-table join can be optimized progressively based on the
information provided by EXPLAIN.

Suppose that you have the SELECT statement shown here and that you plan to examine it using
EXPLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
 tt.ProjectReference, tt.EstimatedShipDate,
 tt.ActualShipDate, tt.ClientID,
 tt.ServiceCodes, tt.RepetitiveID,
 tt.CurrentProcess, tt.CurrentDPPerson,
 tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
 et_1.COUNTRY, do.CUSTNAME
 FROM tt, et, et AS et_1, do
 WHERE tt.SubmitTime IS NULL
 AND tt.ActualPC = et.EMPLOYID
 AND tt.AssignedPC = et_1.EMPLOYID
 AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows.

Table Column Data Type

tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

• The tables have the following indexes.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

EXPLAIN Output Format

915

Table Index

tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID (primary key)

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the following
information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872
 ClientID,
 ActualPC
 Range checked for each record (index map: 0x23)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian
product of all the tables; that is, every combination of rows. This takes quite a long time, because the
product of the number of rows in each table must be examined. For the case at hand, this product is 74
× 2135 × 74 × 3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it
would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared
as the same type and size. In this context, VARCHAR and CHAR are considered the same if they are
declared as the same size. tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is CHAR(15),
so there is a length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10
characters to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement
again produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
do ALL PRIMARY NULL NULL NULL 2135
 Range checked for each record (index map: 0x1)
et_1 ALL PRIMARY NULL NULL NULL 74
 Range checked for each record (index map: 0x1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This
version executes in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC
= et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
 -> MODIFY ClientID VARCHAR(15);

Obtaining Execution Plan Information for a Named Connection

916

After that modification, EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using
 ClientID, where
 ActualPC
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

At this point, the query is optimized almost as well as possible. The remaining problem is that, by
default, MySQL assumes that values in the tt.ActualPC column are evenly distributed, and that is
not the case for the tt table. Fortunately, it is easy to tell MySQL to analyze the key distribution:

mysql> ANALYZE TABLE tt;

With the additional index information, the join is perfect and EXPLAIN produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

 Note that the rows column in the output from EXPLAIN is an educated guess from the MySQL join
optimizer. Check whether the numbers are even close to the truth by comparing the rows product with
the actual number of rows that the query returns. If the numbers are quite different, you might get better
performance by using STRAIGHT_JOIN in your SELECT statement and trying to list the tables in a
different order in the FROM clause.

It is possible in some cases to execute statements that modify data when EXPLAIN SELECT is used
with a subquery; for more information, see Section 13.2.10.8, “Subqueries in the FROM Clause”.

8.8.3 Obtaining Execution Plan Information for a Named Connection

To obtain the execution plan for an explainable statement executing in a named connection, use this
statement:

EXPLAIN [options] FOR CONNECTION connection_id;

For example, if you are running a statement in one session that is taking a long time to complete, using
EXPLAIN FOR CONNECTION in another session may yield useful information about the cause of the
delay and help you optimize the statement.

connection_id is the connection identifier, as obtained from the INFORMATION_SCHEMA
PROCESSLIST table or the SHOW PROCESSLIST statement. If you have the PROCESS privilege, you
can specify the identifier for any connection. Otherwise, you can specify the identifier only for your own
connections.

If the named connection is not executing a statement, the result is empty. Otherwise, EXPLAIN FOR
CONNECTION applies only if the statement being executed in the named connection is explainable. This
includes SELECT, DELETE, INSERT, REPLACE, and UPDATE.

If the named connection is executing an explainable statement, the output is what you would obtain by
using EXPLAIN on the statement itself.

If the named connection is executing a statement that is not explainable, an error occurs. For
example, you cannot name the connection identifier for your current session because EXPLAIN is not
explainable:

EXPLAIN EXTENDED Output Format

917

mysql> SELECT CONNECTION_ID();
+-----------------+
| CONNECTION_ID() |
+-----------------+
| 373 |
+-----------------+
1 row in set (0.00 sec)

mysql> EXPLAIN FOR CONNECTION 373;
ERROR 1889 (HY000): EXPLAIN FOR CONNECTION command is supported
only for SELECT/UPDATE/INSERT/DELETE/REPLACE

8.8.4 EXPLAIN EXTENDED Output Format

When EXPLAIN is used with the EXTENDED keyword, the output includes a filtered column not
otherwise displayed. This column indicates the estimated percentage of table rows that will be filtered
by the table condition. In addition, the statement produces extra information that can be viewed by
issuing a SHOW WARNINGS statement following the EXPLAIN statement. The Message value in
SHOW WARNINGS output displays how the optimizer qualifies table and column names in the SELECT
statement, what the SELECT looks like after the application of rewriting and optimization rules, and
possibly other notes about the optimization process.

Note

As of MySQL 5.7.3, the EXPLAIN statement is changed so that the effect of
the EXTENDED keyword is always enabled. EXTENDED is still recognized, but
is superfluous and is deprecated. It will be removed from EXPLAIN syntax in a
future MySQL release.

Here is an example of extended output:

mysql> EXPLAIN EXTENDED
 -> SELECT t1.a, t1.a IN (SELECT t2.a FROM t2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 4
 filtered: 100.00
 Extra: Using index
*************************** 2. row ***************************
 id: 2
 select_type: SUBQUERY
 table: t2
 type: index
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using index
2 rows in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `test`.`t1`.`a` AS `a`,
 <in_optimizer>(`test`.`t1`.`a`,`test`.`t1`.`a` in
 (<materialize> (/* select#2 */ select `test`.`t2`.`a`

EXPLAIN EXTENDED Output Format

918

 from `test`.`t2` where 1 having 1),
 <primary_index_lookup>(`test`.`t1`.`a` in
 <temporary table> on <auto_key>
 where ((`test`.`t1`.`a` = `materialized-subquery`.`a`))))) AS `t1.a
 IN (SELECT t2.a FROM t2)` from `test`.`t1`
1 row in set (0.00 sec)

EXPLAIN EXTENDED can be used with SELECT, DELETE, INSERT, REPLACE, and UPDATE
statements. However, the following SHOW WARNINGS statement displays a nonempty result only for
SELECT statements.

Because the statement displayed by SHOW WARNINGS may contain special markers to provide
information about query rewriting or optimizer actions, the statement is not necessarily valid SQL and
is not intended to be executed. The output may also include rows with Message values that provide
additional non-SQL explanatory notes about actions taken by the optimizer.

The following list describes special markers that can appear in EXTENDED output displayed by SHOW
WARNINGS:

• <auto_key>

An automatically generated key for a temporary table.

• <cache>(expr)

The expression (such as a scalar subquery) is executed once and the resulting value is saved in
memory for later use. For results consisting of multiple values, a temporary table may be created and
you will see <temporary table> instead.

• <exists>(query fragment)

The subquery predicate is converted to an EXISTS predicate and the subquery is transformed so
that it can be used together with the EXISTS predicate.

• <in_optimizer>(query fragment)

This is an internal optimizer object with no user significance.

• <index_lookup>(query fragment)

The query fragment is processed using an index lookup to find qualifying rows.

• <if>(condition, expr1, expr2)

If the condition is true, evaluate to expr1, otherwise expr2.

• <is_not_null_test>(expr)

A test to verify that the expression does not evaluate to NULL.

• <materialize>(query fragment)

Subquery materialization is used.

• `materialized-subquery`.col_name

A reference to the column col_name in an internal temporary table materialized to hold the result
from evaluating a subquery.

• <primary_index_lookup>(query fragment)

The query fragment is processed using a primary key lookup to find qualifying rows.

• <ref_null_helper>(expr)

Estimating Query Performance

919

This is an internal optimizer object with no user significance.

• /* select#N */ select_stmt

The SELECT is associated with the row in non-EXTENDED EXPLAIN output that has an id value of N.

• outer_tables semi join (inner_tables)

A semi-join operation. inner_tables shows the tables that were not pulled out. See Optimizing
Subqueries with Semi-Join Transformations.

• <temporary table>

This represents an internal temporary table created to cache an intermediate result.

When some tables are of const or system type, expressions involving columns from these tables
are evaluated early by the optimizer and are not part of the displayed statement. However, with
FORMAT=JSON, some const table accesses are displayed as a ref access that uses a const value.

8.8.5 Estimating Query Performance

In most cases, you can estimate query performance by counting disk seeks. For small tables, you can
usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can
estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) /
log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1.

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a
500,000-row table with a key value length of three bytes (the size of MEDIUMINT), the formula indicates
log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index buffer fill
ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls to
read data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and
normally two seeks to update the index and write the row.

Note that the preceding discussion does not mean that your application performance slowly
degenerates by log N. As long as everything is cached by the OS or the MySQL server, things become
only marginally slower as the table gets bigger. After the data gets too big to be cached, things start
to go much slower until your applications are bound only by disk seeks (which increase by log N).
To avoid this, increase the key cache size as the data grows. For MyISAM tables, the key cache
size is controlled by the key_buffer_size system variable. See Section 8.11.2, “Tuning Server
Parameters”.

8.8.6 Controlling the Query Optimizer

MySQL provides optimizer control through system variables that affect how query plans are evaluated
and which switchable optimizations are enabled.

8.8.6.1 Controlling Query Plan Evaluation

The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the
difference in performance between “good” and “bad” plans can be orders of magnitude (that is,
seconds versus hours or even days), most query optimizers, including that of MySQL, perform a more
or less exhaustive search for an optimal plan among all possible query evaluation plans. For join
queries, the number of possible plans investigated by the MySQL optimizer grows exponentially with
the number of tables referenced in a query. For small numbers of tables (typically less than 7 to 10)
this is not a problem. However, when larger queries are submitted, the time spent in query optimization
may easily become the major bottleneck in the server's performance.

Controlling the Query Optimizer

920

A more flexible method for query optimization enables the user to control how exhaustive the optimizer
is in its search for an optimal query evaluation plan. The general idea is that the fewer plans that are
investigated by the optimizer, the less time it spends in compiling a query. On the other hand, because
the optimizer skips some plans, it may miss finding an optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled using
two system variables:

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on
estimates of the number of rows accessed for each table. Our experience shows that this kind of
“educated guess” rarely misses optimal plans, and may dramatically reduce query compilation
times. That is why this option is on (optimizer_prune_level=1) by default. However,
if you believe that the optimizer missed a better query plan, this option can be switched off
(optimizer_prune_level=0) with the risk that query compilation may take much longer. Note
that, even with the use of this heuristic, the optimizer still explores a roughly exponential number of
plans.

• The optimizer_search_depth variable tells how far into the “future” of each incomplete plan
the optimizer should look to evaluate whether it should be expanded further. Smaller values of
optimizer_search_depth may result in orders of magnitude smaller query compilation times.
For example, queries with 12, 13, or more tables may easily require hours and even days to
compile if optimizer_search_depth is close to the number of tables in the query. At the same
time, if compiled with optimizer_search_depth equal to 3 or 4, the optimizer may compile
in less than a minute for the same query. If you are unsure of what a reasonable value is for
optimizer_search_depth, this variable can be set to 0 to tell the optimizer to determine the
value automatically.

8.8.6.2 Controlling Switchable Optimizations

The optimizer_switch system variable enables control over optimizer behavior. Its value is a set of
flags, each of which has a value of on or off to indicate whether the corresponding optimizer behavior
is enabled or disabled. This variable has global and session values and can be changed at runtime.
The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on

To change the value of optimizer_switch, assign a value consisting of a comma-separated list of
one or more commands:

SET [GLOBAL|SESSION] optimizer_switch='command[,command]...';

Each command value should have one of the forms shown in the following table.

Command Syntax Meaning

default Reset every optimization to its default value

Controlling the Query Optimizer

921

Command Syntax Meaning

opt_name=default Set the named optimization to its default value

opt_name=off Disable the named optimization

opt_name=on Enable the named optimization

The order of the commands in the value does not matter, although the default command is executed
first if present. Setting an opt_name flag to default sets it to whichever of on or off is its default
value. Specifying any given opt_name more than once in the value is not permitted and causes
an error. Any errors in the value cause the assignment to fail with an error, leaving the value of
optimizer_switch unchanged.

The following table lists the permissible opt_name flag names, grouped by optimization strategy.

Optimization Flag Name Meaning

Batched Key Access batched_key_access Controls use of BKA join algorithm

Block Nested-Loop block_nested_loop Controls use of BNL join algorithm

Engine Condition
Pushdown

engine_condition_pushdown Controls engine condition pushdown

Index Condition
Pushdown

index_condition_pushdown Controls index condition pushdown

Index Extensions use_index_extensions Controls use of index extensions

Index Merge index_merge Controls all Index Merge optimizations

 index_merge_intersection Controls the Index Merge Intersection
Access optimization

 index_merge_sort_union Controls the Index Merge Sort-Union
Access optimization

 index_merge_union Controls the Index Merge Union Access
optimization

Multi-Range Read mrr Controls the Multi-Range Read strategy

 mrr_cost_based Controls use of cost-based MRR if
mrr=on

Semi-join semijoin Controls all semi-join strategies

 firstmatch Controls the semi-join FirstMatch
strategy

 loosescan Controls the semi-join LooseScan
strategy (not to be confused with
LooseScan for GROUP BY)

Subquery
materialization

materialization Controls materialization (including semi-
join materialization)

 subquery_materialization_cost_basedUsed cost-based materialization choice

For batched_key_access to have any effect when set to on, the mrr flag must also be
on. Currently, the cost estimation for MRR is too pessimistic. Hence, it is also necessary for
mrr_cost_based to be off for BKA to be used.

The semijoin, firstmatch, loosescan, and materialization flags enable control over semi-
join and subquery materialization strategies. The semijoin flag controls whether semi-joins are used.
If it is set to on, the firstmatch and loosescan flags enable finer control over the permitted semi-
join strategies. The materialization flag controls whether subquery materialization is used. If
semijoin and materialization are both on, semi-joins also use materialization where applicable.
These flags are on by default.

Buffering and Caching

922

The subquery_materialization_cost_based enables control over the choice between subquery
materialization and IN -> EXISTS subquery transformation. If the flag is on (the default), the
optimizer performs a cost-based choice between subquery materialization and IN -> EXISTS
subquery transformation if either method could be used. If the flag is off, the optimizer chooses
subquery materialization over IN -> EXISTS subquery transformation.

For more information about individual optimization strategies, see the following sections:

• Section 8.2.1.14, “Block Nested-Loop and Batched Key Access Joins”

• Section 8.2.1.5, “Engine Condition Pushdown Optimization”

• Section 8.2.1.7, “Use of Index Extensions”

• Section 8.2.1.6, “Index Condition Pushdown Optimization”

• Section 8.2.1.4, “Index Merge Optimization”

• Section 8.2.1.13, “Multi-Range Read Optimization”

• Section 8.2.1.18, “Subquery Optimization”

When you assign a value to optimizer_switch, flags that are not mentioned keep their current
values. This makes it possible to enable or disable specific optimizer behaviors in a single statement
without affecting other behaviors. The statement does not depend on what other optimizer flags exist
and what their values are. Suppose that all Index Merge optimizations are enabled:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on

If the server is using the Index Merge Union or Index Merge Sort-Union access methods for certain
queries and you want to check whether the optimizer will perform better without them, set the variable
value like this:

mysql> SET optimizer_switch='index_merge_union=off,index_merge_sort_union=off';

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=off,
 index_merge_sort_union=off,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on

8.9 Buffering and Caching

MySQL uses several strategies that cache information in memory buffers to increase performance.

The InnoDB Buffer Pool

923

8.9.1 The InnoDB Buffer Pool

InnoDB maintains a storage area called the buffer pool for caching data and indexes in memory.
Knowing how the InnoDB buffer pool works, and taking advantage of it to keep frequently accessed
data in memory, is an important aspect of MySQL tuning.

Guidelines

Ideally, you set the size of the buffer pool to as large a value as practical, leaving enough memory for
other processes on the server to run without excessive paging. The larger the buffer pool, the more
InnoDB acts like an in-memory database, reading data from disk once and then accessing the data
from memory during subsequent reads. The buffer pool even caches data changed by insert and
update operations, so that disk writes can be grouped together for better performance.

Depending on the typical workload on your system, you might adjust the proportions of the parts within
the buffer pool. You can tune the way the buffer pool chooses which blocks to cache once it fills up,
to keep frequently accessed data in memory despite sudden spikes of activity for operations such as
backups or reporting.

With 64-bit systems with large memory sizes, you can split the buffer pool into multiple parts, to
minimize contention for the memory structures among concurrent operations. For details, see
Improvements to Performance from Multiple Buffer Pools.

Internal Details

InnoDB manages the pool as a list, using a variation of the least recently used (LRU) algorithm. When
room is needed to add a new block to the pool, InnoDB evicts the least recently used block and adds
the new block to the middle of the list. This “midpoint insertion strategy” treats the list as two sublists:

• At the head, a sublist of “new” (or “young”) blocks that were accessed recently.

• At the tail, a sublist of “old” blocks that were accessed less recently.

This algorithm keeps blocks that are heavily used by queries in the new sublist. The old sublist contains
less-used blocks; these blocks are candidates for eviction.

The LRU algorithm operates as follows by default:

• 3/8 of the buffer pool is devoted to the old sublist.

• The midpoint of the list is the boundary where the tail of the new sublist meets the head of the old
sublist.

• When InnoDB reads a block into the buffer pool, it initially inserts it at the midpoint (the head of the
old sublist). A block can be read in because it is required for a user-specified operation such as an
SQL query, or as part of a read-ahead operation performed automatically by InnoDB.

• Accessing a block in the old sublist makes it “young”, moving it to the head of the buffer pool (the
head of the new sublist). If the block was read in because it was required, the first access occurs
immediately and the block is made young. If the block was read in due to read-ahead, the first
access does not occur immediately (and might not occur at all before the block is evicted).

• As the database operates, blocks in the buffer pool that are not accessed “age” by moving toward
the tail of the list. Blocks in both the new and old sublists age as other blocks are made new. Blocks
in the old sublist also age as blocks are inserted at the midpoint. Eventually, a block that remains
unused for long enough reaches the tail of the old sublist and is evicted.

By default, blocks read by queries immediately move into the new sublist, meaning they will stay in
the buffer pool for a long time. A table scan (such as performed for a mysqldump operation, or a
SELECT statement with no WHERE clause) can bring a large amount of data into the buffer pool and
evict an equivalent amount of older data, even if the new data is never used again. Similarly, blocks
that are loaded by the read-ahead background thread and then accessed only once move to the head

The InnoDB Buffer Pool

924

of the new list. These situations can push frequently used blocks to the old sublist, where they become
subject to eviction.

Configuration Options

Several InnoDB system variables control the size of the buffer pool and let you tune the LRU
algorithm:

• innodb_buffer_pool_size

Specifies the size of the buffer pool. If your buffer pool is small and you have sufficient memory,
making the pool larger can improve performance by reducing the amount of disk I/O needed as
queries access InnoDB tables.

• innodb_buffer_pool_instances

Divides the buffer pool into a user-specified number of separate regions, each with its own
LRU list and related data structures, to reduce contention during concurrent memory read and
write operations. This option takes effect only when you set the innodb_buffer_pool_size
to a size of 1 gigabyte or more. The total size you specify is divided among all the buffer
pools. For best efficiency, specify a combination of innodb_buffer_pool_instances and
innodb_buffer_pool_size so that each buffer pool instance is at least 1 gigabyte.

• innodb_old_blocks_pct

Specifies the approximate percentage of the buffer pool that InnoDB uses for the old block sublist.
The range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool).

• innodb_old_blocks_time

Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its
first access before it can be moved to the new sublist. The default value is 0: A block inserted into
the old sublist moves to the new sublist when Innodb has evicted 1/4 of the inserted block's pages
from the buffer pool, no matter how soon after insertion the access occurs. If the value is greater
than 0, blocks remain in the old sublist until an access occurs at least that many ms after the first
access. For example, a value of 1000 causes blocks to stay in the old sublist for 1 second after the
first access before they become eligible to move to the new sublist.

Setting innodb_old_blocks_time greater than 0 prevents one-time table scans from flooding the
new sublist with blocks used only for the scan. Rows in a block read in for a scan are accessed many
times in rapid succession, but the block is unused after that. If innodb_old_blocks_time is set to
a value greater than time to process the block, the block remains in the “old” sublist and ages to the
tail of the list to be evicted quickly. This way, blocks used only for a one-time scan do not act to the
detriment of heavily used blocks in the new sublist.

innodb_old_blocks_time can be set at runtime, so you can change it temporarily while performing
operations such as table scans and dumps:

SET GLOBAL innodb_old_blocks_time = 1000;
... perform queries that scan tables ...
SET GLOBAL innodb_old_blocks_time = 0;

This strategy does not apply if your intent is to “warm up” the buffer pool by filling it with a table's
content. For example, benchmark tests often perform a table or index scan at server startup, because
that data would normally be in the buffer pool after a period of normal use. In this case, leave
innodb_old_blocks_time set to 0, at least until the warmup phase is complete.

Monitoring the Buffer Pool

The output from the InnoDB Standard Monitor contains several fields in the BUFFER POOL AND
MEMORY section that pertain to operation of the buffer pool LRU algorithm:

The MyISAM Key Cache

925

• Old database pages: The number of pages in the old sublist of the buffer pool.

• Pages made young, not young: The number of old pages that were moved to the head of the
buffer pool (the new sublist), and the number of pages that have remained in the old sublist without
being made new.

• youngs/s non-youngs/s: The number of accesses to old pages that have resulted in making
them young or not. This metric differs from that of the previous item in two ways. First, it relates only
to old pages. Second, it is based on number of accesses to pages and not the number of pages.
(There can be multiple accesses to a given page, all of which are counted.)

• young-making rate: Hits that cause blocks to move to the head of the buffer pool.

• not: Hits that do not cause blocks to move to the head of the buffer pool (due to the delay not being
met).

The young-making rate and not rate will not normally add up to the overall buffer pool hit rate. Hits
for blocks in the old sublist cause them to move to the new sublist, but hits to blocks in the new sublist
cause them to move to the head of the list only if they are a certain distance from the head.

The preceding information from the Monitor can help you make LRU tuning decisions:

• If you see very low youngs/s values when you do not have large scans going on, that indicates that
you might need to either reduce the delay time, or increase the percentage of the buffer pool used
for the old sublist. Increasing the percentage makes the old sublist larger, so blocks in that sublist
take longer to move to the tail and be evicted. This increases the likelihood that they will be accessed
again and be made young.

• If you do not see a lot of non-youngs/s when you are doing large table scans (and lots of youngs/
s), to tune your delay value to be larger.

Note

Per second averages provided in InnoDB Monitor output are based on the
elapsed time between the current time and the last time InnoDB Monitor output
was printed.

For more information about InnoDB Monitors, see Section 14.2.12.4, “InnoDB Monitors”.

8.9.2 The MyISAM Key Cache

To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database
management systems. It employs a cache mechanism to keep the most frequently accessed table
blocks in memory:

• For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure
contains a number of block buffers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system file
system cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features
that improve key cache performance and that enable you to better control cache operation:

• Multiple sessions can access the cache concurrently.

• You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set
equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is
too small to allocate the minimal number of block buffers (8).

The MyISAM Key Cache

926

When the key cache is not operational, index files are accessed using only the native file system
buffering provided by the operating system. (In other words, table index blocks are accessed using the
same strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index
block is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree
data structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are nonleaf
nodes.)

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or
less than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available
in some block buffer of the key cache. If it is, the server accesses data in the key cache rather than
on disk. That is, it reads from the cache or writes into it rather than reading from or writing to disk.
Otherwise, the server chooses a cache block buffer containing a different table index block (or blocks)
and replaces the data there by a copy of required table index block. As soon as the new index block is
in the cache, the index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In
this case, prior to being replaced, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for
replacement, it selects the least recently used index block. To make this choice easier, the key cache
module maintains all used blocks in a special list (LRU chain) ordered by time of use. When a block
is accessed, it is the most recently used and is placed at the end of the list. When blocks need to be
replaced, blocks at the beginning of the list are the least recently used and become the first candidates
for eviction.

The InnoDB storage engine also uses an LRU algorithm, to manage its buffer pool. See Section 8.9.1,
“The InnoDB Buffer Pool”.

8.9.2.1 Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

• A buffer that is not being updated can be accessed by multiple sessions.

• A buffer that is being updated causes sessions that need to use it to wait until the update is
complete.

• Multiple sessions can initiate requests that result in cache block replacements, as long as they do not
interfere with each other (that is, as long as they need different index blocks, and thus cause different
cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly.

8.9.2.2 Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among
sessions entirely. They still compete for control structures that manage access to the key cache
buffers. To reduce key cache access contention further, MySQL also provides multiple key caches.
This feature enables you to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing
queries for a given MyISAM table. By default, all MyISAM table indexes are cached in the default
key cache. To assign table indexes to a specific key cache, use the CACHE INDEX statement (see
Section 13.7.6.2, “CACHE INDEX Syntax”). For example, the following statement assigns indexes from
the tables t1, t2, and t3 to the key cache named hot_cache:

The MyISAM Key Cache

927

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET
GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

Note that you cannot destroy the default key cache. Any attempt to do this will be ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name | Value |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+

Key cache variables are structured system variables that have a name and components. For
keycache1.key_buffer_size, keycache1 is the cache variable name and key_buffer_size
is the cache component. See Section 5.1.5.1, “Structured System Variables”, for a description of the
syntax used for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, you can use a strategy that involves three key caches:

• A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that
are heavily used for searches but that are not updated.

• A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for
medium-sized, intensively modified tables, such as temporary tables.

• A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache,
to be used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not
block access to the others. Statements that access tables assigned to one cache do not compete with
statements that access tables assigned to another cache. Performance gains occur for other reasons
as well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Consequently,
whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for
replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a
high probability that the index blocks corresponding to nonleaf nodes of the index B-tree remain in
the cache.

• An update operation most frequently executed for temporary tables is performed much faster when
the updated node is in the cache and need not be read in from disk first. If the size of the indexes of

The MyISAM Key Cache

928

the temporary tables are comparable with the size of cold key cache, the probability is very high that
the updated node is in the cache.

The CACHE INDEX statement sets up an association between a table and a key cache, but the
association is lost each time the server restarts. If you want the association to take effect each time the
server starts, one way to accomplish this is to use an option file: Include variable settings that configure
your key caches, and an init-file option that names a file containing CACHE INDEX statements to
be executed. For example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

The statements in mysqld_init.sql are executed each time the server starts. The file should
contain one SQL statement per line. The following example assigns several tables each to hot_cache
and cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache

8.9.2.3 Midpoint Insertion Strategy

By default, the key cache management system uses a simple LRU strategy for choosing key cache
blocks to be evicted, but it also supports a more sophisticated method called the midpoint insertion
strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot
sublist and a warm sublist. The division point between two parts is not fixed, but the key cache
management system takes care that the warm part is not “too short,” always containing at least
key_cache_division_limit percent of the key cache blocks. key_cache_division_limit is a
component of structured key cache variables, so its value is a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sublist.
After a certain number of hits (accesses of the block), it is promoted to the hot sublist. At present, the
number of hits required to promote a block (3) is the same for all index blocks.

A block promoted into the hot sublist is placed at the end of the list. The block then circulates within
this sublist. If the block stays at the beginning of the sublist for a long enough time, it is demoted to the
warm sublist. This time is determined by the value of the key_cache_age_threshold component of
the key cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of
the hot sublist not accessed within the last N * key_cache_age_threshold / 100 hits is to be
moved to the beginning of the warm sublist. It then becomes the first candidate for eviction, because
blocks for replacement always are taken from the beginning of the warm sublist.

The midpoint insertion strategy enables you to keep more-valued blocks always in the cache. If you
prefer to use the plain LRU strategy, leave the key_cache_division_limit value set to its default
of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that
requires an index scan effectively pushes out of the cache all the index blocks corresponding to
valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the
key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are
preserved in the hot sublist during an index scan operation as well.

8.9.2.4 Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks
corresponding to its nonleaf nodes, it makes sense to preload the key cache with index blocks before

The MySQL Query Cache

929

starting to use it. Preloading enables you to put the table index blocks into a key cache buffer in the
most efficient way: by reading the index blocks from disk sequentially.

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the
blocks will stay in the cache, because there are enough buffers for all of them, they are fetched from
disk in random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the
following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.
Thus, the statement shown preloads all index blocks from t1, but only blocks for the nonleaf nodes
from t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places
index blocks into that cache. Otherwise, the index is loaded into the default key cache.

8.9.2.5 Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the
key_cache_block_size variable. This permits tuning of the performance of I/O operations for index
files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size
of the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/
O buffer does not always ensure the best overall performance. When reading the big leaf nodes, the
server pulls in a lot of unnecessary data, effectively preventing reading other leaf nodes.

To control the size of blocks in the .MYI index file of MyISAM tables, use the --myisam-block-size
option at server startup.

8.9.2.6 Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component a
value that differs from the component's current value, the server destroys the cache's old structure and
creates a new one based on the new values. If the cache contains any dirty blocks, the server saves
them to disk before destroying and re-creating the cache. Restructuring does not occur if you change
other key cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After
that, the cache contents become unavailable. However, restructuring does not block queries that need
to use indexes assigned to the cache. Instead, the server directly accesses the table indexes using
native file system caching. File system caching is not as efficient as using a key cache, so although
queries execute, a slowdown can be anticipated. After the cache has been restructured, it becomes
available again for caching indexes assigned to it, and the use of file system caching for the indexes
ceases.

8.9.3 The MySQL Query Cache

The MySQL Query Cache

930

The query cache stores the text of a SELECT statement together with the corresponding result that was
sent to the client. If an identical statement is received later, the server retrieves the results from the
query cache rather than parsing and executing the statement again. The query cache is shared among
sessions, so a result set generated by one client can be sent in response to the same query issued by
another client.

The query cache can be useful in an environment where you have tables that do not change very
often and for which the server receives many identical queries. This is a typical situation for many Web
servers that generate many dynamic pages based on database content.

The query cache does not return stale data. When tables are modified, any relevant entries in the
query cache are flushed.

Note

The query cache does not work in an environment where you have multiple
mysqld servers updating the same MyISAM tables.

The query cache is used for prepared statements under the conditions described in Section 8.9.3.1,
“How the Query Cache Operates”.

Note

The query cache is not supported for partitioned tables, and is automatically
disabled for queries involving partitioned tables. The query cache cannot be
enabled for such queries.

Some performance data for the query cache follows. These results were generated by running the
MySQL benchmark suite on a Linux Alpha 2×500MHz system with 2GB RAM and a 64MB query
cache.

• If all the queries you are performing are simple (such as selecting a row from a table with one row),
but still differ so that the queries cannot be cached, the overhead for having the query cache active
is 13%. This could be regarded as the worst case scenario. In real life, queries tend to be much more
complicated, so the overhead normally is significantly lower.

• Searches for a single row in a single-row table are 238% faster with the query cache than without it.
This can be regarded as close to the minimum speedup to be expected for a query that is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By
disabling the query cache code, there is no noticeable overhead.

The query cache offers the potential for substantial performance improvement, but do not assume that
it will do so under all circumstances. With some query cache configurations or server workloads, you
might actually see a performance decrease:

• Be cautious about sizing the query cache excessively large, which increases the overhead required
to maintain the cache, possibly beyond the benefit of enabling it. Sizes in tens of megabytes are
usually beneficial. Sizes in the hundreds of megabytes might not be.

• Server workload has a significant effect on query cache efficiency. A query mix consisting almost
entirely of a fixed set of SELECT statements is much more likely to benefit from enabling the cache
than a mix in which frequent INSERT statements cause continual invalidation of results in the cache.
In some cases, a workaround is to use the SQL_NO_CACHE option to prevent results from even
entering the cache for SELECT statements that use frequently modified tables. (See Section 8.9.3.2,
“Query Cache SELECT Options”.)

To verify that enabling the query cache is beneficial, test the operation of your MySQL server with the
cache enabled and disabled. Then retest periodically because query cache efficiency may change as
server workload changes.

The MySQL Query Cache

931

8.9.3.1 How the Query Cache Operates

This section describes how the query cache works when it is operational. Section 8.9.3.3, “Query
Cache Configuration”, describes how to control whether it is operational.

Incoming queries are compared to those in the query cache before parsing, so the following two
queries are regarded as different by the query cache:

SELECT * FROM tbl_name
Select * from tbl_name

Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings
that are identical may be treated as different for other reasons. Queries that use different databases,
different protocol versions, or different default character sets are considered different queries and are
cached separately.

The cache is not used for queries of the following types:

• Queries that are a subquery of an outer query

• Queries executed within the body of a stored function, trigger, or event

Before a query result is fetched from the query cache, MySQL checks whether the user has SELECT
privilege for all databases and tables involved. If this is not the case, the cached result is not used.

If a query result is returned from query cache, the server increments the Qcache_hits status variable,
not Com_select. See Section 8.9.3.4, “Query Cache Status and Maintenance”.

If a table changes, all cached queries that use the table become invalid and are removed from the
cache. This includes queries that use MERGE tables that map to the changed table. A table can be
changed by many types of statements, such as INSERT, UPDATE, DELETE, TRUNCATE TABLE, ALTER
TABLE, DROP TABLE, or DROP DATABASE.

The query cache also works within transactions when using InnoDB tables.

In MySQL 5.7, the result from a SELECT query on a view is cached.

The query cache works for SELECT SQL_CALC_FOUND_ROWS ... queries and stores a value that
is returned by a following SELECT FOUND_ROWS() query. FOUND_ROWS() returns the correct value
even if the preceding query was fetched from the cache because the number of found rows is also
stored in the cache. The SELECT FOUND_ROWS() query itself cannot be cached.

Prepared statements that are issued using the binary protocol using mysql_stmt_prepare()
and mysql_stmt_execute() (see Section 21.8.8, “C API Prepared Statements”), are subject to
limitations on caching. Comparison with statements in the query cache is based on the text of the
statement after expansion of ? parameter markers. The statement is compared only with other cached
statements that were executed using the binary protocol. That is, for query cache purposes, prepared
statements issued using the binary protocol are distinct from prepared statements issued using the text
protocol (see Section 13.5, “SQL Syntax for Prepared Statements”).

A query cannot be cached if it contains any of the functions shown in the following table.

AES_DECRYPT() (as of 5.7.4) AES_ENCRYPT() (as of 5.7.4) BENCHMARK()

CONNECTION_ID() CONVERT_TZ() CURDATE()

CURRENT_DATE() CURRENT_TIME() CURRENT_TIMESTAMP()

CURTIME() DATABASE() ENCRYPT() with one parameter

FOUND_ROWS() GET_LOCK() LAST_INSERT_ID()

LOAD_FILE() MASTER_POS_WAIT() NOW()

PASSWORD() RAND() RANDOM_BYTES()

The MySQL Query Cache

932

RELEASE_LOCK() SLEEP() SYSDATE()

UNIX_TIMESTAMP() with no
parameters

USER() UUID()

UUID_SHORT()

A query also is not cached under these conditions:

• It refers to user-defined functions (UDFs) or stored functions.

• It refers to user variables or local stored program variables.

• It refers to tables in the mysql, INFORMATION_SCHEMA, or performance_schema database.

• It refers to any partitioned tables.

• It is of any of the following forms:

SELECT ... LOCK IN SHARE MODE
SELECT ... FOR UPDATE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL

The last form is not cached because it is used as the ODBC workaround for obtaining the last insert
ID value. See the Connector/ODBC section of Chapter 21, Connectors and APIs.

Statements within transactions that use SERIALIZABLE isolation level also cannot be cached
because they use LOCK IN SHARE MODE locking.

• It uses TEMPORARY tables.

• It does not use any tables.

• It generates warnings.

• The user has a column-level privilege for any of the involved tables.

8.9.3.2 Query Cache SELECT Options

Two query cache-related options may be specified in SELECT statements:

• SQL_CACHE

The query result is cached if it is cacheable and the value of the query_cache_type system
variable is ON or DEMAND.

•
SQL_NO_CACHE

The server does not use the query cache. It neither checks the query cache to see whether the result
is already cached, nor does it cache the query result.

Examples:

SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;

8.9.3.3 Query Cache Configuration

The have_query_cache server system variable indicates whether the query cache is available:

The MySQL Query Cache

933

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

When using a standard MySQL binary, this value is always YES, even if query caching is disabled.

Several other system variables control query cache operation. These can be set in an option file or
on the command line when starting mysqld. The query cache system variables all have names that
begin with query_cache_. They are described briefly in Section 5.1.4, “Server System Variables”,
with additional configuration information given here.

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0
disables the query cache, as does setting query_cache_type=0. By default, the query cache is
disabled. This is achieved using a default size of 1M, with a default for query_cache_type of 0.

To reduce overhead significantly, also start the server with query_cache_type=0 if you will not be
using the query cache.

Note

When using the Windows Configuration Wizard to install or configure MySQL,
the default value for query_cache_size will be configured automatically
for you based on the different configuration types available. When using the
Windows Configuration Wizard, the query cache may be enabled (that is, set
to a nonzero value) due to the selected configuration. The query cache is also
controlled by the setting of the query_cache_type variable. Check the values
of these variables as set in your my.ini file after configuration has taken place.

When you set query_cache_size to a nonzero value, keep in mind that the query cache needs
a minimum size of about 40KB to allocate its structures. (The exact size depends on system
architecture.) If you set the value too small, you'll get a warning, as in this example:

mysql> SET GLOBAL query_cache_size = 40000;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1282
Message: Query cache failed to set size 39936;
 new query cache size is 0

mysql> SET GLOBAL query_cache_size = 41984;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_size | 41984 |
+------------------+-------+

For the query cache to actually be able to hold any query results, its size must be set larger:

mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.04 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| query_cache_size | 999424 |

The MySQL Query Cache

934

+------------------+--------+
1 row in set (0.00 sec)

The query_cache_size value is aligned to the nearest 1024 byte block. The value reported may
therefore be different from the value that you assign.

If the query cache size is greater than 0, the query_cache_type variable influences how it works.
This variable can be set to the following values:

• A value of 0 or OFF prevents caching or retrieval of cached results.

• A value of 1 or ON enables caching except of those statements that begin with SELECT
SQL_NO_CACHE.

• A value of 2 or DEMAND causes caching of only those statements that begin with SELECT
SQL_CACHE.

If query_cache_size is 0, you should also set query_cache_type variable to 0. In this case, the
server does not acquire the query cache mutex at all, which means that the query cache cannot be
enabled at runtime and there is reduced overhead in query execution.

Setting the GLOBAL query_cache_type value determines query cache behavior for all clients
that connect after the change is made. Individual clients can control cache behavior for their own
connection by setting the SESSION query_cache_type value. For example, a client can disable use
of the query cache for its own queries like this:

mysql> SET SESSION query_cache_type = OFF;

If you set query_cache_type at server startup (rather than at runtime with a SET statement), only the
numeric values are permitted.

To control the maximum size of individual query results that can be cached, set the
query_cache_limit system variable. The default value is 1MB.

Be careful not to set the size of the cache too large. Due to the need for threads to lock the cache
during updates, you may see lock contention issues with a very large cache.

Note

You can set the maximum size that can be specified for the query
cache at runtime with the SET statement by using the --maximum-
query_cache_size=32M option on the command line or in the configuration
file.

When a query is to be cached, its result (the data sent to the client) is stored in the query cache
during result retrieval. Therefore the data usually is not handled in one big chunk. The query cache
allocates blocks for storing this data on demand, so when one block is filled, a new block is allocated.
Because memory allocation operation is costly (timewise), the query cache allocates blocks with
a minimum size given by the query_cache_min_res_unit system variable. When a query is
executed, the last result block is trimmed to the actual data size so that unused memory is freed.
Depending on the types of queries your server executes, you might find it helpful to tune the value of
query_cache_min_res_unit:

• The default value of query_cache_min_res_unit is 4KB. This should be adequate for most
cases.

• If you have a lot of queries with small results, the default block size may lead to memory
fragmentation, as indicated by a large number of free blocks. Fragmentation can force the query
cache to prune (delete) queries from the cache due to lack of memory. In this case, decrease the
value of query_cache_min_res_unit. The number of free blocks and queries removed due to
pruning are given by the values of the Qcache_free_blocks and Qcache_lowmem_prunes
status variables.

The MySQL Query Cache

935

• If most of your queries have large results (check the Qcache_total_blocks and
Qcache_queries_in_cache status variables), you can increase performance by increasing
query_cache_min_res_unit. However, be careful to not make it too large (see the previous
item).

8.9.3.4 Query Cache Status and Maintenance

To check whether the query cache is present in your MySQL server, use the following statement:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE
statement. The statement does not remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH
TABLES statement also does this.

To monitor query cache performance, use SHOW STATUS to view the cache status variables:

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name | Value |
+-------------------------+--------+
Qcache_free_blocks	36
Qcache_free_memory	138488
Qcache_hits	79570
Qcache_inserts	27087
Qcache_lowmem_prunes	3114
Qcache_not_cached	22989
Qcache_queries_in_cache	415
Qcache_total_blocks	912
+-------------------------+--------+

Descriptions of each of these variables are given in Section 5.1.6, “Server Status Variables”. Some
uses for them are described here.

The total number of SELECT queries is given by this formula:

 Com_select
+ Qcache_hits
+ queries with errors found by parser

The Com_select value is given by this formula:

 Qcache_inserts
+ Qcache_not_cached
+ queries with errors found during the column-privileges check

The query cache uses variable-length blocks, so Qcache_total_blocks and
Qcache_free_blocks may indicate query cache memory fragmentation. After FLUSH QUERY
CACHE, only a single free block remains.

Every cached query requires a minimum of two blocks (one for the query text and one or more for the
query results). Also, every table that is used by a query requires one block. However, if two or more
queries use the same table, only one table block needs to be allocated.

The information provided by the Qcache_lowmem_prunes status variable can help you tune the
query cache size. It counts the number of queries that have been removed from the cache to free up

Caching of Prepared Statements and Stored Programs

936

memory for caching new queries. The query cache uses a least recently used (LRU) strategy to decide
which queries to remove from the cache. Tuning information is given in Section 8.9.3.3, “Query Cache
Configuration”.

8.9.4 Caching of Prepared Statements and Stored Programs

For certain statements that a client might execute multiple times during a session, the server converts
the statement to an internal structure and caches that structure to be used during execution. Caching
enables the server to perform more efficiently because it avoids the overhead of reconverting the
statement should it be needed again during the session. Conversion and caching occurs for these
statements:

• Prepared statements, both those processed at the SQL level (using the PREPARE statement) and
those processed using the binary client/server protocol (using the mysql_stmt_prepare() C
API function). The max_prepared_stmt_count system variable controls the total number of
statements the server caches. (The sum of the number of prepared statements across all sessions.)

• Stored programs (stored procedures and functions, triggers, and events). In this case, the server
converts and caches the entire program body. The stored_program_cache system variable
indicates the approximate number of stored programs the the server caches per session.

The server maintains caches for prepared statements and stored programs on a per-session basis.
Statements cached for one session are not accessible to other sessions. When a session ends, the
server discards any statements cached for it.

When the server uses a cached internal statement structure, it must take care that the structure
does not go out of date. Metadata changes can occur for an object used by the statement, causing
a mismatch between the current object definition and the definition as represented in the internal
statement structure. Metadata changes occur for DDL statements such as those that create, drop,
alter, rename, or truncate tables, or that analyze, optimize, or repair tables. Table content changes (for
example, with INSERT or UPDATE) do not change metadata, nor do SELECT statements.

Here is an illustration of the problem. Suppose that a client prepares this statement:

PREPARE s1 FROM 'SELECT * FROM t1';

The SELECT * expands in the internal structure to the list of columns in the table. If the set of columns
in the table is modified with ALTER TABLE, the prepared statement goes out of date. If the server does
not detect this change the next time the client executes s1, the prepared statement will return incorrect
results.

To avoid problems caused by metadata changes to tables or views referred to by the prepared
statement, the server detects these changes and automatically reprepares the statement when it is
next executed. That is, the server reparses the statement and rebuilds the internal structure. Reparsing
also occurs after referenced tables or views are flushed from the table definition cache, either implicitly
to make room for new entries in the cache, or explicitly due to FLUSH TABLES.

Similarly, if changes occur to objects used by a stored program, the server reparses affected
statements within the program.

The server also detects metadata changes for objects in expressions. These might be used in
statements specific to stored programs, such as DECLARE CURSOR or flow-control statements such as
IF, CASE, and RETURN.

To avoid reparsing entire stored programs, the server reparses affected statements or expressions
within a program only as needed. Examples:

• Suppose that metadata for a table or view is changed. Reparsing occurs for a SELECT * within the
program that accesses the table or view, but not for a SELECT * that does not access the table or
view.

Optimizing Locking Operations

937

• When a statement is affected, the server reparses it only partially if possible. Consider this CASE
statement:

CASE case_expr
 WHEN when_expr1 ...
 WHEN when_expr2 ...
 WHEN when_expr3 ...
 ...
END CASE

If a metadata change affects only WHEN when_expr3, that expression is reparsed. case_expr and
the other WHEN expressions are not reparsed.

Reparsing uses the default database and SQL mode that were in effect for the original conversion to
internal form.

The server attempts reparsing up to three times. An error occurs if all attempts fail.

Reparsing is automatic, but to the extent that it occurs, diminishes prepared statement and stored
program performance.

For prepared statements, the Com_stmt_reprepare status variable tracks the number of
repreparations.

8.10 Optimizing Locking Operations
MySQL manages contention for table contents using locking:

• Internal locking is performed within the MySQL server itself to manage contention for table contents
by multiple threads. This type of locking is internal because it is performed entirely by the server and
involves no other programs. See Section 8.10.1, “Internal Locking Methods”.

• External locking occurs when the server and other programs lock MyISAM table files to coordinate
among themselves which program can access the tables at which time. See Section 8.10.5,
“External Locking”.

8.10.1 Internal Locking Methods

This section discusses internal locking; that is, locking performed within the MySQL server itself to
manage contention for table contents by multiple sessions. This type of locking is internal because it
is performed entirely by the server and involves no other programs. For locking performed on MySQL
files by other programs, see Section 8.10.5, “External Locking”.

Row-Level Locking

MySQL uses row-level locking for InnoDB tables to support simultaneous write access by multiple
sessions, making them suitable for multi-user, highly concurrent, and OLTP applications.

To avoid deadlocks when performing multiple concurrent write operations on a single InnoDB table,
acquire necessary locks at the start of the transaction by issuing a SELECT ... FOR UPDATE
statement for each group of rows expected to be modified, even if the DML statements come later in
the transaction. If transactions modify or lock more than one table, issue the applicable statements
in the same order within each transaction. Deadlocks affect performance rather than representing a
serious error, because InnoDB automatically detects deadlock conditions and rolls back one of the
affected transactions.

Advantages of row-level locking:

• Fewer lock conflicts when different sessions access different rows.

• Fewer changes for rollbacks.

Internal Locking Methods

938

• Possible to lock a single row for a long time.

Table-Level Locking

MySQL uses table-level locking for MyISAM, MEMORY, and MERGE tables, allowing only one session
to update those tables at a time, making them more suitable for read-only, read-mostly, or single-user
applications.

These storage engines avoid deadlocks by always requesting all needed locks at once at the beginning
of a query and always locking the tables in the same order. The tradeoff is that this strategy reduces
concurrency; other sessions that want to modify the table must wait until the current DML statement
finishes.

MySQL grants table write locks as follows:

1. If there are no locks on the table, put a write lock on it.

2. Otherwise, put the lock request in the write lock queue.

MySQL grants table read locks as follows:

1. If there are no write locks on the table, put a read lock on it.

2. Otherwise, put the lock request in the read lock queue.

Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the
lock is made available to the requests in the write lock queue and then to the requests in the read lock
queue. This ensures that updates to a table are not “starved” even if there is heavy SELECT activity for
the table. However, if you have many updates for a table, SELECT statements wait until there are no
more updates.

For information on altering the priority of reads and writes, see Section 8.10.2, “Table Locking Issues”.

You can analyze the table lock contention on your system by checking the Table_locks_immediate
and Table_locks_waited status variables, which indicate the number of times that requests for
table locks could be granted immediately and the number that had to wait, respectively:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and
writers for a given table: If a MyISAM table has no free blocks in the middle of the data file, rows are
always inserted at the end of the data file. In this case, you can freely mix concurrent INSERT and
SELECT statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table
at the same time other clients are reading from it. Holes can result from rows having been deleted
from or updated in the middle of the table. If there are holes, concurrent inserts are disabled but are
enabled again automatically when all holes have been filled with new data.. This behavior is altered by
the concurrent_insert system variable. See Section 8.10.3, “Concurrent Inserts”.

If you acquire a table lock explicitly with LOCK TABLES, you can request a READ LOCAL lock rather
than a READ lock to enable other sessions to perform concurrent inserts while you have the table
locked.

To perform many INSERT and SELECT operations on a table real_table when concurrent inserts
are not possible, you can insert rows into a temporary table temp_table and update the real table
with the rows from the temporary table periodically. This can be done with the following code:

Table Locking Issues

939

mysql> LOCK TABLES real_table WRITE, temp_table WRITE;
mysql> INSERT INTO real_table SELECT * FROM temp_table;
mysql> DELETE FROM temp_table;
mysql> UNLOCK TABLES;

Advantages of table-level locking:

• Requires relatively little memory.

• Fast when used on a large part of the table because only a single lock is involved.

• Fast if you often do GROUP BY operations on a large part of the data or if you must scan the entire
table frequently.

Generally, table locks are suited to the following cases:

• Most statements for the table are reads.

• Statements for the table are a mix of reads and writes, where writes are updates or deletes for a
single row that can be fetched with one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE
statements.

• Many scans or GROUP BY operations on the entire table without any writers.

8.10.2 Table Locking Issues

InnoDB tables use row-level locking so that multiple sessions and applications can read from and write
to the same table simultaneously, without making each other wait or producing inconsistent results.
For this storage engine, avoid using the LOCK TABLES statement, because it does not offer any extra
protection, but instead reduces concurrency. The automatic row-level locking makes these tables
suitable for your busiest databases with your most important data, while also simplifying application
logic since you do not need to lock and unlock tables. Consequently, the InnoDB storage engine is the
default in MySQL 5.7.

MySQL uses table locking (instead of page, row, or column locking) for all storage engines except
InnoDB. The locking operations themselves do not have much overhead. But because only one
session can write to a table at any one time, for best performance with these other storage engines,
use them primarily for tables that are queried often and rarely inserted into or updated.

Performance Considerations Favoring InnoDB

When choosing whether to create a table using InnoDB or a different storage engine, keep in mind the
following disadvantages of table locking:

• Table locking enables many sessions to read from a table at the same time, but if a session wants to
write to a table, it must first get exclusive access, meaning it might have to wait for other sessions to
finish with the table first. During the update, all other sessions that want to access this particular table
must wait until the update is done.

• Table locking causes problems when a session is waiting because the disk is full and free space
needs to become available before the session can proceed. In this case, all sessions that want to
access the problem table are also put in a waiting state until more disk space is made available.

• A SELECT statement that takes a long time to run prevents other sessions from updating the table in
the meantime, making the other sessions appear slow or unresponsive. While a session is waiting
to get exclusive access to the table for updates, other sessions that issue SELECT statements will
queue up behind it, reducing concurrency even for read-only sessions.

Concurrent Inserts

940

Workarounds for Locking Performance Issues

The following items describe some ways to avoid or reduce contention caused by table locking:

• Consider switching the table to the InnoDB storage engine, either using CREATE TABLE ...
ENGINE=INNODB during setup, or using ALTER TABLE ... ENGINE=INNODB for an existing table.
See Section 14.2, “The InnoDB Storage Engine” for more details about this storage engine.

• Optimize SELECT statements to run faster so that they lock tables for a shorter time. You might have
to create some summary tables to do this.

• Start mysqld with --low-priority-updates. For storage engines that use only table-level
locking (such as MyISAM, MEMORY, and MERGE), this gives all statements that update (modify) a table
lower priority than SELECT statements. In this case, the second SELECT statement in the preceding
scenario would execute before the UPDATE statement, and would not wait for the first SELECT to
finish.

• To specify that all updates issued in a specific connection should be done with low priority, set the
low_priority_updates server system variable equal to 1.

• To give a specific INSERT, UPDATE, or DELETE statement lower priority, use the LOW_PRIORITY
attribute.

• To give a specific SELECT statement higher priority, use the HIGH_PRIORITY attribute. See
Section 13.2.9, “SELECT Syntax”.

• Start mysqld with a low value for the max_write_lock_count system variable to force MySQL to
temporarily elevate the priority of all SELECT statements that are waiting for a table after a specific
number of inserts to the table occur. This permits READ locks after a certain number of WRITE locks.

• If you have problems with INSERT combined with SELECT, consider switching to MyISAM tables,
which support concurrent SELECT and INSERT statements. (See Section 8.10.3, “Concurrent
Inserts”.)

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE may
help. See Section 13.2.2, “DELETE Syntax”.

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks
shorter. See Section 13.2.9, “SELECT Syntax”.

• Splitting table contents into separate tables may help, by allowing queries to run against columns in
one table, while updates are confined to columns in a different table.

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this case, write
locks and read locks would have the same priority, which might help some applications.

8.10.3 Concurrent Inserts

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and
writers for a given table: If a MyISAM table has no holes in the data file (deleted rows in the middle), an
INSERT statement can be executed to add rows to the end of the table at the same time that SELECT
statements are reading rows from the table. If there are multiple INSERT statements, they are queued
and performed in sequence, concurrently with the SELECT statements. The results of a concurrent
INSERT may not be visible immediately.

The concurrent_insert system variable can be set to modify the concurrent-insert processing.
By default, the variable is set to AUTO (or 1) and concurrent inserts are handled as just described. If
concurrent_insert is set to NEVER (or 0), concurrent inserts are disabled. If the variable is set to
ALWAYS (or 2), concurrent inserts at the end of the table are permitted even for tables that have deleted
rows. See also the description of the concurrent_insert system variable.

Metadata Locking

941

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ...
SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact
copy of your tables by applying the log during a backup operation. See Section 5.2.4, “The Binary Log”.
In addition, for those statements a read lock is placed on the selected-from table such that inserts into
that table are blocked. The effect is that concurrent inserts for that table must wait as well.

With LOAD DATA INFILE, if you specify CONCURRENT with a MyISAM table that satisfies the condition
for concurrent inserts (that is, it contains no free blocks in the middle), other sessions can retrieve data
from the table while LOAD DATA is executing. Use of the CONCURRENT option affects the performance
of LOAD DATA a bit, even if no other session is using the table at the same time.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used.

For LOCK TABLE, the difference between READ LOCAL and READ is that READ LOCAL permits
nonconflicting INSERT statements (concurrent inserts) to execute while the lock is held. However, this
cannot be used if you are going to manipulate the database using processes external to the server
while you hold the lock.

8.10.4 Metadata Locking

MySQL uses metadata locking to manage access to objects (tables, triggers, and so forth). Metadata
locking is used to ensure data consistency but does involve some overhead, which increases as query
volume increases. Metadata contention increases the more that multiple queries attempt to access the
same objects.

Metadata locking is not a replacement for the table definition case, and its mutexes and locks differ
from the LOCK_open mutex. The following discussion provides some information about how metadata
locking works.

To ensure transaction serializability, the server must not permit one session to perform a data definition
language (DDL) statement on a table that is used in an uncompleted transaction in another session.
The server achieves this by acquiring metadata locks on tables used within a transaction and deferring
release of those locks until the transaction ends. A metadata lock on a table prevents changes to
the table's structure. This locking approach has the implication that a table that is being used by
a transaction within one session cannot be used in DDL statements by other sessions until the
transaction ends.

This principle applies not only to transactional tables, but also to nontransactional tables. Suppose that
a session begins a transaction that uses transactional table t and nontransactional table nt as follows:

START TRANSACTION;
SELECT * FROM t;
SELECT * FROM nt;

Metadata locks are held on both t and nt until the transaction ends. If another session attempts a
DDL operation on either table, it blocks until metadata lock release at transaction end. For example, a
second session blocks if it attempts any of these operations:

DROP TABLE t;
ALTER TABLE t ...;
DROP TABLE nt;
ALTER TABLE nt ...;

If the server acquires metadata locks for a statement that is syntactically valid but fails during
execution, it does not release the locks early. Lock release is still deferred to the end of the transaction
because the failed statement is written to the binary log and the locks protect log consistency.

In autocommit mode, each statement is in effect a complete transaction, so metadata locks acquired
for the statement are held only to the end of the statement.

External Locking

942

Metadata locks acquired during a PREPARE statement are released once the statement has been
prepared, even if preparation occurs within a multiple-statement transaction.

Before MySQL 5.5, when a transaction acquired the equivalent of a metadata lock for a table
used within a statement, it released the lock at the end of the statement. This approach had the
disadvantage that if a DDL statement occurred for a table that was being used by another session in an
active transaction, statements could be written to the binary log in the wrong order.

8.10.5 External Locking

External locking is the use of file system locking to manage contention for MyISAM database tables by
multiple processes. External locking is used in situations where a single process such as the MySQL
server cannot be assumed to be the only process that requires access to tables. Here are some
examples:

• If you run multiple servers that use the same database directory (not recommended), each server
must have external locking enabled.

• If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either
ensure that the server is not running, or that the server has external locking enabled so that it locks
table files as necessary to coordinate with myisamchk for access to the tables. The same is true for
use of myisampack to pack MyISAM tables.

If the server is run with external locking enabled, you can use myisamchk at any time for read
operations such a checking tables. In this case, if the server tries to update a table that myisamchk
is using, the server will wait for myisamchk to finish before it continues.

If you use myisamchk for write operations such as repairing or optimizing tables, or if you use
myisampack to pack tables, you must always ensure that the mysqld server is not using the table.
If you don't stop mysqld, at least do a mysqladmin flush-tables before you run myisamchk.
Your tables may become corrupted if the server and myisamchk access the tables simultaneously.

With external locking in effect, each process that requires access to a table acquires a file system lock
for the table files before proceeding to access the table. If all necessary locks cannot be acquired,
the process is blocked from accessing the table until the locks can be obtained (after the process that
currently holds the locks releases them).

External locking affects server performance because the server must sometimes wait for other
processes before it can access tables.

External locking is unnecessary if you run a single server to access a given data directory (which is
the usual case) and if no other programs such as myisamchk need to modify tables while the server
is running. If you only read tables with other programs, external locking is not required, although
myisamchk might report warnings if the server changes tables while myisamchk is reading them.

With external locking disabled, to use myisamchk, you must either stop the server while myisamchk
executes or else lock and flush the tables before running myisamchk. (See Section 8.11.1, “System
Factors and Startup Parameter Tuning”.) To avoid this requirement, use the CHECK TABLE and
REPAIR TABLE statements to check and repair MyISAM tables.

For mysqld, external locking is controlled by the value of the skip_external_locking system
variable. When this variable is enabled, external locking is disabled, and vice versa. From MySQL 4.0
on, external locking is disabled by default.

Use of external locking can be controlled at server startup by using the --external-locking or --
skip-external-locking option.

If you do use external locking option to enable updates to MyISAM tables from many MySQL
processes, you must ensure that the following conditions are satisfied:

Optimizing the MySQL Server

943

• Do not use the query cache for queries that use tables that are updated by another process.

• Do not start the server with the --delay-key-write=ALL option or use the DELAY_KEY_WRITE=1
table option for any shared tables. Otherwise, index corruption can occur.

The easiest way to satisfy these conditions is to always use --external-locking together with
--delay-key-write=OFF and --query-cache-size=0. (This is not done by default because in
many setups it is useful to have a mixture of the preceding options.)

8.11 Optimizing the MySQL Server

This section discusses optimization techniques for the database server, primarily dealing with system
configuration rather than tuning SQL statements. The information in this section is appropriate for
DBAs who want to ensure performance and scalability across the servers they manage; for developers
constructing installation scripts that include setting up the database; and people running MySQL
themselves for development, testing, and so on who want to maximize their own productivity.

8.11.1 System Factors and Startup Parameter Tuning

We start with system-level factors, because some of these decisions must be made very early to
achieve large performance gains. In other cases, a quick look at this section may suffice. However, it is
always nice to have a sense of how much can be gained by changing factors that apply at this level.

Before using MySQL in production, we advise you to test it on your intended platform.

Other tips:

• If you have enough RAM, you could remove all swap devices. Some operating systems use a swap
device in some contexts even if you have free memory.

• Avoid external locking for MyISAM tables. Since MySQL 4.0, the default has been for external locking
to be disabled on all systems. The --external-locking and --skip-external-locking
options explicitly enable and disable external locking.

Note that disabling external locking does not affect MySQL's functionality as long as you run only one
server. Just remember to take down the server (or lock and flush the relevant tables) before you run
myisamchk. On some systems it is mandatory to disable external locking because it does not work,
anyway.

The only case in which you cannot disable external locking is when you run multiple MySQL servers
(not clients) on the same data, or if you run myisamchk to check (not repair) a table without telling
the server to flush and lock the tables first. Note that using multiple MySQL servers to access the
same data concurrently is generally not recommended, except when using MySQL Cluster.

Note

MySQL Cluster is currently not supported in MySQL 5.7. Users wishing to
upgrade a MySQL Cluster from MySQL 5.0 or 5.1 should instead migrate to
MySQL Cluster NDB 7.0 or 7.1; these are based on MySQL 5.1 but contain
the latest improvements and fixes for NDB.

The LOCK TABLES and UNLOCK TABLES statements use internal locking, so you can use them
even if external locking is disabled.

8.11.2 Tuning Server Parameters

You can determine the default buffer sizes used by the mysqld server using this command:

shell> mysqld --verbose --help

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Tuning Server Parameters

944

This command produces a list of all mysqld options and configurable system variables. The output
includes the default variable values and looks something like this:

abort-slave-event-count 0
allow-suspicious-udfs FALSE
auto-increment-increment 1
auto-increment-offset 1
automatic-sp-privileges TRUE
back_log 50
basedir /home/jon/bin/mysql-5.7/
bind-address (No default value)
binlog-row-event-max-size 1024
binlog_cache_size 32768
binlog_format (No default value)
bulk_insert_buffer_size 8388608
character-set-client-handshake TRUE
character-set-filesystem binary
character-set-server latin1
character-sets-dir /home/jon/bin/mysql-5.7/share/mysql/charsets/
chroot (No default value)
collation-server latin1_swedish_ci
completion-type 0
concurrent-insert 1
connect_timeout 10
console FALSE
datadir .
datetime_format %Y-%m-%d %H:%i:%s
date_format %Y-%m-%d
default-storage-engine MyISAM
default-time-zone (No default value)
default_week_format 0
delayed_insert_limit 100
delayed_insert_timeout 300
delayed_queue_size 1000
disconnect-slave-event-count 0
div_precision_increment 4
engine-condition-pushdown TRUE
expire_logs_days 0
external-locking FALSE
flush_time 0
ft_max_word_len 84
ft_min_word_len 4
ft_query_expansion_limit 20
ft_stopword_file (No default value)
gdb FALSE
general_log FALSE
general_log_file (No default value)
group_concat_max_len 1024
help TRUE
init-connect (No default value)
init-file (No default value)
init-slave (No default value)
innodb TRUE
innodb-adaptive-hash-index TRUE
innodb-additional-mem-pool-size 1048576
innodb-autoextend-increment 8
innodb-autoinc-lock-mode 1
innodb-buffer-pool-size 8388608
innodb-checksums TRUE
innodb-commit-concurrency 0
innodb-concurrency-tickets 500
innodb-data-file-path (No default value)
innodb-data-home-dir (No default value)
innodb-doublewrite TRUE
innodb-fast-shutdown 1
innodb-file-io-threads 4
innodb-file-per-table FALSE
innodb-flush-log-at-trx-commit 1
innodb-flush-method (No default value)
innodb-force-recovery 0

Tuning Server Parameters

945

innodb-lock-wait-timeout 50
innodb-locks-unsafe-for-binlog FALSE
innodb-log-buffer-size 1048576
innodb-log-file-size 5242880
innodb-log-files-in-group 2
innodb-log-group-home-dir (No default value)
innodb-max-dirty-pages-pct 90
innodb-max-purge-lag 0
innodb-mirrored-log-groups 1
innodb-open-files 300
innodb-rollback-on-timeout FALSE
innodb-stats-on-metadata TRUE
innodb-status-file FALSE
innodb-support-xa TRUE
innodb-sync-spin-loops 20
innodb-table-locks TRUE
innodb-thread-concurrency 8
innodb-thread-sleep-delay 10000
interactive_timeout 28800
join_buffer_size 131072
keep_files_on_create FALSE
key_buffer_size 8384512
key_cache_age_threshold 300
key_cache_block_size 1024
key_cache_division_limit 100
language /home/jon/bin/mysql-5.7/share/mysql/english/
large-pages FALSE
lc-time-names en_US
local-infile TRUE
log (No default value)
log-bin (No default value)
log-bin-index (No default value)
log-bin-trust-function-creators FALSE
log-error
log-error-verbosity 1
log-isam myisam.log
log-output FILE
log-queries-not-using-indexes FALSE
log-short-format FALSE
log-slave-updates FALSE
log-slow-admin-statements FALSE
log-slow-slave-statements FALSE
log-tc tc.log
log-tc-size 24576
log-warnings 1
log_slow_queries (No default value)
long_query_time 10
low-priority-updates FALSE
lower_case_table_names 0
master-retry-count 86400
max-binlog-dump-events 0
max_allowed_packet 1048576
max_binlog_cache_size 18446744073709547520
max_binlog_size 1073741824
max_connections 151
max_connect_errors 10
max_delayed_threads 20
max_error_count 64
max_heap_table_size 16777216
max_join_size 18446744073709551615
max_length_for_sort_data 1024
max_prepared_stmt_count 16382
max_relay_log_size 0
max_seeks_for_key 18446744073709551615
max_sort_length 1024
max_sp_recursion_depth 0
max_tmp_tables 32
max_user_connections 0
max_write_lock_count 18446744073709551615
memlock FALSE
min_examined_row_limit 0
multi_range_count 256

Tuning Server Parameters

946

myisam-recover-options OFF
myisam_block_size 1024
myisam_data_pointer_size 6
myisam_max_sort_file_size 9223372036853727232
myisam_repair_threads 1
myisam_sort_buffer_size 8388608
myisam_stats_method nulls_unequal
myisam_use_mmap FALSE
ndb-autoincrement-prefetch-sz 1
ndb-cache-check-time 0
ndb-connectstring (No default value)
ndb-extra-logging 0
ndb-force-send TRUE
ndb-index-stat-enable FALSE
ndb-mgmd-host (No default value)
ndb-nodeid 0
ndb-optimized-node-selection TRUE
ndb-report-thresh-binlog-epoch-slip 3
ndb-report-thresh-binlog-mem-usage 10
ndb-shm FALSE
ndb-use-copying-alter-table FALSE
ndb-use-exact-count TRUE
ndb-use-transactions TRUE
ndb_force_send TRUE
ndb_use_exact_count TRUE
ndb_use_transactions TRUE
net_buffer_length 16384
net_read_timeout 30
net_retry_count 10
net_write_timeout 60
new FALSE
old FALSE
old-alter-table FALSE
old-passwords FALSE
old-style-user-limits FALSE
open_files_limit 1024
optimizer_prune_level 1
optimizer_search_depth 62
pid-file /home/jon/bin/mysql-5.7/var/tonfisk.pid
plugin_dir /home/jon/bin/mysql-5.7/lib/mysql/plugin
port 3306
port-open-timeout 0
preload_buffer_size 32768
profiling_history_size 15
query_alloc_block_size 8192
query_cache_limit 1048576
query_cache_min_res_unit 4096
query_cache_size 0
query_cache_type 1
query_cache_wlock_invalidate FALSE
query_prealloc_size 8192
range_alloc_block_size 4096
read_buffer_size 131072
read_only FALSE
read_rnd_buffer_size 262144
relay-log (No default value)
relay-log-index (No default value)
relay-log-info-file relay-log.info
relay_log_purge TRUE
relay_log_space_limit 0
replicate-same-server-id FALSE
report-host (No default value)
report-password (No default value)
report-port 3306
report-user (No default value)
safe-user-create FALSE
secure-auth TRUE
secure-file-priv (No default value)
server-id 0
show-slave-auth-info FALSE
skip-grant-tables FALSE
skip-slave-start FALSE

Tuning Server Parameters

947

slave-exec-mode STRICT
slave-load-tmpdir /tmp
slave_compressed_protocol FALSE
slave_net_timeout 3600
slave_transaction_retries 10
slow-query-log FALSE
slow_launch_time 2
slow_query_log_file (No default value)
socket /tmp/mysql.sock
sort_buffer_size 2097144
sporadic-binlog-dump-fail FALSE
sql-mode OFF
symbolic-links TRUE
sync-binlog 0
sync-frm TRUE
sysdate-is-now FALSE
table_definition_cache 256
table_open_cache 400
tc-heuristic-recover (No default value)
temp-pool TRUE
thread_cache_size 0
thread_concurrency 10
thread_stack 262144
timed_mutexes FALSE
time_format %H:%i:%s
tmpdir (No default value)
tmp_table_size 16777216
transaction_alloc_block_size 8192
transaction_prealloc_size 4096
updatable_views_with_limit 1
verbose TRUE
wait_timeout 28800

For a mysqld server that is currently running, you can see the current values of its system variables by
connecting to it and issuing this statement:

mysql> SHOW VARIABLES;

You can also see some statistical and status indicators for a running server by issuing this statement:

mysql> SHOW STATUS;

System variable and status information also can be obtained using mysqladmin:

shell> mysqladmin variables
shell> mysqladmin extended-status

For a full description of all system and status variables, see Section 5.1.4, “Server System Variables”,
and Section 5.1.6, “Server Status Variables”.

MySQL uses algorithms that are very scalable, so you can usually run with very little memory.
However, normally you get better performance by giving MySQL more memory.

When tuning a MySQL server, the two most important variables to configure are key_buffer_size
and table_open_cache. You should first feel confident that you have these set appropriately before
trying to change any other variables.

The following examples indicate some typical variable values for different runtime configurations.

• If you have at least 256MB of memory and many tables and want maximum performance with a
moderate number of clients, use something like this:

shell> mysqld_safe --key_buffer_size=64M --table_open_cache=256 \
 --sort_buffer_size=4M --read_buffer_size=1M &

Optimizing Disk I/O

948

• If you have only 128MB of memory and only a few tables, but you still do a lot of sorting, you can use
something like this:

shell> mysqld_safe --key_buffer_size=16M --sort_buffer_size=1M

If there are very many simultaneous connections, swapping problems may occur unless mysqld has
been configured to use very little memory for each connection. mysqld performs better if you have
enough memory for all connections.

• With little memory and lots of connections, use something like this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
 --read_buffer_size=100K &

Or even this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
 --table_open_cache=32 --read_buffer_size=8K \
 --net_buffer_length=1K &

If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your
available memory, increase the value of read_rnd_buffer_size to speed up the reading of rows
following sorting operations.

You can make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.

If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only for
that invocation of the server. To use the option every time the server runs, put it in an option file.

To see the effects of a parameter change, do something like this:

shell> mysqld --key_buffer_size=32M --verbose --help

The variable values are listed near the end of the output. Make sure that the --verbose and --help
options are last. Otherwise, the effect of any options listed after them on the command line are not
reflected in the output.

For information on tuning the InnoDB storage engine, see Section 14.2.12.1, “InnoDB Performance
Tuning Tips”.

8.11.3 Optimizing Disk I/O

• Disk seeks are a huge performance bottleneck. This problem becomes more apparent when
the amount of data starts to grow so large that effective caching becomes impossible. For large
databases where you access data more or less randomly, you can be sure that you need at least
one disk seek to read and a couple of disk seeks to write things. To minimize this problem, use disks
with low seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either
symlinking files to different disks or striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and data files from their usual
location in the data directory to another disk (that may also be striped). This makes both the
seek and read times better, assuming that the disk is not used for other purposes as well. See
Section 8.11.3.1, “Using Symbolic Links”.

• Striping

Optimizing Disk I/O

949

Striping means that you have many disks and put the first block on the first disk, the second block
on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so on. This
means if your normal data size is less than the stripe size (or perfectly aligned), you get much
better performance. Striping is very dependent on the operating system and the stripe size, so
benchmark your application with different stripe sizes. See Section 8.12.3, “Using Your Own
Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how you
set the striping parameters and number of disks, you may get differences measured in orders of
magnitude. You have to choose to optimize for random or sequential access.

• For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need
2 × N drives to hold N drives of data. This is probably the best option if you have the money for it.
However, you may also have to invest in some volume-management software to handle it efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example, store
semi-important data that can be regenerated on a RAID 0 disk, but store really important data such
as host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you have
many writes, due to the time required to update the parity bits.

• On Linux, you can get much better performance by using hdparm to configure your disk's interface.
(Up to 100% under load is not uncommon.) The following hdparm options should be quite good for
MySQL, and probably for many other applications:

hdparm -m 16 -d 1

Note that performance and reliability when using this command depend on your hardware, so
we strongly suggest that you test your system thoroughly after using hdparm. Please consult the
hdparm manual page for more information. If hdparm is not used wisely, file system corruption may
result, so back up everything before experimenting!

• You can also set the parameters for the file system that the database uses:

If you do not need to know when files were last accessed (which is not really useful on a database
server), you can mount your file systems with the -o noatime option. That skips updates to the last
access time in inodes on the file system, which avoids some disk seeks.

On many operating systems, you can set a file system to be updated asynchronously by mounting
it with the -o async option. If your computer is reasonably stable, this should give you better
performance without sacrificing too much reliability. (This flag is on by default on Linux.)

8.11.3.1 Using Symbolic Links

You can move databases or tables from the database directory to other locations and replace them
with symbolic links to the new locations. You might want to do this, for example, to move a database
to a file system with more free space or increase the speed of your system by spreading your tables to
different disks.

For InnoDB tables, use the DATA DIRECTORY clause on the CREATE TABLE statement instead of
symbolic links, as explained in Section 14.2.5.4, “Specifying the Location of a Tablespace”. This new
feature is a supported, cross-platform technique.

The recommended way to do this is to symlink entire database directories to a different disk. Symlink
MyISAM tables only as a last resort.

To determine the location of your data directory, use this statement:

SHOW VARIABLES LIKE 'datadir';

Optimizing Disk I/O

950

Using Symbolic Links for Databases on Unix

On Unix, the way to symlink a database is first to create a directory on some disk where you have free
space and then to create a soft link to it from the MySQL data directory.

shell> mkdir /dr1/databases/test
shell> ln -s /dr1/databases/test /path/to/datadir

MySQL does not support linking one directory to multiple databases. Replacing a database directory
with a symbolic link works as long as you do not make a symbolic link between databases. Suppose
that you have a database db1 under the MySQL data directory, and then make a symlink db2 that
points to db1:

shell> cd /path/to/datadir
shell> ln -s db1 db2

The result is that, or any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one
client updates db1.tbl_a and another client updates db2.tbl_a, problems are likely to occur.

Using Symbolic Links for MyISAM Tables on Unix

Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines,
you may get strange problems if you try to use symbolic links. For InnoDB tables, use the alternative
technique explained in Section 14.2.5.4, “Specifying the Location of a Tablespace” instead.

Do not symlink tables on systems that do not have a fully operational realpath() call. (Linux and
Solaris support realpath()). To determine whether your system supports symbolic links, check the
value of the have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

The handling of symbolic links for MyISAM tables works as follows:

• In the data directory, you always have the table format (.frm) file, the data (.MYD) file, and the index
(.MYI) file. The data file and index file can be moved elsewhere and replaced in the data directory by
symlinks. The format file cannot.

• You can symlink the data file and the index file independently to different directories.

• To instruct a running MySQL server to perform the symlinking, use the DATA DIRECTORY and
INDEX DIRECTORY options to CREATE TABLE. See Section 13.1.14, “CREATE TABLE Syntax”.
Alternatively, if mysqld is not running, symlinking can be accomplished manually using ln -s from
the command line.

Note

The path used with either or both of the DATA DIRECTORY and INDEX
DIRECTORY options may not include the MySQL data directory. (Bug
#32167)

• myisamchk does not replace a symlink with the data file or index file. It works directly on the file to
which the symlink points. Any temporary files are created in the directory where the data file or index
file is located. The same is true for the ALTER TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements.

• Note

When you drop a table that is using symlinks, both the symlink and the file
to which the symlink points are dropped. This is an extremely good reason

Optimizing Disk I/O

951

not to run mysqld as the system root or permit system users to have write
access to MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME or RENAME TABLE and you do not move
the table to another database, the symlinks in the database directory are renamed to the new names
and the data file and index file are renamed accordingly.

• If you use ALTER TABLE ... RENAME or RENAME TABLE to move a table to another database,
the table is moved to the other database directory. If the table name changed, the symlinks in the
new database directory are renamed to the new names and the data file and index file are renamed
accordingly.

• If you are not using symlinks, start mysqld with the --skip-symbolic-links option to ensure
that no one can use mysqld to drop or rename a file outside of the data directory.

These table symlink operations are not supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

• As indicated previously, only the data and index files can be symbolic links. The .frm file must
never be a symbolic link. Attempting to do this (for example, to make one table name a synonym
for another) produces incorrect results. Suppose that you have a database db1 under the MySQL
data directory, a table tbl1 in this database, and in the db1 directory you make a symlink tbl2 that
points to tbl1:

shell> cd /path/to/datadir/db1
shell> ln -s tbl1.frm tbl2.frm
shell> ln -s tbl1.MYD tbl2.MYD
shell> ln -s tbl1.MYI tbl2.MYI

Problems result if one thread reads db1.tbl1 and another thread updates db1.tbl2:

• The query cache is “fooled” (it has no way of knowing that tbl1 has not been updated, so it
returns outdated results).

• ALTER statements on tbl2 fail.

Using Symbolic Links for Databases on Windows

On Windows, symbolic links can be used for database directories. This enables you to put a database
directory at a different location (for example, on a different disk) by setting up a symbolic link to it. Use
of database symlinks on Windows is similar to their use on Unix, although the procedure for setting up
the link differs.

Suppose that you want to place the database directory for a database named mydb at D:\data\mydb.
To do this, create a symbolic link in the MySQL data directory that points to D:\data\mydb. However,
before creating the symbolic link, make sure that the D:\data\mydb directory exists by creating it if
necessary. If you already have a database directory named mydb in the data directory, move it to D:
\data. Otherwise, the symbolic link will be ineffective. To avoid problems, make sure that the server is
not running when you move the database directory.

Windows Vista, Windows Server 2008, or newer have native symbolic link support, so you can create a
symlink using the mklink command. This command requires administrative privileges.

1. Change location into the data directory:

C:\> cd \path\to\datadir

2. In the data directory, create a symlink named mydb that points to the location of the database
directory:

Optimizing Memory Use

952

C:\> mklink /d mydb D:\data\mydb

After this, all tables created in the database mydb are created in D:\data\mydb.

8.11.4 Optimizing Memory Use

8.11.4.1 How MySQL Uses Memory

The following list indicates some of the ways that the mysqld server uses memory. Where applicable,
the name of the system variable relevant to the memory use is given:

• All threads share the MyISAM key buffer; its size is determined by the key_buffer_size variable.
Other buffers used by the server are allocated as needed. See Section 8.11.2, “Tuning Server
Parameters”.

• Each thread that is used to manage client connections uses some thread-specific space. The
following list indicates these and which variables control their size:

• A stack (variable thread_stack)

• A connection buffer (variable net_buffer_length)

• A result buffer (variable net_buffer_length)

The connection buffer and result buffer each begin with a size equal to net_buffer_length bytes,
but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer
shrinks to net_buffer_length bytes after each SQL statement. While a statement is running, a
copy of the current statement string is also allocated.

• All threads share the same base memory.

• When a thread is no longer needed, the memory allocated to it is released and returned to the
system unless the thread goes back into the thread cache. In that case, the memory remains
allocated.

• The myisam_use_mmap system variable can be set to 1 to enable memory-mapping for all MyISAM
tables.

• Each request that performs a sequential scan of a table allocates a read buffer (variable
read_buffer_size).

• When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer
(variable read_rnd_buffer_size) may be allocated to avoid disk seeks.

• All joins are executed in a single pass, and most joins can be done without even using a temporary
table. Most temporary tables are memory-based hash tables. Temporary tables with a large row
length (calculated as the sum of all column lengths) or that contain BLOB columns are stored on disk.

If an internal in-memory temporary table becomes too large, MySQL handles this automatically by
changing the table from in-memory to on-disk format, to be handled by the MyISAM storage engine.
You can increase the permissible temporary table size as described in Section 8.4.4, “How MySQL
Uses Internal Temporary Tables”.

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on
the result set size. See Section C.5.4.4, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in thread-local and reusable memory pools. No memory
overhead is needed for small items, so the normal slow memory allocation and freeing is avoided.
Memory is allocated only for unexpectedly large strings.

Optimizing Memory Use

953

• For each MyISAM table that is opened, the index file is opened once; the data file is opened once for
each concurrently running thread. For each concurrent thread, a table structure, column structures
for each column, and a buffer of size 3 * N are allocated (where N is the maximum row length, not
counting BLOB columns). A BLOB column requires five to eight bytes plus the length of the BLOB
data. The MyISAM storage engine maintains one extra row buffer for internal use.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB values.
If you scan a table, a buffer as large as the largest BLOB value is allocated.

• Handler structures for all in-use tables are saved in a cache and managed as a FIFO. The initial
cache size is taken from the value of the table_open_cache system variable. If a table has been
used by two running threads at the same time, the cache contains two entries for the table. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that
are not in use at once and marks all in-use tables to be closed when the currently executing thread
finishes. This effectively frees most in-use memory. FLUSH TABLES does not return until all tables
have been closed.

• The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER,
and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE,
DROP USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes
many instances of the statements that cause caching, there will be an increase in memory use. This
cached memory can be freed with FLUSH PRIVILEGES.

ps and other system status programs may report that mysqld uses a lot of memory. This may be
caused by thread stacks on different memory addresses. For example, the Solaris version of ps counts
the unused memory between stacks as used memory. To verify this, check available swap with swap
-s. We test mysqld with several memory-leakage detectors (both commercial and Open Source), so
there should be no memory leaks.

8.11.4.2 Enabling Large Page Support

Some hardware/operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and
operating system. Applications that perform a lot of memory accesses may obtain performance
improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

In MySQL, large pages can be used by InnoDB, to allocate memory for its buffer pool and additional
memory pool.

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for
recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --
skip-super-large-pages option.

MySQL also supports the Linux implementation of large page support (which is called HugeTLB in
Linux).

Before large pages can be used on Linux, the kernel must be enabled to support them and it is
necessary to configure the HugeTLB memory pool. For reference, the HugeTBL API is documented in
the Documentation/vm/hugetlbpage.txt file of your Linux sources.

The kernel for some recent systems such as Red Hat Enterprise Linux appear to have the large pages
feature enabled by default. To check whether this is true for your kernel, use the following command
and look for output lines containing “huge”:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 0
HugePages_Free: 0

Optimizing Memory Use

954

HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB

The nonempty command output indicates that large page support is present, but the zero values
indicate that no pages are configured for use.

If your kernel needs to be reconfigured to support large pages, consult the hugetlbpage.txt file for
instructions.

Assuming that your Linux kernel has large page support enabled, configure it for use by MySQL using
the following commands. Normally, you put these in an rc file or equivalent startup file that is executed
during the system boot sequence, so that the commands execute each time the system starts. The
commands should execute early in the boot sequence, before the MySQL server starts. Be sure to
change the allocation numbers and the group number as appropriate for your system.

Set the number of pages to be used.
Each page is normally 2MB, so a value of 20 = 40MB.
This command actually allocates memory, so this much
memory must be available.
echo 20 > /proc/sys/vm/nr_hugepages

Set the group number that is permitted to access this
memory (102 in this case). The mysql user must be a
member of this group.
echo 102 > /proc/sys/vm/hugetlb_shm_group

Increase the amount of shmem permitted per segment
(12G in this case).
echo 1560281088 > /proc/sys/kernel/shmmax

Increase total amount of shared memory. The value
is the number of pages. At 4KB/page, 4194304 = 16GB.
echo 4194304 > /proc/sys/kernel/shmall

For MySQL usage, you normally want the value of shmmax to be close to the value of shmall.

To verify the large page configuration, check /proc/meminfo again as described previously. Now you
should see some nonzero values:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB

The final step to make use of the hugetlb_shm_group is to give the mysql user an “unlimited”
value for the memlock limit. This can by done either by editing /etc/security/limits.conf or by
adding the following command to your mysqld_safe script:

ulimit -l unlimited

Adding the ulimit command to mysqld_safe causes the root user to set the memlock limit to
unlimited before switching to the mysql user. (This assumes that mysqld_safe is started by
root.)

Large page support in MySQL is disabled by default. To enable it, start the server with the --large-
pages option. For example, you can use the following lines in your server's my.cnf file:

[mysqld]
large-pages

Optimizing Network Use

955

With this option, InnoDB uses large pages automatically for its buffer pool and additional memory pool.
If InnoDB cannot do this, it falls back to use of traditional memory and writes a warning to the error log:
Warning: Using conventional memory pool

To verify that large pages are being used, check /proc/meminfo again:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 2
HugePages_Surp: 0
Hugepagesize: 4096 kB

8.11.5 Optimizing Network Use

8.11.5.1 How MySQL Uses Threads for Client Connections

Connection manager threads handle client connection requests on the network interfaces that the
server listens to. On all platforms, one manager thread handles TCP/IP connection requests. On Unix,
this manager thread also handles Unix socket file connection requests. On Windows, a manager thread
handles shared-memory connection requests, and another handles named-pipe connection requests.
The server does not create threads to handle interfaces that it does not listen to. For example, a
Windows server that does not have support for named-pipe connections enabled does not create a
thread to handle them.

Connection manager threads associate each client connection with a thread dedicated to it that
handles authentication and request processing for that connection. Manager threads create a new
thread when necessary but try to avoid doing so by consulting the thread cache first to see whether it
contains a thread that can be used for the connection. When a connection ends, its thread is returned
to the thread cache if the cache is not full.

In this connection thread model, there are as many threads as there are clients currently connected,
which has some disadvantages when server workload must scale to handle large numbers of
connections. For example, thread creation and disposal becomes expensive. Also, each thread
requires server and kernel resources, such as stack space. To accommodate a large number of
simultaneous connections, the stack size per thread must be kept small, leading to a situation where
it is either too small or the server consumes large amounts of memory. Exhaustion of other resources
can occur as well, and scheduling overhead can become significant.

To control and monitor how the server manages threads that handle client connections, several system
and status variables are relevant. (See Section 5.1.4, “Server System Variables”, and Section 5.1.6,
“Server Status Variables”.)

The thread cache has a size determined by the thread_cache_size system variable. The default
value is 0 (no caching), which causes a thread to be set up for each new connection and disposed
of when the connection terminates. Set thread_cache_size to N to enable N inactive connection
threads to be cached. thread_cache_size can be set at server startup or changed while the server
runs. A connection thread becomes inactive when the client connection with which it was associated
terminates.

To monitor the number of threads in the cache and how many threads have been created because a
thread could not be taken from the cache, monitor the Threads_cached and Threads_created
status variables.

You can set max_connections at server startup or at runtime to control the maximum number of
clients that can connect simultaneously.

When the thread stack is too small, this limits the complexity of the SQL statements which the server
can handle, the recursion depth of stored procedures, and other memory-consuming actions. To set a
stack size of N bytes for each thread, start the server with --thread_stack=N.

Optimizing Network Use

956

8.11.5.2 DNS Lookup Optimization and the Host Cache

The MySQL server maintains a host cache in memory that contains information about clients: IP
address, host name, and error information. The server uses this cache for nonlocal TCP connections.
It does not use the cache for TCP connections established using a loopback interface address
(127.0.0.1 or ::1), or for connections established using a Unix socket file, named pipe, or shared
memory.

For each new client connection, the server uses the client IP address to check whether the client host
name is in the host cache. If not, the server attempts to resolve the host name. First, it resolves the
IP address to a host name and resolves that host name back to an IP address. Then it compares
the result to the original IP address to ensure that they are the same. The server stores information
about the result of this operation in the host cache. If the cache is full, the least recently used entry is
discarded.

The host_cache Performance Schema table exposes the contents of the host cache so that it can be
examined using SELECT statements. This may help you diagnose the causes of connection problems.
See Section 20.9.13.1, “The host_cache Table”.

The server handles entries in the host cache like this:

1. When the first TCP client connection reaches the server from a given IP address, a new entry is
created to record the client IP, host name, and client lookup validation flag. Initially, the host name
is set to NULL and the flag is false. This entry is also used for subsequent client connections from
the same originating IP.

2. If the validation flag for the client IP entry is false, the server attempts an IP-to-host name DNS
resolution. If that is successful, the host name is updated with the resolved host name and the
validation flag is set to true. If resolution is unsuccessful, the action taken depends on whether
the error is permanent or transient. For permanent failures, the host name remains NULL and
the validation flag is set to true. For transient failures, the host name and validation flag remain
unchanged. (Another DNS resolution attempt occurs the next time a client connects from this IP.)

3. If an error occurs while processing an incoming client connection from a given IP address, the
server updates the corresponding error counters in the entry for that IP. For a description of the
errors recorded, see Section 20.9.13.1, “The host_cache Table”.

The server performs host name resolution using the thread-safe gethostbyaddr_r() and
gethostbyname_r() calls if the operating system supports them. Otherwise, the thread performing
the lookup locks a mutex and calls gethostbyaddr() and gethostbyname() instead. In this case,
no other thread can resolve host names that are not in the host cache until the thread holding the
mutex lock releases it.

The server uses the host cache for several purposes:

• By caching the results of IP-to-host name lookups, the server avoids doing a DNS lookup for each
client connection. Instead, for a given host, it needs to perform a lookup only for the first connection
from that host.

• The cache contains information about errors that occur during the connection process. Some
errors are considered “blocking.” If too many of these occur successively from a given host
without a successful connection, the server blocks further connections from that host. The
max_connect_errors system variable determines the number of permitted errors before blocking
occurs. See Section C.5.2.6, “Host 'host_name' is blocked”.

To unblock blocked hosts, flush the host cache by issuing a FLUSH HOSTS statement or executing a
mysqladmin flush-hosts command.

It is possible for a blocked host to become unblocked even without FLUSH HOSTS if activity from other
hosts has occurred since the last connection attempt from the blocked host. This can occur because

Measuring Performance (Benchmarking)

957

the server discards the least recently used cache entry to make room for a new entry if the cache is full
when a connection arrives from a client IP not in the cache. If the discarded entry is for a blocked host,
that host becomes unblocked.

The host cache is enabled by default. To disable it, set the host_cache_size system variable to 0,
either at server startup or at runtime.

To disable DNS host name lookups, start the server with the --skip-name-resolve option. In this
case, the server uses only IP addresses and not host names to match connecting hosts to rows in the
MySQL grant tables. Only accounts specified in those tables using IP addresses can be used.

If you have a very slow DNS and many hosts, you might be able to improve performance
either by disabling DNS lookups with --skip-name-resolve or by increasing the value of
host_cache_size to make the host cache larger.

To disallow TCP/IP connections entirely, start the server with the --skip-networking option.

Some connection errors are not associated with TCP connections, occur very early in the connection
process (even before an IP address is known), or are not specific to any particular IP address (such as
out-of-memory conditions). For information about these errors, check the Connection_errors_xxx
status variables (see Section 5.1.6, “Server Status Variables”).

8.12 Measuring Performance (Benchmarking)

To measure performance, consider the following factors:

• Whether you are measuring the speed of a single operation on a quiet system, or how a set of
operations (a “workload”) works over a period of time. With simple tests, you usually test how
changing one aspect (a configuration setting, the set of indexes on a table, the SQL clauses in a
query) affects performance. Benchmarks are typically long-running and elaborate performance tests,
where the results could dictate high-level choices such as hardware and storage configuration, or
how soon to upgrade to a new MySQL version.

• For benchmarking, sometimes you must simulate a heavy database workload to get an accurate
picture.

• Performance can vary depending on so many different factors that a difference of a few percentage
points might not be a decisive victory. The results might shift the opposite way when you test in a
different environment.

• Certain MySQL features help or do not help performance depending on the workload. For
completeness, always test performance with those features turned on and turned off. The two most
important features to try with each workload are the MySQL query cache, and the adaptive hash
index for InnoDB tables.

This section progresses from simple and direct measurement techniques that a single developer can
do, to more complicated ones that require additional expertise to perform and interpret the results.

8.12.1 Measuring the Speed of Expressions and Functions

To measure the speed of a specific MySQL expression or function, invoke the BENCHMARK() function
using the mysql client program. Its syntax is BENCHMARK(loop_count,expression). The return
value is always zero, but mysql prints a line displaying approximately how long the statement took to
execute. For example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+

The MySQL Benchmark Suite

958

| 0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000
simple addition expressions in 0.32 seconds on that system.

The built-in MySQL functions are typically highly optimized, but there may be some exceptions.
BENCHMARK() is an excellent tool for finding out if some function is a problem for your queries.

8.12.2 The MySQL Benchmark Suite

This benchmark suite is meant to tell any user what operations a given SQL implementation performs
well or poorly. You can get a good idea for how the benchmarks work by looking at the code and
results in the sql-bench directory in any MySQL source distribution.

Note that this benchmark is single-threaded, so it measures the minimum time for the operations
performed. We plan to add multi-threaded tests to the benchmark suite in the future.

To use the benchmark suite, the following requirements must be satisfied:

• The benchmark suite is provided with MySQL source distributions. You can either download a
released distribution from http://dev.mysql.com/downloads/, or use the current development source
tree. (See Section 2.8.3, “Installing MySQL Using a Development Source Tree”.)

• The benchmark scripts are written in Perl and use the Perl DBI module to access database servers,
so DBI must be installed. You also need the server-specific DBD drivers for each of the servers you
want to test. For example, to test MySQL, PostgreSQL, and DB2, you must have the DBD::mysql,
DBD::Pg, and DBD::DB2 modules installed. See Section 2.12, “Perl Installation Notes”.

After you obtain a MySQL source distribution, you can find the benchmark suite located in its sql-
bench directory. To run the benchmark tests, build MySQL, and then change location into the sql-
bench directory and execute the run-all-tests script:

shell> cd sql-bench
shell> perl run-all-tests --server=server_name

server_name should be the name of one of the supported servers. To get a list of all options and
supported servers, invoke this command:

shell> perl run-all-tests --help

The crash-me script also is located in the sql-bench directory. crash-me tries to determine what
features a database system supports and what its capabilities and limitations are by actually running
queries. For example, it determines:

• What data types are supported

• How many indexes are supported

• What functions are supported

• How big a query can be

• How big a VARCHAR column can be

For more information about benchmark results, visit http://www.mysql.com/why-mysql/benchmarks/.

8.12.3 Using Your Own Benchmarks

http://dev.mysql.com/downloads/

Measuring Performance with performance_schema

959

Benchmark your application and database to find out where the bottlenecks are. After fixing one
bottleneck (or by replacing it with a “dummy” module), you can proceed to identify the next bottleneck.
Even if the overall performance for your application currently is acceptable, you should at least make a
plan for each bottleneck and decide how to solve it if someday you really need the extra performance.

For examples of portable benchmark programs, look at those in the MySQL benchmark suite. See
Section 8.12.2, “The MySQL Benchmark Suite”. You can take any program from this suite and modify it
for your own needs. By doing this, you can try different solutions to your problem and test which really
is fastest for you.

Another free benchmark suite is the Open Source Database Benchmark, available at http://
osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have
had many customers who contact us when they have a (tested) system in production and have
encountered load problems. In most cases, performance problems turn out to be due to issues of
basic database design (for example, table scans are not good under high load) or problems with the
operating system or libraries. Most of the time, these problems would be much easier to fix if the
systems were not already in production.

To avoid problems like this, benchmark your whole application under the worst possible load:

• The mysqlslap program can be helpful for simulating a high load produced by multiple clients
issuing queries simultaneously. See Section 4.5.7, “mysqlslap — Load Emulation Client”.

• You can also try benchmarking packages such as SysBench and DBT2, available at http://
sourceforge.net/projects/sysbench/, and http://osdldbt.sourceforge.net/#dbt2.

These programs or packages can bring a system to its knees, so be sure to use them only on your
development systems.

8.12.4 Measuring Performance with performance_schema

You can query the tables in the performance_schema database to see real-time information about
the performance characteristics of your server and the applications it is running. See Chapter 20,
MySQL Performance Schema for details.

8.12.5 Examining Thread Information

When you are attempting to ascertain what your MySQL server is doing, it can be helpful to examine
the process list, which is the set of threads currently executing within the server. Process list
information is available from these sources:

• The SHOW [FULL] PROCESSLIST statement: Section 13.7.5.28, “SHOW PROCESSLIST Syntax”

• The SHOW PROFILE statement: Section 13.7.5.30, “SHOW PROFILES Syntax”

• The INFORMATION_SCHEMA PROCESSLIST table: Section 19.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”

• The mysqladmin processlist command: Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”

• The performance_schema.threads table: Section 20.9.13, “Performance Schema Miscellaneous
Tables”

Access to threads does not require a mutex and has minimal impact on server performance.
INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance
consequences because they require a mutex. threads also shows information about background

http://osdb.sourceforge.net/
http://osdb.sourceforge.net/
http://sourceforge.net/projects/sysbench/
http://sourceforge.net/projects/sysbench/
http://osdldbt.sourceforge.net/#dbt2

Examining Thread Information

960

threads, which INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST do not. This means
that threads can be used to monitor activity the other thread information sources cannot.

You can always view information about your own threads. To view information about threads being
executed for other accounts, you must have the PROCESS privilege.

Each process list entry contains several pieces of information:

• Id is the connection identifier for the client associated with the thread.

• User and Host indicate the account associated with the thread.

• db is the default database for the thread, or NULL if none is selected.

• Command and State indicate what the thread is doing.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• Time indicates how long the thread has been in its current state. The thread's notion of the current
time may be altered in some cases: The thread can change the time with SET TIMESTAMP =
value. For a thread running on a slave that is processing events from the master, the thread time is
set to the time found in the events and thus reflects current time on the master and not the slave.

• Info contains the text of the statement being executed by the thread, or NULL if it is not executing
one. By default, this value contains only the first 100 characters of the statement. To see the
complete statements, use SHOW FULL PROCESSLIST.

The following sections list the possible Command values, and State values grouped by category. The
meaning for some of these values is self-evident. For others, additional description is provided.

8.12.5.1 Thread Command Values

A thread can have any of the following Command values:

• Binlog Dump

This is a thread on a master server for sending binary log contents to a slave server.

• Change user

The thread is executing a change-user operation.

• Close stmt

The thread is closing a prepared statement.

• Connect

A replication slave is connected to its master.

• Connect Out

A replication slave is connecting to its master.

• Create DB

The thread is executing a create-database operation.

• Daemon

This thread is internal to the server, not a thread that services a client connection.

• Debug

Examining Thread Information

961

The thread is generating debugging information.

• Delayed insert

The thread is a delayed-insert handler.

• Drop DB

The thread is executing a drop-database operation.

• Error

• Execute

The thread is executing a prepared statement.

• Fetch

The thread is fetching the results from executing a prepared statement.

• Field List

The thread is retrieving information for table columns.

• Init DB

The thread is selecting a default database.

• Kill

The thread is killing another thread.

• Long Data

The thread is retrieving long data in the result of executing a prepared statement.

• Ping

The thread is handling a server-ping request.

• Prepare

The thread is preparing a prepared statement.

• Processlist

The thread is producing information about server threads.

• Query

The thread is executing a statement.

• Quit

The thread is terminating.

• Refresh

The thread is flushing table, logs, or caches, or resetting status variable or replication server
information.

• Register Slave

The thread is registering a slave server.

Examining Thread Information

962

• Reset stmt

The thread is resetting a prepared statement.

• Set option

The thread is setting or resetting a client statement-execution option.

• Shutdown

The thread is shutting down the server.

• Sleep

The thread is waiting for the client to send a new statement to it.

• Statistics

The thread is producing server-status information.

• Table Dump

The thread is sending table contents to a slave server.

• Time

Unused.

8.12.5.2 General Thread States

The following list describes thread State values that are associated with general query processing
and not more specialized activities such as replication. Many of these are useful only for finding bugs in
the server.

• After create

This occurs when the thread creates a table (including internal temporary tables), at the end of the
function that creates the table. This state is used even if the table could not be created due to some
error.

• Analyzing

The thread is calculating a MyISAM table key distributions (for example, for ANALYZE TABLE).

• checking permissions

The thread is checking whether the server has the required privileges to execute the statement.

• Checking table

The thread is performing a table check operation.

• cleaning up

The thread has processed one command and is preparing to free memory and reset certain state
variables.

• closing tables

The thread is flushing the changed table data to disk and closing the used tables. This should be a
fast operation. If not, verify that you do not have a full disk and that the disk is not in very heavy use.

• converting HEAP to MyISAM

Examining Thread Information

963

The thread is converting an internal temporary table from a MEMORY table to an on-disk MyISAM
table.

• copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the new
structure has been created but before rows are copied into it.

• Copying to group table

If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and
copied to a temporary table.

• Copying to tmp table

The server is copying to a temporary table in memory.

• altering table

The server is in the process of executing an in-place ALTER TABLE.

• Copying to tmp table on disk

The server is copying to a temporary table on disk. The temporary result set has become too large
(see Section 8.4.4, “How MySQL Uses Internal Temporary Tables”). Consequently, the thread is
changing the temporary table from in-memory to disk-based format to save memory.

• Creating index

The thread is processing ALTER TABLE ... ENABLE KEYS for a MyISAM table.

• Creating sort index

The thread is processing a SELECT that is resolved using an internal temporary table.

• creating table

The thread is creating a table. This includes creation of temporary tables.

• Creating tmp table

The thread is creating a temporary table in memory or on disk. If the table is created in memory
but later is converted to an on-disk table, the state during that operation will be Copying to tmp
table on disk.

• committing alter table to storage engine

The server has finished an in-place ALTER TABLE and is committing the result.

• deleting from main table

The server is executing the first part of a multiple-table delete. It is deleting only from the first table,
and saving columns and offsets to be used for deleting from the other (reference) tables.

• deleting from reference tables

The server is executing the second part of a multiple-table delete and deleting the matched rows
from the other tables.

• discard_or_import_tablespace

The thread is processing an ALTER TABLE ... DISCARD TABLESPACE or ALTER TABLE ...
IMPORT TABLESPACE statement.

Examining Thread Information

964

• end

This occurs at the end but before the cleanup of ALTER TABLE, CREATE VIEW, DELETE, INSERT,
SELECT, or UPDATE statements.

• executing

The thread has begun executing a statement.

• Execution of init_command

The thread is executing statements in the value of the init_command system variable.

• freeing items

The thread has executed a command. Some freeing of items done during this state involves the
query cache. This state is usually followed by cleaning up.

• Flushing tables

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables.

• FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

• init

This occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE
statements. Actions taken by the server in this state include flushing the binary log, the InnoDB log,
and some query cache cleanup operations.

For the end state, the following operations could be happening:

• Removing query cache entries after data in a table is changed

• Writing an event to the binary log

• Freeing memory buffers, including for blobs

• Killed

Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag.
The flag is checked in each major loop in MySQL, but in some cases it might still take a short time
for the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the
other thread releases its lock.

• logging slow query

The thread is writing a statement to the slow-query log.

• NULL

This state is used for the SHOW PROCESSLIST state.

• login

The initial state for a connection thread until the client has been authenticated successfully.

• manage keys

The server is enabling or disabling a table index.

• Opening tables, Opening table

Examining Thread Information

965

The thread is trying to open a table. This is should be very fast procedure, unless something
prevents opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent opening
a table until the statement is finished. It is also worth checking that your table_open_cache value
is large enough.

• optimizing

The server is performing initial optimizations for a query.

• preparing

This state occurs during query optimization.

• Purging old relay logs

The thread is removing unneeded relay log files.

• query end

This state occurs after processing a query but before the freeing items state.

• Reading from net

The server is reading a packet from the network.

• Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the
distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all
duplicated rows before sending the result to the client.

• removing tmp table

The thread is removing an internal temporary table after processing a SELECT statement. This state
is not used if no temporary table was created.

• rename

The thread is renaming a table.

• rename result table

The thread is processing an ALTER TABLE statement, has created the new table, and is renaming it
to replace the original table.

• Reopen tables

The thread got a lock for the table, but noticed after getting the lock that the underlying table
structure changed. It has freed the lock, closed the table, and is trying to reopen it.

• Repair by sorting

The repair code is using a sort to create indexes.

• preparing for alter table

The server is preparing to execute an in-place ALTER TABLE.

• Repair done

The thread has completed a multi-threaded repair for a MyISAM table.

• Repair with keycache

Examining Thread Information

966

The repair code is using creating keys one by one through the key cache. This is much slower than
Repair by sorting.

• Rolling back

The thread is rolling back a transaction.

• Saving state

For MyISAM table operations such as repair or analysis, the thread is saving the new table state to
the .MYI file header. State includes information such as number of rows, the AUTO_INCREMENT
counter, and key distributions.

• Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be done
if the UPDATE is changing the index that is used to find the involved rows.

• Sending data

The thread is reading and processing rows for a SELECT statement, and sending data to the client.
Because operations occurring during this this state tend to perform large amounts of disk access
(reads), it is often the longest-running state over the lifetime of a given query.

• setup

The thread is beginning an ALTER TABLE operation.

• Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

• Sorting for order

The thread is doing a sort to satisfy a ORDER BY.

• Sorting index

The thread is sorting index pages for more efficient access during a MyISAM table optimization
operation.

• Sorting result

For a SELECT statement, this is similar to Creating sort index, but for nontemporary tables.

• statistics

The server is calculating statistics to develop a query execution plan. If a thread is in this state for a
long time, the server is probably disk-bound performing other work.

• System lock

The thread is going to request or is waiting for an internal or external system lock for the table. If this
state is being caused by requests for external locks and you are not using multiple mysqld servers
that are accessing the same MyISAM tables, you can disable external system locks with the --
skip-external-locking option. However, external locking is disabled by default, so it is likely
that this option will have no effect. For SHOW PROFILE, this state means the thread is requesting the
lock (not waiting for it).

• update

The thread is getting ready to start updating the table.

Examining Thread Information

967

• Updating

The thread is searching for rows to update and is updating them.

• updating main table

The server is executing the first part of a multiple-table update. It is updating only the first table, and
saving columns and offsets to be used for updating the other (reference) tables.

• updating reference tables

The server is executing the second part of a multiple-table update and updating the matched rows
from the other tables.

• User lock

The thread is going to request or is waiting for an advisory lock requested with a GET_LOCK() call.
For SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).

• User sleep

The thread has invoked a SLEEP() call.

• Waiting for commit lock

FLUSH TABLES WITH READ LOCK is waiting for a commit lock.

• Waiting for global read lock

FLUSH TABLES WITH READ LOCK is waiting for a global read lock or the global read_lock
system variable is being set.

• Waiting for tables, Waiting for table flush

The thread got a notification that the underlying structure for a table has changed and it needs to
reopen the table to get the new structure. However, to reopen the table, it must wait until all other
threads have closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• Waiting for lock_type lock

The server is waiting to acquire a lock, where lock_type indicates the type of lock:

• Waiting for event metadata lock

• Waiting for global read lock

• Waiting for schema metadata lock

• Waiting for stored function metadata lock

• Waiting for stored procedure metadata lock

• Waiting for table level lock

• Waiting for table metadata lock

• Waiting for trigger metadata lock

• Waiting on cond

Examining Thread Information

968

A generic state in which the thread is waiting for a condition to become true. No specific state
information is available.

• Writing to net

The server is writing a packet to the network.

8.12.5.3 Query Cache Thread States

These thread states are associated with the query cache (see Section 8.9.3, “The MySQL Query
Cache”).

• checking privileges on cached query

The server is checking whether the user has privileges to access a cached query result.

• checking query cache for query

The server is checking whether the current query is present in the query cache.

• invalidating query cache entries

Query cache entries are being marked invalid because the underlying tables have changed.

• sending cached result to client

The server is taking the result of a query from the query cache and sending it to the client.

• storing result in query cache

The server is storing the result of a query in the query cache.

• Waiting for query cache lock

This state occurs while a session is waiting to take the query cache lock. This can happen for any
statement that needs to perform some query cache operation, such as an INSERT or DELETE that
invalidates the query cache, a SELECT that looks for a cached entry, RESET QUERY CACHE, and so
forth.

8.12.5.4 Replication Master Thread States

The following list shows the most common states you may see in the State column for the master's
Binlog Dump thread. If you see no Binlog Dump threads on a master server, this means that
replication is not running—that is, that no slaves are currently connected.

• Sending binlog event to slave

Binary logs consist of events, where an event is usually an update plus some other information. The
thread has read an event from the binary log and is now sending it to the slave.

• Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the slave.

• Master has sent all binlog to slave; waiting for binlog to be updated

The thread has read all outstanding updates from the binary logs and sent them to the slave. The
thread is now idle, waiting for new events to appear in the binary log resulting from new updates
occurring on the master.

• Waiting to finalize termination

Examining Thread Information

969

A very brief state that occurs as the thread is stopping.

8.12.5.5 Replication Slave I/O Thread States

The following list shows the most common states you see in the State column for a slave server I/O
thread. This state also appears in the Slave_IO_State column displayed by SHOW SLAVE STATUS,
so you can get a good view of what is happening by using that statement.

• Waiting for master update

The initial state before Connecting to master.

• Connecting to master

The thread is attempting to connect to the master.

• Checking master version

A state that occurs very briefly, after the connection to the master is established.

• Registering slave on master

A state that occurs very briefly after the connection to the master is established.

• Requesting binlog dump

A state that occurs very briefly, after the connection to the master is established. The thread sends
to the master a request for the contents of its binary logs, starting from the requested binary log file
name and position.

• Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while it
sleeps, then tries to reconnect periodically. The interval between retries can be specified using the
CHANGE MASTER TO statement.

• Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the master.

• Waiting for master to send event

The thread has connected to the master and is waiting for binary log events to arrive. This can last
for a long time if the master is idle. If the wait lasts for slave_net_timeout seconds, a timeout
occurs. At that point, the thread considers the connection to be broken and makes an attempt to
reconnect.

• Queueing master event to the relay log

The thread has read an event and is copying it to the relay log so that the SQL thread can process it.

• Waiting to reconnect after a failed master event read

An error occurred while reading (due to disconnection). The thread is sleeping for the number of
seconds set by the CHANGE MASTER TO statement (default 60) before attempting to reconnect.

• Reconnecting after a failed master event read

The thread is trying to reconnect to the master. When connection is established again, the state
becomes Waiting for master to send event.

• Waiting for the slave SQL thread to free enough relay log space

Examining Thread Information

970

You are using a nonzero relay_log_space_limit value, and the relay logs have grown large
enough that their combined size exceeds this value. The I/O thread is waiting until the SQL thread
frees enough space by processing relay log contents so that it can delete some relay log files.

• Waiting for slave mutex on exit

A state that occurs briefly as the thread is stopping.

8.12.5.6 Replication Slave SQL Thread States

The following list shows the most common states you may see in the State column for a slave server
SQL thread:

• Waiting for the next event in relay log

The initial state before Reading event from the relay log.

• Reading event from the relay log

The thread has read an event from the relay log so that the event can be processed.

• Making temp file

The thread is executing a LOAD DATA INFILE statement and is creating a temporary file containing
the data from which the slave will read rows.

• Slave has read all relay log; waiting for the slave I/O thread to update
it

The thread has processed all events in the relay log files, and is now waiting for the I/O thread to
write new events to the relay log.

• Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

• Waiting until MASTER_DELAY seconds after master executed event

The SQL thread has read an event but is waiting for the slave delay to lapse. This delay is set with
the MASTER_DELAY option of CHANGE MASTER TO.

The State column for the I/O thread may also show the text of a statement. This indicates that the
thread has read an event from the relay log, extracted the statement from it, and is executing it.

8.12.5.7 Replication Slave Connection Thread States

These thread states occur on a replication slave but are associated with connection threads, not with
the I/O or SQL threads.

• Changing master

The thread is processing a CHANGE MASTER TO statement.

• Killing slave

The thread is processing a STOP SLAVE statement.

• Opening master dump table

This state occurs after Creating table from master dump.

• Reading master dump table data

Examining Thread Information

971

This state occurs after Opening master dump table.

• Rebuilding the index on master dump table

This state occurs after Reading master dump table data.

8.12.5.8 Event Scheduler Thread States

These states occur for the Event Scheduler thread, threads that are created to execute scheduled
events, or threads that terminate the scheduler.

• Clearing

The scheduler thread or a thread that was executing an event is terminating and is about to end.

• Initialized

The scheduler thread or a thread that will execute an event has been initialized.

• Waiting for next activation

The scheduler has a nonempty event queue but the next activation is in the future.

• Waiting for scheduler to stop

The thread issued SET GLOBAL event_scheduler=OFF and is waiting for the scheduler to stop.

• Waiting on empty queue

The scheduler's event queue is empty and it is sleeping.

972

973

Chapter 9 Language Structure

Table of Contents
9.1 Literal Values .. 973

9.1.1 String Literals ... 973
9.1.2 Number Literals .. 976
9.1.3 Date and Time Literals ... 976
9.1.4 Hexadecimal Literals ... 978
9.1.5 Boolean Literals .. 979
9.1.6 Bit-Field Literals .. 979
9.1.7 NULL Values .. 979

9.2 Schema Object Names .. 979
9.2.1 Identifier Qualifiers .. 981
9.2.2 Identifier Case Sensitivity .. 982
9.2.3 Mapping of Identifiers to File Names ... 984
9.2.4 Function Name Parsing and Resolution ... 986

9.3 Reserved Words ... 989
9.4 User-Defined Variables .. 992
9.5 Expression Syntax ... 995
9.6 Comment Syntax ... 997

This chapter discusses the rules for writing the following elements of SQL statements when using
MySQL:

• Literal values such as strings and numbers

• Identifiers such as database, table, and column names

• Reserved words

• User-defined and system variables

• Comments

9.1 Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers,
hexadecimal values, boolean values, and NULL. The section also covers the various nuances and
“gotchas” that you may run into when dealing with these basic types in MySQL.

9.1.1 String Literals

A string is a sequence of bytes or characters, enclosed within either single quote (“'”) or double quote
(“"”) characters. Examples:

'a string'
"another string"

Quoted strings placed next to each other are concatenated to a single string. The following lines are
equivalent:

'a string'
'a' ' ' 'string'

If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotation
marks because a string quoted within double quotation marks is interpreted as an identifier.

String Literals

974

A binary string is a string of bytes that has no character set or collation. A nonbinary string is a string of
characters that has a character set and collation. For both types of strings, comparisons are based on
the numeric values of the string unit. For binary strings, the unit is the byte. For nonbinary strings the
unit is the character and some character sets support multi-byte characters. Character value ordering is
a function of the string collation.

String literals may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For more information about these forms of string syntax, see Section 10.1.3.5, “Character String Literal
Character Set and Collation”, and Section 10.1.3.6, “National Character Set”.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES SQL
mode is enabled. Each of these sequences begins with a backslash (“\”), known as the escape
character. MySQL recognizes the escape sequences shown in Table 9.1, “Special Character Escape
Sequences”. For all other escape sequences, backslash is ignored. That is, the escaped character is
interpreted as if it was not escaped. For example, “\x” is just “x”. These sequences are case sensitive.
For example, “\b” is interpreted as a backspace, but “\B” is interpreted as “B”. Escape processing is
done according to the character set indicated by the character_set_connection system variable.
This is true even for strings that are preceded by an introducer that indicates a different character set,
as discussed in Section 10.1.3.5, “Character String Literal Character Set and Collation”.

Table 9.1 Special Character Escape Sequences

Escape
Sequence

Character Represented by Sequence

\0 An ASCII NUL (0x00) character.

\' A single quote (“'”) character.

\" A double quote (“"”) character.

\b A backspace character.

\n A newline (linefeed) character.

\r A carriage return character.

\t A tab character.

\Z ASCII 26 (Control+Z). See note following the table.

\\ A backslash (“\”) character.

\% A “%” character. See note following the table.

_ A “_” character. See note following the table.

The ASCII 26 character can be encoded as “\Z” to enable you to work around the problem that ASCII
26 stands for END-OF-FILE on Windows. ASCII 26 within a file causes problems if you try to use
mysql db_name < file_name.

String Literals

975

The “\%” and “_” sequences are used to search for literal instances of “%” and “_” in pattern-matching
contexts where they would otherwise be interpreted as wildcard characters. See the description of
the LIKE operator in Section 12.5.1, “String Comparison Functions”. If you use “\%” or “_” outside of
pattern-matching contexts, they evaluate to the strings “\%” and “_”, not to “%” and “_”.

There are several ways to include quote characters within a string:

• A “'” inside a string quoted with “'” may be written as “''”.

• A “"” inside a string quoted with “"” may be written as “""”.

• Precede the quote character by an escape character (“\”).

• A “'” inside a string quoted with “"” needs no special treatment and need not be doubled or escaped.
In the same way, “"” inside a string quoted with “'” needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+

mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

If you want to insert binary data into a string column (such as a BLOB column), you should represent
certain characters by escape sequences. Backslash (“\”) and the quote character used to quote
the string must be escaped. In certain client environments, it may also be necessary to escape
NUL or Control+Z. The mysql client truncates quoted strings containing NUL characters if they are
not escaped, and Control+Z may be taken for END-OF-FILE on Windows if not escaped. For the
escape sequences that represent each of these characters, see Table 9.1, “Special Character Escape
Sequences”.

When writing application programs, any string that might contain any of these special characters must
be properly escaped before the string is used as a data value in an SQL statement that is sent to the
MySQL server. You can do this in two ways:

• Process the string with a function that escapes the special characters. In a C program, you can use
the mysql_real_escape_string() C API function to escape characters. See Section 21.8.7.55,
“mysql_real_escape_string()”. Within SQL statements that construct other SQL statements,
you can use the QUOTE() function. The Perl DBI interface provides a quote method to convert
special characters to the proper escape sequences. See Section 21.10, “MySQL Perl API”. Other
language interfaces may provide a similar capability.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder
capability that enables you to insert special markers into a statement string, and then bind data
values to them when you issue the statement. In this case, the API takes care of escaping special
characters in the values for you.

Number Literals

976

9.1.2 Number Literals

Number literals include exact-value (integer and DECIMAL) literals and approximate-value (floating-
point) literals.

Integers are represented as a sequence of digits. Numbers may include “.” as a decimal separator.
Numbers may be preceded by “-” or “+” to indicate a negative or positive value, respectively. Numbers
represented in scientific notation with a mantissa and exponent are approximate-value numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed.
Examples: 1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-
point) number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types. For more
information about exact-value calculations, see Section 12.19, “Precision Math”.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In
MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

An integer may be used in a floating-point context; it is interpreted as the equivalent floating-point
number.

9.1.3 Date and Time Literals

Date and time values can be represented in several formats, such as quoted strings or as numbers,
depending on the exact type of the value and other factors. For example, in contexts where MySQL
expects a date, it interprets any of '2015-07-21', '20150721', and 20150721 as a date.

This section describes the acceptable formats for date and time literals. For more information about the
temporal data types, such as the range of permitted values, consult these sections:

• Section 11.1.2, “Date and Time Type Overview”

• Section 11.3, “Date and Time Types”

Standard SQL and ODBC Date and Time Literals. Standard SQL permits temporal literals to be
specified using a type keyword and a string. The space between the keyword and string is optional.

DATE 'str'
TIME 'str'
TIMESTAMP 'str'

MySQL recognizes those constructions and also the corresponding ODBC syntax:

{ d 'str' }
{ t 'str' }
{ ts 'str' }

MySQL uses the type keyword and these constructions produce DATE, TIME, and DATETIME values,
respectively, including a trailing fractional seconds part if specified. The TIMESTAMP syntax produces
a DATETIME value in MySQL because DATETIME has a range that more closely corresponds to the
standard SQL TIMESTAMP type, which has a year range from 0001 to 9999. (The MySQL TIMESTAMP
year range is 1970 to 2038.)

String and Numeric Literals in Date and Time Context. MySQL recognizes DATE values in these
formats:

Date and Time Literals

977

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is permitted:
Any punctuation character may be used as the delimiter between date parts. For example,
'2012-12-31', '2012/12/31', '2012^12^31', and '2012@12@31' are equivalent.

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the
string makes sense as a date. For example, '20070523' and '070523' are interpreted as
'2007-05-23', but '071332' is illegal (it has nonsensical month and day parts) and becomes
'0000-00-00'.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a
date. For example, 19830905 and 830905 are interpreted as '1983-09-05'.

MySQL recognizes DATETIME and TIMESTAMP values in these formats:

• As a string in either 'YYYY-MM-DD HH:MM:SS' or 'YY-MM-DD HH:MM:SS' format. A “relaxed”
syntax is permitted here, too: Any punctuation character may be used as the delimiter between
date parts or time parts. For example, '2012-12-31 11:30:45', '2012^12^31 11+30+45',
'2012/12/31 11*30*45', and '2012@12@31 11^30^45' are equivalent.

The only delimiter recognized between a date and time part and a fractional seconds part is the
decimal point.

The date and time parts can be separated by T rather than a space. For example, '2012-12-31
11:30:45' '2012-12-31T11:30:45' are equivalent.

• As a string with no delimiters in either 'YYYYMMDDHHMMSS' or 'YYMMDDHHMMSS' format, provided
that the string makes sense as a date. For example, '20070523091528' and '070523091528'
are interpreted as '2007-05-23 09:15:28', but '071122129015' is illegal (it has a nonsensical
minute part) and becomes '0000-00-00 00:00:00'.

• As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the number
makes sense as a date. For example, 19830905132800 and 830905132800 are interpreted as
'1983-09-05 13:28:00'.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. The fractional part should always be separated from the rest of the time by a
decimal point; no other fractional seconds delimiter is recognized. For information about fractional
seconds support in MySQL, see Section 11.3.6, “Fractional Seconds in Time Values”.

Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

See also Section 11.3.8, “Two-Digit Years in Dates”.

For values specified as strings that include date part delimiters, it is unnecessary to specify two digits
for month or day values that are less than 10. '2015-6-9' is the same as '2015-06-09'. Similarly,
for values specified as strings that include time part delimiters, it is unnecessary to specify two digits
for hour, minute, or second values that are less than 10. '2015-10-30 1:2:3' is the same as
'2015-10-30 01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it
is assumed to be in YYYYMMDD or YYYYMMDDHHMMSS format and that the year is given by the first 4
digits. If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDHHMMSS format and
that the year is given by the first 2 digits. Numbers that are not one of these lengths are interpreted as
though padded with leading zeros to the closest length.

Values specified as nondelimited strings are interpreted according their length. For a string 8 or 14
characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is
assumed to be given by the first 2 characters. The string is interpreted from left to right to find year,

Hexadecimal Literals

978

month, day, hour, minute, and second values, for as many parts as are present in the string. This
means you should not use strings that have fewer than 6 characters. For example, if you specify
'9903', thinking that represents March, 1999, MySQL converts it to the “zero” date value. This occurs
because the year and month values are 99 and 03, but the day part is completely missing. However,
you can explicitly specify a value of zero to represent missing month or day parts. For example, to
insert the value '1999-03-00', use '990300'.

MySQL recognizes TIME values in these formats:

• As a string in 'D HH:MM:SS' format. You can also use one of the following “relaxed” syntaxes:
'HH:MM:SS', 'HH:MM', 'D HH:MM', 'D HH', or 'SS'. Here D represents days and can have a
value from 0 to 34.

• As a string with no delimiters in 'HHMMSS' format, provided that it makes sense as a time. For
example, '101112' is understood as '10:11:12', but '109712' is illegal (it has a nonsensical
minute part) and becomes '00:00:00'.

• As a number in HHMMSS format, provided that it makes sense as a time. For example, 101112 is
understood as '10:11:12'. The following alternative formats are also understood: SS, MMSS, or
HHMMSS.

A trailing fractional seconds part is recognized in the 'D HH:MM:SS.fraction',
'HH:MM:SS.fraction', 'HHMMSS.fraction', and HHMMSS.fraction time formats, where
fraction is the fractional part in up to microseconds (6 digits) precision. The fractional part should
always be separated from the rest of the time by a decimal point; no other fractional seconds delimiter
is recognized. For information about fractional seconds support in MySQL, see Section 11.3.6,
“Fractional Seconds in Time Values”.

For TIME values specified as strings that include a time part delimiter, it is unnecessary to specify
two digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as
'08:03:02'.

9.1.4 Hexadecimal Literals

MySQL supports hexadecimal values, written using X'val', x'val', or 0xval format, where val
contains hexadecimal digits (0..9, A..F). Lettercase of the digits does not matter. For values written
using X'val' or x'val' format, val must contain an even number of digits. For values written using
0xval syntax, values that contain an odd number of digits are treated as having an extra leading 0.
For example, 0x0a and 0xaaa are interpreted as 0x0a and 0x0aaa.

In numeric contexts, hexadecimal values act like integers (64-bit precision). In string contexts, they act
like binary strings, where each pair of hex digits is converted to a character:

mysql> SELECT X'4D7953514C';
 -> 'MySQL'
mysql> SELECT 0x0a+0;
 -> 10
mysql> SELECT 0x5061756c;
 -> 'Paul'

The default type of a hexadecimal value is a string. If you want to ensure that the value is treated as a
number, you can use CAST(... AS UNSIGNED):

mysql> SELECT 0x41, CAST(0x41 AS UNSIGNED);
 -> 'A', 65

The X'hexstring' syntax is based on standard SQL. The 0x syntax is based on ODBC.
Hexadecimal strings are often used by ODBC to supply values for BLOB columns.

You can convert a string or a number to a string in hexadecimal format with the HEX() function:

Boolean Literals

979

mysql> SELECT HEX('cat');
 -> '636174'
mysql> SELECT 0x636174;
 -> 'cat'

9.1.5 Boolean Literals

The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written
in any lettercase.

mysql> SELECT TRUE, true, FALSE, false;
 -> 1, 1, 0, 0

9.1.6 Bit-Field Literals

Bit-field values can be written using b'value' or 0bvalue notation. value is a binary value written
using zeros and ones.

Bit-field notation is convenient for specifying values to be assigned to BIT columns:

mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
mysql> INSERT INTO t SET b = b'0101';

Bit values are returned as binary values. To display them in printable form, add 0 or use a conversion
function such as BIN(). High-order 0 bits are not displayed in the converted value.

mysql> SELECT b+0, BIN(b+0), OCT(b+0), HEX(b+0) FROM t;
+------+----------+----------+----------+
| b+0 | BIN(b+0) | OCT(b+0) | HEX(b+0) |
+------+----------+----------+----------+
255	11111111	377	FF
10	1010	12	A
5	101	5	5
+------+----------+----------+----------+

Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to
a user variable, use CAST() or +0:

mysql> SET @v1 = 0b1000001;
mysql> SET @v2 = CAST(0b1000001 AS UNSIGNED), @v3 = 0b1000001+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

9.1.7 NULL Values

The NULL value means “no data.” NULL can be written in any lettercase. A synonym is \N (case
sensitive).

For text file import or export operations performed with LOAD DATA INFILE or SELECT ... INTO
OUTFILE, NULL is represented by the \N sequence. See Section 13.2.6, “LOAD DATA INFILE
Syntax”.

Be aware that the NULL value is different from values such as 0 for numeric types or the empty string
for string types. For more information, see Section C.5.5.3, “Problems with NULL Values”.

9.2 Schema Object Names

Schema Object Names

980

Certain objects within MySQL, including database, table, index, column, alias, view, stored procedure,
partition, tablespace, and other object names are known as identifiers. This section describes the
permissible syntax for identifiers in MySQL. Section 9.2.2, “Identifier Case Sensitivity”, describes which
types of identifiers are case sensitive and under what conditions.

An identifier may be quoted or unquoted. If an identifier contains special characters or is a reserved
word, you must quote it whenever you refer to it. (Exception: A reserved word that follows a period
in a qualified name must be an identifier, so it need not be quoted.) Reserved words are listed at
Section 9.3, “Reserved Words”.

Identifiers are converted to Unicode internally. They may contain these characters:

• Permitted characters in unquoted identifiers:

• ASCII: [0-9,a-z,A-Z$_] (basic Latin letters, digits 0-9, dollar, underscore)

• Extended: U+0080 .. U+FFFF

• Permitted characters in quoted identifiers include the full Unicode Basic Multilingual Plane (BMP),
except U+0000:

• ASCII: U+0001 .. U+007F

• Extended: U+0080 .. U+FFFF

• ASCII NUL (U+0000) and supplementary characters (U+10000 and higher) are not permitted in
quoted or unquoted identifiers.

• Identifiers may begin with a digit but unless quoted may not consist solely of digits.

• Database, table, and column names cannot end with space characters.

The identifier quote character is the backtick (“`”):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the ANSI_QUOTES SQL mode is enabled, it is also permissible to quote identifiers within double
quotation marks:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax...
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

The ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifiers.
Consequently, when this mode is enabled, string literals must be enclosed within single quotation
marks. They cannot be enclosed within double quotation marks. The server SQL mode is controlled as
described in Section 5.1.7, “Server SQL Modes”.

Identifier quote characters can be included within an identifier if you quote the identifier. If the character
to be included within the identifier is the same as that used to quote the identifier itself, then you need
to double the character. The following statement creates a table named a`b that contains a column
named c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

mysql> SELECT 1 AS `one`, 2 AS 'two';

Identifier Qualifiers

981

+-----+-----+
| one | two |
+-----+-----+
| 1 | 2 |
+-----+-----+

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference
is treated as a string literal.

It is recommended that you do not use names that begin with Me or MeN, where M and N are integers.
For example, avoid using 1e as an identifier, because an expression such as 1e+3 is ambiguous.
Depending on context, it might be interpreted as the expression 1e + 3 or as the number 1e+3.

Be careful when using MD5() to produce table names because it can produce names in illegal or
ambiguous formats such as those just described.

A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier.
See Section 9.4, “User-Defined Variables”, for more information and examples of workarounds.

Special characters in database and table names are encoded in the corresponding file system names
as described in Section 9.2.3, “Mapping of Identifiers to File Names”. If you have databases or tables
from an older version of MySQL that contain special characters and for which the underlying directory
names or file names have not been updated to use the new encoding, the server displays their names
with a prefix of #mysql50#. For information about referring to such names or converting them to the
newer encoding, see that section.

The following table describes the maximum length for each type of identifier.

Identifier Maximum Length (characters)

Database 64

Table 64

Column 64

Index 64

Constraint 64

Stored Program 64

View 64

Tablespace 64

Server 64

Log File Group 64

Alias 256 (see exception following table)

Compound Statement Label 16

Aliases for column names in CREATE VIEW statements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters).

Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are
stored in .frm files and to identifiers stored in the grant tables in the mysql database. The sizes of
the identifier string columns in the grant tables are measured in characters. You can use multi-byte
characters without reducing the number of characters permitted for values stored in these columns,
something not true prior to MySQL 4.1. As indicated earlier, the permissible Unicode characters are
those in the Basic Multilingual Plane (BMP). Supplementary characters are not permitted.

9.2.1 Identifier Qualifiers

MySQL permits names that consist of a single identifier or multiple identifiers. The components of a
multiple-part name must be separated by period (“.”) characters. The initial parts of a multiple-part
name act as qualifiers that affect the context within which the final identifier is interpreted.

Identifier Case Sensitivity

982

In MySQL, you can refer to a table column using any of the following forms.

Column Reference Meaning

col_name The column col_name from whichever table used in the statement
contains a column of that name.

tbl_name.col_name The column col_name from table tbl_name of the default database.

db_name.tbl_name.col_nameThe column col_name from table tbl_name of the database
db_name.

The qualifier character is a separate token and need not be contiguous with the associated identifiers.
For example, tbl_name.col_name and tbl_name . col_name are equivalent.

If any components of a multiple-part name require quoting, quote them individually rather than quoting
the name as a whole. For example, write `my-table`.`my-column`, not `my-table.my-
column`.

A reserved word that follows a period in a qualified name must be an identifier, so in that context it
need not be quoted.

You need not specify a tbl_name or db_name.tbl_name prefix for a column reference in a
statement unless the reference would be ambiguous. Suppose that tables t1 and t2 each contain
a column c, and you retrieve c in a SELECT statement that uses both t1 and t2. In this case, c is
ambiguous because it is not unique among the tables used in the statement. You must qualify it with a
table name as t1.c or t2.c to indicate which table you mean. Similarly, to retrieve from a table t in
database db1 and from a table t in database db2 in the same statement, you must refer to columns in
those tables as db1.t.col_name and db2.t.col_name.

The syntax .tbl_name means the table tbl_name in the default database. This syntax is accepted
for ODBC compatibility because some ODBC programs prefix table names with a “.” character.

9.2.2 Identifier Case Sensitivity

In MySQL, databases correspond to directories within the data directory. Each table within a database
corresponds to at least one file within the database directory (and possibly more, depending on the
storage engine). Triggers also correspond to files. Consequently, the case sensitivity of the underlying
operating system plays a part in the case sensitivity of database, table, and trigger names. This
means such names are not case sensitive in Windows, but are case sensitive in most varieties
of Unix. One notable exception is Mac OS X, which is Unix-based but uses a default file system
type (HFS+) that is not case sensitive. However, Mac OS X also supports UFS volumes, which are
case sensitive just as on any Unix. See Section 1.8.1, “MySQL Extensions to Standard SQL”. The
lower_case_table_names system variable also affects how the server handles identifier case
sensitivity, as described later in this section.

Note

Although database, table, and trigger names are not case sensitive on some
platforms, you should not refer to one of these using different cases within the
same statement. The following statement would not work because it refers to a
table both as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column, index, stored routine, and event names are not case sensitive on any platform, nor are column
aliases.

However, names of logfile groups are case sensitive. This differs from standard SQL.

By default, table aliases are case sensitive on Unix, but not so on Windows or Mac OS X. The following
statement would not work on Unix, because it refers to the alias both as a and as A:

Identifier Case Sensitivity

983

mysql> SELECT col_name FROM tbl_name AS a
 -> WHERE a.col_name = 1 OR A.col_name = 2;

However, this same statement is permitted on Windows. To avoid problems caused by such
differences, it is best to adopt a consistent convention, such as always creating and referring to
databases and tables using lowercase names. This convention is recommended for maximum
portability and ease of use.

How table and database names are stored on disk and used in MySQL is affected by the
lower_case_table_names system variable, which you can set when starting mysqld.
lower_case_table_names can take the values shown in the following table. This variable does not
affect case sensitivity of trigger identifiers. On Unix, the default value of lower_case_table_names
is 0. On Windows the default value is 1. On Mac OS X, the default value is 2.

Value Meaning

0 Table and database names are stored on disk using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. You
should not set this variable to 0 if you are running MySQL on a system that has case-
insensitive file names (such as Windows or Mac OS X). If you force this variable to 0 with
--lower-case-table-names=0 on a case-insensitive file system and access MyISAM
tablenames using different lettercases, index corruption may result.

1 Table names are stored in lowercase on disk and name comparisons are not case
sensitive. MySQL converts all table names to lowercase on storage and lookup. This
behavior also applies to database names and table aliases.

2 Table and database names are stored on disk using the lettercase specified in the
CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to
lowercase on lookup. Name comparisons are not case sensitive. This works only on file
systems that are not case sensitive! InnoDB table names are stored in lowercase, as for
lower_case_table_names=1.

If you are using MySQL on only one platform, you do not normally have to change the
lower_case_table_names variable from its default value. However, you may encounter difficulties if
you want to transfer tables between platforms that differ in file system case sensitivity. For example, on
Unix, you can have two different tables named my_table and MY_TABLE, but on Windows these two
names are considered identical. To avoid data transfer problems arising from lettercase of database or
table names, you have two options:

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that when
you use SHOW TABLES or SHOW DATABASES, you do not see the names in their original lettercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows.
This preserves the lettercase of database and table names. The disadvantage of this is that you
must ensure that your statements always refer to your database and table names with the correct
lettercase on Windows. If you transfer your statements to Unix, where lettercase is significant, they
do not work if the lettercase is incorrect.

Exception: If you are using InnoDB tables and you are trying to avoid these data transfer problems,
you should set lower_case_table_names to 1 on all platforms to force names to be converted to
lowercase.

If you plan to set the lower_case_table_names system variable to 1 on Unix, you must first convert
your old database and table names to lowercase before stopping mysqld and restarting it with the new
variable setting. To do this for an individual table, use RENAME TABLE:

RENAME TABLE T1 TO t1;

To convert one or more entire databases, dump them before setting lower_case_table_names,
then drop the databases, and reload them after setting lower_case_table_names:

Mapping of Identifiers to File Names

984

1. Use mysqldump to dump each database:

mysqldump --databases db1 > db1.sql
mysqldump --databases db2 > db2.sql
...

Do this for each database that must be recreated.

2. Use DROP DATABASE to drop each database.

3. Stop the server, set lower_case_table_names, and restart the server.

4. Reload the dump file for each database. Because lower_case_table_names is set, each
database and table name will be converted to lowercase as it is recreated:

mysql < db1.sql
mysql < db2.sql
...

Object names may be considered duplicates if their uppercase forms are equal according to a binary
collation. That is true for names of cursors, conditions, procedures, functions, savepoints, stored
routine parameters, stored program local variables, and plugins. It is not true for names of columns,
constraints, databases, partitions, statements prepared with PREPARE, tables, triggers, users, and
user-defined variables.

File system case sensitivity can affect searches in string columns of INFORMATION_SCHEMA tables.
For more information, see Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”.

9.2.3 Mapping of Identifiers to File Names

There is a correspondence between database and table identifiers and names in the file system. For
the basic structure, MySQL represents each database as a directory in the data directory, and each
table by one or more files in the appropriate database directory. For the table format files (.FRM), the
data is always stored in this structure and location.

For the data and index files, the exact representation on disk is storage engine specific. These files
may be stored in the same location as the FRM files, or the information may be stored in a separate
file. InnoDB data is stored in the InnoDB data files. If you are using tablespaces with InnoDB, then the
specific tablespace files you create are used instead.

Any character is legal in database or table identifiers except ASCII NUL (0x00). MySQL encodes any
characters that are problematic in the corresponding file system objects when it creates database
directories or table files:

• Basic Latin letters (a..zA..Z), digits (0..9) and underscore (_) are encoded as is. Consequently,
their case sensitivity directly depends on file system features.

• All other national letters from alphabets that have uppercase/lowercase mapping are encoded as
shown in the following table. Values in the Code Range column are UCS-2 values.

Code Range Pattern Number Used Unused Blocks

00C0..017F [@][0..4][g..z] 5*20= 100 97 3 Latin-1 Supplement +
Latin Extended-A

0370..03FF [@][5..9][g..z] 5*20= 100 88 12 Greek and Coptic

0400..052F [@][g..z][0..6] 20*7= 140 137 3 Cyrillic + Cyrillic
Supplement

0530..058F [@][g..z][7..8] 20*2= 40 38 2 Armenian

2160..217F [@][g..z][9] 20*1= 20 16 4 Number Forms

Mapping of Identifiers to File Names

985

Code Range Pattern Number Used Unused Blocks

0180..02AF [@][g..z][a..k] 20*11=220 203 17 Latin Extended-B + IPA
Extensions

1E00..1EFF [@][g..z][l..r] 20*7= 140 136 4 Latin Extended
Additional

1F00..1FFF [@][g..z][s..z] 20*8= 160 144 16 Greek Extended

.... [@][a..f][g..z] 6*20= 120 0 120 RESERVED

24B6..24E9 [@][@][a..z] 26 26 0 Enclosed
Alphanumerics

FF21..FF5A [@][a..z][@] 26 26 0 Halfwidth and Fullwidth
forms

One of the bytes in the sequence encodes lettercase. For example: LATIN CAPITAL LETTER A
WITH GRAVE is encoded as @0G, whereas LATIN SMALL LETTER A WITH GRAVE is encoded as
@0g. Here the third byte (G or g) indicates lettercase. (On a case-insensitive file system, both letters
will be treated as the same.)

For some blocks, such as Cyrillic, the second byte determines lettercase. For other blocks, such as
Latin1 Supplement, the third byte determines lettercase. If two bytes in the sequence are letters (as
in Greek Extended), the leftmost letter character stands for lettercase. All other letter bytes must be
in lowercase.

• All nonletter characters except underscore (_), as well as letters from alphabets that do not have
uppercase/lowercase mapping (such as Hebrew) are encoded using hexadecimal representation
using lowercase letters for hex digits a..f:

0x003F -> @003f
0xFFFF -> @ffff

The hexadecimal values correspond to character values in the ucs2 double-byte character set.

On Windows, some names such as nul, prn, and aux are encoded by appending @@@ to the name
when the server creates the corresponding file or directory. This occurs on all platforms for portability of
the corresponding database object between platforms.

If you have databases or tables from a version of MySQL older than 5.1.6 that contain special
characters and for which the underlying directory names or file names have not been updated to use
the new encoding, the server displays their names with a prefix of #mysql50# in the output from
INFORMATION_SCHEMA tables or SHOW statements. For example, if you have a table named a@b and
its name encoding has not been updated, SHOW TABLES displays it like this:

mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| #mysql50#a@b |
+----------------+

To refer to such a name for which the encoding has not been updated, you must supply the
#mysql50# prefix:

mysql> SHOW COLUMNS FROM `a@b`;
ERROR 1146 (42S02): Table 'test.a@b' doesn't exist

mysql> SHOW COLUMNS FROM `#mysql50#a@b`;
+-------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+

Function Name Parsing and Resolution

986

| i | int(11) | YES | | NULL | |
+-------+---------+------+-----+---------+-------+

To update old names to eliminate the need to use the special prefix to refer to them, re-encode them
with mysqlcheck. The following command updates all names to the new encoding:

shell> mysqlcheck --check-upgrade --fix-db-names --fix-table-names --all-databases

To check only specific databases or tables, omit --all-databases and provide the appropriate
database or table arguments. For information about mysqlcheck invocation syntax, see Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

Note

The #mysql50# prefix is intended only to be used internally by the server. You
should not create databases or tables with names that use this prefix.

Also, mysqlcheck cannot fix names that contain literal instances of the @
character that is used for encoding special characters. If you have databases
or tables that contain this character, use mysqldump to dump them before
upgrading to MySQL 5.1.6 or later, and then reload the dump file after
upgrading.

9.2.4 Function Name Parsing and Resolution

MySQL 5.7 supports built-in (native) functions, user-defined functions (UDFs), and stored functions.
This section describes how the server recognizes whether the name of a built-in function is used as
a function call or as an identifier, and how the server determines which function to use in cases when
functions of different types exist with a given name.

Built-In Function Name Parsing

The parser uses default rules for parsing names of built-in functions. These rules can be changed by
enabling the IGNORE_SPACE SQL mode.

When the parser encounters a word that is the name of a built-in function, it must determine whether
the name signifies a function call or is instead a nonexpression reference to an identifier such as a
table or column name. For example, in the following statements, the first reference to count is a
function call, whereas the second reference is a table name:

SELECT COUNT(*) FROM mytable;
CREATE TABLE count (i INT);

The parser should recognize the name of a built-in function as indicating a function call only when
parsing what is expected to be an expression. That is, in nonexpression context, function names are
permitted as identifiers.

However, some built-in functions have special parsing or implementation considerations, so the parser
uses the following rules by default to distinguish whether their names are being used as function calls
or as identifiers in nonexpression context:

• To use the name as a function call in an expression, there must be no whitespace between the name
and the following “(” parenthesis character.

• Conversely, to use the function name as an identifier, it must not be followed immediately by a
parenthesis.

The requirement that function calls be written with no whitespace between the name and the
parenthesis applies only to the built-in functions that have special considerations. COUNT is one such
name. The exact list of function names for which following whitespace determines their interpretation
are those listed in the sql_functions[] array of the sql/lex.h source file. Before MySQL

Function Name Parsing and Resolution

987

5.1, these are rather numerous (about 200), so you may find it easiest to treat the no-whitespace
requirement as applying to all function calls. In MySQL 5.1 and later, parser improvements reduce to
about 30 the number of affected function names.

For functions not listed in the sql_functions[]) array, whitespace does not matter. They are
interpreted as function calls only when used in expression context and may be used freely as identifiers
otherwise. ASCII is one such name. However, for these nonaffected function names, interpretation
may vary in expression context: func_name () is interpreted as a built-in function if there is one with
the given name; if not, func_name () is interpreted as a user-defined function or stored function if
one exists with that name.

The IGNORE_SPACE SQL mode can be used to modify how the parser treats function names that are
whitespace-sensitive:

• With IGNORE_SPACE disabled, the parser interprets the name as a function call when there is no
whitespace between the name and the following parenthesis. This occurs even when the function
name is used in nonexpression context:

mysql> CREATE TABLE count(i INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'count(i INT)'

To eliminate the error and cause the name to be treated as an identifier, either use whitespace
following the name or write it as a quoted identifier (or both):

CREATE TABLE count (i INT);
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

• With IGNORE_SPACE enabled, the parser loosens the requirement that there be no whitespace
between the function name and the following parenthesis. This provides more flexibility in writing
function calls. For example, either of the following function calls are legal:

SELECT COUNT(*) FROM mytable;
SELECT COUNT (*) FROM mytable;

However, enabling IGNORE_SPACE also has the side effect that the parser treats the affected
function names as reserved words (see Section 9.3, “Reserved Words”). This means that a space
following the name no longer signifies its use as an identifier. The name can be used in function calls
with or without following whitespace, but causes a syntax error in nonexpression context unless it
is quoted. For example, with IGNORE_SPACE enabled, both of the following statements fail with a
syntax error because the parser interprets count as a reserved word:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

To use the function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

To enable the IGNORE_SPACE SQL mode, use this statement:

SET sql_mode = 'IGNORE_SPACE';

IGNORE_SPACE is also enabled by certain other composite modes such as ANSI that include it in their
value:

SET sql_mode = 'ANSI';

Function Name Parsing and Resolution

988

Check Section 5.1.7, “Server SQL Modes”, to see which composite modes enable IGNORE_SPACE.

To minimize the dependency of SQL code on the IGNORE_SPACE setting, use these guidelines:

• Avoid creating UDFs or stored functions that have the same name as a built-in function.

• Avoid using function names in nonexpression context. For example, these statements use count
(one of the affected function names affected by IGNORE_SPACE), so they fail with or without
whitespace following the name if IGNORE_SPACE is enabled:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

If you must use a function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

The number of function names affected by IGNORE_SPACE was reduced significantly in MySQL 5.1.13,
from about 200 to about 30. As of MySQL 5.1.13, only the following functions are still affected by the
IGNORE_SPACE setting.

ADDDATE BIT_AND BIT_OR BIT_XOR

CAST COUNT CURDATE CURTIME

DATE_ADD DATE_SUB EXTRACT GROUP_CONCAT

MAX MID MIN NOW

POSITION SESSION_USER STD STDDEV

STDDEV_POP STDDEV_SAMP SUBDATE SUBSTR

SUBSTRING SUM SYSDATE SYSTEM_USER

TRIM VARIANCE VAR_POP VAR_SAMP

For earlier versions of MySQL, check the contents of the sql_functions[] array in the sql/lex.h
source file to see which functions are affected by IGNORE_SPACE.

Incompatibility warning: The change in MySQL 5.1.13 that reduces the number of function names
affected by IGNORE_SPACE improves the consistency of parser operation. However, it also introduces
the possibility of incompatibility for old SQL code that relies on the following conditions:

• IGNORE_SPACE is disabled.

• The presence or absence of whitespace following a function name is used to distinguish between a
built-in function and stored function that have the same name, such as PI() versus PI ().

For functions that are no longer affected by IGNORE_SPACE as of MySQL 5.1.13, that strategy no
longer works. Either of the following approaches can be used if you have code that is subject to the
preceding incompatibility:

• If a stored function has a name that conflicts with a built-in function, refer to the stored function
with a schema name qualifier, regardless of whether whitespace is present. For example, write
schema_name.PI() or schema_name.PI ().

• Alternatively, rename the stored function to use a nonconflicting name and change invocations of the
function to use the new name.

Function Name Resolution

The following rules describe how the server resolves references to function names for function creation
and invocation:

• Built-in functions and user-defined functions

Reserved Words

989

An error occurs if you try to create a UDF with the same name as a built-in function.

• Built-in functions and stored functions

It is possible to create a stored function with the same name as a built-in function, but to invoke the
stored function it is necessary to qualify it with a schema name. For example, if you create a stored
function named PI in the test schema, you invoke it as test.PI() because the server resolves
PI() as a reference to the built-in function. The server creates a warning if the stored function name
collides with a built-in function name. The warning can be displayed with SHOW WARNINGS.

• User-defined functions and stored functions

User-defined functions and stored functions share the same namespace, so you cannot create a
UDF and a stored function with the same name.

The preceding function name resolution rules have implications for upgrading to versions of MySQL
that implement new built-in functions:

• If you have already created a user-defined function with a given name and upgrade MySQL to a
version that implements a new built-in function with the same name, the UDF becomes inaccessible.
To correct this, use DROP FUNCTION to drop the UDF, and then use CREATE FUNCTION to re-
create the UDF with a different nonconflicting name.

• If a new version of MySQL implements a built-in function with the same name as an existing stored
function, you have two choices: Rename the stored function to use a nonconflicting name, or change
calls to the function so that they use a schema qualifier (that is, use schema_name.func_name()
syntax).

9.3 Reserved Words
Certain words such as SELECT, DELETE, or BIGINT are reserved and require special treatment for
use as identifiers such as table and column names. This may also be true for the names of built-in
functions.

Reserved words are permitted as identifiers if you quote them as described in Section 9.2, “Schema
Object Names”:

mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'

mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Exception: A word that follows a period in a qualified name must be an identifier, so it need not be
quoted even if it is reserved:

mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Names of built-in functions are permitted as identifiers but may require care to be used as such. For
example, COUNT is acceptable as a column name. However, by default, no whitespace is permitted
in function invocations between the function name and the following “(” character. This requirement
enables the parser to distinguish whether the name is used in a function call or in nonfunction context.
For further detail on recognition of function names, see Section 9.2.4, “Function Name Parsing and
Resolution”.

The words in the following table are explicitly reserved in MySQL 5.7. In addition, _FILENAME is
reserved. At some point, you might upgrade to a higher version, so it is a good idea to have a look at
future reserved words, too. You can find these in the manuals that cover higher versions of MySQL.
Most of the words in the table are forbidden by standard SQL as column or table names (for example,

Reserved Words

990

GROUP). A few are reserved because MySQL needs them and uses a yacc parser. A reserved word
can be used as an identifier if you quote it.

For a more detailed list of reserved words, including differences between versions, see Reserved
Words in MySQL 5.7.

Table 9.2 Reserved Words in MySQL 5.7.5

ACCESSIBLE ADD ALL

ALTER ANALYZE AND

AS ASC ASENSITIVE

BEFORE BETWEEN BIGINT

BINARY BLOB BOTH

BY CALL CASCADE

CASE CHANGE CHAR

CHARACTER CHECK COLLATE

COLUMN CONDITION CONSTRAINT

CONTINUE CONVERT CREATE

CROSS CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATABASE DATABASES DAY_HOUR

DAY_MICROSECOND DAY_MINUTE DAY_SECOND

DEC DECIMAL DECLARE

DEFAULT DELAYED DELETE

DESC DESCRIBE DETERMINISTIC

DISTINCT DISTINCTROW DIV

DOUBLE DROP DUAL

EACH ELSE ELSEIF

ENCLOSED ESCAPED EXISTS

EXIT EXPLAIN FALSE

FETCH FLOAT FLOAT4

FLOAT8 FOR FORCE

FOREIGN FROM FULLTEXT

GET GRANT GROUP

HAVING HIGH_PRIORITY HOUR_MICROSECOND

HOUR_MINUTE HOUR_SECOND IF

IGNORE IN INDEX

INFILE INNER INOUT

INSENSITIVE INSERT INT

INT1 INT2 INT3

INT4 INT8 INTEGER

INTERVAL INTO IO_AFTER_GTIDS

IO_BEFORE_GTIDS IS ITERATE

JOIN KEY KEYS

KILL LEADING LEAVE

http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-reservedwords-5-7.html
http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-reservedwords-5-7.html

Reserved Words

991

LEFT LIKE LIMIT

LINEAR LINES LOAD

LOCALTIME LOCALTIMESTAMP LOCK

LONG LONGBLOB LONGTEXT

LOOP LOW_PRIORITY MASTER_BIND

MASTER_SSL_VERIFY_SERVER_CERTMATCH MAXVALUE

MEDIUMBLOB MEDIUMINT MEDIUMTEXT

MIDDLEINT MINUTE_MICROSECOND MINUTE_SECOND

MOD MODIFIES NATURAL

NONBLOCKING NOT NO_WRITE_TO_BINLOG

NULL NUMERIC ON

OPTIMIZE OPTION OPTIONALLY

OR ORDER OUT

OUTER OUTFILE PARTITION

PRECISION PRIMARY PROCEDURE

PURGE RANGE READ

READS READ_WRITE REAL

REFERENCES REGEXP RELEASE

RENAME REPEAT REPLACE

REQUIRE RESIGNAL RESTRICT

RETURN REVOKE RIGHT

RLIKE SCHEMA SCHEMAS

SECOND_MICROSECOND SELECT SENSITIVE

SEPARATOR SET SHOW

SIGNAL SMALLINT SPATIAL

SPECIFIC SQL SQLEXCEPTION

SQLSTATE SQLWARNING SQL_BIG_RESULT

SQL_CALC_FOUND_ROWS SQL_SMALL_RESULT SSL

STARTING STRAIGHT_JOIN TABLE

TERMINATED THEN TINYBLOB

TINYINT TINYTEXT TO

TRAILING TRIGGER TRUE

UNDO UNION UNIQUE

UNLOCK UNSIGNED UPDATE

USAGE USE USING

UTC_DATE UTC_TIME UTC_TIMESTAMP

VALUES VARBINARY VARCHAR

VARCHARACTER VARYING WHEN

WHERE WHILE WITH

WRITE XOR YEAR_MONTH

ZEROFILL

User-Defined Variables

992

Table 9.3 New Reserved Words in MySQL 5.7

NONBLOCKING

MySQL permits some keywords to be used as unquoted identifiers because many people previously
used them. Examples are those in the following list:

• ACTION

• BIT

• DATE

• ENUM

• NO

• TEXT

• TIME

• TIMESTAMP

9.4 User-Defined Variables
You can store a value in a user-defined variable in one statement and then refer to it later in another
statement. This enables you to pass values from one statement to another. User-defined variables are
session-specific. That is, a user variable defined by one client cannot be seen or used by other clients.
All variables for a given client session are automatically freed when that client exits.

User variables are written as @var_name, where the variable name var_name consists of
alphanumeric characters, “.”, “_”, and “$”. A user variable name can contain other characters if you
quote it as a string or identifier (for example, @'my-var', @"my-var", or @`my-var`).

User variable names are not case sensitive in MySQL 5.0 and up.

One way to set a user-defined variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator.

You can also assign a value to a user variable in statements other than SET. In this case, the
assignment operator must be := and not = because the latter is treated as the comparison operator =
in non-SET statements:

mysql> SET @t1=1, @t2=2, @t3:=4;
mysql> SELECT @t1, @t2, @t3, @t4 := @t1+@t2+@t3;
+------+------+------+--------------------+
| @t1 | @t2 | @t3 | @t4 := @t1+@t2+@t3 |
+------+------+------+--------------------+
| 1 | 2 | 4 | 7 |
+------+------+------+--------------------+

User variables can be assigned a value from a limited set of data types: integer, decimal, floating-point,
binary or nonbinary string, or NULL value. Assignment of decimal and real values does not preserve the
precision or scale of the value. A value of a type other than one of the permissible types is converted to
a permissible type. For example, a value having a temporal or spatial data type is converted to a binary
string.

If a user variable is assigned a nonbinary (character) string value, it has the same character set and
collation as the string. The coercibility of user variables is implicit. (This is the same coercibility as for
table column values.)

User-Defined Variables

993

Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to
a user variable, use CAST() or +0:

mysql> SET @v1 = b'1000001';
mysql> SET @v2 = CAST(b'1000001' AS UNSIGNED), @v3 = b'1000001'+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

If the value of a user variable is selected in a result set, it is returned to the client as a string.

If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.

User variables may be used in most contexts where expressions are permitted. This does not currently
include contexts that explicitly require a literal value, such as in the LIMIT clause of a SELECT
statement, or the IGNORE N LINES clause of a LOAD DATA statement.

As a general rule, other than in SET statements, you should never assign a value to a user variable and
read the value within the same statement. For example, to increment a variable, this is okay:

SET @a = @a + 1;

For other statements, such as SELECT, you might get the results you expect, but this is not
guaranteed. In the following statement, you might think that MySQL will evaluate @a first and then do
an assignment second:

SELECT @a, @a:=@a+1, ...;

However, the order of evaluation for expressions involving user variables is undefined.

Another issue with assigning a value to a variable and reading the value within the same non-SET
statement is that the default result type of a variable is based on its type at the start of the statement.
The following example illustrates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL reports to the client that column one is a string and converts all
accesses of @a to strings, even though @a is set to a number for the second row. After the SELECT
statement executes, @a is regarded as a number for the next statement.

To avoid problems with this behavior, either do not assign a value to and read the value of the same
variable within a single statement, or else set the variable to 0, 0.0, or '' to define its type before you
use it.

In a SELECT statement, each select expression is evaluated only when sent to the client. This means
that in a HAVING, GROUP BY, or ORDER BY clause, referring to a variable that is assigned a value in
the select expression list does not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

The reference to b in the HAVING clause refers to an alias for an expression in the select list that uses
@aa. This does not work as expected: @aa contains the value of id from the previous selected row, not
from the current row.

User variables are intended to provide data values. They cannot be used directly in an SQL statement
as an identifier or as part of an identifier, such as in contexts where a table or database name is

User-Defined Variables

994

expected, or as a reserved word such as SELECT. This is true even if the variable is quoted, as shown
in the following example:

mysql> SELECT c1 FROM t;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> SET @col = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| c1 |
+------+
1 row in set (0.00 sec)

mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): Unknown column '@col' in 'field list'

mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)

An exception to this principle that user variables cannot be used to provide identifiers, is when you are
constructing a string for use as a prepared statement to execute later. In this case, user variables can
be used to provide any part of the statement. The following example illustrates how this can be done:

mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE stmt FROM @s;
Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE stmt;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

See Section 13.5, “SQL Syntax for Prepared Statements”, for more information.

A similar technique can be used in application programs to construct SQL statements using program
variables, as shown here using PHP 5:

Expression Syntax

995

<?php
 $mysqli = new mysqli("localhost", "user", "pass", "test");

 if(mysqli_connect_errno())
 die("Connection failed: %s\n", mysqli_connect_error());

 $col = "c1";

 $query = "SELECT $col FROM t";

 $result = $mysqli->query($query);

 while($row = $result->fetch_assoc())
 {
 echo "<p>" . $row["$col"] . "</p>\n";
 }

 $result->close();

 $mysqli->close();
?>

Assembling an SQL statement in this fashion is sometimes known as “Dynamic SQL”.

9.5 Expression Syntax

The following rules define expression syntax in MySQL. The grammar shown here is based on that
given in the sql/sql_yacc.yy file of MySQL source distributions. See the notes after the grammar
for additional information about some of the terms.

expr:
 expr OR expr
 | expr || expr
 | expr XOR expr
 | expr AND expr
 | expr && expr
 | NOT expr
 | ! expr
 | boolean_primary IS [NOT] {TRUE | FALSE | UNKNOWN}
 | boolean_primary

boolean_primary:
 boolean_primary IS [NOT] NULL
 | boolean_primary <=> predicate
 | boolean_primary comparison_operator predicate
 | boolean_primary comparison_operator {ALL | ANY} (subquery)
 | predicate

comparison_operator: = | >= | > | <= | < | <> | !=

predicate:
 bit_expr [NOT] IN (subquery)
 | bit_expr [NOT] IN (expr [, expr] ...)
 | bit_expr [NOT] BETWEEN bit_expr AND predicate
 | bit_expr SOUNDS LIKE bit_expr
 | bit_expr [NOT] LIKE simple_expr [ESCAPE simple_expr]
 | bit_expr [NOT] REGEXP bit_expr
 | bit_expr

bit_expr:
 bit_expr | bit_expr
 | bit_expr & bit_expr
 | bit_expr << bit_expr
 | bit_expr >> bit_expr
 | bit_expr + bit_expr
 | bit_expr - bit_expr
 | bit_expr * bit_expr
 | bit_expr / bit_expr

Expression Syntax

996

 | bit_expr DIV bit_expr
 | bit_expr MOD bit_expr
 | bit_expr % bit_expr
 | bit_expr ^ bit_expr
 | bit_expr + interval_expr
 | bit_expr - interval_expr
 | simple_expr

simple_expr:
 literal
 | identifier
 | function_call
 | simple_expr COLLATE collation_name
 | param_marker
 | variable
 | simple_expr || simple_expr
 | + simple_expr
 | - simple_expr
 | ~ simple_expr
 | ! simple_expr
 | BINARY simple_expr
 | (expr [, expr] ...)
 | ROW (expr, expr [, expr] ...)
 | (subquery)
 | EXISTS (subquery)
 | {identifier expr}
 | match_expr
 | case_expr
 | interval_expr

Notes:

For operator precedence, see in Section 12.3.1, “Operator Precedence”.

For literal value syntax, see Section 9.1, “Literal Values”.

For identifier syntax, see Section 9.2, “Schema Object Names”.

Variables can be user variables, system variables, or stored program local variables or parameters:

• User variables: Section 9.4, “User-Defined Variables”

• System variables: Section 5.1.5, “Using System Variables”

• Local variables: Section 13.6.4.1, “Local Variable DECLARE Syntax”

• Parameters: Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”

param_marker is ? as used in prepared statements for placeholders. See Section 13.5.1, “PREPARE
Syntax”.

(subquery) indicates a subquery that returns a single value; that is, a scalar subquery. See
Section 13.2.10.1, “The Subquery as Scalar Operand”.

{identifier expr} is ODBC escape syntax and is accepted for ODBC compatibility. The value
is expr. The curly braces in the syntax should be written literally; they are not metasyntax as used
elsewhere in syntax descriptions.

match_expr indicates a MATCH [1197] expression. See Section 12.9, “Full-Text Search Functions”.

case_expr indicates a CASE expression. See Section 12.4, “Control Flow Functions”.

interval_expr represents a time interval. The syntax is INTERVAL expr unit, where unit is
a specifier such as HOUR, DAY, or WEEK. For the full list of unit specifiers, see the description of the
DATE_ADD() function in Section 12.7, “Date and Time Functions”.

The meaning of some operators depends on the SQL mode:

Comment Syntax

997

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 5.1.7, “Server SQL Modes”.

9.6 Comment Syntax
MySQL Server supports three comment styles:

• From a “#” character to the end of the line.

• From a “-- ” sequence to the end of the line. In MySQL, the “-- ” (double-dash) comment style
requires the second dash to be followed by at least one whitespace or control character (such as a
space, tab, newline, and so on). This syntax differs slightly from standard SQL comment syntax, as
discussed in Section 1.8.2.5, “'--' as the Start of a Comment”.

• From a /* sequence to the following */ sequence, as in the C programming language. This syntax
enables a comment to extend over multiple lines because the beginning and closing sequences need
not be on the same line.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;

Nested comments are not supported. (Under some conditions, nested comments might be permitted,
but usually are not, and users should avoid them.)

MySQL Server supports some variants of C-style comments. These enable you to write code that
includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other
SQL statement, but other SQL servers will ignore the extensions. For example, MySQL Server
recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the “!” character, the syntax within the comment is executed only if
the MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword
in the following comment is executed only by servers from MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The comment syntax just described applies to how the mysqld server parses SQL statements. The
mysql client program also performs some parsing of statements before sending them to the server. (It
does this to determine statement boundaries within a multiple-statement input line.)

Comments in this format, /*!12345 ... */, are not stored on the server. If this format is used to
comment stored routines, the comments will not be retained on the server.

Comment Syntax

998

The use of short-form mysql commands such as \C within multi-line /* ... */ comments is not
supported.

999

Chapter 10 Globalization

Table of Contents
10.1 Character Set Support ... 999

10.1.1 Character Sets and Collations in General ... 1000
10.1.2 Character Sets and Collations in MySQL ... 1001
10.1.3 Specifying Character Sets and Collations ... 1002
10.1.4 Connection Character Sets and Collations ... 1009
10.1.5 Configuring the Character Set and Collation for Applications 1011
10.1.6 Character Set for Error Messages ... 1013
10.1.7 Collation Issues .. 1014
10.1.8 String Repertoire ... 1023
10.1.9 Operations Affected by Character Set Support ... 1024
10.1.10 Unicode Support ... 1027
10.1.11 Upgrading from Previous to Current Unicode Support ... 1032
10.1.12 UTF-8 for Metadata ... 1034
10.1.13 Column Character Set Conversion ... 1035
10.1.14 Character Sets and Collations That MySQL Supports ... 1036

10.2 Setting the Error Message Language .. 1049
10.3 Adding a Character Set ... 1050

10.3.1 Character Definition Arrays .. 1052
10.3.2 String Collating Support for Complex Character Sets .. 1053
10.3.3 Multi-Byte Character Support for Complex Character Sets 1053

10.4 Adding a Collation to a Character Set .. 1053
10.4.1 Collation Implementation Types ... 1055
10.4.2 Choosing a Collation ID .. 1057
10.4.3 Adding a Simple Collation to an 8-Bit Character Set ... 1058
10.4.4 Adding a UCA Collation to a Unicode Character Set ... 1059

10.5 Character Set Configuration ... 1066
10.6 MySQL Server Time Zone Support ... 1067

10.6.1 Staying Current with Time Zone Changes .. 1069
10.6.2 Time Zone Leap Second Support .. 1070

10.7 MySQL Server Locale Support ... 1072

This chapter covers issues of globalization, which includes internationalization (MySQL's capabilities
for adapting to local use) and localization (selecting particular local conventions):

• MySQL support for character sets in SQL statements.

• How to configure the server to support different character sets.

• Selecting the language for error messages.

• How to set the server's time zone and enable per-connection time zone support.

• Selecting the locale for day and month names.

10.1 Character Set Support
MySQL includes character set support that enables you to store data using a variety of character sets
and perform comparisons according to a variety of collations. You can specify character sets at the
server, database, table, and column level. MySQL supports the use of character sets for the MyISAM,
MEMORY, and InnoDB storage engines.

This chapter discusses the following topics:

• What are character sets and collations?

Character Sets and Collations in General

1000

• The multiple-level default system for character set assignment.

• Syntax for specifying character sets and collations.

• Affected functions and operations.

• Unicode support.

• The character sets and collations that are available, with notes.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about configuring character sets for application use and character set-related
issues in client/server communication, see Section 10.1.5, “Configuring the Character Set and Collation
for Applications”, and Section 10.1.4, “Connection Character Sets and Collations”.

10.1.1 Character Sets and Collations in General

A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters
in a character set. Let's make the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: “A”, “B”, “a”, “b”. We give each letter a number: “A”
= 0, “B” = 1, “a” = 2, “b” = 3. The letter “A” is a symbol, the number 0 is the encoding for “A”, and the
combination of all four letters and their encodings is a character set.

Suppose that we want to compare two string values, “A” and “B”. The simplest way to do this is to look
at the encodings: 0 for “A” and 1 for “B”. Because 0 is less than 1, we say “A” is less than “B”. What
we've just done is apply a collation to our character set. The collation is a set of rules (only one rule in
this case): “compare the encodings.” We call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would
have at least two rules: (1) treat the lowercase letters “a” and “b” as equivalent to “A” and “B”; (2) then
compare the encodings. We call this a case-insensitive collation. It is a little more complex than a
binary collation.

In real life, most character sets have many characters: not just “A” and “B” but whole alphabets,
sometimes multiple alphabets or eastern writing systems with thousands of characters, along with
many special symbols and punctuation marks. Also in real life, most collations have many rules, not
just for whether to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a
mark attached to a character as in German “Ö”), and for multiple-character mappings (such as the rule
that “Ö” = “OE” in one of the two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets.

• Compare strings using a variety of collations.

• Mix strings with different character sets or collations in the same server, the same database, or even
the same table.

• Enable specification of character set and collation at any level.

In these respects, MySQL is far ahead of most other database management systems. However, to use
these features effectively, you need to know what character sets and collations are available, how to
change the defaults, and how they affect the behavior of string operators and functions.

Character Sets and Collations in MySQL

1001

10.1.2 Character Sets and Collations in MySQL

The MySQL server can support multiple character sets. To list the available character sets, use the
SHOW CHARACTER SET statement. A partial listing follows. For more complete information, see
Section 10.1.14, “Character Sets and Collations That MySQL Supports”.

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
...

Any given character set always has at least one collation. It may have several collations. To list the
collations for a character set, use the SHOW COLLATION statement. For example, to see the collations
for the latin1 (cp1252 West European) character set, use this statement to find those collation
names that begin with latin1:

mysql> SHOW COLLATION LIKE 'latin1%';
+---------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+---------------------+---------+----+---------+----------+---------+

The latin1 collations have the following meanings.

Collation Meaning

latin1_german1_ci German DIN-1

latin1_swedish_ci Swedish/Finnish

latin1_danish_ci Danish/Norwegian

latin1_german2_ci German DIN-2

latin1_bin Binary according to latin1 encoding

latin1_general_ci Multilingual (Western European)

latin1_general_cs Multilingual (ISO Western European), case sensitive

latin1_spanish_ci Modern Spanish

Specifying Character Sets and Collations

1002

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has one collation that is the default collation. For example, the default collation for
latin1 is latin1_swedish_ci. The output for SHOW CHARACTER SET indicates which collation
is the default for each displayed character set.

• There is a convention for collation names: They start with the name of the character set with which
they are associated, they usually include a language name, and they end with _ci (case insensitive),
_cs (case sensitive), or _bin (binary).

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform
some comparisons with representative data values to make sure that a given collation sorts values the
way you expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

10.1.3 Specifying Character Sets and Collations

There are default settings for character sets and collations at four levels: server, database, table,
and column. The description in the following sections may appear complex, but it has been found in
practice that multiple-level defaulting leads to natural and obvious results.

CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym
for CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see
Section 10.1.4, “Connection Character Sets and Collations”.

10.1.3.1 Server Character Set and Collation

MySQL Server has a server character set and a server collation. These can be set at server startup on
the command line or in an option file and changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start
mysqld. You can use --character-set-server for the character set. Along with it, you can add
--collation-server for the collation. If you don't specify a character set, that is the same as saying
--character-set-server=latin1. If you specify only a character set (for example, latin1) but
not a collation, that is the same as saying --character-set-server=latin1 --collation-
server=latin1_swedish_ci because latin1_swedish_ci is the default collation for latin1.
Therefore, the following three commands all have the same effect:

shell> mysqld
shell> mysqld --character-set-server=latin1
shell> mysqld --character-set-server=latin1 \
 --collation-server=latin1_swedish_ci

One way to change the settings is by recompiling. To change the default server character set and
collation when building from sources, use the DEFAULT_CHARSET and DEFAULT_COLLATION options
for CMake. For example:

http://www.collation-charts.org/

Specifying Character Sets and Collations

1003

shell> cmake . -DDEFAULT_CHARSET=latin1

Or:

shell> cmake . -DDEFAULT_CHARSET=latin1 \
 -DDEFAULT_COLLATION=latin1_german1_ci

Both mysqld and CMake verify that the character set/collation combination is valid. If not, each
program displays an error message and terminates.

The server character set and collation are used as default values if the database character set and
collation are not specified in CREATE DATABASE statements. They have no other purpose.

The current server character set and collation can be determined from the values of the
character_set_server and collation_server system variables. These variables can be
changed at runtime.

10.1.3.2 Database Character Set and Collation

Every database has a database character set and a database collation. The CREATE DATABASE and
ALTER DATABASE statements have optional clauses for specifying the database character set and
collation:

CREATE DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

All database options are stored in a text file named db.opt that can be found in the database
directory.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different
character sets and collations on the same MySQL server.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are
used. To see the default collation for each character set, use the SHOW COLLATION statement.

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and
collation Y are used.

• Otherwise, the server character set and server collation are used.

The database character set and collation are used as default values for table definitions if the table
character set and collation are not specified in CREATE TABLE statements. The database character set
also is used by LOAD DATA INFILE. The character set and collation have no other purposes.

The character set and collation for the default database can be determined from the values of the
character_set_database and collation_database system variables. The server sets these

Specifying Character Sets and Collations

1004

variables whenever the default database changes. If there is no default database, the variables have
the same value as the corresponding server-level system variables, character_set_server and
collation_server.

10.1.3.3 Table Character Set and Collation

Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE
statements have optional clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]]

ALTER TABLE tbl_name
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]

Example:

CREATE TABLE t1 (...)
CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are
used. To see the default collation for each character set, use the SHOW COLLATION statement.

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and
collation Y are used.

• Otherwise, the database character set and collation are used.

The table character set and collation are used as default values for column definitions if the column
character set and collation are not specified in individual column definitions. The table character set
and collation are MySQL extensions; there are no such things in standard SQL.

10.1.3.4 Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column character
set and a column collation. Column definition syntax for CREATE TABLE and ALTER TABLE has
optional clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

These clauses can also be used for ENUM and SET columns:

col_name {ENUM | SET} (val_list)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

Examples:

CREATE TABLE t1
(
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_german1_ci

Specifying Character Sets and Collations

1005

);

ALTER TABLE t1 MODIFY
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_swedish_ci;

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set and collation are specified for the column, so they are used. The column has
character set utf8 and collation utf8_unicode_ci.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are
used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set is specified for the column, but the collation is not. The column has character set
utf8 and the default collation for utf8, which is utf8_general_ci. To see the default collation for
each character set, use the SHOW COLLATION statement.

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and
collation Y are used.

CREATE TABLE t1
(
 col1 CHAR(10) COLLATE utf8_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The collation is specified for the column, but the character set is not. The column has collation
utf8_polish_ci and the character set is the one associated with the collation, which is utf8.

• Otherwise, the table character set and collation are used.

CREATE TABLE t1
(
 col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;

Neither the character set nor collation are specified for the column, so the table defaults are used.
The column has character set latin1 and collation latin1_bin.

The CHARACTER SET and COLLATE clauses are standard SQL.

If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to
map the data values, but if the character sets are incompatible, there may be data loss.

10.1.3.5 Character String Literal Character Set and Collation

Every character string literal has a character set and a collation.

A character string literal may have an optional character set introducer and COLLATE clause:

Specifying Character Sets and Collations

1006

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT 'string';
SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

For the simple statement SELECT 'string', the string has the character set and collation defined by
the character_set_connection and collation_connection system variables.

The _charset_name expression is formally called an introducer. It tells the parser, “the string that is
about to follow uses character set X.” Because this has confused people in the past, we emphasize
that an introducer does not change the string to the introducer character set like CONVERT() would do.
It does not change the string's value, although padding may occur. The introducer is just a signal. An
introducer is also legal before standard hex literal and numeric hex literal notation (x'literal' and
0xnnnn), or before bit-field literal notation (b'literal' and 0bnnnn).

Examples:

SELECT _latin1 x'AABBCC';
SELECT _latin1 0xAABBCC;
SELECT _latin1 b'1100011';
SELECT _latin1 0b1100011;

MySQL determines a literal's character set and collation in the following manner:

• If both _X and COLLATE Y are specified, character set X and collation Y are used.

• If _X is specified but COLLATE is not specified, character set X and its default collation are used. To
see the default collation for each character set, use the SHOW COLLATION statement.

• Otherwise, the character set and collation given by the character_set_connection and
collation_connection system variables are used.

Examples:

• A string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A string with latin1 character set and its default collation (that is, latin1_swedish_ci):

SELECT _latin1'Müller';

• A string with the connection default character set and collation:

SELECT 'Müller';

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

An introducer indicates the character set for the following string, but does not change now how the
parser performs escape processing within the string. Escapes are always interpreted by the parser
according to the character set given by character_set_connection.

The following examples show that escape processing occurs using character_set_connection
even in the presence of an introducer. The examples use SET NAMES (which changes
character_set_connection, as discussed in Section 10.1.4, “Connection Character Sets and

Specifying Character Sets and Collations

1007

Collations”), and display the resulting strings using the HEX() function so that the exact string contents
can be seen.

Example 1:

mysql> SET NAMES latin1;
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+
1 row in set (0.00 sec)

Here, “à” (hex value E0) is followed by “\n”, the escape sequence for newline. The escape sequence
is interpreted using the character_set_connection value of latin1 to produce a literal newline
(hex value 0A). This happens even for the second string. That is, the introducer of _sjis does not
affect the parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+
| E05C6E | E05C6E |
+------------+-------------------+
1 row in set (0.04 sec)

Here, character_set_connection is sjis, a character set in which the sequence of “à” followed
by “\” (hex values 05 and 5C) is a valid multi-byte character. Hence, the first two bytes of the string
are interpreted as a single sjis character, and the “\” is not interpreted as an escape character. The
following “n” (hex value 6E) is not interpreted as part of an escape sequence. This is true even for the
second string; the introducer of _latin1 does not affect escape processing.

10.1.3.6 National Character Set

Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should use
some predefined character set. MySQL 5.7 uses utf8 as this predefined character set. For example,
these data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';

Specifying Character Sets and Collations

1008

SELECT n'some text';
SELECT _utf8'some text';

For information on upgrading character sets to MySQL 5.7 from versions prior to 4.1, see the MySQL
3.23, 4.0, 4.1 Reference Manual.

10.1.3.7 Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The
definition is explicit, so that is straightforward. Notice that there is no problem with storing a latin1
column in a latin2 table.

Example 2: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it
might seem natural, the default collation is not taken from the table level. Instead, because the
default collation for latin1 is always latin1_swedish_ci, column c1 has a collation of
latin1_swedish_ci (not latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL
checks the table level to determine the column character set and collation. Consequently, the character
set for column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
 DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;
USE d1;
CREATE TABLE t1
(
 c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a
character set and a collation at the table level. In this circumstance, MySQL checks the database
level to determine the table settings, which thereafter become the column settings.) Consequently, the
character set for column c1 is latin2 and its collation is latin2_czech_ci.

10.1.3.8 Compatibility with Other DBMSs

For MaxDB compatibility these two statements are the same:

Connection Character Sets and Collations

1009

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

10.1.4 Connection Character Sets and Collations

Several character set and collation system variables relate to a client's interaction with the server.
Some of these have been mentioned in earlier sections:

• The server character set and collation are the values of the character_set_server and
collation_server system variables.

• The character set and collation of the default database are the values of the
character_set_database and collation_database system variables.

Additional character set and collation system variables are involved in handling traffic for the
connection between a client and the server. Every client has connection-related character set and
collation system variables.

A “connection” is what you make when you connect to the server. The client sends SQL statements,
such as queries, over the connection to the server. The server sends responses, such as result sets or
error messages, over the connection back to the client. This leads to several questions about character
set and collation handling for client connections, each of which can be answered in terms of system
variables:

• What character set is the statement in when it leaves the client?

The server takes the character_set_client system variable to be the character set in which
statements are sent by the client.

• What character set should the server translate a statement to after receiving it?

For this, the server uses the character_set_connection and collation_connection
system variables. It converts statements sent by the client from character_set_client
to character_set_connection (except for string literals that have an introducer such as
_latin1 or _utf8). collation_connection is important for comparisons of literal strings. For
comparisons of strings with column values, collation_connection does not matter because
columns have their own collation, which has a higher collation precedence.

• What character set should the server translate to before shipping result sets or error messages back
to the client?

The character_set_results system variable indicates the character set in which the server
returns query results to the client. This includes result data such as column values, and result
metadata such as column names and error messages.

Clients can fine-tune the settings for these variables, or depend on the defaults (in which case, you can
skip the rest of this section). If you do not use the defaults, you must change the character settings for
each connection to the server.

Two statements affect the connection-related character set variables as a group:

• SET NAMES 'charset_name' [COLLATE 'collation_name']

SET NAMES indicates what character set the client will use to send SQL statements to the server.
Thus, SET NAMES 'cp1251' tells the server, “future incoming messages from this client are in
character set cp1251.” It also specifies the character set that the server should use for sending
results back to the client. (For example, it indicates what character set to use for column values if you
use a SELECT statement.)

A SET NAMES 'charset_name' statement is equivalent to these three statements:

Connection Character Sets and Collations

1010

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET character_set_connection = charset_name;

Setting character_set_connection to charset_name also implicitly sets
collation_connection to the default collation for charset_name. It is unnecessary to set that
collation explicitly. To specify a particular collation, use the optional COLLATE clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

• SET CHARACTER SET charset_name

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and
collation_connection to character_set_database and collation_database. A SET
CHARACTER SET charset_name statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET collation_connection = @@collation_database;

Setting collation_connection also implicitly sets character_set_connection
to the character set associated with the collation (equivalent to executing SET
character_set_connection = @@character_set_database). It is unnecessary to set
character_set_connection explicitly.

Note

ucs2, utf16, utf16le, and utf32 cannot be used as a client character set,
which means that they do not work for SET NAMES or SET CHARACTER SET.

The MySQL client programs mysql, mysqladmin, mysqlcheck, mysqlimport, and mysqlshow
determine the default character set to use as follows:

• In the absence of other information, the programs use the compiled-in default character set, usually
latin1.

• The programs can autodetect which character set to use based on the operating system setting,
such as the value of the LANG or LC_ALL locale environment variable on Unix systems or the code
page setting on Windows systems. For systems on which the locale is available from the OS, the
client uses it to set the default character set rather than using the compiled-in default. For example,
setting LANG to ru_RU.KOI8-R causes the koi8r character set to be used. Thus, users can
configure the locale in their environment for use by MySQL clients.

The OS character set is mapped to the closest MySQL character set if there is no exact match. If
the client does not support the matching character set, it uses the compiled-in default. For example,
ucs2 is not supported as a connection character set.

C applications can use character set autodetection based on the OS setting by invoking
mysql_options() as follows before connecting to the server:

mysql_options(mysql,
 MYSQL_SET_CHARSET_NAME,
 MYSQL_AUTODETECT_CHARSET_NAME);

• The programs support a --default-character-set option, which enables users to specify the
character set explicitly to override whatever default the client otherwise determines.

When a client connects to the server, it sends the name of the character set that it wants to use.
The server uses the name to set the character_set_client, character_set_results, and

Configuring the Character Set and Collation for Applications

1011

character_set_connection system variables. In effect, the server performs a SET NAMES
operation using the character set name.

With the mysql client, to use a character set different from the default, you could explicitly execute
SET NAMES every time you start up. To accomplish the same result more easily, add the --default-
character-set option setting to your mysql command line or in your option file. For example, the
following option file setting changes the three connection-related character set variables set to koi8r
each time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is
preferable to use the charset command rather than SET NAMES. For example:

mysql> charset utf8
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set
that mysql uses when it reconnects after the connection has dropped.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say
SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends back
all the values for column1 using the character set that the client specified when it connected. On the
other hand, if you say SET NAMES 'latin1' or SET CHARACTER SET latin1 before issuing the
SELECT statement, the server converts the latin2 values to latin1 just before sending results back.
Conversion may be lossy if there are characters that are not in both character sets.

If you want the server to perform no conversion of result sets or error messages, set
character_set_results to NULL or binary:

SET character_set_results = NULL;

To see the values of the character set and collation system variables that apply to your connection, use
these statements:

SHOW VARIABLES LIKE 'character_set%';
SHOW VARIABLES LIKE 'collation%';

You must also consider the environment within which your MySQL applications execute. See
Section 10.1.5, “Configuring the Character Set and Collation for Applications”.

For more information about character sets and error messages, see Section 10.1.6, “Character Set for
Error Messages”.

10.1.5 Configuring the Character Set and Collation for Applications

For applications that store data using the default MySQL character set and collation (latin1,
latin1_swedish_ci), no special configuration should be needed. If applications require data storage
using a different character set or collation, you can configure character set information several ways:

• Specify character settings per database. For example, applications that use one database might
require utf8, whereas applications that use another database might require sjis.

• Specify character settings at server startup. This causes the server to use the given settings for all
applications that do not make other arrangements.

• Specify character settings at configuration time, if you build MySQL from source. This causes the
server to use the given settings for all applications, without having to specify them at server startup.

Configuring the Character Set and Collation for Applications

1012

When different applications require different character settings, the per-database technique provides
a good deal of flexibility. If most or all applications use the same character set, specifying character
settings at server startup or configuration time may be most convenient.

For the per-database or server-startup techniques, the settings control the character set for
data storage. Applications must also tell the server which character set to use for client/server
communications, as described in the following instructions.

The examples shown here assume use of the utf8 character set and utf8_general_ci collation.

Specify character settings per database. To create a database such that its tables will use a given
default character set and collation for data storage, use a CREATE DATABASE statement like this:

CREATE DATABASE mydb
 DEFAULT CHARACTER SET utf8
 DEFAULT COLLATE utf8_general_ci;

Tables created in the database will use utf8 and utf8_general_ci by default for any character
columns.

Applications that use the database should also configure their connection to the server each time
they connect. This can be done by executing a SET NAMES 'utf8' statement after connecting. The
statement can be used regardless of connection method: The mysql client, PHP scripts, and so forth.

In some cases, it may be possible to configure the connection to use the desired character set some
other way. For example, for connections made using mysql, you can specify the --default-
character-set=utf8 command-line option to achieve the same effect as SET NAMES 'utf8'.

For more information about configuring client connections, see Section 10.1.4, “Connection Character
Sets and Collations”.

If you change the default character set or collation for a database, stored routines that use the
database defaults must be dropped and recreated so that they use the new defaults. (In a stored
routine, variables with character data types use the database defaults if the character set or collation
are not specified explicitly. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION
Syntax”.)

Specify character settings at server startup. To select a character set and collation at server
startup, use the --character-set-server and --collation-server options. For example, to
specify the options in an option file, include these lines:

[mysqld]
character-set-server=utf8
collation-server=utf8_general_ci

These settings apply server-wide and apply as the defaults for databases created by any application,
and for tables created in those databases.

It is still necessary for applications to configure their connection using SET NAMES or equivalent
after they connect, as described previously. You might be tempted to start the server with the --
init_connect="SET NAMES 'utf8'" option to cause SET NAMES to be executed automatically
for each client that connects. However, this will yield inconsistent results because the init_connect
value is not executed for users who have the SUPER privilege.

Specify character settings at MySQL configuration time. To select a character set and
collation when you configure and build MySQL from source, use the DEFAULT_CHARSET and
DEFAULT_COLLATION options for CMake:

shell> cmake . -DDEFAULT_CHARSET=utf8 \

Character Set for Error Messages

1013

 -DDEFAULT_COLLATION=utf8_general_ci

The resulting server uses utf8 and utf8_general_ci as the default for databases and tables and
for client connections. It is unnecessary to use --character-set-server and --collation-
server to specify those defaults at server startup. It is also unnecessary for applications to configure
their connection using SET NAMES or equivalent after they connect to the server.

Regardless of how you configure the MySQL character set for application use, you must also consider
the environment within which those applications execute. If you will send statements using UTF-8 text
taken from a file that you create in an editor, you should edit the file with the locale of your environment
set to UTF-8 so that the file encoding is correct and so that the operating system handles it correctly.
If you use the mysql client from within a terminal window, the window must be configured to use
UTF-8 or characters may not display properly. For a script that executes in a Web environment, the
script must handle character encoding properly for its interaction with the MySQL server, and it must
generate pages that correctly indicate the encoding so that browsers know how to display the content
of the pages. For example, you can include this <meta> tag within your <head> element:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

10.1.6 Character Set for Error Messages

This section describes how the server uses character sets for constructing error messages and
returning them to clients. For information about the language of error messages (rather than the
character set), see Section 10.2, “Setting the Error Message Language”.

In MySQL 5.7, the server constructs error messages using UTF-8 and returns them to clients in the
character set specified by the character_set_results system variable.

The server constructs error messages as follows:

• The message template uses UTF-8.

• Parameters in the message template are replaced with values that apply to a specific error
occurrence:

• Identifiers such as table or column names use UTF-8 internally so they are copied as is.

• Character (nonbinary) string values are converted from their character set to UTF-8.

• Binary string values are copied as is for bytes in the range 0x20 to 0x7E, and using \x hex
encoding for bytes outside that range. For example, if a duplicate-key error occurs for an attempt
to insert 0x41CF9F into a VARBINARY unique column, the resulting error message uses UTF-8
with some bytes hex encoded:

Duplicate entry 'A\xC3\x9F' for key 1

To return a message to the client after it has been constructed, the server converts it from
UTF-8 to the character set specified by the character_set_results system variable. If
character_set_results has a value of NULL or binary, no conversion occurs. No conversion
occurs if the variable value is utf8, either, because that matches the original error message character
set.

For characters that cannot be represented in character_set_results, some encoding may occur
during the conversion. The encoding uses Unicode code point values:

• Characters in the Basic Multilingual Plane (BMP) range (0x0000 to 0xFFFF) are written using
\nnnn notation.

• Characters outside the BMP range (0x01000 to 0x10FFFF) are written using \+nnnnnn notation.

Collation Issues

1014

Clients can set character_set_results to control the character set in which they receive error
messages. The variable can be set directly, or indirectly by means such as SET NAMES. For more
information about character_set_results, see Section 10.1.4, “Connection Character Sets and
Collations”.

The encoding that occurs during the conversion to character_set_results before returning error
messages to clients can result in different message content compared to earlier versions (before
MySQL 5.5). For example, if an error occurs for an attempt to drop a table named ペ (KATAKANA
LETTER PE) and character_set_results is a character set such as latin1 that does not contain
that character, the resulting message sent to the client has an encoded table name:

ERROR 1051 (42S02): Unknown table '\30DA'

Before MySQL 5.5, the name is not encoded:

ERROR 1051 (42S02): Unknown table 'ペ'

10.1.7 Collation Issues

The following sections discuss various aspects of character set collations.

10.1.7.1 Collation Names

MySQL collation names follow these rules:

• A name ending in _ci indicates a case-insensitive collation.

• A name ending in _cs indicates a case-sensitive collation.

• A name ending in _bin indicates a binary collation. Character comparisons are based on character
binary code values.

• Unicode collation names may include a version number to indicate the version of the Unicode
Collation Algorithm (UCA) on which the collation is based. UCA-based collations without a version
number in the name use the version-4.0.0 UCA weight keys: http://www.unicode.org/Public/
UCA/4.0.0/allkeys-4.0.0.txt. A collation name such as utf8_unicode_520_ci is based on UCA
5.2.0 weight keys: http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt.

10.1.7.2 Using COLLATE in SQL Statements

With the COLLATE clause, you can override whatever the default collation is for a comparison.
COLLATE may be used in various parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1

http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

Collation Issues

1015

GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

 SELECT *
 FROM t1
 WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

 SELECT *
 FROM t1
 WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

10.1.7.3 COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the following two expressions are
equivalent:

x || y COLLATE z
x || (y COLLATE z)

10.1.7.4 Collations Must Be for the Right Character Set

Each character set has one or more collations, but each collation is associated with one and only one
character set. Therefore, the following statement causes an error message because the latin2_bin
collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

10.1.7.5 Collation of Expressions

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison
operation. For example, in the following cases, it should be clear that the collation is the collation of
column charset_name:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, with multiple operands, there can be ambiguity. For example:

Collation Issues

1016

SELECT x FROM T WHERE x = 'Y';

Should the comparison use the collation of the column x, or of the string literal 'Y'? Both x and 'Y'
have collations, so which collation takes precedence?

Standard SQL resolves such questions using what used to be called “coercibility” rules. MySQL
assigns coercibility values as follows:

• An explicit COLLATE clause has a coercibility of 0. (Not coercible at all.)

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a
coercibility of 3.

• The collation of a literal has a coercibility of 4.

• NULL or an expression that is derived from NULL has a coercibility of 5.

MySQL uses coercibility values with the following rules to resolve ambiguities:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set,
the side with Unicode character set wins, and automatic character set conversion is applied to the
non-Unicode side. For example, the following statement does not return an error:

SELECT CONCAT(utf8_column, latin1_column) FROM t1;

It returns a result that has a character set of utf8 and the same collation as utf8_column.
Values of latin1_column are automatically converted to utf8 before concatenating.

• For an operation with operands from the same character set but that mix a _bin collation and
a _ci or _cs collation, the _bin collation is used. This is similar to how operations that mix
nonbinary and binary strings evaluate the operands as binary strings, except that it is for collations
rather than data types.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that
every character set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-
known principle that “what applies to a superset can apply to a subset,” we believe that a collation for
Unicode can apply for comparisons with non-Unicode strings.

Examples:

Comparison Collation Used

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

The COERCIBILITY() function can be used to determine the coercibility of a string expression:

mysql> SELECT COERCIBILITY('A' COLLATE latin1_swedish_ci);
 -> 0
mysql> SELECT COERCIBILITY(VERSION());

Collation Issues

1017

 -> 3
mysql> SELECT COERCIBILITY('A');
 -> 4

See Section 12.14, “Information Functions”.

For implicit conversion of a numeric or temporal value to a string, such as occurs for the argument 1 in
the expression CONCAT(1, 'abc'), the result is a character (nonbinary) string that has a character
set and collation determined by the character_set_connection and collation_connection
system variables. See Section 12.2, “Type Conversion in Expression Evaluation”.

10.1.7.6 The _bin and binary Collations

This section describes how _bin collations for nonbinary strings differ from the binary “collation” for
binary strings.

Nonbinary strings (as stored in the CHAR, VARCHAR, and TEXT data types) have a character set and
collation. A given character set can have several collations, each of which defines a particular sorting
and comparison order for the characters in the set. One of these is the binary collation for the character
set, indicated by a _bin suffix in the collation name. For example, latin1 and utf8 have binary
collations named latin1_bin and utf8_bin.

Binary strings (as stored in the BINARY, VARBINARY, and BLOB data types) have no character set
or collation in the sense that nonbinary strings do. (Applied to a binary string, the CHARSET() and
COLLATION() functions both return a value of binary.) Binary strings are sequences of bytes and the
numeric values of those bytes determine sort order.

The _bin collations differ from the binary collation in several respects.

The unit for sorting and comparison. Binary strings are sequences of bytes. Sorting and comparison
is always based on numeric byte values. Nonbinary strings are sequences of characters, which might
be multi-byte. Collations for nonbinary strings define an ordering of the character values for sorting
and comparison. For the _bin collation, this ordering is based solely on binary code values of the
characters (which is similar to ordering for binary strings except that a _bin collation must take into
account that a character might contain multiple bytes). For other collations, character ordering might
take additional factors such as lettercase into account.

Character set conversion. A nonbinary string has a character set and is converted to another
character set in many cases, even when the string has a _bin collation:

• When assigning column values from another column that has a different character set:

UPDATE t1 SET utf8_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8_bin_column FROM t2;

• When assigning column values for INSERT or UPDATE using a string literal:

SET NAMES latin1;
INSERT INTO t1 (utf8_bin_column) VALUES ('string-in-latin1');

• When sending results from the server to a client:

SET NAMES latin1;
SELECT utf8_bin_column FROM t2;

For binary string columns, no conversion occurs. For the preceding cases, the string value is copied
byte-wise.

Lettercase conversion. Collations provide information about lettercase of characters, so characters
in a nonbinary string can be converted from one lettercase to another, even for _bin collations that
ignore lettercase for ordering:

Collation Issues

1018

mysql> SET NAMES latin1 COLLATE latin1_bin;
Query OK, 0 rows affected (0.02 sec)

mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa | ZZ |
+-------------+-------------+
1 row in set (0.13 sec)

The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion,
the string must be converted to a nonbinary string:

mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING latin1));
+-------------+-----------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING latin1)) |
+-------------+-----------------------------------+
| aA | aa |
+-------------+-----------------------------------+
1 row in set (0.00 sec)

Trailing space handling in comparisons. Nonbinary strings have PADSPACE behavior for all
collations, including _bin collations. Trailing spaces are insignificant in comparisons:

mysql> SET NAMES utf8 COLLATE utf8_bin;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 1 |
+------------+
1 row in set (0.00 sec)

For binary strings, all characters are significant in comparisons, including trailing spaces:

mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+
1 row in set (0.00 sec)

Trailing space handling for inserts and retrievals. CHAR(N) columns store nonbinary strings.
Values shorter than N characters are extended with spaces on insertion. For retrieval, trailing spaces
are removed.

BINARY(N) columns store binary strings. Values shorter than N bytes are extended with 0x00 bytes
on insertion. For retrieval, nothing is removed; a value of the declared length is always returned.

mysql> CREATE TABLE t1 (
 -> a CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin,
 -> b BINARY(10)
 ->);
Query OK, 0 rows affected (0.09 sec)

Collation Issues

1019

mysql> INSERT INTO t1 VALUES ('a','a');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(a), HEX(b) FROM t1;
+--------+----------------------+
| HEX(a) | HEX(b) |
+--------+----------------------+
| 61 | 61000000000000000000 |
+--------+----------------------+
1 row in set (0.04 sec)

10.1.7.7 The BINARY Operator

The BINARY operator casts the string following it to a binary string. This is an easy way to force a
comparison to be done byte by byte rather than character by character. BINARY also causes trailing
spaces to be significant.

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT BINARY 'a' = 'A';
 -> 0
mysql> SELECT 'a' = 'a ';
 -> 1
mysql> SELECT BINARY 'a' = 'a ';
 -> 0

BINARY str is shorthand for CAST(str AS BINARY).

The BINARY attribute in character column definitions has a different effect. A character column
defined with the BINARY attribute is assigned the binary collation of the column character set. Every
character set has a binary collation. For example, the binary collation for the latin1 character set
is latin1_bin, so if the table default character set is latin1, these two column definitions are
equivalent:

CHAR(10) BINARY
CHAR(10) CHARACTER SET latin1 COLLATE latin1_bin

The effect of BINARY as a column attribute differs from its effect prior to MySQL 4.1. Formerly, BINARY
resulted in a column that was treated as a binary string. A binary string is a string of bytes that has no
character set or collation, which differs from a nonbinary character string that has a binary collation. For
both types of strings, comparisons are based on the numeric values of the string unit, but for nonbinary
strings the unit is the character and some character sets support multi-byte characters. Section 11.4.2,
“The BINARY and VARBINARY Types”.

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes
the column to be treated as a binary data type. For example, the following pairs of definitions are
equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)

VARCHAR(10) CHARACTER SET binary
VARBINARY(10)

TEXT CHARACTER SET binary
BLOB

10.1.7.8 Examples of the Effect of Collation

Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Collation Issues

1020

Muffler
Müller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations.

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is the U with two dots over it (ü),
which the Germans call “U-umlaut.”

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says
that U-umlaut sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-
umlaut sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-
umlaut sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

mysql> SET NAMES utf8;
mysql> CREATE TABLE german1 (
 -> c CHAR(10)
 ->) CHARACTER SET latin1 COLLATE latin1_german1_ci;
mysql> CREATE TABLE german2 (
 -> c CHAR(10)
 ->) CHARACTER SET latin1 COLLATE latin1_german2_ci;
mysql> CREATE TABLE germanutf8 (
 -> c CHAR(10)
 ->) CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Each table contains two records:

mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');

Two of the above collations have an A = Ä equality, and one has no such equality
(latin1_german2_ci). For that reason, you'll get these results in comparisons:

mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |

Collation Issues

1021

| Bär |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c |
+------+
| Bär |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+

This is not a bug but rather a consequence of the sorting properties of latin1_german1_ci and
utf8_unicode_ci (the sorting shown is done according to the German DIN 5007 standard).

10.1.7.9 Collation and INFORMATION_SCHEMA Searches

String columns in INFORMATION_SCHEMA tables have a collation of utf8_general_ci, which is
case insensitive. However, searches in INFORMATION_SCHEMA string columns are also affected by file
system case sensitivity. For values that correspond to objects that are represented in the file system,
such as names of databases and tables, searches may be case sensitive if the file system is case
sensitive. This section describes how to work around this issue if necessary; see also Bug #34921.

Suppose that a query searches the SCHEMATA.SCHEMA_NAME column for the test database. On
Linux, file systems are case sensitive, so comparisons of SCHEMATA.SCHEMA_NAME with 'test'
match, but comparisons with 'TEST' do not:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.01 sec)

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'TEST';
Empty set (0.00 sec)

On Windows or Mac OS X where file systems are not case sensitive, comparisons match both 'test'
and 'TEST':

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.00 sec)

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| TEST |
+-------------+
1 row in set (0.00 sec)

The value of the lower_case_table_names system variable makes no difference in this context.

Collation Issues

1022

This behavior occurs because the utf8_general_ci collation is not used for
INFORMATION_SCHEMA queries when searching the file system for database objects. It is a result of
optimizations implemented for INFORMATION_SCHEMA searches in MySQL. For information about
these optimizations, see Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”.

Searches in INFORMATION_SCHEMA string columns for values that refer to INFORMATION_SCHEMA
itself do use the utf8_general_ci collation because INFORMATION_SCHEMA is a “virtual” database
and is not represented in the file system. For example, comparisons with SCHEMATA.SCHEMA_NAME
match 'information_schema' or 'INFORMATION_SCHEMA' regardless of platform:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'information_schema';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+
1 row in set (0.00 sec)

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'INFORMATION_SCHEMA';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+
1 row in set (0.00 sec)

If the result of a string operation on an INFORMATION_SCHEMA column differs from expectations, a
workaround is to use an explicit COLLATE clause to force a suitable collation (Section 10.1.7.2, “Using
COLLATE in SQL Statements”). For example, to perform a case-insensitive search, use COLLATE with
the INFORMATION_SCHEMA column name:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.00 sec)

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'TEST';
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.00 sec)

You can also use the UPPER() or LOWER() function:

WHERE UPPER(SCHEMA_NAME) = 'TEST'
WHERE LOWER(SCHEMA_NAME) = 'test'

Although a case-insensitive comparison can be performed even on platforms with case-sensitive
file systems, as just shown, it is not necessarily always the right thing to do. On such platforms, it is
possible to have multiple objects with names that differ only in lettercase. For example, tables named
city, CITY, and City can all exist simultaneously. Consider whether a search should match all such
names or just one and write queries accordingly:

WHERE TABLE_NAME COLLATE utf8_bin = 'City'
WHERE TABLE_NAME COLLATE utf8_general_ci = 'city'
WHERE UPPER(TABLE_NAME) = 'CITY'

String Repertoire

1023

WHERE LOWER(TABLE_NAME) = 'city'

The first of those comparisons (with utf8_bin) is case sensitive; the others are not.

10.1.8 String Repertoire

The repertoire of a character set is the collection of characters in the set.

String expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only characters in the Unicode range U+0000 to U+007F.

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+FFFF.

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted
safely without loss of information to the character set of any string with UNICODE repertoire or to a
character set that is a superset of ASCII. (All MySQL character sets are supersets of ASCII with the
exception of swe7, which reuses some punctuation characters for Swedish accented characters.) The
use of repertoire enables character set conversion in expressions for many cases where MySQL would
otherwise return an “illegal mix of collations” error.

The following discussion provides examples of expressions and their repertoires, and describes how
the use of repertoire changes string expression evaluation:

• The repertoire for string constants depends on string content:

SET NAMES utf8; SELECT 'abc';
SELECT _utf8'def';
SELECT N'MySQL';

Although the character set is utf8 in each of the preceding cases, the strings do not actually contain
any characters outside the ASCII range, so their repertoire is ASCII rather than UNICODE.

• Columns having the ascii character set have ASCII repertoire because of their character set. In
the following table, c1 has ASCII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where
an error occurs without repertoire:

CREATE TABLE t1 (
 c1 CHAR(1) CHARACTER SET latin1,
 c2 CHAR(1) CHARACTER SET ascii
);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is
returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+

Operations Affected by Character Set Support

1024

• Functions with one string argument inherit the repertoire of their argument. The result of
UPPER(_utf8'abc') has ASCII repertoire because its argument has ASCII repertoire.

• For functions that return a string but do not have string arguments and use
character_set_connection as the result character set, the result repertoire is ASCII if
character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b |
+-------------------------+

• Functions with two or more string arguments use the “widest” argument repertoire for the result
repertoire (UNICODE is wider than ASCII). Consider the following CONCAT() calls:

CONCAT(_ucs2 0x0041, _ucs2 0x0042)
CONCAT(_ucs2 0x0041, _ucs2 0x00C2)

For the first call, the repertoire is ASCII because both arguments are within the range of the ascii
character set. For the second call, the repertoire is UNICODE because the second argument is
outside the ascii character set range.

• The repertoire for function return values is determined based only on the repertoire of the arguments
that affect the result's character set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third
argument) both have ASCII repertoire. The first argument does not matter for the result repertoire,
even if the expression uses string values.

10.1.9 Operations Affected by Character Set Support

This section describes operations that take character set information into account.

10.1.9.1 Result Strings

MySQL has many operators and functions that return a string. This section answers the question: What
is the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output's character
set and collation are the same as those of the principal input value. For example, UPPER(X) returns a

Operations Affected by Character Set Support

1025

string whose character string and collation are the same as that of X. The same applies for INSTR(),
LCASE(), LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(), RPAD(),
RTRIM(), SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note: The REPLACE() function, unlike all other functions, always ignores the collation of the string
input and performs a case-sensitive comparison.

If a string input or function result is a binary string, the string has no character set or collation. This can
be checked by using the CHARSET() and COLLATION() functions, both of which return binary to
indicate that their argument is a binary string:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+
| binary | binary |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation
rules” of standard SQL apply for determining the collation of the result:

• If an explicit COLLATE X occurs, use X.

• If explicit COLLATE X and COLLATE Y occur, raise an error.

• Otherwise, if all collations are X, use X.

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting
collation is X. The same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and
LEAST().

For operations that convert to character data, the character set and collation of the strings
that result from the operations are defined by the character_set_connection and
collation_connection system variables. This applies only to CAST(), CONV(), FORMAT(),
HEX(), and SPACE().

If you are uncertain about the character set or collation of the result returned by a string function, you
can use the CHARSET() or COLLATION() function to find out:

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+----------------+-----------------+-------------------+
| test@localhost | utf8 | utf8_general_ci |
+----------------+-----------------+-------------------+

10.1.9.2 CONVERT() and CAST()

CONVERT() provides a way to convert data between different character sets. The syntax is:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8table (utf8column)

Operations Affected by Character Set Support

1026

 SELECT CONVERT(latin1field USING utf8) FROM latin1table;

CONVERT(... USING ...) is implemented according to the standard SQL specification.

You may also use CAST() to convert a string to a different character set. The syntax is:

CAST(character_string AS character_data_type CHARACTER SET charset_name)

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8);

If you use CAST() without specifying CHARACTER SET, the resulting character set and collation are
defined by the character_set_connection and collation_connection system variables.
If you use CAST() with CHARACTER SET X, the resulting character set and collation are X and the
default collation of X.

You may not use a COLLATE clause inside a CONVERT() or CAST() call, but you may use it outside.
For example, CAST(... COLLATE ...) is illegal, but CAST(...) COLLATE ... is legal:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

10.1.9.3 SHOW Statements and INFORMATION_SCHEMA

Several SHOW statements provide additional character set information. These include SHOW
CHARACTER SET, SHOW COLLATION, SHOW CREATE DATABASE, SHOW CREATE TABLE and SHOW
COLUMNS. These statements are described here briefly. For more information, see Section 13.7.5,
“SHOW Syntax”.

INFORMATION_SCHEMA has several tables that contain information similar to that displayed by
the SHOW statements. For example, the CHARACTER_SETS and COLLATIONS tables contain
the information displayed by SHOW CHARACTER SET and SHOW COLLATION. See Chapter 19,
INFORMATION_SCHEMA Tables.

The SHOW CHARACTER SET statement shows all available character sets. It takes an optional LIKE
clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

The output from SHOW COLLATION includes all available character sets. It takes an optional LIKE
clause that indicates which collation names to match. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0

Unicode Support

1027

+-------------------+---------+----+---------+----------+---------+

SHOW CREATE DATABASE displays the CREATE DATABASE statement that creates a given database:

mysql> SHOW CREATE DATABASE test;
+----------+---+
| Database | Create Database |
+----------+---+
| test | CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ |
+----------+---+

If no COLLATE clause is shown, the default collation for the character set applies.

SHOW CREATE TABLE is similar, but displays the CREATE TABLE statement to create a given table.
The column definitions indicate any character set specifications, and the table options include character
set information.

The SHOW COLUMNS statement displays the collations of a table's columns when invoked as SHOW
FULL COLUMNS. Columns with CHAR, VARCHAR, or TEXT data types have collations. Numeric and
other noncharacter types have no collation (indicated by NULL as the Collation value). For example:

mysql> SHOW FULL COLUMNS FROM person\G
*************************** 1. row ***************************
 Field: id
 Type: smallint(5) unsigned
 Collation: NULL
 Null: NO
 Key: PRI
 Default: NULL
 Extra: auto_increment
Privileges: select,insert,update,references
 Comment:
*************************** 2. row ***************************
 Field: name
 Type: char(60)
 Collation: latin1_swedish_ci
 Null: NO
 Key:
 Default:
 Extra:
Privileges: select,insert,update,references
 Comment:

The character set is not part of the display but is implied by the collation name.

10.1.10 Unicode Support

The initial implementation of Unicode support (in MySQL 4.1) included two character sets for storing
Unicode data:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

These two character sets support the characters from the Basic Multilingual Plane (BMP) of Unicode
Version 3.0. BMP characters have these characteristics:

• Their code values are between 0 and 65535 (or U+0000 .. U+FFFF).

• They can be encoded with a fixed 16-bit word, as in ucs2.

• They can be encoded with 8, 16, or 24 bits, as in utf8.

• They are sufficient for almost all characters in major languages.

Unicode Support

1028

Characters not supported by the aforementioned character sets include supplementary characters that
lie outside the BMP. Characters outside the BMP compare as REPLACEMENT CHARACTER and
convert to '?' when converted to a Unicode character set.

In MySQL 5.7, Unicode support includes supplementary characters, which requires new character sets
that have a broader range and therefore take more space. The following table shows a brief feature
comparison of previous and current Unicode support.

Before MySQL 5.5 MySQL 5.5 and up

All Unicode 3.0 characters All Unicode 5.0 and 6.0 characters

No supplementary characters With supplementary characters

ucs2 character set, BMP only No change

utf8 character set for up to three bytes, BMP
only

No change

 New utf8mb4 character set for up to four bytes,
BMP or supplemental

 New utf16 character set, BMP or supplemental

 New utf16le character set, BMP or
supplemental

 New utf32 character set, BMP or supplemental

These changes are upward compatible. If you want to use the new character sets, there are potential
incompatibility issues for your applications; see Section 10.1.11, “Upgrading from Previous to Current
Unicode Support”. That section also describes how to convert tables from utf8 to the (4-byte)
utf8mb4 character set, and what constraints may apply in doing so.

MySQL 5.7 supports these Unicode character sets:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.

• utf16, the UTF-16 encoding for the Unicode character set; like ucs2 but with an extension for
supplementary characters.

• utf16le, the UTF-16LE encoding for the Unicode character set; like utf16 but little-endian rather
than big-endian.

• utf32, the UTF-32 encoding for the Unicode character set using 32 bits per character.

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

• utf8mb4, a UTF-8 encoding of the Unicode character set using one to four bytes per character.

ucs2 and utf8 support BMP characters. utf8mb4, utf16, utf16le, and utf32 support BMP and
supplementary characters.

A similar set of collations is available for most Unicode character sets. For example, each has a Danish
collation, the names of which are ucs2_danish_ci, utf16_danish_ci, utf32_danish_ci,
utf8_danish_ci, and utf8mb4_danish_ci. The exception is utf16le, which has only two
collations. All Unicode collations are listed at Section 10.1.14.1, “Unicode Character Sets”, which also
describes collation properties for supplementary characters.

Note that although many of the supplementary characters come from East Asian languages, what
MySQL 5.7 adds is support for more Japanese and Chinese characters in Unicode character sets, not
support for new Japanese and Chinese character sets.

The MySQL implementation of UCS-2, UTF-16, and UTF-32 stores characters in big-endian byte order
and does not use a byte order mark (BOM) at the beginning of values. Other database systems might

Unicode Support

1029

use little-endian byte order or a BOM. In such cases, conversion of values will need to be performed
when transferring data between those systems and MySQL. The implementation of UTF-16LE is little-
endian.

MySQL uses no BOM for UTF-8 values.

Client applications that need to communicate with the server using Unicode should set the client
character set accordingly; for example, by issuing a SET NAMES 'utf8' statement. ucs2, utf16,
utf16le, and utf32 cannot be used as a client character set, which means that they do not work
for SET NAMES or SET CHARACTER SET. (See Section 10.1.4, “Connection Character Sets and
Collations”.)

The following sections provide additional detail on the Unicode character sets in MySQL.

10.1.10.1 The ucs2 Character Set (UCS-2 Unicode Encoding)

In UCS-2, every character is represented by a 2-byte Unicode code with the most significant byte
first. For example: LATIN CAPITAL LETTER A has the code 0x0041 and it is stored as a 2-byte
sequence: 0x00 0x41. CYRILLIC SMALL LETTER YERU (Unicode 0x044B) is stored as a 2-byte
sequence: 0x04 0x4B. For Unicode characters and their codes, please refer to the Unicode Home
Page.

In MySQL, the ucs2 character set is a fixed-length 16-bit encoding for Unicode BMP characters.

10.1.10.2 The utf16 Character Set (UTF-16 Unicode Encoding)

The utf16 character set is the ucs2 character set with an extension that enables encoding of
supplementary characters:

• For a BMP character, utf16 and ucs2 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf16 has a special sequence for representing the character using
32 bits. This is called the “surrogate” mechanism: For a number greater than 0xffff, take 10 bits
and add them to 0xd800 and put them in the first 16-bit word, take 10 more bits and add them to
0xdc00 and put them in the next 16-bit word. Consequently, all supplementary characters require
32 bits, where the first 16 bits are a number between 0xd800 and 0xdbff, and the last 16 bits
are a number between 0xdc00 and 0xdfff. Examples are in Section 15.5 Surrogates Area of the
Unicode 4.0 document.

Because utf16 supports surrogates and ucs2 does not, there is a validity check that applies only in
utf16: You cannot insert a top surrogate without a bottom surrogate, or vice versa. For example:

INSERT INTO t (ucs2_column) VALUES (0xd800); /* legal */
INSERT INTO t (utf16_column)VALUES (0xd800); /* illegal */

There is no validity check for characters that are technically valid but are not true Unicode (that is,
characters that Unicode considers to be “unassigned code points” or “private use” characters or even
“illegals” like 0xffff). For example, since U+F8FF is the Apple Logo, this is legal:

INSERT INTO t (utf16_column)VALUES (0xf8ff); /* legal */

Such characters cannot be expected to mean the same thing to everyone.

Because MySQL must allow for the worst case (that one character requires four bytes) the maximum
length of a utf16 column or index is only half of the maximum length for a ucs2 column or index.
For example, in MySQL 5.7, the maximum length of a MEMORY table index key is 3072 bytes, so these
statements create tables with the longest permitted indexes for ucs2 and utf16 columns:

http://www.unicode.org/
http://www.unicode.org/
http://unicode.org/versions/Unicode4.0.0/ch15.pdf

Unicode Support

1030

CREATE TABLE tf (s1 VARCHAR(1536) CHARACTER SET ucs2) ENGINE=MEMORY;
CREATE INDEX i ON tf (s1);
CREATE TABLE tg (s1 VARCHAR(768) CHARACTER SET utf16) ENGINE=MEMORY;
CREATE INDEX i ON tg (s1);

10.1.10.3 The utf16le Character Set (UTF-16LE Unicode Encoding)

This is the same as utf16 but is little-endian rather than big-endian.

10.1.10.4 The utf32 Character Set (UTF-32 Unicode Encoding)

The utf32 character set is fixed length (like ucs2 and unlike utf16). utf32 uses 32 bits for every
character, unlike ucs2 (which uses 16 bits for every character), and unlike utf16 (which uses 16 bits
for some characters and 32 bits for others).

utf32 takes twice as much space as ucs2 and more space than utf16, but utf32 has the same
advantage as ucs2 that it is predictable for storage: The required number of bytes for utf32 equals
the number of characters times 4. Also, unlike utf16, there are no tricks for encoding in utf32, so the
stored value equals the code value.

To demonstrate how the latter advantage is useful, here is an example that shows how to determine a
utf8mb4 value given the utf32 code value:

/* Assume code value = 100cc LINEAR B WHEELED CHARIOT */
CREATE TABLE tmp (utf32_col CHAR(1) CHARACTER SET utf32,
 utf8mb4_col CHAR(1) CHARACTER SET utf8mb4);
INSERT INTO tmp VALUES (0x000100cc,NULL);
UPDATE tmp SET utf8mb4_col = utf32_col;
SELECT HEX(utf32_col),HEX(utf8mb4_col) FROM tmp;

MySQL is very forgiving about additions of unassigned Unicode characters or private-use-area
characters. There is in fact only one validity check for utf32: No code value may be greater than
0x10ffff. For example, this is illegal:

INSERT INTO t (utf32_column) VALUES (0x110000); /* illegal */

10.1.10.5 The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)

UTF-8 (Unicode Transformation Format with 8-bit units) is an alternative way to store Unicode data.
It is implemented according to RFC 3629, which describes encoding sequences that take from one to
four bytes. (An older standard for UTF-8 encoding, RFC 2279, describes UTF-8 sequences that take
from one to six bytes. RFC 3629 renders RFC 2279 obsolete; for this reason, sequences with five and
six bytes are no longer used.)

The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different
lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a 2-byte sequence: extended Latin letters (with
tilde, macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac,
and others.

• Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences.

The utf8 character set is the same in MySQL 5.7 as before 5.7 and has exactly the same
characteristics:

• No support for supplementary characters (BMP characters only).

• A maximum of three bytes per multi-byte character.

Unicode Support

1031

Exactly the same set of characters is available in utf8 as in ucs2. That is, they have the same
repertoire.

Tip: To save space with UTF-8, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve three
bytes for each character in a CHAR CHARACTER SET utf8 column because that is the maximum
possible length. For example, MySQL must reserve 30 bytes for a CHAR(10) CHARACTER SET utf8
column.

For additional information about data type storage, see Section 11.6, “Data Type Storage
Requirements”. For information about InnoDB physical row storage, including how InnoDB tables that
use COMPACT row format handle UTF-8 CHAR(N) columns internally, see Physical Row Structure.

10.1.10.6 The utf8mb3 “Character Set” (Alias for utf8)

In a future version of MySQL, it is possible that utf8 will become the 4-byte utf8, and that users who
want to indicate 3-byte utf8 will have to say utf8mb3. To avoid some future problems which might
occur with replication when master and slave servers have different MySQL versions, it is possible for
users to specify utf8mb3 in CHARACTER SET clauses, and utf8mb3_collation_substring in
COLLATE clauses, where collation_substring is bin, czech_ci, danish_ci, esperanto_ci,
estonian_ci, and so forth. For example:

CREATE TABLE t (s1 CHAR(1) CHARACTER SET utf8mb3;
SELECT * FROM t WHERE s1 COLLATE utf8mb3_general_ci = 'x';
DECLARE x VARCHAR(5) CHARACTER SET utf8mb3 COLLATE utf8mb3_danish_ci;
SELECT CAST('a' AS CHAR CHARACTER SET utf8) COLLATE utf8_czech_ci;

MySQL immediately converts instances of utf8mb3 in an alias to utf8, so in
statements such as SHOW CREATE TABLE or SELECT CHARACTER_SET_NAME
FROM INFORMATION_SCHEMA.COLUMNS or SELECT COLLATION_NAME FROM
INFORMATION_SCHEMA.COLUMNS, users will see the true name, utf8 or
utf8_collation_substring.

The utf8mb3 alias is valid only in CHARACTER SET clauses, and in certain other places. For example,
these are legal:

mysqld --character-set-server=utf8mb3
SET NAMES 'utf8mb3'; /* and other SET statements that have similar effect */
SELECT _utf8mb3 'a';

There is no utf8mb3 alias to the corresponding utf8 collation for collation names that include a
version number (for example, utf8_unicode_520_ci) to indicate the Unicode Collation Algorithm
version on which the collation is based.

10.1.10.7 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

The character set named utf8 uses a maximum of three bytes per character and contains only
BMP characters. The utf8mb4 character set uses a maximum of four bytes per character supports
supplemental characters:

• For a BMP character, utf8 and utf8mb4 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8 cannot store the character at all, while utf8mb4 requires four
bytes to store it. Since utf8 cannot store the character at all, you do not have any supplementary
characters in utf8 columns and you need not worry about converting characters or losing data when
upgrading utf8 data from older versions of MySQL.

utf8mb4 is a superset of utf8, so for an operation such as the following concatenation, the result has
character set utf8mb4 and the collation of utf8mb4_col:

Upgrading from Previous to Current Unicode Support

1032

SELECT CONCAT(utf8_col, utf8mb4_col);

Similarly, the following comparison in the WHERE clause works according to the collation of
utf8mb_col:

SELECT * FROM utf8_tbl, utf8mb4_tbl
WHERE utf8_tbl.utf8_col = utf8mb4_tbl.utf8mb4_col;

Tip: To save space with UTF-8, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve three
(or four) bytes for each character in a CHAR CHARACTER SET utf8 (or utf8mb4) column because
that is the maximum possible length. For example, MySQL must reserve 40 bytes for a CHAR(10)
CHARACTER SET utf8mb4 column.

10.1.11 Upgrading from Previous to Current Unicode Support

This section describes issues pertaining to Unicode support that you may face when upgrading to
MySQL 5.7 from an older MySQL release. It also provides guidelines for downgrading from MySQL 5.7
to an older release.

In most respects, upgrading to MySQL 5.7 should present few problems with regard to Unicode usage,
although there are some potential areas of incompatibility. These are the primary areas of concern:

• For the variable-length character data types (VARCHAR and the TEXT types), the maximum length in
characters is less for utf8mb4 columns than for utf8 columns.

• For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of
characters that can be indexed is less for utf8mb4 columns than for utf8 columns.

Consequently, if you want to upgrade tables from utf8 to utf8mb4 to take advantage of
supplementary-character support, it may be necessary to change some column or index definitions.

Tables can be converted from utf8 to utf8mb4 by using ALTER TABLE. Suppose that a table was
originally defined as follows:

CREATE TABLE t1 (
 col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL,
 col2 CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL
) CHARACTER SET utf8;

The following statement converts t1 to use utf8mb4:

ALTER TABLE t1
 DEFAULT CHARACTER SET utf8mb4,
 MODIFY col1 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 MODIFY col2 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_bin NOT NULL;

In terms of table content, conversion from utf8 to utf8mb4 presents no problems:

• For a BMP character, utf8 and utf8mb4 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8 cannot store the character at all, while utf8mb4 requires four
bytes to store it. Since utf8 cannot store the character at all, you do not have any supplementary
characters in utf8 columns and you need not worry about converting characters or losing data when
upgrading utf8 data from older versions of MySQL.

In terms of table structure, the catch when converting from utf8 to utf8mb4 is that the maximum
length of a column or index key is unchanged in terms of bytes. Therefore, it is smaller in terms of

Upgrading from Previous to Current Unicode Support

1033

characters because the maximum length of a character is four bytes instead of three. For the CHAR,
VARCHAR, and TEXT data types, watch for these things when converting your MySQL tables:

• Check all definitions of utf8 columns and make sure they will not exceed the maximum length for
the storage engine.

• Check all indexes on utf8 columns and make sure they will not exceed the maximum length for the
storage engine. Sometimes the maximum can change due to storage engine enhancements.

If the preceding conditions apply, you must either reduce the defined length of columns or indexes, or
continue to use utf8 rather than utf8mb4.

Here are some examples where structural changes may be needed:

• A TINYTEXT column can hold up to 255 bytes, so it can hold up to 85 3-byte or 63 4-byte characters.
Suppose that you have a TINYTEXT column that uses utf8 but must be able to contain more than
63 characters. You cannot convert it to utf8mb4 unless you also change the data type to a longer
type such as TEXT.

Similarly, a very long VARCHAR column may need to be changed to one of the longer TEXT types if
you want to convert it from utf8 to utf8mb4.

• InnoDB has a maximum index length of 767 bytes, so for utf8 or utf8mb4 columns, you can index
a maximum of 255 or 191 characters, respectively. If you currently have utf8 columns with indexes
longer than 191 characters, you will need to index a smaller number of characters. In an InnoDB
table, these column and index definitions are legal:

col1 VARCHAR(500) CHARACTER SET utf8, INDEX (col1(255))

To use utf8mb4 instead, the index must be smaller:

col1 VARCHAR(500) CHARACTER SET utf8mb4, INDEX (col1(191))

The preceding types of changes are most likely to be required only if you have very long columns
or indexes. Otherwise, you should be able to convert your tables from utf8 to utf8mb4 without
problems. You can do this by using ALTER TABLE as described earlier in this section after upgrading
in place to 5.7.

The following items summarize other potential areas of incompatibility:

• Performance of 4-byte UTF-8 (utf8mb4) is slower than for 3-byte UTF-8 (utf8). If you do not want
to incur this penalty, continue to use utf8.

• SET NAMES 'utf8mb4' causes use of the 4-byte character set for connection character sets. As
long as no 4-byte characters are sent from the server, there should be no problems. Otherwise,
applications that expect to receive a maximum of three bytes per character may have problems.
Conversely, applications that expect to send 4-byte characters must ensure that the server
understands them.

• Applications cannot send utf16, utf16le, or utf32 character data to an older server that does not
understand them.

• For replication, if the character sets that support supplementary characters are going to be used on
the master, all slaves must understand them as well. If you attempt to replicate from a MySQL 5.7
master to an older slave, utf8 data will be seen as utf8 by the slave and should replicate correctly.
But you cannot send utf8mb4, utf16, utf16le, or utf32 data.

Also, keep in mind the general principle that if a table has different definitions on the master and
slave, this can lead to unexpected results. For example, the differences in limitations on index key
length makes it risky to use utf8 on the master and utf8mb4 on the slave.

UTF-8 for Metadata

1034

If you have upgraded to MySQL 5.7, and then decide to downgrade back to an older release, these
considerations apply:

• ucs2 and utf8 data should present no problems.

• Any definitions that refer to the utf8mb4, utf16, utf16le, or utf32 character sets will not be
recognized by the older server.

• For object definitions that refer to the utf8mb4 character set, you can dump them with mysqldump
in MySQL 5.7, edit the dump file to change instances of utf8mb4 to utf8, and reload the file in the
older server, as long as there are no 4-byte characters in the data. The older server will see utf8 in
the dump file object definitions and create new objects that use the (3-byte) utf8 character set.

10.1.12 UTF-8 for Metadata

Metadata is “the data about the data.” Anything that describes the database—as opposed to being
the contents of the database—is metadata. Thus column names, database names, user names,
version names, and most of the string results from SHOW are metadata. This is also true of the contents
of tables in INFORMATION_SCHEMA because those tables by definition contain information about
database objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW statements nor SELECT
statements for tables in INFORMATION_SCHEMA would work properly because different rows in the
same column of the results of these operations would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name
columns and tables using their own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This
does not cause any disruption if you never use accented or non-Latin characters. But if you do, you
should be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(),
SESSION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8
character set by default.

The server sets the character_set_system system variable to the name of the metadata character
set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and
the results of DESCRIBE functions in the character_set_system character set by default. When
you use SELECT column1 FROM t, the name column1 itself is returned from the server to the
client in the character set determined by the value of the character_set_results system variable,
which has a default value of latin1. If you want the server to pass metadata results back in a
different character set, use the SET NAMES statement to force the server to perform character set
conversion. SET NAMES sets the character_set_results and other related system variables.
(See Section 10.1.4, “Connection Character Sets and Collations”.) Alternatively, a client program can
perform the conversion after receiving the result from the server. It is more efficient for the client to
perform the conversion, but this option is not always available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns
metadata using its original character set (the set indicated by character_set_system).

Column Character Set Conversion

1035

Error messages returned from the server to the client are converted to the client character set
automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single
statement, don't worry. MySQL performs some automatic conversion for you.

SELECT * FROM t1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the
comparison.

INSERT INTO t1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the
assignment.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that
every character set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-
known principle that “what applies to a superset can apply to a subset,” we believe that a collation for
Unicode can apply for comparisons with non-Unicode strings. For more information about coercion of
strings, see Section 10.1.7.5, “Collation of Expressions”.

10.1.13 Column Character Set Conversion

To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE.
For successful conversion to occur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains
must be encoded using a single character set (the character set you're converting the column to). If
you use a binary column to store information in multiple character sets, MySQL has no way to know
which values use which character set and cannot convert the data properly.

• If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded
in the column character set, not some other character set. If the contents are encoded in a different
character set, you can convert the column to use a binary data type first, and then to a nonbinary
column with the desired character set.

Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that
the information in the column is encoded using a single character set, you can convert it to a nonbinary
column that has that character set. For example, if col1 contains binary data representing characters
in the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;

If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting
values will be padded with 0x00 bytes at the end, which may be undesirable. To remove these bytes,
use the TRIM() function:

UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);

Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET
latin1 but you want to convert it to use utf8 so that you can store values from many languages. The
following statement accomplishes this:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8;

Conversion may be lossy if the column contains characters that are not in both character sets.

Character Sets and Collations That MySQL Supports

1036

A special case occurs if you have old tables from before MySQL 4.1 where a nonbinary column
contains values that actually are encoded in a character set different from the server's default character
set. For example, an application might have stored sjis values in a column, even though MySQL's
default character set was latin1. It is possible to convert the column to use the proper character set
but an additional step is required. Suppose that the server's default character set was latin1 and
col1 is defined as CHAR(50) but its contents are sjis values. The first step is to convert the column
to a binary data type, which removes the existing character set information without performing any
character conversion:

ALTER TABLE t MODIFY col1 BLOB;

The next step is to convert the column to a nonbinary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT
or UPDATE after an upgrade to MySQL 4.1 or later. In that case, MySQL would store new values in the
column using latin1, and the column will contain a mix of sjis and latin1 values and cannot be
converted properly.

If you specified attributes when creating a column initially, you should also specify them when altering
the table with ALTER TABLE. For example, if you specified NOT NULL and an explicit DEFAULT
value, you should also provide them in the ALTER TABLE statement. Otherwise, the resulting column
definition will not include those attributes.

To convert all character columns in a table, the ALTER TABLE ... CONVERT TO CHARACTER SET
charset statement may be useful. See Section 13.1.6, “ALTER TABLE Syntax”.

10.1.14 Character Sets and Collations That MySQL Supports

MySQL supports 70+ collations for 30+ character sets. This section indicates which character sets
MySQL supports. There is one subsection for each group of related character sets. For each character
set, the permissible collations are listed.

You can always list the available character sets and their default collations with the SHOW CHARACTER
SET statement:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+
| Charset | Description | Default collation |
+----------+-----------------------------+---------------------+
big5	Big5 Traditional Chinese	big5_chinese_ci
dec8	DEC West European	dec8_swedish_ci
cp850	DOS West European	cp850_general_ci
hp8	HP West European	hp8_english_ci
koi8r	KOI8-R Relcom Russian	koi8r_general_ci
latin1	cp1252 West European	latin1_swedish_ci
latin2	ISO 8859-2 Central European	latin2_general_ci
swe7	7bit Swedish	swe7_swedish_ci
ascii	US ASCII	ascii_general_ci
ujis	EUC-JP Japanese	ujis_japanese_ci
sjis	Shift-JIS Japanese	sjis_japanese_ci
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci
tis620	TIS620 Thai	tis620_thai_ci
euckr	EUC-KR Korean	euckr_korean_ci
koi8u	KOI8-U Ukrainian	koi8u_general_ci
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci
greek	ISO 8859-7 Greek	greek_general_ci
cp1250	Windows Central European	cp1250_general_ci
gbk	GBK Simplified Chinese	gbk_chinese_ci
latin5	ISO 8859-9 Turkish	latin5_turkish_ci
armscii8	ARMSCII-8 Armenian	armscii8_general_ci

Character Sets and Collations That MySQL Supports

1037

utf8	UTF-8 Unicode	utf8_general_ci
ucs2	UCS-2 Unicode	ucs2_general_ci
cp866	DOS Russian	cp866_general_ci
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci
macce	Mac Central European	macce_general_ci
macroman	Mac West European	macroman_general_ci
cp852	DOS Central European	cp852_general_ci
latin7	ISO 8859-13 Baltic	latin7_general_ci
utf8mb4	UTF-8 Unicode	utf8mb4_general_ci
cp1251	Windows Cyrillic	cp1251_general_ci
utf16	UTF-16 Unicode	utf16_general_ci
utf16le	UTF-16LE Unicode	utf16le_general_ci
cp1256	Windows Arabic	cp1256_general_ci
cp1257	Windows Baltic	cp1257_general_ci
utf32	UTF-32 Unicode	utf32_general_ci
binary	Binary pseudo charset	binary
geostd8	GEOSTD8 Georgian	geostd8_general_ci
cp932	SJIS for Windows Japanese	cp932_japanese_ci
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci
+----------+-----------------------------+---------------------+

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform
some comparisons with representative data values to make sure that a given collation sorts values the
way you expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

10.1.14.1 Unicode Character Sets

MySQL 5.7 supports these Unicode character sets:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.

• utf16, the UTF-16 encoding for the Unicode character set; like ucs2 but with an extension for
supplementary characters.

• utf16le, the UTF-16LE encoding for the Unicode character set; like utf16 but little-endian rather
than big-endian.

• utf32, the UTF-32 encoding for the Unicode character set using 32 bits per character.

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

• utf8mb4, a UTF-8 encoding of the Unicode character set using one to four bytes per character.

ucs2 and utf8 support Basic Multilingual Plane (BMP) characters. utf8mb4, utf16, utf16le, and
utf32 support BMP and supplementary characters.

You can store text in about 650 languages using these character sets. This section lists the collations
available for each Unicode character set and describes their differentiating properties. For general
information about the character sets, see Section 10.1.10, “Unicode Support”.

A similar set of collations is available for most Unicode character sets. These are shown in the
following list, where xxx represents the character set name. For example, xxx_danish_ci represents
the Danish collations, the specific names of which are ucs2_danish_ci, utf16_danish_ci,
utf32_danish_ci, utf8_danish_ci, and utf8mb4_danish_ci.

Collation support for utf16le is more limited. The only collations available are
utf16le_general_ci and utf16le_bin. These are similar to utf16_general_ci and
utf16_bin.

Unicode collation names may also include a version number (for example, xxx_unicode_520_ci) to
indicate the Unicode Collation Algorithm version on which the collation is based, as described later in

http://www.collation-charts.org/

Character Sets and Collations That MySQL Supports

1038

this section. For such collations, there is no utf8mb3 alias to the corresponding utf8 collation. See
Section 10.1.10.6, “The utf8mb3 “Character Set” (Alias for utf8)”.

• xxx_bin

• xxx_croatian_ci

• xxx_czech_ci

• xxx_danish_ci

• xxx_esperanto_ci

• xxx_estonian_ci

• xxx_general_ci (default)

• xxx_german2_ci

• xxx_general_mysql500_ci

• xxx_hungarian_ci

• xxx_icelandic_ci

• xxx_latvian_ci

• xxx_lithuanian_ci

• xxx_persian_ci

• xxx_polish_ci

• xxx_roman_ci

• xxx_romanian_ci

• xxx_sinhala_ci

• xxx_slovak_ci

• xxx_slovenian_ci

• xxx_spanish_ci

• xxx_spanish2_ci

• xxx_swedish_ci

• xxx_turkish_ci

• xxx_unicode_ci

• xxx_vietnamese_ci

MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm
(UCA) described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0
UCA weight keys: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. Currently, the
xxx_unicode_ci collations have only partial support for the Unicode Collation Algorithm. Some
characters are not supported yet. Also, combining marks are not fully supported. This affects primarily
Vietnamese, Yoruba, and some smaller languages such as Navajo. A combined character will
be considered different from the same character written with a single unicode character in string

http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

Character Sets and Collations That MySQL Supports

1039

comparisons, and the two characters are considered to have a different length (for example, as
returned by the CHAR_LENGTH() function or in result set metadata).

MySQL implements language-specific Unicode collations only if the ordering with xxx_unicode_ci
does not work well for a language. Language-specific collations are UCA-based. They are derived from
xxx_unicode_ci with additional language tailoring rules.

Collations based on UCA versions later than 4.0.0 include the version in the collation name. Thus,
xxx_unicode_520_ci collations are based on UCA 5.2.0 weight keys: http://www.unicode.org/
Public/UCA/5.2.0/allkeys.txt.

LOWER() and UPPER() perform case folding according to the collation of their argument. A character
that has uppercase and lowercase versions only in a Unicode version more recent than 4.0.0 will be
converted by these functions only if the argument has a collation that uses a recent enough UCA
version.

For any Unicode character set, operations performed using the xxx_general_ci collation are faster
than those for the xxx_unicode_ci collation. For example, comparisons for the utf8_general_ci
collation are faster, but slightly less correct, than comparisons for utf8_unicode_ci. The reason
for this is that utf8_unicode_ci supports mappings such as expansions; that is, when one
character compares as equal to combinations of other characters. For example, in German and some
other languages “ß” is equal to “ss”. utf8_unicode_ci also supports contractions and ignorable
characters. utf8_general_ci is a legacy collation that does not support expansions, contractions, or
ignorable characters. It can make only one-to-one comparisons between characters.

To further illustrate, the following equalities hold in both utf8_general_ci and utf8_unicode_ci
(for the effect this has in comparisons or when doing searches, see Section 10.1.7.8, “Examples of the
Effect of Collation”):

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8_general_ci:

ß = s

Whereas this is true for utf8_unicode_ci, which supports the German DIN-1 ordering (also known
as dictionary order):

ß = ss

MySQL implements language-specific collations for the utf8 character set only if the ordering with
utf8_unicode_ci does not work well for a language. For example, utf8_unicode_ci works fine
for German dictionary order and French, so there is no need to create special utf8 collations.

utf8_general_ci also is satisfactory for both German and French, except that “ß” is equal to
“s”, and not to “ss”. If this is acceptable for your application, you should use utf8_general_ci
because it is faster. If this is not acceptable (for example, if you require German dictionary order), use
utf8_unicode_ci because it is more accurate.

If you require German DIN-2 (phone book) ordering, use the utf8_german2_ci collation, which
compares the following sets of characters equal:

Ä = Æ = AE
Ö = Œ = OE
Ü = UE
ß = ss

http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

Character Sets and Collations That MySQL Supports

1040

utf8_german2_ci is similar to latin1_german2_ci, but the latter does not compare “Æ” equal to
“AE” or “Œ” equal to “OE”. There is no utf8_german_ci corresponding to latin1_german_ci for
German dictionary order because utf8_general_ci suffices.

xxx_swedish_ci includes Swedish rules. For example, in Swedish, the following relationship holds,
which is not something expected by a German or French speaker:

Ü = Y < Ö

The xxx_spanish_ci and xxx_spanish2_ci collations correspond to modern Spanish and
traditional Spanish, respectively. In both collations, “ñ” (n-tilde) is a separate letter between “n” and “o”.
In addition, for traditional Spanish, “ch” is a separate letter between “c” and “d”, and “ll” is a separate
letter between “l” and “m”

The xxx_spanish2_ci collations may also be used for Asturian and Galician.

The xxx_danich_ci collations may also be used for Norwegian.

In the xxx_roman_ci collations, I and J compare as equal, and U and V compare as equal.

The xxx_croatian_ci collations are tailored for these Croatian letters: Č, Ć, Dž, Đ, Lj, Nj, Š, Ž.

For all Unicode collations except the “binary” (xxx_bin) collations, MySQL performs a table lookup
to find a character's collating weight. This weight can be displayed using the WEIGHT_STRING()
function. (See Section 12.5, “String Functions”.) If a character is not in the table (for example, because
it is a “new” character), collating weight determination becomes more complex:

• For BMP characters in general collations (xxx_general_ci), weight = code point.

• For BMP characters in UCA collations (for example, xxx_unicode_ci and language-specific
collations), the following algorithm applies:

if (code >= 0x3400 && code <= 0x4DB5)
 base= 0xFB80; /* CJK Ideograph Extension */
else if (code >= 0x4E00 && code <= 0x9FA5)
 base= 0xFB40; /* CJK Ideograph */
else
 base= 0xFBC0; /* All other characters */
aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

The result is a sequence of two collating elements, aaaa followed by bbbb. For example:

mysql> SELECT HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci));
+--+
| HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci)) |
+--+
| FBC084CF |
+--+

Thus, U+04cf CYRILLIC SMALL LETTER PALOCHKA is, with all UCA 4.0.0 collations, greater
than U+04c0 CYRILLIC LETTER PALOCHKA. With UCA 5.2.0 collations, all palochkas sort
together.

• For supplementary characters in general collations, the weight is the weight for 0xfffd
REPLACEMENT CHARACTER. For supplementary characters in UCA 4.0.0 collations, their collating
weight is 0xfffd. That is, to MySQL, all supplementary characters are equal to each other, and
greater than almost all BMP characters.

An example with Deseret characters and COUNT(DISTINCT):

Character Sets and Collations That MySQL Supports

1041

CREATE TABLE t (s1 VARCHAR(5) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0xfffd); /* REPLACEMENT CHARACTER */
INSERT INTO t VALUES (0x010412); /* DESERET CAPITAL LETTER BEE */
INSERT INTO t VALUES (0x010413); /* DESERET CAPITAL LETTER TEE */
SELECT COUNT(DISTINCT s1) FROM t;

The result is 2 because in the MySQL xxx_unicode_ci collations, the replacement character has a
weight of 0x0dc6, whereas Deseret Bee and Deseret Tee both have a weight of 0xfffd. (Were the
utf32_general_ci collation used instead, the result would be 1 because all three characters have
a weight of 0xfffd in that collation.)

An example with cuneiform characters and WEIGHT_STRING():

/*
The four characters in the INSERT string are
00000041 # LATIN CAPITAL LETTER A
0001218F # CUNEIFORM SIGN KAB
000121A7 # CUNEIFORM SIGN KISH
00000042 # LATIN CAPITAL LETTER B
*/
CREATE TABLE t (s1 CHAR(4) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0x000000410001218f000121a700000042);
SELECT HEX(WEIGHT_STRING(s1)) FROM t;

The result is:

0E33 FFFD FFFD 0E4A

0E33 and 0E4A are primary weights as in UCA 4.0.0. FFFD is the weight for KAB and also for KISH.

The rule that all supplementary characters are equal to each other is nonoptimal but is not expected
to cause trouble. These characters are very rare, so it will be very rare that a multi-character string
consists entirely of supplementary characters. In Japan, since the supplementary characters are
obscure Kanji ideographs, the typical user does not care what order they are in, anyway. If you really
want rows sorted by MySQL's rule and secondarily by code point value, it is easy:

ORDER BY s1 COLLATE utf32_unicode_ci, s1 COLLATE utf32_bin

• For supplementary characters based on UCA versions later than 4.0.0 (for example,
xxx_unicode_520_ci), supplementary characters do not necessarily all have the same collation
weight. Some have explicit weights from the UCA allkeys.txt file. Others have weights calculated
from this algorithm:

aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

The utf16_bin Collation

There is a difference between “ordering by the character's code value” and “ordering by the character's
binary representation,” a difference that appears only with utf16_bin, because of surrogates.

Suppose that utf16_bin (the binary collation for utf16) was a binary comparison “byte by byte”
rather than “character by character.” If that were so, the order of characters in utf16_bin would differ
from the order in utf8_bin. For example, the following chart shows two rare characters. The first
character is in the range E000-FFFF, so it is greater than a surrogate but less than a supplementary.
The second character is a supplementary.

Code point Character utf8 utf16
---------- --------- ---- -----
0FF9D HALFWIDTH KATAKANA LETTER N EF BE 9D FF 9D
10384 UGARITIC LETTER DELTA F0 90 8E 84 D8 00 DF 84

ftp://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

Character Sets and Collations That MySQL Supports

1042

The two characters in the chart are in order by code point value because 0xff9d < 0x10384. And
they are in order by utf8 value because 0xef < 0xf0. But they are not in order by utf16 value, if we
use byte-by-byte comparison, because 0xff > 0xd8.

So MySQL's utf16_bin collation is not “byte by byte.” It is “by code point.” When MySQL sees a
supplementary-character encoding in utf16, it converts to the character's code-point value, and then
compares. Therefore, utf8_bin and utf16_bin are the same ordering. This is consistent with the
SQL:2008 standard requirement for a UCS_BASIC collation: “UCS_BASIC is a collation in which the
ordering is determined entirely by the Unicode scalar values of the characters in the strings being
sorted. It is applicable to the UCS character repertoire. Since every character repertoire is a subset of
the UCS repertoire, the UCS_BASIC collation is potentially applicable to every character set. NOTE 11:
The Unicode scalar value of a character is its code point treated as an unsigned integer.”

If the character set is ucs2, comparison is byte-by-byte, but ucs2 strings should not contain
surrogates, anyway.

The xxx_general_mysql500_ci collations preserve the pre-5.1.24 ordering of the original
xxx_general_ci collations and permit upgrades for tables created before MySQL 5.1.24. For
more information, see Section 2.10.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, and
Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.

For additional information about Unicode collations in MySQL, see Collation-Charts.Org (utf8).

10.1.14.2 West European Character Sets

Western European character sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

http://www.collation-charts.org/mysql60/by-charset.html#utf8

Character Sets and Collations That MySQL Supports

1043

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252
character set. This means it is the same as the official ISO 8859-1 or IANA (Internet Assigned
Numbers Authority) latin1, except that IANA latin1 treats the code points between 0x80 and
0x9f as “undefined,” whereas cp1252, and therefore MySQL's latin1, assign characters for
those positions. For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL
translates 0x81 to Unicode 0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d
to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL
customers. Although it is frequently said that it is based on the Swedish/Finnish collation rules, there
are Swedes and Finns who disagree with this statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and
DIN-2 standards, where DIN stands for Deutsches Institut für Normung (the German equivalent of
ANSI). DIN-1 is called the “dictionary collation” and DIN-2 is called the “phone book collation.” For
an example of the effect this has in comparisons or when doing searches, see Section 10.1.7.8,
“Examples of the Effect of Collation”.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

In the latin1_spanish_ci collation, “ñ” (n-tilde) is a separate letter between “n” and “o”.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

For additional information about Western European collations in MySQL, see Collation-Charts.Org
(ascii, cp850, dec8, hp8, latin1, macroman, swe7).

10.1.14.3 Central European Character Sets

MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, Poland, and Serbia (Latin).

http://www.collation-charts.org/mysql60/by-charset.html#ascii
http://www.collation-charts.org/mysql60/by-charset.html#cp850
http://www.collation-charts.org/mysql60/by-charset.html#dec8
http://www.collation-charts.org/mysql60/by-charset.html#hp8
http://www.collation-charts.org/mysql60/by-charset.html#latin1
http://www.collation-charts.org/mysql60/by-charset.html#macroman
http://www.collation-charts.org/mysql60/by-charset.html#swe7

Character Sets and Collations That MySQL Supports

1044

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

• cp1250_general_ci (default)

• cp1250_polish_ci

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

For additional information about Central European collations in MySQL, see Collation-Charts.Org
(cp1250, cp852, keybcs2, latin2, macce).

10.1.14.4 South European and Middle East Character Sets

South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic,
Georgian, Greek, Hebrew, and Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

http://www.collation-charts.org/mysql60/by-charset.html#cp1250
http://www.collation-charts.org/mysql60/by-charset.html#cp852
http://www.collation-charts.org/mysql60/by-charset.html#keybcs2
http://www.collation-charts.org/mysql60/by-charset.html#latin2
http://www.collation-charts.org/mysql60/by-charset.html#macce

Character Sets and Collations That MySQL Supports

1045

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

• latin5_bin

• latin5_turkish_ci (default)

For additional information about South European and Middle Eastern collations in MySQL, see
Collation-Charts.Org (armscii8, cp1256, geostd8, greek, hebrew, latin5).

10.1.14.5 Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

For additional information about Baltic collations in MySQL, see Collation-Charts.Org (cp1257, latin7).

10.1.14.6 Cyrillic Character Sets

The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian,
and Serbian (Cyrillic) languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

http://www.collation-charts.org/mysql60/by-charset.html#armscii8
http://www.collation-charts.org/mysql60/by-charset.html#cp1256
http://www.collation-charts.org/mysql60/by-charset.html#geostd8
http://www.collation-charts.org/mysql60/by-charset.html#greek
http://www.collation-charts.org/mysql60/by-charset.html#hebrew
http://www.collation-charts.org/mysql60/by-charset.html#latin5
http://www.collation-charts.org/mysql60/by-charset.html#cp1257
http://www.collation-charts.org/mysql60/by-charset.html#latin7

Character Sets and Collations That MySQL Supports

1046

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

For additional information about Cyrillic collations in MySQL, see Collation-Charts.Org (cp1251, cp866,
koi8r, koi8u).).

10.1.14.7 Asian Character Sets

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can be
complicated. For example, the Chinese sets must allow for thousands of different characters. See The
cp932 Character Set, for additional information about the cp932 and sjis character sets.

For answers to some common questions and problems relating support for Asian character sets in
MySQL, see Section B.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

http://www.collation-charts.org/mysql60/by-charset.html#cp1251
http://www.collation-charts.org/mysql60/by-charset.html#cp866
http://www.collation-charts.org/mysql60/by-charset.html#koi8r
http://www.collation-charts.org/mysql60/by-charset.html#koi8u

Character Sets and Collations That MySQL Supports

1047

• gbk_bin

• gbk_chinese_ci (default)

• gb18030 (China National Standard GB18030) collations:

• gb18030_bin

• gb18030_chinese_ci (default)

• gb18030_chinese_unicode520_ci

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

The big5_chinese_ci collation sorts on number of strokes.

For additional information about Asian collations in MySQL, see Collation-Charts.Org (big5, cp932,
eucjpms, euckr, gb2312, gbk, sjis, tis620, ujis).

The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA,
which supports JIS X0201 and JIS X0208 characters. (See http://www.iana.org/assignments/character-
sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often
includes the extensions to Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of
Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addition to
the characters supported by Shift_JIS, cp932 supports extension characters such as NEC special
characters, NEC selected—IBM extended characters, and IBM selected characters.

Many Japanese users have experienced problems using these extension characters. These problems
stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted using Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters
are converted to Unicode differently depending on the conversion rule. MySQL supports only one of
these rules (described later).

http://www.collation-charts.org/mysql60/by-charset.html#big5
http://www.collation-charts.org/mysql60/by-charset.html#cp932
http://www.collation-charts.org/mysql60/by-charset.html#eucjpms
http://www.collation-charts.org/mysql60/by-charset.html#euckr
http://www.collation-charts.org/mysql60/by-charset.html#gb2312
http://www.collation-charts.org/mysql60/by-charset.html#gbk
http://www.collation-charts.org/mysql60/by-charset.html#sjis
http://www.collation-charts.org/mysql60/by-charset.html#tis620
http://www.collation-charts.org/mysql60/by-charset.html#ujis
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Character Sets and Collations That MySQL Supports

1048

The MySQL cp932 character set is designed to solve these problems.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and
cp932 into two different character sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected—IBM extended characters, and IBM
selected characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode
code point. When converting from Unicode back to cp932, one of the code points must be
selected. For this “round trip conversion,” the rule recommended by Microsoft is used. (See http://
support.microsoft.com/kb/170559/EN-US/.)

The conversion rule works like this:

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X
0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point
of NEC special characters.

• If the character is in both IBM selected characters and NEC selected—IBM extended characters,
use the code point of IBM extended characters.

The table shown at http://www.microsoft.com/globaldev/reference/dbcs/932.htm provides information
about the Unicode values of cp932 characters. For cp932 table entries with characters under which
a four-digit number appears, the number represents the corresponding Unicode (ucs2) encoding.
For table entries with an underlined two-digit value appears, there is a range of cp932 character
values that begin with those two digits. Clicking such a table entry takes you to a page that displays
the Unicode value for each of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of
characters:

• NEC special characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm

• NEC selected—IBM extended characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm

• IBM selected characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm

• cp932 supports conversion of user-defined characters in combination with eucjpms, and solves the
problems with sjis/ujis conversion. For details, please refer to http://www.opengroup.or.jp/jvc/cde/
sjis-euc-e.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following
tables illustrate these differences.

Conversion to ucs2:

http://support.microsoft.com/kb/170559/EN-US/
http://support.microsoft.com/kb/170559/EN-US/
http://www.microsoft.com/globaldev/reference/dbcs/932.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html

Setting the Error Message Language

1049

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-
handshake (or --skip-character-set-client-handshake) has an important effect. See
Section 5.1.3, “Server Command Options”.

10.2 Setting the Error Message Language

By default, mysqld produces error messages in English, but they can also be displayed in any of
several other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian,
Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak,
Spanish, or Swedish.

You can select which language the server uses for error messages using the instructions in this
section.

In MySQL 5.7, the server searches for the error message file in two locations:

Adding a Character Set

1050

• It tries to find the file in a directory constructed from two system variable values, lc_messages_dir
and lc_messages, with the latter converted to a language name. Suppose that you start the server
using this command:

shell> mysqld --lc_messages_dir=/usr/share/mysql --lc_messages=fr_FR

In this case, mysqld maps the locale fr_FR to the language french and looks for the error file in
the /usr/share/mysql/french directory.

• If the message file cannot be found in the directory constructed as just described, the server ignores
the lc_messages value and uses only the lc_messages_dir value as the location in which to
look.

The lc_messages_dir system variable has only a global value and is read only. lc_messages
has global and session values and can be modified at runtime, so the error message language can be
changed while the server is running, and individual clients each can have a different error message
language by changing their session lc_messages value to a different locale name. For example, if
the server is using the fr_FR locale for error messages, a client can execute this statement to receive
error messages in English:

mysql> SET lc_messages = 'en_US';

By default, the language files are located in the share/mysql/LANGUAGE directory under the MySQL
base directory.

For information about changing the character set for error messages (rather than the language), see
Section 10.1.6, “Character Set for Error Messages”.

You can change the content of the error messages produced by the server using the instructions in
the MySQL Internals manual, available at MySQL Internals: Error Messages. If you do change the
content of error messages, remember to repeat your changes after each upgrade to a newer version of
MySQL.

10.3 Adding a Character Set
This section discusses the procedure for adding a character set to MySQL. The proper procedure
depends on whether the character set is simple or complex:

• If the character set does not need special string collating routines for sorting and does not need
multi-byte character support, it is simple.

• If the character set needs either of those features, it is complex.

For example, greek and swe7 are simple character sets, whereas big5 and czech are complex
character sets.

To use the following instructions, you must have a MySQL source distribution. In the instructions,
MYSET represents the name of the character set that you want to add.

1. Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the
existing contents in the file as a guide to adding new contents. A partial listing for the latin1
<charset> element follows:

<charset name="latin1">
 <family>Western</family>
 <description>cp1252 West European</description>
 ...
 <collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
 <flag>primary</flag>
 <flag>compiled</flag>

http://dev.mysql.com/doc/internals/en/error-messages.html

Adding a Character Set

1051

 </collation>
 <collation name="latin1_danish_ci" id="15" order="Danish"/>
 ...
 <collation name="latin1_bin" id="47" order="Binary">
 <flag>binary</flag>
 <flag>compiled</flag>
 </collation>
 ...
</charset>

The <charset> element must list all the collations for the character set. These must include at
least a binary collation and a default (primary) collation. The default collation is often named using
a suffix of general_ci (general, case insensitive). It is possible for the binary collation to be the
default collation, but usually they are different. The default collation should have a primary flag.
The binary collation should have a binary flag.

You must assign a unique ID number to each collation. The range of IDs from 1024 to 2047 is
reserved for user-defined collations. To find the maximum of the currently used collation IDs, use
this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

2. This step depends on whether you are adding a simple or complex character set. A simple
character set requires only a configuration file, whereas a complex character set requires C source
file that defines collation functions, multi-byte functions, or both.

For a simple character set, create a configuration file, MYSET.xml, that describes the character
set properties. Create this file in the sql/share/charsets directory. You can use a copy of
latin1.xml as the basis for this file. The syntax for the file is very simple:

• Comments are written as ordinary XML comments (<!-- text -->).

• Words within <map> array elements are separated by arbitrary amounts of whitespace.

• Each word within <map> array elements must be a number in hexadecimal format.

• The <map> array element for the <ctype> element has 257 words. The other <map> array
elements after that have 256 words. See Section 10.3.1, “Character Definition Arrays”.

• For each collation listed in the <charset> element for the character set in Index.xml,
MYSET.xml must contain a <collation> element that defines the character ordering.

For a complex character set, create a C source file that describes the character set properties and
defines the support routines necessary to properly perform operations on the character set:

• Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-
*.c files (such as ctype-big5.c) to see what needs to be defined. The arrays in your file must
have names like ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays
for a simple character set. See Section 10.3.1, “Character Definition Arrays”.

• For each <collation> element listed in the <charset> element for the character set in
Index.xml, the ctype-MYSET.c file must provide an implementation of the collation.

• If the character set requires string collating functions, see Section 10.3.2, “String Collating
Support for Complex Character Sets”.

• If the character set requires multi-byte character support, see Section 10.3.3, “Multi-Byte
Character Support for Complex Character Sets”.

3. Modify the configuration information. Use the existing configuration information as a guide to adding
information for MYSYS. The example here assumes that the character set has default and binary
collations, but more lines are needed if MYSET has additional collations.

Character Definition Arrays

1052

a. Edit mysys/charset-def.c, and “register” the collations for the new character set.

Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

Add these lines to the “registration” section:

#ifdef HAVE_CHARSET_MYSET
 add_compiled_collation(&my_charset_MYSET_general_ci);
 add_compiled_collation(&my_charset_MYSET_bin);
#endif

b. If the character set uses ctype-MYSET.c, edit strings/CMakeLists.txt and add
ctype-MYSET.c to the definition of the STRINGS_SOURCES variable.

c. Edit cmake/character_sets.cmake:

i. Add MYSET to the value of with CHARSETS_AVAILABLE in alphabetic order.

ii. Add MYSET to the value of CHARSETS_COMPLEX in alphabetic order. This is needed even
for simple character sets, or CMake will not recognize -DDEFAULT_CHARSET=MYSET.

4. Reconfigure, recompile, and test.

10.3.1 Character Definition Arrays

Each simple character set has a configuration file located in the sql/share/charsets directory.
For a character set named MYSYS, the file is named MYSET.xml. It uses <map> array elements to list
character set properties. <map> elements appear within these elements:

• <ctype> defines attributes for each character.

• <lower> and <upper> list the lowercase and uppercase characters.

• <unicode> maps 8-bit character values to Unicode values.

• <collation> elements indicate character ordering for comparisons and sorts, one element per
collation. Binary collations need no <map> element because the character codes themselves provide
the ordering.

For a complex character set as implemented in a ctype-MYSET.c file in the strings directory,
there are corresponding arrays: ctype_MYSET[], to_lower_MYSET[], and so forth. Not every
complex character set has all of the arrays. See also the existing ctype-*.c files for examples. See
the CHARSET_INFO.txt file in the strings directory for additional information.

Most of the arrays are indexed by character value and have 256 elements. The <ctype> array is
indexed by character value + 1 and has 257 elements. This is a legacy convention for handling EOF.

<ctype> array elements are bit values. Each element describes the attributes of a single character in
the character set. Each attribute is associated with a bitmask, as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */

String Collating Support for Complex Character Sets

1053

#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

The <ctype> value for a given character should be the union of the applicable bitmask values that
describe the character. For example, 'A' is an uppercase character (_MY_U) as well as a hexadecimal
digit (_MY_X), so its ctype value should be defined like this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

The bitmask values in m_ctype.h are octal values, but the elements of the <ctype> array in
MYSET.xml should be written as hexadecimal values.

The <lower> and <upper> arrays hold the lowercase and uppercase characters corresponding to
each member of the character set. For example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

Each <collation> array indicates how characters should be ordered for comparison and sorting
purposes. MySQL sorts characters based on the values of this information. In some cases, this is
the same as the <upper> array, which means that sorting is case-insensitive. For more complicated
sorting rules (for complex character sets), see the discussion of string collating in Section 10.3.2,
“String Collating Support for Complex Character Sets”.

10.3.2 String Collating Support for Complex Character Sets

For a simple character set named MYSET, sorting rules are specified in the MYSET.xml configuration
file using <map> array elements within <collation> elements. If the sorting rules for your language
are too complex to be handled with simple arrays, you must define string collating functions in the
ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the
big5, czech, gbk, sjis, and tis160 character sets. Take a look at the MY_COLLATION_HANDLER
structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory
for additional information.

10.3.3 Multi-Byte Character Support for Complex Character Sets

If you want to add support for a new character set named MYSET that includes multi-byte characters,
you must use multi-byte character functions in the ctype-MYSET.c source file in the strings
directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the
euc_kr, gb2312, gbk, sjis, and ujis character sets. Take a look at the MY_CHARSET_HANDLER
structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory
for additional information.

10.4 Adding a Collation to a Character Set

A collation is a set of rules that defines how to compare and sort character strings. Each collation in
MySQL belongs to a single character set. Every character set has at least one collation, and most have
two or more collations.

A collation orders characters based on weights. Each character in a character set maps to a weight.
Characters with equal weights compare as equal, and characters with unequal weights compare
according to the relative magnitude of their weights.

Additional Resources

1054

The WEIGHT_STRING() function can be used to see the weights for the characters in a
string. The value that it returns to indicate weights is a binary string, so it is convenient to use
HEX(WEIGHT_STRING(str)) to display the weights in printable form. The following example shows
that weights do not differ for lettercase for the letters in 'AaBb' it if is a nonbinary case-insensitive
string, but do differ if it is a binary string:

mysql> SELECT HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci));
+--+
| HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci)) |
+--+
| 41414242 |
+--+
mysql> SELECT HEX(WEIGHT_STRING(BINARY 'AaBb'));
+-----------------------------------+
| HEX(WEIGHT_STRING(BINARY 'AaBb')) |
+-----------------------------------+
| 41614262 |
+-----------------------------------+

MySQL supports several collation implementations, as discussed in Section 10.4.1, “Collation
Implementation Types”. Some of these can be added to MySQL without recompiling:

• Simple collations for 8-bit character sets.

• UCA-based collations for Unicode character sets.

• Binary (xxx_bin) collations.

The following sections describe how to add collations of the first two types to existing character sets. All
existing character sets already have a binary collation, so there is no need here to describe how to add
one.

Summary of the procedure for adding a new collation:

1. Choose a collation ID.

2. Add configuration information that names the collation and describes the character-ordering rules.

3. Restart the server.

4. Verify that the collation is present.

The instructions here cover only collations that can be added without recompiling MySQL. To add
a collation that does require recompiling (as implemented by means of functions in a C source file),
use the instructions in Section 10.3, “Adding a Character Set”. However, instead of adding all the
information required for a complete character set, just modify the appropriate files for an existing
character set. That is, based on what is already present for the character set's current collations, add
data structures, functions, and configuration information for the new collation.

Note

If you modify an existing collation, that may affect the ordering of rows for
indexes on columns that use the collation. In this case, rebuild any such indexes
to avoid problems such as incorrect query results. For further information, see
Section 2.10.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.

Additional Resources

• The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/

• The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/

• MySQL Blog article “Instructions for adding a new Unicode collation”: http://blogs.mysql.com/
peterg/2008/05/19/instructions-for-adding-a-new-unicode-collation/

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr35/
http://blogs.mysql.com/peterg/2008/05/19/instructions-for-adding-a-new-unicode-collation/
http://blogs.mysql.com/peterg/2008/05/19/instructions-for-adding-a-new-unicode-collation/

Collation Implementation Types

1055

10.4.1 Collation Implementation Types

MySQL implements several types of collations:

Simple collations for 8-bit character sets

This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping
from character codes to weights. latin1_swedish_ci is an example. It is a case-insensitive
collation, so the uppercase and lowercase versions of a character have the same weights and they
compare as equal.

mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT HEX(WEIGHT_STRING('a')), HEX(WEIGHT_STRING('A'));
+-------------------------+-------------------------+
| HEX(WEIGHT_STRING('a')) | HEX(WEIGHT_STRING('A')) |
+-------------------------+-------------------------+
| 41 | 41 |
+-------------------------+-------------------------+
1 row in set (0.01 sec)

mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
| 1 |
+-----------+
1 row in set (0.12 sec)

For implementation instructions, see Section 10.4.3, “Adding a Simple Collation to an 8-Bit Character
Set”.

Complex collations for 8-bit character sets

This kind of collation is implemented using functions in a C source file that define how to order
characters, as described in Section 10.3, “Adding a Character Set”.

Collations for non-Unicode multi-byte character sets

For this type of collation, 8-bit (single-byte) and multi-byte characters are handled differently. For 8-bit
characters, character codes map to weights in case-insensitive fashion. (For example, the single-byte
characters 'a' and 'A' both have a weight of 0x41.) For multi-byte characters, there are two types of
relationship between character codes and weights:

• Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The
multi-byte character 'ぢ' has a character code of 0x82C0, and the weight is also 0x82C0.

mysql> CREATE TABLE t1
 -> (c1 VARCHAR(2) CHARACTER SET sjis COLLATE sjis_japanese_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x82C0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
ぢ	82C0	82C0
+------+---------+------------------------+
3 rows in set (0.00 sec)

Collation Implementation Types

1056

• Character codes map one-to-one to weights, but a code is not necessarily equal to the weight.
gbk_chinese_ci is an example of this kind of collation. The multi-byte character '膰' has a
character code of 0x81B0 but a weight of 0xC286.

mysql> CREATE TABLE t1
 -> (c1 VARCHAR(2) CHARACTER SET gbk COLLATE gbk_chinese_ci);
Query OK, 0 rows affected (0.33 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x81B0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
膰	81B0	C286
+------+---------+------------------------+
3 rows in set (0.00 sec)

For implementation instructions, see Section 10.3, “Adding a Character Set”.

Collations for Unicode multi-byte character sets

Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.

Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such
collations are case insensitive and accent insensitive. utf8_general_ci is an example: 'a', 'A',
'À', and 'á' each have different character codes but all have a weight of 0x0041 and compare as
equal.

mysql> SET NAMES 'utf8' COLLATE 'utf8_general_ci';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1
 -> (c1 CHAR(1) CHARACTER SET UTF8 COLLATE utf8_general_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),('À'),('á');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	0041
A	41	0041
À	C380	0041
á	C3A1	0041
+------+---------+------------------------+
4 rows in set (0.00 sec)

UCA-based collations in MySQL have these properties:

• If a character has weights, each weight uses 2 bytes (16 bits).

• A character may have zero weights (or an empty weight). In this case, the character is ignorable.
Example: "U+0000 NULL" does not have a weight and is ignorable.

• A character may have one weight. Example: 'a' has a weight of 0x0E33.

mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.05 sec)

Choosing a Collation ID

1057

mysql> SELECT HEX('a'), HEX(WEIGHT_STRING('a'));
+----------+-------------------------+
| HEX('a') | HEX(WEIGHT_STRING('a')) |
+----------+-------------------------+
| 61 | 0E33 |
+----------+-------------------------+
1 row in set (0.02 sec)

• A character may have many weights. This is an expansion. Example: The German letter 'ß' (SZ
ligature, or SHARP S) has a weight of 0x0FEA0FEA.

mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.11 sec)

mysql> SELECT HEX('ß'), HEX(WEIGHT_STRING('ß'));
+-----------+--------------------------+
| HEX('ß') | HEX(WEIGHT_STRING('ß')) |
+-----------+--------------------------+
| C39F | 0FEA0FEA |
+-----------+--------------------------+
1 row in set (0.00 sec)

• Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in
Czech and has a weight of 0x0EE2.

mysql> SET NAMES 'utf8' COLLATE 'utf8_czech_ci';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT HEX('ch'), HEX(WEIGHT_STRING('ch'));
+-----------+--------------------------+
| HEX('ch') | HEX(WEIGHT_STRING('ch')) |
+-----------+--------------------------+
| 6368 | 0EE2 |
+-----------+--------------------------+
1 row in set (0.00 sec)

A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but
is not supported by MySQL.

For implementation instructions, for a non-UCA collation, see Section 10.3, “Adding a Character Set”.
For a UCA collation, see Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.

Miscellaneous collations

There are also a few collations that do not fall into any of the previous categories.

10.4.2 Choosing a Collation ID

Each collation must have a unique ID. To add a collation, you must choose an ID value that is not
currently used. MySQL supports two-byte collation IDs. The range of IDs from 1024 to 2047 is reserved
for user-defined collations. The collation ID that you choose will appear in these contexts:

• The ID column of the INFORMATION_SCHEMA.COLLATIONS table.

• The Id column of SHOW COLLATION output.

• The charsetnr member of the MYSQL_FIELD C API data structure.

• The number member of the MY_CHARSET_INFO data structure returned by the
mysql_get_character_set_info() C API function.

To determine the largest currently used ID, issue the following statement:

mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

Adding a Simple Collation to an 8-Bit Character Set

1058

+---------+
| MAX(ID) |
+---------+
| 210 |
+---------+

To display a list of all currently used IDs, issue this statement:

mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;
+-----+
| ID |
+-----+
| 1 |
| 2 |
| ... |
| 52 |
| 53 |
| 57 |
| 58 |
| ... |
| 98 |
| 99 |
| 128 |
| 129 |
| ... |
| 210 |
+-----+

Warning

Before MySQL 5.5, which provides for a range of user-defined collation IDs,
you must choose an ID in the range from 1 to 254. In this case, if you upgrade
MySQL, you may find that the collation ID you choose has been assigned to a
collation included in the new MySQL distribution. In this case, you will need to
choose a new value for your own collation.

In addition, before upgrading, you should save the configuration files that you
change. If you upgrade in place, the process will replace the your modified files.

10.4.3 Adding a Simple Collation to an 8-Bit Character Set

This section describes how to add a simple collation for an 8-bit character set by writing the
<collation> elements associated with a <charset> character set description in the MySQL
Index.xml file. The procedure described here does not require recompiling MySQL. The example
adds a collation named latin1_test_ci to the latin1 character set.

1. Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps
use an ID of 1024.

2. Modify the Index.xml and latin1.xml configuration files. These files will be located in the
directory named by the character_sets_dir system variable. You can check the variable value
as follows, although the path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. Find the <charset> element
for the character set to which the collation is being added, and add a <collation> element that
indicates the collation name and ID, to associate the name with the ID. For example:

Adding a UCA Collation to a Unicode Character Set

1059

<charset name="latin1">
 ...
 <collation name="latin1_test_ci" id="1024"/>
 ...
</charset>

4. In the latin1.xml configuration file, add a <collation> element that names the collation and
that contains a <map> element that defines a character code-to-weight mapping table for character
codes 0 to 255. Each value within the <map> element must be a number in hexadecimal format.

<collation name="latin1_test_ci">
<map>
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION LIKE 'latin1_test_ci';
+----------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------+---------+------+---------+----------+---------+
| latin1_test_ci | latin1 | 1024 | | | 1 |
+----------------+---------+------+---------+----------+---------+

10.4.4 Adding a UCA Collation to a Unicode Character Set

This section describes how to add a UCA collation for a Unicode character set by writing the
<collation> element within a <charset> character set description in the MySQL Index.xml file.
The procedure described here does not require recompiling MySQL. It uses a subset of the Locale
Data Markup Language (LDML) specification, which is available at http://www.unicode.org/reports/tr35/.
With this method, you need not define the entire collation. Instead, you begin with an existing “base”
collation and describe the new collation in terms of how it differs from the base collation. The following
table lists the base collations of the Unicode character sets for which UCA collations can be defined. It
is not possible to create user-defined UCA collations for utf16le; there is no utf16le_unicode_ci
collation that would serve as the basis for such collations.

Table 10.1 MySQL Character Sets Available for User-Defined UCA Collations

Character Set Base Collation

utf8 utf8_unicode_ci

ucs2 ucs2_unicode_ci

utf16 utf16_unicode_ci

utf32 utf32_unicode_ci

The following sections show how to add a collation that is defined using LDML syntax, and provide a
summary of LDML rules supported in MySQL.

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

1060

10.4.4.1 Defining a UCA Collation Using LDML Syntax

To add a UCA collation for a Unicode character set without recompiling MySQL, use the
following procedure. If you are unfamiliar with the LDML rules used to describe the collation's sort
characteristics, see Section 10.4.4.2, “LDML Syntax Supported in MySQL”.

The example adds a collation named utf8_phone_ci to the utf8 character set. The collation is
designed for a scenario involving a Web application for which users post their names and phone
numbers. Phone numbers can be given in very different formats:

+7-12345-67
+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567

The problem raised by dealing with these kinds of values is that the varying permissible formats make
searching for a specific phone number very difficult. The solution is to define a new collation that
reorders punctuation characters, making them ignorable.

1. Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps
use an ID of 1029.

2. To modify the Index.xml configuration file. This file will be located in the directory named by the
character_sets_dir system variable. You can check the variable value as follows, although the
path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. In addition, you'll need to provide
the collation ordering rules. Find the <charset> element for the character set to which the
collation is being added, and add a <collation> element that indicates the collation name and
ID, to associate the name with the ID. Within the <collation> element, provide a <rules>
element containing the ordering rules:

<charset name="utf8">
 ...
 <collation name="utf8_phone_ci" id="1029">
 <rules>
 <reset>\u0000</reset>
 <i>\u0020</i> <!-- space -->
 <i>\u0028</i> <!-- left parenthesis -->
 <i>\u0029</i> <!-- right parenthesis -->
 <i>\u002B</i> <!-- plus -->
 <i>\u002D</i> <!-- hyphen -->
 </rules>
 </collation>
 ...
</charset>

4. If you want a similar collation for other Unicode character sets, add other <collation> elements.
For example, to define ucs2_phone_ci, add a <collation> element to the <charset
name="ucs2"> element. Remember that each collation must have its own unique ID.

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION LIKE 'utf8_phone_ci';

Adding a UCA Collation to a Unicode Character Set

1061

+---------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------+---------+------+---------+----------+---------+
| utf8_phone_ci | utf8 | 1029 | | | 8 |
+---------------+---------+------+---------+----------+---------+

Now test the collation to make sure that it has the desired properties.

Create a table containing some sample phone numbers using the new collation:

mysql> CREATE TABLE phonebook (
 -> name VARCHAR(64),
 -> phone VARCHAR(64) CHARACTER SET utf8 COLLATE utf8_phone_ci
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');
Query OK, 1 row affected (0.00 sec)

Run some queries to see whether the ignored punctuation characters are in fact ignored for sorting and
comparisons:

mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name | phone |
+-------+--------------------+
Sanja	+380 (912) 8008005
Bar	+7-912-800-80-01
Svoj	+7 912 800 80 02
Ramil	(7912) 800 80 03
Hf	+7 (912) 800 80 04
+-------+--------------------+
5 rows in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='79128008001';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

Adding a UCA Collation to a Unicode Character Set

1062

10.4.4.2 LDML Syntax Supported in MySQL

This section describes the LDML syntax that MySQL recognizes. This is a subset of the syntax
described in the LDML specification available at http://www.unicode.org/reports/tr35/, which should
be consulted for further information. MySQL recognizes a large enough subset of the syntax that, in
many cases, it is possible to download a collation definition from the Unicode Common Locale Data
Repository and paste the relevant part (that is, the part between the <rules> and </rules> tags)
into the MySQL Index.xml file. The rules described here are all supported except that character
sorting occurs only at the primary level. Rules that specify differences at secondary or higher sort levels
are recognized (and thus can be included in collation definitions) but are treated as equality at the
primary level.

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file.
See Section 10.4.4.3, “Diagnostics During Index.xml Parsing”.

Character Representation

Characters named in LDML rules can be written literally or in \unnnn format, where nnnn is the
hexadecimal Unicode code point value. For example, A and á can be written literally or as \u0041
and \u00E1. Within hexadecimal values, the digits A through F are not case sensitive; \u00E1
and \u00e1 are equivalent. For UCA 4.0.0 collations, hexadecimal notation can be used only for
characters in the Basic Multilingual Plane, not for characters outside the BMP range of 0000 to FFFF.
For UCA 5.2.0 collations, hexadecimal notation can be used for any character.

The Index.xml file itself should be written using UTF-8 encoding.

Syntax Rules

LDML has reset rules and shift rules to specify character ordering. Orderings are given as a set of rules
that begin with a reset rule that establishes an anchor point, followed by shift rules that indicate how
characters sort relative to the anchor point.

• A <reset> rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for
subsequent shift rules to cause them to be taken in relation to a given character. Either of the
following rules resets subsequent shift rules to be taken in relation to the letter 'A':

<reset>A</reset>

<reset>\u0041</reset>

• The <p>, <s>, and <t> shift rules define primary, secondary, and tertiary differences of a character
from another character:

• Use primary differences to distinguish separate letters.

• Use secondary differences to distinguish accent variations.

• Use tertiary differences to distinguish lettercase variations.

Either of these rules specifies a primary shift rule for the 'G' character:

<p>G</p>

<p>\u0047</p>

• The <i> shift rule indicates that one character sorts identically to another. The following rules cause
'b' to sort the same as 'a':

<reset>a</reset>
<i>b</i>

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

1063

• Abbreviated shift syntax specifies multiple shift rules using a single pair of tags. The following table
shows the correspondence between abbreviated syntax rules and the equivalent nonabbreviated
rules.

Table 10.2 Abbreviated Shift Syntax

Abbreviated Syntax Nonabbreviated Syntax

<pc>xyz</pc> <p>x</p><p>y</p><p>z</p>

<sc>xyz</sc> <s>x</s><s>y</s><s>z</s>

<tc>xyz</tc> <t>x</t><t>y</t><t>z</t>

<ic>xyz</ic> <i>x</i><i>y</i><i>z</i>

• An expansion is a reset rule that establishes an anchor point for a multiple-character sequence.
MySQL supports expansions 2 to 6 characters long. The following rules put 'z' greater at the
primary level than the sequence of three characters 'abc':

<reset>abc</reset>
<p>z</p>

• A contraction is a shift rule that sorts a multiple-character sequence. MySQL supports contractions 2
to 6 characters long. The following rules put the sequence of three characters 'xyz' greater at the
primary level than 'a':

<reset>a</reset>
<p>xyz</p>

• Long expansions and long contractions can be used together. These rules put the sequence of three
characters 'xyz' greater at the primary level than the sequence of three characters 'abc':

<reset>abc</reset>
<p>xyz</p>

• Normal expansion syntax uses <x> plus <extend> elements to specify an expansion. The following
rules put the character 'k' greater at the secondary level than the sequence 'ch'. That is, 'k'
behaves as if it expands to a character after 'c' followed by 'h':

<reset>c</reset>
<x><s>k</s><extend>h</extend></x>

This syntax permits long sequences. These rules sort the sequence 'ccs' greater at the tertiary
level than the sequence 'cscs':

<reset>cs</reset>
<x><t>ccs</t><extend>cs</extend></x>

The LDML specification describes normal expansion syntax as “tricky.” See that specification for
details.

• Previous context syntax uses <x> plus <context> elements to specify that the context before a
character affects how it sorts. The following rules put '-' greater at the secondary level than 'a',
but only when '-' occurs after 'b':

<reset>a</reset>
<x><context>b</context><s>-</s></x>

• Previous context syntax can include the <extend> element. These rules put 'def' greater at the
primary level than 'aghi', but only when 'def' comes after 'abc':

Adding a UCA Collation to a Unicode Character Set

1064

<reset>a</reset>
<x><context>abc</context><p>def</p><extend>ghi</extend></x>

• Reset rules permit a before attribute. Normally, shift rules after a reset rule indicate characters
that sort after the reset character. Shift rules after a reset rule that has the before attribute indicate
characters that sort before the reset character. The following rules put the character 'b' immediately
before 'a' at the primary level:

<reset before="primary">a</reset>
<p>b</p>

Permissible before attribute values specify the sort level by name or the equivalent numeric value:

<reset before="primary">
<reset before="1">

<reset before="secondary">
<reset before="2">

<reset before="tertiary">
<reset before="3">

• A reset rule can name a logical reset position rather than a literal character:

<first_tertiary_ignorable/>
<last_tertiary_ignorable/>
<first_secondary_ignorable/>
<last_secondary_ignorable/>
<first_primary_ignorable/>
<last_primary_ignorable/>
<first_variable/>
<last_variable/>
<first_non_ignorable/>
<last_non_ignorable/>
<first_trailing/>
<last_trailing/>

These rules put 'z' greater at the primary level than nonignorable characters that have a Default
Unicode Collation Element Table (DUCET) entry and that are not CJK:

<reset><last_non_ignorable/></reset>
<p>z</p>

Logical positions have the code points shown in the following table.

Table 10.3 Logical Reset Position Code Points

Logical Position Unicode 4.0.0 Code Point Unicode 5.2.0 Code Point

<first_non_ignorable/> U+02D0 U+02D0

<last_non_ignorable/> U+A48C U+1342E

<first_primary_ignorable/> U+0332 U+0332

<last_primary_ignorable/> U+20EA U+101FD

<first_secondary_ignorable/> U+0000 U+0000

<last_secondary_ignorable/> U+FE73 U+FE73

<first_tertiary_ignorable/> U+0000 U+0000

<last_tertiary_ignorable/> U+FE73 U+FE73

<first_trailing/> U+0000 U+0000

Adding a UCA Collation to a Unicode Character Set

1065

Logical Position Unicode 4.0.0 Code Point Unicode 5.2.0 Code Point

<last_trailing/> U+0000 U+0000

<first_variable/> U+0009 U+0009

<last_variable/> U+2183 U+1D371

• The <collation> element permits a shift-after-method attribute that affects character weight
calculation for shift rules. The attribute has these permitted values:

• simple: Calculate character weights as for reset rules that do not have a before attribute. This is
the default if the attribute is not given.

• expand: Use expansions for shifts after reset rules.

Suppose that '0' and '1' have weights of 0E29 and 0E2A and we want to put all basic Latin letters
between '0' and '1':

<reset>0</reset>
<pc>abcdefghijklmnopqrstuvwxyz</pc>

For simple shift mode, weights are calculated as follows:

'a' has weight 0E29+1
'b' has weight 0E29+2
'c' has weight 0E29+3
...

However, there are not enough vacant positions to put 26 characters between '0' and '1'. The
result is that digits and letters are intermixed.

To solve this, use shift-after-method="expand". Then weights are calculated like this:

'a' has weight [0E29][233D+1]
'b' has weight [0E29][233D+2]
'c' has weight [0E29][233D+3]
...

233D is the UCA 4.0.0 weight for character 0xA48C, which is the last nonignorable character (a sort
of the greatest character in the collation, excluding CJK). UCA 5.2.0 is similar but uses 3ACA, for
character 0x1342E.

MySQL-Specific LDML Extensions

In MySQL 5.7, an extension to LDML rules permits the <collation> element to include an optional
version attribute in <collation> tags to indicate the UCA version on which the collation is based. If
the version attribute is omitted, its default value is 4.0.0. For example, this specification indicates a
collation that is based on UCA 5.2.0:

<collation id="nnn" name="utf8_xxx_ci" version="5.2.0">
...
</collation>

10.4.4.3 Diagnostics During Index.xml Parsing

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file:

• Unknown tags are written to the error log. For example, the following message results if a collation
definition contains a <aaa> tag:

Character Set Configuration

1066

[Warning] Buffered warning: Unknown LDML tag:
'charsets/charset/collation/rules/aaa'

• If collation initialization is not possible, the server reports an “Unknown collation” error, and also
generates warnings explaining the problems, such as in the previous example. In other cases, when
a collation description is generally correct but contains some unknown tags, the collation is initialized
and is available for use. The unknown parts are ignored, but a warning is generated in the error log.

• Problems with collations generate warnings that clients can display with SHOW WARNINGS. Suppose
that a reset rule contains an expansion longer than the maximum supported length of 6 characters:

<reset>abcdefghi</reset>
<i>x</i>

An attempt to use the collation produces warnings:

mysql> SELECT _utf8'test' COLLATE utf8_test_ci;
ERROR 1273 (HY000): Unknown collation: 'utf8_test_ci'
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Error | 1273 | Unknown collation: 'utf8_test_ci' |
| Warning | 1273 | Expansion is too long at 'abcdefghi=x' |
+---------+------+--+

10.5 Character Set Configuration
You can change the default server character set and collation with the --character-set-server
and --collation-server options when you start the server. The collation must be a legal collation
for the default character set. (Use the SHOW COLLATION statement to determine which collations are
available for each character set.) See Section 5.1.3, “Server Command Options”.

If you try to use a character set that is not compiled into your binary, you might run into the following
problems:

• Your program uses an incorrect path to determine where the character sets are stored (which is
typically the share/mysql/charsets or share/charsets directory under the MySQL installation
directory). This can be fixed by using the --character-sets-dir option when you run the
program in question. For example, to specify a directory to be used by MySQL client programs, list
it in the [client] group of your option file. The examples given here show what the setting might
look like for Unix or Windows, respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 5.7/share/charsets"

• The character set is a complex character set that cannot be loaded dynamically. In this case, you
must recompile the program with support for the character set.

For Unicode character sets, you can define collations without recompiling by using LDML notation.
See Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.

• The character set is a dynamic character set, but you do not have a configuration file for it. In this
case, you should install the configuration file for the character set from a new MySQL distribution.

• If your character set index file does not contain the name for the character set, your program displays
an error message. The file is named Index.xml and the message is:

MySQL Server Time Zone Support

1067

Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file

To solve this problem, you should either get a new index file or manually add the name of any
missing character sets to the current file.

You can force client programs to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary. However, when character_set_system differs from
character_set_server or character_set_client, and you input characters manually (as
database object identifiers, column values, or both), these may be displayed incorrectly in output from
the client or the output itself may be formatted incorrectly. In such cases, starting the mysql client with
--default-character-set=system_character_set—that is, setting the client character set to
match the system character set—should fix the problem.

For MyISAM tables, you can check the character set name and number for a table with myisamchk -
dvv tbl_name.

10.6 MySQL Server Time Zone Support

The MySQL server maintains several time zone settings:

• The system time zone. When the server starts, it attempts to determine the time zone of the host
machine and uses it to set the system_time_zone system variable. The value does not change
thereafter.

You can set the system time zone for MySQL Server at startup with the --
timezone=timezone_name option to mysqld_safe. You can also set it by setting the TZ
environment variable before you start mysqld. The permissible values for --timezone or TZ
are system dependent. Consult your operating system documentation to see what values are
acceptable.

• The server's current time zone. The global time_zone system variable indicates the time zone the
server currently is operating in. The initial value for time_zone is 'SYSTEM', which indicates that
the server time zone is the same as the system time zone.

The initial global server time zone value can be specified explicitly at startup with the --default-
time-zone=timezone option on the command line, or you can use the following line in an option
file:

default-time-zone='timezone'

If you have the SUPER privilege, you can set the global server time zone value at runtime with this
statement:

mysql> SET GLOBAL time_zone = timezone;

• Per-connection time zones. Each client that connects has its own time zone setting, given by
the session time_zone variable. Initially, the session variable takes its value from the global
time_zone variable, but the client can change its own time zone with this statement:

mysql> SET time_zone = timezone;

The current session time zone setting affects display and storage of time values that are zone-
sensitive. This includes the values displayed by functions such as NOW() or CURTIME(), and values

MySQL Server Time Zone Support

1068

stored in and retrieved from TIMESTAMP columns. Values for TIMESTAMP columns are converted from
the current time zone to UTC for storage, and from UTC to the current time zone for retrieval.

The current time zone setting does not affect values displayed by functions such as
UTC_TIMESTAMP() or values in DATE, TIME, or DATETIME columns. Nor are values in those data
types stored in UTC; the time zone applies for them only when converting from TIMESTAMP values. If
you want locale-specific arithmetic for DATE, TIME, or DATETIME values, convert them to UTC, perform
the arithmetic, and then convert back.

The current values of the global and client-specific time zones can be retrieved like this:

mysql> SELECT @@global.time_zone, @@session.time_zone;

timezone values can be given in several formats, none of which are case sensitive:

• The value 'SYSTEM' indicates that the time zone should be the same as the system time zone.

• The value can be given as a string indicating an offset from UTC, such as '+10:00' or '-6:00'.

• The value can be given as a named time zone, such as 'Europe/Helsinki', 'US/Eastern',
or 'MET'. Named time zones can be used only if the time zone information tables in the mysql
database have been created and populated.

The MySQL installation procedure creates the time zone tables in the mysql database, but does not
load them. You must do so manually using the following instructions. (If you are upgrading to MySQL
4.1.3 or later from an earlier version, you can create the tables by upgrading your mysql database.
Use the instructions in Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”. After
creating the tables, you can load them.)

Note

Loading the time zone information is not necessarily a one-time operation
because the information changes occasionally. For example, the rules for
Daylight Saving Time in the United States, Mexico, and parts of Canada
changed in 2007. When such changes occur, applications that use the old rules
become out of date and you may find it necessary to reload the time zone tables
to keep the information used by your MySQL server current. See the notes at
the end of this section.

If your system has its own zoneinfo database (the set of files describing time zones), you should use
the mysql_tzinfo_to_sql program for filling the time zone tables. Examples of such systems
are Linux, FreeBSD, Solaris, and Mac OS X. One likely location for these files is the /usr/share/
zoneinfo directory. If your system does not have a zoneinfo database, you can use the downloadable
package described later in this section.

The mysql_tzinfo_to_sql program is used to load the time zone tables. On the command line,
pass the zoneinfo directory path name to mysql_tzinfo_to_sql and send the output into the mysql
program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from
them. mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or to generate leap second
information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

Staying Current with Time Zone Changes

1069

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

With this approach, you must execute a separate command to load the time zone file for each named
zone that the server needs to know about.

• If your time zone needs to account for leap seconds, initialize the leap second information like this,
where tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

• After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to
use any previously cached time zone data.

If your system is one that has no zoneinfo database (for example, Windows), you can use the package
of pre-built time zone tables that is available for download at the MySQL Developer Zone:

http://dev.mysql.com/downloads/timezones.html

This time zone package contains .frm, .MYD, and .MYI files for the MyISAM time zone tables. These
tables should be part of the mysql database, so you should place the files in the mysql subdirectory
of your MySQL server's data directory. The server should be stopped while you do this and restarted
afterward.

Warning

Do not use the downloadable package if your system has a zoneinfo database.
Use the mysql_tzinfo_to_sql utility instead. Otherwise, you may cause a
difference in datetime handling between MySQL and other applications on your
system.

For information about time zone settings in replication setup, please see Section 16.4.1, “Replication
Features and Issues”.

10.6.1 Staying Current with Time Zone Changes

As mentioned earlier, when the time zone rules change, applications that use the old rules become
out of date. To stay current, it is necessary to make sure that your system uses current time zone
information is used. For MySQL, there are two factors to consider in staying current:

• The operating system time affects the value that the MySQL server uses for times if its time zone
is set to SYSTEM. Make sure that your operating system is using the latest time zone information.
For most operating systems, the latest update or service pack prepares your system for the time
changes. Check the Web site for your operating system vendor for an update that addresses the
time changes.

• If you replace the system's /etc/localtime timezone file with a version that uses rules differing
from those in effect at mysqld startup, you should restart mysqld so that it uses the updated rules.
Otherwise, mysqld might not notice when the system changes its time.

• If you use named time zones with MySQL, make sure that the time zone tables in the mysql
database are up to date. If your system has its own zoneinfo database, you should reload the
MySQL time zone tables whenever the zoneinfo database is updated, using the instructions given
earlier in this section. For systems that do not have their own zoneinfo database, check the MySQL
Developer Zone for updates. When a new update is available, download it and use it to replace your
current time zone tables. mysqld caches time zone information that it looks up, so after replacing
the time zone tables, you should restart mysqld to make sure that it does not continue to serve
outdated time zone data.

http://dev.mysql.com/downloads/timezones.html

Time Zone Leap Second Support

1070

If you are uncertain whether named time zones are available, for use either as the server's time zone
setting or by clients that set their own time zone, check whether your time zone tables are empty. The
following query determines whether the table that contains time zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

A count of zero indicates that the table is empty. In this case, no one can be using named time zones,
and you don't need to update the tables. A count greater than zero indicates that the table is not empty
and that its contents are available to be used for named time zone support. In this case, you should be
sure to reload your time zone tables so that anyone who uses named time zones will get correct query
results.

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time
rules, use a test like the one following. The example uses values that are appropriate for the 2007 DST
1-hour change that occurs in the United States on March 11 at 2 a.m.

The test uses these two queries:

SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');

The two time values indicate the times at which the DST change occurs, and the use of named time
zones requires that the time zone tables be used. The desired result is that both queries return the
same result (the input time, converted to the equivalent value in the 'US/Central' time zone).

Before updating the time zone tables, you would see an incorrect result like this:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 02:00:00 |
+--+

After updating the tables, you should see the correct result:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+

10.6.2 Time Zone Leap Second Support

Time Zone Leap Second Support

1071

Leap second values are returned with a time part that ends with :59:59. This means that a function
such as NOW() can return the same value for two or three consecutive seconds during the leap
second. It remains true that literal temporal values having a time part that ends with :59:60 or :59:61
are considered invalid.

If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous
results may be obtained if you use a comparison with 'YYYY-MM-DD hh:mm:ss' values. The
following example demonstrates this. It changes the local time zone to UTC so there is no difference
between internal values (which are in UTC) and displayed values (which have time zone correction
applied).

mysql> CREATE TABLE t1 (
 -> a INT,
 -> ts TIMESTAMP DEFAULT NOW(),
 -> PRIMARY KEY (ts)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> -- change to UTC
mysql> SET time_zone = '+00:00';
Query OK, 0 rows affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:59'
mysql> SET timestamp = 1230767999;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:60'
mysql> SET timestamp = 1230768000;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (2);
Query OK, 1 row affected (0.00 sec)

mysql> -- values differ internally but display the same
mysql> SELECT a, ts, UNIX_TIMESTAMP(ts) FROM t1;
+------+---------------------+--------------------+
| a | ts | UNIX_TIMESTAMP(ts) |
+------+---------------------+--------------------+
| 1 | 2008-12-31 23:59:59 | 1230767999 |
| 2 | 2008-12-31 23:59:59 | 1230768000 |
+------+---------------------+--------------------+
2 rows in set (0.00 sec)

mysql> -- only the non-leap value matches
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:59';
+------+---------------------+
| a | ts |
+------+---------------------+
| 1 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

mysql> -- the leap value with seconds=60 is invalid
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:60';
Empty set, 2 warnings (0.00 sec)

To work around this, you can use a comparison based on the UTC value actually stored in column,
which has the leap second correction applied:

mysql> -- selecting using UNIX_TIMESTAMP value return leap value
mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768000;
+------+---------------------+
| a | ts |
+------+---------------------+
| 2 | 2008-12-31 23:59:59 |

MySQL Server Locale Support

1072

+------+---------------------+
1 row in set (0.00 sec)

10.7 MySQL Server Locale Support

The locale indicated by the lc_time_names system variable controls the language used to display
day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(),
DAYNAME(), and MONTHNAME() functions.

lc_time_names does not affect the STR_TO_DATE() or GET_FORMAT() function.

The lc_time_names value does not affect the result from FORMAT(), but this function takes an
optional third parameter that enables a locale to be specified to be used for the result number's decimal
point, thousands separator, and grouping between separators. Permissible locale values are the same
as the legal values for the lc_time_names system variable.

Locale names have language and region subtags listed by IANA (http://www.iana.org/assignments/
language-subtag-registry) such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of
your system's locale setting, but you can set the value at server startup or set the GLOBAL value if you
have the SUPER privilege. Any client can examine the value of lc_time_names or set its SESSION
value to affect the locale for its own connection.

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| Friday Fri January Jan |
+---+
1 row in set (0.00 sec)

mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| viernes | enero |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry

MySQL Server Locale Support

1073

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| viernes vie enero ene |
+---+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8 to the character set
indicated by the character_set_connection system variable.

lc_time_names may be set to any of the following locale values. The set of locales supported by
MySQL may differ from those supported by your operating system.

ar_AE: Arabic - United Arab Emirates ar_BH: Arabic - Bahrain

ar_DZ: Arabic - Algeria ar_EG: Arabic - Egypt

ar_IN: Arabic - India ar_IQ: Arabic - Iraq

ar_JO: Arabic - Jordan ar_KW: Arabic - Kuwait

ar_LB: Arabic - Lebanon ar_LY: Arabic - Libya

ar_MA: Arabic - Morocco ar_OM: Arabic - Oman

ar_QA: Arabic - Qatar ar_SA: Arabic - Saudi Arabia

ar_SD: Arabic - Sudan ar_SY: Arabic - Syria

ar_TN: Arabic - Tunisia ar_YE: Arabic - Yemen

be_BY: Belarusian - Belarus bg_BG: Bulgarian - Bulgaria

ca_ES: Catalan - Spain cs_CZ: Czech - Czech Republic

da_DK: Danish - Denmark de_AT: German - Austria

de_BE: German - Belgium de_CH: German - Switzerland

de_DE: German - Germany de_LU: German - Luxembourg

el_GR: Greek - Greece en_AU: English - Australia

en_CA: English - Canada en_GB: English - United Kingdom

en_IN: English - India en_NZ: English - New Zealand

en_PH: English - Philippines en_US: English - United States

en_ZA: English - South Africa en_ZW: English - Zimbabwe

es_AR: Spanish - Argentina es_BO: Spanish - Bolivia

es_CL: Spanish - Chile es_CO: Spanish - Columbia

es_CR: Spanish - Costa Rica es_DO: Spanish - Dominican Republic

es_EC: Spanish - Ecuador es_ES: Spanish - Spain

es_GT: Spanish - Guatemala es_HN: Spanish - Honduras

es_MX: Spanish - Mexico es_NI: Spanish - Nicaragua

es_PA: Spanish - Panama es_PE: Spanish - Peru

es_PR: Spanish - Puerto Rico es_PY: Spanish - Paraguay

es_SV: Spanish - El Salvador es_US: Spanish - United States

es_UY: Spanish - Uruguay es_VE: Spanish - Venezuela

et_EE: Estonian - Estonia eu_ES: Basque - Basque

fi_FI: Finnish - Finland fo_FO: Faroese - Faroe Islands

fr_BE: French - Belgium fr_CA: French - Canada

fr_CH: French - Switzerland fr_FR: French - France

MySQL Server Locale Support

1074

fr_LU: French - Luxembourg gl_ES: Galician - Spain

gu_IN: Gujarati - India he_IL: Hebrew - Israel

hi_IN: Hindi - India hr_HR: Croatian - Croatia

hu_HU: Hungarian - Hungary id_ID: Indonesian - Indonesia

is_IS: Icelandic - Iceland it_CH: Italian - Switzerland

it_IT: Italian - Italy ja_JP: Japanese - Japan

ko_KR: Korean - Republic of Korea lt_LT: Lithuanian - Lithuania

lv_LV: Latvian - Latvia mk_MK: Macedonian - FYROM

mn_MN: Mongolia - Mongolian ms_MY: Malay - Malaysia

nb_NO: Norwegian(Bokmål) - Norway nl_BE: Dutch - Belgium

nl_NL: Dutch - The Netherlands no_NO: Norwegian - Norway

pl_PL: Polish - Poland pt_BR: Portugese - Brazil

pt_PT: Portugese - Portugal rm_CH: Romansh - Switzerland

ro_RO: Romanian - Romania ru_RU: Russian - Russia

ru_UA: Russian - Ukraine sk_SK: Slovak - Slovakia

sl_SI: Slovenian - Slovenia sq_AL: Albanian - Albania

sr_RS: Serbian - Yugoslavia sv_FI: Swedish - Finland

sv_SE: Swedish - Sweden ta_IN: Tamil - India

te_IN: Telugu - India th_TH: Thai - Thailand

tr_TR: Turkish - Turkey uk_UA: Ukrainian - Ukraine

ur_PK: Urdu - Pakistan vi_VN: Vietnamese - Viet Nam

zh_CN: Chinese - China zh_HK: Chinese - Hong Kong

zh_TW: Chinese - Taiwan Province of China

1075

Chapter 11 Data Types

Table of Contents
11.1 Data Type Overview .. 1076

11.1.1 Numeric Type Overview .. 1076
11.1.2 Date and Time Type Overview .. 1079
11.1.3 String Type Overview .. 1081

11.2 Numeric Types .. 1084
11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ... 1085
11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC ... 1085
11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 1086
11.2.4 Bit-Value Type - BIT .. 1086
11.2.5 Numeric Type Attributes .. 1086
11.2.6 Out-of-Range and Overflow Handling ... 1087

11.3 Date and Time Types .. 1088
11.3.1 The DATE, DATETIME, and TIMESTAMP Types ... 1090
11.3.2 The TIME Type .. 1091
11.3.3 The YEAR Type .. 1092
11.3.4 YEAR(2) Limitations and Migrating to YEAR(4) ... 1092
11.3.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME 1095
11.3.6 Fractional Seconds in Time Values .. 1098
11.3.7 Conversion Between Date and Time Types .. 1099
11.3.8 Two-Digit Years in Dates .. 1100

11.4 String Types .. 1100
11.4.1 The CHAR and VARCHAR Types ... 1100
11.4.2 The BINARY and VARBINARY Types ... 1102
11.4.3 The BLOB and TEXT Types ... 1103
11.4.4 The ENUM Type .. 1105
11.4.5 The SET Type .. 1107

11.5 Data Type Default Values .. 1110
11.6 Data Type Storage Requirements ... 1111
11.7 Choosing the Right Type for a Column ... 1114
11.8 Using Data Types from Other Database Engines .. 1114

MySQL supports a number of SQL data types in several categories: numeric types, date and time
types, and string (character and byte) types. This chapter provides an overview of these data types, a
more detailed description of the properties of the types in each category, and a summary of the data
type storage requirements. The initial overview is intentionally brief. The more detailed descriptions
later in the chapter should be consulted for additional information about particular data types, such as
the permissible formats in which you can specify values.

MySQL also supports extensions for handling spatial data. For information about these data types, see
Section 12.18, “Spatial Extensions”.

Data type descriptions use these conventions:

• M indicates the maximum display width for integer types. For floating-point and fixed-point types,
M is the total number of digits that can be stored (the precision). For string types, M is the maximum
length. The maximum permissible value of M depends on the data type.

• D applies to floating-point and fixed-point types and indicates the number of digits following the
decimal point (the scale). The maximum possible value is 30, but should be no greater than M–2.

• fsp applies to the TIME, DATETIME, and TIMESTAMP types and represents fractional seconds
precision; that is, the number of digits following the decimal point for fractional parts of seconds. The
fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part.

Data Type Overview

1076

If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility
with previous MySQL versions.)

• Square brackets (“[” and “]”) indicate optional parts of type definitions.

11.1 Data Type Overview

11.1.1 Numeric Type Overview

A summary of the numeric data types follows. For additional information about properties and storage
requirements of the numeric types, see Section 11.2, “Numeric Types”, and Section 11.6, “Data Type
Storage Requirements”.

M indicates the maximum display width for integer types. The maximum display width is 255. Display
width is unrelated to the range of values a type can contain, as described in Section 11.2, “Numeric
Types”. For floating-point and fixed-point types, M is the total number of digits that can be stored.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to
the column.

Numeric data types that permit the UNSIGNED attribute also permit SIGNED. However, these data types
are signed by default, so the SIGNED attribute has no effect.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

Warning

When you use subtraction between integer values where one is of type
UNSIGNED, the result is unsigned unless the NO_UNSIGNED_SUBTRACTION
SQL mode is enabled. See Section 12.10, “Cast Functions and Operators”.

• BIT[(M)]

A bit-field type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

• TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

• BOOL, BOOLEAN

These types are synonyms for TINYINT(1). A value of zero is considered false. Nonzero values are
considered true:

mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false |
+------------------------+

mysql> SELECT IF(1, 'true', 'false');
+------------------------+
| IF(1, 'true', 'false') |
+------------------------+
| true |
+------------------------+

mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+

Numeric Type Overview

1077

| true |
+------------------------+

However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:

mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true |
+--------------------------------+

mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true |
+-------------------------------+

mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+
| false |
+-------------------------------+

mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false |
+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

• SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

• MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to
16777215.

• INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0
to 4294967295.

• INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This type is a synonym for INT.

• BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The
unsigned range is 0 to 18446744073709551615.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

Some things you should be aware of with respect to BIGINT columns:

• All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned
big integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do that,
some of the last digits in the result may be wrong because of rounding errors when converting a
BIGINT value to a DOUBLE.

Numeric Type Overview

1078

MySQL can handle BIGINT in the following cases:

• When using integers to store large unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a string. In
this case, MySQL performs a string-to-number conversion that involves no intermediate double-
precision representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This
means that if you multiply two big integers (or results from functions that return integers), you may
get unexpected results when the result is larger than 9223372036854775807.

• DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

A packed “exact” fixed-point number. M is the total number of digits (the precision) and D is the
number of digits after the decimal point (the scale). The decimal point and (for negative numbers) the
“-” sign are not counted in M. If D is 0, values have no decimal point or fractional part. The maximum
number of digits (M) for DECIMAL is 65. The maximum number of supported decimals (D) is 30. If D is
omitted, the default is 0. If M is omitted, the default is 10.

UNSIGNED, if specified, disallows negative values.

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

• DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED]
[ZEROFILL], FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with
other database systems.

• FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Permissible values are -3.402823466E+38 to
-1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theoretical
limits, based on the IEEE standard. The actual range might be slightly smaller depending on your
hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A single-precision floating-point
number is accurate to approximately 7 decimal places.

UNSIGNED, if specified, disallows negative values.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are
done with double precision. See Section C.5.5.7, “Solving Problems with No Matching Rows”.

• DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Permissible values are
-1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical limits,
based on the IEEE standard. The actual range might be slightly smaller depending on your hardware
or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A double-precision floating-point
number is accurate to approximately 15 decimal places.

Date and Time Type Overview

1079

UNSIGNED, if specified, disallows negative values.

• DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED]
[ZEROFILL]

These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled,
REAL is a synonym for FLOAT rather than DOUBLE.

• FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision in bits, but MySQL uses this value only to
determine whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data
type becomes FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE
with no M or D values. The range of the resulting column is the same as for the single-precision
FLOAT or double-precision DOUBLE data types described earlier in this section.

 FLOAT(p) syntax is provided for ODBC compatibility.

11.1.2 Date and Time Type Overview

A summary of the temporal data types follows. For additional information about properties and storage
requirements of the temporal types, see Section 11.3, “Date and Time Types”, and Section 11.6,
“Data Type Storage Requirements”. For descriptions of functions that operate on temporal values, see
Section 12.7, “Date and Time Functions”.

For the DATE and DATETIME range descriptions, “supported” means that although earlier values might
work, there is no guarantee.

MySQL permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. To define a column that includes a fractional seconds part, use the
syntax type_name(fsp), where type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the
fractional seconds precision. For example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6));

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional
part. If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for
compatibility with previous MySQL versions.)

MySQL 5.6.5 introduces expanded automatic initialization and updating of temporal types. Any
TIMESTAMP column in a table can have these properties, rather than at most one column per table. In
addition, these properties are now available for DATETIME columns.

The YEAR(2) data type has certain issues that you should consider before choosing to use it.
As of MySQL 5.6.6, YEAR(2) is deprecated. YEAR(2) columns in existing tables are treated as
before, but YEAR(2) in new or altered tables are converted to YEAR(4). For more information, see
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”.

• DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE values
in 'YYYY-MM-DD' format, but permits assignment of values to DATE columns using either strings or
numbers.

• DATETIME[(fsp)]

A date and time combination. The supported range is '1000-01-01 00:00:00.000000' to
'9999-12-31 23:59:59.999999'. MySQL displays DATETIME values in 'YYYY-MM-DD
HH:MM:SS[.fraction]' format, but permits assignment of values to DATETIME columns using
either strings or numbers.

Date and Time Type Overview

1080

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision.
A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

Automatic initialization and updating to the current date and time for DATETIME columns can be
specified using DEFAULT and ON UPDATE column definition clauses, as described in Section 11.3.5,
“Automatic Initialization and Updating for TIMESTAMP and DATETIME”.

• TIMESTAMP[(fsp)]

A timestamp. The range is '1970-01-01 00:00:01.000000' UTC to '2038-01-19
03:14:07.999999' UTC. TIMESTAMP values are stored as the number of seconds since the
epoch ('1970-01-01 00:00:00' UTC). A TIMESTAMP cannot represent the value '1970-01-01
00:00:00' because that is equivalent to 0 seconds from the epoch and the value 0 is reserved for
representing '0000-00-00 00:00:00', the “zero” TIMESTAMP value.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision.
A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

The way the server handles TIMESTAMP definitions depends on the value of the
explicit_defaults_for_timestamp system variable (see Section 5.1.4, “Server System
Variables”). By default, explicit_defaults_for_timestamp is disabled and the server handles
TIMESTAMP as follows:

Unless specified otherwise, the first TIMESTAMP column in a table is defined to be automatically set
to the date and time of the most recent modification if not explicitly assigned a value. This makes
TIMESTAMP useful for recording the timestamp of an INSERT or UPDATE operation. You can also set
any TIMESTAMP column to the current date and time by assigning it a NULL value, unless it has been
defined with the NULL attribute to permit NULL values.

Automatic initialization and updating to the current date and time can be specified using DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP column definition clauses. By
default, the first TIMESTAMP column has these properties, as previously noted. As of MySQL 5.6.5,
any TIMESTAMP column in a table can be defined to have these properties. Before 5.6.5, at most
one TIMESTAMP column per table can have them, but it is possible to suppress them for the first
column and instead assign them to a different TIMESTAMP column. See Section 11.3.5, “Automatic
Initialization and Updating for TIMESTAMP and DATETIME”.

If explicit_defaults_for_timestamp is enabled, there is no automatic assignment of
the DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP attributes to any
TIMESTAMP column. They must be included explicitly in the column definition. Also, any TIMESTAMP
not explicitly declared as NOT NULL permits NULL values.

• TIME[(fsp)]

A time. The range is '-838:59:59.000000' to '838:59:59.000000'. MySQL displays TIME
values in 'HH:MM:SS[.fraction]' format, but permits assignment of values to TIME columns
using either strings or numbers.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision.
A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

• YEAR[(2|4)]

A year in two-digit or four-digit format. The default is four-digit format. YEAR(2) or YEAR(4) differ
in display format, but have the same range of values. In four-digit format, values display as 1901 to
2155, and 0000. In two-digit format, values display as 70 to 69, representing years from 1970 to
2069. MySQL displays YEAR values in YYYY or YYformat, but permits assignment of values to YEAR
columns using either strings or numbers.

String Type Overview

1081

Note

The YEAR(2) data type has certain issues that you should consider before
choosing to use it. As of MySQL 5.6.6, YEAR(2) is deprecated. YEAR(2)
columns in existing tables are treated as before, but YEAR(2) in new
or altered tables are converted to YEAR(4). For more information, see
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”.

For additional information about YEAR display format and interpretation of input values, see
Section 11.3.3, “The YEAR Type”.

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, losing everything after the first nonnumeric character.) To work around this problem,
convert to numeric units, perform the aggregate operation, and convert back to a temporal value.
Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that
a table is created, TIMESTAMP columns are created as DATETIME columns. As
a result, such columns use DATETIME display format, have the same range of
values, and there is no automatic initialization or updating to the current date
and time. See Section 5.1.7, “Server SQL Modes”.

11.1.3 String Type Overview

A summary of the string data types follows. For additional information about properties and storage
requirements of the string types, see Section 11.4, “String Types”, and Section 11.6, “Data Type
Storage Requirements”.

In some cases, MySQL may change a string column to a type different from that given in a CREATE
TABLE or ALTER TABLE statement. See Section 13.1.14.3, “Silent Column Specification Changes”.

MySQL interprets length specifications in character column definitions in character units. This applies
to CHAR, VARCHAR, and the TEXT types.

Column definitions for many string data types can include attributes that specify the character set or
collation of the column. These attributes apply to the CHAR, VARCHAR, the TEXT types, ENUM, and SET
data types:

• The CHARACTER SET attribute specifies the character set, and the COLLATE attribute specifies a
collation for the character set. For example:

CREATE TABLE t
(
 c1 VARCHAR(20) CHARACTER SET utf8,
 c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs
);

This table definition creates a column named c1 that has a character set of utf8 with the default
collation for that character set, and a column named c2 that has a character set of latin1 and a
case-sensitive collation.

The rules for assigning the character set and collation when either or both of the CHARACTER SET
and COLLATE attributes are missing are described in Section 10.1.3.4, “Column Character Set and
Collation”.

String Type Overview

1082

CHARSET is a synonym for CHARACTER SET.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they
are created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

• The ASCII attribute is shorthand for CHARACTER SET latin1.

• The UNICODE attribute is shorthand for CHARACTER SET ucs2.

• The BINARY attribute is shorthand for specifying the binary collation of the column character set. In
this case, sorting and comparison are based on numeric character values.

Character column sorting and comparison are based on the character set assigned to the column. For
the CHAR, VARCHAR, TEXT, ENUM, and SET data types, you can declare a column with a binary collation
or the BINARY attribute to cause sorting and comparison to use the underlying character code values
rather than a lexical ordering.

Section 10.1, “Character Set Support”, provides additional information about use of character sets in
MySQL.

• [NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE
collation_name]

A fixed-length string that is always right-padded with spaces to the specified length when stored. M
represents the column length in characters. The range of M is 0 to 255. If M is omitted, the length is 1.

Note

Trailing spaces are removed when CHAR values are retrieved unless the
PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is the
standard SQL way to define that a CHAR column should use some predefined character set. MySQL
4.1 and up uses utf8 as this predefined character set. Section 10.1.3.6, “National Character Set”.

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

MySQL permits you to create a column of type CHAR(0). This is useful primarily when you have to
be compliant with old applications that depend on the existence of a column but that do not actually
use its value. CHAR(0) is also quite nice when you need a column that can take only two values: A
column that is defined as CHAR(0) NULL occupies only one bit and can take only the values NULL
and '' (the empty string).

String Type Overview

1083

• [NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE
collation_name]

A variable-length string. M represents the maximum column length in characters. The range of M
is 0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size
(65,535 bytes, which is shared among all columns) and the character set used. For example, utf8
characters can require up to three bytes per character, so a VARCHAR column that uses the utf8
character set can be declared to be a maximum of 21,844 characters. See Section E.10.4, “Limits on
Table Column Count and Row Size”.

MySQL stores VARCHAR values as a 1-byte or 2-byte length prefix plus data. The length prefix
indicates the number of bytes in the value. A VARCHAR column uses one length byte if values require
no more than 255 bytes, two length bytes if values may require more than 255 bytes.

Note

MySQL 5.7 follows the standard SQL specification, and does not remove
trailing spaces from VARCHAR values.

VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way
to define that a VARCHAR column should use some predefined character set. MySQL 4.1 and up
uses utf8 as this predefined character set. Section 10.1.3.6, “National Character Set”. NVARCHAR is
shorthand for NATIONAL VARCHAR.

• BINARY(M)

The BINARY type is similar to the CHAR type, but stores binary byte strings rather than nonbinary
character strings. M represents the column length in bytes.

• VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than
nonbinary character strings. M represents the maximum column length in bytes.

• TINYBLOB

A BLOB column with a maximum length of 255 (28 – 1) bytes. Each TINYBLOB value is stored using
a 1-byte length prefix that indicates the number of bytes in the value.

• TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 255 (28 – 1) characters. The effective maximum length is
less if the value contains multi-byte characters. Each TINYTEXT value is stored using a 1-byte length
prefix that indicates the number of bytes in the value.

• BLOB[(M)]

A BLOB column with a maximum length of 65,535 (216 – 1) bytes. Each BLOB value is stored using a
2-byte length prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest BLOB type large enough to hold values M bytes long.

• TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 65,535 (216 – 1) characters. The effective maximum length
is less if the value contains multi-byte characters. Each TEXT value is stored using a 2-byte length
prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest TEXT type large enough to hold values M characters long.

Numeric Types

1084

• MEDIUMBLOB

A BLOB column with a maximum length of 16,777,215 (224 – 1) bytes. Each MEDIUMBLOB value is
stored using a 3-byte length prefix that indicates the number of bytes in the value.

• MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 16,777,215 (224 – 1) characters. The effective maximum
length is less if the value contains multi-byte characters. Each MEDIUMTEXT value is stored using a
3-byte length prefix that indicates the number of bytes in the value.

• LONGBLOB

A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 – 1) bytes. The effective
maximum length of LONGBLOB columns depends on the configured maximum packet size in the
client/server protocol and available memory. Each LONGBLOB value is stored using a 4-byte length
prefix that indicates the number of bytes in the value.

• LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 – 1) characters. The effective
maximum length is less if the value contains multi-byte characters. The effective maximum length
of LONGTEXT columns also depends on the configured maximum packet size in the client/server
protocol and available memory. Each LONGTEXT value is stored using a 4-byte length prefix that
indicates the number of bytes in the value.

• ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

An enumeration. A string object that can have only one value, chosen from the list of values
'value1', 'value2', ..., NULL or the special '' error value. ENUM values are represented
internally as integers.

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than
3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET
columns considered as a group. For more information on these limits, see Section E.10.5, “Limits
Imposed by .frm File Structure”.

• SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

A set. A string object that can have zero or more values, each of which must be chosen from the list
of values 'value1', 'value2', ... SET values are represented internally as integers.

A SET column can have a maximum of 64 distinct members. A table can have no more than 255
unique element list definitions among its ENUM and SET columns considered as a group. For more
information on this limit, see Section E.10.5, “Limits Imposed by .frm File Structure”.

11.2 Numeric Types
MySQL supports all standard SQL numeric data types. These types include the exact numeric data
types (INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric data
types (FLOAT, REAL, and DOUBLE PRECISION). The keyword INT is a synonym for INTEGER, and
the keywords DEC and FIXED are synonyms for DECIMAL. MySQL treats DOUBLE as a synonym for
DOUBLE PRECISION (a nonstandard extension). MySQL also treats REAL as a synonym for DOUBLE
PRECISION (a nonstandard variation), unless the REAL_AS_FLOAT SQL mode is enabled.

The BIT data type stores bit-field values and is supported for MyISAM, MEMORY, and InnoDB .

For information about how MySQL handles assignment of out-of-range values to columns and overflow
during expression evaluation, see Section 11.2.6, “Out-of-Range and Overflow Handling”.

Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT

1085

For information about numeric type storage requirements, see Section 11.6, “Data Type Storage
Requirements”.

The data type used for the result of a calculation on numeric operands depends on the types of the
operands and the operations performed on them. For more information, see Section 12.6.1, “Arithmetic
Operators”.

11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT

MySQL supports the SQL standard integer types INTEGER (or INT) and SMALLINT. As an extension
to the standard, MySQL also supports the integer types TINYINT, MEDIUMINT, and BIGINT. The
following table shows the required storage and range for each integer type.

Type Storage Minimum Value Maximum Value

 (Bytes) (Signed/Unsigned) (Signed/Unsigned)

TINYINT 1 -128 127

 0 255

SMALLINT 2 -32768 32767

 0 65535

MEDIUMINT 3 -8388608 8388607

 0 16777215

INT 4 -2147483648 2147483647

 0 4294967295

BIGINT 8 -9223372036854775808 9223372036854775807

 0 18446744073709551615

11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC

The DECIMAL and NUMERIC types store exact numeric data values. These types are used when it
is important to preserve exact precision, for example with monetary data. In MySQL, NUMERIC is
implemented as DECIMAL, so the following remarks about DECIMAL apply equally to NUMERIC.

MySQL 5.7 stores DECIMAL values in binary format. See Section 12.19, “Precision Math”.

In a DECIMAL column declaration, the precision and scale can be (and usually is) specified; for
example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant
digits that are stored for values, and the scale represents the number of digits that can be stored
following the decimal point.

Standard SQL requires that DECIMAL(5,2) be able to store any value with five digits and two
decimals, so values that can be stored in the salary column range from -999.99 to 999.99.

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax
DECIMAL is equivalent to DECIMAL(M,0), where the implementation is permitted to decide the value
of M. MySQL supports both of these variant forms of DECIMAL syntax. The default value of M is 10.

If the scale is 0, DECIMAL values contain no decimal point or fractional part.

The maximum number of digits for DECIMAL is 65, but the actual range for a given DECIMAL column
can be constrained by the precision or scale for a given column. When such a column is assigned a

Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

1086

value with more digits following the decimal point than are permitted by the specified scale, the value is
converted to that scale. (The precise behavior is operating system-specific, but generally the effect is
truncation to the permissible number of digits.)

11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

The FLOAT and DOUBLE types represent approximate numeric data values. MySQL uses four bytes for
single-precision values and eight bytes for double-precision values.

For FLOAT, the SQL standard permits an optional specification of the precision (but not the range of
the exponent) in bits following the keyword FLOAT in parentheses. MySQL also supports this optional
precision specification, but the precision value is used only to determine storage size. A precision from
0 to 23 results in a 4-byte single-precision FLOAT column. A precision from 24 to 53 results in an 8-byte
double-precision DOUBLE column.

MySQL permits a nonstandard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE PRECISION(M,D).
Here, “(M,D)” means than values can be stored with up to M digits in total, of which D digits may be
after the decimal point. For example, a column defined as FLOAT(7,4) will look like -999.9999
when displayed. MySQL performs rounding when storing values, so if you insert 999.00009 into a
FLOAT(7,4) column, the approximate result is 999.0001.

Because floating-point values are approximate and not stored as exact values, attempts to treat them
as exact in comparisons may lead to problems. They are also subject to platform or implementation
dependencies. For more information, see Section C.5.5.8, “Problems with Floating-Point Values”

For maximum portability, code requiring storage of approximate numeric data values should use FLOAT
or DOUBLE PRECISION with no specification of precision or number of digits.

11.2.4 Bit-Value Type - BIT

The BIT data type is used to store bit-field values. A type of BIT(M) enables storage of M-bit values. M
can range from 1 to 64.

To specify bit values, b'value' notation can be used. value is a binary value written using zeros and
ones. For example, b'111' and b'10000000' represent 7 and 128, respectively. See Section 9.1.6,
“Bit-Field Literals”.

If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left
with zeros. For example, assigning a value of b'101' to a BIT(6) column is, in effect, the same as
assigning b'000101'.

11.2.5 Numeric Type Attributes

MySQL supports an extension for optionally specifying the display width of integer data types in
parentheses following the base keyword for the type. For example, INT(4) specifies an INT with a
display width of four digits. This optional display width may be used by applications to display integer
values having a width less than the width specified for the column by left-padding them with spaces.
(That is, this width is present in the metadata returned with result sets. Whether it is used or not is up to
the application.)

The display width does not constrain the range of values that can be stored in the column. Nor does
it prevent values wider than the column display width from being displayed correctly. For example, a
column specified as SMALLINT(3) has the usual SMALLINT range of -32768 to 32767, and values
outside the range permitted by three digits are displayed in full using more than three digits.

When used in conjunction with the optional (nonstandard) attribute ZEROFILL, the default padding of
spaces is replaced with zeros. For example, for a column declared as INT(4) ZEROFILL, a value of 5
is retrieved as 0005.

Out-of-Range and Overflow Handling

1087

Note

The ZEROFILL attribute is ignored when a column is involved in expressions or
UNION queries.

If you store values larger than the display width in an integer column that has
the ZEROFILL attribute, you may experience problems when MySQL generates
temporary tables for some complicated joins. In these cases, MySQL assumes
that the data values fit within the column display width.

All integer types can have an optional (nonstandard) attribute UNSIGNED. Unsigned type can be used
to permit only nonnegative numbers in a column or when you need a larger upper numeric range for
the column. For example, if an INT column is UNSIGNED, the size of the column's range is the same
but its endpoints shift from -2147483648 and 2147483647 up to 0 and 4294967295.

Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute
prevents negative values from being stored in the column. Unlike the integer types, the upper range of
column values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to
the column.

Integer or floating-point data types can have the additional attribute AUTO_INCREMENT. When you
insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column
is set to the next sequence value. Typically this is value+1, where value is the largest value for the
column currently in the table. AUTO_INCREMENT sequences begin with 1. (Inserting NULL to generate
AUTO_INCREMENT values requires that the column be declared NOT NULL. If the column is declared
NULL, inserting NULL stores a NULL.)

In MySQL 5.7, negative values for AUTO_INCREMENT columns are not supported.

11.2.6 Out-of-Range and Overflow Handling

When MySQL stores a value in a numeric column that is outside the permissible range of the column
data type, the result depends on the SQL mode in effect at the time:

• If strict SQL mode is enabled, MySQL rejects the out-of-range value with an error, and the insert
fails, in accordance with the SQL standard.

• If no restrictive modes are enabled, MySQL clips the value to the appropriate endpoint of the range
and stores the resulting value instead.

When an out-of-range value is assigned to an integer column, MySQL stores the value representing
the corresponding endpoint of the column data type range. If you store 256 into a TINYINT or
TINYINT UNSIGNED column, MySQL stores 127 or 255, respectively.

When a floating-point or fixed-point column is assigned a value that exceeds the range implied by the
specified (or default) precision and scale, MySQL stores the value representing the corresponding
endpoint of that range.

Column-assignment conversions that occur due to clipping when MySQL is not operating in strict mode
are reported as warnings for ALTER TABLE, LOAD DATA INFILE, UPDATE, and multiple-row INSERT
statements. In strict mode, these statements fail, and some or all the values will not be inserted or
changed, depending on whether the table is a transactional table and other factors. For details, see
Section 5.1.7, “Server SQL Modes”.

In MySQL 5.7, overflow during numeric expression evaluation results in an error. For example, the
largest signed BIGINT value is 9223372036854775807, so the following expression produces an error:

Date and Time Types

1088

mysql> SELECT 9223372036854775807 + 1;
ERROR 1690 (22003): BIGINT value is out of range in '(9223372036854775807 + 1)'

To enable the operation to succeed in this case, convert the value to unsigned;

mysql> SELECT CAST(9223372036854775807 AS UNSIGNED) + 1;
+---+
| CAST(9223372036854775807 AS UNSIGNED) + 1 |
+---+
| 9223372036854775808 |
+---+

Whether overflow occurs depends on the range of the operands, so another way to handle the
preceding expression is to use exact-value arithmetic because DECIMAL values have a larger range
than integers:

mysql> SELECT 9223372036854775807.0 + 1;
+---------------------------+
| 9223372036854775807.0 + 1 |
+---------------------------+
| 9223372036854775808.0 |
+---------------------------+

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result
by default. Prior to MySQL 5.5.5, if the result would otherwise have been negative, it becomes the
maximum integer value:

mysql> SET sql_mode = '';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| 18446744073709551615 |
+-------------------------+

As of MySQL 5.5.5, if the result would otherwise have been negative, an error results:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped to
the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled. If
strict SQL mode is enabled, an error occurs and the column remains unchanged.

11.3 Date and Time Types

The date and time types for representing temporal values are DATE, TIME, DATETIME, TIMESTAMP,
and YEAR. Each temporal type has a range of valid values, as well as a “zero” value that may be
used when you specify an invalid value that MySQL cannot represent. The TIMESTAMP type has

Date and Time Types

1089

special automatic updating behavior, described later. For temporal type storage requirements, see
Section 11.6, “Data Type Storage Requirements”.

Keep in mind these general considerations when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts to
interpret a variety of formats for input values that you supply (for example, when you specify a value
to be assigned to or compared to a date or time type). For a description of the permitted formats for
date and time types, see Section 9.1.3, “Date and Time Literals”. It is expected that you supply valid
values. Unpredictable results may occur if you use values in other formats.

• Although MySQL tries to interpret values in several formats, date parts must always be given in year-
month-day order (for example, '98-09-04'), rather than in the month-day-year or day-month-year
orders commonly used elsewhere (for example, '09-04-98', '04-09-98').

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

See also Section 11.3.8, “Two-Digit Years in Dates”.

• Conversion of values from one temporal type to another occurs according to the rules in
Section 11.3.7, “Conversion Between Date and Time Types”.

• MySQL automatically converts a date or time value to a number if the value is used in a numeric
context and vice versa.

• By default, when MySQL encounters a value for a date or time type that is out of range or otherwise
invalid for the type, it converts the value to the “zero” value for that type. The exception is that out-of-
range TIME values are clipped to the appropriate endpoint of the TIME range.

• By setting the SQL mode to the appropriate value, you can specify more exactly what kind of dates
you want MySQL to support. (See Section 5.1.7, “Server SQL Modes”.) You can get MySQL to
accept certain dates, such as '2009-11-31', by enabling the ALLOW_INVALID_DATES SQL
mode. This is useful when you want to store a “possibly wrong” value which the user has specified
(for example, in a web form) in the database for future processing. Under this mode, MySQL verifies
only that the month is in the range from 1 to 12 and that the day is in the range from 1 to 31.

• MySQL permits you to store dates where the day or month and day are zero in a DATE or DATETIME
column. This is useful for applications that need to store birthdates for which you may not know
the exact date. In this case, you simply store the date as '2009-00-00' or '2009-01-00'. If
you store dates such as these, you should not expect to get correct results for functions such as
DATE_SUB() or DATE_ADD() that require complete dates. To disallow zero month or day parts in
dates, enable strict SQL mode (as of MySQL 5.7.4) or the NO_ZERO_IN_DATE mode (before MySQL
5.7.4).

• MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some
cases more convenient than using NULL values, and uses less data and index space. To disallow
'0000-00-00', enable strict SQL mode (as of MySQL 5.7.4) or the NO_ZERO_DATE mode (before
MySQL 5.7.4).

• “Zero” date or time values used through Connector/ODBC are converted automatically to NULL
because ODBC cannot handle such values.

The following table shows the format of the “zero” value for each type. The “zero” values are special,
but you can store or refer to them explicitly using the values shown in the table. You can also do this
using the values '0' or 0, which are easier to write. For temporal types that include a date part (DATE,
DATETIME, and TIMESTAMP), use of these values produces warnings if strict SQL mode is enabled

The DATE, DATETIME, and TIMESTAMP Types

1090

and IGNORE is used (as of MySQL 5.7.4) or the NO_ZERO_DATE mode is enabled (before MySQL
5.7.4).

Data Type “Zero” Value

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

11.3.1 The DATE, DATETIME, and TIMESTAMP Types

The DATE, DATETIME, and TIMESTAMP types are related. This section describes their characteristics,
how they are similar, and how they differ. MySQL recognizes DATE, DATETIME, and TIMESTAMP
values in several formats, described in Section 9.1.3, “Date and Time Literals”. For the DATE and
DATETIME range descriptions, “supported” means that although earlier values might work, there is no
guarantee.

The DATE type is used for values with a date part but no time part. MySQL retrieves and displays DATE
values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to '9999-12-31'.

The DATETIME type is used for values that contain both date and time parts. MySQL retrieves
and displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format. The supported range is
'1000-01-01 00:00:00' to '9999-12-31 23:59:59'.

The TIMESTAMP data type is used for values that contain both date and time parts. TIMESTAMP has a
range of '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. In particular, any fractional part in a value inserted into a DATETIME or TIMESTAMP
column is stored rather than discarded. With the fractional part included, the format for these values
is 'YYYY-MM-DD HH:MM:SS[.fraction]', the range for DATETIME values is '1000-01-01
00:00:00.000000' to '9999-12-31 23:59:59.999999', and the range for TIMESTAMP values
is '1970-01-01 00:00:01.000000' to '2038-01-19 03:14:07.999999'. The fractional
part should always be separated from the rest of the time by a decimal point; no other fractional
seconds delimiter is recognized. For information about fractional seconds support in MySQL, see
Section 11.3.6, “Fractional Seconds in Time Values”.

The TIMESTAMP and DATETIME data types offer automatic initialization and updating to the current
date and time. For more information, see Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP and DATETIME”.

MySQL converts TIMESTAMP values from the current time zone to UTC for storage, and back from
UTC to the current time zone for retrieval. (This does not occur for other types such as DATETIME.)
By default, the current time zone for each connection is the server's time. The time zone can be set
on a per-connection basis. As long as the time zone setting remains constant, you get back the same
value you store. If you store a TIMESTAMP value, and then change the time zone and retrieve the
value, the retrieved value is different from the value you stored. This occurs because the same time
zone was not used for conversion in both directions. The current time zone is available as the value of
the time_zone system variable. For more information, see Section 10.6, “MySQL Server Time Zone
Support”.

Invalid DATE, DATETIME, or TIMESTAMP values are converted to the “zero” value of the appropriate
type ('0000-00-00' or '0000-00-00 00:00:00').

Be aware of certain properties of date value interpretation in MySQL:

• MySQL permits a “relaxed” format for values specified as strings, in which any punctuation character
may be used as the delimiter between date parts or time parts. In some cases, this syntax can be

The TIME Type

1091

deceiving. For example, a value such as '10:11:12' might look like a time value because of the
“:” delimiter, but is interpreted as the year '2010-11-12' if used in a date context. The value
'10:45:15' is converted to '0000-00-00' because '45' is not a valid month.

The only delimiter recognized between a date and time part and a fractional seconds part is the
decimal point.

• The server requires that month and day values be valid, and not merely in the range 1 to 12 and 1
to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted
to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate
an error. To permit such dates, enable ALLOW_INVALID_DATES. See Section 5.1.7, “Server SQL
Modes”, for more information.

• MySQL does not accept TIMESTAMP values that include a zero in the day or month column or values
that are not a valid date. The sole exception to this rule is the special “zero” value '0000-00-00
00:00:00'.

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

See also Section 11.3.8, “Two-Digit Years in Dates”.

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that
a table is created, TIMESTAMP columns are created as DATETIME columns. As
a result, such columns use DATETIME display format, have the same range of
values, and there is no automatic initialization or updating to the current date
and time. See Section 5.1.7, “Server SQL Modes”.

11.3.2 The TIME Type

MySQL retrieves and displays TIME values in 'HH:MM:SS' format (or 'HHH:MM:SS' format for large
hours values). TIME values may range from '-838:59:59' to '838:59:59'. The hours part may
be so large because the TIME type can be used not only to represent a time of day (which must be
less than 24 hours), but also elapsed time or a time interval between two events (which may be much
greater than 24 hours, or even negative).

MySQL recognizes TIME values in several formats, some of which can include a trailing fractional
seconds part in up to microseconds (6 digits) precision. See Section 9.1.3, “Date and Time Literals”.
For information about fractional seconds support in MySQL, see Section 11.3.6, “Fractional
Seconds in Time Values”. In particular, any fractional part in a value inserted into a TIME column
is stored rather than discarded. With the fractional part included, the range for TIME values is
'-838:59:59.000000' to '838:59:59.000000'.

Be careful about assigning abbreviated values to a TIME column. MySQL interprets abbreviated TIME
values with colons as time of the day. That is, '11:12' means '11:12:00', not '00:11:12'.
MySQL interprets abbreviated values without colons using the assumption that the two rightmost digits
represent seconds (that is, as elapsed time rather than as time of day). For example, you might think of
'1112' and 1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them
as '00:11:12' (11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'.

The only delimiter recognized between a time part and a fractional seconds part is the decimal point.

By default, values that lie outside the TIME range but are otherwise valid are clipped to the
closest endpoint of the range. For example, '-850:00:00' and '850:00:00' are converted to

The YEAR Type

1092

'-838:59:59' and '838:59:59'. Invalid TIME values are converted to '00:00:00'. Note that
because '00:00:00' is itself a valid TIME value, there is no way to tell, from a value of '00:00:00'
stored in a table, whether the original value was specified as '00:00:00' or whether it was invalid.

For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur.
See Section 5.1.7, “Server SQL Modes”.

11.3.3 The YEAR Type

The YEAR type is a 1-byte type used to represent year values. It can be declared as YEAR(4) or
YEAR(2) to specify a display width of four or two characters. The default is four characters if no width
is given.

Note

The YEAR(2) data type has certain issues that you should consider before
choosing to use it. Also, as of MySQL 5.6.6, YEAR(2) is deprecated. YEAR(2)
columns in existing tables are treated as before, but YEAR(2) in new or altered
tables are converted to YEAR(4). For more information, see Section 11.3.4,
“YEAR(2) Limitations and Migrating to YEAR(4)”.

YEAR(4) and YEAR(2) differ in display format, but have the same range of values. For 4-digit format,
MySQL displays YEAR values in YYYY format, with a range of 1901 to 2155, or 0000. For 2-digit
format, MySQL displays only the last two (least significant) digits; for example, 70 (1970 or 2070) or 69
(2069).

You can specify input YEAR values in a variety of formats:

• As a 4-digit string in the range '1901' to '2155'.

• As a 4-digit number in the range 1901 to 2155.

• As a 1- or 2-digit string in the range '0' to '99'. Values in the ranges '0' to '69' and '70' to
'99' are converted to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.

• As a 1- or 2-digit number in the range 1 to 99. Values in the ranges 1 to 69 and 70 to 99 are
converted to YEAR values in the ranges 2001 to 2069 and 1970 to 1999.

Inserting a numeric 0 has a different effect for YEAR(2) and YEAR(4). For YEAR(2), the result has
a display value of 00 and an internal value of 2000. For YEAR(4), the result has a display value
of 0000 and an internal value of 0000. To specify zero for YEAR(4) and have it be interpreted as
2000, specify it as a string '0' or '00'.

• As the result of a function that returns a value that is acceptable in a YEAR context, such as NOW().

Invalid YEAR values are converted to 0000.

See also Section 11.3.8, “Two-Digit Years in Dates”.

11.3.4 YEAR(2) Limitations and Migrating to YEAR(4)

Although the internal range of values for YEAR(4) and YEAR(2) is the same (1901 to 2155, and
0000), the display width for YEAR(2) makes that type inherently ambiguous because displayed values
indicate only the last two digits of the internal values. The result can be a loss of information under
certain circumstances. For this reason, consider avoiding YEAR(2) throughout your applications
and using YEAR(4) wherever you need a YEAR data type. This section describes problems that can
occur when using YEAR(2) and provides information about migrating existing YEAR(2) columns to
YEAR(4). Note that migration will become necessary at some point because support for YEAR data
types with display values other than 4, most notably YEAR(2), is reduced as of MySQL 5.6.6 and will
be removed entirely in a future release.

YEAR(2) Limitations and Migrating to YEAR(4)

1093

YEAR(2) Limitations

Issues with the YEAR(2) data type include ambiguity of displayed values, and possible loss of
information when values are dumped and reloaded or converted to strings.

• Displayed YEAR(2) values can be ambiguous. It is possible for up to three YEAR(2) values
that have different internal values to have the same displayed value, as the following example
demonstrates:

mysql> CREATE TABLE t (y2 YEAR(2), y4 YEAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t (y2) VALUES(1912),(2012),(2112);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> UPDATE t SET y4 = y2;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> SELECT * FROM t;
+------+------+
| y2 | y4 |
+------+------+
12	1912
12	2012
12	2112
+------+------+
3 rows in set (0.00 sec)

• If you use mysqldump to dump the table created in the preceding item, the dump file represents all
y2 values using the same 2-digit representation (12). If you reload the table from the dump file, all
resulting rows have internal value 2012 and display value 12, thus losing the distinctions among
them.

• Conversion of a YEAR(2) or YEAR(4) data value to string form uses the display width of the YEAR
type. Suppose that YEAR(2) and YEAR(4) columns both contain the value 1970. Assigning each
column to a string results in a value of '70' or '1970', respectively. That is, loss of information
occurs for conversion from YEAR(2) to string.

• Values outside the range from 1970 to 2069 are stored incorrectly when inserted into a YEAR(2)
column in a CSV table. For example, inserting 2111 results in a display value of 11 but an internal
value of 2011.

To avoid these problems, use YEAR(4) rather than YEAR(2). Suggestions regarding migration
strategies appear later in this section.

Reduced YEAR(2) Support in MySQL 5.6

As of MySQL 5.6.6, support for YEAR(2) is diminished:

• YEAR(2) in column definitions for new tables is converted (with a warning) to YEAR(4):

mysql> CREATE TABLE t1 (y YEAR(2));
Query OK, 0 rows affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1818
Message: YEAR(2) column type is deprecated. Creating YEAR(4) column instead.
1 row in set (0.00 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************

YEAR(2) Limitations and Migrating to YEAR(4)

1094

 Table: t1
Create Table: CREATE TABLE `t1` (
 `y` year(4) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

• YEAR(2) in existing tables remains as YEAR(2) and is processed in queries as in older versions of
MySQL. However, several programs or statements convert YEAR(2) to YEAR(4) automatically:

• ALTER TABLE statements that result in a table rebuild.

• REPAIR TABLE (which CHECK TABLE recommends you use if it finds that a table contains
YEAR(2) columns).

• mysql_upgrade (which uses REPAIR TABLE).

• Dumping with mysqldump and reloading the dump file. Unlike the conversions performed by the
preceding three items, a dump and reload has the potential to change values.

A MySQL upgrade usually involves at least one of the last two items. However, with respect to
YEAR(2), you should avoid dumping and reloading; as noted, that can change values.

Migrating from YEAR(2) to YEAR(4)

Should you decide to convert YEAR(2) columns to YEAR(4), you can do so manually at any time
without upgrading. Alternatively, you can upgrade to a version of MySQL with reduced support for
YEAR(2) (MySQL 5.6.6 or later), then have MySQL convert YEAR(2) columns automatically. In the
latter case, avoid upgrading by dumping and reloading your data because that can change data values.
In addition, if you use replication, there are upgrade considerations you must take into account.

To convert YEAR(2) columns to YEAR(4) manually, use ALTER TABLE. Suppose that a table t1 has
this definition:

CREATE TABLE t1 (ycol YEAR(2) NOT NULL DEFAULT '70');

Modify the column using ALTER TABLE as follows. Remember to include any column attributes such
as NOT NULL or DEFAULT:

ALTER TABLE t1 MODIFY ycol YEAR(4) NOT NULL DEFAULT '1970';

The ALTER TABLE statement converts the table without changing YEAR(2) values. If the server is
a replication master, the ALTER TABLE statement replicates to slaves and makes the corresponding
table change on each one.

Another migration method is to perform a binary upgrade: Install MySQL without dumping and
reloading your data. Then run mysql_upgrade, which uses REPAIR TABLE to convert YEAR(2)
columns to YEAR(4) without changing data values. If the server is a replication master, the REPAIR
TABLE statements replicate to slaves and make the corresponding table changes on each one, unless
you invoke mysql_upgrade with the --skip-write-binlog option.

Upgrades to replication servers usually involve upgrading slaves to a newer version of MySQL, then
upgrading the master. For example, if a master and slave both run MySQL 5.5, a typical upgrade
sequence involves upgrading the slave to 5.6, then upgrading the master to 5.6. With regard to the
different treatment of YEAR(2) as of MySQL 5.6.6, that upgrade sequence results in a problem:
Suppose that the slave has been upgraded but not yet the master. Then creating a table containing
a YEAR(2) column on the master results in a table containing a YEAR(4) column on the slave.
Consequently, these operations will have a different result on the master and slave, if you use
statement-based replication:

• Inserting numeric 0. The resulting value has an internal value of 2000 on the master but 0000 on the
slave.

Automatic Initialization and Updating for TIMESTAMP and DATETIME

1095

• Converting YEAR(2) to string. This operation uses the display value of YEAR(2) on the master but
YEAR(4) on the slave.

To avoid such problems, use one of these strategies:

• Use row-based replication instead of statement-based replication.

• Modify all YEAR(2) columns on the master to YEAR(4) before upgrading. (Use ALTER TABLE, as
described previously.) Then you can upgrade normally (slave first, then master) without introducing
any YEAR(2) to YEAR(4) differences between the master and slave).

One migration method should be avoided: Do not dump your data with mysqldump and reload the
dump file after upgrading. This has the potential to change YEAR(2) values, as described previously.

A migration from YEAR(2) to YEAR(4) should also involve examining application code for the
possibility of changed behavior under conditions such as these:

• Code that expects selecting a YEAR column to produce exactly two digits.

• Code that does not account for different handling for inserts of numeric 0: Inserting 0 into YEAR(2)
or YEAR(4) results in an internal value of 2000 or 0000, respectively.

11.3.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME

TIMESTAMP and DATETIME columns can be automatically initializated and updated to the current date
and time (that is, the current timestamp).

For any TIMESTAMP or DATETIME column in a table, you can assign the current timestamp as the
default value, the auto-update value, or both:

• An auto-initialized column is set to the current timestamp for inserted rows that specify no value for
the column.

• An auto-updated column is automatically updated to the current timestamp when the value of
any other column in the row is changed from its current value. An auto-updated column remains
unchanged if all other columns are set to their current values. To prevent an auto-updated column
from updating when other columns change, explicitly set it to its current value. To update an auto-
updated column even when other columns do not change, explicitly set it to the value it should have
(for example, set it to CURRENT_TIMESTAMP).

In addition, you can initialize or update any TIMESTAMP column to the current date and time by
assigning it a NULL value, unless it has been defined with the NULL attribute to permit NULL values.

To specify automatic properties, use the DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP clauses in column definitions. The order of the clauses does not
matter. If both are present in a column definition, either can occur first. Any of the synonyms
for CURRENT_TIMESTAMP have the same meaning as CURRENT_TIMESTAMP. These are
CURRENT_TIMESTAMP(), NOW(), LOCALTIME, LOCALTIME(), LOCALTIMESTAMP, and
LOCALTIMESTAMP().

Use of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP is specific
to TIMESTAMP and DATETIME. The DEFAULT clause also can be used to specify a constant
(nonautomatic) default value; for example, DEFAULT 0 or DEFAULT '2000-01-01 00:00:00'.

Note

The following examples that use DEFAULT 0 do not work if the SQL mode is
set to cause “zero” date values (specified, for example, as 0 '0000-00-00
00:00:00') to be rejected. Such dates are rejected in strict SQL mode (as of
MySQL 5.7.4) or the NO_ZERO_DATE mode is enabled (before MySQL 5.7.4).
Be aware that the TRADITIONAL SQL mode includes “zero” date rejection.

Automatic Initialization and Updating for TIMESTAMP and DATETIME

1096

TIMESTAMP or DATETIME column definitions can specify the current timestamp for both the default
and auto-update values, for one but not the other, or for neither. Different columns can have different
combinations of automatic properties. The following rules describe the possibilities:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP, the column
has the current timestamp for its default value and is automatically updated to the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

• With a DEFAULT clause but no ON UPDATE CURRENT_TIMESTAMP clause, the column has the
given default value and is not automatically updated to the current timestamp.

The default depends on whether the DEFAULT clause specifies CURRENT_TIMESTAMP or a constant
value. With CURRENT_TIMESTAMP, the default is the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP
);

With a constant, the default is the given value. In this case, the column has no automatic properties
at all.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0,
 dt DATETIME DEFAULT 0
);

• With an ON UPDATE CURRENT_TIMESTAMP clause and a constant DEFAULT clause, the column is
automatically updated to the current timestamp and has the given constant default value.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP
);

• With an ON UPDATE CURRENT_TIMESTAMP clause but no DEFAULT clause, the column is
automatically updated to the current timestamp but does not have the current timestamp for its
default value.

The default in this case is type dependent. TIMESTAMP has a default of 0 unless defined with the
NULL attribute, in which case the default is NULL.

CREATE TABLE t1 (
 ts1 TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, -- default 0
 ts2 TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP -- default NULL
);

DATETIME has a default of NULL unless defined with the NOT NULL attribute, in which case the
default is 0.

CREATE TABLE t1 (
 dt1 DATETIME ON UPDATE CURRENT_TIMESTAMP, -- default NULL
 dt2 DATETIME NOT NULL ON UPDATE CURRENT_TIMESTAMP -- default 0
);

TIMESTAMP and DATETIME columns have no automatic properties unless they are specified explicitly,
with this exception: By default, the first TIMESTAMP column has both DEFAULT CURRENT_TIMESTAMP

Automatic Initialization and Updating for TIMESTAMP and DATETIME

1097

and ON UPDATE CURRENT_TIMESTAMP if neither is specified explicitly. To suppress automatic
properties for the first TIMESTAMP column, use one of these strategies:

• Enable the explicit_defaults_for_timestamp system variable. If this variable is enabled,
the DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses that specify
automatic initialization and updating are available, but are not assigned to any TIMESTAMP column
unless explicitly included in the column definition.

• Alternatively, if explicit_defaults_for_timestamp is disabled (the default), do either of the
following:

• Define the column with a DEFAULT clause that specifies a constant default value.

• Specify the NULL attribute. This also causes the column to permit NULL values, which means that
you cannot assign the current timestamp by setting the column to NULL. Assigning NULL sets the
column to NULL.

Consider these table definitions:

CREATE TABLE t1 (
 ts1 TIMESTAMP DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t2 (
 ts1 TIMESTAMP NULL,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t3 (
 ts1 TIMESTAMP NULL DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);

The tables have these properties:

• In each table definition, the first TIMESTAMP column has no automatic initialization or updating.

• The tables differ in how the ts1 column handles NULL values. For t1, ts1 is NOT NULL and
assigning it a value of NULL sets it to the current timestamp. For t2 and t3, ts1 permits NULL and
assigning it a value of NULL sets it to NULL.

• t2 and t3 differ in the default value for ts1. For t2, ts1 is defined to permit NULL, so the default
is also NULL in the absence of an explicit DEFAULT clause. For t3, ts1 permits NULL but has an
explicit default of 0.

If a TIMESTAMP or DATETIME column definition includes an explicit fractional seconds precision value
anywhere, the same value must be used throughout the column definition. This is permitted:

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6)
);

This is not permitted:

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP(3)
);

Automatic Timestamp Properties Before MySQL 5.6.5

Before MySQL 5.6.5, support for automatic initialization and updating is more limited:

• DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP cannot be used with
DATETIME columns.

Fractional Seconds in Time Values

1098

• DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP can be used with at
most one TIMESTAMP column per table. It is not possible to have the current timestamp be the
default value for one column and the auto-update value for another column.

You can choose whether to use these properties and which TIMESTAMP column should have them. It
need not be the first one in a table that is automatically initialized or updated to the current timestamp.
To specify automatic initialization or updating for a different TIMESTAMP column, you must suppress
the automatic properties for the first one, as previously described. Then, for the other TIMESTAMP
column, the rules for the DEFAULT and ON UPDATE clauses are the same as for the first TIMESTAMP
column, except that if you omit both clauses, no automatic initialization or updating occurs.

TIMESTAMP Initialization and the NULL Attribute

By default, TIMESTAMP columns are NOT NULL, cannot contain NULL values, and assigning NULL
assigns the current timestamp. To permit a TIMESTAMP column to contain NULL, explicitly declare
it with the NULL attribute. In this case, the default value also becomes NULL unless overridden with
a DEFAULT clause that specifies a different default value. DEFAULT NULL can be used to explicitly
specify NULL as the default value. (For a TIMESTAMP column not declared with the NULL attribute,
DEFAULT NULL is invalid.) If a TIMESTAMP column permits NULL values, assigning NULL sets it to
NULL, not to the current timestamp.

The following table contains several TIMESTAMP columns that permit NULL values:

CREATE TABLE t
(
 ts1 TIMESTAMP NULL DEFAULT NULL,
 ts2 TIMESTAMP NULL DEFAULT 0,
 ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
);

A TIMESTAMP column that permits NULL values does not take on the current timestamp at insert time
except under one of the following conditions:

• Its default value is defined as CURRENT_TIMESTAMP and no value is specified for the column

• CURRENT_TIMESTAMP or any of its synonyms such as NOW() is explicitly inserted into the column

In other words, a TIMESTAMP column defined to permit NULL values auto-initializes only if its definition
includes DEFAULT CURRENT_TIMESTAMP:

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

If the TIMESTAMP column permits NULL values but its definition does not include DEFAULT
CURRENT_TIMESTAMP, you must explicitly insert a value corresponding to the current date and time.
Suppose that tables t1 and t2 have these definitions:

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT NULL);

To set the TIMESTAMP column in either table to the current timestamp at insert time, explicitly assign it
that value. For example:

INSERT INTO t1 VALUES (NOW());
INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);

11.3.6 Fractional Seconds in Time Values

MySQL 5.7 has fractional seconds support for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision:

Conversion Between Date and Time Types

1099

• To define a column that includes a fractional seconds part, use the syntax type_name(fsp), where
type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the fractional seconds precision. For
example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6));

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional
part. If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for
compatibility with previous MySQL versions.)

• Functions that take temporal arguments accept values with fractional seconds. Return values from
temporal functions include fractional seconds as appropriate. For example, NOW() with no argument
returns the current date and time with no fractional part, but takes an optional argument from 0 to 6
to specify that the return value includes a fractional seconds part of that many digits.

• Syntax for temporal literals produces temporal values: DATE 'str', TIME 'str', and TIMESTAMP
'str', and the ODBC-syntax equivalents. The resulting value includes a trailing fractional seconds
part if specified. Previously, the temporal type keyword was ignored and these constructs produced
the string value. See Standard SQL and ODBC Date and Time Literals

11.3.7 Conversion Between Date and Time Types

To some extent, you can convert a value from one temporal type to another. However, there may be
some alteration of the value or loss of information. In all cases, conversion between temporal types
is subject to the range of valid values for the resulting type. For example, although DATE, DATETIME,
and TIMESTAMP values all can be specified using the same set of formats, the types do not all
have the same range of values. TIMESTAMP values cannot be earlier than 1970 UTC or later than
'2038-01-19 03:14:07' UTC. This means that a date such as '1968-01-01', while valid as a
DATE or DATETIME value, is not valid as a TIMESTAMP value and is converted to 0.

Conversion of DATE values:

• Conversion to a DATETIME or TIMESTAMP value adds a time part of '00:00:00' because the
DATE value contains no time information.

• Conversion to a TIME value is not useful; the result is '00:00:00'.

Conversion of DATETIME and TIMESTAMP values:

• Conversion to a DATE value discards the time part because the DATE type contains no time
information.

• Conversion to a TIME value discards the date part because the TIME type contains no date
information.

For conversion of TIME values to other temporal types, the value of CURRENT_DATE() is used for the
date part. The TIME is interpreted as elapsed time (not time of day) and added to the date. This means
that the date part of the result differs from the current date if the time value is outside the range from
'00:00:00' to '23:59:59'.

Suppose that the current date is '2012-01-01'. TIME values of '12:00:00', '24:00:00',
and '-12:00:00', when converted to DATETIME or TIMESTAMP values, result in '2012-01-01
12:00:00', '2012-01-02 00:00:00', and '2011-12-31 12:00:00', respectively.

Conversion of TIME to DATE is similar but discards the time part from the result: '2012-01-01',
'2012-01-02', and '2011-12-31', respectively.

Explicit conversion can be used to override implicit conversion. For example, in comparison of DATE
and DATETIME values, the DATE value is coerced to the DATETIME type by adding a time part of

Two-Digit Years in Dates

1100

'00:00:00'. To perform the comparison by ignoring the time part of the DATETIME value instead,
use the CAST() function in the following way:

date_col = CAST(datetime_col AS DATE)

Conversion of TIME and DATETIME values to numeric form (for example, by adding +0) depends
on whether the value contains a fractional seconds part. TIME(N) or DATETIME(N) is converted to
integer when N is 0 (or omitted) and to a DECIMAL value with N decimal digits when N is greater than 0:

mysql> SELECT CURTIME(), CURTIME()+0, CURTIME(3)+0;
+-----------+-------------+--------------+
| CURTIME() | CURTIME()+0 | CURTIME(3)+0 |
+-----------+-------------+--------------+
| 09:28:00 | 92800 | 92800.887 |
+-----------+-------------+--------------+
mysql> SELECT NOW(), NOW()+0, NOW(3)+0;
+---------------------+----------------+--------------------+
| NOW() | NOW()+0 | NOW(3)+0 |
+---------------------+----------------+--------------------+
| 2012-08-15 09:28:00 | 20120815092800 | 20120815092800.889 |
+---------------------+----------------+--------------------+

11.3.8 Two-Digit Years in Dates

Date values with two-digit years are ambiguous because the century is unknown. Such values must be
interpreted into four-digit form because MySQL stores years internally using four digits.

For DATETIME, DATE, and TIMESTAMP types, MySQL interprets dates specified with ambiguous year
values using these rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

For YEAR, the rules are the same, with this exception: A numeric 00 inserted into YEAR(4) results in
0000 rather than 2000. To specify zero for YEAR(4) and have it be interpreted as 2000, specify it as a
string '0' or '00'.

Remember that these rules are only heuristics that provide reasonable guesses as to what your data
values mean. If the rules used by MySQL do not produce the values you require, you must provide
unambiguous input containing four-digit year values.

ORDER BY properly sorts YEAR values that have two-digit years.

Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a
two-digit year does not work properly with these functions. The fix in this case is to convert the YEAR to
four-digit year format.

11.4 String Types
The string types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET. This
section describes how these types work and how to use them in your queries. For string type storage
requirements, see Section 11.6, “Data Type Storage Requirements”.

11.4.1 The CHAR and VARCHAR Types

The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. They also
differ in maximum length and in whether trailing spaces are retained.

The CHAR and VARCHAR types are declared with a length that indicates the maximum number of
characters you want to store. For example, CHAR(30) can hold up to 30 characters.

The CHAR and VARCHAR Types

1101

The length of a CHAR column is fixed to the length that you declare when you create the table. The
length can be any value from 0 to 255. When CHAR values are stored, they are right-padded with
spaces to the specified length. When CHAR values are retrieved, trailing spaces are removed unless
the PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

Values in VARCHAR columns are variable-length strings. The length can be specified as a value from
0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535
bytes, which is shared among all columns) and the character set used. See Section E.10.4, “Limits on
Table Column Count and Row Size”.

In contrast to CHAR, VARCHAR values are stored as a 1-byte or 2-byte length prefix plus data. The
length prefix indicates the number of bytes in the value. A column uses one length byte if values
require no more than 255 bytes, two length bytes if values may require more than 255 bytes.

If strict SQL mode is not enabled and you assign a value to a CHAR or VARCHAR column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion
of the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.

For VARCHAR columns, trailing spaces in excess of the column length are truncated prior to insertion
and a warning is generated, regardless of the SQL mode in use. For CHAR columns, truncation of
excess trailing spaces from inserted values is performed silently regardless of the SQL mode.

VARCHAR values are not padded when they are stored. Trailing spaces are retained when values are
stored and retrieved, in conformance with standard SQL.

The following table illustrates the differences between CHAR and VARCHAR by showing the result of
storing various string values into CHAR(4) and VARCHAR(4) columns (assuming that the column uses
a single-byte character set such as latin1).

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' ' ' 4 bytes '' 1 byte

'ab' 'ab ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

The values shown as stored in the last row of the table apply only when not using strict mode; if
MySQL is running in strict mode, values that exceed the column length are not stored, and an error
results.

If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the
columns are not always the same because trailing spaces are removed from CHAR columns upon
retrieval. The following example illustrates this difference:

mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO vc VALUES ('ab ', 'ab ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab) | (ab) |
+---------------------+---------------------+
1 row in set (0.06 sec)

Values in CHAR and VARCHAR columns are sorted and compared according to the character set
collation assigned to the column.

The BINARY and VARBINARY Types

1102

All MySQL collations are of type PADSPACE. This means that all CHAR, VARCHAR, and TEXT values
in MySQL are compared without regard to any trailing spaces. “Comparison” in this context does not
include the LIKE pattern-matching operator, for which trailing spaces are significant. For example:

mysql> CREATE TABLE names (myname CHAR(10));
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO names VALUES ('Monty');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT myname = 'Monty', myname = 'Monty ' FROM names;
+------------------+--------------------+
| myname = 'Monty' | myname = 'Monty ' |
+------------------+--------------------+
| 1 | 1 |
+------------------+--------------------+
1 row in set (0.00 sec)

mysql> SELECT myname LIKE 'Monty', myname LIKE 'Monty ' FROM names;
+---------------------+-----------------------+
| myname LIKE 'Monty' | myname LIKE 'Monty ' |
+---------------------+-----------------------+
| 1 | 0 |
+---------------------+-----------------------+
1 row in set (0.00 sec)

This is true for all MySQL versions, and is not affected by the server SQL mode.

Note

For more information about MySQL character sets and collations, see
Section 10.1, “Character Set Support”. For additional information about storage
requirements, see Section 11.6, “Data Type Storage Requirements”.

For those cases where trailing pad characters are stripped or comparisons ignore them, if a column
has an index that requires unique values, inserting into the column values that differ only in number
of trailing pad characters will result in a duplicate-key error. For example, if a table contains 'a', an
attempt to store 'a ' causes a duplicate-key error.

11.4.2 The BINARY and VARBINARY Types

The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they contain binary
strings rather than nonbinary strings. That is, they contain byte strings rather than character strings.
This means that they have no character set, and sorting and comparison are based on the numeric
values of the bytes in the values.

The permissible maximum length is the same for BINARY and VARBINARY as it is for CHAR and
VARCHAR, except that the length for BINARY and VARBINARY is a length in bytes rather than in
characters.

The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BINARY
data types. For the latter types, the BINARY attribute does not cause the column to be treated as a
binary string column. Instead, it causes the binary collation for the column character set to be used,
and the column itself contains nonbinary character strings rather than binary byte strings. For example,
CHAR(5) BINARY is treated as CHAR(5) CHARACTER SET latin1 COLLATE latin1_bin,
assuming that the default character set is latin1. This differs from BINARY(5), which stores 5-
bytes binary strings that have no character set or collation. For information about differences between
nonbinary string binary collations and binary strings, see Section 10.1.7.6, “The _bin and binary
Collations”.

If strict SQL mode is not enabled and you assign a value to a BINARY or VARBINARY column that
exceeds the column's maximum length, the value is truncated to fit and a warning is generated. For

The BLOB and TEXT Types

1103

cases of truncation, you can cause an error to occur (rather than a warning) and suppress insertion of
the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.

When BINARY values are stored, they are right-padded with the pad value to the specified length. The
pad value is 0x00 (the zero byte). Values are right-padded with 0x00 on insert, and no trailing bytes
are removed on select. All bytes are significant in comparisons, including ORDER BY and DISTINCT
operations. 0x00 bytes and spaces are different in comparisons, with 0x00 < space.

Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes 'a
\0\0' when inserted. Both inserted values remain unchanged when selected.

For VARBINARY, there is no padding on insert and no bytes are stripped on select. All bytes are
significant in comparisons, including ORDER BY and DISTINCT operations. 0x00 bytes and spaces
are different in comparisons, with 0x00 < space.

For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an
index that requires unique values, inserting into the column values that differ only in number of trailing
pad bytes will result in a duplicate-key error. For example, if a table contains 'a', an attempt to store
'a\0' causes a duplicate-key error.

You should consider the preceding padding and stripping characteristics carefully if you plan to use the
BINARY data type for storing binary data and you require that the value retrieved be exactly the same
as the value stored. The following example illustrates how 0x00-padding of BINARY values affects
column value comparisons:

mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)

If the value retrieved must be the same as the value specified for storage with no padding, it might be
preferable to use VARBINARY or one of the BLOB data types instead.

11.4.3 The BLOB and TEXT Types

A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. These differ only in the maximum length of the
values they can hold. The four TEXT types are TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. These
correspond to the four BLOB types and have the same maximum lengths and storage requirements.
See Section 11.6, “Data Type Storage Requirements”.

BLOB values are treated as binary strings (byte strings). They have no character set, and sorting and
comparison are based on the numeric values of the bytes in column values. TEXT values are treated as
nonbinary strings (character strings). They have a character set, and values are sorted and compared
based on the collation of the character set.

If strict SQL mode is not enabled and you assign a value to a BLOB or TEXT column that exceeds the
column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion
of the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.

Truncation of excess trailing spaces from values to be inserted into TEXT columns always generates a
warning, regardless of the SQL mode.

The BLOB and TEXT Types

1104

For TEXT and BLOB columns, there is no padding on insert and no bytes are stripped on select.

If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if
the index requires unique values, duplicate-key errors will occur for values that differ only in the number
of trailing spaces. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-
key error. This is not true for BLOB columns.

In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as
you like. Similarly, you can regard a TEXT column as a VARCHAR column. BLOB and TEXT differ from
VARBINARY and VARCHAR in the following ways:

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and
VARCHAR, a prefix length is optional. See Section 8.3.4, “Column Indexes”.

• BLOB and TEXT columns cannot have DEFAULT values.

If you use the BINARY attribute with a TEXT data type, the column is assigned the binary collation of
the column character set.

LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as
LONGVARCHAR.

Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using
them:

• Only the first max_sort_length bytes of the column are used when sorting. The default value
of max_sort_length is 1024. You can make more bytes significant in sorting or grouping by
increasing the value of max_sort_length at server startup or runtime. Any client can change the
value of its session max_sort_length variable:

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t
 -> ORDER BY comment;

• Instances of BLOB or TEXT columns in the result of a query that is processed using a temporary
table causes the server to use a table on disk rather than in memory because the MEMORY storage
engine does not support those data types (see Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”). Use of disk incurs a performance penalty, so include BLOB or TEXT columns in the query
result only if they are really needed. For example, avoid using SELECT *, which selects all columns.

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you
actually can transmit between the client and server is determined by the amount of available memory
and the size of the communications buffers. You can change the message buffer size by changing
the value of the max_allowed_packet variable, but you must do so for both the server and your
client program. For example, both mysql and mysqldump enable you to change the client-side
max_allowed_packet value. See Section 8.11.2, “Tuning Server Parameters”, Section 4.5.1,
“mysql — The MySQL Command-Line Tool”, and Section 4.5.4, “mysqldump — A Database
Backup Program”. You may also want to compare the packet sizes and the size of the data objects
you are storing with the storage requirements, see Section 11.6, “Data Type Storage Requirements”

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast
to all other data types, for which storage is allocated once per column when the table is opened.

In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns.
You may find MySQL's string handling functions useful for working with such data. See Section 12.5,
“String Functions”. For security and other reasons, it is usually preferable to do so using application
code rather than giving application users the FILE privilege. You can discuss specifics for various
languages and platforms in the MySQL Forums (http://forums.mysql.com/).

http://forums.mysql.com/

The ENUM Type

1105

11.4.4 The ENUM Type

An ENUM is a string object with a value chosen from a list of permitted values that are enumerated
explicitly in the column specification at table creation time. It has these advantages:

• Compact data storage in situations where a column has a limited set of possible values. The strings
you specify as input values are automatically encoded as numbers. See Section 11.6, “Data Type
Storage Requirements” for the storage requirements for ENUM types.

• Readable queries and output. The numbers are translated back to the corresponding strings in query
results.

and these potential issues to consider:

• If you make enumeration values that look like numbers, it is easy to mix up the literal values with
their internal index numbers, as explained in Enumeration Limitations.

• Using ENUM columns in ORDER BY clauses requires extra care, as explained in Enumeration Sorting.

Creating and Using ENUM Columns

An enumeration value must be a quoted string literal. For example, you can create a table with an
ENUM column like this:

CREATE TABLE shirts (
 name VARCHAR(40),
 size ENUM('x-small', 'small', 'medium', 'large', 'x-large')
);
INSERT INTO shirts (name, size) VALUES ('dress shirt','large'), ('t-shirt','medium'),
 ('polo shirt','small');
SELECT name, size FROM shirts WHERE size = 'medium';
+---------+--------+
| name | size |
+---------+--------+
| t-shirt | medium |
+---------+--------+
UPDATE shirts SET size = 'small' WHERE size = 'large';
COMMIT;

Inserting 1 million rows into this table with a value of 'medium' would require 1 million bytes of
storage, as opposed to 6 million bytes if you stored the actual string 'medium' in a VARCHAR column.

Index Values for Enumeration Literals

Each enumeration value has an index:

• The elements listed in the column specification are assigned index numbers, beginning with 1.

• The index value of the empty string error value is 0. This means that you can use the following
SELECT statement to find rows into which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

• The term “index” here refers to a position within the list of enumeration values. It has nothing to do
with table indexes.

For example, a column specified as ENUM('Mercury', 'Venus', 'Earth') can have any of the
values shown here. The index of each value is also shown.

Value Index

NULL NULL

The ENUM Type

1106

Value Index

'' 0

'Mercury' 1

'Venus' 2

'Earth' 3

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than
3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET
columns considered as a group. For more information on these limits, see Section E.10.5, “Limits
Imposed by .frm File Structure”.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example,
you can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For ENUM values, the index number is used in the calculation.

Handling of Enumeration Literals

Trailing spaces are automatically deleted from ENUM member values in the table definition when a table
is created.

When retrieved, values stored into an ENUM column are displayed using the lettercase that was used
in the column definition. Note that ENUM columns can be assigned a character set and collation. For
binary or case-sensitive collations, lettercase is taken into account when assigning values to the
column.

If you store a number into an ENUM column, the number is treated as the index into the possible values,
and the value stored is the enumeration member with that index. (However, this does not work with
LOAD DATA, which treats all input as strings.) If the numeric value is quoted, it is still interpreted as
an index if there is no matching string in the list of enumeration values. For these reasons, it is not
advisable to define an ENUM column with enumeration values that look like numbers, because this can
easily become confusing. For example, the following column has enumeration members with string
values of '0', '1', and '2', but numeric index values of 1, 2, and 3:

numbers ENUM('0','1','2')

If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store
'2', it matches an enumeration value, so it is stored as '2'. If you store '3', it does not match any
enumeration value, so it is treated as an index and becomes '2' (the value with index 3).

mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+
| numbers |
+---------+
| 1 |
| 2 |
| 2 |
+---------+

To determine all possible values for an ENUM column, use SHOW COLUMNS FROM tbl_name LIKE
'enum_col' and parse the ENUM definition in the Type column of the output.

In the C API, ENUM values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see Section 21.8.5, “C API Data Structures”.

The SET Type

1107

Empty or NULL Enumeration Values

An enumeration value can also be the empty string ('') or NULL under certain circumstances:

• If you insert an invalid value into an ENUM (that is, a string not present in the list of permitted values),
the empty string is inserted instead as a special error value. This string can be distinguished from
a “normal” empty string by the fact that this string has the numeric value 0. See Index Values for
Enumeration Literals for details about the numeric indexes for the enumeration values.

If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.

• If an ENUM column is declared to permit NULL, the NULL value is a valid value for the column, and the
default value is NULL. If an ENUM column is declared NOT NULL, its default value is the first element
of the list of permitted values.

Enumeration Sorting

ENUM values are sorted based on their index numbers, which depend on the order in which the
enumeration members were listed in the column specification. For example, 'b' sorts before 'a' for
ENUM('b', 'a'). The empty string sorts before nonempty strings, and NULL values sort before all
other enumeration values.

To prevent unexpected results when using the ORDER BY clause on an ENUM column, use one of these
techniques:

• Specify the ENUM list in alphabetic order.

• Make sure that the column is sorted lexically rather than by index number by coding ORDER BY
CAST(col AS CHAR) or ORDER BY CONCAT(col).

Enumeration Limitations

An enumeration value cannot be an expression, even one that evaluates to a string value.

For example, this CREATE TABLE statement does not work because the CONCAT function cannot be
used to construct an enumeration value:

CREATE TABLE sizes (
 size ENUM('small', CONCAT('med','ium'), 'large')
);

You also cannot employ a user variable as an enumeration value. This pair of statements do not work:

SET @mysize = 'medium';

CREATE TABLE sizes (
 size ENUM('small', @mysize, 'large')
);

We strongly recommend that you do not use numbers as enumeration values, because it does not
save on storage over the appropriate TINYINT or SMALLINT type, and it is easy to mix up the strings
and the underlying number values (which might not be the same) if you quote the ENUM values
incorrectly. If you do use a number as an enumeration value, always enclose it in quotation marks. If
the quotation marks are omitted, the number is regarded as an index. See Handling of Enumeration
Literals to see how even a quoted number could be mistakenly used as a numeric index value.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

11.4.5 The SET Type

The SET Type

1108

A SET is a string object that can have zero or more values, each of which must be chosen from a list
of permitted values specified when the table is created. SET column values that consist of multiple set
members are specified with members separated by commas (“,”). A consequence of this is that SET
member values should not themselves contain commas.

For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:

''
'one'
'two'
'one,two'

A SET column can have a maximum of 64 distinct members. A table can have no more than 255
unique element list definitions among its ENUM and SET columns considered as a group. For more
information on this limit, see Section E.10.5, “Limits Imposed by .frm File Structure”.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

Trailing spaces are automatically deleted from SET member values in the table definition when a table
is created.

When retrieved, values stored in a SET column are displayed using the lettercase that was used in the
column definition. Note that SET columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to
the first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits set
corresponding to the set members that make up the column value. For example, you can retrieve
numeric values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of the number
determine the set members in the column value. For a column specified as SET('a','b','c','d'),
the members have the following decimal and binary values.

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value
members 'a' and 'd' are selected and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are
listed in when you insert the value. It also does not matter how many times a given element is listed in
the value. When the value is retrieved later, each element in the value appears once, with elements
listed according to the order in which they were specified at table creation time. For example, suppose
that a column is specified as SET('a','b','c','d'):

mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));

If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':

mysql> INSERT INTO myset (col) VALUES
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');
Query OK, 5 rows affected (0.01 sec)

The SET Type

1109

Records: 5 Duplicates: 0 Warnings: 0

Then all these values appear as 'a,d' when retrieved:

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
5 rows in set (0.04 sec)

If you set a SET column to an unsupported value, the value is ignored and a warning is issued:

mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+--+
1 row in set (0.04 sec)

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
6 rows in set (0.01 sec)

If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET values, the cast operation causes the numeric value to be used.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is similar,
but not the same: It finds rows where set_col contains value anywhere, even as a substring of
another set member.

The following statements also are permitted:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

The first of these statements looks for values containing the first set member. The second looks for an
exact match. Be careful with comparisons of the second type. Comparing set values to 'val1,val2'

Data Type Default Values

1110

returns different results than comparing values to 'val2,val1'. You should specify the values in the
same order they are listed in the column definition.

To determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name LIKE
set_col and parse the SET definition in the Type column of the output.

In the C API, SET values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see Section 21.8.5, “C API Data Structures”.

11.5 Data Type Default Values

The DEFAULT value clause in a data type specification indicates a default value for a column. With
one exception, the default value must be a constant; it cannot be a function or an expression. This
means, for example, that you cannot set the default for a date column to be the value of a function
such as NOW() or CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as
the default for TIMESTAMP and DATETIME columns. See Section 11.3.5, “Automatic Initialization and
Updating for TIMESTAMP and DATETIME”.

BLOB and TEXT columns cannot be assigned a default value.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as
follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.

If the column cannot take NULL as the value, MySQL defines the column with no explicit DEFAULT
clause. Exception: If the column is defined as part of a PRIMARY KEY but not explicitly as NOT NULL,
MySQL creates it as a NOT NULL column (because PRIMARY KEY columns must be NOT NULL).
Before MySQL 5.7.3, the column is also assigned a DEFAULT clause using the implicit default value. To
prevent this, include an explicit NOT NULL in the definition of any PRIMARY KEY column.

For data entry into a NOT NULL column that has no explicit DEFAULT clause, if an INSERT or REPLACE
statement includes no value for the column, or an UPDATE statement sets the column to NULL, MySQL
handles the column according to the SQL mode in effect at the time:

• If strict SQL mode is enabled, an error occurs for transactional tables and the statement is rolled
back. For nontransactional tables, an error occurs, but if this happens for the second or subsequent
row of a multiple-row statement, the preceding rows will have been inserted.

• If strict mode is not enabled, MySQL sets the column to the implicit default value for the column data
type.

Suppose that a table t is defined as follows:

CREATE TABLE t (i INT NOT NULL);

In this case, i has no explicit default, so in strict mode each of the following statements produce an
error and no row is inserted. When not using strict mode, only the third statement produces an error;
the implicit default is inserted for the first two statements, but the third fails because DEFAULT(i)
cannot produce a value:

INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);
INSERT INTO t VALUES(DEFAULT(i));

See Section 5.1.7, “Server SQL Modes”.

For a given table, you can use the SHOW CREATE TABLE statement to see which columns have an
explicit DEFAULT clause.

Data Type Storage Requirements

1111

Implicit defaults are defined as follows:

• For numeric types, the default is 0, with the exception that for integer or floating-point types declared
with the AUTO_INCREMENT attribute, the default is the next value in the sequence.

• For date and time types other than TIMESTAMP, the default is the appropriate “zero” value
for the type. This is also true for TIMESTAMP if the explicit_defaults_for_timestamp
system variable is enabled (see Section 5.1.4, “Server System Variables”). Otherwise, for the first
TIMESTAMP column in a table, the default value is the current date and time. See Section 11.3, “Date
and Time Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default is the
first enumeration value.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

11.6 Data Type Storage Requirements
The storage requirements for table data on disk depend on several factors. Different storage engines
represent data types and store raw data differently. Table data might be compressed, either for a
column or an entire row, complicating the calculation of storage requirements for a table or column.

Despite differences in storage layout on disk, the internal MySQL APIs that communicate and
exchange information about table rows use a consistent data structure that applies across all storage
engines.

This section includes guidelines and information for the storage requirements for each data type
supported by MySQL, including the internal format and size for storage engines that use a fixed-size
representation for data types. Information is listed by category or storage engine.

The internal representation of a table has a maximum row size of 65,535 bytes, even if the storage
engine is capable of supporting larger rows. This figure excludes BLOB or TEXT columns, which
contribute only 9 to 12 bytes toward this size. For BLOB and TEXT data, the information is stored
internally in a different area of memory than the row buffer. Different storage engines handle the
allocation and storage of this data in different ways, according to the method they use for handling the
corresponding types. For more information, see Chapter 14, Storage Engines, and Section E.10.4,
“Limits on Table Column Count and Row Size”.

Storage Requirements for InnoDB Tables

See Physical Row Structure for information about storage requirements for InnoDB tables.

Storage Requirements for Numeric Types

Data Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) Varies; see following discussion

Storage Requirements for Date and Time Types

1112

Data Type Storage Required

BIT(M) approximately (M+7)/8 bytes

Values for DECIMAL (and NUMERIC) columns are represented using a binary format that packs nine
decimal (base 10) digits into four bytes. Storage for the integer and fractional parts of each value are
determined separately. Each multiple of nine digits requires four bytes, and the “leftover” digits require
some fraction of four bytes. The storage required for excess digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

Storage Requirements for Date and Time Types

For TIME, DATETIME, and TIMESTAMP columns, the storage required for tables created before MySQL
5.6.4 differs from tables created from 5.6.4 on. This is due to a change in 5.6.4 that permits these types
to have a fractional part, which requires from 0 to 3 bytes.

Data Type Storage Required Before MySQL
5.6.4

Storage Required as of MySQL 5.6.4

YEAR 1 byte 1 byte

DATE 3 bytes 3 bytes

TIME 3 bytes 3 bytes + fractional seconds storage

DATETIME 8 bytes 5 bytes + fractional seconds storage

TIMESTAMP 4 bytes 4 bytes + fractional seconds storage

As of MySQL 5.6.4, storage for YEAR and DATE remains unchanged. However, TIME, DATETIME, and
TIMESTAMP are represented differently. DATETIME is packed more efficiently, requiring 5 rather than 8
bytes for the nonfractional part, and all three parts have a fractional part that requires from 0 to 3 bytes,
depending on the fractional seconds precision of stored values.

Fractional Seconds Precision Storage Required

0 0 bytes

1, 2 1 byte

3, 4 2 bytes

5, 6 3 bytes

For example, TIME(0), TIME(2), TIME(4), and TIME(6) use 3, 4, 5, and 6 bytes, respectively.
TIME and TIME(0) are equivalent and require the same storage.

For details about internal representation of temporal values, see MySQL Internals: Important
Algorithms and Structures.

Storage Requirements for String Types

http://dev.mysql.com/doc/internals/en/algorithms.html
http://dev.mysql.com/doc/internals/en/algorithms.html

Storage Requirements for String Types

1113

In the following table, M represents the declared column length in characters for nonbinary string types
and bytes for binary string types. L represents the actual length in bytes of a given string value.

Data Type Storage Required

CHAR(M) M × w bytes, 0 <= M <= 255, where w is the number of bytes
required for the maximum-length character in the character
set. See Physical Row Structure for information about CHAR
data type storage requirements for InnoDB tables.

BINARY(M) M bytes, 0 <= M <= 255

VARCHAR(M), VARBINARY(M) L + 1 bytes if column values require 0 – 255 bytes, L + 2
bytes if values may require more than 255 bytes

TINYBLOB, TINYTEXT L + 1 bytes, where L < 28

BLOB, TEXT L + 2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L + 3 bytes, where L < 224

LONGBLOB, LONGTEXT L + 4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of enumeration
values (65,535 values maximum)

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of set
members (64 members maximum)

Variable-length string types are stored using a length prefix plus data. The length prefix requires from
one to four bytes depending on the data type, and the value of the prefix is L (the byte length of the
string). For example, storage for a MEDIUMTEXT value requires L bytes to store the value plus three
bytes to store the length of the value.

To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value, you
must take into account the character set used for that column and whether the value contains multi-
byte characters. In particular, when using the utf8 (or utf8mb4) Unicode character set, you must
keep in mind that not all characters use the same number of bytes and can require up to three (four)
bytes per character. For a breakdown of the storage used for different categories of utf8 or utf8mb4
characters, see Section 10.1.10, “Unicode Support”.

VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage
requirements depend on these factors:

• The actual length of the column value

• The column's maximum possible length

• The character set used for the column, because some character sets contain multi-byte characters

For example, a VARCHAR(255) column can hold a string with a maximum length of 255 characters.
Assuming that the column uses the latin1 character set (one byte per character), the actual storage
required is the length of the string (L), plus one byte to record the length of the string. For the string
'abcd', L is 4 and the storage requirement is five bytes. If the same column is instead declared to use
the ucs2 double-byte character set, the storage requirement is 10 bytes: The length of 'abcd' is eight
bytes and the column requires two bytes to store lengths because the maximum length is greater than
255 (up to 510 bytes).

The effective maximum number of bytes that can be stored in a VARCHAR or VARBINARY column is
subject to the maximum row size of 65,535 bytes, which is shared among all columns. For a VARCHAR
column that stores multi-byte characters, the effective maximum number of characters is less. For
example, utf8 characters can require up to three bytes per character, so a VARCHAR column that uses
the utf8 character set can be declared to be a maximum of 21,844 characters. See Section E.10.4,
“Limits on Table Column Count and Row Size”.

Choosing the Right Type for a Column

1114

The size of an ENUM object is determined by the number of different enumeration values. One byte is
used for enumerations with up to 255 possible values. Two bytes are used for enumerations having
between 256 and 65,535 possible values. See Section 11.4.4, “The ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N, the
object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64
members. See Section 11.4.5, “The SET Type”.

11.7 Choosing the Right Type for a Column

For optimum storage, you should try to use the most precise type in all cases. For example, if an
integer column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the best
type. Of the types that represent all the required values, this type uses the least amount of storage.

All basic calculations (+, -, *, and /) with DECIMAL columns are done with precision of 65 decimal
(base 10) digits. See Section 11.1.1, “Numeric Type Overview”.

If accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good
enough. For high precision, you can always convert to a fixed-point type stored in a BIGINT. This
enables you to do all calculations with 64-bit integers and then convert results back to floating-point
values as necessary.

PROCEDURE ANALYSE can be used to obtain suggestions for optimal column data types. For more
information, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”.

11.8 Using Data Types from Other Database Engines

To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data
types as shown in the following table. These mappings make it easier to import table definitions from
other database systems into MySQL.

Other Vendor Type MySQL Type

BOOL TINYINT

BOOLEAN TINYINT

CHARACTER VARYING(M) VARCHAR(M)

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Data type mapping occurs at table creation time, after which the original type specifications are
discarded. If you create a table with types used by other vendors and then issue a DESCRIBE

Using Data Types from Other Database Engines

1115

tbl_name statement, MySQL reports the table structure using the equivalent MySQL types. For
example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
a	tinyint(1)	YES		NULL	
b	double	YES		NULL	
c	mediumtext	YES		NULL	
d	decimal(10,0)	YES		NULL	
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

1116

1117

Chapter 12 Functions and Operators

Table of Contents
12.1 Function and Operator Reference ... 1118
12.2 Type Conversion in Expression Evaluation .. 1125
12.3 Operators .. 1128

12.3.1 Operator Precedence .. 1129
12.3.2 Comparison Functions and Operators .. 1130
12.3.3 Logical Operators .. 1135
12.3.4 Assignment Operators ... 1137

12.4 Control Flow Functions .. 1138
12.5 String Functions .. 1140

12.5.1 String Comparison Functions ... 1155
12.5.2 Regular Expressions ... 1159

12.6 Numeric Functions and Operators .. 1164
12.6.1 Arithmetic Operators ... 1165
12.6.2 Mathematical Functions ... 1167

12.7 Date and Time Functions ... 1176
12.8 What Calendar Is Used By MySQL? ... 1197
12.9 Full-Text Search Functions ... 1197

12.9.1 Natural Language Full-Text Searches .. 1198
12.9.2 Boolean Full-Text Searches ... 1202
12.9.3 Full-Text Searches with Query Expansion .. 1204
12.9.4 Full-Text Stopwords .. 1205
12.9.5 Full-Text Restrictions ... 1208
12.9.6 Fine-Tuning MySQL Full-Text Search .. 1209
12.9.7 Adding a Collation for Full-Text Indexing .. 1211

12.10 Cast Functions and Operators .. 1212
12.11 XML Functions .. 1215
12.12 Bit Functions ... 1226
12.13 Encryption and Compression Functions .. 1227
12.14 Information Functions ... 1236
12.15 Functions Used with Global Transaction IDs ... 1244
12.16 Miscellaneous Functions .. 1246
12.17 Functions and Modifiers for Use with GROUP BY Clauses .. 1253

12.17.1 GROUP BY (Aggregate) Functions ... 1253
12.17.2 GROUP BY Modifiers ... 1257
12.17.3 MySQL Extensions to GROUP BY .. 1260

12.18 Spatial Extensions ... 1261
12.18.1 Introduction to MySQL Spatial Support ... 1262
12.18.2 The OpenGIS Geometry Model ... 1262
12.18.3 Supported Spatial Data Formats .. 1268
12.18.4 Creating a Spatially Enabled MySQL Database .. 1269
12.18.5 Spatial Analysis Functions ... 1274
12.18.6 Optimizing Spatial Analysis .. 1285
12.18.7 MySQL Conformance and Compatibility ... 1288

12.19 Precision Math ... 1288
12.19.1 Types of Numeric Values .. 1289
12.19.2 DECIMAL Data Type Characteristics .. 1289
12.19.3 Expression Handling ... 1290
12.19.4 Rounding Behavior .. 1292
12.19.5 Precision Math Examples .. 1292

Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING
clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement,

Function and Operator Reference

1118

or in SET statements. Expressions can be written using literal values, column values, NULL, built-in
functions, stored functions, user-defined functions, and operators. This chapter describes the functions
and operators that are permitted for writing expressions in MySQL. Instructions for writing stored
functions and user-defined functions are given in Section 18.2, “Using Stored Routines (Procedures
and Functions)”, and Section 22.3, “Adding New Functions to MySQL”. See Section 9.2.4, “Function
Name Parsing and Resolution”, for the rules describing how the server interprets references to different
kinds of functions.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the
documentation for a particular function or operator.

Note

By default, there must be no whitespace between a function name and the
parenthesis following it. This helps the MySQL parser distinguish between
function calls and references to tables or columns that happen to have the same
name as a function. However, spaces around function arguments are permitted.

You can tell the MySQL server to accept spaces after function names by starting it with the --sql-
mode=IGNORE_SPACE option. (See Section 5.1.7, “Server SQL Modes”.) Individual client programs
can request this behavior by using the CLIENT_IGNORE_SPACE option for mysql_real_connect().
In either case, all function names become reserved words.

For the sake of brevity, most examples in this chapter display the output from the mysql program in
abbreviated form. Rather than showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);
 -> 2

12.1 Function and Operator Reference
Table 12.1 Functions/Operators

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

AND, && Logical AND

ASCII() Return numeric value of left-most character

ASIN() Return the arc sine

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

Function and Operator Reference

1119

Name Description

ATAN2(), ATAN() Return the arc tangent of the two arguments

ATAN() Return the arc tangent

AVG() Return the average value of the argument

BENCHMARK() Repeatedly execute an expression

BETWEEN ... AND ... Check whether a value is within a range of values

BIN() Return a string containing binary representation of a number

BINARY Cast a string to a binary string

BIT_AND() Return bitwise and

BIT_COUNT() Return the number of bits that are set

BIT_LENGTH() Return length of argument in bits

BIT_OR() Return bitwise or

BIT_XOR() Return bitwise xor

& Bitwise AND

~ Invert bits

| Bitwise OR

^ Bitwise XOR

CASE Case operator

CAST() Cast a value as a certain type

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CHAR_LENGTH() Return number of characters in argument

CHAR() Return the character for each integer passed

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CHARSET() Return the character set of the argument

COALESCE() Return the first non-NULL argument

COERCIBILITY() Return the collation coercibility value of the string argument

COLLATION() Return the collation of the string argument

COMPRESS() Return result as a binary string

CONCAT_WS() Return concatenate with separator

CONCAT() Return concatenated string

CONNECTION_ID() Return the connection ID (thread ID) for the connection

CONV() Convert numbers between different number bases

CONVERT_TZ() Convert from one timezone to another

CONVERT() Cast a value as a certain type

COS() Return the cosine

COT() Return the cotangent

COUNT(DISTINCT) Return the count of a number of different values

COUNT() Return a count of the number of rows returned

CRC32() Compute a cyclic redundancy check value

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

Function and Operator Reference

1120

Name Description

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

CURTIME() Return the current time

DATABASE() Return the default (current) database name

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATE() Extract the date part of a date or datetime expression

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

DECODE() Decodes a string encrypted using ENCODE()

DEFAULT() Return the default value for a table column

DEGREES() Convert radians to degrees

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

DIV Integer division

/ Division operator

ELT() Return string at index number

ENCODE() Encode a string

ENCRYPT() Encrypt a string

<=> NULL-safe equal to operator

= Equal operator

EXP() Raise to the power of

EXPORT_SET() Return a string such that for every bit set in the value bits,
you get an on string and for every unset bit, you get an off
string

EXTRACT() Extract part of a date

ExtractValue() Extracts a value from an XML string using XPath notation

FIELD() Return the index (position) of the first argument in the
subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the
second argument

FLOOR() Return the largest integer value not greater than the
argument

FORMAT() Return a number formatted to specified number of decimal
places

Function and Operator Reference

1121

Name Description

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that
would be returned were there no LIMIT clause

FROM_BASE64() Decode to a base-64 string and return result

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format UNIX timestamp as a date

GET_FORMAT() Return a date format string

GET_LOCK() Get a named lock

>= Greater than or equal operator

> Greater than operator

GREATEST() Return the largest argument

GROUP_CONCAT() Return a concatenated string

GTID_SUBSET() Return true if all GTIDs in subset are also in set; otherwise
false.

GTID_SUBTRACT() Return all GTIDs in set that are not in subset.

HEX() Return a hexadecimal representation of a decimal or string
value

HOUR() Extract the hour

IF() If/else construct

IFNULL() Null if/else construct

IN() Check whether a value is within a set of values

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

INET6_ATON() Return the numeric value of an IPv6 address

INET6_NTOA() Return the IPv6 address from a numeric value

INSERT() Insert a substring at the specified position up to the specified
number of characters

INSTR() Return the index of the first occurrence of substring

INTERVAL() Return the index of the argument that is less than the first
argument

IS_FREE_LOCK() Checks whether the named lock is free

IS_IPV4_COMPAT() Return true if argument is an IPv4-compatible address

IS_IPV4_MAPPED() Return true if argument is an IPv4-mapped address

IS_IPV4() Return true if argument is an IPv4 address

IS_IPV6() Return true if argument is an IPv6 address

IS NOT NULL NOT NULL value test

IS NOT Test a value against a boolean

IS NULL NULL value test

IS_USED_LOCK() Checks whether the named lock is in use. Return connection
identifier if true.

IS Test a value against a boolean

ISNULL() Test whether the argument is NULL

LAST_DAY Return the last day of the month for the argument

Function and Operator Reference

1122

Name Description

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

LCASE() Synonym for LOWER()

LEAST() Return the smallest argument

<< Left shift

LEFT() Return the leftmost number of characters as specified

LENGTH() Return the length of a string in bytes

<= Less than or equal operator

< Less than operator

LIKE Simple pattern matching

LN() Return the natural logarithm of the argument

LOAD_FILE() Load the named file

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

LOCATE() Return the position of the first occurrence of substring

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified
string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the
corresponding bit in bits set

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to
the specified position

MATCH [1197] Perform full-text search

MAX() Return the maximum value

MD5() Calculate MD5 checksum

MICROSECOND() Return the microseconds from argument

MID() Return a substring starting from the specified position

MIN() Return the minimum value

- Minus operator

MINUTE() Return the minute from the argument

MOD() Return the remainder

% or MOD Modulo operator

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NAME_CONST() Causes the column to have the given name

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

Function and Operator Reference

1123

Name Description

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

NOT, ! Negates value

NOW() Return the current date and time

NULLIF() Return NULL if expr1 = expr2

OCT() Return a string containing octal representation of a number

OCTET_LENGTH() Synonym for LENGTH()

OLD_PASSWORD() Return the value of the pre-4.1 implementation of
PASSWORD

||, OR Logical OR

ORD() Return character code for leftmost character of the argument

PASSWORD() Calculate and return a password string

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

PI() Return the value of pi

+ Addition operator

POSITION() Synonym for LOCATE()

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

PROCEDURE ANALYSE() Analyze the results of a query

QUARTER() Return the quarter from a date argument

QUOTE() Escape the argument for use in an SQL statement

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

RANDOM_BYTES() Return a random byte vector

REGEXP Pattern matching using regular expressions

RELEASE_LOCK() Releases the named lock

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

>> Right shift

RIGHT() Return the specified rightmost number of characters

RLIKE Synonym for REGEXP

ROUND() Round the argument

ROW_COUNT() The number of rows updated

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SCHEMA() Synonym for DATABASE()

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

Function and Operator Reference

1124

Name Description

SECOND() Return the second (0-59)

SESSION_USER() Synonym for USER()

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SHA2() Calculate an SHA-2 checksum

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SLEEP() Sleep for a number of seconds

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

SQRT() Return the square root of the argument

STD() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

STDDEV() Return the population standard deviation

STR_TO_DATE() Convert a string to a date

STRCMP() Compare two strings

SUBDATE() Synonym for DATE_SUB() when invoked with three
arguments

SUBSTR() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number
of occurrences of the delimiter

SUBSTRING() Return the substring as specified

SUBTIME() Subtract times

SUM() Return the sum

SYSDATE() Return the time at which the function executes

SYSTEM_USER() Synonym for USER()

TAN() Return the tangent of the argument

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIME() Extract the time portion of the expression passed

TIMEDIFF() Subtract time

* Multiplication operator

TIMESTAMP() With a single argument, this function returns the date or
datetime expression; with two arguments, the sum of the
arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_BASE64() Return the argument converted to a base-64 string

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted to seconds
since Year 0

Type Conversion in Expression Evaluation

1125

Name Description

TRIM() Remove leading and trailing spaces

TRUNCATE() Truncate to specified number of decimal places

UCASE() Synonym for UPPER()

- Change the sign of the argument

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string before compression

UNHEX() Return a string containing hex representation of a number

UNIX_TIMESTAMP() Return a UNIX timestamp

UpdateXML() Return replaced XML fragment

UPPER() Convert to uppercase

USER() The user name and host name provided by the client

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

UUID_SHORT() Return an integer-valued universal identifier

UUID() Return a Universal Unique Identifier (UUID)

VALIDATE_PASSWORD_STRENGTH() Determine strength of password

VALUES() Defines the values to be used during an INSERT

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

VERSION() Returns a string that indicates the MySQL server version

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Wait until the slave SQL thread has executed all the given
GTIDs. Returns: the number of events that were executed
(or NULL, if GTID mode is not enabled).

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (0-53)

WEIGHT_STRING() Return the weight string for a string

XOR Logical XOR

YEAR() Return the year

YEARWEEK() Return the year and week

12.2 Type Conversion in Expression Evaluation
When an operator is used with operands of different types, type conversion occurs to make the
operands compatible. Some conversions occur implicitly. For example, MySQL automatically converts
numbers to strings as necessary, and vice versa.

mysql> SELECT 1+'1';
 -> 2
mysql> SELECT CONCAT(2,' test');
 -> '2 test'

It is also possible to convert a number to a string explicitly using the CAST() function. Conversion
occurs implicitly with the CONCAT() function because it expects string arguments.

Type Conversion in Expression Evaluation

1126

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
 -> 38.8, '38.8'
mysql> SELECT 38.8, CONCAT(38.8);
 -> 38.8, '38.8'

See later in this section for information about the character set of implicit number-to-string conversions,
and for modified rules that apply to CREATE TABLE ... SELECT statements.

The following rules describe how conversion occurs for comparison operations:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe
<=> equality comparison operator. For NULL <=> NULL, the result is true. No conversion is needed.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

• If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a
constant, the constant is converted to a timestamp before the comparison is performed. This is done
to be more ODBC-friendly. Note that this is not done for the arguments to IN()! To be safe, always
use complete datetime, date, or time strings when doing comparisons. For example, to achieve best
results when using BETWEEN with date or time values, use CAST() to explicitly convert the values to
the desired data type.

A single-row subquery from a table or tables is not considered a constant. For example, if a subquery
returns an integer to be compared to a DATETIME value, the comparison is done as two integers.
The integer is not converted to a temporal value. To compare the operands as DATETIME values,
use CAST() to explicitly convert the subquery value to DATETIME.

• If one of the arguments is a decimal value, comparison depends on the other argument. The
arguments are compared as decimal values if the other argument is a decimal or integer value, or as
floating-point values if the other argument is a floating-point value.

• In all other cases, the arguments are compared as floating-point (real) numbers.

For information about conversion of values from one temporal type to another, see Section 11.3.7,
“Conversion Between Date and Time Types”.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';
 -> 0
mysql> SELECT 7 > '6x';
 -> 1
mysql> SELECT 0 > 'x6';
 -> 0
mysql> SELECT 0 = 'x6';
 -> 1

For comparisons of a string column with a number, MySQL cannot use an index on the column to
look up the value quickly. If str_col is an indexed string column, the index cannot be used when
performing the lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1, such as
'1', ' 1', or '1a'.

Comparisons that use floating-point numbers (or values that are converted to floating-point
numbers) are approximate because such numbers are inexact. This might lead to results that appear
inconsistent:

Type Conversion in Expression Evaluation

1127

mysql> SELECT '18015376320243458' = 18015376320243458;
 -> 1
mysql> SELECT '18015376320243459' = 18015376320243459;
 -> 0

Such results can occur because the values are converted to floating-point numbers, which have only
53 bits of precision and are subject to rounding:

mysql> SELECT '18015376320243459'+0.0;
 -> 1.8015376320243e+16

Furthermore, the conversion from string to floating-point and from integer to floating-point do not
necessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas
the string is converted digit by digit in an operation that involves floating-point multiplications.

The results shown will vary on different systems, and can be affected by factors such as computer
architecture or the compiler version or optimization level. One way to avoid such problems is to use
CAST() so that a value is not converted implicitly to a float-point number:

mysql> SELECT CAST('18015376320243459' AS UNSIGNED) = 18015376320243459;
 -> 1

For more information about floating-point comparisons, see Section C.5.5.8, “Problems with Floating-
Point Values”.

In MySQL 5.7, the server includes dtoa, a conversion library that provides the basis for improved
conversion between string or DECIMAL values and approximate-value (FLOAT/DOUBLE) numbers:

• Consistent conversion results across platforms, which eliminates, for example, Unix versus Windows
conversion differences.

• Accurate representation of values in cases where results previously did not provide sufficient
precision, such as for values close to IEEE limits.

• Conversion of numbers to string format with the best possible precision. The precision of dtoa is
always the same or better than that of the standard C library functions.

Because the conversions produced by this library differ in some cases from non-dtoa results,
the potential exists for incompatibilities in applications that rely on previous results. For example,
applications that depend on a specific exact result from previous conversions might need adjustment to
accommodate additional precision.

The dtoa library provides conversions with the following properties. D represents a value with a
DECIMAL or string representation, and F represents a floating-point number in native binary (IEEE)
format.

• F -> D conversion is done with the best possible precision, returning D as the shortest string that
yields F when read back in and rounded to the nearest value in native binary format as specified by
IEEE.

• D -> F conversion is done such that F is the nearest native binary number to the input decimal string
D.

These properties imply that F -> D -> F conversions are lossless unless F is -inf, +inf, or NaN. The
latter values are not supported because the SQL standard defines them as invalid values for FLOAT or
DOUBLE.

For D -> F -> D conversions, a sufficient condition for losslessness is that D uses 15 or fewer digits of
precision, is not a denormal value, -inf, +inf, or NaN. In some cases, the conversion is lossless even
if D has more than 15 digits of precision, but this is not always the case.

Operators

1128

In MySQL 5.7, implicit conversion of a numeric or temporal value to string produces a value
that has a character set and collation determined by the character_set_connection and
collation_connection system variables. (These variables commonly are set with SET NAMES.
For information about connection character sets, see Section 10.1.4, “Connection Character Sets and
Collations”.)

This means that such a conversion results in a character (nonbinary) string (a CHAR, VARCHAR, or
LONGTEXT value), except in the case that the connection character set is set to binary. In that case,
the conversion result is a binary string (a BINARY, VARBINARY, or LONGBLOB value).

For integer expressions, the preceding remarks about expression evaluation apply somewhat
differently for expression assignment; for example, in a statement such as this:

CREATE TABLE t SELECT integer_expr;

In this case, the table in the column resulting from the expression has type INT or BIGINT depending
on the length of the integer expression. If the maximum length of the expression does no fit in an INT,
BIGINT is used instead. The length is taken from the max_length value of the SELECT result set
metadata (see Section 21.8.5, “C API Data Structures”). This means that you can force a BIGINT
rather than INT by use of a sufficiently long expression:

CREATE TABLE t SELECT 000000000000000000000;

12.3 Operators
Table 12.2 Operators

Name Description

AND, && Logical AND

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

BETWEEN ... AND ... Check whether a value is within a range of values

BINARY Cast a string to a binary string

& Bitwise AND

~ Invert bits

| Bitwise OR

^ Bitwise XOR

CASE Case operator

DIV Integer division

/ Division operator

<=> NULL-safe equal to operator

= Equal operator

>= Greater than or equal operator

> Greater than operator

IS NOT NULL NOT NULL value test

IS NOT Test a value against a boolean

IS NULL NULL value test

IS Test a value against a boolean

<< Left shift

Operator Precedence

1129

Name Description

<= Less than or equal operator

< Less than operator

LIKE Simple pattern matching

- Minus operator

% or MOD Modulo operator

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

NOT, ! Negates value

||, OR Logical OR

+ Addition operator

REGEXP Pattern matching using regular expressions

>> Right shift

RLIKE Synonym for REGEXP

SOUNDS LIKE Compare sounds

* Multiplication operator

- Change the sign of the argument

XOR Logical XOR

12.3.1 Operator Precedence

Operator precedences are shown in the following list, from highest precedence to the lowest. Operators
that are shown together on a line have the same precedence.

INTERVAL
BINARY, COLLATE
!
- (unary minus), ~ (unary bit inversion)
^
*, /, DIV, %, MOD
-, +
<<, >>
&
|
= (comparison), <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN
BETWEEN, CASE, WHEN, THEN, ELSE
NOT
&&, AND
XOR
||, OR
= (assignment), :=

The precedence of = depends on whether it is used as a comparison operator (=) or as an assignment
operator (=). When used as a comparison operator, it has the same precedence as <=>, >=, >,
<=, <, <>, !=, IS, LIKE, REGEXP, and IN. When used as an assignment operator, it has the same
precedence as :=. Section 13.7.4, “SET Syntax”, and Section 9.4, “User-Defined Variables”, explain
how MySQL determines which interpretation of = should apply.

The meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

Comparison Functions and Operators

1130

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 5.1.7, “Server SQL Modes”.

The precedence of operators determines the order of evaluation of terms in an expression. To override
this order and group terms explicitly, use parentheses. For example:

mysql> SELECT 1+2*3;
 -> 7
mysql> SELECT (1+2)*3;
 -> 9

12.3.2 Comparison Functions and Operators
Table 12.3 Comparison Operators

Name Description

BETWEEN ... AND ... Check whether a value is within a range of values

COALESCE() Return the first non-NULL argument

<=> NULL-safe equal to operator

= Equal operator

>= Greater than or equal operator

> Greater than operator

GREATEST() Return the largest argument

IN() Check whether a value is within a set of values

INTERVAL() Return the index of the argument that is less than the first
argument

IS NOT NULL NOT NULL value test

IS NOT Test a value against a boolean

IS NULL NULL value test

IS Test a value against a boolean

ISNULL() Test whether the argument is NULL

LEAST() Return the smallest argument

<= Less than or equal operator

< Less than operator

LIKE Simple pattern matching

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for
both numbers and strings. Strings are automatically converted to numbers and numbers to strings as
necessary.

The following relational comparison operators can be used to compare not only scalar operands, but
row operands:

= > < >= <= <> !=

Comparison Functions and Operators

1131

For examples of row comparisons, see Section 13.2.10.5, “Row Subqueries”.

Some of the functions in this section return values other than 1 (TRUE), 0 (FALSE), or NULL. For
example, LEAST() and GREATEST(). However, the value they return is based on comparison
operations performed according to the rules described in Section 12.2, “Type Conversion in Expression
Evaluation”.

To convert a value to a specific type for comparison purposes, you can use the CAST() function.
String values can be converted to a different character set using CONVERT(). See Section 12.10, “Cast
Functions and Operators”.

By default, string comparisons are not case sensitive and use the current character set. The default is
latin1 (cp1252 West European), which also works well for English.

• =

Equal:

mysql> SELECT 1 = 0;
 -> 0
mysql> SELECT '0' = 0;
 -> 1
mysql> SELECT '0.0' = 0;
 -> 1
mysql> SELECT '0.01' = 0;
 -> 0
mysql> SELECT '.01' = 0.01;
 -> 1

• <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1
rather than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
 -> 1, 1, 0
mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
 -> 1, NULL, NULL

• <>, !=

Not equal:

mysql> SELECT '.01' <> '0.01';
 -> 1
mysql> SELECT .01 <> '0.01';
 -> 0
mysql> SELECT 'zapp' <> 'zappp';
 -> 1

• <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
 -> 1

• <

Less than:

mysql> SELECT 2 < 2;

Comparison Functions and Operators

1132

 -> 0

• >=

Greater than or equal:

mysql> SELECT 2 >= 2;
 -> 1

• >

Greater than:

mysql> SELECT 2 > 2;
 -> 0

• IS boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
 -> 1, 1, 1

• IS NOT boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
 -> 1, 1, 0

• IS NULL

Tests whether a value is NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
 -> 0, 0, 1

 To work well with ODBC programs, MySQL supports the following extra features when using IS
NULL:

• If sql_auto_is_null variable is set to 1, then after a statement that successfully inserts an
automatically generated AUTO_INCREMENT value, you can find that value by issuing a statement
of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert,
see Section 12.14, “Information Functions”. If no AUTO_INCREMENT value was successfully
inserted, the SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison can be
disabled by setting sql_auto_is_null = 0. See Section 5.1.4, “Server System Variables”.

The default value of sql_auto_is_null is 0 in MySQL 5.7.

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the special date
'0000-00-00' by using a statement like this:

Comparison Functions and Operators

1133

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC does not support a
'0000-00-00' date value.

See Obtaining Auto-Increment Values, and the description for the FLAG_AUTO_IS_NULL option at
Connector/ODBC Connection Parameters.

• IS NOT NULL

Tests whether a value is not NULL.

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
 -> 1, 1, 0

• expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1,
otherwise it returns 0. This is equivalent to the expression (min <= expr AND expr <= max) if
all the arguments are of the same type. Otherwise type conversion takes place according to the rules
described in Section 12.2, “Type Conversion in Expression Evaluation”, but applied to all the three
arguments.

mysql> SELECT 2 BETWEEN 1 AND 3, 2 BETWEEN 3 and 1;
 -> 1, 0
mysql> SELECT 1 BETWEEN 2 AND 3;
 -> 0
mysql> SELECT 'b' BETWEEN 'a' AND 'c';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND '3';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND 'x-3';
 -> 0

For best results when using BETWEEN with date or time values, use CAST() to explicitly convert
the values to the desired data type. Examples: If you compare a DATETIME to two DATE values,
convert the DATE values to DATETIME values. If you use a string constant such as '2001-1-1' in a
comparison to a DATE, cast the string to a DATE.

• expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

• COALESCE(value,...)

Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.

mysql> SELECT COALESCE(NULL,1);
 -> 1
mysql> SELECT COALESCE(NULL,NULL,NULL);
 -> NULL

• GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments are
compared using the same rules as for LEAST().

mysql> SELECT GREATEST(2,0);
 -> 2
mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
 -> 767.0
mysql> SELECT GREATEST('B','A','C');
 -> 'C'

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-connection-parameters.html

Comparison Functions and Operators

1134

GREATEST() returns NULL if any argument is NULL.

• expr IN (value,...)

Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are
constants, they are evaluated according to the type of expr and sorted. The search for the item then
is done using a binary search. This means IN is very quick if the IN value list consists entirely of
constants. Otherwise, type conversion takes place according to the rules described in Section 12.2,
“Type Conversion in Expression Evaluation”, but applied to all the arguments.

mysql> SELECT 2 IN (0,3,5,7);
 -> 0
mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
 -> 1

You should never mix quoted and unquoted values in an IN list because the comparison rules for
quoted values (such as strings) and unquoted values (such as numbers) differ. Mixing types may
therefore lead to inconsistent results. For example, do not write an IN expression like this:

SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');

Instead, write it like this:

SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');

The number of values in the IN list is only limited by the max_allowed_packet value.

To comply with the SQL standard, IN returns NULL not only if the expression on the left hand side is
NULL, but also if no match is found in the list and one of the expressions in the list is NULL.

IN() syntax can also be used to write certain types of subqueries. See Section 13.2.10.3,
“Subqueries with ANY, IN, or SOME”.

• expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).

• ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
 -> 0
mysql> SELECT ISNULL(1/0);
 -> 1

ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL
using = always yields false.)

The ISNULL() function shares some special behaviors with the IS NULL comparison operator. See
the description of IS NULL.

• INTERVAL(N,N1,N2,N3,...)

Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as integers. It
is required that N1 < N2 < N3 < ... < Nn for this function to work correctly. This is because a binary
search is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);

Logical Operators

1135

 -> 3
mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
 -> 2
mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
 -> 0

• LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are
compared using the following rules:

• If any argument is NULL, the result is NULL. No comparison is needed.

• If the return value is used in an INTEGER context or all arguments are integer-valued, they are
compared as integers.

• If the return value is used in a REAL context or all arguments are real-valued, they are compared
as reals.

• If the arguments comprise a mix of numbers and strings, they are compared as numbers.

• If any argument is a nonbinary (character) string, the arguments are compared as nonbinary
strings.

• In all other cases, the arguments are compared as binary strings.

mysql> SELECT LEAST(2,0);
 -> 0
mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
 -> 3.0
mysql> SELECT LEAST('B','A','C');
 -> 'A'

Note that the preceding conversion rules can produce strange results in some borderline cases:

mysql> SELECT CAST(LEAST(3600, 9223372036854775808.0) as SIGNED);
 -> -9223372036854775808

This happens because MySQL reads 9223372036854775808.0 in an integer context. The integer
representation is not good enough to hold the value, so it wraps to a signed integer.

12.3.3 Logical Operators
Table 12.4 Logical Operators

Name Description

AND, && Logical AND

NOT, ! Negates value

||, OR Logical OR

XOR Logical XOR

In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are
implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL database
servers, although some servers may return any nonzero value for TRUE.

MySQL evaluates any nonzero, non-NULL value to TRUE. For example, the following statements all
assess to TRUE:

mysql> SELECT 10 IS TRUE;
-> 1
mysql> SELECT -10 IS TRUE;

Logical Operators

1136

-> 1
mysql> SELECT 'string' IS NOT NULL;
-> 1

• NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is nonzero, and NOT NULL
returns NULL.

mysql> SELECT NOT 10;
 -> 0
mysql> SELECT NOT 0;
 -> 1
mysql> SELECT NOT NULL;
 -> NULL
mysql> SELECT ! (1+1);
 -> 0
mysql> SELECT ! 1+1;
 -> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

• AND, &&

Logical AND. Evaluates to 1 if all operands are nonzero and not NULL, to 0 if one or more operands
are 0, otherwise NULL is returned.

mysql> SELECT 1 && 1;
 -> 1
mysql> SELECT 1 && 0;
 -> 0
mysql> SELECT 1 && NULL;
 -> NULL
mysql> SELECT 0 && NULL;
 -> 0
mysql> SELECT NULL && 0;
 -> 0

• OR, ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is nonzero, and 0
otherwise. With a NULL operand, the result is 1 if the other operand is nonzero, and NULL otherwise.
If both operands are NULL, the result is NULL.

mysql> SELECT 1 || 1;
 -> 1
mysql> SELECT 1 || 0;
 -> 1
mysql> SELECT 0 || 0;
 -> 0
mysql> SELECT 0 || NULL;
 -> NULL
mysql> SELECT 1 || NULL;
 -> 1

• XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an
odd number of operands is nonzero, otherwise 0 is returned.

mysql> SELECT 1 XOR 1;
 -> 0
mysql> SELECT 1 XOR 0;
 -> 1
mysql> SELECT 1 XOR NULL;

Assignment Operators

1137

 -> NULL
mysql> SELECT 1 XOR 1 XOR 1;
 -> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

12.3.4 Assignment Operators

Table 12.5 Assignment Operators

Name Description

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

• :=

Assignment operator. Causes the user variable on the left hand side of the operator to take on the
value to its right. The value on the right hand side may be a literal value, another variable storing a
value, or any legal expression that yields a scalar value, including the result of a query (provided that
this value is a scalar value). You can perform multiple assignments in the same SET statement. You
can perform multiple assignments in the same statement-

Unlike =, the := operator is never interpreted as a comparison operator. This means you can use :=
in any valid SQL statement (not just in SET statements) to assign a value to a variable.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

mysql> SELECT @var1:=COUNT(*) FROM t1;
 -> 4
mysql> SELECT @var1;
 -> 4

You can make value assignments using := in other statements besides SELECT, such as UPDATE,
as shown here:

mysql> SELECT @var1;
 -> 4
mysql> SELECT * FROM t1;
 -> 1, 3, 5, 7

mysql> UPDATE t1 SET c1 = 2 WHERE c1 = @var1:= 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT @var1;
 -> 1
mysql> SELECT * FROM t1;
 -> 2, 3, 5, 7

While it is also possible both to set and to read the value of the same variable in a single SQL
statement using the := operator, this is not recommended. Section 9.4, “User-Defined Variables”,
explains why you should avoid doing this.

• =

Control Flow Functions

1138

This operator is used to perform value assignments in two cases, described in the next two
paragraphs.

Within a SET statement, = is treated as an assignment operator that causes the user variable on the
left hand side of the operator to take on the value to its right. (In other words, when used in a SET
statement, = is treated identically to :=.) The value on the right hand side may be a literal value,
another variable storing a value, or any legal expression that yields a scalar value, including the
result of a query (provided that this value is a scalar value). You can perform multiple assignments in
the same SET statement.

In the SET clause of an UPDATE statement, = also acts as an assignment operator; in this case,
however, it causes the column named on the left hand side of the operator to assume the value
given to the right, provided any WHERE conditions that are part of the UPDATE are met. You can make
multiple assignments in the same SET clause of an UPDATE statement.

In any other context, = is treated as a comparison operator.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

For more information, see Section 13.7.4, “SET Syntax”, Section 13.2.11, “UPDATE Syntax”, and
Section 13.2.10, “Subquery Syntax”.

12.4 Control Flow Functions

Table 12.6 Flow Control Operators

Name Description

CASE Case operator

IF() If/else construct

IFNULL() Null if/else construct

NULLIF() Return NULL if expr1 = expr2

• CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN
result ...] [ELSE result] END

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...] [ELSE
result] END

The first version returns the result where value=compare_value. The second version returns
the result for the first condition that is true. If there was no matching result value, the result after
ELSE is returned, or NULL if there is no ELSE part.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
 -> WHEN 2 THEN 'two' ELSE 'more' END;
 -> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;
 -> 'true'
mysql> SELECT CASE BINARY 'B'
 -> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
 -> NULL

Control Flow Functions

1139

The return type of a CASE expression is the compatible aggregated type of all return values, but
also depends on the context in which it is used. If used in a string context, the result is returned as a
string. If used in a numeric context, the result is returned as a decimal, real, or integer value.

Note

The syntax of the CASE expression shown here differs slightly from that of the
SQL CASE statement described in Section 13.6.5.1, “CASE Syntax”, for use
inside stored programs. The CASE statement cannot have an ELSE NULL
clause, and it is terminated with END CASE instead of END.

• IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2; otherwise it
returns expr3. IF() returns a numeric or string value, depending on the context in which it is used.

mysql> SELECT IF(1>2,2,3);
 -> 3
mysql> SELECT IF(1<2,'yes','no');
 -> 'yes'
mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
 -> 'no'

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type of
the non-NULL expression.

The default return type of IF() (which may matter when it is stored into a temporary table) is
calculated as follows.

Expression Return Value

expr2 or expr3 returns a string string

expr2 or expr3 returns a floating-point value floating-point

expr2 or expr3 returns an integer integer

If expr2 and expr3 are both strings, the result is case sensitive if either string is case sensitive.

Note

There is also an IF statement, which differs from the IF() function described
here. See Section 13.6.5.2, “IF Syntax”.

• IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2. IFNULL() returns a
numeric or string value, depending on the context in which it is used.

mysql> SELECT IFNULL(1,0);
 -> 1
mysql> SELECT IFNULL(NULL,10);
 -> 10
mysql> SELECT IFNULL(1/0,10);
 -> 10
mysql> SELECT IFNULL(1/0,'yes');
 -> 'yes'

The default result value of IFNULL(expr1,expr2) is the more “general” of the two expressions, in
the order STRING, REAL, or INTEGER. Consider the case of a table based on expressions or where
MySQL must internally store a value returned by IFNULL() in a temporary table:

String Functions

1140

mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;
mysql> DESCRIBE tmp;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| test | varbinary(4) | NO | | | |
+-------+--------------+------+-----+---------+-------+

In this example, the type of the test column is VARBINARY(4).

• NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN
expr1 = expr2 THEN NULL ELSE expr1 END.

mysql> SELECT NULLIF(1,1);
 -> NULL
mysql> SELECT NULLIF(1,2);
 -> 1

Note that MySQL evaluates expr1 twice if the arguments are not equal.

12.5 String Functions
Table 12.7 String Operators

Name Description

ASCII() Return numeric value of left-most character

BIN() Return a string containing binary representation of a number

BIT_LENGTH() Return length of argument in bits

CHAR_LENGTH() Return number of characters in argument

CHAR() Return the character for each integer passed

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CONCAT_WS() Return concatenate with separator

CONCAT() Return concatenated string

ELT() Return string at index number

EXPORT_SET() Return a string such that for every bit set in the value bits,
you get an on string and for every unset bit, you get an off
string

FIELD() Return the index (position) of the first argument in the
subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the
second argument

FORMAT() Return a number formatted to specified number of decimal
places

FROM_BASE64() Decode to a base-64 string and return result

HEX() Return a hexadecimal representation of a decimal or string
value

INSERT() Insert a substring at the specified position up to the specified
number of characters

INSTR() Return the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT() Return the leftmost number of characters as specified

String Functions

1141

Name Description

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

LOAD_FILE() Load the named file

LOCATE() Return the position of the first occurrence of substring

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified
string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the
corresponding bit in bits set

MATCH [1197] Perform full-text search

MID() Return a substring starting from the specified position

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCT() Return a string containing octal representation of a number

OCTET_LENGTH() Synonym for LENGTH()

ORD() Return character code for leftmost character of the argument

POSITION() Synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Pattern matching using regular expressions

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

RLIKE Synonym for REGEXP

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

STRCMP() Compare two strings

SUBSTR() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number
of occurrences of the delimiter

SUBSTRING() Return the substring as specified

TO_BASE64() Return the argument converted to a base-64 string

TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() Return a string containing hex representation of a number

UPPER() Convert to uppercase

WEIGHT_STRING() Return the weight string for a string

String Functions

1142

String-valued functions return NULL if the length of the result would be greater than the value of the
max_allowed_packet system variable. See Section 8.11.2, “Tuning Server Parameters”.

For functions that operate on string positions, the first position is numbered 1.

For functions that take length arguments, noninteger arguments are rounded to the nearest integer.

• ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty
string. Returns NULL if str is NULL. ASCII() works for 8-bit characters.

mysql> SELECT ASCII('2');
 -> 50
mysql> SELECT ASCII(2);
 -> 50
mysql> SELECT ASCII('dx');
 -> 100

See also the ORD() function.

• BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number.
This is equivalent to CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
 -> '1100'

• BIT_LENGTH(str)

Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
 -> 32

• CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters
given by the code values of those integers. NULL values are skipped.

mysql> SELECT CHAR(77,121,83,81,'76');
 -> 'MySQL'
mysql> SELECT CHAR(77,77.3,'77.3');
 -> 'MMM'

CHAR() arguments larger than 255 are converted into multiple result bytes. For example,
CHAR(256) is equivalent to CHAR(1,0), and CHAR(256*256) is equivalent to CHAR(1,0,0):

mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+
| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100 | 0100 |
+----------------+----------------+
mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000 | 010000 |
+------------------+--------------------+

String Functions

1143

By default, CHAR() returns a binary string. To produce a string in a given character set, use the
optional USING clause:

mysql> SELECT CHARSET(CHAR(0x65)), CHARSET(CHAR(0x65 USING utf8));
+---------------------+--------------------------------+
| CHARSET(CHAR(0x65)) | CHARSET(CHAR(0x65 USING utf8)) |
+---------------------+--------------------------------+
| binary | utf8 |
+---------------------+--------------------------------+

If USING is given and the result string is illegal for the given character set, a warning is issued. Also,
if strict SQL mode is enabled, the result from CHAR() becomes NULL.

• CHAR_LENGTH(str)

Returns the length of the string str, measured in characters. A multi-byte character counts as a
single character. This means that for a string containing five 2-byte characters, LENGTH() returns
10, whereas CHAR_LENGTH() returns 5.

• CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

• CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments.
If all arguments are nonbinary strings, the result is a nonbinary string. If the arguments include
any binary strings, the result is a binary string. A numeric argument is converted to its equivalent
nonbinary string form.

CONCAT() returns NULL if any argument is NULL.

mysql> SELECT CONCAT('My', 'S', 'QL');
 -> 'MySQL'
mysql> SELECT CONCAT('My', NULL, 'QL');
 -> NULL
mysql> SELECT CONCAT(14.3);
 -> '14.3'

For quoted strings, concatenation can be performed by placing the strings next to each other:

mysql> SELECT 'My' 'S' 'QL';
 -> 'MySQL'

• CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first
argument is the separator for the rest of the arguments. The separator is added between the strings
to be concatenated. The separator can be a string, as can the rest of the arguments. If the separator
is NULL, the result is NULL.

mysql> SELECT CONCAT_WS(',','First name','Second name','Last Name');
 -> 'First name,Second name,Last Name'
mysql> SELECT CONCAT_WS(',','First name',NULL,'Last Name');
 -> 'First name,Last Name'

CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the
separator argument.

• ELT(N,str1,str2,str3,...)

String Functions

1144

ELT() returns the Nth element of the list of strings: str1 if N = 1, str2 if N = 2, and so on. Returns
NULL if N is less than 1 or greater than the number of arguments. ELT() is the complement of
FIELD().

mysql> SELECT ELT(1, 'ej', 'Heja', 'hej', 'foo');
 -> 'ej'
mysql> SELECT ELT(4, 'ej', 'Heja', 'hej', 'foo');
 -> 'foo'

• EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every
bit not set in the value, you get an off string. Bits in bits are examined from right to left (from
low-order to high-order bits). Strings are added to the result from left to right, separated by the
separator string (the default being the comma character “,”). The number of bits examined is
given by number_of_bits, which has a default of 64 if not specified. number_of_bits is silently
clipped to 64 if larger than 64. It is treated as an unsigned integer, so a value of –1 is effectively the
same as 64.

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
 -> 'Y,N,Y,N'
mysql> SELECT EXPORT_SET(6,'1','0',',',10);
 -> '0,1,1,0,0,0,0,0,0,0'

• FIELD(str,str1,str2,str3,...)

Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.

If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are
numbers, they are compared as numbers. Otherwise, the arguments are compared as double.

If str is NULL, the return value is 0 because NULL fails equality comparison with any value.
FIELD() is the complement of ELT().

mysql> SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo');
 -> 2
mysql> SELECT FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo');
 -> 0

• FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of N
substrings. A string list is a string composed of substrings separated by “,” characters. If the first
argument is a constant string and the second is a column of type SET, the FIND_IN_SET() function
is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty
string. Returns NULL if either argument is NULL. This function does not work properly if the first
argument contains a comma (“,”) character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');
 -> 2

• FORMAT(X,D[,locale])

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. If D is 0, the result has no decimal point or fractional part.

The optional third parameter enables a locale to be specified to be used for the result number's
decimal point, thousands separator, and grouping between separators. Permissible locale values are
the same as the legal values for the lc_time_names system variable (see Section 10.7, “MySQL
Server Locale Support”). If no locale is specified, the default is 'en_US'.

String Functions

1145

mysql> SELECT FORMAT(12332.123456, 4);
 -> '12,332.1235'
mysql> SELECT FORMAT(12332.1,4);
 -> '12,332.1000'
mysql> SELECT FORMAT(12332.2,0);
 -> '12,332'
mysql> SELECT FORMAT(12332.2,2,'de_DE');
 -> '12.332,20'

• FROM_BASE64(str)

Takes a string encoded with the base-64 encoded rules used by TO_BASE64() and returns the
decoded result as a binary string. The result is NULL if the argument is NULL or not a valid base-64
string. See the description of TO_BASE64() for details about the encoding and decoding rules.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
 -> 'JWJj', 'abc'

• HEX(str), HEX(N)

For a string argument str, HEX() returns a hexadecimal string representation of str where each
byte of each character in str is converted to two hexadecimal digits. (Multi-byte characters therefore
become more than two digits.) The inverse of this operation is performed by the UNHEX() function.

For a numeric argument N, HEX() returns a hexadecimal string representation of the value of N
treated as a longlong (BIGINT) number. This is equivalent to CONV(N,10,16). The inverse of this
operation is performed by CONV(HEX(N),16,10).

mysql> SELECT 0x616263, HEX('abc'), UNHEX(HEX('abc'));
 -> 'abc', 616263, 'abc'
mysql> SELECT HEX(255), CONV(HEX(255),16,10);
 -> 'FF', 255

• INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long
replaced by the string newstr. Returns the original string if pos is not within the length of the string.
Replaces the rest of the string from position pos if len is not within the length of the rest of the
string. Returns NULL if any argument is NULL.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
 -> 'QuWhattic'
mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
 -> 'Quadratic'
mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
 -> 'QuWhat'

This function is multi-byte safe.

• INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as
the two-argument form of LOCATE(), except that the order of the arguments is reversed.

mysql> SELECT INSTR('foobarbar', 'bar');
 -> 4
mysql> SELECT INSTR('xbar', 'foobar');
 -> 0

This function is multi-byte safe, and is case sensitive only if at least one argument is a binary string.

String Functions

1146

• LCASE(str)

LCASE() is a synonym for LOWER().

In MySQL 5.7, LCASE() used in a view is rewritten as LOWER() when storing the view's definition.
(Bug #12844279)

• LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT LEFT('foobarbar', 5);
 -> 'fooba'

This function is multi-byte safe.

• LENGTH(str)

Returns the length of the string str, measured in bytes. A multi-byte character counts as multiple
bytes. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas
CHAR_LENGTH() returns 5.

mysql> SELECT LENGTH('text');
 -> 4

• LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located
on the server host, you must specify the full path name to the file, and you must have the FILE
privilege. The file must be readable by all and its size less than max_allowed_packet bytes. If the
secure_file_priv system variable is set to a nonempty directory name, the file to be loaded must
be located in that directory.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied,
the function returns NULL.

The character_set_filesystem system variable controls interpretation of file names that are
given as literal strings.

mysql> UPDATE t
 SET blob_col=LOAD_FILE('/tmp/picture')
 WHERE id=1;

• LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The
second syntax returns the position of the first occurrence of substring substr in string str, starting
at position pos. Returns 0 if substr is not in str.

mysql> SELECT LOCATE('bar', 'foobarbar');
 -> 4
mysql> SELECT LOCATE('xbar', 'foobar');
 -> 0
mysql> SELECT LOCATE('bar', 'foobarbar', 5);
 -> 7

This function is multi-byte safe, and is case-sensitive only if at least one argument is a binary string.

• LOWER(str)

String Functions

1147

Returns the string str with all characters changed to lowercase according to the current character
set mapping. The default is latin1 (cp1252 West European).

mysql> SELECT LOWER('QUADRATICALLY');
 -> 'quadratically'

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY,
BLOB). To perform lettercase conversion, convert the string to a nonbinary string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

For Unicode character sets, LOWER() and UPPER() work accounting to Unicode Collation Algorithm
(UCA) 5.2.0 for xxx_unicode_520_ci collations and for language-specific collations that are
derived from them. For other Unicode collations, LOWER() and UPPER() work accounting to
Unicode Collation Algorithm (UCA) 4.0.0. See Section 10.1.14.1, “Unicode Character Sets”.

This function is multi-byte safe.

In previous versions of MySQL, LOWER() used within a view was rewritten as LCASE() when storing
the view's definition. In MySQL 5.7, LOWER() is never rewritten in such cases, but LCASE() used
within views is instead rewritten as LOWER(). (Bug #12844279)

• LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
 -> '??hi'
mysql> SELECT LPAD('hi',1,'??');
 -> 'h'

• LTRIM(str)

Returns the string str with leading space characters removed.

mysql> SELECT LTRIM(' barbar');
 -> 'barbar'

This function is multi-byte safe.

• MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by “,” characters) consisting of the
strings that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so
on. NULL values in str1, str2, ... are not appended to the result.

mysql> SELECT MAKE_SET(1,'a','b','c');
 -> 'a'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
 -> 'hello,world'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
 -> 'hello'
mysql> SELECT MAKE_SET(0,'a','b','c');
 -> ''

String Functions

1148

• MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

• OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This
is equivalent to CONV(N,10,8). Returns NULL if N is NULL.

mysql> SELECT OCT(12);
 -> '14'

• OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

• ORD(str)

If the leftmost character of the string str is a multi-byte character, returns the code for that
character, calculated from the numeric values of its constituent bytes using this formula:

 (1st byte code)
+ (2nd byte code * 256)
+ (3rd byte code * 2562) ...

If the leftmost character is not a multi-byte character, ORD() returns the same value as the ASCII()
function.

mysql> SELECT ORD('2');
 -> 50

• POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

• QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL
statement. The string is returned enclosed by single quotation marks and with each instance of
backslash (“\”), single quote (“'”), ASCII NUL, and Control+Z preceded by a backslash. If the
argument is NULL, the return value is the word “NULL” without enclosing single quotation marks.

mysql> SELECT QUOTE('Don\'t!');
 -> 'Don\'t!'
mysql> SELECT QUOTE(NULL);
 -> NULL

For comparison, see the quoting rules for literal strings and within the C API in Section 9.1.1, “String
Literals”, and Section 21.8.7.55, “mysql_real_escape_string()”.

• REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns
an empty string. Returns NULL if str or count are NULL.

mysql> SELECT REPEAT('MySQL', 3);
 -> 'MySQLMySQLMySQL'

• REPLACE(str,from_str,to_str)

String Functions

1149

Returns the string str with all occurrences of the string from_str replaced by the string to_str.
REPLACE() performs a case-sensitive match when searching for from_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

This function is multi-byte safe.

• REVERSE(str)

Returns the string str with the order of the characters reversed.

mysql> SELECT REVERSE('abc');
 -> 'cba'

This function is multi-byte safe.

• RIGHT(str,len)

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT RIGHT('foobarbar', 4);
 -> 'rbar'

This function is multi-byte safe.

• RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT RPAD('hi',5,'?');
 -> 'hi???'
mysql> SELECT RPAD('hi',1,'?');
 -> 'h'

This function is multi-byte safe.

• RTRIM(str)

Returns the string str with trailing space characters removed.

mysql> SELECT RTRIM('barbar ');
 -> 'barbar'

This function is multi-byte safe.

• SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have identical
soundex strings. A standard soundex string is four characters long, but the SOUNDEX() function
returns an arbitrarily long string. You can use SUBSTRING() on the result to get a standard soundex
string. All nonalphabetic characters in str are ignored. All international alphabetic characters outside
the A-Z range are treated as vowels.

Important

When using SOUNDEX(), you should be aware of the following limitations:

String Functions

1150

• This function, as currently implemented, is intended to work well with strings that are in the English
language only. Strings in other languages may not produce reliable results.

• This function is not guaranteed to provide consistent results with strings that use multi-byte
character sets, including utf-8.

We hope to remove these limitations in a future release. See Bug #22638 for more information.

mysql> SELECT SOUNDEX('Hello');
 -> 'H400'
mysql> SELECT SOUNDEX('Quadratically');
 -> 'Q36324'

Note

This function implements the original Soundex algorithm, not the more
popular enhanced version (also described by D. Knuth). The difference is
that original version discards vowels first and duplicates second, whereas the
enhanced version discards duplicates first and vowels second.

• expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

• SPACE(N)

Returns a string consisting of N space characters.

mysql> SELECT SPACE(6);
 -> ' '

• SUBSTR(str,pos), SUBSTR(str FROM pos), SUBSTR(str,pos,len), SUBSTR(str FROM
pos FOR len)

SUBSTR() is a synonym for SUBSTRING().

• SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len),
SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at position pos.
The forms with a len argument return a substring len characters long from string str, starting at
position pos. The forms that use FROM are standard SQL syntax. It is also possible to use a negative
value for pos. In this case, the beginning of the substring is pos characters from the end of the
string, rather than the beginning. A negative value may be used for pos in any of the forms of this
function.

For all forms of SUBSTRING(), the position of the first character in the string from which the
substring is to be extracted is reckoned as 1.

mysql> SELECT SUBSTRING('Quadratically',5);
 -> 'ratically'
mysql> SELECT SUBSTRING('foobarbar' FROM 4);
 -> 'barbar'
mysql> SELECT SUBSTRING('Quadratically',5,6);
 -> 'ratica'
mysql> SELECT SUBSTRING('Sakila', -3);
 -> 'ila'
mysql> SELECT SUBSTRING('Sakila', -5, 3);
 -> 'aki'
mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
 -> 'ki'

String Functions

1151

This function is multi-byte safe.

If len is less than 1, the result is the empty string.

• SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count
is positive, everything to the left of the final delimiter (counting from the left) is returned. If count
is negative, everything to the right of the final delimiter (counting from the right) is returned.
SUBSTRING_INDEX() performs a case-sensitive match when searching for delim.

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
 -> 'www.mysql'
mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
 -> 'mysql.com'

This function is multi-byte safe.

• TO_BASE64(str)

Converts the string argument to base-64 encoded form and returns the result as a character string
with the connection character set and collation. If the argument is not a string, it is converted to a
string before conversion takes place. The result is NULL if the argument is NULL. Base-64 encoded
strings can be decoded using the the FROM_BASE64() function.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
 -> 'JWJj', 'abc'

Different base-64 encoding schemes exist. These are the encoding and decoding rules used by
TO_BASE64() and FROM_BASE64():

• The encoding for alphabet value 62 is '+'.

• The encoding for alphabet value 63 is '/'.

• Encoded output consists of groups of 4 printable characters. Each 3 bytes of the input data are
encoded using 4 characters. If the last group is incomplete, it is padded with '=' characters to a
length of 4.

• A newline is added after each 76 characters of encoded output to divide long output into multiple
lines.

• Decoding recognizes and ignores newline, carriage return, tab, and space.

• TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM]
str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH,
LEADING, or TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces
are removed.

mysql> SELECT TRIM(' bar ');
 -> 'bar'
mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
 -> 'barxxx'
mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
 -> 'bar'
mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
 -> 'barx'

This function is multi-byte safe.

String Functions

1152

• UCASE(str)

UCASE() is a synonym for UPPER().

In previous versions of MySQL, UPPER() used within a view was rewritten as UCASE() when storing
the view's definition. In MySQL 5.7, UPPER() is never rewritten in such cases, but UCASE() used
within views is instead rewritten as UPPER(). (Bug #12844279)

In MySQL 5.7, UCASE() used in a view is rewritten as UPPER() when storing the view's definition.
(Bug #12844279)

• UNHEX(str)

For a string argument str, UNHEX(str) interprets each pair of characters in the argument as a
hexadecimal number and converts it to the byte represented by the number. The return value is a
binary string.

mysql> SELECT UNHEX('4D7953514C');
 -> 'MySQL'
mysql> SELECT 0x4D7953514C;
 -> 'MySQL'
mysql> SELECT UNHEX(HEX('string'));
 -> 'string'
mysql> SELECT HEX(UNHEX('1267'));
 -> '1267'

The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a'
.. 'f'. If the argument contains any nonhexadecimal digits, the result is NULL:

mysql> SELECT UNHEX('GG');
+-------------+
| UNHEX('GG') |
+-------------+
| NULL |
+-------------+

A NULL result can occur if the argument to UNHEX() is a BINARY column, because values are
padded with 0x00 bytes when stored but those bytes are not stripped on retrieval. For example,
'41' is stored into a CHAR(3) column as '41 ' and retrieved as '41' (with the trailing pad
space stripped), so UNHEX() for the column value returns 'A'. By contrast '41' is stored into
a BINARY(3) column as '41\0' and retrieved as '41\0' (with the trailing pad 0x00 byte not
stripped). '\0' is not a legal hexadecimal digit, so UNHEX() for the column value returns NULL.

For a numeric argument N, the inverse of HEX(N) is not performed by UNHEX(). Use
CONV(HEX(N),16,10) instead. See the description of HEX().

• UPPER(str)

Returns the string str with all characters changed to uppercase according to the current character
set mapping. The default is latin1 (cp1252 West European).

mysql> SELECT UPPER('Hej');
 -> 'HEJ'

See the description of LOWER() for information that also applies to UPPER(). This included
information about how to perform lettercase conversion of binary strings (BINARY, VARBINARY,
BLOB) for which these functions are ineffective, and information about case folding for Unicode
character sets.

This function is multi-byte safe.

String Functions

1153

In previous versions of MySQL, UPPER() used within a view was rewritten as UCASE() when storing
the view's definition. In MySQL 5.7, UPPER() is never rewritten in such cases, but UCASE() used
within views is instead rewritten as UPPER(). (Bug #12844279)

• WEIGHT_STRING(str [AS {CHAR|BINARY}(N)] [LEVEL levels] [flags])

levels: N [ASC|DESC|REVERSE] [, N [ASC|DESC|REVERSE]] ...

This function returns the weight string for the input string. The return value is a binary string that
represents the sorting and comparison value of the string. It has these properties:

• If WEIGHT_STRING(str1) = WEIGHT_STRING(str2), then str1 = str2 (str1 and str2 are
considered equal)

• If WEIGHT_STRING(str1) < WEIGHT_STRING(str2), then str1 < str2 (str1 sorts before
str2)

WEIGHT_STRING() can be used for testing and debugging of collations, especially if you are adding
a new collation. See Section 10.4, “Adding a Collation to a Character Set”.

The input string, str, is a string expression. If the input is a nonbinary (character) string such as a
CHAR, VARCHAR, or TEXT value, the return value contains the collation weights for the string. If the
input is a binary (byte) string such as a BINARY, VARBINARY, or BLOB value, the return value is the
same as the input (the weight for each byte in a binary string is the byte value). If the input is NULL,
WEIGHT_STRING() returns NULL.

Examples:

mysql> SET @s = _latin1 'AB' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+

mysql> SET @s = _latin1 'ab' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 4142 |
+------+---------+------------------------+

mysql> SET @s = CAST('AB' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+

mysql> SET @s = CAST('ab' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 6162 |
+------+---------+------------------------+

String Functions

1154

The preceding examples use HEX() to display the WEIGHT_STRING() result. Because the result
is a binary value, HEX() can be especially useful when the result contains nonprinting values, to
display it in printable form:

mysql> SET @s = CONVERT(0xC39F USING utf8) COLLATE utf8_czech_ci;
mysql> SELECT HEX(WEIGHT_STRING(@s));
+------------------------+
| HEX(WEIGHT_STRING(@s)) |
+------------------------+
| 0FEA0FEA |
+------------------------+

For non-NULL return values, the data type of the value is VARBINARY if its length is within the
maximum length for VARBINARY, otherwise the data type is BLOB.

The AS clause may be given to cast the input string to a nonbinary or binary string and to force it to a
given length:

• AS CHAR(N) casts the string to a nonbinary string and pads it on the right with spaces to a length
of N characters. N must be at least 1. If N is less than the length of the input string, the string is
truncated to N characters. No warning occurs for truncation.

• AS BINARY(N) is similar but casts the string to a binary string, N is measured in bytes (not
characters), and padding uses 0x00 bytes (not spaces).

mysql> SELECT HEX(WEIGHT_STRING('ab' AS CHAR(4)));
+-------------------------------------+
| HEX(WEIGHT_STRING('ab' AS CHAR(4))) |
+-------------------------------------+
| 41422020 |
+-------------------------------------+

mysql> SELECT HEX(WEIGHT_STRING('ab' AS BINARY(4)));
+---------------------------------------+
| HEX(WEIGHT_STRING('ab' AS BINARY(4))) |
+---------------------------------------+
| 61620000 |
+---------------------------------------+

The LEVEL clause may be given to specify that the return value should contain weights for specific
collation levels.

The levels specifier following the LEVEL keyword may be given either as a list of one or more
integers separated by commas, or as a range of two integers separated by a dash. Whitespace
around the punctuation characters does not matter.

Examples:

LEVEL 1
LEVEL 2, 3, 5
LEVEL 1-3

Any level less than 1 is treated as 1. Any level greater than the maximum for the input string collation
is treated as maximum for the collation. The maximum varies per collation, but is never greater than
6.

In a list of levels, levels must be given in increasing order. In a range of levels, if the second number
is less than the first, it is treated as the first number (for example, 4-2 is the same as 4-4).

String Comparison Functions

1155

If the LEVEL clause is omitted, MySQL assumes LEVEL 1 - max, where max is the maximum level
for the collation.

If LEVEL is specified using list syntax (not range syntax), any level number can be followed by these
modifiers:

• ASC: Return the weights without modification. This is the default.

• DESC: Return bitwise-inverted weights (for example, 0x78f0 DESC = 0x870f).

• REVERSE: Return the weights in reverse order (that is,the weights for the reversed string, with the
first character last and the last first).

Examples:

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1));
+--------------------------------------+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1)) |
+--------------------------------------+
| 007FFF |
+--------------------------------------+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC)) |
+---+
| FF8000 |
+---+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE));
+--+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE)) |
+--+
| FF7F00 |
+--+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE)) |
+---+
| 0080FF |
+---+

The flags clause currently is unused.

12.5.1 String Comparison Functions
Table 12.8 String Comparison Operators

Name Description

LIKE Simple pattern matching

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

If a string function is given a binary string as an argument, the resulting string is also a binary string. A
number converted to a string is treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case sensitive, the comparison is performed in
case-sensitive fashion.

• expr LIKE pat [ESCAPE 'escape_char']

String Comparison Functions

1156

Pattern matching using SQL simple regular expression comparison. Returns 1 (TRUE) or 0 (FALSE).
If either expr or pat is NULL, the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column.

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results
different from the = comparison operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+---+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+---+
| 0 |
+---+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
| 1 |
+--------------------------------------+

In particular, trailing spaces are significant, which is not true for CHAR or VARCHAR comparisons
performed with the = operator:

mysql> SELECT 'a' = 'a ', 'a' LIKE 'a ';
+------------+---------------+
| 'a' = 'a ' | 'a' LIKE 'a ' |
+------------+---------------+
| 1 | 0 |
+------------+---------------+
1 row in set (0.00 sec)

With LIKE you can use the following two wildcard characters in the pattern.

Character Description

% Matches any number of characters, even zero characters

_ Matches exactly one character

mysql> SELECT 'David!' LIKE 'David_';
 -> 1
mysql> SELECT 'David!' LIKE '%D%v%';
 -> 1

To test for literal instances of a wildcard character, precede it by the escape character. If you do not
specify the ESCAPE character, “\” is assumed.

String Description

\% Matches one “%” character

_ Matches one “_” character

mysql> SELECT 'David!' LIKE 'David_';
 -> 0
mysql> SELECT 'David_' LIKE 'David_';
 -> 1

To specify a different escape character, use the ESCAPE clause:

String Comparison Functions

1157

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
 -> 1

The escape sequence should be empty or one character long. The expression must evaluate as a
constant at execution time. If the NO_BACKSLASH_ESCAPES SQL mode is enabled, the sequence
cannot be empty.

The following two statements illustrate that string comparisons are not case sensitive unless one of
the operands is a binary string:

mysql> SELECT 'abc' LIKE 'ABC';
 -> 1
mysql> SELECT 'abc' LIKE BINARY 'ABC';
 -> 0

In MySQL, LIKE is permitted on numeric expressions. (This is an extension to the standard SQL
LIKE.)

mysql> SELECT 10 LIKE '1%';
 -> 1

Note

Because MySQL uses C escape syntax in strings (for example, “\n” to
represent a newline character), you must double any “\” that you use in LIKE
strings. For example, to search for “\n”, specify it as “\\n”. To search for “\”,
specify it as “\\\\”; this is because the backslashes are stripped once by the
parser and again when the pattern match is made, leaving a single backslash
to be matched against.

Exception: At the end of the pattern string, backslash can be specified as
“\\”. At the end of the string, backslash stands for itself because there is
nothing following to escape. Suppose that a table contains the following
values:

mysql> SELECT filename FROM t1;
+--------------+
| filename |
+--------------+
| C: |
| C:\ |
| C:\Programs |
| C:\Programs\ |
+--------------+

To test for values that end with backslash, you can match the values using
either of the following patterns:

mysql> SELECT filename, filename LIKE '%\\' FROM t1;
+--------------+---------------------+
| filename | filename LIKE '%\\' |
+--------------+---------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+---------------------+

mysql> SELECT filename, filename LIKE '%\\\\' FROM t1;
+--------------+-----------------------+
| filename | filename LIKE '%\\\\' |
+--------------+-----------------------+
| C: | 0 |

String Comparison Functions

1158

C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+-----------------------+

• expr NOT LIKE pat [ESCAPE 'escape_char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

Note

Aggregate queries involving NOT LIKE comparisons with columns containing
NULL may yield unexpected results. For example, consider the following table
and data:

CREATE TABLE foo (bar VARCHAR(10));

INSERT INTO foo VALUES (NULL), (NULL);

The query SELECT COUNT(*) FROM foo WHERE bar LIKE '%baz%';
returns 0. You might assume that SELECT COUNT(*) FROM foo WHERE
bar NOT LIKE '%baz%'; would return 2. However, this is not the case:
The second query returns 0. This is because NULL NOT LIKE expr always
returns NULL, regardless of the value of expr. The same is true for aggregate
queries involving NULL and comparisons using NOT RLIKE or NOT REGEXP.
In such cases, you must test explicitly for NOT NULL using OR (and not AND),
as shown here:

SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%' OR bar IS NULL;

• STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second
according to the current sort order, and 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
 -> -1
mysql> SELECT STRCMP('text2', 'text');
 -> 1
mysql> SELECT STRCMP('text', 'text');
 -> 0

STRCMP() performs the comparison using the collation of the arguments.

mysql> SET @s1 = _latin1 'x' COLLATE latin1_general_ci;
mysql> SET @s2 = _latin1 'X' COLLATE latin1_general_ci;
mysql> SET @s3 = _latin1 'x' COLLATE latin1_general_cs;
mysql> SET @s4 = _latin1 'X' COLLATE latin1_general_cs;
mysql> SELECT STRCMP(@s1, @s2), STRCMP(@s3, @s4);
+------------------+------------------+
| STRCMP(@s1, @s2) | STRCMP(@s3, @s4) |
+------------------+------------------+
| 0 | 1 |
+------------------+------------------+

If the collations are incompatible, one of the arguments must be converted to be compatible with the
other. See Section 10.1.7.5, “Collation of Expressions”.

mysql> SELECT STRCMP(@s1, @s3);
ERROR 1267 (HY000): Illegal mix of collations (latin1_general_ci,IMPLICIT) and (latin1_general_cs,IMPLICIT) for operation 'strcmp'
mysql> SELECT STRCMP(@s1, @s3 COLLATE latin1_general_ci);

Regular Expressions

1159

+--+
| STRCMP(@s1, @s3 COLLATE latin1_general_ci) |
+--+
| 0 |
+--+

12.5.2 Regular Expressions
Table 12.9 String Regular Expression Operators

Name Description

NOT REGEXP Negation of REGEXP

REGEXP Pattern matching using regular expressions

RLIKE Synonym for REGEXP

A regular expression is a powerful way of specifying a pattern for a complex search.

MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conformance
with POSIX 1003.2. MySQL uses the extended version to support pattern-matching operations
performed with the REGEXP operator in SQL statements.

This section summarizes, with examples, the special characters and constructs that can be used in
MySQL for REGEXP operations. It does not contain all the details that can be found in Henry Spencer's
regex(7) manual page. That manual page is included in MySQL source distributions, in the regex.7
file under the regex directory. See also Section 3.3.4.7, “Pattern Matching”.

Regular Expression Operators

• expr NOT REGEXP pat, expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).

• expr REGEXP pat, expr RLIKE pat

Performs a pattern match of a string expression expr against a pattern pat. The pattern can be an
extended regular expression, the syntax for which is discussed later in this section. Returns 1 if expr
matches pat; otherwise it returns 0. If either expr or pat is NULL, the result is NULL. RLIKE is a
synonym for REGEXP, provided for mSQL compatibility.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column.

Note

Because MySQL uses the C escape syntax in strings (for example, “\n” to
represent the newline character), you must double any “\” that you use in
your REGEXP strings.

REGEXP is not case sensitive, except when used with binary strings.

mysql> SELECT 'Monty!' REGEXP '.*';
 -> 1
mysql> SELECT 'new*\n*line' REGEXP 'new*.*line';
 -> 1
mysql> SELECT 'a' REGEXP 'A', 'a' REGEXP BINARY 'A';
 -> 1 0
mysql> SELECT 'a' REGEXP '^[a-d]';
 -> 1

REGEXP and RLIKE use the character set and collations of the arguments when deciding the type
of a character and performing the comparison. If the arguments have different character sets or
collations, coercibility rules apply as described in Section 10.1.7.5, “Collation of Expressions”.

Regular Expressions

1160

Warning

The REGEXP and RLIKE operators work in byte-wise fashion, so they are not
multi-byte safe and may produce unexpected results with multi-byte character
sets. In addition, these operators compare characters by their byte values
and accented characters may not compare as equal even if a given collation
treats them as equal.

Syntax of Regular Expressions

A regular expression describes a set of strings. The simplest regular expression is one that has no
special characters in it. For example, the regular expression hello matches hello and nothing else.

Nontrivial regular expressions use certain special constructs so that they can match more than one
string. For example, the regular expression hello|word matches either the string hello or the string
word.

As a more complex example, the regular expression B[an]*s matches any of the strings Bananas,
Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any number of a
or n characters in between.

A regular expression for the REGEXP operator may use any of the following special characters and
constructs:

• ^

Match the beginning of a string.

mysql> SELECT 'fo\nfo' REGEXP '^fo$'; -> 0
mysql> SELECT 'fofo' REGEXP '^fo'; -> 1

• $

Match the end of a string.

mysql> SELECT 'fo\no' REGEXP '^fo\no$'; -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$'; -> 0

• .

Match any character (including carriage return and newline).

mysql> SELECT 'fofo' REGEXP '^f.*$'; -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$'; -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba*n'; -> 1

• a+

Match any sequence of one or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba+n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n'; -> 0

Regular Expressions

1161

• a?

Match either zero or one a character.

mysql> SELECT 'Bn' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Baan' REGEXP '^Ba?n'; -> 0

• de|abc

Match either of the sequences de or abc.

mysql> SELECT 'pi' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'axe' REGEXP 'pi|apa'; -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$'; -> 0

• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT 'pi' REGEXP '^(pi)*$'; -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$'; -> 0
mysql> SELECT 'pipi' REGEXP '^(pi)*$'; -> 1

• {1}, {2,3}

{n} or {m,n} notation provides a more general way of writing regular expressions that match many
occurrences of the previous atom (or “piece”) of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of
a. a{m,n} matches m through n instances of a, inclusive.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive. If both m and n are
given, m must be less than or equal to n.

mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e'; -> 0
mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e'; -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e'; -> 1

• [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between two
other characters forms a range that matches all characters from the first character to the second.
For example, [0-9] matches any decimal digit. To include a literal] character, it must immediately
follow the opening bracket [. To include a literal - character, it must be written first or last. Any
character that does not have a defined special meaning inside a [] pair matches only itself.

Regular Expressions

1162

mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$'; -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$'; -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$'; -> 1
mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$'; -> 0

• [.characters.]

Within a bracket expression (written using [and]), matches the sequence of characters of that
collating element. characters is either a single character or a character name like newline. The
following table lists the permissible character names.

The following table shows the permissible character names and the characters that they match. For
characters given as numeric values, the values are represented in octal.

Name Character Name Character

NUL 0 SOH 001

STX 002 ETX 003

EOT 004 ENQ 005

ACK 006 BEL 007

alert 007 BS 010

backspace '\b' HT 011

tab '\t' LF 012

newline '\n' VT 013

vertical-tab '\v' FF 014

form-feed '\f' CR 015

carriage-return '\r' SO 016

SI 017 DLE 020

DC1 021 DC2 022

DC3 023 DC4 024

NAK 025 SYN 026

ETB 027 CAN 030

EM 031 SUB 032

ESC 033 IS4 034

FS 034 IS3 035

GS 035 IS2 036

RS 036 IS1 037

US 037 space ' '

exclamation-mark '!' quotation-mark '"'

number-sign '#' dollar-sign '$'

percent-sign '%' ampersand '&'

apostrophe '\'' left-parenthesis '('

right-parenthesis ')' asterisk '*'

plus-sign '+' comma ','

hyphen '-' hyphen-minus '-'

Regular Expressions

1163

Name Character Name Character

period '.' full-stop '.'

slash '/' solidus '/'

zero '0' one '1'

two '2' three '3'

four '4' five '5'

six '6' seven '7'

eight '8' nine '9'

colon ':' semicolon ';'

less-than-sign '<' equals-sign '='

greater-than-sign '>' question-mark '?'

commercial-at '@' left-square-
bracket

'['

backslash '\\' reverse-solidus '\\'

right-square-
bracket

']' circumflex '^'

circumflex-accent '^' underscore '_'

low-line '_' grave-accent '`'

left-brace '{' left-curly-
bracket

'{'

vertical-line '|' right-brace '}'

right-curly-
bracket

'}' tilde '~'

DEL 177

mysql> SELECT '~' REGEXP '[[.~.]]'; -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]'; -> 1

• [=character_class=]

Within a bracket expression (written using [and]), [=character_class=] represents an
equivalence class. It matches all characters with the same collation value, including itself. For
example, if o and (+) are the members of an equivalence class, [[=o=]], [[=(+)=]], and
[o(+)] are all synonymous. An equivalence class may not be used as an endpoint of a range.

• [:character_class:]

Within a bracket expression (written using [and]), [:character_class:] represents a
character class that matches all characters belonging to that class. The following table lists the
standard class names. These names stand for the character classes defined in the ctype(3)
manual page. A particular locale may provide other class names. A character class may not be used
as an endpoint of a range.

Character Class
Name

Meaning

alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

Numeric Functions and Operators

1164

Character Class
Name

Meaning

digit Digit characters

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+'; -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+'; -> 0

• [[:<:]], [[:>:]]

These markers stand for word boundaries. They match the beginning and end of words, respectively.
A word is a sequence of word characters that is not preceded by or followed by word characters. A
word character is an alphanumeric character in the alnum class or an underscore (_).

mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]'; -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]'; -> 0

To use a literal instance of a special character in a regular expression, precede it by two backslash (\)
characters. The MySQL parser interprets one of the backslashes, and the regular expression library
interprets the other. For example, to match the string 1+2 that contains the special + character, only
the last of the following regular expressions is the correct one:

mysql> SELECT '1+2' REGEXP '1+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\\+2'; -> 1

12.6 Numeric Functions and Operators

Table 12.10 Numeric Functions and Operators

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN2(), ATAN() Return the arc tangent of the two arguments

ATAN() Return the arc tangent

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

Arithmetic Operators

1165

Name Description

DIV Integer division

/ Division operator

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOG() Return the natural logarithm of the first argument

- Minus operator

MOD() Return the remainder

% or MOD Modulo operator

PI() Return the value of pi

+ Addition operator

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

* Multiplication operator

TRUNCATE() Truncate to specified number of decimal places

- Change the sign of the argument

12.6.1 Arithmetic Operators

Table 12.11 Arithmetic Operators

Name Description

DIV Integer division

/ Division operator

- Minus operator

% or MOD Modulo operator

+ Addition operator

* Multiplication operator

- Change the sign of the argument

The usual arithmetic operators are available. The result is determined according to the following rules:

• In the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both operands are
integers.

Arithmetic Operators

1166

• If both operands are integers and any of them are unsigned, the result is an unsigned integer. For
subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is signed even if
any operand is unsigned.

• If any of the operands of a +, -, /, *, % is a real or string value, the precision of the result is the
precision of the operand with the maximum precision.

• In division performed with /, the scale of the result when using two exact-value operands is the scale
of the first operand plus the value of the div_precision_increment system variable (which is
4 by default). For example, the result of the expression 5.05 / 0.014 has a scale of six decimal
places (360.714286).

These rules are applied for each operation, such that nested calculations imply the precision of each
component. Hence, (14620 / 9432456) / (24250 / 9432456), resolves first to (0.0014) /
(0.0026), with the final result having 8 decimal places (0.60288653).

Because of these rules and the way they are applied, care should be taken to ensure that components
and subcomponents of a calculation use the appropriate level of precision. See Section 12.10, “Cast
Functions and Operators”.

For information about handling of overflow in numeric expression evaluation, see Section 11.2.6, “Out-
of-Range and Overflow Handling”.

Arithmetic operators apply to numbers. For other types of values, alternative operations may be
available. For example, to add date values, use DATE_ADD(); see Section 12.7, “Date and Time
Functions”.

• +

Addition:

mysql> SELECT 3+5;
 -> 8

• -

Subtraction:

mysql> SELECT 3-5;
 -> -2

• -

Unary minus. This operator changes the sign of the operand.

mysql> SELECT - 2;
 -> -2

Note

If this operator is used with a BIGINT, the return value is also a BIGINT. This
means that you should avoid using - on integers that may have the value of –
263.

• *

Multiplication:

mysql> SELECT 3*5;
 -> 15
mysql> SELECT 18014398509481984*18014398509481984.0;

Mathematical Functions

1167

 -> 324518553658426726783156020576256.0
mysql> SELECT 18014398509481984*18014398509481984;
 -> out-of-range error

The last expression produces an error because the result of the integer multiplication exceeds the
64-bit range of BIGINT calculations. (See Section 11.2, “Numeric Types”.)

• /

Division:

mysql> SELECT 3/5;
 -> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);
 -> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result is
converted to an integer.

• DIV

Integer division. Similar to FLOOR(), but is safe with BIGINT values.

In MySQL 5.7, if either operand has a noninteger type, the operands are converted to DECIMAL
and divided using DECIMAL arithmetic before converting the result to BIGINT. If the result exceeds
BIGINT range, an error occurs.

mysql> SELECT 5 DIV 2;
 -> 2

• N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M. For more information, see the description
for the MOD() function in Section 12.6.2, “Mathematical Functions”.

12.6.2 Mathematical Functions
Table 12.12 Mathematical Functions

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN2(), ATAN() Return the arc tangent of the two arguments

ATAN() Return the arc tangent

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

EXP() Raise to the power of

Mathematical Functions

1168

Name Description

FLOOR() Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOG() Return the natural logarithm of the first argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

All mathematical functions return NULL in the event of an error.

• ABS(X)

Returns the absolute value of X.

mysql> SELECT ABS(2);
 -> 2
mysql> SELECT ABS(-32);
 -> 32

This function is safe to use with BIGINT values.

• ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the range
-1 to 1.

mysql> SELECT ACOS(1);
 -> 0
mysql> SELECT ACOS(1.0001);
 -> NULL
mysql> SELECT ACOS(0);
 -> 1.5707963267949

• ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1
to 1.

mysql> SELECT ASIN(0.2);
 -> 0.20135792079033
mysql> SELECT ASIN('foo');

Mathematical Functions

1169

+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+---+

• ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.

mysql> SELECT ATAN(2);
 -> 1.1071487177941
mysql> SELECT ATAN(-2);
 -> -1.1071487177941

• ATAN(Y,X), ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y /
X, except that the signs of both arguments are used to determine the quadrant of the result.

mysql> SELECT ATAN(-2,2);
 -> -0.78539816339745
mysql> SELECT ATAN2(PI(),0);
 -> 1.5707963267949

• CEIL(X)

CEIL() is a synonym for CEILING().

• CEILING(X)

Returns the smallest integer value not less than X.

mysql> SELECT CEILING(1.23);
 -> 2
mysql> SELECT CEILING(-1.23);
 -> -1

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number
N, converted from base from_base to base to_base. Returns NULL if any argument is NULL. The
argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum
base is 2 and the maximum base is 36. If to_base is a negative number, N is regarded as a signed
number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

mysql> SELECT CONV('a',16,2);
 -> '1010'
mysql> SELECT CONV('6E',18,8);
 -> '172'
mysql> SELECT CONV(-17,10,-18);
 -> '-H'
mysql> SELECT CONV(10+'10'+'10'+0xa,10,10);

Mathematical Functions

1170

 -> '40'

• COS(X)

Returns the cosine of X, where X is given in radians.

mysql> SELECT COS(PI());
 -> -1

• COT(X)

Returns the cotangent of X.

mysql> SELECT COT(12);
 -> -1.5726734063977
mysql> SELECT COT(0);
 -> NULL

• CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL if
the argument is NULL. The argument is expected to be a string and (if possible) is treated as one if it
is not.

mysql> SELECT CRC32('MySQL');
 -> 3259397556
mysql> SELECT CRC32('mysql');
 -> 2501908538

• DEGREES(X)

Returns the argument X, converted from radians to degrees.

mysql> SELECT DEGREES(PI());
 -> 180
mysql> SELECT DEGREES(PI() / 2);
 -> 90

• EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X. The inverse of this
function is LOG() (using a single argument only) or LN().

mysql> SELECT EXP(2);
 -> 7.3890560989307
mysql> SELECT EXP(-2);
 -> 0.13533528323661
mysql> SELECT EXP(0);
 -> 1

• FLOOR(X)

Returns the largest integer value not greater than X.

mysql> SELECT FLOOR(1.23);
 -> 1
mysql> SELECT FLOOR(-1.23);
 -> -2

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

Mathematical Functions

1171

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. For details, see Section 12.5, “String Functions”.

• HEX(N_or_S)

This function can be used to obtain a hexadecimal representation of a decimal number or a
string; the manner in which it does so varies according to the argument's type. See this function's
description in Section 12.5, “String Functions”, for details.

• LN(X)

Returns the natural logarithm of X; that is, the base-e logarithm of X. As of MySQL 5.7.4, if X is less
than or equal to 0.0E0, the error “Invalid argument for logarithm” is reported in strict SQL mode, and
NULL is returned in non-strict mode. Before MySQL 5.7.4, if X is less than or equal to 0.0E0, NULL is
returned.

mysql> SELECT LN(2);
 -> 0.69314718055995
mysql> SELECT LN(-2);
 -> NULL

This function is synonymous with LOG(X). The inverse of this function is the EXP() function.

• LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X. As of MySQL 5.7.4, if
X is less than or equal to 0.0E0, the error “Invalid argument for logarithm” is reported in strict SQL
mode, and NULL is returned in non-strict mode. Before MySQL 5.7.4, if X is less than or equal to
0.0E0, NULL is returned.

The inverse of this function (when called with a single argument) is the EXP() function.

mysql> SELECT LOG(2);
 -> 0.69314718055995
mysql> SELECT LOG(-2);
 -> NULL

If called with two parameters, this function returns the logarithm of X to the base B. If X is less than or
equal to 0, or if B is less than or equal to 1, then NULL is returned.

mysql> SELECT LOG(2,65536);
 -> 16
mysql> SELECT LOG(10,100);
 -> 2
mysql> SELECT LOG(1,100);
 -> NULL

LOG(B,X) is equivalent to LOG(X) / LOG(B).

• LOG2(X)

Returns the base-2 logarithm of X. As of MySQL 5.7.4, if X is less than or equal to 0.0E0, the error
“Invalid argument for logarithm” is reported in strict SQL mode, and NULL is returned in non-strict
mode. Before MySQL 5.7.4, if X is less than or equal to 0.0E0, NULL is returned.

mysql> SELECT LOG2(65536);
 -> 16
mysql> SELECT LOG2(-100);
 -> NULL

Mathematical Functions

1172

LOG2() is useful for finding out how many bits a number requires for storage. This function is
equivalent to the expression LOG(X) / LOG(2).

• LOG10(X)

Returns the base-10 logarithm of X. As of MySQL 5.7.4, if X is less than or equal to 0.0E0, the error
“Invalid argument for logarithm” is reported in strict SQL mode, and NULL is returned in non-strict
mode. Before MySQL 5.7.4, if X is less than or equal to 0.0E0, NULL is returned.

mysql> SELECT LOG10(2);
 -> 0.30102999566398
mysql> SELECT LOG10(100);
 -> 2
mysql> SELECT LOG10(-100);
 -> NULL

LOG10(X) is equivalent to LOG(10,X).

• MOD(N,M), N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M.

mysql> SELECT MOD(234, 10);
 -> 4
mysql> SELECT 253 % 7;
 -> 1
mysql> SELECT MOD(29,9);
 -> 2
mysql> SELECT 29 MOD 9;
 -> 2

This function is safe to use with BIGINT values.

MOD() also works on values that have a fractional part and returns the exact remainder after
division:

mysql> SELECT MOD(34.5,3);
 -> 1.5

MOD(N,0) returns NULL.

• PI()

Returns the value of π (pi). The default number of decimal places displayed is seven, but MySQL
uses the full double-precision value internally.

mysql> SELECT PI();
 -> 3.141593
mysql> SELECT PI()+0.000000000000000000;
 -> 3.141592653589793116

• POW(X,Y)

Returns the value of X raised to the power of Y.

mysql> SELECT POW(2,2);
 -> 4
mysql> SELECT POW(2,-2);
 -> 0.25

• POWER(X,Y)

Mathematical Functions

1173

This is a synonym for POW().

• RADIANS(X)

Returns the argument X, converted from degrees to radians. (Note that π radians equals 180
degrees.)

mysql> SELECT RADIANS(90);
 -> 1.5707963267949

• RAND(), RAND(N)

Returns a random floating-point value v in the range 0 <= v < 1.0. If a constant integer argument N
is specified, it is used as the seed value, which produces a repeatable sequence of column values.
In the following example, note that the sequences of values produced by RAND(3) is the same both
places where it occurs.

mysql> CREATE TABLE t (i INT);
Query OK, 0 rows affected (0.42 sec)

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.61914388706828
2	0.93845168309142
3	0.83482678498591
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.35877890638893
2	0.28941420772058
3	0.37073435016976
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.01 sec)

With a constant initializer, the seed is initialized once when the statement is compiled, prior to
execution. If a nonconstant initializer (such as a column name) is used as the argument, the seed

Mathematical Functions

1174

is initialized with the value for each invocation of RAND(). (One implication of this is that for equal
argument values, RAND() will return the same value each time.)

To obtain a random integer R in the range i <= R < j, use the expression FLOOR(i + RAND() *
(j – i)). For example, to obtain a random integer in the range the range 7 <= R < 12, you could
use the following statement:

SELECT FLOOR(7 + (RAND() * 5));

RAND() in a WHERE clause is re-evaluated every time the WHERE is executed.

You cannot use a column with RAND() values in an ORDER BY clause, because ORDER BY would
evaluate the column multiple times. However, you can retrieve rows in random order like this:

mysql> SELECT * FROM tbl_name ORDER BY RAND();

ORDER BY RAND() combined with LIMIT is useful for selecting a random sample from a set of
rows:

mysql> SELECT * FROM table1, table2 WHERE a=b AND c<d -> ORDER BY RAND() LIMIT 1000;

RAND() is not meant to be a perfect random generator. It is a fast way to generate random numbers
on demand that is portable between platforms for the same MySQL version.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT. (Bug #49222)

• ROUND(X), ROUND(X,D)

Rounds the argument X to D decimal places. The rounding algorithm depends on the data type of
X. D defaults to 0 if not specified. D can be negative to cause D digits left of the decimal point of the
value X to become zero.

mysql> SELECT ROUND(-1.23);
 -> -1
mysql> SELECT ROUND(-1.58);
 -> -2
mysql> SELECT ROUND(1.58);
 -> 2
mysql> SELECT ROUND(1.298, 1);
 -> 1.3
mysql> SELECT ROUND(1.298, 0);
 -> 1
mysql> SELECT ROUND(23.298, -1);
 -> 20

The return type is the same type as that of the first argument (assuming that it is integer, double, or
decimal). This means that for an integer argument, the result is an integer (no decimal places):

mysql> SELECT ROUND(150.000,2), ROUND(150,2);
+------------------+--------------+
| ROUND(150.000,2) | ROUND(150,2) |
+------------------+--------------+
| 150.00 | 150 |
+------------------+--------------+

ROUND() uses the following rules depending on the type of the first argument:

• For exact-value numbers, ROUND() uses the “round half away from zero” or “round toward
nearest” rule: A value with a fractional part of .5 or greater is rounded up to the next integer if
positive or down to the next integer if negative. (In other words, it is rounded away from zero.) A

Mathematical Functions

1175

value with a fractional part less than .5 is rounded down to the next integer if positive or up to the
next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this
means that ROUND() uses the "round to nearest even" rule: A value with any fractional part is
rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For more information, see Section 12.19, “Precision Math”.

• SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or
positive.

mysql> SELECT SIGN(-32);
 -> -1
mysql> SELECT SIGN(0);
 -> 0
mysql> SELECT SIGN(234);
 -> 1

• SIN(X)

Returns the sine of X, where X is given in radians.

mysql> SELECT SIN(PI());
 -> 1.2246063538224e-16
mysql> SELECT ROUND(SIN(PI()));
 -> 0

• SQRT(X)

Returns the square root of a nonnegative number X.

mysql> SELECT SQRT(4);
 -> 2
mysql> SELECT SQRT(20);
 -> 4.4721359549996
mysql> SELECT SQRT(-16);
 -> NULL

• TAN(X)

Returns the tangent of X, where X is given in radians.

mysql> SELECT TAN(PI());
 -> -1.2246063538224e-16
mysql> SELECT TAN(PI()+1);
 -> 1.5574077246549

• TRUNCATE(X,D)

Date and Time Functions

1176

Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or
fractional part. D can be negative to cause D digits left of the decimal point of the value X to become
zero.

mysql> SELECT TRUNCATE(1.223,1);
 -> 1.2
mysql> SELECT TRUNCATE(1.999,1);
 -> 1.9
mysql> SELECT TRUNCATE(1.999,0);
 -> 1
mysql> SELECT TRUNCATE(-1.999,1);
 -> -1.9
mysql> SELECT TRUNCATE(122,-2);
 -> 100
mysql> SELECT TRUNCATE(10.28*100,0);
 -> 1028

All numbers are rounded toward zero.

12.7 Date and Time Functions

This section describes the functions that can be used to manipulate temporal values. See Section 11.3,
“Date and Time Types”, for a description of the range of values each date and time type has and the
valid formats in which values may be specified.

Table 12.13 Date/Time Functions

Name Description

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

CONVERT_TZ() Convert from one timezone to another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURTIME() Return the current time

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATE() Extract the date part of a date or datetime expression

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT() Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format UNIX timestamp as a date

GET_FORMAT() Return a date format string

Date and Time Functions

1177

Name Description

HOUR() Extract the hour

LAST_DAY Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

STR_TO_DATE() Convert a string to a date

SUBDATE() Synonym for DATE_SUB() when invoked with three
arguments

SUBTIME() Subtract times

SYSDATE() Return the time at which the function executes

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIME() Extract the time portion of the expression passed

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument, this function returns the date or
datetime expression; with two arguments, the sum of the
arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted to seconds
since Year 0

UNIX_TIMESTAMP() Return a UNIX timestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (0-53)

YEAR() Return the year

Date and Time Functions

1178

Name Description

YEARWEEK() Return the year and week

Here is an example that uses date functions. The following query selects all rows with a date_col
value from within the last 30 days:

mysql> SELECT something FROM tbl_name
 -> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

The query also selects rows with dates that lie in the future.

Functions that expect date values usually accept datetime values and ignore the time part. Functions
that expect time values usually accept datetime values and ignore the date part.

Functions that return the current date or time each are evaluated only once per query at the start of
query execution. This means that multiple references to a function such as NOW() within a single query
always produce the same result. (For our purposes, a single query also includes a call to a stored
program (stored routine, trigger, or event) and all subprograms called by that program.) This principle
also applies to CURDATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to
any of their synonyms.

The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and FROM_UNIXTIME()
functions return values in the connection's current time zone, which is available as the value of the
time_zone system variable. In addition, UNIX_TIMESTAMP() assumes that its argument is a
datetime value in the current time zone. See Section 10.6, “MySQL Server Time Zone Support”.

Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00',
whereas others cannot. Functions that extract parts of dates typically work with incomplete dates and
thus can return 0 when you might otherwise expect a nonzero value. For example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
 -> 0, 0

Other functions expect complete dates and return NULL for incomplete dates. These include functions
that perform date arithmetic or that map parts of dates to names. For example:

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
 -> NULL
mysql> SELECT DAYNAME('2006-05-00');
 -> NULL

Several functions are more strict when passed a DATE() function value as their argument and reject
incomplete dates with a day part of zero. These functions are affected: CONVERT_TZ(), DATE_ADD(),
DATE_SUB(), DAYOFYEAR(), LAST_DAY() (permits a day part of zero), TIMESTAMPDIFF(),
TO_DAYS(), TO_SECONDS(), WEEK(), WEEKDAY(), WEEKOFYEAR(), YEARWEEK().

Fractional seconds for TIME, DATETIME, and TIMESTAMP values are supported, with up to
microsecond precision. Functions that take temporal arguments accept values with fractional seconds.
Return values from temporal functions include fractional seconds as appropriate.

• ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for
DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For information on
the INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'
mysql> SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'

Date and Time Functions

1179

When invoked with the days form of the second argument, MySQL treats it as an integer number of
days to be added to expr.

mysql> SELECT ADDDATE('2008-01-02', 31);
 -> '2008-02-02'

• ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression,
and expr2 is a time expression.

mysql> SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');
 -> '2008-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');
 -> '03:00:01.999997'

• CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time
zone given by to_tz and returns the resulting value. Time zones are specified as described in
Section 10.6, “MySQL Server Time Zone Support”. This function returns NULL if the arguments are
invalid.

If the value falls out of the supported range of the TIMESTAMP type when converted from from_tz
to UTC, no conversion occurs. The TIMESTAMP range is described in Section 11.1.2, “Date and
Time Type Overview”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
 -> '2004-01-01 13:00:00'
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
 -> '2004-01-01 22:00:00'

Note

To use named time zones such as 'MET' or 'Europe/Moscow', the time
zone tables must be properly set up. See Section 10.6, “MySQL Server Time
Zone Support”, for instructions.

• CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether
the function is used in a string or numeric context.

mysql> SELECT CURDATE();
 -> '2008-06-13'
mysql> SELECT CURDATE() + 0;
 -> 20080613

• CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

• CURRENT_TIME, CURRENT_TIME([fsp])

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

• CURRENT_TIMESTAMP, CURRENT_TIMESTAMP([fsp])

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

• CURTIME([fsp])

Date and Time Functions

1180

Returns the current time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the
function is used in a string or numeric context. The value is expressed in the current time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT CURTIME();
 -> '23:50:26'
mysql> SELECT CURTIME() + 0;
 -> 235026.000000

• DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
 -> '2003-12-31'

• DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 – expr2 expressed as a value in days from one date to the other.
expr1 and expr2 are date or date-and-time expressions. Only the date parts of the values are used
in the calculation.

mysql> SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');
 -> 1
mysql> SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');
 -> -31

• DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. The date argument specifies the starting date or datetime
value. expr is an expression specifying the interval value to be added or subtracted from the starting
date. expr is a string; it may start with a “-” for negative intervals. unit is a keyword indicating the
units in which the expression should be interpreted.

The INTERVAL keyword and the unit specifier are not case sensitive.

The following table shows the expected form of the expr argument for each unit value.

unit Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES:SECONDS.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS:MINUTES:SECONDS.MICROSECONDS'

Date and Time Functions

1181

unit Value Expected expr Format

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS
HOURS:MINUTES:SECONDS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

The return value depends on the arguments:

• DATETIME if the first argument is a DATETIME (or TIMESTAMP) value, or if the first argument is a
DATE and the unit value uses HOURS, MINUTES, or SECONDS.

• String otherwise.

To ensure that the result is DATETIME, you can use CAST() to convert the first argument to
DATETIME.

MySQL permits any punctuation delimiter in the expr format. Those shown in the table are the
suggested delimiters. If the date argument is a DATE value and your calculations involve only YEAR,
MONTH, and DAY parts (that is, no time parts), the result is a DATE value. Otherwise, the result is a
DATETIME value.

Date arithmetic also can be performed using INTERVAL together with the + or - operator:

date + INTERVAL expr unit
date - INTERVAL expr unit

INTERVAL expr unit is permitted on either side of the + operator if the expression on the other
side is a date or datetime value. For the - operator, INTERVAL expr unit is permitted only on the
right side, because it makes no sense to subtract a date or datetime value from an interval.

mysql> SELECT '2008-12-31 23:59:59' + INTERVAL 1 SECOND;
 -> '2009-01-01 00:00:00'
mysql> SELECT INTERVAL 1 DAY + '2008-12-31';
 -> '2009-01-01'
mysql> SELECT '2005-01-01' - INTERVAL 1 SECOND;
 -> '2004-12-31 23:59:59'
mysql> SELECT DATE_ADD('2000-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2001-01-01 00:00:00'
mysql> SELECT DATE_ADD('2010-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2011-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2005-01-01 00:00:00',
 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2004-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);
 -> '1993-01-01 00:00:01.000001'

Date and Time Functions

1182

If you specify an interval value that is too short (does not include all the interval parts that would
be expected from the unit keyword), MySQL assumes that you have left out the leftmost parts
of the interval value. For example, if you specify a unit of DAY_SECOND, the value of expr is
expected to have days, hours, minutes, and seconds parts. If you specify a value like '1:10',
MySQL assumes that the days and hours parts are missing and the value represents minutes and
seconds. In other words, '1:10' DAY_SECOND is interpreted in such a way that it is equivalent to
'1:10' MINUTE_SECOND. This is analogous to the way that MySQL interprets TIME values as
representing elapsed time rather than as a time of day.

Because expr is treated as a string, be careful if you specify a nonstring value with INTERVAL. For
example, with an interval specifier of HOUR_MINUTE, 6/4 evaluates to 1.5000 and is treated as 1
hour, 5000 minutes:

mysql> SELECT 6/4;
 -> 1.5000
mysql> SELECT DATE_ADD('2009-01-01', INTERVAL 6/4 HOUR_MINUTE);
 -> '2009-01-04 12:20:00'

To ensure interpretation of the interval value as you expect, a CAST() operation may be used. To
treat 6/4 as 1 hour, 5 minutes, cast it to a DECIMAL value with a single fractional digit:

mysql> SELECT CAST(6/4 AS DECIMAL(3,1));
 -> 1.5
mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
 -> INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);
 -> '1970-01-01 13:05:00'

If you add to or subtract from a date value something that contains a time part, the result is
automatically converted to a datetime value:

mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 DAY);
 -> '2013-01-02'
mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 HOUR);
 -> '2013-01-01 01:00:00'

If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the
maximum day for the new month, the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('2009-01-30', INTERVAL 1 MONTH);
 -> '2009-02-28'

Date arithmetic operations require complete dates and do not work with incomplete dates such as
'2006-07-00' or badly malformed dates:

mysql> SELECT DATE_ADD('2006-07-00', INTERVAL 1 DAY);
 -> NULL
mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
 -> NULL

• DATE_FORMAT(date,format)

Formats the date value according to the format string.

The following specifiers may be used in the format string. The “%” character is required before
format specifier characters.

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

Date and Time Functions

1183

Specifier Description

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, …)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the week; WEEK() mode 0

%u Week (00..53), where Monday is the first day of the week; WEEK() mode 1

%V Week (01..53), where Sunday is the first day of the week; WEEK() mode 2;
used with %X

%v Week (01..53), where Monday is the first day of the week; WEEK() mode 3;
used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four
digits; used with %V

%x Year for the week, where Monday is the first day of the week, numeric, four
digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal “%” character

%x x, for any “x” not listed above

Ranges for the month and day specifiers begin with zero due to the fact that MySQL permits the
storing of incomplete dates such as '2014-00-00'.

The language used for day and month names and abbreviations is controlled by the value of the
lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

For the %U, %u, %V, and %v specifiers, see the description of the WEEK() function for information
about the mode values. The mode affects how week numbering occurs.

Date and Time Functions

1184

DATE_FORMAT() returns a string with a character set and collation given by
character_set_connection and collation_connection so that it can return month and
weekday names containing non-ASCII characters.

mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
 -> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
 -> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
 -> '%D %y %a %d %m %b %j');
 -> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
 -> '%H %k %I %r %T %S %w');
 -> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
 -> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
 -> '00'

• DATE_SUB(date,INTERVAL expr unit)

See the description for DATE_ADD().

• DAY(date)

DAY() is a synonym for DAYOFMONTH().

• DAYNAME(date)

Returns the name of the weekday for date. The language used for the name is controlled by the
value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

mysql> SELECT DAYNAME('2007-02-03');
 -> 'Saturday'

• DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31, or 0 for dates such as '0000-00-00'
or '2008-00-00' that have a zero day part.

mysql> SELECT DAYOFMONTH('2007-02-03');
 -> 3

• DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, …, 7 = Saturday). These index
values correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('2007-02-03');
 -> 7

• DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('2007-02-03');
 -> 34

• EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(),
but extracts parts from the date rather than performing date arithmetic.

Date and Time Functions

1185

mysql> SELECT EXTRACT(YEAR FROM '2009-07-02');
 -> 2009
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2009-07-02 01:02:03');
 -> 200907
mysql> SELECT EXTRACT(DAY_MINUTE FROM '2009-07-02 01:02:03');
 -> 20102
mysql> SELECT EXTRACT(MICROSECOND
 -> FROM '2003-01-02 10:30:00.000123');
 -> 123

• FROM_DAYS(N)

Given a day number N, returns a DATE value.

mysql> SELECT FROM_DAYS(730669);
 -> '2007-07-03'

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the
advent of the Gregorian calendar (1582). See Section 12.8, “What Calendar Is Used By MySQL?”.

• FROM_UNIXTIME(unix_timestamp), FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD
HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or
numeric context. The value is expressed in the current time zone. unix_timestamp is an internal
timestamp value such as is produced by the UNIX_TIMESTAMP() function.

If format is given, the result is formatted according to the format string, which is used the same
way as listed in the entry for the DATE_FORMAT() function.

mysql> SELECT FROM_UNIXTIME(1196440219);
 -> '2007-11-30 10:30:19'
mysql> SELECT FROM_UNIXTIME(1196440219) + 0;
 -> 20071130103019.000000
mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
 -> '%Y %D %M %h:%i:%s %x');
 -> '2007 30th November 10:30:59 2007'

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP
values and Unix timestamp values, the conversion is lossy because the mapping is not one-to-one in
both directions. For details, see the description of the UNIX_TIMESTAMP() function.

• GET_FORMAT({DATE|TIME|DATETIME}, {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})

Returns a format string. This function is useful in combination with the DATE_FORMAT() and the
STR_TO_DATE() functions.

The possible values for the first and second arguments result in several possible format strings (for
the specifiers used, see the table in the DATE_FORMAT() function description). ISO format refers to
ISO 9075, not ISO 8601.

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

Date and Time Functions

1186

Function Call Result

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function
returns the same values as for DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
 -> '03.10.2003'
mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
 -> '2003-10-31'

• HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However,
the range of TIME values actually is much larger, so HOUR can return values greater than 23.

mysql> SELECT HOUR('10:05:03');
 -> 10
mysql> SELECT HOUR('272:59:59');
 -> 272

• LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month.
Returns NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');
 -> '2003-02-28'
mysql> SELECT LAST_DAY('2004-02-05');
 -> '2004-02-29'
mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
 -> '2004-01-31'
mysql> SELECT LAST_DAY('2003-03-32');
 -> NULL

• LOCALTIME, LOCALTIME([fsp])

LOCALTIME and LOCALTIME() are synonyms for NOW().

• LOCALTIMESTAMP, LOCALTIMESTAMP([fsp])

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

• MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result
is NULL.

mysql> SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);
 -> '2011-01-31', '2011-02-01'

Date and Time Functions

1187

mysql> SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);
 -> '2011-12-31', '2014-12-31'
mysql> SELECT MAKEDATE(2011,0);
 -> NULL

• MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.

The second argument can have a fractional part.

mysql> SELECT MAKETIME(12,15,30);
 -> '12:15:30'

• MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from
0 to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');
 -> 123456
mysql> SELECT MICROSECOND('2009-12-31 23:59:59.000010');
 -> 10

• MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('2008-02-03 10:05:03');
 -> 5

• MONTH(date)

Returns the month for date, in the range 1 to 12 for January to December, or 0 for dates such as
'0000-00-00' or '2008-00-00' that have a zero month part.

mysql> SELECT MONTH('2008-02-03');
 -> 2

• MONTHNAME(date)

Returns the full name of the month for date. The language used for the name is controlled by the
value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

mysql> SELECT MONTHNAME('2008-02-03');
 -> 'February'

• NOW([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS
format, depending on whether the function is used in a string or numeric context. The value is
expressed in the current time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT NOW();
 -> '2007-12-15 23:50:26'
mysql> SELECT NOW() + 0;
 -> 20071215235026.000000

Date and Time Functions

1188

NOW() returns a constant time that indicates the time at which the statement began to execute.
(Within a stored function or trigger, NOW() returns the time at which the function or triggering
statement began to execute.) This differs from the behavior for SYSDATE(), which returns the exact
time at which it executes.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by
SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations
of SYSDATE(). Setting the timestamp to a nonzero value causes each subsequent invocation of
NOW() to return that value. Setting the timestamp to zero cancels this effect so that NOW() once
again returns the current date and time.

See the description for SYSDATE() for additional information about the differences between the two
functions.

• PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM.
Note that the period argument P is not a date value.

mysql> SELECT PERIOD_ADD(200801,2);
 -> 200803

• PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM
or YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysql> SELECT PERIOD_DIFF(200802,200703);
 -> 11

• QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysql> SELECT QUARTER('2008-04-01');
 -> 2

• SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql> SELECT SECOND('10:05:03');
 -> 3

• SEC_TO_TIME(seconds)

Date and Time Functions

1189

Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The
range of the result is constrained to that of the TIME data type. A warning occurs if the argument
corresponds to a value outside that range.

mysql> SELECT SEC_TO_TIME(2378);
 -> '00:39:38'
mysql> SELECT SEC_TO_TIME(2378) + 0;
 -> 3938

• STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string
format. STR_TO_DATE() returns a DATETIME value if the format string contains both date and
time parts, or a DATE or TIME value if the string contains only date or time parts. If the date, time,
or datetime value extracted from str is illegal, STR_TO_DATE() returns NULL and produces a
warning.

The server scans str attempting to match format to it. The format string can contain literal
characters and format specifiers beginning with %. Literal characters in format must match literally
in str. Format specifiers in format must match a date or time part in str. For the specifiers that
can be used in format, see the DATE_FORMAT() function description.

mysql> SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');
 -> '2013-05-01'
mysql> SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');
 -> '2013-05-01'

Scanning starts at the beginning of str and fails if format is found not to match. Extra characters at
the end of str are ignored.

mysql> SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');
 -> '09:30:17'
mysql> SELECT STR_TO_DATE('a09:30:17','%h:%i:%s');
 -> NULL
mysql> SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');
 -> '09:30:17'

Unspecified date or time parts have a value of 0, so incompletely specified values in str produce a
result with some or all parts set to 0:

mysql> SELECT STR_TO_DATE('abc','abc');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('9','%m');
 -> '0000-09-00'
mysql> SELECT STR_TO_DATE('9','%s');
 -> '00:00:09'

Range checking on the parts of date values is as described in Section 11.3.1, “The DATE,
DATETIME, and TIMESTAMP Types”. This means, for example, that “zero” dates or dates with part
values of 0 are permitted unless the SQL mode is set to disallow such values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
 -> '2004-04-31'

Note

You cannot use format "%X%V" to convert a year-week string to a date
because the combination of a year and week does not uniquely identify a year

Date and Time Functions

1190

and month if the week crosses a month boundary. To convert a year-week to
a date, you should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
 -> '2004-10-18'

• SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym
for DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for
DATE_ADD().

mysql> SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'
mysql> SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'

The second form enables the use of an integer value for days. In such cases, it is interpreted as the
number of days to be subtracted from the date or datetime expression expr.

mysql> SELECT SUBDATE('2008-01-02 12:00:00', 31);
 -> '2007-12-02 12:00:00'

• SUBTIME(expr1,expr2)

SUBTIME() returns expr1 – expr2 expressed as a value in the same format as expr1. expr1 is a
time or datetime expression, and expr2 is a time expression.

mysql> SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');
 -> '2007-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
 -> '-00:59:59.999999'

• SYSDATE([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS
format, depending on whether the function is used in a string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits. Before 5.6.4, any argument is ignored.

SYSDATE() returns the time at which it executes. This differs from the behavior for NOW(), which
returns a constant time that indicates the time at which the statement began to execute. (Within a
stored function or trigger, NOW() returns the time at which the function or triggering statement began
to execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

Date and Time Functions

1191

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by
SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations of
SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected
by SET TIMESTAMP, it is nondeterministic and therefore unsafe for replication if statement-based
binary logging is used. If that is a problem, you can use row-based logging.

Alternatively, you can use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This works if the option is used on both the master and the slave.

The nondeterministic nature of SYSDATE() also means that indexes cannot be used for evaluating
expressions that refer to it.

• TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.

This function is unsafe for statement-based replication. In MySQL 5.7, a warning is logged if you use
this function when binlog_format is set to STATEMENT. (Bug #47995)

mysql> SELECT TIME('2003-12-31 01:02:03');
 -> '01:02:03'
mysql> SELECT TIME('2003-12-31 01:02:03.000123');
 -> '01:02:03.000123'

• TIMEDIFF(expr1,expr2)

TIMEDIFF() returns expr1 – expr2 expressed as a time value. expr1 and expr2 are time or
date-and-time expressions, but both must be of the same type.

The result returned by TIMEDIFF() is limited to the range allowed for TIME values. Alternatively,
you can use either of the functions TIMESTAMPDIFF() and UNIX_TIMESTAMP(), both of which
return integers.

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
 -> '2000:01:01 00:00:00.000001');
 -> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('2008-12-31 23:59:59.000001',
 -> '2008-12-30 01:01:01.000002');
 -> '46:58:57.999999'

• TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime
value. With two arguments, it adds the time expression expr2 to the date or datetime expression
expr1 and returns the result as a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
 -> '2003-12-31 00:00:00'
mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
 -> '2004-01-01 00:00:00'

• TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The
unit for interval is given by the unit argument, which should be one of the following values:
MICROSECOND (microseconds), SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_.
For example, DAY and SQL_TSI_DAY both are legal.

Date and Time Functions

1192

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
 -> '2003-01-02 00:01:00'
mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
 -> '2003-01-09'

• TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns datetime_expr2 – datetime_expr1, where datetime_expr1 and datetime_expr2
are date or datetime expressions. One expression may be a date and the other a datetime; a date
value is treated as a datetime having the time part '00:00:00' where necessary. The unit for the
result (an integer) is given by the unit argument. The legal values for unit are the same as those
listed in the description of the TIMESTAMPADD() function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
 -> 3
mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
 -> -1
mysql> SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');
 -> 128885

Note

The order of the date or datetime arguments for this function is the opposite
of that used with the TIMESTAMP() function when invoked with 2 arguments.

• TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers
only for hours, minutes, seconds, and microseconds. Other specifiers produce a NULL value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers
produce a value larger than the usual range of 0..23. The other hour format specifiers produce the
hour value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
 -> '100 100 04 04 4'

• TIME_TO_SEC(time)

Returns the time argument, converted to seconds.

mysql> SELECT TIME_TO_SEC('22:23:00');
 -> 80580
mysql> SELECT TIME_TO_SEC('00:39:38');
 -> 2378

• TO_DAYS(date)

Given a date date, returns a day number (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
 -> 728779
mysql> SELECT TO_DAYS('2007-10-07');
 -> 733321

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar
(1582), because it does not take into account the days that were lost when the calendar was
changed. For dates before 1582 (and possibly a later year in other locales), results from this function
are not reliable. See Section 12.8, “What Calendar Is Used By MySQL?”, for details.

Date and Time Functions

1193

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in
Section 11.3, “Date and Time Types”. For example, '2008-10-07' and '08-10-07' are seen as
identical dates:

mysql> SELECT TO_DAYS('2008-10-07'), TO_DAYS('08-10-07');
 -> 733687, 733687

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered
invalid. This means that, for '0000-00-00' and '0000-01-01', TO_DAYS() returns the values
shown here:

mysql> SELECT TO_DAYS('0000-00-00');
+-----------------------+
| to_days('0000-00-00') |
+-----------------------+
| NULL |
+-----------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_DAYS('0000-01-01');
+-----------------------+
| to_days('0000-01-01') |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• TO_SECONDS(expr)

Given a date or datetime expr, returns a the number of seconds since the year 0. If expr is not a
valid date or datetime value, returns NULL.

mysql> SELECT TO_SECONDS(950501);
 -> 62966505600
mysql> SELECT TO_SECONDS('2009-11-29');
 -> 63426672000
mysql> SELECT TO_SECONDS('2009-11-29 13:43:32');
 -> 63426721412
mysql> SELECT TO_SECONDS(NOW());
 -> 63426721458

Like TO_DAYS(), TO_SECONDS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582), because it does not take into account the days that were lost when the
calendar was changed. For dates before 1582 (and possibly a later year in other locales), results
from this function are not reliable. See Section 12.8, “What Calendar Is Used By MySQL?”, for
details.

Like TO_DAYS(), TO_SECONDS(), converts two-digit year values in dates to four-digit form using the
rules in Section 11.3, “Date and Time Types”.

Date and Time Functions

1194

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered
invalid. This means that, for '0000-00-00' and '0000-01-01', TO_SECONDS() returns the
values shown here:

mysql> SELECT TO_SECONDS('0000-00-00');
+--------------------------+
| TO_SECONDS('0000-00-00') |
+--------------------------+
| NULL |
+--------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_SECONDS('0000-01-01');
+--------------------------+
| TO_SECONDS('0000-01-01') |
+--------------------------+
| 86400 |
+--------------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00'
UTC) as an unsigned integer. If UNIX_TIMESTAMP() is called with a date argument, it returns the
value of the argument as seconds since '1970-01-01 00:00:00' UTC. date may be a DATE
string, a DATETIME string, a TIMESTAMP, or a number in the format YYMMDD or YYYYMMDD. The
server interprets date as a value in the current time zone and converts it to an internal value in UTC.
Clients can set their time zone as described in Section 10.6, “MySQL Server Time Zone Support”.

mysql> SELECT UNIX_TIMESTAMP();
 -> 1196440210
mysql> SELECT UNIX_TIMESTAMP('2007-11-30 10:30:19');
 -> 1196440219

When UNIX_TIMESTAMP() is used on a TIMESTAMP column, the function returns the internal
timestamp value directly, with no implicit “string-to-Unix-timestamp” conversion. If you pass an out-of-
range date to UNIX_TIMESTAMP(), it returns 0.

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP
values and Unix timestamp values, the conversion is lossy because the mapping is not one-to-
one in both directions. For example, due to conventions for local time zone changes, it is possible
for two UNIX_TIMESTAMP() to map two TIMESTAMP values to the same Unix timestamp value.
FROM_UNIXTIME() will map that value back to only one of the original TIMESTAMP values. Here is
an example, using TIMESTAMP values in the CET time zone:

mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+

Date and Time Functions

1195

mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast the result to signed
integers. See Section 12.10, “Cast Functions and Operators”.

• UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on
whether the function is used in a string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
 -> '2003-08-14', 20030814

• UTC_TIME, UTC_TIME([fsp])

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether
the function is used in a string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
 -> '18:07:53', 180753.000000

• UTC_TIMESTAMP, UTC_TIMESTAMP([fsp])

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
 -> '2003-08-14 18:08:04', 20030814180804.000000

• WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() enables you
to specify whether the week starts on Sunday or Monday and whether the return value should
be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the
default_week_format system variable is used. See Section 5.1.4, “Server System Variables”.

The following table describes how the mode argument works.

Mode First day of week Range Week 1 is the first week …

0 Sunday 0-53 with a Sunday in this year

1 Monday 0-53 with 4 or more days this year

2 Sunday 1-53 with a Sunday in this year

3 Monday 1-53 with 4 or more days this year

Date and Time Functions

1196

Mode First day of week Range Week 1 is the first week …

4 Sunday 0-53 with 4 or more days this year

5 Monday 0-53 with a Monday in this year

6 Sunday 1-53 with 4 or more days this year

7 Monday 1-53 with a Monday in this year

For mode values with a meaning of “with 4 or more days this year,” weeks are numbered according
to ISO 8601:1988:

• If the week containing January 1 has 4 or more days in the new year, it is week 1.

• Otherwise, it is the last week of the previous year, and the next week is week 1.

mysql> SELECT WEEK('2008-02-20');
 -> 7
mysql> SELECT WEEK('2008-02-20',0);
 -> 7
mysql> SELECT WEEK('2008-02-20',1);
 -> 8
mysql> SELECT WEEK('2008-12-31',1);
 -> 53

Note that if a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2, 3,
6, or 7 as the optional mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
 -> 2000, 0

One might argue that WEEK() should return 52 because the given date actually occurs in the 52nd
week of 1999. WEEK() returns 0 instead so that the return value is “the week number in the given
year.” This makes use of the WEEK() function reliable when combined with other functions that
extract a date part from a date.

If you prefer a result evaluated with respect to the year that contains the first day of the week for the
given date, use 0, 2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
 -> 52

Alternatively, use the YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
 -> 199952
mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
 -> '52'

• WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, … 6 = Sunday).

mysql> SELECT WEEKDAY('2008-02-03 22:23:00');
 -> 6
mysql> SELECT WEEKDAY('2007-11-06');
 -> 1

• WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a
compatibility function that is equivalent to WEEK(date,3).

What Calendar Is Used By MySQL?

1197

mysql> SELECT WEEKOFYEAR('2008-02-20');
 -> 8

• YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.

mysql> SELECT YEAR('1987-01-01');
 -> 1987

• YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The mode argument works exactly like the mode argument to
WEEK(). The year in the result may be different from the year in the date argument for the first and
the last week of the year.

mysql> SELECT YEARWEEK('1987-01-01');
 -> 198653

Note that the week number is different from what the WEEK() function would return (0) for optional
arguments 0 or 1, as WEEK() then returns the week in the context of the given year.

12.8 What Calendar Is Used By MySQL?
MySQL uses what is known as a proleptic Gregorian calendar.

Every country that has switched from the Julian to the Gregorian calendar has had to discard at least
ten days during the switch. To see how this works, consider the month of October 1582, when the first
Julian-to-Gregorian switch occurred.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any
dates before the cutover are Julian, and any dates following the cutover are Gregorian. Dates during a
cutover are nonexistent.

A calendar applied to dates when it was not actually in use is called proleptic. Thus, if we assume there
was never a cutover and Gregorian rules always rule, we have a proleptic Gregorian calendar. This
is what is used by MySQL, as is required by standard SQL. For this reason, dates prior to the cutover
stored as MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It
is important to realize that the cutover did not occur at the same time in all countries, and that the
later it happened, the more days were lost. For example, in Great Britain, it took place in 1752, when
Wednesday September 2 was followed by Thursday September 14. Russia remained on the Julian
calendar until 1918, losing 13 days in the process, and what is popularly referred to as its “October
Revolution” occurred in November according to the Gregorian calendar.

12.9 Full-Text Search Functions
MATCH (col1,col2,...) AGAINST (expr [search_modifier]) [1197]

search_modifier:
 {
 IN NATURAL LANGUAGE MODE
 | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION

Natural Language Full-Text Searches

1198

 | IN BOOLEAN MODE
 | WITH QUERY EXPANSION
 }

MySQL has support for full-text indexing and searching:

• A full-text index in MySQL is an index of type FULLTEXT.

• Full-text indexes can be used only with InnoDB or MyISAM tables, and can be created only for CHAR,
VARCHAR, or TEXT columns.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created,
or added later using ALTER TABLE or CREATE INDEX.

• For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and
then create the index after that, than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() ... AGAINST [1197] syntax. MATCH() [1197] takes
a comma-separated list that names the columns to be searched. AGAINST takes a string to search
for, and an optional modifier that indicates what type of search to perform. The search string must
be a string value that is constant during query evaluation. This rules out, for example, a table column
because that can differ for each row.

There are three types of full-text searches:

• A natural language search interprets the search string as a phrase in natural human language
(a phrase in free text). There are no special operators. The stopword list applies, controlled
by innodb_ft_enable_stopword, innodb_ft_server_stopword_table, and
innodb_ft_user_stopword_table for InnoDB search indexes, and ft_stopword_file for
MyISAM ones.

• Full-text searches are natural language searches if the IN NATURAL LANGUAGE MODE modifier is
given or if no modifier is given. For more information, see Section 12.9.1, “Natural Language Full-
Text Searches”.

• A boolean search interprets the search string using the rules of a special query language. The string
contains the words to search for. It can also contain operators that specify requirements such that a
word must be present or absent in matching rows, or that it should be weighted higher or lower than
usual. Certain common words (stopwords) are omitted from the search index and do not match if
present in the search string. The IN BOOLEAN MODE modifier specifies a boolean search. For more
information, see Section 12.9.2, “Boolean Full-Text Searches”.

• A query expansion search is a modification of a natural language search. The search string is used
to perform a natural language search. Then words from the most relevant rows returned by the
search are added to the search string and the search is done again. The query returns the rows
from the second search. The IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION or
WITH QUERY EXPANSION modifier specifies a query expansion search. For more information, see
Section 12.9.3, “Full-Text Searches with Query Expansion”.

For information about FULLTEXT query performance, see Section 8.3.4, “Column Indexes”.

For more technical details about processing for InnoDB FULLTEXT indexes, see FULLTEXT Indexes.

Constraints on full-text searching are listed in Section 12.9.5, “Full-Text Restrictions”.

The myisam_ftdump utility dumps the contents of a MyISAM full-text index. This may be helpful
for debugging full-text queries. See Section 4.6.2, “myisam_ftdump — Display Full-Text Index
information”.

12.9.1 Natural Language Full-Text Searches

By default or with the IN NATURAL LANGUAGE MODE modifier, the MATCH() [1197] function performs
a natural language search for a string against a text collection. A collection is a set of one or more

Natural Language Full-Text Searches

1199

columns included in a FULLTEXT index. The search string is given as the argument to AGAINST(). For
each row in the table, MATCH() [1197] returns a relevance value; that is, a similarity measure between
the search string and the text in that row in the columns named in the MATCH() [1197] list.

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we will show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');
Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

By default, the search is performed in case-insensitive fashion. To perform a case-sensitive full-text
search, use a binary collation for the indexed columns. For example, a column that uses the latin1
character set of can be assigned a collation of latin1_bin to make it case sensitive for full-text
searches.

When MATCH() [1197] is used in a WHERE clause, as in the example shown earlier, the rows returned
are automatically sorted with the highest relevance first. Relevance values are nonnegative floating-
point numbers. Zero relevance means no similarity. Relevance is computed based on the number of
words in the row, the number of unique words in that row, the total number of words in the collection,
and the number of documents (rows) that contain a particular word.

To simply count matches, you could use a query like this:

mysql> SELECT COUNT(*) FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

You might find it quicker to rewrite the query as follows:

mysql> SELECT
 COUNT(IF(MATCH (title,body) AGAINST ('database' IN NATURAL LANGUAGE MODE), 1, NULL))
 AS count
 FROM articles;
+-------+
| count |
+-------+
| 2 |
+-------+

Natural Language Full-Text Searches

1200

1 row in set (0.03 sec)

The first query does some extra work (sorting the results by relevance) but also can use an index
lookup based on the WHERE clause. The index lookup might make the first query faster if the search
matches few rows. The second query performs a full table scan, which might be faster than the index
lookup if the search term was present in most rows.

For natural-language full-text searches, the columns named in the MATCH() [1197] function must be
the same columns included in some FULLTEXT index in your table. For the preceding query, note that
the columns named in the MATCH() [1197] function (title and body) are the same as those named
in the definition of the article table's FULLTEXT index. To search the title or body separately, you
would create separate FULLTEXT indexes for each column.

You can also perform a boolean search or a search with query expansion. These search types are
described in Section 12.9.2, “Boolean Full-Text Searches”, and Section 12.9.3, “Full-Text Searches
with Query Expansion”.

A full-text search that uses an index can name columns only from a single table in the MATCH() [1197]
clause because an index cannot span multiple tables. For MyISAM tables, a boolean search can be
done in the absence of an index (albeit more slowly), in which case it is possible to name columns from
multiple tables.

The preceding example is a basic illustration that shows how to use the MATCH() [1197] function
where rows are returned in order of decreasing relevance. The next example shows how to retrieve the
relevance values explicitly. Returned rows are not ordered because the SELECT statement includes
neither WHERE nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body)
 AGAINST ('Tutorial' IN NATURAL LANGUAGE MODE) AS score
 FROM articles;
+----+---------------------+
| id | score |
+----+---------------------+
1	0.22764469683170319
2	0
3	0.22764469683170319
4	0
5	0
6	0
+----+---------------------+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the
rows in order of decreasing relevance. To achieve this result, specify MATCH() [1197] twice: once
in the SELECT list and once in the WHERE clause. This causes no additional overhead, because the
MySQL optimizer notices that the two MATCH() [1197] calls are identical and invokes the full-text
search code only once.

mysql> SELECT id, body, MATCH (title,body) AGAINST
 ('Security implications of running MySQL as root'
 IN NATURAL LANGUAGE MODE) AS score
 FROM articles WHERE MATCH (title,body) AGAINST
 ('Security implications of running MySQL as root'
 IN NATURAL LANGUAGE MODE);
+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
| 6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits,
and underscores) as a word. That sequence may also contain apostrophes (“'”), but not more than one

Natural Language Full-Text Searches

1201

in a row. This means that aaa'bbb is regarded as one word, but aaa''bbb is regarded as two words.
Apostrophes at the beginning or the end of a word are stripped by the FULLTEXT parser; 'aaa'bbb'
would be parsed as aaa'bbb.

The FULLTEXT parser determines where words start and end by looking for certain delimiter
characters; for example, “ ” (space), “,” (comma), and “.” (period). If words are not separated by
delimiters (as in, for example, Chinese), the FULLTEXT parser cannot determine where a word begins
or ends. To be able to add words or other indexed terms in such languages to a FULLTEXT index, you
must preprocess them so that they are separated by some arbitrary delimiter such as “"”.

In MySQL 5.7, it is possible to write a plugin that replaces the built-in full-text parser. For details, see
Section 22.2, “The MySQL Plugin API”. For example parser plugin source code, see the plugin/
fulltext directory of a MySQL source distribution.

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found
by full-text searches is three characters for InnoDB search indexes, or four characters for
MyISAM. You can control the cutoff by setting a configuration option before creating the
index: innodb_ft_min_token_size configuration option for InnoDB search indexes, or
ft_min_word_len for MyISAM.

• Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so
common that it is considered to have zero semantic value. There is a built-in stopword list, but it
can be overridden by a user-defined list. The stopword lists and related configuration options are
different for InnoDB search indexes and MyISAM ones. Stopword processing is controlled by the
configuration options innodb_ft_enable_stopword, innodb_ft_server_stopword_table,
and innodb_ft_user_stopword_table for InnoDB search indexes, and ft_stopword_file
for MyISAM ones.

The default stopword lists are shown in Section 12.9.4, “Full-Text Stopwords”. The default minimum
word length and stopword list can be changed as described in Section 12.9.6, “Fine-Tuning MySQL
Full-Text Search”.

Every correct word in the collection and in the query is weighted according to its significance in the
collection or query. Thus, a word that is present in many documents has a lower weight, because it has
lower semantic value in this particular collection. Conversely, if the word is rare, it receives a higher
weight. The weights of the words are combined to compute the relevance of the row. This technique
works best with large collections.

MyISAM Limitation

For very small tables, word distribution does not adequately reflect their
semantic value, and this model may sometimes produce bizarre results for
search indexes on MyISAM tables. For example, although the word “MySQL” is
present in every row of the articles table shown earlier, a search for the word
in a MyISAM search index produces no results:

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('MySQL' IN NATURAL LANGUAGE MODE);
Empty set (0.00 sec)

The search result is empty because the word “MySQL” is present in at least
50% of the rows, and so is effectively treated as a stopword. This filtering
technique is more suitable for large data sets, where you might not want the
result set to return every second row from a 1GB table, than for small data sets
where it might cause poor results for popular terms.

The 50% threshold can surprise you when you first try full-text searching to see
how it works, and makes InnoDB tables more suited to experimentation with

Boolean Full-Text Searches

1202

full-text searches. If you create a MyISAM table and insert only one or two rows
of text into it, every word in the text occurs in at least 50% of the rows. As a
result, no search returns any results until the table contains more rows. Users
who need to bypass the 50% limitation can build search indexes on InnoDB
tables, or the boolean search mode explained in Section 12.9.2, “Boolean Full-
Text Searches”.

12.9.2 Boolean Full-Text Searches

MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier. With this
modifier, certain characters have special meaning at the beginning or end of words in the search
string. In the following query, the + and - operators indicate that a word must be present or absent,
respectively, for a match to occur. Thus, the query retrieves all the rows that contain the word “MySQL”
but that do not contain the word “YourSQL”:

mysql> SELECT * FROM articles WHERE MATCH (title,body)
 AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);
+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
1	MySQL Tutorial	DBMS stands for DataBase ...
2	How To Use MySQL Well	After you went through a ...
3	Optimizing MySQL	In this tutorial we will show ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
6	MySQL Security	When configured properly, MySQL ...
+----+-----------------------+-------------------------------------+

Note

In implementing this feature, MySQL uses what is sometimes referred to as
implied Boolean logic, in which

• + stands for AND

• - stands for NOT

• [no operator] implies OR

Boolean full-text searches have these characteristics:

• They do not use the 50% threshold that applies to MyISAM search indexes.

• They do not automatically sort rows in order of decreasing relevance.

• Boolean queries against a MyISAM search index can work even without a FULLTEXT index, although
a search executed in this fashion would be quite slow. InnoDB tables require a FULLTEXT index on
all columns of the MATCH() [1197] expression to perform boolean queries.

• The minimum and maximum word length full-text parameters apply: innodb_ft_min_token_size
and innodb_ft_max_token_size for InnoDB search indexes, and ft_min_word_len and
ft_max_word_len for MyISAM ones.

• The stopword list applies, controlled by innodb_ft_enable_stopword,
innodb_ft_server_stopword_table, and innodb_ft_user_stopword_table for InnoDB
search indexes, and ft_stopword_file for MyISAM ones.

• InnoDB full-text search does not support the use of multiple operators on a single search word, as
in this example: '++apple'. Use of multiple operators on a single search word returns a syntax
error to standard out. MyISAM full-text search will successfully process the same search ignoring all
operators except for the operator immediately adjacent to the search word.

The boolean full-text search capability supports the following operators:

Boolean Full-Text Searches

1203

• +

A leading plus sign indicates that this word must be present in each row that is returned.

• -

A leading minus sign indicates that this word must not be present in any of the rows that are
returned.

Note: The - operator acts only to exclude rows that are otherwise matched by other search terms.
Thus, a boolean-mode search that contains only terms preceded by - returns an empty result. It
does not return “all rows except those containing any of the excluded terms.”

• (no operator)

By default (when neither + nor - is specified), the word is optional, but the rows that contain it
are rated higher. This mimics the behavior of MATCH() ... AGAINST() [1197] without the IN
BOOLEAN MODE modifier.

• @distance

This operator works on InnoDB tables only. It tests whether two or more words all start within
a specified distance from each other, measured in words. Specify the search words within a
double-quoted string immediately before the @distance operator, for example, MATCH(col1)
AGAINST('"word1 word2 word3" @8' IN BOOLEAN MODE)

• > <

These two operators are used to change a word's contribution to the relevance value that is assigned
to a row. The > operator increases the contribution and the < operator decreases it. See the example
following this list.

• ()

Parentheses group words into subexpressions. Parenthesized groups can be nested.

• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to
be negative. This is useful for marking “noise” words. A row containing such a word is rated lower
than others, but is not excluded altogether, as it would be with the - operator.

• *

The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it is
appended to the word to be affected. Words match if they begin with the word preceding the *
operator.

If a word is specified with the truncation operator, it is not stripped from a boolean query,
even if it is too short or a stopword. Whether a word is too short is determined from the
innodb_ft_min_token_size setting for InnoDB tables, or ft_min_word_len for MyISAM
tables. The wildcarded word is considered as a prefix that must be present at the start of one or more
words. If the minimum word length is 4, a search for '+word +the*' could return fewer rows than a
search for '+word +the', because the second query ignores the too-short search term the.

• "

A phrase that is enclosed within double quote (“"”) characters matches only rows that contain the
phrase literally, as it was typed. The full-text engine splits the phrase into words and performs a
search in the FULLTEXT index for the words. Nonword characters need not be matched exactly:
Phrase searching requires only that matches contain exactly the same words as the phrase and in
the same order. For example, "test phrase" matches "test, phrase".

Full-Text Searches with Query Expansion

1204

If the phrase contains no words that are in the index, the result is empty. The words might not be in
the index because of a combination of factors: if they do not exist in the text, are stopwords, or are
shorter than the minimum length of indexed words.

The following examples demonstrate some search strings that use boolean full-text operators:

• 'apple banana'

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.

• '+apple -macintosh'

Find rows that contain the word “apple” but not “macintosh”.

• '+apple ~macintosh'

Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it
lower than if row does not. This is “softer” than a search for '+apple -macintosh', for which the
presence of “macintosh” causes the row not to be returned at all.

• '+apple +(>turnover <strudel)'

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but
rank “apple turnover” higher than “apple strudel”.

• 'apple*'

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.

• '"some words"'

Find rows that contain the exact phrase “some words” (for example, rows that contain “some words
of wisdom” but not “some noise words”). Note that the “"” characters that enclose the phrase are
operator characters that delimit the phrase. They are not the quotation marks that enclose the search
string itself.

12.9.3 Full-Text Searches with Query Expansion

Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This
is generally useful when a search phrase is too short, which often means that the user is relying on
implied knowledge that the full-text search engine lacks. For example, a user searching for “database”
may really mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match
“databases” and should be returned, too. This is implied knowledge.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH
QUERY EXPANSION or IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION following the
search phrase. It works by performing the search twice, where the search phrase for the second search
is the original search phrase concatenated with the few most highly relevant documents from the first
search. Thus, if one of these documents contains the word “databases” and the word “MySQL”, the
second search finds the documents that contain the word “MySQL” even if they do not contain the word
“database”. The following example shows this difference:

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)

Full-Text Stopwords

1205

 AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' WITH QUERY EXPANSION);
+----+-----------------------+--+
| id | title | body |
+----+-----------------------+--+
5	MySQL vs. YourSQL	In the following database comparison ...
1	MySQL Tutorial	DBMS stands for DataBase ...
3	Optimizing MySQL	In this tutorial we will show ...
6	MySQL Security	When configured properly, MySQL ...
2	How To Use MySQL Well	After you went through a ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
+----+-----------------------+--+
6 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a user is not
sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses” finds only “Maigret and
the Reluctant Witnesses” without query expansion. A search with query expansion finds all books with
the word “Maigret” on the second pass.

Note

Because blind query expansion tends to increase noise significantly by returning
nonrelevant documents, use it only when a search phrase is short.

12.9.4 Full-Text Stopwords

The stopword list is loaded and searched for full-text queries using the server character set and
collation (the values of the character_set_server and collation_server system variables).
False hits or misses might occur for stopword lookups if the stopword file or columns used for full-text
indexing or searches have a character set or collation different from character_set_server or
collation_server.

Case sensitivity of stopword lookups depends on the server collation. For example, lookups are case
insensitive if the collation is latin1_swedish_ci, whereas lookups are case sensitive if the collation
is latin1_general_cs or latin1_bin.

Stopwords for InnoDB Search Indexes

InnoDB has a relatively short list of default stopwords, because documents from technical, literary, and
so on sources often use short words as keywords or in significant phrases. For example, you might
search for “to be or not to be” and expect to get a sensible result, rather than having all those words
ignored.

To see the list, query the table information_schema.innodb_ft_default_stopword. To
define your own stopword list used for all InnoDB tables, define a table with the same structure
as innodb_ft_default_stopword, fill it with the desired stopwords, and set the value of the
innodb_ft_server_stopword_table option to a value of the form db_name/table_name before
creating the search index. To create special stopword lists on a table-by-table basis, define other tables
to hold these lists and specify the appropriate one in the innodb_ft_user_stopword_table option
before creating the search index.

Stopwords for MyISAM Search Indexes

In MySQL 5.7, the stopword file is loaded and searched using latin1 if character_set_server is
ucs2, utf16, utf16le, or utf32.

Full-Text Stopwords

1206

The following table shows the default list of stopwords for MyISAM search indexes. In a MySQL source
distribution, you can find this list in the storage/myisam/ft_static.c file.

a's able about above according

accordingly across actually after afterwards

again against ain't all allow

allows almost alone along already

also although always am among

amongst an and another any

anybody anyhow anyone anything anyway

anyways anywhere apart appear appreciate

appropriate are aren't around as

aside ask asking associated at

available away awfully be became

because become becomes becoming been

before beforehand behind being believe

below beside besides best better

between beyond both brief but

by c'mon c's came can

can't cannot cant cause causes

certain certainly changes clearly co

com come comes concerning consequently

consider considering contain containing contains

corresponding could couldn't course currently

definitely described despite did didn't

different do does doesn't doing

don't done down downwards during

each edu eg eight either

else elsewhere enough entirely especially

et etc even ever every

everybody everyone everything everywhere ex

exactly example except far few

fifth first five followed following

follows for former formerly forth

four from further furthermore get

gets getting given gives go

goes going gone got gotten

greetings had hadn't happens hardly

has hasn't have haven't having

he he's hello help hence

her here here's hereafter hereby

herein hereupon hers herself hi

him himself his hither hopefully

Full-Text Stopwords

1207

how howbeit however i'd i'll

i'm i've ie if ignored

immediate in inasmuch inc indeed

indicate indicated indicates inner insofar

instead into inward is isn't

it it'd it'll it's its

itself just keep keeps kept

know known knows last lately

later latter latterly least less

lest let let's like liked

likely little look looking looks

ltd mainly many may maybe

me mean meanwhile merely might

more moreover most mostly much

must my myself name namely

nd near nearly necessary need

needs neither never nevertheless new

next nine no nobody non

none noone nor normally not

nothing novel now nowhere obviously

of off often oh ok

okay old on once one

ones only onto or other

others otherwise ought our ours

ourselves out outside over overall

own particular particularly per perhaps

placed please plus possible presumably

probably provides que quite qv

rather rd re really reasonably

regarding regardless regards relatively respectively

right said same saw say

saying says second secondly see

seeing seem seemed seeming seems

seen self selves sensible sent

serious seriously seven several shall

she should shouldn't since six

so some somebody somehow someone

something sometime sometimes somewhat somewhere

soon sorry specified specify specifying

still sub such sup sure

t's take taken tell tends

th than thank thanks thanx

Full-Text Restrictions

1208

that that's thats the their

theirs them themselves then thence

there there's thereafter thereby therefore

therein theres thereupon these they

they'd they'll they're they've think

third this thorough thoroughly those

though three through throughout thru

thus to together too took

toward towards tried tries truly

try trying twice two un

under unfortunately unless unlikely until

unto up upon us use

used useful uses using usually

value various very via viz

vs want wants was wasn't

way we we'd we'll we're

we've welcome well went were

weren't what what's whatever when

whence whenever where where's whereafter

whereas whereby wherein whereupon wherever

whether which while whither who

who's whoever whole whom whose

why will willing wish with

within without won't wonder would

wouldn't yes yet you you'd

you'll you're you've your yours

yourself yourselves zero

12.9.5 Full-Text Restrictions

• Full-text searches are supported for InnoDB and MyISAM tables only.

• Full-text searches are not supported for partitioned tables. See Section 17.6, “Restrictions and
Limitations on Partitioning”.

• Full-text searches can be used with most multi-byte character sets. The exception is that for
Unicode, the utf8 character set can be used, but not the ucs2 character set. Although FULLTEXT
indexes on ucs2 columns cannot be used, you can perform IN BOOLEAN MODE searches on a
ucs2 column that has no such index.

The remarks for utf8 also apply to utf8mb4, and the remarks for ucs2 also apply to utf16,
utf16le, and utf32.

• Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore, the
FULLTEXT parser cannot determine where words begin and end in these and other such languages.
The implications of this and some workarounds for the problem are described in Section 12.9, “Full-
Text Search Functions”.

Fine-Tuning MySQL Full-Text Search

1209

• Although the use of multiple character sets within a single table is supported, all columns in a
FULLTEXT index must use the same character set and collation.

• The MATCH() [1197] column list must match exactly the column list in some FULLTEXT index
definition for the table, unless this MATCH() [1197] is IN BOOLEAN MODE on a MyISAM table. For
MyISAM tables, boolean-mode searches can be done on nonindexed columns, although they are
likely to be slow.

• The argument to AGAINST() must be a string value that is constant during query evaluation. This
rules out, for example, a table column because that can differ for each row.

• Index hints are more limited for FULLTEXT searches than for non-FULLTEXT searches. See
Section 13.2.9.3, “Index Hint Syntax”.

12.9.6 Fine-Tuning MySQL Full-Text Search

MySQL's full-text search capability has few user-tunable parameters. You can exert more control over
full-text searching behavior if you have a MySQL source distribution because some changes require
source code modifications. See Section 2.8, “Installing MySQL from Source”.

Note that full-text search is carefully tuned for effectiveness. Modifying the default behavior in most
cases can actually decrease effectiveness. Do not alter the MySQL sources unless you know what you
are doing.

Most full-text variables described in this section must be set at server startup time. A server restart is
required to change them; they cannot be modified while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for
doing so are given later in this section.

• The minimum and maximum lengths of words to be indexed are defined by the
innodb_ft_min_token_size and innodb_ft_max_token_size for InnoDB search indexes,
and ft_min_word_len and ft_max_word_len for MyISAM ones. After changing any of these
options, rebuild your FULLTEXT indexes for the change to take effect. For example, to make two-
character words searchable, you could put the following lines in an option file:

[mysqld]
innodb_ft_min_token_size=2
ft_min_word_len=2

Then restart the server and rebuild your FULLTEXT indexes. For MyISAM tables, note particularly the
remarks regarding myisamchk in the instructions following this list.

• To override the default stopword list, set the ft_stopword_file system variable. (See
Section 5.1.4, “Server System Variables”.) The variable value should be the path name of the file
containing the stopword list, or the empty string to disable stopword filtering. The server looks for the
file in the data directory unless an absolute path name is given to specify a different directory. After
changing the value of this variable or the contents of the stopword file, restart the server and rebuild
your FULLTEXT indexes.

The stopword list is free-form, separating stopwords with any nonalphanumeric character such as
newline, space, or comma. Exceptions are the underscore character (“_”) and a single apostrophe
(“'”) which are treated as part of a word. The character set of the stopword list is the server's default
character set; see Section 10.1.3.1, “Server Character Set and Collation”.

• The 50% threshold for natural language searches is determined by the particular weighting scheme
chosen. To disable it, look for the following line in storage/myisam/ftdefs.h:

#define GWS_IN_USE GWS_PROB

Change that line to this:

Fine-Tuning MySQL Full-Text Search

1210

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case.

Note

By making this change, you severely decrease MySQL's ability to provide
adequate relevance values for the MATCH() [1197] function. If you really
need to search for such common words, it would be better to search using IN
BOOLEAN MODE instead, which does not observe the 50% threshold.

• To change the operators used for boolean full-text searches on MyISAM tables, set the
ft_boolean_syntax system variable. (InnoDB does not have an equivalent setting.) This variable
can be changed while the server is running, but you must have the SUPER privilege to do so. No
rebuilding of indexes is necessary in this case. See Section 5.1.4, “Server System Variables”, which
describes the rules governing how to set this variable.

• You can change the set of characters that are considered word characters in several ways, as
described in the following list. After making the modification, rebuild the indexes for each table that
contains any FULLTEXT indexes. Suppose that you want to treat the hyphen character ('-') as a word
character. Use one of these methods:

• Modify the MySQL source: In storage/myisam/ftdefs.h, see the true_word_char() and
misc_word_char() macros. Add '-' to one of those macros and recompile MySQL.

• Modify a character set file: This requires no recompilation. The true_word_char() macro uses
a “character type” table to distinguish letters and numbers from other characters. . You can edit the
contents of the <ctype><map> array in one of the character set XML files to specify that '-' is
a “letter.” Then use the given character set for your FULLTEXT indexes. For information about the
<ctype><map> array format, see Section 10.3.1, “Character Definition Arrays”.

• Add a new collation for the character set used by the indexed columns, and alter the columns to
use that collation. For general information about adding collations, see Section 10.4, “Adding a
Collation to a Character Set”. For an example specific to full-text indexing, see Section 12.9.7,
“Adding a Collation for Full-Text Indexing”.

If you modify full-text variables that affect indexing (innodb_ft_min_token_size,
innodb_ft_max_token_size, innodb_ft_server_stopword_table,
innodb_ft_user_stopword_table, innodb_ft_enable_stopword, ft_min_word_len,
ft_max_word_len, or ft_stopword_file), or if you change the stopword file itself, you must
rebuild your FULLTEXT indexes after making the changes and restarting the server.

To rebuild the FULLTEXT indexes for an InnoDB table, use ALTER TABLE with the DROP INDEX and
ADD INDEX options to drop and re-create each index.

To rebuild the FULLTEXT indexes for a MyISAM table, it is sufficient to do a QUICK repair operation:

mysql> REPAIR TABLE tbl_name QUICK;

Alternatively, use ALTER TABLE as just described. In some cases, this may be faster than a repair
operation.

Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for
the table may yield incorrect results, and modifications to the table will cause the server to see the table
as corrupt and in need of repair.

Note that if you use myisamchk to perform an operation that modifies MyISAM table indexes (such
as repair or analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for
minimum word length, maximum word length, and stopword file unless you specify otherwise. This can
result in queries failing.

Adding a Collation for Full-Text Indexing

1211

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or stopword file values used by the server, specify the same ft_min_word_len, ft_max_word_len,
and ft_stopword_file values for myisamchk that you use for mysqld. For example, if you have
set the minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, place each
one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk for MyISAM table index modification is to use the REPAIR TABLE,
ANALYZE TABLE, OPTIMIZE TABLE, or ALTER TABLE statements. These statements are performed
by the server, which knows the proper full-text parameter values to use.

12.9.7 Adding a Collation for Full-Text Indexing

This section describes how to add a new collation for full-text searches. The sample collation is like
latin1_swedish_ci but treats the '-' character as a letter rather than as a punctuation character
so that it can be indexed as a word character. General information about adding collations is given
in Section 10.4, “Adding a Collation to a Character Set”; it is assumed that you have read it and are
familiar with the files involved.

To add a collation for full-text indexing, use this procedure:

1. Add a collation to the Index.xml file. The collation ID must be unused, so choose a value different
from 1000 if that ID is already taken on your system.

<charset name="latin1">
...
<collation name="latin1_fulltext_ci" id="1000"/>
</charset>

2. Declare the sort order for the collation in the latin1.xml file. In this case, the order can be copied
from latin1_swedish_ci:

<collation name="latin1_fulltext_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D D7 D8 55 55 55 59 59 DE DF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D F7 D8 55 55 55 59 59 DE FF
</map>
</collation>

Cast Functions and Operators

1212

3. Modify the ctype array in latin1.xml. Change the value corresponding to 0x2D (which is the
code for the '-' character) from 10 (punctuation) to 01 (small letter). In the following array, this is
the element in the fourth row down, third value from the end.

<ctype>
<map>
00
20 20 20 20 20 20 20 20 20 28 28 28 28 28 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
48 10 10 10 10 10 10 10 10 10 10 10 10 01 10 10
84 84 84 84 84 84 84 84 84 84 10 10 10 10 10 10
10 81 81 81 81 81 81 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 10 10 10 10 10
10 82 82 82 82 82 82 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 10 10 10 10 20
10 00 10 02 10 10 10 10 10 10 01 10 01 00 01 00
00 10 10 10 10 10 10 10 10 10 02 10 02 00 02 01
48 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 02
02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 10 02 02 02 02 02 02 02 02
</map>
</ctype>

4. Restart the server.

5. To employ the new collation, include it in the definition of columns that are to use it:

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.13 sec)

mysql> CREATE TABLE t1 (
 a TEXT CHARACTER SET latin1 COLLATE latin1_fulltext_ci,
 FULLTEXT INDEX(a)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.47 sec)

6. Test the collation to verify that hyphen is considered as a word character:

mysql> INSERT INTO t1 VALUEs ('----'),('....'),('abcd');
Query OK, 3 rows affected (0.22 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1 WHERE MATCH a AGAINST ('----' IN BOOLEAN MODE);
+------+
| a |
+------+
| ---- |
+------+
1 row in set (0.00 sec)

12.10 Cast Functions and Operators

Table 12.14 Cast Functions

Name Description

BINARY Cast a string to a binary string

CAST() Cast a value as a certain type

CONVERT() Cast a value as a certain type

• BINARY

Cast Functions and Operators

1213

The BINARY operator casts the string following it to a binary string. This is an easy way to force a
column comparison to be done byte by byte rather than character by character. This causes the
comparison to be case sensitive even if the column is not defined as BINARY or BLOB. BINARY also
causes trailing spaces to be significant.

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT BINARY 'a' = 'A';
 -> 0
mysql> SELECT 'a' = 'a ';
 -> 1
mysql> SELECT BINARY 'a' = 'a ';
 -> 0

In a comparison, BINARY affects the entire operation; it can be given before either operand with the
same result.

BINARY str is shorthand for CAST(str AS BINARY).

Note that in some contexts, if you cast an indexed column to BINARY, MySQL is not able to use the
index efficiently.

• CAST(expr AS type)

The CAST() function takes an expression of any type and produces a result value of a specified
type, similar to CONVERT(). See the description of CONVERT() for more information.

• CONVERT(expr,type), CONVERT(expr USING transcoding_name)

The CONVERT() and CAST() functions take an expression of any type and produce a result value of
a specified type.

The type for the result can be one of the following values:

• BINARY[(N)]

• CHAR[(N)]

• DATE

• DATETIME

• DECIMAL[(M[,D])]

• SIGNED [INTEGER]

• TIME

• UNSIGNED [INTEGER]

BINARY produces a string with the BINARY data type. See Section 11.4.2, “The BINARY and
VARBINARY Types” for a description of how this affects comparisons. If the optional length N is
given, BINARY(N) causes the cast to use no more than N bytes of the argument. Values shorter
than N bytes are padded with 0x00 bytes to a length of N.

CHAR(N) causes the cast to use no more than N characters of the argument.

CAST() and CONVERT(... USING ...) are standard SQL syntax. The non-USING form of
CONVERT() is ODBC syntax.

Cast Functions and Operators

1214

CONVERT() with USING is used to convert data between different character sets. In MySQL,
transcoding names are the same as the corresponding character set names. For example, this
statement converts the string 'abc' in the default character set to the corresponding string in the
utf8 character set:

SELECT CONVERT('abc' USING utf8);

Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because
binary strings have no character set, and thus no concept of lettercase. To perform a case-insensitive
comparison, use the CONVERT() function to convert the value to a nonbinary string. Comparisons of
the result use the string collation. For example, if the character set of the result has a case-insensitive
collation, a LIKE operation is not case sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) FROM tbl_name;

To use a different character set, substitute its name for latin1 in the preceding statement. To specify
a particular collation for the converted string, use a COLLATE clause following the CONVERT() call, as
described in Section 10.1.9.2, “CONVERT() and CAST()”. For example, to use latin1_german1_ci:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) COLLATE latin1_german1_ci
 FROM tbl_name;

CONVERT() can be used more generally for comparing strings that are represented in different
character sets.

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY, BLOB).
To perform lettercase conversion, convert the string to a nonbinary string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

The cast functions are useful when you want to create a column with a specific type in a CREATE
TABLE ... SELECT statement:

CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE);

The functions also can be useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM
columns occurs using the internal numeric values. Casting the values to CHAR results in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST(str AS BINARY) is the same thing as BINARY str. CAST(expr AS CHAR) treats the
expression as a string with the default character set.

CAST() also changes the result if you use it as part of a more complex expression such as
CONCAT('Date: ',CAST(NOW() AS DATE)).

You should not use CAST() to extract data in different formats but instead use string functions like
LEFT() or EXTRACT(). See Section 12.7, “Date and Time Functions”.

To cast a string to a numeric value in numeric context, you normally do not have to do anything other
than to use the string value as though it were a number:

mysql> SELECT 1+'1';
 -> 2

XML Functions

1215

If you use a string in an arithmetic operation, it is converted to a floating-point number during
expression evaluation.

If you use a number in string context, the number automatically is converted to a string:

mysql> SELECT CONCAT('hello you ',2);
 -> 'hello you 2'

For information about implicit conversion of numbers to strings, see Section 12.2, “Type Conversion in
Expression Evaluation”.

MySQL supports arithmetic with both signed and unsigned 64-bit values. If you are using numeric
operators (such as + or -) and one of the operands is an unsigned integer, the result is unsigned by
default (see Section 12.6.1, “Arithmetic Operators”). You can override this by using the SIGNED or
UNSIGNED cast operator to cast a value to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT CAST(1-2 AS UNSIGNED)
 -> 18446744073709551615
mysql> SELECT CAST(CAST(1-2 AS UNSIGNED) AS SIGNED);
 -> -1

If either operand is a floating-point value, the result is a floating-point value and is not affected by the
preceding rule. (In this context, DECIMAL column values are regarded as floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
 -> -1.0

The SQL mode affects the result of conversion operations. Examples:

• If you convert a “zero” date string to a date, CONVERT() and CAST() return NULL and produce a
warning if strict SQL mode is enabled (as of MySQL 5.7.4) or the NO_ZERO_DATE mode is enabled
(before MySQL 5.7.4).

• For integer subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the subtraction
result is signed even if any operand is unsigned.

For more information, see Section 5.1.7, “Server SQL Modes”.

12.11 XML Functions
Table 12.15 XML Functions

Name Description

ExtractValue() Extracts a value from an XML string using XPath notation

UpdateXML() Return replaced XML fragment

This section discusses XML and related functionality in MySQL.

Note

It is possible to obtain XML-formatted output from MySQL in the mysql and
mysqldump clients by invoking them with the --xml option. See Section 4.5.1,
“mysql — The MySQL Command-Line Tool”, and Section 4.5.4, “mysqldump
— A Database Backup Program”.

Two functions providing basic XPath 1.0 (XML Path Language, version 1.0) capabilities are available.
Some basic information about XPath syntax and usage is provided later in this section; however, an
in-depth discussion of these topics is beyond the scope of this Manual, and you should refer to the
XML Path Language (XPath) 1.0 standard for definitive information. A useful resource for those new
to XPath or who desire a refresher in the basics is the Zvon.org XPath Tutorial, which is available in
several languages.

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/

XML Functions

1216

Note

These functions remain under development. We continue to improve these and
other aspects of XML and XPath functionality in MySQL 5.7 and onwards. You
may discuss these, ask questions about them, and obtain help from other users
with them in the MySQL XML User Forum.

XPath expressions used with these functions support user variables and local stored program
variables. User variables are weakly checked; variables local to stored programs are strongly checked
(see also Bug #26518):

• User variables (weak checking). Variables using the syntax $@variable_name (that is,
user variables) are not checked. No warnings or errors are issued by the server if a variable
has the wrong type or has previously not been assigned a value. This also means the user is
fully responsible for any typographical errors, since no warnings will be given if (for example)
$@myvariable is used where $@myvariable was intended.

Example:

mysql> SET @xml = '<a>XY';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @i =1, @j = 2;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @i, ExtractValue(@xml, '//b[$@i]');
+------+--------------------------------+
| @i | ExtractValue(@xml, '//b[$@i]') |
+------+--------------------------------+
| 1 | X |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @j, ExtractValue(@xml, '//b[$@j]');
+------+--------------------------------+
| @j | ExtractValue(@xml, '//b[$@j]') |
+------+--------------------------------+
| 2 | Y |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @k, ExtractValue(@xml, '//b[$@k]');
+------+--------------------------------+
| @k | ExtractValue(@xml, '//b[$@k]') |
+------+--------------------------------+
| NULL | |
+------+--------------------------------+
1 row in set (0.00 sec)

• Variables in stored programs (strong checking). Variables using the syntax $variable_name
can be declared and used with these functions when they are called inside stored programs. Such
variables are local to the stored program in which they are defined, and are strongly checked for type
and value.

Example:

mysql> DELIMITER |

mysql> CREATE PROCEDURE myproc ()
 -> BEGIN
 -> DECLARE i INT DEFAULT 1;
 -> DECLARE xml VARCHAR(25) DEFAULT '<a>X<a>Y<a>Z';
 ->
 -> WHILE i < 4 DO
 -> SELECT xml, i, ExtractValue(xml, '//a[$i]');
 -> SET i = i+1;

http://forums.mysql.com/list.php?44

XML Functions

1217

 -> END WHILE;
 -> END |
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

mysql> CALL myproc();
+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 1 | X |
+--------------------------+---+------------------------------+
1 row in set (0.00 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 2 | Y |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 3 | Z |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

Parameters. Variables used in XPath expressions inside stored routines that are passed in as
parameters are also subject to strong checking.

Expressions containing user variables or variables local to stored programs must otherwise (except
for notation) conform to the rules for XPath expressions containing variables as given in the XPath 1.0
specification.

Note

Currently, a user variable used to store an XPath expression is treated as an
empty string. Because of this, it is not possible to store an XPath expression as
a user variable. (Bug #32911)

• ExtractValue(xml_frag, xpath_expr)

ExtractValue() takes two string arguments, a fragment of XML markup xml_frag and an XPath
expression xpath_expr (also known as a locator); it returns the text (CDATA) of the first text node
which is a child of the elements or elements matched by the XPath expression.

Using this function is the equivalent of performing a match using the xpath_expr after appending
/text(). In other words, ExtractValue('<a>Sakila', '/a/b') and
ExtractValue('<a>Sakila', '/a/b/text()') produce the same result.

If multiple matches are found, the content of the first child text node of each matching element is
returned (in the order matched) as a single, space-delimited string.

If no matching text node is found for the expression (including the implicit /text())—for whatever
reason, as long as xpath_expr is valid, and xml_frag consists of elements which are properly
nested and closed—an empty string is returned. No distinction is made between a match on an
empty element and no match at all. This is by design.

If you need to determine whether no matching element was found in xml_frag or such an element
was found but contained no child text nodes, you should test the result of an expression that uses
the XPath count() function. For example, both of these statements return an empty string, as
shown here:

mysql> SELECT ExtractValue('<a>', '/a/b');

XML Functions

1218

+-------------------------------------+
| ExtractValue('<a>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><c/>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

However, you can determine whether there was actually a matching element using the following:

mysql> SELECT ExtractValue('<a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a>', 'count(/a/b)') |
+-------------------------------------+
| 1 |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><c/>', 'count(/a/b)') |
+-------------------------------------+
| 0 |
+-------------------------------------+
1 row in set (0.01 sec)

Important

ExtractValue() returns only CDATA, and does not return any tags that
might be contained within a matching tag, nor any of their content (see the
result returned as val1 in the following example).

mysql> SELECT
 -> ExtractValue('<a>cccddd', '/a') AS val1,
 -> ExtractValue('<a>cccddd', '/a/b') AS val2,
 -> ExtractValue('<a>cccddd', '//b') AS val3,
 -> ExtractValue('<a>cccddd', '/b') AS val4,
 -> ExtractValue('<a>cccdddeee', '//b') AS val5;

+------+------+------+------+---------+
| val1 | val2 | val3 | val4 | val5 |
+------+------+------+------+---------+
| ccc | ddd | ddd | | ddd eee |
+------+------+------+------+---------+

This function uses the current SQL collation for making comparisons with contains(), performing
the same collation aggregation as other string functions (such as CONCAT()), in taking into account
the collation coercibility of their arguments; see Section 10.1.7.5, “Collation of Expressions”, for an
explanation of the rules governing this behavior.

(Previously, binary—that is, case-sensitive—comparison was always used.)

NULL is returned if xml_frag contains elements which are not properly nested or closed, and a
warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+

XML Functions

1219

| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

• UpdateXML(xml_target, xpath_expr, new_xml)

This function replaces a single portion of a given fragment of XML markup xml_target with a new
XML fragment new_xml, and then returns the changed XML. The portion of xml_target that is
replaced matches an XPath expression xpath_expr supplied by the user.

If no expression matching xpath_expr is found, or if multiple matches are found, the function
returns the original xml_target XML fragment. All three arguments should be strings.

mysql> SELECT
 -> UpdateXML('<a>ccc<d></d>', '/a', '<e>fff</e>') AS val1,
 -> UpdateXML('<a>ccc<d></d>', '/b', '<e>fff</e>') AS val2,
 -> UpdateXML('<a>ccc<d></d>', '//b', '<e>fff</e>') AS val3,
 -> UpdateXML('<a>ccc<d></d>', '/a/d', '<e>fff</e>') AS val4,
 -> UpdateXML('<a><d></d>ccc<d></d>', '/a/d', '<e>fff</e>') AS val5
 -> \G

*************************** 1. row ***************************
val1: <e>fff</e>
val2: <a>ccc<d></d>
val3: <a><e>fff</e><d></d>
val4: <a>ccc<e>fff</e>
val5: <a><d></d>ccc<d></d>

Note

A discussion in depth of XPath syntax and usage are beyond the scope of
this Manual. Please see the XML Path Language (XPath) 1.0 specification
for definitive information. A useful resource for those new to XPath or who
are wishing a refresher in the basics is the Zvon.org XPath Tutorial, which is
available in several languages.

Descriptions and examples of some basic XPath expressions follow:

• /tag

Matches <tag/> if and only if <tag/> is the root element.

Example: /a has a match in <a> because it matches the outermost (root) tag. It does
not match the inner a element in <a/> because in this instance it is the child of another
element.

• /tag1/tag2

Matches <tag2/> if and only if it is a child of <tag1/>, and <tag1/> is the root element.

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/

XML Functions

1220

Example: /a/b matches the b element in the XML fragment <a> because it is a child of
the root element a. It does not have a match in <a/> because in this case, b is the root
element (and hence the child of no other element). Nor does the XPath expression have a match in
<a><c></c>; here, b is a descendant of a, but not actually a child of a.

This construct is extendable to three or more elements. For example, the XPath expression /a/b/c
matches the c element in the fragment <a><c/>.

• //tag

Matches any instance of <tag>.

Example: //a matches the a element in any of the following: <a><c/>; <c><a><b/
>; <c><a/></c>.

// can be combined with /. For example, //a/b matches the b element in either of the fragments
<a> or <a><c/>

Note

//tag is the equivalent of /descendant-or-self::*/tag. A common
error is to confuse this with /descendant-or-self::tag, although the
latter expression can actually lead to very different results, as can be seen
here:

mysql> SET @xml = '<a><c>w</c>x<d>y</d>z';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @xml;
+---+
| @xml |
+---+
| <a><c>w</c>x<d>y</d>z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[1]');
+------------------------------+
| ExtractValue(@xml, '//b[1]') |
+------------------------------+
| x z |
+------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[2]');
+------------------------------+
| ExtractValue(@xml, '//b[2]') |
+------------------------------+
| |
+------------------------------+
1 row in set (0.01 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[1]') |
+---+
| x z |
+---+
1 row in set (0.06 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[2]') |
+---+
| |
+---+

XML Functions

1221

1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[1]') |
+---+
| z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[2]') |
+---+
| x |
+---+
1 row in set (0.00 sec)

• The * operator acts as a “wildcard” that matches any element. For example, the expression /*/b
matches the b element in either of the XML fragments <a> or <c></c>. However,
the expression does not produce a match in the fragment <a/> because b must be a child
of some other element. The wildcard may be used in any position: The expression /*/b/* will
match any child of a b element that is itself not the root element.

• You can match any of several locators using the | (UNION) operator. For example, the expression
//b|//c matches all b and c elements in the XML target.

• It is also possible to match an element based on the value of one or more of its attributes. This done
using the syntax tag[@attribute="value"]. For example, the expression //b[@id="idB"]
matches the second b element in the fragment <a><b id="idA"/><c/><b id="idB"/></
a>. To match against any element having attribute="value", use the XPath expression //
*[attribute="value"].

To filter multiple attribute values, simply use multiple attribute-comparison clauses in succession.
For example, the expression //b[@c="x"][@d="y"] matches the element <b c="x" d="y"/>
occurring anywhere in a given XML fragment.

To find elements for which the same attribute matches any of several values, you can use multiple
locators joined by the | operator. For example, to match all b elements whose c attributes have
either of the values 23 or 17, use the expression //b[@c="23"]|//b[@c="17"]. You can also
use the logical or operator for this purpose: //b[@c="23" or @c="17"].

Note

The difference between or and | is that or joins conditions, while | joins
result sets.

XPath Limitations. The XPath syntax supported by these functions is currently subject to the
following limitations:

• Nodeset-to-nodeset comparison (such as '/a/b[@c=@d]') is not supported.

• All of the standard XPath comparison operators are supported. (Bug #22823)

• Relative locator expressions are resolved in the context of the root node. For example, consider the
following query and result:

mysql> SELECT ExtractValue(
 -> '<a><b c="1">X<b c="2">Y',
 -> 'a/b'
 ->) AS result;
+--------+
| result |

XML Functions

1222

+--------+
| X Y |
+--------+
1 row in set (0.03 sec)

In this case, the locator a/b resolves to /a/b.

Relative locators are also supported within predicates. In the following example, d[../@c="1"] is
resolved as /a/b[@c="1"]/d:

mysql> SELECT ExtractValue(
 -> '<a>
 -> <b c="1"><d>X</d>
 -> <b c="2"><d>X</d>
 -> ',
 -> 'a/b/d[../@c="1"]')
 -> AS result;
+--------+
| result |
+--------+
| X |
+--------+
1 row in set (0.00 sec)

• Locators prefixed with expressions that evaluate as scalar values—including variable references,
literals, numbers, and scalar function calls—are not permitted, and their use results in an error.

• The :: operator is not supported in combination with node types such as the following:

• axis::comment()

• axis::text()

• axis::processing-instructions()

• axis::node()

However, name tests (such as axis::name and axis::*) are supported, as shown in these
examples:

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::b');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::b') |
+---+
| x |
+---+
1 row in set (0.02 sec)

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::*');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::*') |
+---+
| x y |
+---+
1 row in set (0.01 sec)

• “Up-and-down” navigation is not supported in cases where the path would lead “above” the root
element. That is, you cannot use expressions which match on descendants of ancestors of a given
element, where one or more of the ancestors of the current element is also an ancestor of the root
element (see Bug #16321).

• The following XPath functions are not supported, or have known issues as indicated:

• id()

• lang()

XML Functions

1223

• local-name()

• name()

• namespace-uri()

• normalize-space()

• starts-with()

• string()

• substring-after()

• substring-before()

• translate()

• The following axes are not supported:

• following-sibling

• following

• preceding-sibling

• preceding

XPath expressions passed as arguments to ExtractValue() and UpdateXML() may contain
the colon character (“:”) in element selectors, which enables their use with markup employing XML
namespaces notation. For example:

mysql> SET @xml = '<a>111<b:c>222<d>333</d><e:f>444</e:f></b:c>';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//e:f');
+-----------------------------+
| ExtractValue(@xml, '//e:f') |
+-----------------------------+
| 444 |
+-----------------------------+
1 row in set (0.00 sec)

mysql> SELECT UpdateXML(@xml, '//b:c', '<g:h>555</g:h>');
+--+
| UpdateXML(@xml, '//b:c', '<g:h>555</g:h>') |
+--+
| <a>111<g:h>555</g:h> |
+--+
1 row in set (0.00 sec)

This is similar in some respects to what is permitted by Apache Xalan and some other parsers, and
is much simpler than requiring namespace declarations or the use of the namespace-uri() and
local-name() functions.

Error handling. For both ExtractValue() and UpdateXML(), the XPath locator used must be
valid and the XML to be searched must consist of elements which are properly nested and closed. If
the locator is invalid, an error is generated:

mysql> SELECT ExtractValue('<a>c', '/&a');
ERROR 1105 (HY000): XPATH syntax error: '&a'

http://xalan.apache.org/

XML Functions

1224

If xml_frag does not consist of elements which are properly nested and closed, NULL is returned and
a warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

Important

The replacement XML used as the third argument to UpdateXML() is not
checked to determine whether it consists solely of elements which are properly
nested and closed.

XPath Injection. code injection occurs when malicious code is introduced into the system to gain
unauthorized access to privileges and data. It is based on exploiting assumptions made by developers
about the type and content of data input from users. XPath is no exception in this regard.

A common scenario in which this can happen is the case of application which handles authorization
by matching the combination of a login name and password with those found in an XML file, using an
XPath expression like this one:

//user[login/text()='neapolitan' and password/text()='1c3cr34m']/attribute::id

This is the XPath equivalent of an SQL statement like this one:

SELECT id FROM users WHERE login='neapolitan' AND password='1c3cr34m';

A PHP application employing XPath might handle the login process like this:

<?php

 $file = "users.xml";

 $login = $POST["login"];
 $password = $POST["password"];

 $xpath = "//user[login/text()=$login and password/text()=$password]/attribute::id";

 if(file_exists($file))
 {
 $xml = simplexml_load_file($file);

 if($result = $xml->xpath($xpath))
 echo "You are now logged in as user $result[0].";
 else

XML Functions

1225

 echo "Invalid login name or password.";
 }
 else
 exit("Failed to open $file.");

?>

No checks are performed on the input. This means that a malevolent user can “short-circuit” the test
by entering ' or 1=1 for both the login name and password, resulting in $xpath being evaluated as
shown here:

//user[login/text()='' or 1=1 and password/text()='' or 1=1]/attribute::id

Since the expression inside the square brackets always evaluates as true, it is effectively the same as
this one, which matches the id attribute of every user element in the XML document:

//user/attribute::id

One way in which this particular attack can be circumvented is simply by quoting the variable names to
be interpolated in the definition of $xpath, forcing the values passed from a Web form to be converted
to strings:

$xpath = "//user[login/text()='$login' and password/text()='$password']/attribute::id";

This is the same strategy that is often recommended for preventing SQL injection attacks. In general,
the practices you should follow for preventing XPath injection attacks are the same as for preventing
SQL injection:

• Never accepted untested data from users in your application.

• Check all user-submitted data for type; reject or convert data that is of the wrong type

• Test numeric data for out of range values; truncate, round, or reject values that are out of range. Test
strings for illegal characters and either strip them out or reject input containing them.

• Do not output explicit error messages that might provide an unauthorized user with clues that could
be used to compromise the system; log these to a file or database table instead.

Just as SQL injection attacks can be used to obtain information about database schemas, so can
XPath injection be used to traverse XML files to uncover their structure, as discussed in Amit Klein's
paper Blind XPath Injection (PDF file, 46KB).

It is also important to check the output being sent back to the client. Consider what can happen when
we use the MySQL ExtractValue() function:

mysql> SELECT ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->) AS id;
+-------------------------------+
| id |
+-------------------------------+
| 00327 13579 02403 42354 28570 |
+-------------------------------+
1 row in set (0.01 sec)

Because ExtractValue() returns multiple matches as a single space-delimited string, this injection
attack provides every valid ID contained within users.xml to the user as a single row of output. As an
extra safeguard, you should also test output before returning it to the user. Here is a simple example:

http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf

Bit Functions

1226

mysql> SELECT @id = ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT IF(
 -> INSTR(@id, ' ') = 0,
 -> @id,
 -> 'Unable to retrieve user ID')
 -> AS singleID;
+----------------------------+
| singleID |
+----------------------------+
| Unable to retrieve user ID |
+----------------------------+
1 row in set (0.00 sec)

In general, the guidelines for returning data to users securely are the same as for accepting user input.
These can be summed up as:

• Always test outgoing data for type and permissible values.

• Never permit unauthorized users to view error messages that might provide information about the
application that could be used to exploit it.

12.12 Bit Functions

Table 12.16 Bitwise Functions

Name Description

BIT_COUNT() Return the number of bits that are set

& Bitwise AND

~ Invert bits

| Bitwise OR

^ Bitwise XOR

<< Left shift

>> Right shift

MySQL uses BIGINT (64-bit) arithmetic for bit operations, so these operators have a maximum range
of 64 bits.

• |

Bitwise OR:

mysql> SELECT 29 | 15;
 -> 31

The result is an unsigned 64-bit integer.

• &

Bitwise AND:

mysql> SELECT 29 & 15;
 -> 13

The result is an unsigned 64-bit integer.

Encryption and Compression Functions

1227

• ^

Bitwise XOR:

mysql> SELECT 1 ^ 1;
 -> 0
mysql> SELECT 1 ^ 0;
 -> 1
mysql> SELECT 11 ^ 3;
 -> 8

The result is an unsigned 64-bit integer.

• <<

Shifts a longlong (BIGINT) number to the left.

mysql> SELECT 1 << 2;
 -> 4

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift
count is greater or equal to the width of an unsigned 64-bit number, the result is zero.

• >>

Shifts a longlong (BIGINT) number to the right.

mysql> SELECT 4 >> 2;
 -> 1

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift
count is greater or equal to the width of an unsigned 64-bit number, the result is zero.

• ~

Invert all bits.

mysql> SELECT 5 & ~1;
 -> 4

The result is an unsigned 64-bit integer.

• BIT_COUNT(N)

Returns the number of bits that are set in the argument N.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
 -> 4, 3

12.13 Encryption and Compression Functions

Table 12.17 Encryption Functions

Name Description

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

COMPRESS() Return result as a binary string

DECODE() Decodes a string encrypted using ENCODE()

Encryption and Compression Functions

1228

Name Description

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

ENCODE() Encode a string

ENCRYPT() Encrypt a string

MD5() Calculate MD5 checksum

OLD_PASSWORD() Return the value of the pre-4.1 implementation of
PASSWORD

PASSWORD() Calculate and return a password string

RANDOM_BYTES() Return a random byte vector

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SHA2() Calculate an SHA-2 checksum

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string before compression

VALIDATE_PASSWORD_STRENGTH() Determine strength of password

Many encryption and compression functions return strings for which the result might contain arbitrary
byte values. If you want to store these results, use a column with a VARBINARY or BLOB binary string
data type. This will avoid potential problems with trailing space removal or character set conversion that
would change data values, such as may occur if you use a nonbinary string data type (CHAR, VARCHAR,
TEXT).

Some encryption functions return strings of ASCII characters: MD5(), OLD_PASSWORD(),
PASSWORD(), SHA(), SHA1(), SHA2(). In MySQL 5.7, their return value is a nonbinary string
that has a character set and collation determined by the character_set_connection and
collation_connection system variables.

For versions in which functions such as MD5() or SHA1() return a string of hex digits as a binary
string, the return value cannot be converted to uppercase or compared in case-insensitive fashion as
is. You must convert the value to a nonbinary string. See the discussion of binary string conversion in
Section 12.10, “Cast Functions and Operators”.

If an application stores values from a function such as MD5() or SHA1() that returns a string of hex
digits, more efficient storage and comparisons can be obtained by converting the hex representation to
binary using UNHEX() and storing the result in a BINARY(N) column. Each pair of hex digits requires
one byte in binary form, so the value of N depends on the length of the hex string. N is 16 for an MD5()
value and 20 for a SHA1() value. For SHA2(), N ranges from 28 to 32 depending on the argument
specifying the desired bit length of the result.

The size penalty for storing the hex string in a CHAR column is at least two times, up to eight times if
the value is stored in a column that uses the utf8 character set (where each character uses 4 bytes).
Storing the string also results in slower comparisons because of the larger values and the need to take
character set collation rules into account.

Suppose that an application stores MD5() string values in a CHAR(32) column:

CREATE TABLE md5_tbl (md5_val CHAR(32), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(MD5('abcdef'), ...);

To convert hex strings to more compact form, modify the application to use UNHEX() and
BINARY(16) instead as follows:

CREATE TABLE md5_tbl (md5_val BINARY(16), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(UNHEX(MD5('abcdef')), ...);

Encryption and Compression Functions

1229

Applications should be prepared to handle the very rare case that a hashing function produces the
same value for two different input values. One way to make collisions detectable is to make the hash
column a primary key.

Note

Exploits for the MD5 and SHA-1 algorithms have become known. You may wish
to consider using one of the other encryption functions described in this section
instead, such as SHA2().

Caution

Passwords or other sensitive values supplied as arguments to encryption
functions are sent in plaintext to the MySQL server unless an SSL connection
is used. Also, such values will appear in any MySQL logs to which they are
written. To avoid these types of exposure, applications can encrypt sensitive
values on the client side before sending them to the server. The same
considerations apply to encryption keys. To avoid exposing these, applications
can use stored procedures to encrypt and decrypt values on the server side.

• AES_DECRYPT(crypt_str,key_str[,init_vector])

This function decrypts data using the official AES (Advanced Encryption Standard) algorithm. For
more information, see the description of AES_ENCRYPT().

The optional initialization vector argument, init_vector, is available as of MySQL 5.7.4. As of
that version, statements that use AES_DECRYPT() are unsafe for statement-based replication and
cannot be stored in the query cache.

• AES_ENCRYPT(str,key_str[,init_vector])

AES_ENCRYPT() and AES_DECRYPT() implement encryption and decryption of data using the
official AES (Advanced Encryption Standard) algorithm, previously known as “Rijndael.” The AES
standard permits various key lengths. By default these functions implement AES with a 128-bit key
length. As of MySQL 5.7.4, key lengths of 196 or 256 bits can be used, as described later. The key
length is a trade off between performance and security.

AES_ENCRYPT() encrypts the string str using the key string key_str and returns a binary string
containing the encrypted output. AES_DECRYPT() decrypts the encrypted string crypt_str using
the key string key_str and returns the original plaintext string. If either function argument is NULL,
the function returns NULL.

The str and crypt_str arguments can be any length, and padding is automatically added to
str so it is a multiple of a block as required by block-based algorithms such as AES. This padding
is automatically removed by the AES_DECRYPT() function. The length of crypt_str can be
calculated using this formula:

16 * (trunc(string_length / 16) + 1)

For a key length of 128 bits, the most secure way to pass a key to the key_str argument is to
create a truly random 128-bit value and pass it as a binary value. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text',UNHEX('F3229A0B371ED2D9441B830D21A390C3')));

A passphrase can be used to generate an AES key by hashing the passphrase. For example:

INSERT INTO t VALUES (1,AES_ENCRYPT('text', SHA2('My secret passphrase',512)));

Encryption and Compression Functions

1230

Do not pass a password or passphrase directly to crypt_str, hash it first. Previous versions of this
documentation suggested the former approach, but it is no longer recommended as the examples
shown here are more secure.

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it is possible
for AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input data or the key is
invalid.

As of MySQL 5.7.4, AES_ENCRYPT() and AES_DECRYPT() permit control of the block encryption
mode and take an optional init_vector initialization vector argument:

• The block_encryption_mode system variable controls the mode for block-based encryption
algorithms. Its default value is aes-128-ecb, which signifies encryption using a key length of 128
bits and ECB mode. For a description of the permitted values of this variable, see Section 5.1.4,
“Server System Variables”.

• The optional init_vector argument provides an initialization vector for block encryption modes
that require it.

For modes that require the optional init_vector argument, it must be 16 bytes or longer (bytes in
excess of 16 are ignored). An error occurs if init_vector is missing.

For modes that do not require init_vector, it is ignored and a warning is generated if it is
specified.

A random string of bytes to use for the initialization vector can be produced by calling
RANDOM_BYTES(16). For encryption modes that require an initialization vector, the same vector
must be used for encryption and decryption.

mysql> SET block_encryption_mode = 'aes-256-cbc';
mysql> SET @key_str = SHA2('My secret passphrase',512);
mysql> SET @init_vector = RANDOM_BYTES(16);
mysql> SET @crypt_str = AES_ENCRYPT('text',@key_str,@init_vector);
mysql> SELECT AES_DECRYPT(@crypt_str,@key_str,@init_vector);
+---+
| AES_DECRYPT(@crypt_str,@key_str,@init_vector) |
+---+
| text |
+---+

The following table lists each permitted block encryption mode, the SSL libraries that support it, and
whether the initialization vector argument is required.

Block Encryption Mode SSL Libraries that Support
Mode

Initialization Vector Required

ECB OpenSSL, yaSSL No

CBC OpenSSL, yaSSL Yes

CFB1 OpenSSL Yes

CFB8 OpenSSL Yes

CFB128 OpenSSL Yes

OFB OpenSSL Yes

As of MySQL 5.7.4, statements that use AES_ENCRYPT() or AES_DECRYPT() are unsafe for
statement-based replication and cannot be stored in the query cache.

• COMPRESS(string_to_compress)

Encryption and Compression Functions

1231

Compresses a string and returns the result as a binary string. This function requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return value is always NULL.
The compressed string can be uncompressed with UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
 -> 21
mysql> SELECT LENGTH(COMPRESS(''));
 -> 0
mysql> SELECT LENGTH(COMPRESS('a'));
 -> 13
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
 -> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

• Nonempty strings are stored as a 4-byte length of the uncompressed string (low byte first),
followed by the compressed string. If the string ends with space, an extra “.” character is added
to avoid problems with endspace trimming should the result be stored in a CHAR or VARCHAR
column. (However, use of nonbinary string data types such as CHAR or VARCHAR to store
compressed strings is not recommended anyway because character set conversion may occur.
Use a VARBINARY or BLOB binary string column instead.)

• DECODE(crypt_str,pass_str)

DECODE() decrypts the encrypted string crypt_str using pass_str as the password.
crypt_str should be a string returned from ENCODE().

Note

The ENCODE() and DECODE() functions are deprecated in MySQL 5.7, will
be removed in a future MySQL release, and should no longer be used.

• DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). If an error occurs, this function returns NULL.

This function works only if MySQL has been configured with SSL support. See Section 6.3.11, “Using
SSL for Secure Connections”.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted string
to determine the DES key number that was used to encrypt the original string, and then reads the
key from the DES key file to decrypt the message. For this to work, the user must have the SUPER
privilege. The key file can be specified with the --des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the
message.

If the crypt_str argument does not appear to be an encrypted string, MySQL returns the given
crypt_str.

• DES_ENCRYPT(str[,{key_num|key_str}])

Encrypts the string with the given key using the Triple-DES algorithm.

This function works only if MySQL has been configured with SSL support. See Section 6.3.11, “Using
SSL for Secure Connections”.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one was
given. With no argument, the first key from the DES key file is used. With a key_num argument, the

Encryption and Compression Functions

1232

given key number (0 to 9) from the DES key file is used. With a key_str argument, the given key
string is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num). If an error
occurs, DES_ENCRYPT() returns NULL.

The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num
is 127.

The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any
order. des_key_str is the string that is used to encrypt the message. There should be at least one
space between the number and the key. The first key is the default key that is used if you do not
specify any key argument to DES_ENCRYPT().

You can tell MySQL to read new key values from the key file with the FLUSH DES_KEY_FILE
statement. This requires the RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the
existence of encrypted column values, without giving the end user the right to decrypt those values.

mysql> SELECT customer_address FROM customer_table
 > WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

• ENCODE(str,pass_str)

ENCODE() encrypts str using pass_str as the password. The result is a binary string of the same
length as str. To decrypt the result, use DECODE().

Note

The ENCODE() and DECODE() functions are deprecated in MySQL 5.7, will
be removed in a future MySQL release, and should no longer be used.

If you still need to use ENCODE(), a salt value must be used with it to reduce risk. For example:

ENCODE('plaintext', CONCAT('my_random_salt','my_secret_password'))

A new random salt value must be used whenever a password is updated.

• ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call and returns a binary string. The salt argument
must be a string with at least two characters or the result will be NULL. If no salt argument is given,
a random value is used.

mysql> SELECT ENCRYPT('hello');
 -> 'VxuFAJXVARROc'

Encryption and Compression Functions

1233

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This behavior
is determined by the implementation of the underlying crypt() system call.

The use of ENCRYPT() with the ucs2, utf16, utf16le, or utf32 multi-byte character sets is not
recommended because the system call expects a string terminated by a zero byte.

If crypt() is not available on your system (as is the case with Windows), ENCRYPT() always
returns NULL.

• MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a string of 32 hex digits,
or NULL if the argument was NULL. The return value can, for example, be used as a hash key. See
the notes at the beginning of this section about storing hash values efficiently.

The return value is a nonbinary string in the connection character set.

mysql> SELECT MD5('testing');
 -> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

See the note regarding the MD5 algorithm at the beginning this section.

• OLD_PASSWORD(str)

OLD_PASSWORD() was added when the implementation of PASSWORD() was changed in MySQL
4.1 to improve security. OLD_PASSWORD() returns the value of the pre-4.1 implementation
of PASSWORD() as a string, and is intended to permit you to reset passwords for any pre-4.1
clients that need to connect to your version 5.7 MySQL server without locking them out. See
Section 6.1.2.4, “Password Hashing in MySQL”.

The return value is a nonbinary string in the connection character set.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release.

• PASSWORD(str)

Returns a hashed password string calculated from the cleartext password str. The return value is
a nonbinary string in the connection character set, or NULL if the argument is NULL. This function is
the SQL interface to the algorithm used by the server to encrypt MySQL passwords for storage in the
mysql.user grant table.

The old_passwords system variable controls the password hashing method used by the
PASSWORD() function. It also influences password hashing performed by CREATE USER and GRANT
statements that specify a password using an IDENTIFIED BY clause.

The following table shows the permitted values of old_passwords, the password hashing method
for each value, and which authentication plugins use passwords hashed with each method.

Value Password Hashing Method Associated Authentication Plugin

0 MySQL 4.1 native hashing mysql_native_password

1 Pre-4.1 (“old”) hashing mysql_old_password

Encryption and Compression Functions

1234

Value Password Hashing Method Associated Authentication Plugin

2 SHA-256 hashing sha256_password

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The
latter function is not affected by the value of old_passwords.

mysql> SET old_passwords = 0;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+---+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+---+------------------------+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 | 6f8c114b58f2ce9e |
+---+------------------------+

mysql> SET old_passwords = 1;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+--------------------+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+--------------------+------------------------+
| 6f8c114b58f2ce9e | 6f8c114b58f2ce9e |
+--------------------+------------------------+

SHA-256 password hashing (old_passwords=2) uses a random salt value, which makes the result
from PASSWORD() nondeterministic. Consequently, statements that use this function are not safe for
statement-based replication and cannot be stored in the query cache.

 Encryption performed by PASSWORD() is one-way (not reversible). It is not the same type of
encryption used for Unix passwords; for that, use ENCRYPT().

Note

The PASSWORD() function is used by the authentication system in
MySQL Server; you should not use it in your own applications. For that
purpose, consider MD5() or SHA2() instead. Also see RFC 2195, section
2 (Challenge-Response Authentication Mechanism (CRAM)), for more
information about handling passwords and authentication securely in your
applications.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them will be
removed in a future MySQL release. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

Caution

Statements that invoke PASSWORD() may be recorded in server logs or
in a history file such as ~/.mysql_history, which means that cleartext
passwords may be read by anyone having read access to that information.
See Section 6.1.2, “Keeping Passwords Secure”.

• RANDOM_BYTES(len)

This function returns a binary string of len random bytes generated using the random number
generator of the SSL library (OpenSSL or yaSSL). Permitted values of len range from 1 to 1024. For
values outside that range, RANDOM_BYTES() generates a warning and returns NULL.

http://www.faqs.org/rfcs/rfc2195.html
http://www.faqs.org/rfcs/rfc2195.html

Encryption and Compression Functions

1235

RANDOM_BYTES() can be used to provide the initialization vector for the AES_DECRYPT() and
AES_ENCRYPT() functions. For use in that context, len must be at least 16. Larger values are
permitted, but bytes in excess of 16 are ignored.

RANDOM_BYTES() generates a random value, which makes its result nondeterministic.
Consequently, statements that use this function are unsafe for statement-based replication and
cannot be stored in the query cache.

This function is available as of MySQL 5.7.4.

• SHA1(str), SHA(str)

Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash
Algorithm). The value is returned as a string of 40 hex digits, or NULL if the argument was NULL.
One of the possible uses for this function is as a hash key. See the notes at the beginning of this
section about storing hash values efficiently. You can also use SHA1() as a cryptographic function
for storing passwords. SHA() is synonymous with SHA1().

The return value is a nonbinary string in the connection character set.

mysql> SELECT SHA1('abc');
 -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the
note regarding the MD5 and SHA-1 algorithms at the beginning this section.

• SHA2(str, hash_length)

Calculates the SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The
first argument is the cleartext string to be hashed. The second argument indicates the desired bit
length of the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256).
If either argument is NULL or the hash length is not one of the permitted values, the return value is
NULL. Otherwise, the function result is a hash value containing the desired number of bits. See the
notes at the beginning of this section about storing hash values efficiently.

The return value is a nonbinary string in the connection character set.

mysql> SELECT SHA2('abc', 224);
 -> '23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7'

This function works only if MySQL has been configured with SSL support. See Section 6.3.11, “Using
SSL for Secure Connections”.

SHA2() can be considered cryptographically more secure than MD5() or SHA1().

• UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a
compressed value, the result is NULL. This function requires MySQL to have been compiled with a
compression library such as zlib. Otherwise, the return value is always NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
 -> 'any string'
mysql> SELECT UNCOMPRESS('any string');
 -> NULL

• UNCOMPRESSED_LENGTH(compressed_string)

Returns the length that the compressed string had before being compressed.

Information Functions

1236

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
 -> 30

• VALIDATE_PASSWORD_STRENGTH(str)

Given an argument representing a cleartext password, this function returns an integer to indicate
how strong the password is. The return value ranges from 0 (weak) to 100 (strong).

The password is subjected to increasingly strict tests and the return value reflects which tests were
satisfied, as shown in the following table.

Password Test Return Value

Length < 4 0

Length ≥ 4 and < validate_password_length 25

Satisfies policy 1 (LOW) 50

Satisfies policy 2 (MEDIUM) 75

Satisfies policy 3 (STRONG) 100

Password assessment by VALIDATE_PASSWORD_STRENGTH() is done by the
validate_password plugin. If that plugin is not installed, the function always returns 0. For
information about installing the validate_password plugin, see Section 6.1.2.6, “The Password
Validation Plugin”. To examine or configure the parameters that affect password testing, check or set
the system variables implemented by validate_password plugin. See Password Validation Plugin
Options and Variables.

12.14 Information Functions

Table 12.18 Information Functions

Name Description

BENCHMARK() Repeatedly execute an expression

CHARSET() Return the character set of the argument

COERCIBILITY() Return the collation coercibility value of the string argument

COLLATION() Return the collation of the string argument

CONNECTION_ID() Return the connection ID (thread ID) for the connection

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

DATABASE() Return the default (current) database name

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that
would be returned were there no LIMIT clause

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

ROW_COUNT() The number of rows updated

SCHEMA() Synonym for DATABASE()

SESSION_USER() Synonym for USER()

SYSTEM_USER() Synonym for USER()

USER() The user name and host name provided by the client

VERSION() Returns a string that indicates the MySQL server version

• BENCHMARK(count,expr)

Information Functions

1237

The BENCHMARK() function executes the expression expr repeatedly count times. It may be used
to time how quickly MySQL processes the expression. The result value is always 0. The intended
use is from within the mysql client, which reports query execution times:

mysql> SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));
+--+
| BENCHMARK(1000000,ENCODE('hello','goodbye')) |
+--+
| 0 |
+--+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable
to execute BENCHMARK() several times, and to interpret the result with regard to how heavily loaded
the server machine is.

BENCHMARK() is intended for measuring the runtime performance of scalar expressions, which has
some significant implications for the way that you use it and interpret the results:

• Only scalar expressions can be used. Although the expression can be a subquery, it must return a
single column and at most a single row. For example, BENCHMARK(10, (SELECT * FROM t))
will fail if the table t has more than one column or more than one row.

• Executing a SELECT expr statement N times differs from executing SELECT BENCHMARK(N,
expr) in terms of the amount of overhead involved. The two have very different execution profiles
and you should not expect them to take the same amount of time. The former involves the parser,
optimizer, table locking, and runtime evaluation N times each. The latter involves only runtime
evaluation N times, and all the other components just once. Memory structures already allocated
are reused, and runtime optimizations such as local caching of results already evaluated for
aggregate functions can alter the results. Use of BENCHMARK() thus measures performance of the
runtime component by giving more weight to that component and removing the “noise” introduced
by the network, parser, optimizer, and so forth.

• CHARSET(str)

Returns the character set of the string argument.

mysql> SELECT CHARSET('abc');
 -> 'latin1'
mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
 -> 'utf8'
mysql> SELECT CHARSET(USER());
 -> 'utf8'

• COERCIBILITY(str)

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
 -> 0
mysql> SELECT COERCIBILITY(USER());
 -> 3
mysql> SELECT COERCIBILITY('abc');
 -> 4

The return values have the meanings shown in the following table. Lower values have higher
precedence.

Information Functions

1238

Coercibility Meaning Example

0 Explicit
collation

Value with COLLATE clause

1 No collation Concatenation of strings with different collations

2 Implicit
collation

Column value, stored routine parameter or local variable

3 System
constant

USER() return value

4 Coercible Literal string

5 Ignorable NULL or an expression derived from NULL

• COLLATION(str)

Returns the collation of the string argument.

mysql> SELECT COLLATION('abc');
 -> 'latin1_swedish_ci'
mysql> SELECT COLLATION(_utf8'abc');
 -> 'utf8_general_ci'

• CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique
among the set of currently connected clients.

mysql> SELECT CONNECTION_ID();
 -> 23786

• CURRENT_USER, CURRENT_USER()

Returns the user name and host name combination for the MySQL account that the server used to
authenticate the current client. This account determines your access privileges. The return value is a
string in the utf8 character set.

The value of CURRENT_USER() can differ from the value of USER().

mysql> SELECT USER();
 -> 'davida@localhost'
mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();
 -> '@localhost'

The example illustrates that although the client specified a user name of davida (as indicated by the
value of the USER() function), the server authenticated the client using an anonymous user account
(as seen by the empty user name part of the CURRENT_USER() value). One way this might occur is
that there is no account listed in the grant tables for davida.

Within a stored program or view, CURRENT_USER() returns the account for the user who defined
the object (as given by its DEFINER value) unless defined with the SQL SECURITY INVOKER
characteristic. In the latter case, CURRENT_USER() returns the object's invoker.

Triggers and events have no option to define the SQL SECURITY characteristic, so for these objects,
CURRENT_USER() returns the account for the user who defined the object. To return the invoker,
use USER() or SESSION_USER().

Information Functions

1239

The following statements support use of the CURRENT_USER() function to take the place of the
name of (and, possibly, a host for) an affected user or a definer; in such cases, CURRENT_USER() is
expanded where and as needed:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

For information about the implications that this expansion of CURRENT_USER() has for replication in
different releases of MySQL 5.7, see Section 16.4.1.7, “Replication of CURRENT_USER()”.

• DATABASE()

Returns the default (current) database name as a string in the utf8 character set. If there is no
default database, DATABASE() returns NULL. Within a stored routine, the default database is the
database that the routine is associated with, which is not necessarily the same as the database that
is the default in the calling context.

mysql> SELECT DATABASE();
 -> 'test'

If there is no default database, DATABASE() returns NULL.

• FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to
the client. In some cases, it is desirable to know how many rows the statement would have returned
without the LIMIT, but without running the statement again. To obtain this row count, include
a SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke FOUND_ROWS()
afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
 -> WHERE id > 100 LIMIT 10;
mysql> SELECT FOUND_ROWS();

The second SELECT returns a number indicating how many rows the first SELECT would have
returned had it been written without the LIMIT clause.

In the absence of the SQL_CALC_FOUND_ROWS option in the most recent successful SELECT
statement, FOUND_ROWS() returns the number of rows in the result set returned by that statement. If

Information Functions

1240

the statement includes a LIMIT clause, FOUND_ROWS() returns the number of rows up to the limit.
For example, FOUND_ROWS() returns 10 or 60, respectively, if the statement includes LIMIT 10 or
LIMIT 50, 10.

The row count available through FOUND_ROWS() is transient and not intended to be available past
the statement following the SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to the
value later, save it:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;
mysql> SET @rows = FOUND_ROWS();

If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are in
the full result set. However, this is faster than running the query again without LIMIT, because the
result set need not be sent to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to restrict
the number of rows that a query returns, but also determine the number of rows in the full result
set without running the query again. An example is a Web script that presents a paged display
containing links to the pages that show other sections of a search result. Using FOUND_ROWS()
enables you to determine how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION statements
than for simple SELECT statements, because LIMIT may occur at multiple places in a UNION. It may
be applied to individual SELECT statements in the UNION, or global to the UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that would
be returned without a global LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS with UNION
are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is used,
duplicate removal occurs and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the number
of rows in the temporary table that is created to process the UNION.

Beyond the cases described here, the behavior of FOUND_ROWS() is undefined (for example, its
value following a SELECT statement that fails with an error).

Important

FOUND_ROWS() is not replicated reliably using statement-based replication.
This function is automatically replicated using row-based replication.

• LAST_INSERT_ID(), LAST_INSERT_ID(expr)

With no argument, LAST_INSERT_ID() returns a BIGINT UNSIGNED (64-bit) value representing
the first automatically generated value successfully inserted for an AUTO_INCREMENT column as a
result of the most recently executed INSERT statement. The value of LAST_INSERT_ID() remains
unchanged if no rows are successfully inserted.

With an argument, LAST_INSERT_ID() returns an unsigned integer.

For example, after inserting a row that generates an AUTO_INCREMENT value, you can get the value
like this:

mysql> SELECT LAST_INSERT_ID();
 -> 195

Information Functions

1241

The currently executing statement does not affect the value of LAST_INSERT_ID().
Suppose that you generate an AUTO_INCREMENT value with one statement, and then refer to
LAST_INSERT_ID() in a multiple-row INSERT statement that inserts rows into a table with its own
AUTO_INCREMENT column. The value of LAST_INSERT_ID() will remain stable in the second
statement; its value for the second and later rows is not affected by the earlier row insertions.
(However, if you mix references to LAST_INSERT_ID() and LAST_INSERT_ID(expr), the effect
is undefined.)

If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For
transactional tables, if the statement is rolled back due to an error, the value of LAST_INSERT_ID()
is left undefined. For manual ROLLBACK, the value of LAST_INSERT_ID() is not restored to that
before the transaction; it remains as it was at the point of the ROLLBACK.

Prior to MySQL 5.7.3, this function was not replicated correctly if replication filtering rules were in
use. (Bug #17234370, Bug #69861)

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects. The effect of a stored routine or trigger upon the value of LAST_INSERT_ID() that
is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements will not see a changed value.

The ID that was generated is maintained in the server on a per-connection basis. This means that
the value returned by the function to a given client is the first AUTO_INCREMENT value generated for
most recent statement affecting an AUTO_INCREMENT column by that client. This value cannot be
affected by other clients, even if they generate AUTO_INCREMENT values of their own. This behavior
ensures that each client can retrieve its own ID without concern for the activity of other clients, and
without the need for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a row
to a non-“magic” value (that is, a value that is not NULL and not 0).

Important

If you insert multiple rows using a single INSERT statement,
LAST_INSERT_ID() returns the value generated for the first inserted row
only. The reason for this is to make it possible to reproduce easily the same
INSERT statement against some other server.

For example:

mysql> USE test;
Database changed
mysql> CREATE TABLE t (
 -> id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> name VARCHAR(10) NOT NULL
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO t VALUES (NULL, 'Bob');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+

Information Functions

1242

| 1 | Bob |
+----+------+
1 row in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+
1 row in set (0.00 sec)

mysql> INSERT INTO t VALUES
 -> (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
1	Bob
2	Mary
3	Jane
4	Lisa
+----+------+
4 rows in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 2 |
+------------------+
1 row in set (0.00 sec)

Although the second INSERT statement inserted three new rows into t, the ID generated for the first
of these rows was 2, and it is this value that is returned by LAST_INSERT_ID() for the following
SELECT statement.

If you use INSERT IGNORE and the row is ignored, the AUTO_INCREMENT counter is not
incremented and LAST_INSERT_ID() returns 0, which reflects that no row was inserted.

 If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by
the function and is remembered as the next value to be returned by LAST_INSERT_ID(). This can
be used to simulate sequences:

1. Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

2. Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that
value. The mysql_insert_id() C API function can also be used to get the value. See
Section 21.8.7.38, “mysql_insert_id()”.

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the
function this way is that the ID value is maintained in the server as the last automatically generated
value. It is multi-user safe because multiple clients can issue the UPDATE statement and get their

Information Functions

1243

own sequence value with the SELECT statement (or mysql_insert_id()), without affecting or
being affected by other clients that generate their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you
cannot use the C API function to retrieve the value for LAST_INSERT_ID(expr) after executing
other SQL statements like SELECT or SET.

• ROW_COUNT()

In MySQL 5.7, ROW_COUNT() returns a value as follows:

• DDL statements: 0. This applies to statements such as CREATE TABLE or DROP TABLE.

• DML statements other than SELECT: The number of affected rows. This applies to statements
such as UPDATE, INSERT, or DELETE (as before), but now also to statements such as ALTER
TABLE and LOAD DATA INFILE.

• SELECT: -1 if the statement returns a result set, or the number of rows “affected” if it does not. For
example, for SELECT * FROM t1, ROW_COUNT() returns -1. For SELECT * FROM t1 INTO
OUTFILE 'file_name', ROW_COUNT() returns the number of rows written to the file.

• SIGNAL statements: 0.

For UPDATE statements, the affected-rows value by default is the number of rows actually changed.
If you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to
mysqld, the affected-rows value is the number of rows “found”; that is, matched by the WHERE
clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if
the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its
current values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if
an existing row is set to its current values.

The ROW_COUNT() value is similar to the value from the mysql_affected_rows() C API function
and the row count that the mysql client displays following statement execution.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)

Functions Used with Global Transaction IDs

1244

Important

ROW_COUNT() is not replicated reliably using statement-based replication.
This function is automatically replicated using row-based replication.

• SCHEMA()

This function is a synonym for DATABASE().

• SESSION_USER()

SESSION_USER() is a synonym for USER().

• SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

• USER()

Returns the current MySQL user name and host name as a string in the utf8 character set.

mysql> SELECT USER();
 -> 'davida@localhost'

The value indicates the user name you specified when connecting to the server, and the client host
from which you connected. The value can be different from that of CURRENT_USER().

You can extract only the user name part like this:

mysql> SELECT SUBSTRING_INDEX(USER(),'@',1);
 -> 'davida'

• VERSION()

Returns a string that indicates the MySQL server version. The string uses the utf8 character set.
The value might have a suffix in addition to the version number. See the description of the version
system variable in Section 5.1.4, “Server System Variables”.

This function is unsafe for statement-based replication. In MySQL 5.7, a warning is logged if you use
this function when binlog_format is set to STATEMENT. (Bug #47995)

mysql> SELECT VERSION();
 -> '5.7.5-standard'

12.15 Functions Used with Global Transaction IDs
The functions described in this section are used with GTID-based replication. It is important to keep in
mind that all of these functions take string representations of GTID sets as arguments—as such, the
GTID sets must always be quoted when used with them.

The union of two GTID sets is simply their representations as strings, joined together with an
interposed comma. In other words, you can define a very simple function for obtaining the union of two
GTID sets, similar to that created here:

CREATE FUNCTION GTID_UNION(g1 TEXT, g2 TEXT)
 RETURNS TEXT DETERMINISTIC
 RETURN CONCAT(g1,',',g2);

For more information about GTIDs and how these GTID functions are used in practice, see
Section 16.1.3, “Replication with Global Transaction Identifiers”.

Functions Used with Global Transaction IDs

1245

Table 12.19 GTID Functions

Name Description

GTID_SUBSET() Return true if all GTIDs in subset are also in set; otherwise
false.

GTID_SUBTRACT() Return all GTIDs in set that are not in subset.

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Wait until the slave SQL thread has executed all the given
GTIDs. Returns: the number of events that were executed
(or NULL, if GTID mode is not enabled).

• GTID_SUBSET(subset,set)

Given two sets of global transaction IDs subset and set, returns true if all GTIDs in subset are
also in set. Returns false otherwise.

The GTID sets used with this function are represented as strings, as shown in the following
examples:

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 0
1 row in set (0.00 sec)

• GTID_SUBTRACT(set,subset)

Given two sets of global transaction IDs subset and set, returns only those GTIDs from set that
are not in subset.

All GTID sets used with this function are represented as strings and must be quoted, as shown in
these examples:

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:22-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:26-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',

Miscellaneous Functions

1246

 '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:21-22:25-57
1 row in set (0.01 sec)

• WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(gtid_set[, timeout])

Wait until the slave SQL thread has executed all of the transactions whose global transaction
identifiers are contained in gtid_set (see Section 16.1.3.1, “GTID Concepts”, for a definition of
“GTID sets”), or until timeout seconds have elapsed, whichever occurs first. timeout is optional;
the default timeout is 0 seconds, in which case the master simply waits until all of the transactions in
the GTID set have been executed.

For more information, see Section 16.1.3, “Replication with Global Transaction Identifiers”.

GTID sets used with this function are represented as strings and so must be quoted as shown in the
following example:

mysql> SELECT WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS('3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5');
 -> 5

The return value is the number of transactional events that were executed. If GTID-based replication
is not active (that is, if the value of the gtid_mode variable is OFF), then this value is undefined and
thus WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() returns NULL.

12.16 Miscellaneous Functions
Table 12.20 Miscellaneous Functions

Name Description

DEFAULT() Return the default value for a table column

GET_LOCK() Get a named lock

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

INET6_ATON() Return the numeric value of an IPv6 address

INET6_NTOA() Return the IPv6 address from a numeric value

IS_FREE_LOCK() Checks whether the named lock is free

IS_IPV4_COMPAT() Return true if argument is an IPv4-compatible address

IS_IPV4_MAPPED() Return true if argument is an IPv4-mapped address

IS_IPV4() Return true if argument is an IPv4 address

IS_IPV6() Return true if argument is an IPv6 address

IS_USED_LOCK() Checks whether the named lock is in use. Return connection
identifier if true.

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to
the specified position

NAME_CONST() Causes the column to have the given name

RAND() Return a random floating-point value

RELEASE_LOCK() Releases the named lock

SLEEP() Sleep for a number of seconds

UUID_SHORT() Return an integer-valued universal identifier

UUID() Return a Universal Unique Identifier (UUID)

VALUES() Defines the values to be used during an INSERT

• DEFAULT(col_name)

Miscellaneous Functions

1247

Returns the default value for a table column. An error results if the column has no default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. For details, see Section 12.5, “String Functions”.

• GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds.
Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for example, because
another client has previously locked the name), or NULL if an error occurred (such as running out
of memory or the thread was killed with mysqladmin kill). If you have a lock obtained with
GET_LOCK(), it is released when you execute RELEASE_LOCK(), execute a new GET_LOCK(), or
your connection terminates (either normally or abnormally). Locks obtained with GET_LOCK() do not
interact with transactions. That is, committing a transaction does not release any such locks obtained
during the transaction.

This function can be used to implement application locks or to simulate record locks. Names are
locked on a server-wide basis. If a name has been locked by one client, GET_LOCK() blocks
any request by another client for a lock with the same name. This enables clients that agree on a
given lock name to use the name to perform cooperative advisory locking. But be aware that it also
enables a client that is not among the set of cooperating clients to lock a name, either inadvertently
or deliberately, and thus prevent any of the cooperating clients from locking that name. One way to
reduce the likelihood of this is to use lock names that are database-specific or application-specific.
For example, use lock names of the form db_name.str or app_name.str.

mysql> SELECT GET_LOCK('lock1',10);
 -> 1
mysql> SELECT IS_FREE_LOCK('lock2');
 -> 1
mysql> SELECT GET_LOCK('lock2',10);
 -> 1
mysql> SELECT RELEASE_LOCK('lock2');
 -> 1
mysql> SELECT RELEASE_LOCK('lock1');
 -> NULL

The second RELEASE_LOCK() call returns NULL because the lock 'lock1' was automatically
released by the second GET_LOCK() call.

If multiple clients are waiting for a lock, the order in which they will acquire it is undefined and
depends on factors such as the thread library in use. In particular, applications should not assume
that clients will acquire the lock in the same order that they issued the lock requests.

This function is unsafe for statement-based replication. In MySQL 5.7, a warning is logged if you use
this function when binlog_format is set to STATEMENT. (Bug #47995)

• INET_ATON(expr)

Given the dotted-quad representation of an IPv4 network address as a string, returns an integer
that represents the numeric value of the address in network byte order (big endian). INET_ATON()
returns NULL if it does not understand its argument.

mysql> SELECT INET_ATON('10.0.5.9');
 -> 167773449

For this example, the return value is calculated as 10×2563 + 0×2562 + 5×256 + 9.

Miscellaneous Functions

1248

INET_ATON() may or may not return a non-NULL result for short-form IP addresses (such as
'127.1' as a representation of '127.0.0.1'). Because of this, INET_ATON()a should not be
used for such addresses.

Note

To store values generated by INET_ATON(), use an INT UNSIGNED
column rather than INT, which is signed. If you use a signed column, values
corresponding to IP addresses for which the first octet is greater than 127
cannot be stored correctly. See Section 11.2.6, “Out-of-Range and Overflow
Handling”.

• INET_NTOA(expr)

Given a numeric IPv4 network address in network byte order, returns the dotted-quad string
representation of the address as a nonbinary string in the connection character set. INET_NTOA()
returns NULL if it does not understand its argument.

mysql> SELECT INET_NTOA(167773449);
 -> '10.0.5.9'

• INET6_ATON(expr)

Given an IPv6 or IPv4 network address as a string, returns a binary string that represents the
numeric value of the address in network byte order (big endian). Because numeric-format IPv6
addresses require more bytes than the largest integer type, the representation returned by this
function has the VARBINARY data type: VARBINARY(16) for IPv6 addresses and VARBINARY(4)
for IPv4 addresses. If the argument is not a valid address, INET6_ATON() returns NULL.

The following examples use HEX() to display the INET6_ATON() result in printable form:

mysql> SELECT HEX(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'FDFE0000000000005A55CAFFFEFA9089'
mysql> SELECT HEX(INET6_ATON('10.0.5.9'));
 -> '0A000509'

INET6_ATON() observes several constraints on valid arguments. These are given in the following
list along with examples.

• A trailing zone ID is not permitted, as in fe80::3%1 or fe80::3%eth0.

• A trailing network mask is not permitted, as in 2001:45f:3:ba::/64 or 192.168.1.0/24.

• For values representing IPv4 addresses, only classless addresses are supported. Classful
addresses such as 192.168.1 are rejected. A trailing port number is not permitted, as in
192.168.1.2:8080. Hexadecimal numbers in address components are not permitted,
as in 192.0xa0.1.2. Octal numbers are not supported: 192.168.010.1 is treated as
192.168.10.1, not 192.168.8.1. These IPv4 constraints also apply to IPv6 addresses that
have IPv4 address parts, such as IPv4-compatible or IPv4-mapped addresses.

To convert an IPv4 address expr represented in numeric form as an INT value to an IPv6 address
represented in numeric form as a VARBINARY value, use this expression:

INET6_ATON(INET_NTOA(expr))

For example:

mysql> SELECT HEX(INET6_ATON(INET_NTOA(167773449)));
 -> '0A000509'

Miscellaneous Functions

1249

• INET6_NTOA(expr)

Given an IPv6 or IPv4 network address represented in numeric form as a binary string, returns the
string representation of the address as a nonbinary string in the connection character set. If the
argument is not a valid address, INET6_NTOA() returns NULL.

INET6_NTOA() has these properties:

• It does not use operating system functions to perform conversions, thus the output string is
platform independent.

• The return string has a maximum length of 39 (4 x 8 + 7). Given this statement:

CREATE TABLE t AS SELECT INET6_NTOA(expr) AS c1;

The resulting table would have this definition:

CREATE TABLE t (c1 VARCHAR(39) CHARACTER SET utf8 DEFAULT NULL);

• The return string uses lowercase letters for IPv6 addresses.

mysql> SELECT INET6_NTOA(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(INET6_ATON('10.0.5.9'));
 -> '10.0.5.9'

mysql> SELECT INET6_NTOA(UNHEX('FDFE0000000000005A55CAFFFEFA9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(UNHEX('0A000509'));
 -> '10.0.5.9'

• IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free
(no one is using the lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect
argument).

This function is unsafe for statement-based replication. In MySQL 5.7, a warning is logged if you use
this function when binlog_format is set to STATEMENT. (Bug #47995)

• IS_IPV4(expr)

Returns 1 if the argument is a valid IPv4 address specified as a string, 0 otherwise.

mysql> SELECT IS_IPV4('10.0.5.9'), IS_IPV4('10.0.5.256');
 -> 1, 0

For a given argument, if IS_IPV4() returns 1, INET_ATON() (and INET6_ATON()) will return
non-NULL. The converse statement is not true: In some cases, INET_ATON() returns non-NULL
when IS_IPV4() returns 0.

As implied by the preceding remarks, IS_IPV4() is more strict than INET_ATON() about what
constitutes a valid IPv4 address, so it may be useful for applications that need to perform strong
checks against invalid values. Alternatively, use INET6_ATON() to convert IPv4 addresses to
internal form and check for a NULL result (which indicates an invalid address). INET6_ATON() is
equally strong as IS_IPV4() about checking IPv4 addresses.

• IS_IPV4_COMPAT(expr)

Miscellaneous Functions

1250

This function takes an IPv6 address represented in numeric form as a binary string, as returned by
INET6_ATON(). It returns 1 if the argument is a valid IPv4-compatible IPv6 address, 0 otherwise.
IPv4-compatible addresses have the form ::ipv4_address.

mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::10.0.5.9'));
 -> 1
mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::ffff:10.0.5.9'));
 -> 0

The IPv4 part of an IPv4-compatible address can also be represented using hexadecimal notation.
For example, 192.168.0.1 has this raw hexadecimal value:

mysql> SELECT HEX(INET6_ATON('192.168.0.1'));
 -> 'C0A80001'

Expressed in IPv4-compatible form, ::192.168.0.1 is equivalent to ::c0a8:0001 or (without
leading zeros) ::c0a8:1

mysql> SELECT
 -> IS_IPV4_COMPAT(INET6_ATON('::192.168.0.1')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:0001')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:1'));
 -> 1, 1, 1

• IS_IPV4_MAPPED(expr)

This function takes an IPv6 address represented in numeric form as a binary string, as returned by
INET6_ATON(). It returns 1 if the argument is a valid IPv4-mapped IPv6 address, 0 otherwise. IPv4-
mapped addresses have the form ::ffff:ipv4_address.

mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::10.0.5.9'));
 -> 0
mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::ffff:10.0.5.9'));
 -> 1

As with IS_IPV4_COMPAT() the IPv4 part of an IPv4-mapped address can also be represented
using hexadecimal notation:

mysql> SELECT
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:192.168.0.1')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:0001')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:1'));
 -> 1, 1, 1

• IS_IPV6(expr)

Returns 1 if the argument is a valid IPv6 address specified as a string, 0 otherwise. This function
does not consider IPv4 addresses to be valid IPv6 addresses.

mysql> SELECT IS_IPV6('10.0.5.9'), IS_IPV6('::1');
 -> 0, 1

For a given argument, if IS_IPV6() returns 1, INET6_ATON() will return non-NULL.

• IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection
identifier of the client that holds the lock. Otherwise, it returns NULL.

Miscellaneous Functions

1251

This function is unsafe for statement-based replication. In MySQL 5.7, a warning is logged if you use
this function when binlog_format is set to STATEMENT. (Bug #47995)

• MASTER_POS_WAIT(log_name,log_pos[,timeout])

This function is useful for control of master/slave synchronization. It blocks until the slave has read
and applied all updates up to the specified position in the master log. The return value is the number
of log events the slave had to wait for to advance to the specified position. The function returns NULL
if the slave SQL thread is not started, the slave's master information is not initialized, the arguments
are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the slave SQL
thread stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If the slave is past
the specified position, the function returns immediately.

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have
elapsed. timeout must be greater than 0; a zero or negative timeout means no timeout.

This function is unsafe for statement-based replication. In MySQL 5.7, a warning is logged if you use
this function when binlog_format is set to STATEMENT. (Bug #47995)

• NAME_CONST(name,value)

Returns the given value. When used to produce a result set column, NAME_CONST() causes the
column to have the given name. The arguments should be constants.

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

This function is for internal use only. The server uses it when writing statements from stored
programs that contain references to local program variables, as described in Section 18.7, “Binary
Logging of Stored Programs”, You might see this function in the output from mysqlbinlog.

• RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the
lock was released, 0 if the lock was not established by this thread (in which case the lock is not
released), and NULL if the named lock did not exist. The lock does not exist if it was never obtained
by a call to GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 13.2.3, “DO Syntax”.

This function is unsafe for statement-based replication. In MySQL 5.7, a warning is logged if you use
this function when binlog_format is set to STATEMENT. (Bug #47995)

• SLEEP(duration)

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. If
SLEEP() is interrupted, it returns 1. The duration may have a fractional part. If the argument is NULL
or negative, SLEEP() produces a warning, or an error in strict SQL mode.

This function is unsafe for statement-based replication. In MySQL 5.7, a warning is logged if you use
this function when binlog_format is set to STATEMENT. (Bug #47995)

• UUID()

Returns a Universal Unique Identifier (UUID) generated according to “DCE 1.1: Remote Procedure
Call” (Appendix A) CAE (Common Applications Environment) Specifications published by The Open

Miscellaneous Functions

1252

Group in October 1997 (Document Number C706, http://www.opengroup.org/public/pubs/catalog/
c706.htm).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID()
are expected to generate two different values, even if these calls are performed on two separate
computers that are not connected to each other.

A UUID is a 128-bit number represented by a utf8 string of five hexadecimal numbers in
aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee format:

• The first three numbers are generated from a timestamp.

• The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity
(for example, due to daylight saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number
is substituted if the latter is not available (for example, because the host computer has no Ethernet
card, or we do not know how to find the hardware address of an interface on your operating
system). In this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should
have very low probability.

Currently, the MAC address of an interface is taken into account only on FreeBSD and Linux. On
other operating systems, MySQL uses a randomly generated 48-bit number.

mysql> SELECT UUID();
 -> '6ccd780c-baba-1026-9564-0040f4311e29'

Warning

Although UUID() values are intended to be unique, they are not necessarily
unguessable or unpredictable. If unpredictability is required, UUID values
should be generated some other way.

Note

UUID() does not work with statement-based replication.

• UUID_SHORT()

Returns a “short” universal identifier as a 64-bit unsigned integer (rather than a string-form 128-bit
identifier as returned by the UUID() function).

The value of UUID_SHORT() is guaranteed to be unique if the following conditions hold:

• The server_id of the current host is unique among your set of master and slave servers

• server_id is between 0 and 255

• You do not set back your system time for your server between mysqld restarts

• You do not invoke UUID_SHORT() on average more than 16 million times per second between
mysqld restarts

The UUID_SHORT() return value is constructed this way:

 (server_id & 255) << 56
+ (server_startup_time_in_seconds << 24)
+ incremented_variable++;

mysql> SELECT UUID_SHORT();

http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.opengroup.org/public/pubs/catalog/c706.htm

Functions and Modifiers for Use with GROUP BY Clauses

1253

 -> 92395783831158784

Note that UUID_SHORT() does not work with statement-based replication.

• VALUES(col_name)

In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the
VALUES(col_name) function in the UPDATE clause to refer to column values from the INSERT
portion of the statement. In other words, VALUES(col_name) in the UPDATE clause refers to the
value of col_name that would be inserted, had no duplicate-key conflict occurred. This function
is especially useful in multiple-row inserts. The VALUES() function is meaningful only in the
ON DUPLICATE KEY UPDATE clause of INSERT statements and returns NULL otherwise. See
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
 -> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

12.17 Functions and Modifiers for Use with GROUP BY Clauses

12.17.1 GROUP BY (Aggregate) Functions
Table 12.21 Aggregate (GROUP BY) Functions

Name Description

AVG() Return the average value of the argument

BIT_AND() Return bitwise and

BIT_OR() Return bitwise or

BIT_XOR() Return bitwise xor

COUNT(DISTINCT) Return the count of a number of different values

COUNT() Return a count of the number of rows returned

GROUP_CONCAT() Return a concatenated string

MAX() Return the maximum value

MIN() Return the minimum value

STD() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

STDDEV() Return the population standard deviation

SUM() Return the sum

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

This section describes group (aggregate) functions that operate on sets of values. Unless otherwise
stated, group functions ignore NULL values.

If you use a group function in a statement containing no GROUP BY clause, it is equivalent to grouping
on all rows. For more information, see Section 12.17.3, “MySQL Extensions to GROUP BY”.

For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The
SUM() and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL),
and a DOUBLE value for approximate-value arguments (FLOAT or DOUBLE).

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, losing everything after the first nonnumeric character.) To work around this problem,

GROUP BY (Aggregate) Functions

1254

convert to numeric units, perform the aggregate operation, and convert back to a temporal value.
Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number
if necessary. For SET or ENUM values, the cast operation causes the underlying numeric value to be
used.

• AVG([DISTINCT] expr)

Returns the average value of expr. The DISTINCT option can be used to return the average of the
distinct values of expr.

AVG() returns NULL if there were no matching rows.

mysql> SELECT student_name, AVG(test_score)
 -> FROM student
 -> GROUP BY student_name;

• BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 18446744073709551615 if there were no matching rows. (This is the value of
an unsigned BIGINT value with all bits set to 1.)

• BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 0 if there were no matching rows.

• BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 0 if there were no matching rows.

• COUNT(expr)

Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT
statement. The result is a BIGINT value.

COUNT() returns 0 if there were no matching rows.

mysql> SELECT student.student_name,COUNT(*)
 -> FROM student,course
 -> WHERE student.student_id=course.student_id
 -> GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether or
not they contain NULL values.

COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table, no other
columns are retrieved, and there is no WHERE clause. For example:

GROUP BY (Aggregate) Functions

1255

mysql> SELECT COUNT(*) FROM student;

This optimization applies only to MyISAM tables only, because an exact row count is stored for
this storage engine and can be accessed very quickly. For transactional storage engines such as
InnoDB, storing an exact row count is more problematic because multiple transactions may be
occurring, each of which may affect the count.

• COUNT(DISTINCT expr,[expr...])

Returns a count of the number of rows with different non-NULL expr values.

COUNT(DISTINCT) returns 0 if there were no matching rows.

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can obtain the number of distinct expression combinations that do not contain
NULL by giving a list of expressions. In standard SQL, you would have to do a concatenation of all
expressions inside COUNT(DISTINCT ...).

• GROUP_CONCAT(expr)

This function returns a string result with the concatenated non-NULL values from a group. It returns
NULL if there are no non-NULL values. The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
 [ORDER BY {unsigned_integer | col_name | expr}
 [ASC | DESC] [,col_name ...]]
 [SEPARATOR str_val])

mysql> SELECT student_name,
 -> GROUP_CONCAT(test_score)
 -> FROM student
 -> GROUP BY student_name;

Or:

mysql> SELECT student_name,
 -> GROUP_CONCAT(DISTINCT test_score
 -> ORDER BY test_score DESC SEPARATOR ' ')
 -> FROM student
 -> GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. To eliminate duplicate
values, use the DISTINCT clause. To sort values in the result, use the ORDER BY clause. To sort in
reverse order, add the DESC (descending) keyword to the name of the column you are sorting by in
the ORDER BY clause. The default is ascending order; this may be specified explicitly using the ASC
keyword. The default separator between values in a group is comma (“,”). To specify a separator
explicitly, use SEPARATOR followed by the string literal value that should be inserted between group
values. To eliminate the separator altogether, specify SEPARATOR ''.

The result is truncated to the maximum length that is given by the group_concat_max_len system
variable, which has a default value of 1024. The value can be set higher, although the effective
maximum length of the return value is constrained by the value of max_allowed_packet. The
syntax to change the value of group_concat_max_len at runtime is as follows, where val is an
unsigned integer:

SET [GLOBAL | SESSION] group_concat_max_len = val;

GROUP BY (Aggregate) Functions

1256

The return value is a nonbinary or binary string, depending on whether the arguments are nonbinary
or binary strings. The result type is TEXT or BLOB unless group_concat_max_len is less than or
equal to 512, in which case the result type is VARCHAR or VARBINARY.

See also CONCAT() and CONCAT_WS(): Section 12.5, “String Functions”.

• MAX([DISTINCT] expr)

Returns the maximum value of expr. MAX() may take a string argument; in such cases, it returns
the maximum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword
can be used to find the maximum of the distinct values of expr, however, this produces the same
result as omitting DISTINCT.

MAX() returns NULL if there were no matching rows.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 -> FROM student
 -> GROUP BY student_name;

For MAX(), MySQL currently compares ENUM and SET columns by their string value rather than
by the string's relative position in the set. This differs from how ORDER BY compares them. This is
expected to be rectified in a future MySQL release.

• MIN([DISTINCT] expr)

Returns the minimum value of expr. MIN() may take a string argument; in such cases, it returns the
minimum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can
be used to find the minimum of the distinct values of expr, however, this produces the same result
as omitting DISTINCT.

MIN() returns NULL if there were no matching rows.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 -> FROM student
 -> GROUP BY student_name;

For MIN(), MySQL currently compares ENUM and SET columns by their string value rather than
by the string's relative position in the set. This differs from how ORDER BY compares them. This is
expected to be rectified in a future MySQL release.

• STD(expr)

Returns the population standard deviation of expr. This is an extension to standard SQL. The
standard SQL function STDDEV_POP() can be used instead.

This function returns NULL if there were no matching rows.

• STDDEV(expr)

Returns the population standard deviation of expr. This function is provided for compatibility with
Oracle. The standard SQL function STDDEV_POP() can be used instead.

This function returns NULL if there were no matching rows.

• STDDEV_POP(expr)

Returns the population standard deviation of expr (the square root of VAR_POP()). You can also
use STD() or STDDEV(), which are equivalent but not standard SQL.

STDDEV_POP() returns NULL if there were no matching rows.

GROUP BY Modifiers

1257

• STDDEV_SAMP(expr)

Returns the sample standard deviation of expr (the square root of VAR_SAMP().

STDDEV_SAMP() returns NULL if there were no matching rows.

• SUM([DISTINCT] expr)

Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT
keyword can be used to sum only the distinct values of expr.

SUM() returns NULL if there were no matching rows.

• VAR_POP(expr)

Returns the population standard variance of expr. It considers rows as the whole population, not as
a sample, so it has the number of rows as the denominator. You can also use VARIANCE(), which is
equivalent but is not standard SQL.

VAR_POP() returns NULL if there were no matching rows.

• VAR_SAMP(expr)

Returns the sample variance of expr. That is, the denominator is the number of rows minus one.

VAR_SAMP() returns NULL if there were no matching rows.

• VARIANCE(expr)

Returns the population standard variance of expr. This is an extension to standard SQL. The
standard SQL function VAR_POP() can be used instead.

VARIANCE() returns NULL if there were no matching rows.

12.17.2 GROUP BY Modifiers

The GROUP BY clause permits a WITH ROLLUP modifier that causes extra rows to be added to
the summary output. These rows represent higher-level (or super-aggregate) summary operations.
ROLLUP thus enables you to answer questions at multiple levels of analysis with a single query. It can
be used, for example, to provide support for OLAP (Online Analytical Processing) operations.

Suppose that a table named sales has year, country, product, and profit columns for
recording sales profitability:

CREATE TABLE sales
(
 year INT NOT NULL,
 country VARCHAR(20) NOT NULL,
 product VARCHAR(32) NOT NULL,
 profit INT
);

The table's contents can be summarized per year with a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+

This output shows the total profit for each year, but if you also want to determine the total profit
summed over all years, you must add up the individual values yourself or run an additional query.

GROUP BY Modifiers

1258

Or you can use ROLLUP, which provides both levels of analysis with a single query. Adding a WITH
ROLLUP modifier to the GROUP BY clause causes the query to produce another row that shows the
grand total over all year values:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
2000	4525
2001	3010
NULL	7535
+------+-------------+

The grand total super-aggregate line is identified by the value NULL in the year column.

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each
time there is a “break” (change in value) in any but the last grouping column, the query produces an
extra super-aggregate summary row.

For example, without ROLLUP, a summary on the sales table based on year, country, and
product might look like this:

mysql> SELECT year, country, product, SUM(profit)
 -> FROM sales
 -> GROUP BY year, country, product;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	India	Calculator	150
2000	India	Computer	1200
2000	USA	Calculator	75
2000	USA	Computer	1500
2001	Finland	Phone	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
+------+---------+------------+-------------+

The output indicates summary values only at the year/country/product level of analysis. When ROLLUP
is added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit)
 -> FROM sales
 -> GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	NULL	1350
2000	USA	Calculator	75
2000	USA	Computer	1500
2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	Phone	10
2001	Finland	NULL	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	NULL	3000
2001	NULL	NULL	3010
NULL	NULL	NULL	7535

GROUP BY Modifiers

1259

+------+---------+------------+-------------+

For this query, adding ROLLUP causes the output to include summary information at four levels of
analysis, not just one. Here is how to interpret the ROLLUP output:

• Following each set of product rows for a given year and country, an extra summary row is produced
showing the total for all products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra summary row is produced showing the total for
all countries and products. These rows have the country and products columns set to NULL.

• Finally, following all other rows, an extra summary row is produced showing the grand total for all
years, countries, and products. This row has the year, country, and products columns set to
NULL.

Other Considerations When using ROLLUP

The following items list some behaviors specific to the MySQL implementation of ROLLUP.

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other words,
ROLLUP and ORDER BY are mutually exclusive. However, you still have some control over sort order.
GROUP BY in MySQL sorts results, and you can use explicit ASC and DESC keywords with columns
named in the GROUP BY list to specify sort order for individual columns. (The higher-level summary
rows added by ROLLUP still appear after the rows from which they are calculated, regardless of the sort
order.)

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after
ROLLUP, so the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit)
 -> FROM sales
 -> GROUP BY year, country, product WITH ROLLUP
 -> LIMIT 5;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
+------+---------+------------+-------------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because you have
less context for understanding the super-aggregate rows.

The NULL indicators in each super-aggregate row are produced when the row is sent to the client.
The server looks at the columns named in the GROUP BY clause following the leftmost one that has
changed value. For any column in the result set with a name that is a lexical match to any of those
names, its value is set to NULL. (If you specify grouping columns by column number, the server
identifies which columns to set to NULL by number.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late
stage in query processing, you cannot test them as NULL values within the query itself. For example,
you cannot add HAVING product IS NULL to the query to eliminate from the output all but the
super-aggregate rows.

On the other hand, the NULL values do appear as NULL on the client side and can be tested as such
using any MySQL client programming interface.

MySQL permits a column that does not appear in the GROUP BY list to be named in the select list.
In this case, the server is free to choose any value from this nonaggregated column in summary
rows, and this includes the extra rows added by WITH ROLLUP. For example, in the following query,

MySQL Extensions to GROUP BY

1260

country is a nonaggregated column that does not appear in the GROUP BY list and values chosen for
this column are indeterminate:

mysql> SELECT year, country, SUM(profit)
 -> FROM sales GROUP BY year WITH ROLLUP;
+------+---------+-------------+
| year | country | SUM(profit) |
+------+---------+-------------+
2000	India	4525
2001	USA	3010
NULL	USA	7535
+------+---------+-------------+

This behavior occurs if the ONLY_FULL_GROUP_BY SQL mode is not enabled. If that mode is enabled,
the server rejects the query as illegal because country is not listed in the GROUP BY clause. For more
information about nonaggregated columns and GROUP BY, see Section 12.17.3, “MySQL Extensions to
GROUP BY”.

12.17.3 MySQL Extensions to GROUP BY

In standard SQL, a query that includes a GROUP BY clause cannot refer to nonaggregated columns in
the select list that are not named in the GROUP BY clause. For example, this query is illegal in standard
SQL because the name column in the select list does not appear in the GROUP BY:

SELECT o.custid, c.name, MAX(o.payment)
 FROM orders AS o, customers AS c
 WHERE o.custid = c.custid
 GROUP BY o.custid;

For the query to be legal, the name column must be omitted from the select list or named in the GROUP
BY clause.

MySQL extends the use of GROUP BY so that the select list can refer to nonaggregated columns not
named in the GROUP BY clause. This means that the preceding query is legal in MySQL. You can use
this feature to get better performance by avoiding unnecessary column sorting and grouping. However,
this is useful primarily when all values in each nonaggregated column not named in the GROUP BY are
the same for each group. The server is free to choose any value from each group, so unless they are
the same, the values chosen are indeterminate. Furthermore, the selection of values from each group
cannot be influenced by adding an ORDER BY clause. Sorting of the result set occurs after values have
been chosen, and ORDER BY does not affect which values within each group the server chooses.

A similar MySQL extension applies to the HAVING clause. In standard SQL, a query that includes
a GROUP BY clause cannot refer to nonaggregated columns in the HAVING clause that are not
named in the GROUP BY clause. A MySQL extension permits references to such columns to simplify
calculations. This extension assumes that the nongrouped columns will have the same group-wise
values. Otherwise, the result is indeterminate.

To disable the MySQL GROUP BY extension, enable the ONLY_FULL_GROUP_BY SQL mode. This
enables standard SQL behavior: Columns not named in the GROUP BY clause cannot be used in the
select list or HAVING clause unless enclosed in an aggregate function.

ONLY_FULL_GROUP_BY also affects use of aliases in the HAVING clauses. For example, the following
query returns name values that occur only once in table orders:

SELECT name, COUNT(name) FROM orders
 GROUP BY name
 HAVING COUNT(name) = 1;

MySQL extends this behavior to permit the use of an alias in the HAVING clause for the aggregated
column:

Spatial Extensions

1261

SELECT name, COUNT(name) AS c FROM orders
 GROUP BY name
 HAVING c = 1;

Enabling ONLY_FULL_GROUP_BY disables this MySQL extension and a non-grouping field
'c' is used in HAVING clause error occurs because the column c in the HAVING clause is not
enclosed in an aggregate function (instead, it is an aggregate function).

The select list extension also applies to ORDER BY. That is, you can refer to nonaggregated columns in
the ORDER BY clause that do not appear in the GROUP BY clause. (However, as mentioned previously,
ORDER BY does not affect which values are chosen from nonaggregated columns; it only sorts them
after they have been chosen.) This extension does not apply if the ONLY_FULL_GROUP_BY SQL mode
is enabled.

In some cases, you can use MIN() and MAX() to obtain a specific column value even if it is not
unique. If the sort column contains integers no larger than 6 digits, the following query gives the value
of column from the row containing the smallest sort value:

SUBSTR(MIN(CONCAT(LPAD(sort,6,'0'),column)),7)

See Section 3.6.4, “The Rows Holding the Group-wise Maximum of a Certain Column”.

If you are trying to follow standard SQL, you cannot use expressions in GROUP BY clauses. As a
workaround, use an alias for the expression:

SELECT id, FLOOR(value/100) AS val
 FROM tbl_name
 GROUP BY id, val;

MySQL permits expressions in GROUP BY clauses, so the alias is unnecessary:

SELECT id, FLOOR(value/100)
 FROM tbl_name
 GROUP BY id, FLOOR(value/100);

12.18 Spatial Extensions
MySQL supports spatial extensions to enable the generation, storage, and analysis of geographic
features. These features are available for MyISAM, InnoDB, NDB, and ARCHIVE tables.

For spatial columns, MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage
engines support non-SPATIAL indexes, as described in Section 13.1.11, “CREATE INDEX Syntax”.

This chapter covers the following topics:

• The basis of these spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

Additional Resources

• The Open Geospatial Consortium publishes the OpenGIS® Simple Features Specifications For
SQL, a document that proposes several conceptual ways for extending an SQL RDBMS to support
spatial data. This specification is available from the OGC Web site at http://www.opengis.org/
docs/99-049.pdf.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://www.opengis.org/docs/99-049.pdf
http://www.opengis.org/docs/99-049.pdf

Introduction to MySQL Spatial Support

1262

• If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss
them in the GIS forum: http://forums.mysql.com/list.php?23.

12.18.1 Introduction to MySQL Spatial Support

MySQL implements spatial extensions following the specification of the Open Geospatial Consortium
(OGC). This is an international consortium of more than 250 companies, agencies, and universities
participating in the development of publicly available conceptual solutions that can be useful
with all kinds of applications that manage spatial data. The OGC maintains a Web site at http://
www.opengis.org/.

In 1997, the Open Geospatial Consortium published the OpenGIS® Simple Features Specifications
For SQL, a document that proposes several conceptual ways for extending an SQL RDBMS to
support spatial data. This specification is available from the OGC Web site at http://www.opengis.org/
docs/99-049.pdf. It contains additional information relevant to this chapter.

MySQL implements a subset of the SQL with Geometry Types environment proposed by OGC. This
term refers to an SQL environment that has been extended with a set of geometry types. A geometry-
valued SQL column is implemented as a column that has a geometry type. The specification describe a
set of SQL geometry types, as well as functions on those types to create and analyze geometry values.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.

• A space. For example, town district, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

Some documents use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant
measurement of the earth. Another meaning comes from cartography, referring to the geometric
features that cartographers use to map the world.

This chapter uses all of these terms synonymously: geographic feature, geospatial feature, feature,
or geometry. Here, the term most commonly used is geometry, defined as a point or an aggregate of
points representing anything in the world that has a location.

12.18.2 The OpenGIS Geometry Model

The set of geometry types proposed by OGC's SQL with Geometry Types environment is based
on the OpenGIS Geometry Model. In this model, each geometric object has the following general
properties:

• It is associated with a Spatial Reference System, which describes the coordinate space in which the
object is defined.

• It belongs to some geometry class.

12.18.2.1 The Geometry Class Hierarchy

The geometry classes define a hierarchy as follows:

• Geometry (noninstantiable)

• Point (instantiable)

• Curve (noninstantiable)

• LineString (instantiable)

http://forums.mysql.com/list.php?23
http://www.opengis.org/
http://www.opengis.org/
http://www.opengis.org/docs/99-049.pdf
http://www.opengis.org/docs/99-049.pdf

The OpenGIS Geometry Model

1263

• Line

• LinearRing

• Surface (noninstantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (noninstantiable)

• MultiLineString (instantiable)

• MultiSurface (noninstantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in noninstantiable classes. It is possible to create objects in
instantiable classes. All classes have properties, and instantiable classes may also have assertions
(rules that define valid class instances).

Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry
are restricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional
coordinate space. All instantiable geometry classes are defined so that valid instances of a geometry
class are topologically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses
Line and LinearRing.

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named
MultiPoint, MultiLineString, and MultiPolygon for modeling geometries corresponding
to collections of Points, LineStrings, and Polygons, respectively. MultiCurve and
MultiSurface are introduced as abstract superclasses that generalize the collection interfaces to
handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as noninstantiable
classes. They define a common set of methods for their subclasses and are included for extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and
MultiPolygon are instantiable classes.

12.18.2.2 Class Geometry

Geometry is the root class of the hierarchy. It is a noninstantiable class but has a number of properties
that are common to all geometry values created from any of the Geometry subclasses. These
properties are described in the following list. Particular subclasses have their own specific properties,
described later.

Geometry Properties

A geometry value has the following properties:

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

The OpenGIS Geometry Model

1264

• Its SRID, or Spatial Reference Identifier. This value identifies the geometry's associated Spatial
Reference System that describes the coordinate space in which the geometry object is defined.

In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are
done assuming Euclidean (planar) geometry.

• Its coordinates in its Spatial Reference System, represented as double-precision (8-byte) numbers.
All nonempty geometries include at least one pair of (X,Y) coordinates. Empty geometries contain no
coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance
between two objects may differ even when objects have the same coordinates, because the distance
on the planar coordinate system and the distance on the geocentric system (coordinates on the
Earth's surface) are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not
occupied by the geometry. The interior is the space occupied by the geometry. The boundary is the
interface between the geometry's interior and exterior.

• Its MBR (Minimum Bounding Rectangle), or Envelope. This is the bounding geometry, formed by the
minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or nonsimple. Geometry values of types (LineString, MultiPoint,
MultiLineString) are either simple or nonsimple. Each type determines its own assertions for
being simple or nonsimple.

• Whether the value is closed or not closed. Geometry values of types (LineString,
MultiString) are either closed or not closed. Each type determines its own assertions for being
closed or not closed.

• Whether the value is empty or nonempty A geometry is empty if it does not have any points.
Exterior, interior, and boundary of an empty geometry are not defined (that is, they are represented
by a NULL value). An empty geometry is defined to be always simple and has an area of 0.

• Its dimension. A geometry can have a dimension of –1, 0, 1, or 2:

• –1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with nonzero length and zero area.

• 2 for a geometry with nonzero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon
objects have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and
MultiPolygon objects are the same as the dimensions of the elements they consist of.

12.18.2.3 Class Point

A Point is a geometry that represents a single location in coordinate space.

Point Examples

• Imagine a large-scale map of the world with many cities. A Point object could represent each city.

• On a city map, a Point object could represent a bus stop.

The OpenGIS Geometry Model

1265

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

12.18.2.4 Class Curve

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular
subclasses of Curve define the type of interpolation between points. Curve is a noninstantiable class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

• A Curve is simple if it does not pass through the same point twice.

• A Curve is closed if its start point is equal to its endpoint.

• The boundary of a closed Curve is empty.

• The boundary of a nonclosed Curve consists of its two endpoints.

• A Curve that is simple and closed is a LinearRing.

12.18.2.5 Class LineString

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it is both closed and simple.

12.18.2.6 Class Surface

A Surface is a two-dimensional geometry. It is a noninstantiable class. Its only instantiable subclass is
Polygon.

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single “patch”
that is associated with a single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and
interior boundaries.

The OpenGIS Geometry Model

1266

12.18.2.7 Class Polygon

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior
boundary and zero or more interior boundaries, where each interior boundary defines a hole in the
Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString objects
that are both simple and closed) that make up its exterior and interior boundaries.

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a
Point, but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole
defines a connected component of the exterior.

The preceding assertions make a Polygon a simple geometry.

12.18.2.8 Class GeometryCollection

A GeometryCollection is a geometry that is a collection of one or more geometries of any class.

All the elements in a GeometryCollection must be in the same Spatial Reference System
(that is, in the same coordinate system). There are no other constraints on the elements of a
GeometryCollection, although the subclasses of GeometryCollection described in the
following sections may restrict membership. Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

• Constraints on the degree of spatial overlap between elements

12.18.2.9 Class MultiPoint

A MultiPoint is a geometry collection composed of Point elements. The points are not connected
or ordered in any way.

MultiPoint Examples

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate values).

• The boundary of a MultiPoint is the empty set.

12.18.2.10 Class MultiCurve

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a
noninstantiable class.

The OpenGIS Geometry Model

1267

MultiCurve Properties

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections between
any two elements occur at points that are on the boundaries of both elements.

• A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the “odd-
even rule”): A point is in the boundary of a MultiCurve if it is in the boundaries of an odd number of
MultiCurve elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

12.18.2.11 Class MultiLineString

A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

12.18.2.12 Class MultiSurface

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a
noninstantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• Two MultiSurface surfaces have no interiors that intersect.

• Two MultiSurface elements have boundaries that intersect at most at a finite number of points.

12.18.2.13 Class MultiPolygon

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the
previous assertion), or that touch at an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular,
closed point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The
number of connected components of the interior of a MultiPolygon is equal to the number of
Polygon values in the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the
boundaries of its Polygon elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon
element.

Supported Spatial Data Formats

1268

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.

12.18.3 Supported Spatial Data Formats

This section describes the standard spatial data formats that are used to represent geometry objects in
queries. They are:

• Well-Known Text (WKT) format

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB format.

12.18.3.1 Well-Known Text (WKT) Format

The Well-Known Text (WKT) representation of Geometry is designed to exchange geometry data in
ASCII form. For a Backus-Naur grammar that specifies the formal production rules for writing WKT
values, see the OpenGIS specification document referenced in Section 12.18, “Spatial Extensions”.

Examples of WKT representations of geometry objects:

• A Point:

POINT(15 20)

Note that point coordinates are specified with no separating comma. This differs from the syntax
for the SQL POINT() function, which requires a comma between the coordinates. Take care to
use the syntax appropriate to the context of a given spatial operation. For example, the following
statements both extract the X-coordinate from a Point object. The first produces the object directly
using the POINT() function. The second uses a WKT representation converted to a Point with
GeomFromText().

mysql> SELECT X(POINT(15, 20));
+------------------+
| X(POINT(15, 20)) |
+------------------+
| 15 |
+------------------+

mysql> SELECT X(GeomFromText('POINT(15 20)'));
+---------------------------------+
| X(GeomFromText('POINT(15 20)')) |
+---------------------------------+
| 15 |
+---------------------------------+

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

Note that point coordinate pairs are separated by commas.

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

• A MultiLineString with two LineString values:

Creating a Spatially Enabled MySQL Database

1269

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

12.18.3.2 Well-Known Binary (WKB) Format

The Well-Known Binary (WKB) representation for geometric values is defined by the OpenGIS
specification. It is also defined in the ISO SQL/MM Part 3: Spatial standard.

WKB is used to exchange geometry data as binary streams represented by BLOB values containing
geometric WKB information.

WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision numbers
(IEEE 754 format). A byte is eight bits.

For example, a WKB value that corresponds to POINT(1 1) consists of this sequence of 21 bytes
(each represented here by two hex digits):

0101000000000000000000F03F000000000000F03F

The sequence may be broken down into these components:

Byte order : 01
WKB type : 01000000
X : 000000000000F03F
Y : 000000000000F03F

Component representation is as follows:

• The byte order may be either 1 or 0 to indicate little-endian or big-endian storage. The little-endian
and big-endian byte orders are also known as Network Data Representation (NDR) and External
Data Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. Values from 1 through 7 indicate
Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values are represented by more complex data structures, as
detailed in the OpenGIS specification.

12.18.4 Creating a Spatially Enabled MySQL Database

This section describes the data types you can use for representing spatial data in MySQL, and the
functions available for creating and retrieving spatial values.

12.18.4.1 MySQL Spatial Data Types

MySQL has data types that correspond to OpenGIS classes. Some of these types hold single geometry
values:

• GEOMETRY

Creating a Spatially Enabled MySQL Database

1270

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINESTRING,
and POLYGON) restrict their values to a particular geometry type.

The other data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types
(MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, and GEOMETRYCOLLECTION) restrict collection
members to those having a particular geometry type.

12.18.4.2 Creating Spatial Values

This section describes how to create spatial values using Well-Known Text and Well-Known Binary
functions that are defined in the OpenGIS standard, and using MySQL-specific functions.

Creating Geometry Values Using WKT Functions

MySQL provides a number of functions that take as arguments a Well-Known Text representation and,
optionally, a spatial reference system identifier (SRID). They return the corresponding geometry.

GeomFromText() accepts a WKT of any geometry type as its first argument. An implementation also
provides type-specific construction functions for construction of geometry values of each geometry
type.

• GeomCollFromText(wkt[,srid]), GeometryCollectionFromText(wkt[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKT representation and SRID.

• GeomFromText(wkt[,srid]), GeometryFromText(wkt[,srid])

Constructs a geometry value of any type using its WKT representation and SRID.

• LineFromText(wkt[,srid]), LineStringFromText(wkt[,srid])

Constructs a LINESTRING value using its WKT representation and SRID.

• MLineFromText(wkt[,srid]), MultiLineStringFromText(wkt[,srid])

Constructs a MULTILINESTRING value using its WKT representation and SRID.

• MPointFromText(wkt[,srid]), MultiPointFromText(wkt[,srid])

Constructs a MULTIPOINT value using its WKT representation and SRID.

• MPolyFromText(wkt[,srid]), MultiPolygonFromText(wkt[,srid])

Constructs a MULTIPOLYGON value using its WKT representation and SRID.

• PointFromText(wkt[,srid])

Constructs a POINT value using its WKT representation and SRID.

Creating a Spatially Enabled MySQL Database

1271

• PolyFromText(wkt[,srid]), PolygonFromText(wkt[,srid])

Constructs a POLYGON value using its WKT representation and SRID.

The OpenGIS specification also defines the following optional functions, which MySQL does not
implement. These functions construct Polygon or MultiPolygon values based on the WKT
representation of a collection of rings or closed LineString values. These values may intersect.

• BdMPolyFromText(wkt,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKT format containing an
arbitrary collection of closed LineString values.

• BdPolyFromText(wkt,srid)

Constructs a Polygon value from a MultiLineString value in WKT format containing an arbitrary
collection of closed LineString values.

Creating Geometry Values Using WKB Functions

MySQL provides a number of functions that take as arguments a BLOB containing a Well-Known
Binary representation and, optionally, a spatial reference system identifier (SRID). They return the
corresponding geometry.

These functions also accept geometry objects for compatibility with the return value of the functions
in Creating Geometry Values Using MySQL-Specific Functions. Thus, those functions may be used to
provide the first argument to the functions in this section.

• GeomCollFromWKB(wkb[,srid]), GeometryCollectionFromWKB(wkb[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKB representation and SRID.

• GeomFromWKB(wkb[,srid]), GeometryFromWKB(wkb[,srid])

Constructs a geometry value of any type using its WKB representation and SRID.

• LineFromWKB(wkb[,srid]), LineStringFromWKB(wkb[,srid])

Constructs a LINESTRING value using its WKB representation and SRID.

• MLineFromWKB(wkb[,srid]), MultiLineStringFromWKB(wkb[,srid])

Constructs a MULTILINESTRING value using its WKB representation and SRID.

• MPointFromWKB(wkb[,srid]), MultiPointFromWKB(wkb[,srid])

Constructs a MULTIPOINT value using its WKB representation and SRID.

• MPolyFromWKB(wkb[,srid]), MultiPolygonFromWKB(wkb[,srid])

Constructs a MULTIPOLYGON value using its WKB representation and SRID.

• PointFromWKB(wkb[,srid])

Constructs a POINT value using its WKB representation and SRID.

• PolyFromWKB(wkb[,srid]), PolygonFromWKB(wkb[,srid])

Constructs a POLYGON value using its WKB representation and SRID.

The OpenGIS specification also describes optional functions for constructing Polygon or
MultiPolygon values based on the WKB representation of a collection of rings or closed
LineString values. These values may intersect. MySQL does not implement these functions:

Creating a Spatially Enabled MySQL Database

1272

• BdMPolyFromWKB(wkb,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKB format containing an
arbitrary collection of closed LineString values.

• BdPolyFromWKB(wkb,srid)

Constructs a Polygon value from a MultiLineString value in WKB format containing an arbitrary
collection of closed LineString values.

Creating Geometry Values Using MySQL-Specific Functions

MySQL provides a set of useful nonstandard functions for creating geometry values. The functions
described in this section are MySQL extensions to the OpenGIS specification.

These functions produce geometry objects from either WKB values or geometry objects as arguments.
If any argument is not a proper WKB or geometry representation of the proper object type, the return
value is NULL.

For example, you can insert the geometry return value from Point() directly into a Point column:

INSERT INTO t1 (pt_col) VALUES(Point(1,2));

• GeometryCollection(g1,g2,...)

Constructs a GeometryCollection.

• LineString(pt1,pt2,...)

Constructs a LineString value from a number of Point or WKB Point arguments. If the number
of arguments is less than two, the return value is NULL.

• MultiLineString(ls1,ls2,...)

Constructs a MultiLineString value using LineString or WKB LineString arguments.

• MultiPoint(pt1,pt2,...)

Constructs a MultiPoint value using Point or WKB Point arguments.

• MultiPolygon(poly1,poly2,...)

Constructs a MultiPolygon value from a set of Polygon or WKB Polygon arguments.

• Point(x,y)

Constructs a Point using its coordinates.

• Polygon(ls1,ls2,...)

Constructs a Polygon value from a number of LineString or WKB LineString arguments. If
any argument does not represent a LinearRing (that is, not a closed and simple LineString),
the return value is NULL.

12.18.4.3 Creating Spatial Columns

MySQL provides a standard way of creating spatial columns for geometry types, for example, with
CREATE TABLE or ALTER TABLE. Currently, spatial columns are supported for MyISAM, InnoDB,
NDB, and ARCHIVE tables. See also the annotations about spatial indexes under Section 12.18.6.1,
“Creating Spatial Indexes”.

• Use the CREATE TABLE statement to create a table with a spatial column:

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Creating a Spatially Enabled MySQL Database

1273

CREATE TABLE geom (g GEOMETRY);

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;

12.18.4.4 Populating Spatial Columns

After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format
from either Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples
demonstrate how to insert geometry values into a table by converting WKT values into internal
geometry format:

• Perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (GeomFromText(@g));

• Perform the conversion prior to the INSERT:

SET @g = GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomFromText(@g));

The preceding examples all use GeomFromText() to create geometry values. You can also use type-
specific functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (PolygonFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomCollFromText(@g));

Note that if a client application program wants to use WKB representations of geometry values, it is
responsible for sending correctly formed WKB in queries to the server. However, there are several
ways of satisfying this requirement. For example:

• Inserting a POINT(1 1) value with hex literal syntax:

mysql> INSERT INTO geom VALUES

Spatial Analysis Functions

1274

 -> (GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argument
of BLOB type:

INSERT INTO geom VALUES (GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

• In a C program, you can escape a binary value using mysql_real_escape_string()
and include the result in a query string that is sent to the server. See Section 21.8.7.55,
“mysql_real_escape_string()”.

12.18.4.5 Fetching Spatial Data

Geometry values stored in a table can be fetched in internal format. You can also convert them into
WKT or WKB format.

• Fetching spatial data in internal format:

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

• Fetching spatial data in WKT format:

The AsText() function converts a geometry from internal format into a WKT string.

SELECT AsText(g) FROM geom;

• Fetching spatial data in WKB format:

The AsBinary() function converts a geometry from internal format into a BLOB containing the WKB
value.

SELECT AsBinary(g) FROM geom;

12.18.5 Spatial Analysis Functions

After populating spatial columns with values, you are ready to query and analyze them. MySQL
provides a set of functions to perform various operations on spatial data. These functions can be
grouped into four major categories according to the type of operation they perform:

• Functions that convert geometries between various formats

• Functions that provide access to qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

Spatial analysis functions can be used in many contexts, such as:

• Any interactive SQL program, such as mysql.

• Application programs written in any language that supports a MySQL client API

12.18.5.1 Geometry Format Conversion Functions

MySQL supports the following functions for converting geometry values between internal format and
either WKT or WKB format:

Spatial Analysis Functions

1275

• AsBinary(g), AsWKB(g)

Converts a value in internal geometry format to its WKB representation and returns the binary result.

SELECT AsBinary(g) FROM geom;

• AsText(g), AsWKT(g)

Converts a value in internal geometry format to its WKT representation and returns the string result.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(GeomFromText(@g));
+--------------------------+
| AsText(GeomFromText(@g)) |
+--------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------+

• GeomFromText(wkt[,srid])

Converts a string value from its WKT representation into internal geometry format and returns the
result. A number of type-specific functions are also supported, such as PointFromText() and
LineFromText(). See Creating Geometry Values Using WKT Functions.

• GeomFromWKB(wkb[,srid])

Converts a binary value from its WKB representation into internal geometry format and returns the
result. A number of type-specific functions are also supported, such as PointFromWKB() and
LineFromWKB(). See Creating Geometry Values Using WKB Functions.

12.18.5.2 Geometry Property Functions

Each function that belongs to this group takes a geometry value as its argument and returns some
quantitative or qualitative property of the geometry. Some functions restrict their argument type. Such
functions return NULL if the argument is of an incorrect geometry type. For example, Area() returns
NULL if the object type is neither Polygon nor MultiPolygon.

General Geometry Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any
type.

• Dimension(g)

Returns the inherent dimension of the geometry value g. The result can be –1, 0, 1, or 2. The
meaning of these values is given in Section 12.18.2.2, “Class Geometry”.

mysql> SELECT Dimension(GeomFromText('LineString(1 1,2 2)'));
+--+
| Dimension(GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |
+--+

• Envelope(g)

Returns the Minimum Bounding Rectangle (MBR) for the geometry value g. The result is returned as
a Polygon value.

The polygon is defined by the corner points of the bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

Spatial Analysis Functions

1276

mysql> SELECT AsText(Envelope(GeomFromText('LineString(1 1,2 2)')));
+---+
| AsText(Envelope(GeomFromText('LineString(1 1,2 2)'))) |
+---+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+---+

• GeometryType(g)

Returns as a binary string the name of the geometry type of which the geometry instance g is a
member. The name corresponds to one of the instantiable Geometry subclasses.

mysql> SELECT GeometryType(GeomFromText('POINT(1 1)'));
+--+
| GeometryType(GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+

• IsSimple(g)

Returns 1 if the geometry value g has no anomalous geometric points, such as self-intersection or
self-tangency. IsSimple() returns 0 if the argument is not simple, and NULL if it is NULL.

The description of each instantiable geometric class given earlier in the chapter includes the specific
conditions that cause an instance of that class to be classified as not simple. (See Section 12.18.2.1,
“The Geometry Class Hierarchy”.)

• SRID(g)

Returns an integer indicating the Spatial Reference System ID for the geometry value g.

In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are
done assuming Euclidean (planar) geometry.

mysql> SELECT SRID(GeomFromText('LineString(1 1,2 2)',101));
+---+
| SRID(GeomFromText('LineString(1 1,2 2)',101)) |
+---+
| 101 |
+---+

The OpenGIS specification also defines the following functions, which MySQL does not implement:

• Boundary(g)

Returns a geometry that is the closure of the combinatorial boundary of the geometry value g.

• IsEmpty(g)

This function is a placeholder that returns 0 for any valid geometry value, 1 for any invalid geometry
value or NULL.

MySQL does not support GIS EMPTY values such as POINT EMPTY.

Point Functions

A Point consists of X and Y coordinates, which may be obtained using the following functions:

• X(p)

Returns the X-coordinate value for the Point object p as a double-precision number.

Spatial Analysis Functions

1277

mysql> SELECT X(POINT(56.7, 53.34));
+-----------------------+
| X(POINT(56.7, 53.34)) |
+-----------------------+
| 56.7 |
+-----------------------+

• Y(p)

Returns the Y-coordinate value for the Point object p as a double-precision number.

mysql> SELECT Y(POINT(56.7, 53.34));
+-----------------------+
| Y(POINT(56.7, 53.34)) |
+-----------------------+
| 53.34 |
+-----------------------+

LineString Functions

A LineString consists of Point values. You can extract particular points of a LineString, count
the number of points that it contains, or obtain its length.

• EndPoint(ls)

Returns the Point that is the endpoint of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(EndPoint(GeomFromText(@ls)));
+-------------------------------------+
| AsText(EndPoint(GeomFromText(@ls))) |
+-------------------------------------+
| POINT(3 3) |
+-------------------------------------+

• GLength(ls)

Returns as a double-precision number the length of the LineString value ls in its associated
spatial reference.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT GLength(GeomFromText(@ls));
+----------------------------+
| GLength(GeomFromText(@ls)) |
+----------------------------+
| 2.8284271247462 |
+----------------------------+

GLength() is a nonstandard name. It corresponds to the OpenGIS Length() function.

• IsClosed(ls)

Returns 1 if the LineString value ls is closed (that is, its StartPoint() and EndPoint()
values are the same) and is simple (does not pass through the same point more than once). Returns
0 if ls is not closed, and –1 if it is NULL.

mysql> SET @ls1 = 'LineString(1 1,2 2,3 3,2 2)';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @ls2 = 'LineString(1 1,2 2,3 3,1 1)';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT IsClosed(GeomFromText(@ls1));

Spatial Analysis Functions

1278

+------------------------------+
| IsClosed(GeomFromText(@ls1)) |
+------------------------------+
| 0 |
+------------------------------+
1 row in set (0.00 sec)

mysql> SELECT IsClosed(GeomFromText(@ls2));
+------------------------------+
| IsClosed(GeomFromText(@ls2)) |
+------------------------------+
| 1 |
+------------------------------+
1 row in set (0.00 sec)

• NumPoints(ls)

Returns the number of Point objects in the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT NumPoints(GeomFromText(@ls));
+------------------------------+
| NumPoints(GeomFromText(@ls)) |
+------------------------------+
| 3 |
+------------------------------+

• PointN(ls,N)

Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(PointN(GeomFromText(@ls),2));
+-------------------------------------+
| AsText(PointN(GeomFromText(@ls),2)) |
+-------------------------------------+
| POINT(2 2) |
+-------------------------------------+

• StartPoint(ls)

Returns the Point that is the start point of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(StartPoint(GeomFromText(@ls)));
+---------------------------------------+
| AsText(StartPoint(GeomFromText(@ls))) |
+---------------------------------------+
| POINT(1 1) |
+---------------------------------------+

MultiLineString Functions

These functions return properties of MultiLineString values.

• GLength(mls)

Returns as a double-precision number the length of the MultiLineString value mls. The length
of mls is equal to the sum of the lengths of its elements.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT GLength(GeomFromText(@mls));
+-----------------------------+
| GLength(GeomFromText(@mls)) |
+-----------------------------+

Spatial Analysis Functions

1279

| 4.2426406871193 |
+-----------------------------+

GLength() is a nonstandard name. It corresponds to the OpenGIS Length() function.

• IsClosed(mls)

Returns 1 if the MultiLineString value mls is closed (that is, the StartPoint() and
EndPoint() values are the same for each LineString in mls). Returns 0 if mls is not closed, and
–1 if it is NULL.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT IsClosed(GeomFromText(@mls));
+------------------------------+
| IsClosed(GeomFromText(@mls)) |
+------------------------------+
| 0 |
+------------------------------+

Polygon Functions

These functions return properties of Polygon values.

• Area(poly)

Returns as a double-precision number the area of the Polygon value poly, as measured in its
spatial reference system.

mysql> SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT Area(GeomFromText(@poly));
+---------------------------+
| Area(GeomFromText(@poly)) |
+---------------------------+
| 4 |
+---------------------------+

• ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(ExteriorRing(GeomFromText(@poly)));
+---+
| AsText(ExteriorRing(GeomFromText(@poly))) |
+---+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+---+

• InteriorRingN(poly,N)

Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered
beginning with 1.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(InteriorRingN(GeomFromText(@poly),1));
+--+
| AsText(InteriorRingN(GeomFromText(@poly),1)) |
+--+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+--+

• NumInteriorRings(poly)

Spatial Analysis Functions

1280

Returns the number of interior rings in the Polygon value poly.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT NumInteriorRings(GeomFromText(@poly));
+---------------------------------------+
| NumInteriorRings(GeomFromText(@poly)) |
+---------------------------------------+
| 1 |
+---------------------------------------+

MultiPolygon Functions

These functions return properties of MultiPolygon values.

• Area(mpoly)

Returns as a double-precision number the area of the MultiPolygon value mpoly, as measured in
its spatial reference system.

mysql> SET @mpoly =
 -> 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT Area(GeomFromText(@mpoly));
+----------------------------+
| Area(GeomFromText(@mpoly)) |
+----------------------------+
| 8 |
+----------------------------+

• Centroid(mpoly)

Returns the mathematical centroid for the MultiPolygon value mpoly as a Point. The result is
not guaranteed to be on the MultiPolygon.

mysql> SET @poly =
 -> GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7,5 5))');
mysql> SELECT GeometryType(@poly),AsText(Centroid(@poly));
+---------------------+--+
| GeometryType(@poly) | AsText(Centroid(@poly)) |
+---------------------+--+
| POLYGON | POINT(4.958333333333333 4.958333333333333) |
+---------------------+--+

The OpenGIS specification also defines the following function, which MySQL does not implement:

• PointOnSurface(mpoly)

Returns a Point value that is guaranteed to be on the MultiPolygon value mpoly.

GeometryCollection Functions

These functions return properties of GeometryCollection values.

• GeometryN(gc,N)

Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered
beginning with 1.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT AsText(GeometryN(GeomFromText(@gc),1));
+--+
| AsText(GeometryN(GeomFromText(@gc),1)) |

Spatial Analysis Functions

1281

+--+
| POINT(1 1) |
+--+

• NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT NumGeometries(GeomFromText(@gc));
+----------------------------------+
| NumGeometries(GeomFromText(@gc)) |
+----------------------------------+
| 2 |
+----------------------------------+

12.18.5.3 Functions That Create New Geometries from Existing Ones

The following sections describe functions that take geometry values as arguments and return new
geometry values.

Geometry Functions That Produce New Geometries

Section 12.18.5.2, “Geometry Property Functions”, discusses several functions that construct new
geometries from existing ones. See that section for descriptions of these functions:

• Envelope(g)

• StartPoint(ls)

• EndPoint(ls)

• PointN(ls,N)

• ExteriorRing(poly)

• InteriorRingN(poly,N)

• GeometryN(gc,N)

Spatial Operators

OpenGIS proposes a number of other functions that can produce geometries. They are designed to
implement spatial operators.

• Buffer(g,d)

Returns a geometry that represents all points whose distance from the geometry value g is less than
or equal to a distance of d.

Buffer() supports negative distances for polygons, multipolygons, and geometry collections
containing polygons or multipolygons. For point, multipoint, linestring, multilinestring, and geometry
collections not containing any polygons or multipolygons, Buffer() with a negative distance returns
NULL.

The OpenGIS specification also defines the following functions, which MySQL does not implement:

• ConvexHull(g)

Returns a geometry that represents the convex hull of the geometry value g.

• Difference(g1,g2)

Spatial Analysis Functions

1282

Returns a geometry that represents the point set difference of the geometry value g1 with g2.

• Intersection(g1,g2)

Returns a geometry that represents the point set intersection of the geometry values g1 with g2.

• SymDifference(g1,g2)

Returns a geometry that represents the point set symmetric difference of the geometry value g1 with
g2.

• Union(g1,g2)

Returns a geometry that represents the point set union of the geometry values g1 and g2.

12.18.5.4 Functions for Testing Spatial Relations Between Geometric Objects

The functions described in these sections take two geometries as input parameters and return a
qualitative or quantitative relation between them.

Relations on Geometry Minimal Bounding Rectangles (MBRs)

MySQL provides several functions that test relations between minimal bounding rectangles of two
geometries g1 and g2. The return values 1 and 0 indicate true and false, respectively.

• MBRContains(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 contains the Minimum
Bounding Rectangle of g2. This tests the opposite relationship as MBRWithin().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRContains(@g2,@g1);
----------------------+----------------------+
| MBRContains(@g1,@g2) | MBRContains(@g2,@g1) |
+----------------------+----------------------+
| 1 | 0 |
+----------------------+----------------------+

• MBRDisjoint(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 are disjoint (do not intersect).

• MBREqual(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 are the same.

• MBRIntersects(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 intersect.

• MBROverlaps(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 overlap. The term spatially overlaps is used if two geometries intersect and their intersection
results in a geometry of the same dimension but not equal to either of the given geometries.

• MBRTouches(g1,g2)

Spatial Analysis Functions

1283

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 touch. Two geometries spatially touch if the interiors of the geometries do not intersect, but the
boundary of one of the geometries intersects either the boundary or the interior of the other.

• MBRWithin(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 is within the Minimum
Bounding Rectangle of g2. This tests the opposite relationship as MBRContains().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

Functions That Test Spatial Relationships Between Geometries

The OpenGIS specification defines the following functions. They test the relationship between two
geometry values g1 and g2.

The return values 1 and 0 indicate true and false, respectively.

Note

MySQL originally implemented these functions such that they used object
bounding rectangles and returned the same result as the corresponding
MBR-based functions. Corresponding versions are available that use precise
object shapes. These versions are named with an ST_ prefix. For example,
Contains() uses object bounding rectangles, whereas ST_Contains() uses
object shapes.

There are also ST_ aliases for existing spatial functions that were already exact.
For example, ST_IsEmpty() is an alias for IsEmpty()

Functions That Use Object Shapes

• ST_Contains(g1,g2)

Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as
ST_Within().

• ST_Crosses(g1,g2)

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2
is a Point or a MultiPoint. Otherwise, returns 0.

The term spatially crosses denotes a spatial relation between two given geometries that has the
following properties:

• The two geometries intersect

• Their intersection results in a geometry that has a dimension that is one less than the maximum
dimension of the two given geometries

• Their intersection is not equal to either of the two given geometries

• ST_Disjoint(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

Spatial Analysis Functions

1284

• ST_Equals(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

• ST_Intersects(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

• ST_Overlaps(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially overlaps g2. The term spatially overlaps is used if two
geometries intersect and their intersection results in a geometry of the same dimension but not equal
to either of the given geometries.

• ST_Touches(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially touches g2. Two geometries spatially touch if the
interiors of the geometries do not intersect, but the boundary of one of the geometries intersects
either the boundary or the interior of the other.

• ST_Within(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as
ST_Contains().

Functions That Use Bounding Rectangles

• Contains(g1,g2)

Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as
Within().

• Crosses(g1,g2)

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2
is a Point or a MultiPoint. Otherwise, returns 0.

The term spatially crosses denotes a spatial relation between two given geometries that has the
following properties:

• The two geometries intersect

• Their intersection results in a geometry that has a dimension that is one less than the maximum
dimension of the two given geometries

• Their intersection is not equal to either of the two given geometries

• Disjoint(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

• Equals(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

• Intersects(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

• Overlaps(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially overlaps g2. The term spatially overlaps is used if two
geometries intersect and their intersection results in a geometry of the same dimension but not equal
to either of the given geometries.

Optimizing Spatial Analysis

1285

• Touches(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially touches g2. Two geometries spatially touch if the
interiors of the geometries do not intersect, but the boundary of one of the geometries intersects
either the boundary or the interior of the other.

• Within(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as
Contains().

12.18.6 Optimizing Spatial Analysis

For MyISAM tables, Search operations in nonspatial databases can be optimized using SPATIAL
indexes. This is true for spatial databases as well. With the help of a great variety of multi-dimensional
indexing methods that have previously been designed, it is possible to optimize spatial searches. The
most typical of these are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting for SPATIAL indexes on spatial columns. A SPATIAL
index is built using the MBR of a geometry. For most geometries, the MBR is a minimum rectangle that
surrounds the geometries. For a horizontal or a vertical linestring, the MBR is a rectangle degenerated
into the linestring. For a point, the MBR is a rectangle degenerated into the point.

It is also possible to create normal indexes on spatial columns. In a non-SPATIAL index, you must
declare a prefix for any spatial column except for POINT columns.

MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage engines support
non-SPATIAL indexes, as described in Section 13.1.11, “CREATE INDEX Syntax”.

12.18.6.1 Creating Spatial Indexes

For MyISAM tables, MySQL can create spatial indexes using syntax similar to that for creating regular
indexes, but extended with the SPATIAL keyword. Currently, columns in spatial indexes must be
declared NOT NULL. The following examples demonstrate how to create spatial indexes:

• With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g)) ENGINE=MyISAM;

• With ALTER TABLE:

ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

CREATE SPATIAL INDEX sp_index ON geom (g);

For MyISAM tables, SPATIAL INDEX creates an R-tree index. For storage engines that support
nonspatial indexing of spatial columns, the engine creates a B-tree index. A B-tree index on spatial
values will be useful for exact-value lookups, but not for range scans.

For more information on indexing spatial columns, see Section 13.1.11, “CREATE INDEX Syntax”.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

• With ALTER TABLE:

Optimizing Spatial Analysis

1286

ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

DROP INDEX sp_index ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the
column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing object
ID values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

12.18.6.2 Using a Spatial Index

The optimizer investigates whether available spatial indexes can be involved in the search for queries
that use a function such as MBRContains() or MBRWithin() in the WHERE clause. The following
query finds all objects that are in the given rectangle:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom WHERE
 -> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...

Optimizing Spatial Analysis

1287

10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
+-----+---+
20 rows in set (0.00 sec)

Use EXPLAIN to check the way this query is executed:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
 -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: range
possible_keys: g
 key: g
 key_len: 32
 ref: NULL
 rows: 50
 Extra: Using where
1 row in set (0.00 sec)

Check what would happen without a spatial index:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
 -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 32376
 Extra: Using where
1 row in set (0.00 sec)

Executing the SELECT statement without the spatial index yields the same result but causes the
execution time to rise from 0.00 seconds to 0.46 seconds:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
 -> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |

MySQL Conformance and Compatibility

1288

+-----+---+
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
+-----+---+
20 rows in set (0.46 sec)

12.18.7 MySQL Conformance and Compatibility

MySQL does not yet implement the following GIS features:

• Additional Metadata Views

OpenGIS specifications propose several additional metadata views. For example, a system view
named GEOMETRY_COLUMNS contains a description of geometry columns, one row for each
geometry column in the database.

• The OpenGIS function Length() on LineString and MultiLineString currently should be
called in MySQL as GLength()

The problem is that there is an existing SQL function Length() that calculates the length of string
values, and sometimes it is not possible to distinguish whether the function is called in a textual or
spatial context. We need either to solve this somehow, or decide on another function name.

12.19 Precision Math

MySQL 5.7 provides support for precision math: numeric value handling that results in extremely
accurate results and a high degree control over invalid values. Precision math is based on these two
features:

• SQL modes that control how strict the server is about accepting or rejecting invalid data.

• The MySQL library for fixed-point arithmetic.

These features have several implications for numeric operations and provide a high degree of
compliance with standard SQL:

• Precise calculations: For exact-value numbers, calculations do not introduce floating-point errors.
Instead, exact precision is used. For example, MySQL treats a number such as .0001 as an exact
value rather than as an approximation, and summing it 10,000 times produces a result of exactly 1,
not a value that is merely “close” to 1.

• Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its
argument, not on environmental factors such as how the underlying C library works.

• Platform independence: Operations on exact numeric values are the same across different
platforms such as Windows and Unix.

Types of Numeric Values

1289

• Control over handling of invalid values: Overflow and division by zero are detectable and can be
treated as errors. For example, you can treat a value that is too large for a column as an error rather
than having the value truncated to lie within the range of the column's data type. Similarly, you can
treat division by zero as an error rather than as an operation that produces a result of NULL. The
choice of which approach to take is determined by the setting of the server SQL mode.

The following discussion covers several aspects of how precision math works, including possible
incompatibilities with older applications. At the end, some examples are given that demonstrate how
MySQL 5.7 handles numeric operations precisely. For information about controlling the SQL mode, see
Section 5.1.7, “Server SQL Modes”.

12.19.1 Types of Numeric Values

The scope of precision math for exact-value operations includes the exact-value data types (integer
and DECIMAL types) and exact-value numeric literals. Approximate-value data types and numeric
literals are handled as floating-point numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed.
Examples: 1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-
point) number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In
MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

12.19.2 DECIMAL Data Type Characteristics

This section discusses the characteristics of the DECIMAL data type (and its synonyms) in MySQL 5.7,
with particular regard to the following topics:

• Maximum number of digits

• Storage format

• Storage requirements

• The nonstandard MySQL extension to the upper range of DECIMAL columns

Possible incompatibilities with applications that are written for older versions of MySQL (prior to 5.0.3)
are noted throughout this section.

The declaration syntax for a DECIMAL column is DECIMAL(M,D). The ranges of values for the
arguments in MySQL 5.7 are as follows:

• M is the maximum number of digits (the precision). It has a range of 1 to 65. (Older versions of
MySQL permitted a range of 1 to 254.)

• D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and
must be no larger than M.

The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65
digits. This limit of 65 digits of precision also applies to exact-value numeric literals, so the maximum
range of such literals differs from before. (In older versions of MySQL, decimal values could have up

Expression Handling

1290

to 254 digits. However, calculations were done using floating-point and thus were approximate, not
exact.)

Values for DECIMAL columns in MySQL 5.7 are stored using a binary format that packs nine decimal
digits into 4 bytes. The storage requirements for the integer and fractional parts of each value are
determined separately. Each multiple of nine digits requires 4 bytes, and any remaining digits left over
require some fraction of 4 bytes. The storage required for remaining digits is given by the following
table.

Leftover Digits Number of Bytes

0 0

1–2 1

3–4 2

5–6 3

7–9 4

For example, a DECIMAL(18,9) column has nine digits on either side of the decimal point, so the
integer part and the fractional part each require 4 bytes. A DECIMAL(20,6) column has fourteen
integer digits and six fractional digits. The integer digits require four bytes for nine of the digits and 3
bytes for the remaining five digits. The six fractional digits require 3 bytes.

Unlike some older versions of MySQL, DECIMAL columns in MySQL 5.7 do not store a leading +
character or - character or leading 0 digits. If you insert +0003.1 into a DECIMAL(5,1) column, it is
stored as 3.1. For negative numbers, a literal - character is not stored. Applications that rely on the
older behavior must be modified to account for this change.

DECIMAL columns in MySQL 5.7 do not permit values larger than the range implied by the column
definition. For example, a DECIMAL(3,0) column supports a range of -999 to 999. A DECIMAL(M,D)
column permits at most M - D digits to the left of the decimal point. This is not compatible with
applications relying on older versions of MySQL that permitted storing an extra digit in lieu of a + sign.

The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For
DECIMAL(M,D), the standard requires a precision of at least M digits but permits more. In MySQL,
DECIMAL(M,D) and NUMERIC(M,D) are the same, and both have a precision of exactly M digits.

For a full explanation of the internal format of DECIMAL values, see the file strings/decimal.c in a
MySQL source distribution. The format is explained (with an example) in the decimal2bin() function.

For more detailed information about porting applications that rely on the old treatment of the DECIMAL
data type, see the MySQL 5.0 Reference Manual.

12.19.3 Expression Handling

With precision math, exact-value numbers are used as given whenever possible. For example,
numbers in comparisons are used exactly as given without a change in value. In strict SQL mode,
for INSERT into a column with an exact data type (DECIMAL or integer), a number is inserted with its
exact value if it is within the column range. When retrieved, the value should be the same as what was
inserted. (If strict SQL mode is not enabled, truncation for INSERT is permissible.)

Handling of a numeric expression depends on what kind of values the expression contains:

• If any approximate values are present, the expression is approximate and is evaluated using floating-
point arithmetic.

• If no approximate values are present, the expression contains only exact values. If any exact value
contains a fractional part (a value following the decimal point), the expression is evaluated using
DECIMAL exact arithmetic and has a precision of 65 digits. The term “exact” is subject to the limits of
what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal notation

Expression Handling

1291

as .333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to exactly
1.0.

• Otherwise, the expression contains only integer values. The expression is exact and is evaluated
using integer arithmetic and has a precision the same as BIGINT (64 bits).

If a numeric expression contains any strings, they are converted to double-precision floating-point
values and the expression is approximate.

Inserts into numeric columns are affected by the SQL mode, which is controlled by the
sql_mode system variable. (See Section 5.1.7, “Server SQL Modes”.) The following discussion
mentions strict mode (selected by the STRICT_ALL_TABLES or STRICT_TRANS_TABLES
mode values) and ERROR_FOR_DIVISION_BY_ZERO. (As of MySQL 5.7.4, the effect of
ERROR_FOR_DIVISION_BY_ZERO is included in strict mode.) To turn on all restrictions,
you can simply use TRADITIONAL mode, which includes both strict mode values and
ERROR_FOR_DIVISION_BY_ZERO:

mysql> SET sql_mode='TRADITIONAL';

If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact value
if it is within the column range.

If the value has too many digits in the fractional part, rounding occurs and a warning is generated.
Rounding is done as described in Section 12.19.4, “Rounding Behavior”.

If the value has too many digits in the integer part, it is too large and is handled as follows:

• If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is
generated.

• If strict mode is enabled, an overflow error occurs.

Underflow is not detected, so underflow handling is undefined.

For inserts of strings into numeric columns, conversion from string to number is handled as follows if
the string has nonnumeric contents:

• A string that does not begin with a number cannot be used as a number and produces an error in
strict mode, or a warning otherwise. This includes the empty string.

• A string that begins with a number can be converted, but the trailing nonnumeric portion is truncated.
If the truncated portion contains anything other than spaces, this produces an error in strict mode, or
a warning otherwise.

By default, division by zero produces a result of NULL and no warning. By setting the SQL mode
appropriately, division by zero can be restricted and MySQL handles it differently.

As of MySQL 5.7.4, the effect of ERROR_FOR_DIVISION_BY_ZERO is included in strict mode. If strict
mode is enabled, inserts and updates involving division by zero are prohibited, and an error occurs.

Before MYSQL 5.7.4, division by zero is controlled by the ERROR_FOR_DIVISION_BY_ZERO SQL
mode in conjunction with strict mode. With ERROR_FOR_DIVISION_BY_ZERO enabled, MySQL
handles division by zero as follows:

• If strict mode is not enabled, a warning occurs.

• If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error
occurs.

In other words, inserts and updates involving expressions that perform division by zero can be treated
as errors, but this requires ERROR_FOR_DIVISION_BY_ZERO in addition to strict mode.

Rounding Behavior

1292

Suppose that we have this statement:

INSERT INTO t SET i = 1/0;

This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes.

sql_mode Value Result

'' (Default) No warning, no error; i is set to NULL.

strict No warning, no error; i is set to NULL.

ERROR_FOR_DIVISION_BY_ZERO Warning, no error; i is set to NULL.

strict,ERROR_FOR_DIVISION_BY_ZERO Error condition; no row is inserted.

12.19.4 Rounding Behavior

This section discusses precision math rounding for the ROUND() function and for inserts into columns
with exact-value types (DECIMAL and integer).

The ROUND() function rounds differently depending on whether its argument is exact or approximate:

• For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of .5
or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other
words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded down to
the next integer if positive or up to the next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means
that ROUND() uses the “round to nearest even” rule: A value with any fractional part is rounded to the
nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round
half away from zero,” regardless of whether the value to be inserted is exact or approximate:

mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 2

mysql> SELECT d FROM t;
+------+
| d |
+------+
| 3 |
| 3 |
+------+

12.19.5 Precision Math Examples

This section provides some examples that show precision math query results in MySQL 5.7. These
examples demonstrate the principles described in Section 12.19.3, “Expression Handling”, and
Section 12.19.4, “Rounding Behavior”.

Precision Math Examples

1293

Example 1. Numbers are used with their exact value as given when possible:

mysql> SELECT (.1 + .2) = .3;
+----------------+
| (.1 + .2) = .3 |
+----------------+
| 1 |
+----------------+

For floating-point values, results are inexact:

mysql> SELECT (.1E0 + .2E0) = .3E0;
+----------------------+
| (.1E0 + .2E0) = .3E0 |
+----------------------+
| 0 |
+----------------------+

Another way to see the difference in exact and approximate value handling is to add a small number
to a sum many times. Consider the following stored procedure, which adds .0001 to a variable 1,000
times.

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 0;
 DECLARE d DECIMAL(10,4) DEFAULT 0;
 DECLARE f FLOAT DEFAULT 0;
 WHILE i < 10000 DO
 SET d = d + .0001;
 SET f = f + .0001E0;
 SET i = i + 1;
 END WHILE;
 SELECT d, f;
END;

The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The
floating-point calculation introduces small errors:

+--------+------------------+
| d | f |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+

Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two
numbers X1 and X2 that have scale S1 and S2, the scale of the result is S1 + S2:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001 |
+-----------+

Example 3. Rounding behavior for exact-value numbers is well-defined:

Rounding behavior (for example, with the ROUND() function) is independent of the implementation of
the underlying C library, which means that results are consistent from platform to platform.

• Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the
“round half away from zero” rule. Values with a fractional part of .5 or greater are rounded away from
zero to the nearest integer, as shown here:

Precision Math Examples

1294

mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+
| 3 | -3 |
+------------+-------------+

• Rounding for floating-point values uses the C library, which on many systems uses the “round to
nearest even” rule. Values with any fractional part on such systems are rounded to the nearest even
integer:

mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
| 2 | -2 |
+--------------+---------------+

Example 4. In strict mode, inserting a value that is out of range for a column causes an error, rather
than truncation to a legal value.

When MySQL is not running in strict mode, truncation to a legal value occurs:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| 127 |
+------+
1 row in set (0.00 sec)

However, an error occurs if strict mode is in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1

mysql> SELECT i FROM t;
Empty set (0.00 sec)

Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes an
error, not a result of NULL.

In nonstrict mode, division by zero has a result of NULL:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;

Precision Math Examples

1295

Query OK, 1 row affected (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| NULL |
+------+
1 row in set (0.03 sec)

However, division by zero is an error if the proper SQL modes are in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0

mysql> SELECT i FROM t;
Empty set (0.01 sec)

Example 6. Exact-value literals are evaluated as exact values.

Prior to MySQL 5.0.3, exact-value and approximate-value literals both are evaluated as double-
precision floating-point values:

mysql> SELECT VERSION();
+------------+
| VERSION() |
+------------+
| 4.1.18-log |
+------------+
1 row in set (0.01 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.07 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| a | double(3,1) | | | 0.0 | |
| b | double | | | 0 | |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.04 sec)

As of MySQL 5.0.3, the approximate-value literal is evaluated using floating point, but the exact-value
literal is handled as DECIMAL:

mysql> SELECT VERSION();
+-----------------+
| VERSION() |
+-----------------+
| 5.1.6-alpha-log |
+-----------------+
1 row in set (0.11 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |

Precision Math Examples

1296

+-------+-----------------------+------+-----+---------+-------+
| a | decimal(2,1) unsigned | NO | | 0.0 | |
| b | double | NO | | 0 | |
+-------+-----------------------+------+-----+---------+-------+
2 rows in set (0.01 sec)

Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an
exact numeric type, with a scale at least that of the argument.

Consider these statements:

mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);
mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;

Before MySQL 5.0.3, the result is a double no matter the argument type:

mysql> DESCRIBE y;
+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
AVG(i)	double(17,4)	YES		NULL	
AVG(d)	double(17,4)	YES		NULL	
AVG(f)	double	YES		NULL	
+--------+--------------+------+-----+---------+-------+

As of MySQL 5.0.3, the result is a double only for the floating-point argument. For exact type
arguments, the result is also an exact type:

mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
AVG(i)	decimal(14,4)	YES		NULL	
AVG(d)	decimal(14,4)	YES		NULL	
AVG(f)	double	YES		NULL	
+--------+---------------+------+-----+---------+-------+

The result is a double only for the floating-point argument. For exact type arguments, the result is also
an exact type.

1297

Chapter 13 SQL Statement Syntax

Table of Contents
13.1 Data Definition Statements ... 1298

13.1.1 ALTER DATABASE Syntax .. 1298
13.1.2 ALTER EVENT Syntax .. 1299
13.1.3 ALTER FUNCTION Syntax .. 1301
13.1.4 ALTER PROCEDURE Syntax .. 1301
13.1.5 ALTER SERVER Syntax .. 1301
13.1.6 ALTER TABLE Syntax .. 1302
13.1.7 ALTER VIEW Syntax .. 1318
13.1.8 CREATE DATABASE Syntax .. 1318
13.1.9 CREATE EVENT Syntax .. 1318
13.1.10 CREATE FUNCTION Syntax .. 1323
13.1.11 CREATE INDEX Syntax .. 1323
13.1.12 CREATE PROCEDURE and CREATE FUNCTION Syntax ... 1326
13.1.13 CREATE SERVER Syntax .. 1331
13.1.14 CREATE TABLE Syntax .. 1332
13.1.15 CREATE TRIGGER Syntax .. 1358
13.1.16 CREATE VIEW Syntax .. 1360
13.1.17 DROP DATABASE Syntax .. 1365
13.1.18 DROP EVENT Syntax .. 1366
13.1.19 DROP FUNCTION Syntax .. 1366
13.1.20 DROP INDEX Syntax .. 1366
13.1.21 DROP PROCEDURE and DROP FUNCTION Syntax ... 1367
13.1.22 DROP SERVER Syntax .. 1367
13.1.23 DROP TABLE Syntax .. 1367
13.1.24 DROP TRIGGER Syntax .. 1368
13.1.25 DROP VIEW Syntax .. 1368
13.1.26 RENAME TABLE Syntax .. 1368
13.1.27 TRUNCATE TABLE Syntax .. 1369

13.2 Data Manipulation Statements .. 1370
13.2.1 CALL Syntax ... 1370
13.2.2 DELETE Syntax ... 1372
13.2.3 DO Syntax ... 1376
13.2.4 HANDLER Syntax ... 1377
13.2.5 INSERT Syntax ... 1378
13.2.6 LOAD DATA INFILE Syntax .. 1385
13.2.7 LOAD XML Syntax .. 1394
13.2.8 REPLACE Syntax ... 1399
13.2.9 SELECT Syntax ... 1401
13.2.10 Subquery Syntax ... 1420
13.2.11 UPDATE Syntax ... 1432

13.3 MySQL Transactional and Locking Statements ... 1434
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax .. 1434
13.3.2 Statements That Cannot Be Rolled Back ... 1437
13.3.3 Statements That Cause an Implicit Commit .. 1437
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax 1438
13.3.5 LOCK TABLES and UNLOCK TABLES Syntax .. 1439
13.3.6 SET TRANSACTION Syntax .. 1444
13.3.7 XA Transactions ... 1447

13.4 Replication Statements .. 1451
13.4.1 SQL Statements for Controlling Master Servers .. 1451
13.4.2 SQL Statements for Controlling Slave Servers .. 1453

13.5 SQL Syntax for Prepared Statements ... 1466

Data Definition Statements

1298

13.5.1 PREPARE Syntax ... 1469
13.5.2 EXECUTE Syntax ... 1470
13.5.3 DEALLOCATE PREPARE Syntax .. 1470

13.6 MySQL Compound-Statement Syntax ... 1471
13.6.1 BEGIN ... END Compound-Statement Syntax ... 1471
13.6.2 Statement Label Syntax .. 1471
13.6.3 DECLARE Syntax ... 1472
13.6.4 Variables in Stored Programs .. 1472
13.6.5 Flow Control Statements ... 1474
13.6.6 Cursors .. 1478
13.6.7 Condition Handling .. 1480

13.7 Database Administration Statements .. 1505
13.7.1 Account Management Statements .. 1505
13.7.2 Table Maintenance Statements .. 1523
13.7.3 Plugin and User-Defined Function Statements .. 1532
13.7.4 SET Syntax ... 1535
13.7.5 SHOW Syntax ... 1538
13.7.6 Other Administrative Statements .. 1578

13.8 MySQL Utility Statements .. 1586
13.8.1 DESCRIBE Syntax ... 1586
13.8.2 EXPLAIN Syntax ... 1586
13.8.3 HELP Syntax ... 1588
13.8.4 USE Syntax ... 1590

This chapter describes the syntax for the SQL statements supported by MySQL.

13.1 Data Definition Statements

13.1.1 ALTER DATABASE Syntax

ALTER {DATABASE | SCHEMA} [db_name]
 alter_specification ...
ALTER {DATABASE | SCHEMA} db_name
 UPGRADE DATA DIRECTORY NAME

alter_specification:
 [DEFAULT] CHARACTER SET [=] charset_name
 | [DEFAULT] COLLATE [=] collation_name

ALTER DATABASE enables you to change the overall characteristics of a database. These
characteristics are stored in the db.opt file in the database directory. To use ALTER DATABASE, you
need the ALTER privilege on the database. ALTER SCHEMA is a synonym for ALTER DATABASE.

The database name can be omitted from the first syntax, in which case the statement applies to the
default database.

National Language Characteristics

The CHARACTER SET clause changes the default database character set. The COLLATE clause
changes the default database collation. Section 10.1, “Character Set Support”, discusses character set
and collation names.

You can see what character sets and collations are available using, respectively, the SHOW
CHARACTER SET and SHOW COLLATION statements. See Section 13.7.5.3, “SHOW CHARACTER SET
Syntax”, and Section 13.7.5.4, “SHOW COLLATION Syntax”, for more information.

If you change the default character set or collation for a database, stored routines that use the
database defaults must be dropped and recreated so that they use the new defaults. (In a stored
routine, variables with character data types use the database defaults if the character set or collation

ALTER EVENT Syntax

1299

are not specified explicitly. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION
Syntax”.)

Upgrading from Versions Older than MySQL 5.1

The syntax that includes the UPGRADE DATA DIRECTORY NAME clause updates the name of the
directory associated with the database to use the encoding implemented in MySQL 5.1 for mapping
database names to database directory names (see Section 9.2.3, “Mapping of Identifiers to File
Names”). This clause is for use under these conditions:

• It is intended when upgrading MySQL to 5.1 or later from older versions.

• It is intended to update a database directory name to the current encoding format if the name
contains special characters that need encoding.

• The statement is used by mysqlcheck (as invoked by mysql_upgrade).

For example, if a database in MySQL 5.0 has the name a-b-c, the name contains instances of
the - (dash) character. In MySQL 5.0, the database directory is also named a-b-c, which is not
necessarily safe for all file systems. In MySQL 5.1 and later, the same database name is encoded as
a@002db@002dc to produce a file system-neutral directory name.

When a MySQL installation is upgraded to MySQL 5.1 or later from an older version,the server displays
a name such as a-b-c (which is in the old format) as #mysql50#a-b-c, and you must refer to the
name using the #mysql50# prefix. Use UPGRADE DATA DIRECTORY NAME in this case to explicitly
tell the server to re-encode the database directory name to the current encoding format:

ALTER DATABASE `#mysql50#a-b-c` UPGRADE DATA DIRECTORY NAME;

After executing this statement, you can refer to the database as a-b-c without the special #mysql50#
prefix.

13.1.2 ALTER EVENT Syntax

ALTER
 [DEFINER = { user | CURRENT_USER }]
 EVENT event_name
 [ON SCHEDULE schedule]
 [ON COMPLETION [NOT] PRESERVE]
 [RENAME TO new_event_name]
 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'comment']
 [DO event_body]

The ALTER EVENT statement changes one or more of the characteristics of an existing event
without the need to drop and recreate it. The syntax for each of the DEFINER, ON SCHEDULE, ON
COMPLETION, COMMENT, ENABLE / DISABLE, and DO clauses is exactly the same as when used with
CREATE EVENT. (See Section 13.1.9, “CREATE EVENT Syntax”.)

Any user can alter an event defined on a database for which that user has the EVENT privilege. When
a user executes a successful ALTER EVENT statement, that user becomes the definer for the affected
event.

ALTER EVENT works only with an existing event:

mysql> ALTER EVENT no_such_event
 > ON SCHEDULE
 > EVERY '2:3' DAY_HOUR;
ERROR 1517 (HY000): Unknown event 'no_such_event'

In each of the following examples, assume that the event named myevent is defined as shown here:

ALTER EVENT Syntax

1300

CREATE EVENT myevent
 ON SCHEDULE
 EVERY 6 HOUR
 COMMENT 'A sample comment.'
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The following statement changes the schedule for myevent from once every six hours starting
immediately to once every twelve hours, starting four hours from the time the statement is run:

ALTER EVENT myevent
 ON SCHEDULE
 EVERY 12 HOUR
 STARTS CURRENT_TIMESTAMP + INTERVAL 4 HOUR;

It is possible to change multiple characteristics of an event in a single statement. This example
changes the SQL statement executed by myevent to one that deletes all records from mytable; it
also changes the schedule for the event such that it executes once, one day after this ALTER EVENT
statement is run.

ALTER EVENT myevent
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO
 TRUNCATE TABLE myschema.mytable;

Specify the options in an ALTER EVENT statement only for those characteristics that you want to
change; omitted options keep their existing values. This includes any default values for CREATE
EVENT such as ENABLE.

To disable myevent, use this ALTER EVENT statement:

ALTER EVENT myevent
 DISABLE;

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables
to obtain any of the timestamp or interval values which it contains. You cannot use stored routines
or user-defined functions in such expressions, and you cannot use any table references; however, you
can use SELECT FROM DUAL. This is true for both ALTER EVENT and CREATE EVENT statements.
References to stored routines, user-defined functions, and tables in such cases are specifically not
permitted, and fail with an error (see Bug #22830).

Although an ALTER EVENT statement that contains another ALTER EVENT statement in its DO clause
appears to succeed, when the server attempts to execute the resulting scheduled event, the execution
fails with an error.

To rename an event, use the ALTER EVENT statement's RENAME TO clause. This statement renames
the event myevent to yourevent:

ALTER EVENT myevent
 RENAME TO yourevent;

You can also move an event to a different database using ALTER EVENT ... RENAME TO ... and
db_name.event_name notation, as shown here:

ALTER EVENT olddb.myevent
 RENAME TO newdb.myevent;

To execute the previous statement, the user executing it must have the EVENT privilege on both the
olddb and newdb databases.

ALTER FUNCTION Syntax

1301

Note

There is no RENAME EVENT statement.

The value DISABLE ON SLAVE is used on a replication slave instead of ENABLED or DISABLED to
indicate an event that was created on the master and replicated to the slave, but that is not executed
on the slave. Normally, DISABLE ON SLAVE is set automatically as required; however, there are
some circumstances under which you may want or need to change it manually. See Section 16.4.1.11,
“Replication of Invoked Features”, for more information.

13.1.3 ALTER FUNCTION Syntax

ALTER FUNCTION func_name [characteristic ...]

characteristic:
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }

This statement can be used to change the characteristics of a stored function. More than one change
may be specified in an ALTER FUNCTION statement. However, you cannot change the parameters or
body of a stored function using this statement; to make such changes, you must drop and re-create the
function using DROP FUNCTION and CREATE FUNCTION.

You must have the ALTER ROUTINE privilege for the function. (That privilege is granted automatically
to the function creator.) If binary logging is enabled, the ALTER FUNCTION statement might also
require the SUPER privilege, as described in Section 18.7, “Binary Logging of Stored Programs”.

13.1.4 ALTER PROCEDURE Syntax

ALTER PROCEDURE proc_name [characteristic ...]

characteristic:
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }

This statement can be used to change the characteristics of a stored procedure. More than one change
may be specified in an ALTER PROCEDURE statement. However, you cannot change the parameters or
body of a stored procedure using this statement; to make such changes, you must drop and re-create
the procedure using DROP PROCEDURE and CREATE PROCEDURE.

You must have the ALTER ROUTINE privilege for the procedure. By default, that privilege is
granted automatically to the procedure creator. This behavior can be changed by disabling the
automatic_sp_privileges system variable. See Section 18.2.2, “Stored Routines and MySQL
Privileges”.

13.1.5 ALTER SERVER Syntax

ALTER SERVER server_name
 OPTIONS (option [, option] ...)

Alters the server information for server_name, adjusting any of the options permitted in the CREATE
SERVER statement. The corresponding fields in the mysql.servers table are updated accordingly.
This statement requires the SUPER privilege.

For example, to update the USER option:

ALTER SERVER s OPTIONS (USER 'sally');

ALTER TABLE Syntax

1302

ALTER SERVER does not cause an automatic commit.

In MySQL 5.7, ALTER SERVER is not written to the binary log, regardless of the logging format that is
in use.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

13.1.6 ALTER TABLE Syntax

ALTER [IGNORE] TABLE tbl_name
 [alter_specification [, alter_specification] ...]
 [partition_options]

algorithm_option:
 ALGORITHM [=] {DEFAULT|INPLACE|COPY}

lock_option:
 LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

alter_specification:
 table_options
 | ADD [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ADD [COLUMN] (col_name column_definition,...)
 | ADD {INDEX|KEY} [index_name]
 [index_type] (index_col_name,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (index_col_name,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]]
 UNIQUE [INDEX|KEY] [index_name]
 [index_type] (index_col_name,...) [index_option] ...
 | ADD FULLTEXT [INDEX|KEY] [index_name]
 (index_col_name,...) [index_option] ...
 | ADD SPATIAL [INDEX|KEY] [index_name]
 (index_col_name,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]]
 FOREIGN KEY [index_name] (index_col_name,...)
 reference_definition
 | ALGORITHM [=] {DEFAULT|INPLACE|COPY}
 | ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}
 | CHANGE [COLUMN] old_col_name new_col_name column_definition
 [FIRST|AFTER col_name]
 | LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}
 | MODIFY [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | DROP [COLUMN] col_name
 | DROP PRIMARY KEY
 | DROP {INDEX|KEY} index_name
 | DROP FOREIGN KEY fk_symbol
 | DISABLE KEYS
 | ENABLE KEYS
 | RENAME [TO|AS] new_tbl_name
 | RENAME {INDEX|KEY} old_index_name TO new_index_name
 | ORDER BY col_name [, col_name] ...
 | CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
 | [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]
 | DISCARD TABLESPACE
 | IMPORT TABLESPACE
 | FORCE
 | ADD PARTITION (partition_definition)
 | DROP PARTITION partition_names
 | DISCARD PARTITION {partition_names | ALL} TABLESPACE
 | IMPORT PARTITION {partition_names | ALL} TABLESPACE
 | TRUNCATE PARTITION {partition_names | ALL}
 | COALESCE PARTITION number
 | REORGANIZE PARTITION partition_names INTO (partition_definitions)
 | EXCHANGE PARTITION partition_name WITH TABLE tbl_name
 | ANALYZE PARTITION {partition_names | ALL}

ALTER TABLE Syntax

1303

 | CHECK PARTITION {partition_names | ALL}
 | OPTIMIZE PARTITION {partition_names | ALL}
 | REBUILD PARTITION {partition_names | ALL}
 | REPAIR PARTITION {partition_names | ALL}
 | REMOVE PARTITIONING

index_col_name:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'

table_options:
 table_option [[,] table_option] ... (see CREATE TABLE options)

partition_options:
 (see CREATE TABLE options)

ALTER TABLE changes the structure of a table. For example, you can add or delete columns, create
or destroy indexes, change the type of existing columns, or rename columns or the table itself. You can
also change characteristics such as the storage engine used for the table or the table comment.

Partitioning-related clauses for ALTER TABLE can be used with partitioned tables for repartitioning,
for adding, dropping, discarding, importing, merging, and splitting partitions, and for performing
partitioning maintenance. It is possible for an ALTER TABLE statement to contain a PARTITION BY
or REMOVE PARTITIONING clause in an addition to other alter specifications, but the PARTITION
BY or REMOVE PARTITIONING clause must be specified last after any other specifications. The
ADD PARTITION, DROP PARTITION, DISCARD PARTITION, IMPORT PARTITION, COALESCE
PARTITION, REORGANIZE PARTITION, ANALYZE PARTITION, CHECK PARTITION, and REPAIR
PARTITION options cannot be combined with other alter specifications in a single ALTER TABLE,
since the options just listed act on individual partitions. For more information, see Section 13.1.6.1,
“ALTER TABLE Partition Operations”.

Following the table name, specify the alterations to be made. If none are given, ALTER TABLE does
nothing.

The syntax for many of the permissible alterations is similar to clauses of the CREATE TABLE
statement. See Section 13.1.14, “CREATE TABLE Syntax”, for more information.

Some operations may result in warnings if attempted on a table for which the storage engine does not
support the operation. These warnings can be displayed with SHOW WARNINGS. See Section 13.7.5.39,
“SHOW WARNINGS Syntax”.

For information on troubleshooting ALTER TABLE, see Section C.5.7.1, “Problems with ALTER
TABLE”.

Storage, Performance, and Concurrency Considerations

In most cases, ALTER TABLE makes a temporary copy of the original table. MySQL waits for other
operations that are modifying the table, then proceeds. It incorporates the alteration into the copy,
deletes the original table, and renames the new one. While ALTER TABLE is executing, the original
table is readable by other sessions (with the exception noted shortly). Updates and writes to the table
that begin after the ALTER TABLE operation begins are stalled until the new table is ready, then are
automatically redirected to the new table without any failed updates. The temporary copy of the original
table is created in the database directory of the new table. This can differ from the database directory
of the original table for ALTER TABLE operations that rename the table to a different database.

The exception referred to earlier is that ALTER TABLE blocks reads (not just writes) at the point where
it is ready to install a new version of the table .frm file, discard the old file, and clear outdated table

ALTER TABLE Syntax

1304

structures from the table and table definition caches. At this point, it must acquire an exclusive lock. To
do so, it waits for current readers to finish, and blocks new reads (and writes).

For MyISAM tables, you can speed up index re-creation (the slowest part of the alteration process) by
setting the myisam_sort_buffer_size system variable to a high value.

For some operations, an in-place ALTER TABLE is possible that does not require a temporary table:

• For ALTER TABLE tbl_name RENAME TO new_tbl_name without any other options, MySQL
simply renames any files that correspond to the table tbl_name without making a copy. (You can
also use the RENAME TABLE statement to rename tables. See Section 13.1.26, “RENAME TABLE
Syntax”.) Any privileges granted specifically for the renamed table are not migrated to the new name.
They must be changed manually.

• Alterations that modify only table metadata and not table data are immediate because the server only
needs to alter the table .frm file, not touch table contents. The following changes are fast alterations
that can be made this way:

• Renaming a column.

• Changing the default value of a column.

• Changing the definition of an ENUM or SET column by adding new enumeration or set members
to the end of the list of valid member values, as long as the storage size of the data type does
not change. For example, adding a member to a SET column that has 8 members changes the
required storage per value from 1 byte to 2 bytes; this will require a table copy. Adding members in
the middle of the list causes renumbering of existing members, which requires a table copy.

• ALTER TABLE with DISCARD ... PARTITION ... TABLESPACE or IMPORT ...
PARTITION ... TABLESPACE do not create any temporary tables or temporary partition files.

ALTER TABLE with ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REBUILD
PARTITION, or REORGANIZE PARTITION does not create any temporary tables (except when used
with NDB tables); however, these operations can and do create temporary partition files.

ADD or DROP operations for RANGE or LIST partitions are immediate operations or nearly so. ADD or
COALESCE operations for HASH or KEY partitions copy data between all partitions, unless LINEAR
HASH or LINEAR KEY was used; this is effectively the same as creating a new table, although the
ADD or COALESCE operation is performed partition by partition. REORGANIZE operations copy only
changed partitions and do not touch unchanged ones.

• Renaming an index.

• Adding or dropping an index, for InnoDB.

You can force an ALTER TABLE operation that would otherwise not require a table copy to use the
temporary table method (as supported in MySQL 5.0) by setting the old_alter_table system
variable to ON, or specifying ALGORITHM=COPY as one of the alter_specification clauses. If
there is a conflict between the old_alter_table setting and an ALGORITHM clause with a value
other than DEFAULT, the ALGORITHM clause takes precedence. (ALGORITHM = DEFAULT is the same
a specifying no ALGORITHM clause at all.)

Specifying ALGORITHM=INPLACE makes the operation use the in-place technique for clauses and
storage engines that support it, and fail with an error otherwise, thus avoiding a lengthy table copy
if you try altering a table that uses a different storage engine than you expect. See Section 14.2.11,
“InnoDB and Online DDL” for information about online DDL for InnoDB tables.

You can control the level of concurrent reading and writing of the table while it is being altered, using
the LOCK clause. Specifying a non-default value for this clause lets you require a certain amount of
concurrent access or exclusivity during the alter operation, and halts the operation if the requested
degree of locking is not available. The parameters for the LOCK clause are:

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

ALTER TABLE Syntax

1305

•
LOCK = DEFAULT

Maximum level of concurrency for the given ALGORITHM clause (if any) and ALTER TABLE
operation: Permit concurrent reads and writes if supported. If not, permit concurrent reads if
supported. If not, enforce exclusive access.

•
LOCK = NONE

If supported, permit concurrent reads and writes. Otherwise, return an error message.

•
LOCK = SHARED

If supported, permit concurrent reads but block writes. Note that writes will be blocked even if
concurrent writes are supported by the storage engine for the given ALGORITHM clause (if any) and
ALTER TABLE operation. If concurrent reads are not supported, return an error message.

•
LOCK = EXCLUSIVE

Enforce exclusive access. This will be done even if concurrent reads/writes are supported by the
storage engine for the given ALGORITHM clause (if any) and ALTER TABLE operation.

You can also use ALTER TABLE tbl_name FORCE to perform a “null” alter operation that rebuilds
the table. Previously the FORCE option was recognized but ignored. As of MySQL 5.6.17, online DDL
support is provided for the FORCE option. For more information, see Section 14.2.11.1, “Overview of
Online DDL”.

Usage Notes

• To use ALTER TABLE, you need ALTER, CREATE, and INSERT privileges for the table. Renaming a
table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new table.

• IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if there are
duplicates on unique keys in the new table or if warnings occur when strict mode is enabled. If
IGNORE is not specified, the copy is aborted and rolled back if duplicate-key errors occur. If IGNORE
is specified, only one row is used of rows with duplicates on a unique key. The other conflicting rows
are deleted. Incorrect values are truncated to the closest matching acceptable value.

As of MySQL 5.7.2, the IGNORE clause is supported with the CHECK PARTITION and REPAIR
PARTITION options (Bug #16900947). See Section 13.1.6.1, “ALTER TABLE Partition Operations”.

As of MySQL 5.7.4, the IGNORE clause for ALTER TABLE is removed and its use produces an error.

• table_option signifies a table option of the kind that can be used in the CREATE TABLE
statement, such as ENGINE, AUTO_INCREMENT, AVG_ROW_LENGTH, or MAX_ROWS. For a list of all
table options and descriptions of each, see Section 13.1.14, “CREATE TABLE Syntax”. However,
ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

For example, to convert a table to be an InnoDB table, use this statement:

ALTER TABLE t1 ENGINE = InnoDB;

See Section 14.2.6.4, “Converting Tables from MyISAM to InnoDB” for considerations when
switching tables to the InnoDB storage engine.

When you specify an ENGINE clause, ALTER TABLE rebuilds the table. This is true even if the table
already has the specified storage engine.

Running ALTER TABLE tbl_name ENGINE=INNODB on an existing InnoDB table performs a
“null” ALTER TABLE operation, which can be used to defragment an InnoDB table, as described

ALTER TABLE Syntax

1306

in Section 14.2.10.4, “Defragmenting a Table”. Running ALTER TABLE tbl_name FORCE on an
InnoDB table performs the same function.

As of MySQL 5.7.4, both ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE
tbl_name FORCE use online DDL (ALGORITHM=COPY). For more information, see
Section 14.2.11.1, “Overview of Online DDL”.

The outcome of attempting to change a table's storage engine is affected by whether the desired
storage engine is available and the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as
described in Section 5.1.7, “Server SQL Modes”.

To prevent inadvertent loss of data, ALTER TABLE cannot be used to change the storage engine of
a table to MERGE or BLACKHOLE.

To change the value of the AUTO_INCREMENT counter to be used for new rows, do this:

ALTER TABLE t2 AUTO_INCREMENT = value;

You cannot reset the counter to a value less than or equal to the value that is currently in use. For
both InnoDB and MyISAM, if the value is less than or equal to the maximum value currently in the
AUTO_INCREMENT column, the value is reset to the current maximum AUTO_INCREMENT column
value plus one.

• You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE
statement, separated by commas. This is a MySQL extension to standard SQL, which permits only
one of each clause per ALTER TABLE statement. For example, to drop multiple columns in a single
statement, do this:

ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• CHANGE col_name, DROP col_name, and DROP INDEX are MySQL extensions to standard SQL.

• The word COLUMN is optional and can be omitted.

• column_definition clauses use the same syntax for ADD and CHANGE as for CREATE TABLE.
See Section 13.1.14, “CREATE TABLE Syntax”.

• You can rename a column using a CHANGE old_col_name new_col_name
column_definition clause. To do so, specify the old and new column names and the definition
that the column currently has. For example, to rename an INTEGER column from a to b, you can do
this:

ALTER TABLE t1 CHANGE a b INTEGER;

To change a column's type but not the name, CHANGE syntax still requires an old and new column
name, even if they are the same. For example:

ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;

You can also use MODIFY to change a column's type without renaming it:

ALTER TABLE t1 MODIFY b BIGINT NOT NULL;

MODIFY is an extension to ALTER TABLE for Oracle compatibility.

When you use CHANGE or MODIFY, column_definition must include the data type and all
attributes that should apply to the new column, other than index attributes such as PRIMARY KEY
or UNIQUE. Attributes present in the original definition but not specified for the new definition are not

ALTER TABLE Syntax

1307

carried forward. Suppose that a column col1 is defined as INT UNSIGNED DEFAULT 1 COMMENT
'my column' and you modify the column as follows:

ALTER TABLE t1 MODIFY col1 BIGINT;

The resulting column will be defined as BIGINT, but will not include the attributes UNSIGNED
DEFAULT 1 COMMENT 'my column'. To retain them, the statement should be:

ALTER TABLE t1 MODIFY col1 BIGINT UNSIGNED DEFAULT 1 COMMENT 'my column';

• When you change a data type using CHANGE or MODIFY, MySQL tries to convert existing column
values to the new type as well as possible.

Warning

This conversion may result in alteration of data. For example, if you shorten
a string column, values may be truncated. To prevent the operation from
succeeding if conversions to the new data type would result in loss of data,
enable strict SQL mode before using ALTER TABLE (see Section 5.1.7,
“Server SQL Modes”).

• To add a column at a specific position within a table row, use FIRST or AFTER col_name. The
default is to add the column last. You can also use FIRST and AFTER in CHANGE or MODIFY
operations to reorder columns within a table.

• ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a
column or remove the old default value, respectively. If the old default is removed and the column
can be NULL, the new default is NULL. If the column cannot be NULL, MySQL assigns a default value
as described in Section 11.5, “Data Type Default Values”.

• DROP INDEX removes an index. This is a MySQL extension to standard SQL. See
Section 13.1.20, “DROP INDEX Syntax”. If you are unsure of the index name, use SHOW INDEX
FROM tbl_name.

• If columns are dropped from a table, the columns are also removed from any index of which they
are a part. If all columns that make up an index are dropped, the index is dropped as well. If you use
CHANGE or MODIFY to shorten a column for which an index exists on the column, and the resulting
column length is less than the index length, MySQL shortens the index automatically.

• If a table contains only one column, the column cannot be dropped. If what you intend is to remove
the table, use DROP TABLE instead.

• DROP PRIMARY KEY drops the primary key. If there is no primary key, an error occurs. For
information about the performance characteristics of primary keys, especially for InnoDB tables, see
Section 8.3.2, “Using Primary Keys”.

If you add a UNIQUE INDEX or PRIMARY KEY to a table, MySQL stores it before any nonunique
index to permit detection of duplicate keys as early as possible.

• Some storage engines permit you to specify an index type when creating an index. The syntax for
the index_type specifier is USING type_name. For details about USING, see Section 13.1.11,
“CREATE INDEX Syntax”. The preferred position is after the column list. Support for use of the option
before the column list will be removed in a future MySQL release.

index_option values specify additional options for an index. USING is one such option. For details
about permissible index_option values, see Section 13.1.11, “CREATE INDEX Syntax”.

• RENAME INDEX old_index_name TO new_index_name renames an index. This is a MySQL
extension to standard SQL. The content of the table remains unchanged. old_index_name
must be the name of an existing index in the table that is not dropped by the same ALTER TABLE

ALTER TABLE Syntax

1308

statement. new_index_name is the new index name, which cannot duplicate the name of an index
in the resulting table after changes have been applied. Neither index name can be PRIMARY.

• After an ALTER TABLE statement, it may be necessary to run ANALYZE TABLE to update index
cardinality information. See Section 13.7.5.21, “SHOW INDEX Syntax”.

• ORDER BY enables you to create the new table with the rows in a specific order. Note that the table
does not remain in this order after inserts and deletes. This option is useful primarily when you know
that you are mostly to query the rows in a certain order most of the time. By using this option after
major changes to the table, you might be able to get higher performance. In some cases, it might
make sorting easier for MySQL if the table is in order by the column that you want to order it by later.

ORDER BY syntax permits one or more column names to be specified for sorting, each of which
optionally can be followed by ASC or DESC to indicate ascending or descending sort order,
respectively. The default is ascending order. Only column names are permitted as sort criteria;
arbitrary expressions are not permitted. This clause should be given last after any other clauses.

ORDER BY does not make sense for InnoDB tables because InnoDB always orders table rows
according to the clustered index.

Note

When used on a partitioned table, ALTER TABLE ... ORDER BY orders
rows within each partition only.

• If you use ALTER TABLE on a MyISAM table, all nonunique indexes are created in a separate
batch (as for REPAIR TABLE). This should make ALTER TABLE much faster when you have many
indexes.

For MyISAM tables, key updating can be controlled explicitly. Use ALTER TABLE ... DISABLE
KEYS to tell MySQL to stop updating nonunique indexes. Then use ALTER TABLE ... ENABLE
KEYS to re-create missing indexes. MyISAM does this with a special algorithm that is much faster
than inserting keys one by one, so disabling keys before performing bulk insert operations should
give a considerable speedup. Using ALTER TABLE ... DISABLE KEYS requires the INDEX
privilege in addition to the privileges mentioned earlier.

While the nonunique indexes are disabled, they are ignored for statements such as SELECT and
EXPLAIN that otherwise would use them.

• In MySQL 5.7, the server prohibits changes to foreign key columns that have the potential to cause
loss of referential integrity. It also prohibits changes to the data type of such columns that may be
unsafe. For example, changing VARCHAR(20) to VARCHAR(30) is permitted, but changing it to
VARCHAR(1024) is not because that alters the number of length bytes required to store individual
values. A workaround is to use ALTER TABLE ... DROP FOREIGN KEY before changing the
column definition and ALTER TABLE ... ADD FOREIGN KEY afterward.

• The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB storage engine,
which implements ADD [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (...)
REFERENCES ... (...). See Section 14.2.6.6, “InnoDB and FOREIGN KEY Constraints”. For
other storage engines, the clauses are parsed but ignored. The CHECK clause is parsed but ignored
by all storage engines. See Section 13.1.14, “CREATE TABLE Syntax”. The reason for accepting but
ignoring syntax clauses is for compatibility, to make it easier to port code from other SQL servers,
and to run applications that create tables with references. See Section 1.8.2, “MySQL Differences
from Standard SQL”.

For ALTER TABLE, unlike CREATE TABLE, ADD FOREIGN KEY ignores index_name if given and
uses an automatically generated foreign key name. As a workaround, include the CONSTRAINT
clause to specify the foreign key name:

ADD CONSTRAINT name FOREIGN KEY (....) ...

ALTER TABLE Syntax

1309

Important

The inline REFERENCES specifications where the references are defined as
part of the column specification are silently ignored by InnoDB. InnoDB only
accepts REFERENCES clauses defined as part of a separate FOREIGN KEY
specification.

Note

Partitioned InnoDB tables do not support foreign keys. See Section 17.6.2,
“Partitioning Limitations Relating to Storage Engines”, for more information.

• InnoDB supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

For more information, see Section 14.2.6.6, “InnoDB and FOREIGN KEY Constraints”.

• Prior to MySQL 5.6.6, adding and dropping a foreign key in the same ALTER TABLE statement may
be problematic in some cases and is therefore unsupported. Separate statements should be used for
each operation. As of MySQL 5.6.6, adding and dropping a foreign key in the same ALTER TABLE
statement is supported for ALTER TABLE ... ALGORITHM=INPLACE but remains unsupported for
ALTER TABLE ... ALGORITHM=COPY.

• For an InnoDB table that is created with its own tablespace in an .ibd file, that file can be
discarded and imported. To discard the .ibd file, use this statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

This deletes the current .ibd file, so be sure that you have a backup first. Attempting to modify the
table contents while the tablespace file is discarded results in an error. You can perform the DDL
operations listed in Section 14.2.11, “InnoDB and Online DDL” while the tablespace file is discarded.

To import the backup .ibd file back into the table, copy it into the database directory, and then issue
this statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

The tablespace file need not necessarily have been created on the server into which it is imported
later. In MySQL 5.7, importing a tablespace file from another server works if the both servers have
GA (General Availablility) status and their versions are within the same series. Otherwise, the file
must have been created on the server into which it is imported.

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data.

See Section 14.2.5.2, “InnoDB File-Per-Table Mode”.

• To change the table default character set and all character columns (CHAR, VARCHAR, TEXT) to a
new character set, use a statement like this:

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name;

For a column that has a data type of VARCHAR or one of the TEXT types, CONVERT TO CHARACTER
SET will change the data type as necessary to ensure that the new column is long enough to store
as many characters as the original column. For example, a TEXT column has two length bytes,

ALTER TABLE Syntax

1310

which store the byte-length of values in the column, up to a maximum of 65,535. For a latin1 TEXT
column, each character requires a single byte, so the column can store up to 65,535 characters. If
the column is converted to utf8, each character might require up to three bytes, for a maximum
possible length of 3 × 65,535 = 196,605 bytes. That length will not fit in a TEXT column's length
bytes, so MySQL will convert the data type to MEDIUMTEXT, which is the smallest string type for
which the length bytes can record a value of 196,605. Similarly, a VARCHAR column might be
converted to MEDIUMTEXT.

To avoid data type changes of the type just described, do not use CONVERT TO CHARACTER SET.
Instead, use MODIFY to change individual columns. For example:

ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M) CHARACTER SET utf8;

If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT columns are
converted to their corresponding binary string types (BINARY, VARBINARY, BLOB). This means that
the columns no longer will have a character set and a subsequent CONVERT TO operation will not
apply to them.

If you specify CONVERT TO CHARACTER SET without a collation, the default collation for the
character set is used. If this collation is inappropriate for the intended table use (for example, if it
would change from a case-sensitive collation to a case-insensitive collation), specify a collation
explicitly.

If charset_name is DEFAULT, the database character set is used.

Warning

The CONVERT TO operation converts column values between the character
sets. This is not what you want if you have a column in one character set
(like latin1) but the stored values actually use some other, incompatible
character set (like utf8). In this case, you have to do the following for each
such column:

ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or
from BLOB columns.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used if you
do not specify the character set for columns that you add to a table later (for example, with ALTER
TABLE ... ADD column).

With the mysql_info() C API function, you can find out how many rows were copied by ALTER
TABLE, and (when IGNORE is used) how many rows were deleted due to duplication of unique key
values. See Section 21.8.7.36, “mysql_info()”.

13.1.6.1 ALTER TABLE Partition Operations

Partitioning-related clauses for ALTER TABLE can be used with partitioned tables for repartitioning, for
adding, dropping, discarding, importing, merging, and splitting partitions, and for performing partitioning
maintenance.

ALTER TABLE Syntax

1311

• Simply using a partition_options clause with ALTER TABLE on a partitioned table repartitions
the table according to the partitioning scheme defined by the partition_options. This clause
always begins with PARTITION BY, and follows the same syntax and other rules as apply to the
partition_options clause for CREATE TABLE (see Section 13.1.14, “CREATE TABLE Syntax”,
for more detailed information), and can also be used to partition an existing table that is not already
partitioned. For example, consider a (nonpartitioned) table defined as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
);

This table can be partitioned by HASH, using the id column as the partitioning key, into 8 partitions
by means of this statement:

ALTER TABLE t1
 PARTITION BY HASH(id)
 PARTITIONS 8;

MySQL 5.7.1 and later supports an ALGORITHM option with [SUB]PARTITION BY [LINEAR]
KEY. ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1 when
computing the placement of rows in partitions; ALGORITHM=2 means that the server employs the
key-hashing functions implemented and used by default for new KEY partitioned tables in MySQL
5.5 and later. (Partitioned tables created with the key-hashing functions employed in MySQL 5.5
and later cannot be used by a MySQL 5.1 server.) Not specifying the option has the same effect
as using ALGORITHM=2. This option is intended for use chiefly when upgrading or downgrading
[LINEAR] KEY partitioned tables between MySQL 5.1 and later MySQL versions, or for creating
tables partitioned by KEY or LINEAR KEY on a MySQL 5.5 or later server which can be used on a
MySQL 5.1 server.

To upgrade a KEY partitioned table that was created in MySQL 5.1, first execute SHOW CREATE
TABLE and note the the exact columns and number of partitions shown. Now execute an ALTER
TABLE statement using exactly the same column list and number of partitions as in the CREATE
TABLE statement, while adding ALGORITHM=2 immediately following the PARTITION BY keywords.
(You should also include the LINEAR keyword if it was used for the original table definition.) An
example from a session in the mysql client is shown here:

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
 Table: p
Create Table: CREATE TABLE `p` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `cd` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)

mysql> ALTER TABLE p PARTITION BY LINEAR KEY ALGORITHM=2 (id) PARTITIONS 32;
Query OK, 0 rows affected (5.34 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
 Table: p
Create Table: CREATE TABLE `p` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `cd` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */

ALTER TABLE Syntax

1312

1 row in set (0.00 sec)

Downgrading a table created using the default key-hashing used in MySQL 5.5 and later to enable
its use by a MySQL 5.1 server is similar, except in this case you should use ALGORITHM=1 to force
the table's partitions to be rebuilt using the MySQL 5.1 key-hashing functions. It is recommended that
you not do this except when necessary for compatibility with a MySQL 5.1 server, as the improved
KEY hashing functions used by default in MySQL 5.5 and later provide fixes for a number of issues
found in the older implementation.

Note

A table upgraded by means of ALTER TABLE ... PARTITION BY
ALGORITHM=2 [LINEAR] KEY ... can no longer be used by a MySQL 5.1
server. (Such a table would need to be downgraded with ALTER TABLE ...
PARTITION BY ALGORITHM=1 [LINEAR] KEY ... before it could be
used again by a MySQL 5.1 server.)

The table that results from using an ALTER TABLE ... PARTITION BY statement must follow
the same rules as one created using CREATE TABLE ... PARTITION BY. This includes the rules
governing the relationship between any unique keys (including any primary key) that the table might
have, and the column or columns used in the partitioning expression, as discussed in Section 17.6.1,
“Partitioning Keys, Primary Keys, and Unique Keys”. The CREATE TABLE ... PARTITION BY
rules for specifying the number of partitions also apply to ALTER TABLE ... PARTITION BY.

The partition_definition clause for ALTER TABLE ADD PARTITION supports the same
options as the clause of the same name for the CREATE TABLE statement. (See Section 13.1.14,
“CREATE TABLE Syntax”, for the syntax and description.) Suppose that you have the partitioned
table created as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999)
);

You can add a new partition p3 to this table for storing values less than 2002 as follows:

ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));

DROP PARTITION can be used to drop one or more RANGE or LIST partitions. This statement
cannot be used with HASH or KEY partitions; instead, use COALESCE PARTITION (see below). Any
data that was stored in the dropped partitions named in the partition_names list is discarded.
For example, given the table t1 defined previously, you can drop the partitions named p0 and p1 as
shown here:

ALTER TABLE t1 DROP PARTITION p0, p1;

ADD PARTITION and DROP PARTITION do not currently support IF [NOT] EXISTS.

In MySQL 5.7.4, DISCARD PARTITION ... TABLESPACE and IMPORT PARTITION ...
TABLESPACE options extend the Transportable Tablespace feature to individual InnoDB table
partitions. Each InnoDB table partition has its own tablespace file (.idb file). The Transportable
Tablespace feature makes it easy to copy the tablespaces from a running MySQL server instance to
another running instance, or to perform a restore on the same instance. Both options take a comma-
separated list of one or more partition names. For example:

ALTER TABLE Syntax

1313

ALTER TABLE t1 DISCARD PARTITION p2, p3 TABLESPACE;

ALTER TABLE t1 IMPORT PARTITION p2, p3 TABLESPACE;

When running DISCARD PARTITION ... TABLESPACE and IMPORT PARTITION ...
TABLESPACE on subpartitioned tables, both partition and subpartition table names are allowed.
When a partition name is specified, subpartitions of that partition are included.

As of MySQL 5.7.4, the Transportable Tablespace feature also supports copying or restoring
partitioned InnoDB tables (all partitions at once). For addition information about the Transportable
Tablespace feature, see Section 14.2.5.5, “Copying Tablespaces to Another Server (Transportable
Tablespaces)”. For usage examples, see Transportable Tablespace Examples.

Renames of partitioned table are supported. You can rename individual partitions indirectly using
ALTER TABLE ... REORGANIZE PARTITION; however, this operation makes a copy of the
partition's data..

In MySQL 5.7, it is possible to delete rows from selected partitions using the TRUNCATE PARTITION
option. This option takes a comma-separated list of one or more partition names. For example,
consider the table t1 as defined here:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2003),
 PARTITION p4 VALUES LESS THAN (2007)
);

To delete all rows from partition p0, you can use the following statement:

ALTER TABLE t1 TRUNCATE PARTITION p0;

The statement just shown has the same effect as the following DELETE statement:

DELETE FROM t1 WHERE year_col < 1991;

When truncating multiple partitions, the partitions do not have to be contiguous: This can greatly
simplify delete operations on partitioned tables that would otherwise require very complex WHERE
conditions if done with DELETE statements. For example, this statement deletes all rows from
partitions p1 and p3:

ALTER TABLE t1 TRUNCATE PARTITION p1, p3;

An equivalent DELETE statement is shown here:

DELETE FROM t1 WHERE
 (year_col >= 1991 AND year_col < 1995)
 OR
 (year_col >= 2003 AND year_col < 2007);

You can also use the ALL keyword in place of the list of partition names; in this case, the statement
acts on all partitions in the table.

ALTER TABLE Syntax

1314

TRUNCATE PARTITION merely deletes rows; it does not alter the definition of the table itself, or of
any of its partitions.

Note

Prior to MySQL 5.7.2, TRUNCATE PARTITION did not work with subpartitions
(Bug #14028340, Bug #65184).

You can verify that the rows were dropped by checking the INFORMATION_SCHEMA.PARTITIONS
table, using a query such as this one:

SELECT PARTITION_NAME, TABLE_ROWS
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME = 't1';

TRUNCATE PARTITION is supported only for partitioned tables that use the MyISAM, InnoDB, or
MEMORY storage engine. It also works on BLACKHOLE tables (but has no effect). It is not supported
for ARCHIVE tables.

COALESCE PARTITION can be used with a table that is partitioned by HASH or KEY to reduce
the number of partitions by number. Suppose that you have created table t2 using the following
definition:

CREATE TABLE t2 (
 name VARCHAR (30),
 started DATE
)
PARTITION BY HASH(YEAR(started))
PARTITIONS 6;

You can reduce the number of partitions used by t2 from 6 to 4 using the following statement:

ALTER TABLE t2 COALESCE PARTITION 2;

The data contained in the last number partitions will be merged into the remaining partitions. In this
case, partitions 4 and 5 will be merged into the first 4 partitions (the partitions numbered 0, 1, 2, and
3).

To change some but not all the partitions used by a partitioned table, you can use REORGANIZE
PARTITION. This statement can be used in several ways:

• To merge a set of partitions into a single partition. This can be done by naming several partitions in
the partition_names list and supplying a single definition for partition_definition.

• To split an existing partition into several partitions. You can accomplish this by naming a single
partition for partition_names and providing multiple partition_definitions.

• To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value
lists for a subset of partitions defined using VALUES IN.

Note

For partitions that have not been explicitly named, MySQL automatically
provides the default names p0, p1, p2, and so on. The same is true with
regard to subpartitions.

For more detailed information about and examples of ALTER TABLE ... REORGANIZE
PARTITION statements, see Section 17.3.1, “Management of RANGE and LIST Partitions”.

ALTER TABLE Syntax

1315

• It is also possible in MySQL 5.7 to exchange a table partition or subpartition with a table using ALTER
TABLE pt EXCHANGE PARTITION p WITH TABLE nt, where pt is the partitioned table and p
is the partition or subpartition of pt to be exchanged with unpartitioned table nt, provided that the
following statements are true:

1. Table nt is not itself partitioned.

2. Table nt is not a temporary table.

3. The structures of tables pt and nt are otherwise identical.

4. There are no rows in nt that lie outside the boundaries of the partition definition for p.

5. Table nt contains no foreign key references, and no other table has any foreign keys that refer to
nt.

Executing ALTER TABLE ... EXCHANGE PARTITION does not invoke any triggers on either the
partitioned table or the table to be exchanged.

Any AUTO_INCREMENT columns in the table to be exchanged with a partition are reset.

The IGNORE keyword has no effect when used with ALTER TABLE ... EXCHANGE PARTITION.

For more information about and examples of ALTER TABLE ... EXCHANGE PARTITION, see
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”.

• Several additional options provide partition maintenance and repair functionality analogous to that
implemented for nonpartitioned tables by statements such as CHECK TABLE and REPAIR TABLE
(which are also supported for partitioned tables; see Section 13.7.2, “Table Maintenance Statements”
for more information). These include ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE
PARTITION, REBUILD PARTITION, and REPAIR PARTITION. Each of these options takes a
partition_names clause consisting of one or more names of partitions, separated by commas.
The partitions must already exist in the table to be altered. You can also use the ALL keyword in
place of partition_names, in which case the statement acts on all partitions in the table. For more
information and examples, see Section 17.3.4, “Maintenance of Partitions”.

Some MySQL storage engines, such as InnoDB, do not support per-partition optimization. For a
partitioned table using such a storage engine, ALTER TABLE ... OPTIMIZE PARTITION causes
the entire table to rebuilt and analyzed, and an appropriate warning to be issued. (Bug #11751825,
Bug #42822)

To work around this problem, use the statements ALTER TABLE ... REBUILD PARTITION and
ALTER TABLE ... ANALYZE PARTITION instead.

The ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR
PARTITION options are not permitted for tables which are not partitioned.

• REMOVE PARTITIONING enables you to remove a table's partitioning without otherwise affecting the
table or its data. This option can be combined with other ALTER TABLE options such as those used
to add, drop, or rename drop columns or indexes.

• Using the ENGINE option with ALTER TABLE changes the storage engine used by the table without
affecting the partitioning.

In MySQL 5.7, when ALTER TABLE ... EXCHANGE PARTITION or ALTER TABLE ... TRUNCATE
PARTITION is run against a partitioned table that uses MyISAM (or another storage engine that makes
use of table-level locking), only those partitions that are actually read from are locked. (This does not
apply to partitioned tables using a storage enginethat employs row-level locking, such as InnoDB.) See
Section 17.6.4, “Partitioning and Locking”.

ALTER TABLE Syntax

1316

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications.

The ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION,
ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION options cannot be combined
with other alter specifications in a single ALTER TABLE, since the options just listed act on individual
partitions. For more information, see Section 13.1.6.1, “ALTER TABLE Partition Operations”.

Only a single instance of any one of the following options can be used in a given ALTER TABLE
statement: PARTITION BY, ADD PARTITION, DROP PARTITION, TRUNCATE PARTITION,
EXCHANGE PARTITION, REORGANIZE PARTITION, or COALESCE PARTITION, ANALYZE
PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, REBUILD PARTITION, REMOVE
PARTITIONING.

For example, the following two statements are invalid:

ALTER TABLE t1 ANALYZE PARTITION p1, ANALYZE PARTITION p2;

ALTER TABLE t1 ANALYZE PARTITION p1, CHECK PARTITION p2;

In the first case, you can analyze partitions p1 and p2 of table t1 concurrently using a single statement
with a single ANALYZE PARTITION option that lists both of the partitions to be analyzed, like this:

ALTER TABLE t1 ANALYZE PARTITION p1, p2;

In the second case, it is not possible to perform ANALYZE and CHECK operations on different partitions
of the same table concurrently. Instead, you must issue two separate statements, like this:

ALTER TABLE t1 ANALYZE PARTITION p1;
ALTER TABLE t1 CHECK PARTITION p2;

Prior to MySQL 5.7.2, ANALYZE, CHECK, OPTIMIZE, REBUILD, REPAIR, and TRUNCATE operations
were not supported for subpartitions (Bug #14028340, Bug #65184).

CHECK PARTITION and REPAIR PARTITION operations fail when the partition to be checked or
repaired contains any duplicate key errors. MySQL 5.7.2 and later provides alternative behavior that
can be invoked using ALTER IGNORE TABLE with the corresponding options (Bug #16900947), which
causes the statement to behave as follows:

• ALTER IGNORE TABLE ... REPAIR PARTITION removes from the partition all rows that cannot
be moved due to the presence of duplicate keys.

• ALTER IGNORE TABLE ... CHECK PARTITION writes out the contents of all columns in the
partitioning expression for each row in the partition in which a duplicate key violation is found.

For more information about these statements, see Section 17.3.4, “Maintenance of Partitions”.

13.1.6.2 ALTER TABLE Examples

Begin with a table t1 that is created as shown here:

CREATE TABLE t1 (a INTEGER,b CHAR(10));

To rename the table from t1 to t2:

ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to
change column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

ALTER TABLE Syntax

1317

ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

ALTER TABLE t2 ADD d TIMESTAMP;

To add an index on column d and a UNIQUE index on column a:

ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);

To remove column c:

ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
 ADD PRIMARY KEY (c);

We indexed c (as a PRIMARY KEY) because AUTO_INCREMENT columns must be indexed, and we
declare c as NOT NULL because primary key columns cannot be NULL.

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers
automatically. For MyISAM tables, you can set the first sequence number by executing SET
INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table option.
See Section 5.1.4, “Server System Variables”.

With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not
affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT column,
the numbers are resequenced beginning with 1.

When replication is used, adding an AUTO_INCREMENT column to a table might not produce the
same ordering of the rows on the slave and the master. This occurs because the order in which the
rows are numbered depends on the specific storage engine used for the table and the order in which
the rows were inserted. If it is important to have the same order on the master and slave, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to the table t1, the following statements produce a new table t2 identical to
t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

This set of statements will also produce a new table t2 identical to t1, with the addition of an
AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, all columns of t1
must be referenced in the ORDER BY clause.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

ALTER VIEW Syntax

1318

DROP t1;
ALTER TABLE t2 RENAME t1;

13.1.7 ALTER VIEW Syntax

ALTER
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = { user | CURRENT_USER }]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of a view, which must exist. The syntax is similar to that for
CREATE VIEW and the effect is the same as for CREATE OR REPLACE VIEW. See Section 13.1.16,
“CREATE VIEW Syntax”. This statement requires the CREATE VIEW and DROP privileges for the view,
and some privilege for each column referred to in the SELECT statement. ALTER VIEW is permitted
only to the definer or users with the SUPER privilege.

13.1.8 CREATE DATABASE Syntax

CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name
 [create_specification] ...

create_specification:
 [DEFAULT] CHARACTER SET [=] charset_name
 | [DEFAULT] COLLATE [=] collation_name

CREATE DATABASE creates a database with the given name. To use this statement, you need the
CREATE privilege for the database. CREATE SCHEMA is a synonym for CREATE DATABASE.

An error occurs if the database exists and you did not specify IF NOT EXISTS.

In MySQL 5.7, CREATE DATABASE is not permitted within a session that has an active LOCK TABLES
statement.

create_specification options specify database characteristics. Database characteristics are
stored in the db.opt file in the database directory. The CHARACTER SET clause specifies the default
database character set. The COLLATE clause specifies the default database collation. Section 10.1,
“Character Set Support”, discusses character set and collation names.

A database in MySQL is implemented as a directory containing files that correspond to tables in
the database. Because there are no tables in a database when it is initially created, the CREATE
DATABASE statement creates only a directory under the MySQL data directory and the db.opt file.
Rules for permissible database names are given in Section 9.2, “Schema Object Names”. If a database
name contains special characters, the name for the database directory contains encoded versions of
those characters as described in Section 9.2.3, “Mapping of Identifiers to File Names”.

If you manually create a directory under the data directory (for example, with mkdir), the server
considers it a database directory and it shows up in the output of SHOW DATABASES.

You can also use the mysqladmin program to create databases. See Section 4.5.2, “mysqladmin —
Client for Administering a MySQL Server”.

13.1.9 CREATE EVENT Syntax

CREATE
 [DEFINER = { user | CURRENT_USER }]
 EVENT
 [IF NOT EXISTS]
 event_name
 ON SCHEDULE schedule
 [ON COMPLETION [NOT] PRESERVE]

CREATE EVENT Syntax

1319

 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'comment']
 DO event_body;

schedule:
 AT timestamp [+ INTERVAL interval] ...
 | EVERY interval
 [STARTS timestamp [+ INTERVAL interval] ...]
 [ENDS timestamp [+ INTERVAL interval] ...]

interval:
 quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |
 WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
 DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

This statement creates and schedules a new event. The event will not run unless the Event Scheduler
is enabled. For information about checking Event Scheduler status and enabling it if necessary, see
Section 18.4.2, “Event Scheduler Configuration”.

CREATE EVENT requires the EVENT privilege for the schema in which the event is to be created. It
might also require the SUPER privilege, depending on the DEFINER value, as described later in this
section.

The minimum requirements for a valid CREATE EVENT statement are as follows:

• The keywords CREATE EVENT plus an event name, which uniquely identifies the event in a database
schema.

• An ON SCHEDULE clause, which determines when and how often the event executes.

• A DO clause, which contains the SQL statement to be executed by an event.

This is an example of a minimal CREATE EVENT statement:

CREATE EVENT myevent
 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The previous statement creates an event named myevent. This event executes once—one
hour following its creation—by running an SQL statement that increments the value of the
myschema.mytable table's mycol column by 1.

The event_name must be a valid MySQL identifier with a maximum length of 64 characters. Event
names are not case sensitive, so you cannot have two events named myevent and MyEvent in the
same schema. In general, the rules governing event names are the same as those for names of stored
routines. See Section 9.2, “Schema Object Names”.

An event is associated with a schema. If no schema is indicated as part of event_name, the default
(current) schema is assumed. To create an event in a specific schema, qualify the event name with a
schema using schema_name.event_name syntax.

The DEFINER clause specifies the MySQL account to be used when checking access privileges
at event execution time. If a user value is given, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER,
or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE EVENT
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only permitted user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not actually exist, a warning is generated.

CREATE EVENT Syntax

1320

• Although it is possible to create an event with a nonexistent DEFINER account, an error occurs at
event execution time if the account does not exist.

For more information about event security, see Section 18.6, “Access Control for Stored Programs and
Views”.

Within an event, the CURRENT_USER() function returns the account used to check privileges at event
execution time, which is the DEFINER user. For information about user auditing within events, see
Section 6.3.14, “SQL-Based MySQL Account Activity Auditing”.

IF NOT EXISTS has the same meaning for CREATE EVENT as for CREATE TABLE: If an event
named event_name already exists in the same schema, no action is taken, and no error results.
(However, a warning is generated in such cases.)

The ON SCHEDULE clause determines when, how often, and for how long the event_body defined for
the event repeats. This clause takes one of two forms:

• AT timestamp is used for a one-time event. It specifies that the event executes one time only
at the date and time given by timestamp, which must include both the date and time, or must be
an expression that resolves to a datetime value. You may use a value of either the DATETIME or
TIMESTAMP type for this purpose. If the date is in the past, a warning occurs, as shown here:

mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2006-02-10 23:59:01 |
+---------------------+
1 row in set (0.04 sec)

mysql> CREATE EVENT e_totals
 -> ON SCHEDULE AT '2006-02-10 23:59:00'
 -> DO INSERT INTO test.totals VALUES (NOW());
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1588
Message: Event execution time is in the past and ON COMPLETION NOT
 PRESERVE is set. The event was dropped immediately after
 creation.

CREATE EVENT statements which are themselves invalid—for whatever reason—fail with an error.

You may use CURRENT_TIMESTAMP to specify the current date and time. In such a case, the event
acts as soon as it is created.

To create an event which occurs at some point in the future relative to the current date and time—
such as that expressed by the phrase “three weeks from now”—you can use the optional clause
+ INTERVAL interval. The interval portion consists of two parts, a quantity and a unit of
time, and follows the same syntax rules that govern intervals used in the DATE_ADD() function (see
Section 12.7, “Date and Time Functions”. The units keywords are also the same, except that you
cannot use any units involving microseconds when defining an event. With some interval types,
complex time units may be used. For example, “two minutes and ten seconds” can be expressed as
+ INTERVAL '2:10' MINUTE_SECOND.

You can also combine intervals. For example, AT CURRENT_TIMESTAMP + INTERVAL 3 WEEK
+ INTERVAL 2 DAY is equivalent to “three weeks and two days from now”. Each portion of such a
clause must begin with + INTERVAL.

• To repeat actions at a regular interval, use an EVERY clause. The EVERY keyword is followed by an
interval as described in the previous discussion of the AT keyword. (+ INTERVAL is not used
with EVERY.) For example, EVERY 6 WEEK means “every six weeks”.

CREATE EVENT Syntax

1321

Although + INTERVAL clauses are not permitted in an EVERY clause, you can use the same
complex time units permitted in a + INTERVAL.

An EVERY clause may contain an optional STARTS clause. STARTS is followed by a timestamp
value that indicates when the action should begin repeating, and may also use + INTERVAL
interval to specify an amount of time “from now”. For example, EVERY 3 MONTH STARTS
CURRENT_TIMESTAMP + INTERVAL 1 WEEK means “every three months, beginning one
week from now”. Similarly, you can express “every two weeks, beginning six hours and fifteen
minutes from now” as EVERY 2 WEEK STARTS CURRENT_TIMESTAMP + INTERVAL '6:15'
HOUR_MINUTE. Not specifying STARTS is the same as using STARTS CURRENT_TIMESTAMP—that
is, the action specified for the event begins repeating immediately upon creation of the event.

An EVERY clause may contain an optional ENDS clause. The ENDS keyword is followed by a
timestamp value that tells MySQL when the event should stop repeating. You may also use +
INTERVAL interval with ENDS; for instance, EVERY 12 HOUR STARTS CURRENT_TIMESTAMP
+ INTERVAL 30 MINUTE ENDS CURRENT_TIMESTAMP + INTERVAL 4 WEEK is equivalent to
“every twelve hours, beginning thirty minutes from now, and ending four weeks from now”. Not using
ENDS means that the event continues executing indefinitely.

ENDS supports the same syntax for complex time units as STARTS does.

You may use STARTS, ENDS, both, or neither in an EVERY clause.

If a repeating event does not terminate within its scheduling interval, the result may be multiple
instances of the event executing simultaneously. If this is undesirable, you should institute a
mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK()
function, or row or table locking.

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables
to obtain any of the timestamp or interval values which it contains. You may not use stored
functions or user-defined functions in such expressions, nor may you use any table references;
however, you may use SELECT FROM DUAL. This is true for both CREATE EVENT and ALTER EVENT
statements. References to stored functions, user-defined functions, and tables in such cases are
specifically not permitted, and fail with an error (see Bug #22830).

Times in the ON SCHEDULE clause are interpreted using the current session time_zone value. This
becomes the event time zone; that is, the time zone that is used for event scheduling and is in effect
within the event as it executes. These times are converted to UTC and stored along with the event time
zone in the mysql.event table. This enables event execution to proceed as defined regardless of any
subsequent changes to the server time zone or daylight saving time effects. For additional information
about representation of event times, see Section 18.4.4, “Event Metadata”. See also Section 13.7.5.17,
“SHOW EVENTS Syntax”, and Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”.

Normally, once an event has expired, it is immediately dropped. You can override this behavior by
specifying ON COMPLETION PRESERVE. Using ON COMPLETION NOT PRESERVE merely makes the
default nonpersistent behavior explicit.

You can create an event but prevent it from being active using the DISABLE keyword. Alternatively,
you can use ENABLE to make explicit the default status, which is active. This is most useful in
conjunction with ALTER EVENT (see Section 13.1.2, “ALTER EVENT Syntax”).

A third value may also appear in place of ENABLED or DISABLED; DISABLE ON SLAVE is set for
the status of an event on a replication slave to indicate that the event was created on the master and
replicated to the slave, but is not executed on the slave. See Section 16.4.1.11, “Replication of Invoked
Features”.

You may supply a comment for an event using a COMMENT clause. comment may be any string of up
to 64 characters that you wish to use for describing the event. The comment text, being a string literal,
must be surrounded by quotation marks.

CREATE EVENT Syntax

1322

The DO clause specifies an action carried by the event, and consists of an SQL statement. Nearly
any valid MySQL statement that can be used in a stored routine can also be used as the action
statement for a scheduled event. (See Section E.1, “Restrictions on Stored Programs”.) For example,
the following event e_hourly deletes all rows from the sessions table once per hour, where this
table is part of the site_activity schema:

CREATE EVENT e_hourly
 ON SCHEDULE
 EVERY 1 HOUR
 COMMENT 'Clears out sessions table each hour.'
 DO
 DELETE FROM site_activity.sessions;

MySQL stores the sql_mode system variable setting in effect when an event is created or altered, and
always executes the event with this setting in force, regardless of the current server SQL mode when
the event begins executing.

A CREATE EVENT statement that contains an ALTER EVENT statement in its DO clause appears to
succeed; however, when the server attempts to execute the resulting scheduled event, the execution
fails with an error.

Note

Statements such as SELECT or SHOW that merely return a result set have no
effect when used in an event; the output from these is not sent to the MySQL
Monitor, nor is it stored anywhere. However, you can use statements such as
SELECT ... INTO and INSERT INTO ... SELECT that store a result. (See
the next example in this section for an instance of the latter.)

The schema to which an event belongs is the default schema for table references in the DO clause. Any
references to tables in other schemas must be qualified with the proper schema name.

As with stored routines, you can use compound-statement syntax in the DO clause by using the BEGIN
and END keywords, as shown here:

delimiter |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

delimiter ;

This example uses the delimiter command to change the statement delimiter. See Section 18.1,
“Defining Stored Programs”.

More complex compound statements, such as those used in stored routines, are possible in an event.
This example uses local variables, an error handler, and a flow control construct:

delimiter |

CREATE EVENT e
 ON SCHEDULE
 EVERY 5 SECOND
 DO

CREATE FUNCTION Syntax

1323

 BEGIN
 DECLARE v INTEGER;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;

 SET v = 0;

 WHILE v < 5 DO
 INSERT INTO t1 VALUES (0);
 UPDATE t2 SET s1 = s1 + 1;
 SET v = v + 1;
 END WHILE;
 END |

delimiter ;

There is no way to pass parameters directly to or from events; however, it is possible to invoke a stored
routine with parameters within an event:

CREATE EVENT e_call_myproc
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO CALL myproc(5, 27);

If an event's definer has the SUPER privilege, the event can read and write global variables. As granting
this privilege entails a potential for abuse, extreme care must be taken in doing so.

Generally, any statements that are valid in stored routines may be used for action statements
executed by events. For more information about statements permissible within stored routines, see
Section 18.2.1, “Stored Routine Syntax”. You can create an event as part of a stored routine, but an
event cannot be created by another event.

13.1.10 CREATE FUNCTION Syntax

The CREATE FUNCTION statement is used to create stored functions and user-defined functions
(UDFs):

• For information about creating stored functions, see Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”.

• For information about creating user-defined functions, see Section 13.7.3.1, “CREATE FUNCTION
Syntax for User-Defined Functions”.

13.1.11 CREATE INDEX Syntax

CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
 [index_type]
 ON tbl_name (index_col_name,...)
 [index_option]
 [algorithm_option | lock_option] ...

index_col_name:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'

algorithm_option:
 ALGORITHM [=] {DEFAULT|INPLACE|COPY}

CREATE INDEX Syntax

1324

lock_option:
 LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 13.1.6,
“ALTER TABLE Syntax”. CREATE INDEX cannot be used to create a PRIMARY KEY; use ALTER
TABLE instead. For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE.
See Section 13.1.14, “CREATE TABLE Syntax”. This guideline is especially important for InnoDB
tables, where the primary key determines the physical layout of rows in the data file. CREATE INDEX
enables you to add indexes to existing tables.

A column list of the form (col1,col2,...) creates a multiple-column index. Index key values are
formed by concatenating the values of the given columns.

Indexes can be created that use only the leading part of column values, using col_name(length)
syntax to specify an index prefix length:

• Prefixes can be specified for CHAR, VARCHAR, BINARY, and VARBINARY columns.

• BLOB and TEXT columns also can be indexed, but a prefix length must be given.

• Prefix lengths are given in characters for nonbinary string types and in bytes for binary string
types. That is, index entries consist of the first length characters of each column value for CHAR,
VARCHAR, and TEXT columns, and the first length bytes of each column value for BINARY,
VARBINARY, and BLOB columns.

• For spatial columns, prefix values cannot be given, as described later in this section.

The statement shown here creates an index using the first 10 characters of the name column:

CREATE INDEX part_of_name ON customer (name(10));

If names in the column usually differ in the first 10 characters, this index should not be much slower
than an index created from the entire name column. Also, using column prefixes for indexes can make
the index file much smaller, which could save a lot of disk space and might also speed up INSERT
operations.

Prefix support and lengths of prefixes (where supported) are storage engine dependent. For example,
a prefix can be up to 1000 bytes long for MyISAM tables, and 767 bytes for InnoDB tables.

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE
INDEX statements is interpreted as number of characters for nonbinary data
types (CHAR, VARCHAR, TEXT). Take this into account when specifying a prefix
length for a column that uses a multi-byte character set.

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs
if you try to add a new row with a key value that matches an existing row. For all engines, a UNIQUE
index permits multiple NULL values for columns that can contain NULL. If you specify a prefix value for
a column in a UNIQUE index, the column values must be unique within the prefix.

FULLTEXT indexes are supported only for InnoDB and MyISAM tables and can include only CHAR,
VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix indexing
is not supported and any prefix length is ignored if specified. See Section 12.9, “Full-Text Search
Functions”, for details of operation.

The MyISAM, InnoDB, NDB, and ARCHIVE storage engines support spatial columns such as (POINT
and GEOMETRY. (Section 12.18, “Spatial Extensions”, describes the spatial data types.) However,

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

CREATE INDEX Syntax

1325

support for spatial column indexing varies among engines. Spatial and nonspatial indexes are available
according to the following rules.

Spatial indexes (created using SPATIAL INDEX) have these characteristics:

• Available only for MyISAM tables. Specifying SPATIAL INDEX for other storage engines results in
an error.

• Indexed columns must be NOT NULL.

• In MySQL 5.7, column prefix lengths are prohibited. The full width of each column is indexed.

Characteristics of nonspatial indexes (created with INDEX, UNIQUE, or PRIMARY KEY):

• Permitted for any storage engine that supports spatial columns except ARCHIVE.

• Columns can be NULL unless the index is a primary key.

• For each spatial column in a non-SPATIAL index except POINT columns, a column prefix length
must be specified. (This is the same requirement as for indexed BLOB columns.) The prefix length is
given in bytes.

• The index type for a non-SPATIAL index depends on the storage engine. Currently, B-tree is used.

In MySQL 5.7:

• You can add an index on a column that can have NULL values only if you are using the InnoDB,
MyISAM, or MEMORY storage engine.

• You can add an index on a BLOB or TEXT column only if you are using the InnoDB or MyISAM
storage engine.

• When the innodb_stats_persistent setting is enabled, run the ANALYZE TABLE statement for
an InnoDB table after creating an index on that table.

An index_col_name specification can end with ASC or DESC. These keywords are permitted for
future extensions for specifying ascending or descending index value storage. Currently, they are
parsed but ignored; index values are always stored in ascending order.

Following the index column list, index options can be given. An index_option value can be any of
the following:

• KEY_BLOCK_SIZE [=] value

For compressed InnoDB tables, optionally specifies the size in bytes to use for pages. The value
is treated as a hint; a different size could be used if necessary. A value of 0 represents the default
compressed page size. See Section 14.2.7, “InnoDB Compressed Tables” for usage details.

Note

Oracle recommends enabling innodb_strict_mode when using the
KEY_BLOCK_SIZE clause for InnoDB tables.

• index_type

Some storage engines permit you to specify an index type when creating an index. The permissible
index type values supported by different storage engines are shown in the following table. Where
multiple index types are listed, the first one is the default when no index type specifier is given.

Storage Engine Permissible Index Types

InnoDB BTREE

CREATE PROCEDURE and CREATE FUNCTION Syntax

1326

Storage Engine Permissible Index Types

MyISAM BTREE

MEMORY/HEAP HASH, BTREE

NDB HASH, BTREE (see note in text)

Example:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index ON lookup (id) USING BTREE;

The index_type clause cannot be used together with SPATIAL INDEX.

If you specify an index type that is not valid for a given storage engine, but there is another index
type available that the engine can use without affecting query results, the engine uses the available
type. The parser recognizes RTREE as a type name, but currently this cannot be specified for any
storage engine.

Use of this option before the ON tbl_name clause is deprecated; support for use of the option in
this position will be removed in a future MySQL release. If an index_type option is given in both
the earlier and later positions, the final option applies.

TYPE type_name is recognized as a synonym for USING type_name. However, USING is the
preferred form.

• WITH PARSER parser_name

This option can be used only with FULLTEXT indexes. It associates a parser plugin with the index
if full-text indexing and searching operations need special handling. Prior to MySQL 5.7.3, only
MyISAM supported full-text parser plugins. As of MySQL 5.7.3, both InnoDB and MyISAM support
full-text parser plugins. See Section 22.2.3.2, “Full-Text Parser Plugins” and Section 22.2.4.4,
“Writing Full-Text Parser Plugins” for more information.

• COMMENT 'string'

Index definitions can include an optional comment of up to 1024 characters.

ALGORITHM and LOCK clauses may be given. These influence the table copying method and level
of concurrency for reading and writing the table while its indexes are being modified. They have the
same meaning as for the ALTER TABLE statement. For more information, see Section 13.1.6, “ALTER
TABLE Syntax”

13.1.12 CREATE PROCEDURE and CREATE FUNCTION Syntax

CREATE
 [DEFINER = { user | CURRENT_USER }]
 PROCEDURE sp_name ([proc_parameter[,...]])
 [characteristic ...] routine_body

CREATE
 [DEFINER = { user | CURRENT_USER }]
 FUNCTION sp_name ([func_parameter[,...]])
 RETURNS type
 [characteristic ...] routine_body

proc_parameter:
 [IN | OUT | INOUT] param_name type

func_parameter:
 param_name type

type:

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

CREATE PROCEDURE and CREATE FUNCTION Syntax

1327

 Any valid MySQL data type

characteristic:
 COMMENT 'string'
 | LANGUAGE SQL
 | [NOT] DETERMINISTIC
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }

routine_body:
 Valid SQL routine statement

These statements create stored routines. By default, a routine is associated with the default database.
To associate the routine explicitly with a given database, specify the name as db_name.sp_name
when you create it.

The CREATE FUNCTION statement is also used in MySQL to support UDFs (user-defined functions).
See Section 22.3, “Adding New Functions to MySQL”. A UDF can be regarded as an external stored
function. Stored functions share their namespace with UDFs. See Section 9.2.4, “Function Name
Parsing and Resolution”, for the rules describing how the server interprets references to different kinds
of functions.

To invoke a stored procedure, use the CALL statement (see Section 13.2.1, “CALL Syntax”). To invoke
a stored function, refer to it in an expression. The function returns a value during expression evaluation.

CREATE PROCEDURE and CREATE FUNCTION require the CREATE ROUTINE privilege. They might
also require the SUPER privilege, depending on the DEFINER value, as described later in this section.
If binary logging is enabled, CREATE FUNCTION might require the SUPER privilege, as described in
Section 18.7, “Binary Logging of Stored Programs”.

By default, MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine
creator. This behavior can be changed by disabling the automatic_sp_privileges system
variable. See Section 18.2.2, “Stored Routines and MySQL Privileges”.

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking
access privileges at routine execution time, as described later in this section.

If the routine name is the same as the name of a built-in SQL function, a syntax error occurs unless you
use a space between the name and the following parenthesis when defining the routine or invoking it
later. For this reason, avoid using the names of existing SQL functions for your own stored routines.

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always
permissible to have spaces after a stored routine name, regardless of whether IGNORE_SPACE is
enabled.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an
empty parameter list of () should be used. Parameter names are not case sensitive.

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword
OUT or INOUT before the parameter name.

Note

Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE.
For a FUNCTION, parameters are always regarded as IN parameters.

An IN parameter passes a value into a procedure. The procedure might modify the value, but the
modification is not visible to the caller when the procedure returns. An OUT parameter passes a value
from the procedure back to the caller. Its initial value is NULL within the procedure, and its value is
visible to the caller when the procedure returns. An INOUT parameter is initialized by the caller, can
be modified by the procedure, and any change made by the procedure is visible to the caller when the
procedure returns.

CREATE PROCEDURE and CREATE FUNCTION Syntax

1328

For each OUT or INOUT parameter, pass a user-defined variable in the CALL statement that invokes
the procedure so that you can obtain its value when the procedure returns. If you are calling the
procedure from within another stored procedure or function, you can also pass a routine parameter or
local routine variable as an IN or INOUT parameter.

Routine parameters cannot be referenced in statements prepared within the routine; see Section E.1,
“Restrictions on Stored Programs”.

The following example shows a simple stored procedure that uses an OUT parameter:

mysql> delimiter //

mysql> CREATE PROCEDURE simpleproc (OUT param1 INT)
 -> BEGIN
 -> SELECT COUNT(*) INTO param1 FROM t;
 -> END//
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL simpleproc(@a);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @a;
+------+
| @a |
+------+
| 3 |
+------+
1 row in set (0.00 sec)

The example uses the mysql client delimiter command to change the statement delimiter from ; to
// while the procedure is being defined. This enables the ; delimiter used in the procedure body to be
passed through to the server rather than being interpreted by mysql itself. See Section 18.1, “Defining
Stored Programs”.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates
the return type of the function, and the function body must contain a RETURN value statement. If
the RETURN statement returns a value of a different type, the value is coerced to the proper type.
For example, if a function specifies an ENUM or SET value in the RETURNS clause, but the RETURN
statement returns an integer, the value returned from the function is the string for the corresponding
ENUM member of set of SET members.

The following example function takes a parameter, performs an operation using an SQL function, and
returns the result. In this case, it is unnecessary to use delimiter because the function definition
contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

Parameter types and function return types can be declared to use any valid data type. The COLLATE
attribute can be used if preceded by the CHARACTER SET attribute.

The routine_body consists of a valid SQL routine statement. This can be a simple statement
such as SELECT or INSERT, or a compound statement written using BEGIN and END. Compound

CREATE PROCEDURE and CREATE FUNCTION Syntax

1329

statements can contain declarations, loops, and other control structure statements. The syntax for
these statements is described in Section 13.6, “MySQL Compound-Statement Syntax”.

MySQL permits routines to contain DDL statements, such as CREATE and DROP. MySQL also permits
stored procedures (but not stored functions) to contain SQL transaction statements such as COMMIT.
Stored functions may not contain statements that perform explicit or implicit commit or rollback. Support
for these statements is not required by the SQL standard, which states that each DBMS vendor may
decide whether to permit them.

Statements that return a result set can be used within a stored procedure but not within a stored
function. This prohibition includes SELECT statements that do not have an INTO var_list clause
and other statements such as SHOW, EXPLAIN, and CHECK TABLE. For statements that can be
determined at function definition time to return a result set, a Not allowed to return a result
set from a function error occurs (ER_SP_NO_RETSET). For statements that can be determined
only at runtime to return a result set, a PROCEDURE %s can't return a result set in the
given context error occurs (ER_SP_BADSELECT).

USE statements within stored routines are not permitted. When a routine is invoked, an implicit USE
db_name is performed (and undone when the routine terminates). The causes the routine to have the
given default database while it executes. References to objects in databases other than the routine
default database should be qualified with the appropriate database name.

For additional information about statements that are not permitted in stored routines, see Section E.1,
“Restrictions on Stored Programs”.

For information about invoking stored procedures from within programs written in a language that has a
MySQL interface, see Section 13.2.1, “CALL Syntax”.

MySQL stores the sql_mode system variable setting in effect when a routine is created or altered, and
always executes the routine with this setting in force, regardless of the current server SQL mode when
the routine begins executing.

The switch from the SQL mode of the invoker to that of the routine occurs after evaluation of arguments
and assignment of the resulting values to routine parameters. If you define a routine in strict SQL mode
but invoke it in nonstrict mode, assignment of arguments to routine parameters does not take place in
strict mode. If you require that expressions passed to a routine be assigned in strict SQL mode, you
should invoke the routine with strict mode in effect.

The COMMENT characteristic is a MySQL extension, and may be used to describe the stored routine.
This information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION
statements.

The LANGUAGE characteristic indicates the language in which the routine is written. The server ignores
this characteristic; only SQL routines are supported.

A routine is considered “deterministic” if it always produces the same result for the same input
parameters, and “not deterministic” otherwise. If neither DETERMINISTIC nor NOT DETERMINISTIC
is given in the routine definition, the default is NOT DETERMINISTIC. To declare that a function is
deterministic, you must specify DETERMINISTIC explicitly.

Assessment of the nature of a routine is based on the “honesty” of the creator: MySQL does not
check that a routine declared DETERMINISTIC is free of statements that produce nondeterministic
results. However, misdeclaring a routine might affect results or affect performance. Declaring
a nondeterministic routine as DETERMINISTIC might lead to unexpected results by causing
the optimizer to make incorrect execution plan choices. Declaring a deterministic routine as
NONDETERMINISTIC might diminish performance by causing available optimizations not to be used.

If binary logging is enabled, the DETERMINISTIC characteristic affects which routine definitions
MySQL accepts. See Section 18.7, “Binary Logging of Stored Programs”.

CREATE PROCEDURE and CREATE FUNCTION Syntax

1330

A routine that contains the NOW() function (or its synonyms) or RAND() is nondeterministic, but it might
still be replication-safe. For NOW(), the binary log includes the timestamp and replicates correctly.
RAND() also replicates correctly as long as it is called only a single time during the execution of a
routine. (You can consider the routine execution timestamp and random number seed as implicit inputs
that are identical on the master and slave.)

Several characteristics provide information about the nature of data use by the routine. In MySQL,
these characteristics are advisory only. The server does not use them to constrain what kinds of
statements a routine will be permitted to execute.

• CONTAINS SQL indicates that the routine does not contain statements that read or write data. This
is the default if none of these characteristics is given explicitly. Examples of such statements are SET
@x = 1 or DO RELEASE_LOCK('abc'), which execute but neither read nor write data.

• NO SQL indicates that the routine contains no SQL statements.

• READS SQL DATA indicates that the routine contains statements that read data (for example,
SELECT), but not statements that write data.

• MODIFIES SQL DATA indicates that the routine contains statements that may write data (for
example, INSERT or DELETE).

The SQL SECURITY characteristic can be DEFINER or INVOKER to specify the security context; that is,
whether the routine executes using the privileges of the account named in the routine DEFINER clause
or the user who invokes it. This account must have permission to access the database with which
the routine is associated. The default value is DEFINER. The user who invokes the routine must have
the EXECUTE privilege for it, as must the DEFINER account if the routine executes in definer security
context.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at
routine execution time for routines that have the SQL SECURITY DEFINER characteristic.

If a user value is given for the DEFINER clause, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER, or
CURRENT_USER(). The default DEFINER value is the user who executes the CREATE PROCEDURE
or CREATE FUNCTION or statement. This is the same as specifying DEFINER = CURRENT_USER
explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only permitted user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not actually exist, a warning is generated.

• Although it is possible to create a routine with a nonexistent DEFINER account, an error occurs at
routine execution time if the SQL SECURITY value is DEFINER but the definer account does not
exist.

For more information about stored routine security, see Section 18.6, “Access Control for Stored
Programs and Views”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic,
CURRENT_USER returns the routine's DEFINER value. For information about user auditing within stored
routines, see Section 6.3.14, “SQL-Based MySQL Account Activity Auditing”.

Consider the following procedure, which displays a count of the number of MySQL accounts listed in
the mysql.user table:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()

CREATE SERVER Syntax

1331

BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure is assigned a DEFINER account of 'admin'@'localhost' no matter which user
defines it. It executes with the privileges of that account no matter which user invokes it (because the
default security characteristic is DEFINER). The procedure succeeds or fails depending on whether
invoker has the EXECUTE privilege for it and 'admin'@'localhost' has the SELECT privilege for the
mysql.user table.

Now suppose that the procedure is defined with the SQL SECURITY INVOKER characteristic:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
SQL SECURITY INVOKER
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure still has a DEFINER of 'admin'@'localhost', but in this case, it executes with
the privileges of the invoking user. Thus, the procedure succeeds or fails depending on whether the
invoker has the EXECUTE privilege for it and the SELECT privilege for the mysql.user table.

The server handles the data type of a routine parameter, local routine variable created with DECLARE,
or function return value as follows:

• Assignments are checked for data type mismatches and overflow. Conversion and overflow
problems result in warnings, or errors in strict SQL mode.

• Only scalar values can be assigned. For example, a statement such as SET x = (SELECT 1, 2)
is invalid.

• For character data types, if there is a CHARACTER SET attribute in the declaration, the specified
character set and its default collation is used. If the COLLATE attribute is also present, that
collation is used rather than the default collation. If there is no CHARACTER SET attribute, the
database character set and collation in effect at routine creation time are used. (The database
character set and collation are given by the value of the character_set_database and
collation_database system variables.)

If you change the database default character set or collation, stored routines that use the database
defaults must be dropped and recreated so that they use the new defaults.

13.1.13 CREATE SERVER Syntax

CREATE SERVER server_name
 FOREIGN DATA WRAPPER wrapper_name
 OPTIONS (option [, option] ...)

option:
 { HOST character-literal
 | DATABASE character-literal
 | USER character-literal
 | PASSWORD character-literal
 | SOCKET character-literal
 | OWNER character-literal
 | PORT numeric-literal }

This statement creates the definition of a server for use with the FEDERATED storage engine. The
CREATE SERVER statement creates a new row in the servers table in the mysql database. This
statement requires the SUPER privilege.

The server_name should be a unique reference to the server. Server definitions are global within
the scope of the server, it is not possible to qualify the server definition to a specific database.

CREATE TABLE Syntax

1332

server_name has a maximum length of 64 characters (names longer than 64 characters are silently
truncated), and is case insensitive. You may specify the name as a quoted string.

The wrapper_name should be mysql, and may be quoted with single quotation marks. Other values
for wrapper_name are not currently supported.

For each option you must specify either a character literal or numeric literal. Character literals are
UTF-8, support a maximum length of 64 characters and default to a blank (empty) string. String literals
are silently truncated to 64 characters. Numeric literals must be a number between 0 and 9999, default
value is 0.

Note

The OWNER option is currently not applied, and has no effect on the ownership
or operation of the server connection that is created.

The CREATE SERVER statement creates an entry in the mysql.servers table that can later be used
with the CREATE TABLE statement when creating a FEDERATED table. The options that you specify will
be used to populate the columns in the mysql.servers table. The table columns are Server_name,
Host, Db, Username, Password, Port and Socket.

For example:

CREATE SERVER s
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');

Be sure to specify all options necessary to establish a connection to the server. The user name, host
name, and database name are mandatory. Other options might be required as well, such as password.

The data stored in the table can be used when creating a connection to a FEDERATED table:

CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';

For more information, see Section 14.9, “The FEDERATED Storage Engine”.

CREATE SERVER causes an automatic commit.

In MySQL 5.7, CREATE SERVER is not written to the binary log, regardless of the logging format that is
in use.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

13.1.14 CREATE TABLE Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 (create_definition,...)
 [table_options]
 [partition_options]

Or:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 [(create_definition,...)]
 [table_options]
 [partition_options]
 select_statement

Or:

CREATE TABLE Syntax

1333

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 { LIKE old_tbl_name | (LIKE old_tbl_name) }

create_definition:
 col_name column_definition
 | [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)
 [index_option] ...
 | {INDEX|KEY} [index_name] [index_type] (index_col_name,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY]
 [index_name] [index_type] (index_col_name,...)
 [index_option] ...
 | {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name] (index_col_name,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (index_col_name,...) reference_definition
 | CHECK (expr)

column_definition:
 data_type [NOT NULL | NULL] [DEFAULT default_value]
 [AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
 [COMMENT 'string']
 [COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}]
 [reference_definition]

data_type:
 BIT[(length)]
 | TINYINT[(length)] [UNSIGNED] [ZEROFILL]
 | SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
 | MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
 | INT[(length)] [UNSIGNED] [ZEROFILL]
 | INTEGER[(length)] [UNSIGNED] [ZEROFILL]
 | BIGINT[(length)] [UNSIGNED] [ZEROFILL]
 | REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
 | DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
 | FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
 | DECIMAL[(length[,decimals])] [UNSIGNED] [ZEROFILL]
 | NUMERIC[(length[,decimals])] [UNSIGNED] [ZEROFILL]
 | DATE
 | TIME
 | TIMESTAMP
 | DATETIME
 | YEAR
 | CHAR[(length)]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | VARCHAR(length)
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | BINARY[(length)]
 | VARBINARY(length)
 | TINYBLOB
 | BLOB
 | MEDIUMBLOB
 | LONGBLOB
 | TINYTEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | TEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | MEDIUMTEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | LONGTEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | ENUM(value1,value2,value3,...)
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | SET(value1,value2,value3,...)
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | spatial_type

index_col_name:
 col_name [(length)] [ASC | DESC]

CREATE TABLE Syntax

1334

index_type:
 USING {BTREE | HASH}

index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'

reference_definition:
 REFERENCES tbl_name (index_col_name,...)
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION

table_options:
 table_option [[,] table_option] ...

table_option:
 ENGINE [=] engine_name
 | AUTO_INCREMENT [=] value
 | AVG_ROW_LENGTH [=] value
 | [DEFAULT] CHARACTER SET [=] charset_name
 | CHECKSUM [=] {0 | 1}
 | [DEFAULT] COLLATE [=] collation_name
 | COMMENT [=] 'string'
 | CONNECTION [=] 'connect_string'
 | DATA DIRECTORY [=] 'absolute path to directory'
 | DELAY_KEY_WRITE [=] {0 | 1}
 | INDEX DIRECTORY [=] 'absolute path to directory'
 | INSERT_METHOD [=] { NO | FIRST | LAST }
 | KEY_BLOCK_SIZE [=] value
 | MAX_ROWS [=] value
 | MIN_ROWS [=] value
 | PACK_KEYS [=] {0 | 1 | DEFAULT}
 | PASSWORD [=] 'string'
 | ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
 | STATS_AUTO_RECALC [=] {DEFAULT|0|1}
 | STATS_PERSISTENT [=] {DEFAULT|0|1}
 | STATS_SAMPLE_PAGES [=] value
 | UNION [=] (tbl_name[,tbl_name]...)

partition_options:
 PARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1|2}] (column_list)
 | RANGE{(expr) | COLUMNS(column_list)}
 | LIST{(expr) | COLUMNS(column_list)} }
 [PARTITIONS num]
 [SUBPARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1|2}] (column_list) }
 [SUBPARTITIONS num]
]
 [(partition_definition [, partition_definition] ...)]

partition_definition:
 PARTITION partition_name
 [VALUES
 {LESS THAN {(expr | value_list) | MAXVALUE}
 |
 IN (value_list)}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'comment_text']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [(subpartition_definition [, subpartition_definition] ...)]

CREATE TABLE Syntax

1335

subpartition_definition:
 SUBPARTITION logical_name
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'comment_text']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]

select_statement:
 [IGNORE | REPLACE] [AS] SELECT ... (Some valid select statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the
table.

Rules for permissible table names are given in Section 9.2, “Schema Object Names”. By default, the
table is created in the default database, using the InnoDB storage engine. An error occurs if the table
exists, if there is no default database, or if the database does not exist.

The table name can be specified as db_name.tbl_name to create the table in a specific database.
This works regardless of whether there is a default database, assuming that the database exists.
If you use quoted identifiers, quote the database and table names separately. For example, write
`mydb`.`mytbl`, not `mydb.mytbl`.

Temporary Tables

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only to
the current connection, and is dropped automatically when the connection is closed. This means that
two different connections can use the same temporary table name without conflicting with each other
or with an existing non-TEMPORARY table of the same name. (The existing table is hidden until the
temporary table is dropped.) To create temporary tables, you must have the CREATE TEMPORARY
TABLES privilege.

Note

CREATE TABLE does not automatically commit the current active transaction if
you use the TEMPORARY keyword.

Existing Table with Same Name

The keywords IF NOT EXISTS prevent an error from occurring if the table exists. However, there is
no verification that the existing table has a structure identical to that indicated by the CREATE TABLE
statement.

Physical Representation

MySQL represents each table by an .frm table format (definition) file in the database directory. The
storage engine for the table might create other files as well.

For InnoDB tables, the file storage is controlled by the innodb_file_per_table configuration
option. When this option is turned off, all InnoDB tables and indexes are stored in the system
tablespace, represented by one or more .ibd files. For each InnoDB table created when this option is
turned on, the table data and all associated indexes are stored in a .ibd file located inside the database
directory.

For MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table
tbl_name, there are three disk files.

File Purpose

tbl_name.frm Table format (definition) file

tbl_name.MYD Data file

tbl_name.MYI Index file

CREATE TABLE Syntax

1336

Chapter 14, Storage Engines, describes what files each storage engine creates to represent tables. If a
table name contains special characters, the names for the table files contain encoded versions of those
characters as described in Section 9.2.3, “Mapping of Identifiers to File Names”.

Data Types and Attributes for Columns

data_type represents the data type in a column definition. spatial_type represents a spatial
data type. The data type syntax shown is representative only. For a full description of the syntax
available for specifying column data types, as well as information about the properties of each type,
see Chapter 11, Data Types, and Section 12.18, “Spatial Extensions”.

Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer and floating-
point types. DEFAULT does not apply to the BLOB or TEXT types.

• If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been
specified.

• An integer or floating-point column can have the additional attribute AUTO_INCREMENT. When you
insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column
is set to the next sequence value. Typically this is value+1, where value is the largest value for the
column currently in the table. AUTO_INCREMENT sequences begin with 1.

To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. See Section 12.14, “Information Functions”,
and Section 21.8.7.38, “mysql_insert_id()”.

If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT
columns as 0 without generating a new sequence value. See Section 5.1.7, “Server SQL Modes”.

Note

There can be only one AUTO_INCREMENT column per table, it must be
indexed, and it cannot have a DEFAULT value. An AUTO_INCREMENT column
works properly only if it contains only positive values. Inserting a negative
number is regarded as inserting a very large positive number. This is done to
avoid precision problems when numbers “wrap” over from positive to negative
and also to ensure that you do not accidentally get an AUTO_INCREMENT
column that contains 0.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column
key. See Section 3.6.9, “Using AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT
value for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

For information about InnoDB and AUTO_INCREMENT, see Section 14.2.6.5, “AUTO_INCREMENT
Handling in InnoDB”. For information about AUTO_INCREMENT and MySQL Replication, see
Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

• Character data types (CHAR, VARCHAR, TEXT) can include CHARACTER SET and COLLATE attributes
to specify the character set and collation for the column. For details, see Section 10.1, “Character
Set Support”. CHARSET is a synonym for CHARACTER SET. Example:

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

MySQL 5.7 interprets length specifications in character column definitions in characters. (Versions
before MySQL 4.1 interpreted them in bytes.) Lengths for BINARY and VARBINARY are in bytes.

CREATE TABLE Syntax

1337

• The DEFAULT clause specifies a default value for a column. With one exception, the default
value must be a constant; it cannot be a function or an expression. This means, for example,
that you cannot set the default for a date column to be the value of a function such as NOW() or
CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the default for a
TIMESTAMP or DATETIME column. See Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP and DATETIME”.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as
described in Section 11.5, “Data Type Default Values”.

BLOB and TEXT columns cannot be assigned a default value.

Before MySQL 5.7.4, if the NO_ZERO_DATE or NO_ZERO_IN_DATE SQL mode is enabled
and a date-valued default is not correct according to that mode, CREATE TABLE produces a
warning if strict SQL mode is not enabled and an error if strict mode is enabled. For example, with
NO_ZERO_IN_DATE enabled, c1 DATE DEFAULT '2010-00-00' produces a warning.

As of MySQL 5.7.4, if strict SQL mode is enabled and a date-valued default is not correct according
to that mode, CREATE TABLE produces an error.

• A comment for a column can be specified with the COMMENT option, up to 1024 characters long. The
comment is displayed by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements.

• KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as just
KEY when given in a column definition. This was implemented for compatibility with other database
systems.

• A UNIQUE index creates a constraint such that all values in the index must be distinct. An error
occurs if you try to add a new row with a key value that matches an existing row. For all engines, a
UNIQUE index permits multiple NULL values for columns that can contain NULL.

• A PRIMARY KEY is a unique index where all key columns must be defined as NOT NULL. If they are
not explicitly declared as NOT NULL, MySQL declares them so implicitly (and silently). A table can
have only one PRIMARY KEY. The name of a PRIMARY KEY is always PRIMARY, which thus cannot
be used as the name for any other kind of index.

If you do not have a PRIMARY KEY and an application asks for the PRIMARY KEY in your tables,
MySQL returns the first UNIQUE index that has no NULL columns as the PRIMARY KEY.

In InnoDB tables, keep the PRIMARY KEY short to minimize storage overhead for secondary
indexes. Each secondary index entry contains a copy of the primary key columns for the
corresponding row. (See Section 14.2.2.14, “InnoDB Table and Index Structures”.)

• In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the
nonunique indexes. This helps the MySQL optimizer to prioritize which index to use and also more
quickly to detect duplicated UNIQUE keys.

• A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column
index using the PRIMARY KEY key attribute in a column specification. Doing so only marks that
single column as primary. You must use a separate PRIMARY KEY(index_col_name, ...)
clause.

• If a PRIMARY KEY or UNIQUE index consists of only one column that has an integer type, you can
also refer to the column as _rowid in SELECT statements.

• In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a
name, the index is assigned the same name as the first indexed column, with an optional suffix
(_2, _3, ...) to make it unique. You can see index names for a table using SHOW INDEX FROM
tbl_name. See Section 13.7.5.21, “SHOW INDEX Syntax”.

• Some storage engines permit you to specify an index type when creating an index. The syntax for
the index_type specifier is USING type_name.

CREATE TABLE Syntax

1338

Example:

CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

The preferred position for USING is after the index column list. It can be given before the column list,
but support for use of the option in that position is deprecated and will be removed in a future MySQL
release.

index_option values specify additional options for an index. USING is one such option. The WITH
PARSER option can only be used with FULLTEXT indexes. It associates a parser plugin with the
index if full-text indexing and searching operations need special handling. Prior to MySQL 5.7.3, only
MyISAM supported full-text parser plugins. As of MySQL 5.7.3, both InnoDB and MyISAM support
full-text parser plugins. If you have a MyISAM table with an associated full-text parser plugin, you can
convert the table to InnoDB using ALTER TABLE.

For more information about permissible index_option values, see Section 13.1.11, “CREATE
INDEX Syntax”. For more information about indexes, see Section 8.3.1, “How MySQL Uses
Indexes”.

• In MySQL 5.7, only the InnoDB, MyISAM, and MEMORY storage engines support indexes on
columns that can have NULL values. In other cases, you must declare indexed columns as NOT
NULL or an error results.

• For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the
leading part of column values, using col_name(length) syntax to specify an index prefix length.
BLOB and TEXT columns also can be indexed, but a prefix length must be given. Prefix lengths are
given in characters for nonbinary string types and in bytes for binary string types. That is, index
entries consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT
columns, and the first length bytes of each column value for BINARY, VARBINARY, and BLOB
columns. Indexing only a prefix of column values like this can make the index file much smaller. See
Section 8.3.4, “Column Indexes”.

Only the InnoDB and MyISAM storage engines support indexing on BLOB and TEXT columns. For
example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables). Note that prefix limits are
measured in bytes, whereas the prefix length in CREATE TABLE statements is interpreted as
number of characters for nonbinary data types (CHAR, VARCHAR, TEXT). Take this into account when
specifying a prefix length for a column that uses a multi-byte character set.

• An index_col_name specification can end with ASC or DESC. These keywords are permitted for
future extensions for specifying ascending or descending index value storage. Currently, they are
parsed but ignored; index values are always stored in ascending order.

• When you use ORDER BY or GROUP BY on a column in a SELECT, the server sorts values using only
the initial number of bytes indicated by the max_sort_length system variable.

• You can create special FULLTEXT indexes, which are used for full-text searches. Only the InnoDB
and MyISAM storage engines support FULLTEXT indexes. They can be created only from CHAR,
VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix
indexing is not supported and any prefix length is ignored if specified. See Section 12.9, “Full-
Text Search Functions”, for details of operation. A WITH PARSER clause can be specified as an
index_option value to associate a parser plugin with the index if full-text indexing and searching
operations need special handling. This clause is valid only for FULLTEXT indexes. Prior to MySQL
5.7.3, only MyISAM supported full-text parser plugins. As of MySQL 5.7.3, both InnoDB and

CREATE TABLE Syntax

1339

MyISAM support full-text parser plugins. See Section 22.2.3.2, “Full-Text Parser Plugins” and
Section 22.2.4.4, “Writing Full-Text Parser Plugins” for more information.

• You can create SPATIAL indexes on spatial data types. Spatial types are supported only for
MyISAM tables and indexed columns must be declared as NOT NULL. See Section 12.18, “Spatial
Extensions”.

• In MySQL 5.7, index definitions can include an optional comment of up to 1024 characters.

• InnoDB tables support checking of foreign key constraints. The columns of the referenced table
must always be explicitly named. Both ON DELETE and ON UPDATE actions on foreign keys. For
more detailed information and examples, see Section 13.1.14.2, “Using FOREIGN KEY Constraints”.
For information specific to foreign keys in InnoDB, see Section 14.2.6.6, “InnoDB and FOREIGN
KEY Constraints”.

For other storage engines, MySQL Server parses and ignores the FOREIGN KEY and REFERENCES
syntax in CREATE TABLE statements. The CHECK clause is parsed but ignored by all storage
engines. See Section 1.8.2.4, “Foreign Key Differences”.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no
storage engine, including InnoDB, recognizes or enforces the MATCH clause
used in referential integrity constraint definitions. Use of an explicit MATCH
clause will not have the specified effect, and also causes ON DELETE and ON
UPDATE clauses to be ignored. For these reasons, specifying MATCH should
be avoided.

The MATCH clause in the SQL standard controls how NULL values in a
composite (multiple-column) foreign key are handled when comparing to a
primary key. InnoDB essentially implements the semantics defined by MATCH
SIMPLE, which permit a foreign key to be all or partially NULL. In that case,
the (child table) row containing such a foreign key is permitted to be inserted,
and does not match any row in the referenced (parent) table. It is possible to
implement other semantics using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance. However, InnoDB does not enforce any requirement that the
referenced columns be declared UNIQUE or NOT NULL. The handling of
foreign key references to nonunique keys or keys that contain NULL values is
not well defined for operations such as UPDATE or DELETE CASCADE. You
are advised to use foreign keys that reference only keys that are both UNIQUE
(or PRIMARY) and NOT NULL.

MySQL does not recognize or support “inline REFERENCES specifications”
(as defined in the SQL standard) where the references are defined as part of
the column specification. MySQL accepts REFERENCES clauses only when
specified as part of a separate FOREIGN KEY specification.

Note

Partitioned tables employing the InnoDB storage engine do not support
foreign keys. See Section 17.6, “Restrictions and Limitations on Partitioning”,
for more information.

• There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given
table and depends on the factors discussed in Section E.10.4, “Limits on Table Column Count and
Row Size”.

CREATE TABLE Syntax

1340

Storage Engines

The ENGINE table option specifies the storage engine for the table, using one of the names shown in
the following table. The engine name can be unquoted or quoted. The quoted name 'DEFAULT' is
recognized but ignored.

Storage Engine Description

InnoDB Transaction-safe tables with row locking and foreign keys. The default
storage engine for new tables. See Section 14.2, “The InnoDB Storage
Engine”, and in particular Section 14.2.1.1, “InnoDB as the Default MySQL
Storage Engine” if you have MySQL experience but are new to InnoDB.

MyISAM The binary portable storage engine that is primarily used for read-only or
read-mostly workloads. See Section 14.3, “The MyISAM Storage Engine”.

MEMORY The data for this storage engine is stored only in memory. See
Section 14.4, “The MEMORY Storage Engine”.

CSV Tables that store rows in comma-separated values format. See
Section 14.5, “The CSV Storage Engine”.

ARCHIVE The archiving storage engine. See Section 14.6, “The ARCHIVE Storage
Engine”.

EXAMPLE An example engine. See Section 14.10, “The EXAMPLE Storage Engine”.

FEDERATED Storage engine that accesses remote tables. See Section 14.9, “The
FEDERATED Storage Engine”.

HEAP This is a synonym for MEMORY.

MERGE A collection of MyISAM tables used as one table. Also known as
MRG_MyISAM. See Section 14.8, “The MERGE Storage Engine”.

If a storage engine is specified that is not available, MySQL uses the default engine instead. Normally,
this is MyISAM. For example, if a table definition includes the ENGINE=INNODB option but the MySQL
server does not support INNODB tables, the table is created as a MyISAM table. This makes it possible
to have a replication setup where you have transactional tables on the master but tables created on the
slave are nontransactional (to get more speed). In MySQL 5.7, a warning occurs if the storage engine
specification is not honored.

Engine substitution can be controlled by the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as
described in Section 5.1.7, “Server SQL Modes”.

Note

The older TYPE option that was synonymous with ENGINE was removed in
MySQL 5.5. When upgrading to MySQL 5.5 or later, you must convert existing
applications that rely on TYPE to use ENGINE instead.

Optimizing Performance

The other table options are used to optimize the behavior of the table. In most cases, you do not have
to specify any of them. These options apply to all storage engines unless otherwise indicated. Options
that do not apply to a given storage engine may be accepted and remembered as part of the table
definition. Such options then apply if you later use ALTER TABLE to convert the table to use a different
storage engine.

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. In MySQL 5.7, this works for MyISAM, MEMORY,
InnoDB, and ARCHIVE tables. To set the first auto-increment value for engines that do not support
the AUTO_INCREMENT table option, insert a “dummy” row with a value one less than the desired
value after creating the table, and then delete the dummy row.

CREATE TABLE Syntax

1341

For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you can
also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value.
The value cannot be set lower than the maximum value currently in the column.

• AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for large tables
with variable-size rows.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and
AVG_ROW_LENGTH options to decide how big the resulting table is. If you don't specify either option,
the maximum size for MyISAM data and index files is 256TB by default. (If your operating system
does not support files that large, table sizes are constrained by the file size limit.) If you want to
keep down the pointer sizes to make the index smaller and faster and you don't really need big files,
you can decrease the default pointer size by setting the myisam_data_pointer_size system
variable. (See Section 5.1.4, “Server System Variables”.) If you want all your tables to be able
to grow above the default limit and are willing to have your tables slightly slower and larger than
necessary, you can increase the default pointer size by setting this variable. Setting the value to 7
permits table sizes up to 65,536TB.

• [DEFAULT] CHARACTER SET

Specify a default character set for the table. CHARSET is a synonym for CHARACTER SET. If the
character set name is DEFAULT, the database character set is used.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that
MySQL updates automatically as the table changes). This makes the table a little slower to update,
but also makes it easier to find corrupted tables. The CHECKSUM TABLE statement reports the
checksum. (MyISAM only.)

• [DEFAULT] COLLATE

Specify a default collation for the table.

• COMMENT

A comment for the table, up to 2048 characters long.

• CONNECTION

The connection string for a FEDERATED table.

Note

Older versions of MySQL used a COMMENT option for the connection string.

• DATA DIRECTORY, INDEX DIRECTORY

By using DATA DIRECTORY='directory', you can specify where the InnoDB storage
engine puts the .ibd tablespace file for a new table. This clause only applies when the
innodb_file_per_table configuration option is enabled. The directory must be the full path
name to the directory, not a relative path. See Section 14.2.5.4, “Specifying the Location of a
Tablespace” for additional information.

When creating MyISAM tables, you can use the DATA DIRECTORY='directory' clause, the
INDEX DIRECTORY='directory' clause, or both. They specify where to put a MyISAM table's
data file and index file respectively.

CREATE TABLE Syntax

1342

Important

Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored
for partitioned tables. (Bug #32091)

These options work only when you are not using the --skip-symbolic-links option. Your
operating system must also have a working, thread-safe realpath() call. See Using Symbolic
Links for MyISAM Tables on Unix, for more complete information.

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the
database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The
same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this
behavior, start the server with the --keep_files_on_create option, in which case MyISAM will
not overwrite existing files and returns an error instead.

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified
directory.

Important

You cannot use path names that contain the MySQL data directory with DATA
DIRECTORY or INDEX DIRECTORY. This includes partitioned tables and
individual table partitions. (See Bug #32167.)

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. See the
description of the delay_key_write system variable in Section 5.1.4, “Server System Variables”.
(MyISAM only.)

• INSERT_METHOD

If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table into
which the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only. Use a
value of FIRST or LAST to have inserts go to the first or last table, or a value of NO to prevent inserts.
See Section 14.8, “The MERGE Storage Engine”.

• KEY_BLOCK_SIZE

For compressed InnoDB tables, optionally specifies the size in kilobytes to use for pages. The value
is treated as a hint; a different size could be used if necessary. A value of 0 represents that the
default compressed page size. See Section 14.2.7, “InnoDB Compressed Tables” for usage details.

Individual index definitions can specify a KEY_BLOCK_SIZE value of their own to override the table
value.

Note

Oracle recommends enabling innodb_strict_mode when using the
KEY_BLOCK_SIZE clause for InnoDB tables.

• MAX_ROWS

The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint
to the storage engine that the table must be able to store at least this many rows.

The maximum MAX_ROWS value is 4294967295; larger values are truncated to this limit.

• MIN_ROWS

CREATE TABLE Syntax

1343

The minimum number of rows you plan to store in the table. The MEMORY storage engine uses this
option as a hint about memory use.

• PACK_KEYS

PACK_KEYS takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller
indexes. This usually makes updates slower and reads faster. Setting the option to 0 disables all
packing of keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR, VARCHAR,
BINARY, or VARBINARY columns.

If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use
PACK_KEYS=1, numbers are packed as well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same for
the next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve
compression.

This means that if you have many equal keys on two consecutive rows, all following “same” keys
usually only take two bytes (including the pointer to the row). Compare this to the ordinary case
where the following keys takes storage_size_for_key + pointer_size (where the pointer
size is usually 4). Conversely, you get a significant benefit from prefix compression only if you have
many numbers that are the same. If all keys are totally different, you use one byte more per key, if
the key is not a key that can have NULL values. (In this case, the packed key length is stored in the
same byte that is used to mark if a key is NULL.)

• PASSWORD

This option is unused. If you have a need to scramble your .frm files and make them unusable to
any other MySQL server, please contact our sales department.

• ROW_FORMAT

Defines the physical format in which the rows are stored. The choices differ depending on the
storage engine used for the table.

For InnoDB tables:

• Rows are stored in compact format (ROW_FORMAT=COMPACT) by default.

• The noncompact format used in older versions of MySQL can still be requested by specifying
ROW_FORMAT=REDUNDANT.

• To enable compression for InnoDB tables, specify ROW_FORMAT=COMPRESSED and follow the
procedures in Section 14.2.7, “InnoDB Compressed Tables”.

• For more efficient InnoDB storage of data types, especially BLOB types, specify
ROW_FORMAT=DYNAMIC and follow the procedures in Section 14.2.9.3, “DYNAMIC and
COMPRESSED Row Formats”. Both the COMPRESSED and DYNAMIC row formats require
creating the table with the configuration settings innodb_file_per_table=1 and
innodb_file_format=barracuda.

• When you specify a non-default ROW_FORMAT clause, consider also enabling the
innodb_strict_mode configuration option.

• For additional information about InnoDB row formats, see Section 14.2.9, “InnoDB Row Storage
and Row Formats”.

CREATE TABLE Syntax

1344

For MyISAM tables, the option value can be FIXED or DYNAMIC for static or variable-length row
format. myisampack sets the type to COMPRESSED. See Section 14.3.3, “MyISAM Table Storage
Formats”.

Note

When executing a CREATE TABLE statement, if you specify a row format that
is not supported by the storage engine that is used for the table, the table
is created using that storage engine's default row format. The information
reported in this column in response to SHOW TABLE STATUS is the actual
row format used. This may differ from the value in the Create_options
column because the original CREATE TABLE definition is retained during
creation.

• STATS_AUTO_RECALC

Specifies whether to automatically recalculate persistent statistics for an InnoDB table. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_auto_recalc configuration option. The value 1 causes statistics to be
recalculated when 10% of the data in the table has changed. The value 0 prevents automatic
recalculation for this table; with this setting, issue an ANALYZE TABLE statement to recalculate the
statistics after making substantial changes to the table. For more information about the persistent
statistics feature, see Persistent Optimizer Statistics for InnoDB Tables.

• STATS_PERSISTENT

Specifies whether to enable persistent statistics for an InnoDB table. The value DEFAULT causes
the persistent statistics setting for the table to be determined by the innodb_stats_persistent
configuration option. The value 1 enables persistent statistics for the table, while the value 0
turns off this feature. After enabling persistent statistics through a CREATE TABLE or ALTER
TABLE statement, issue an ANALYZE TABLE statement to calculate the statistics, after loading
representative data into the table. For more information about the persistent statistics feature, see
Persistent Optimizer Statistics for InnoDB Tables.

• STATS_SAMPLE_PAGES

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. For more information, see Section 14.2.12.5,
“Controlling Optimizer Statistics Estimation”.

• UNION

UNION is used when you want to access a collection of identical MyISAM tables as one. This works
only with MERGE tables. See Section 14.8, “The MERGE Storage Engine”.

You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.

Note

Formerly, all tables used had to be in the same database as the MERGE table
itself. This restriction no longer applies.

Partitioning

partition_options can be used to control partitioning of the table created with CREATE TABLE.

Important

Not all options shown in the syntax for partition_options at the beginning
of this section are available for all partitioning types. Please see the listings

CREATE TABLE Syntax

1345

for the following individual types for information specific to each type, and see
Chapter 17, Partitioning, for more complete information about the workings
of and uses for partitioning in MySQL, as well as additional examples of table
creation and other statements relating to MySQL partitioning.

If used, a partition_options clause begins with PARTITION BY. This clause contains the function
that is used to determine the partition; the function returns an integer value ranging from 1 to num,
where num is the number of partitions. (The maximum number of user-defined partitions which a table
may contain is 1024; the number of subpartitions—discussed later in this section—is included in this
maximum.) The choices that are available for this function in MySQL 5.7 are shown in the following list:

• HASH(expr): Hashes one or more columns to create a key for placing and locating rows. expr is
an expression using one or more table columns. This can be any valid MySQL expression (including
MySQL functions) that yields a single integer value. For example, these are both valid CREATE
TABLE statements using PARTITION BY HASH:

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
 PARTITION BY HASH(col1);

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
 PARTITION BY HASH (YEAR(col3));

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY HASH.

PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is, the
modulus). For examples and additional information, see Section 17.2.4, “HASH Partitioning”.

The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the partition
in which a row is stored is calculated as the result of one or more logical AND operations. For
discussion and examples of linear hashing, see Section 17.2.4.1, “LINEAR HASH Partitioning”.

• KEY(column_list): This is similar to HASH, except that MySQL supplies the hashing function
so as to guarantee an even data distribution. The column_list argument is simply a list of 1 or
more table columns (maximum: 16). This example shows a simple table partitioned by key, with 4
partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY KEY(col3)
 PARTITIONS 4;

For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR
keyword. This has the same effect as with tables that are partitioned by HASH. That is, the partition
number is found using the & operator rather than the modulus (see Section 17.2.4.1, “LINEAR HASH
Partitioning”, and Section 17.2.5, “KEY Partitioning”, for details). This example uses linear partitioning
by key to distribute data between 5 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR KEY(col3)
 PARTITIONS 5;

The ALGORITHM={1|2} option is supported with [SUB]PARTITION BY [LINEAR] KEY beginning
with MySQL 5.7.1. ALGORITHM=1 causes the server to use the same key-hashing functions as
MySQL 5.1; ALGORITHM=2 means that the server employs the key-hashing functions implemented
and used by default for new KEY partitioned tables in MySQL 5.5 and later. (Partitioned tables
created with the key-hashing functions employed in MySQL 5.5 and later cannot be used by a
MySQL 5.1 server.) Not specifying the option has the same effect as using ALGORITHM=2. This
option is intended for use chiefly when upgrading or downgrading [LINEAR] KEY partitioned
tables between MySQL 5.1 and later MySQL versions, or for creating tables partitioned by KEY or
LINEAR KEY on a MySQL 5.5 or later server which can be used on a MySQL 5.1 server. For more
information, see Section 13.1.6.1, “ALTER TABLE Partition Operations”.

CREATE TABLE Syntax

1346

mysqldump in MySQL 5.7 (and later) writes this option encased in versioned comments, like this:

CREATE TABLE t1 (a INT)
/*!50100 PARTITION BY KEY */ /*!50611 ALGORITHM = 1 */ /*!50100 ()
 PARTITIONS 3 */

This causes MySQL 5.6.10 and earlier servers to ignore the option, which would otherwise cause a
syntax error in those versions. If you plan to load a dump made on a MySQL 5.7 server where you
use tables that are partitioned or subpartitioned by KEY into a MySQL 5.6 server previous to version
5.6.11, be sure to consult Upgrading from MySQL 5.5 to 5.6, before proceeding. (The information
found there also applies if you are loading a dump containing KEY partitioned or subpartitioned tables
made from a MySQL 5.7—actually 5.6.11 or later—server into a MySQL 5.5.30 or earlier server.)

Also in MySQL 5.6.11 and later, ALGORITHM=1 is shown when necessary in the output of SHOW
CREATE TABLE using versioned comments in the same manner as mysqldump. ALGORITHM=2 is
always omitted from SHOW CREATE TABLE output, even if this option was specified when creating
the original table.

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY KEY.

• RANGE(expr): In this case, expr shows a range of values using a set of VALUES LESS THAN
operators. When using range partitioning, you must define at least one partition using VALUES LESS
THAN. You cannot use VALUES IN with range partitioning.

Note

For tables partitioned by RANGE, VALUES LESS THAN must be used with
either an integer literal value or an expression that evaluates to a single
integer value. In MySQL 5.7, you can overcome this limitation in a table that
is defined using PARTITION BY RANGE COLUMNS, as described later in this
section.

Suppose that you have a table that you wish to partition on a column containing year values,
according to the following scheme.

Partition Number: Years Range:

0 1990 and earlier

1 1991 to 1994

2 1995 to 1998

3 1999 to 2002

4 2003 to 2005

5 2006 and later

A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement
shown here:

CREATE TABLE t1 (
 year_col INT,
 some_data INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2002),
 PARTITION p4 VALUES LESS THAN (2006),
 PARTITION p5 VALUES LESS THAN MAXVALUE
);

http://dev.mysql.com/doc/refman/5.6/en/upgrading-from-previous-series.html

CREATE TABLE Syntax

1347

PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VALUES
LESS THAN MAXVALUE works to specify “leftover” values that are greater than the maximum value
otherwise specified.

Note that VALUES LESS THAN clauses work sequentially in a manner similar to that of the case
portions of a switch ... case block (as found in many programming languages such as C, Java,
and PHP). That is, the clauses must be arranged in such a way that the upper limit specified in each
successive VALUES LESS THAN is greater than that of the previous one, with the one referencing
MAXVALUE coming last of all in the list.

• RANGE COLUMNS(column_list): This variant on RANGE facilitates partition pruning for queries
using range conditions on multiple columns (that is, having conditions such as WHERE a = 1 AND
b < 10 or WHERE a = 1 AND b = 10 AND c < 10). It enables you to specify value ranges in
multiple columns by using a list of columns in the COLUMNS clause and a set of column values in
each PARTITION ... VALUES LESS THAN (value_list) partition definition clause. (In the
simplest case, this set consists of a single column.) The maximum number of columns that can be
referenced in the column_list and value_list is 16.

The column_list used in the COLUMNS clause may contain only names of columns; each column
in the list must be one of the following MySQL data types: the integer types; the string types; and
time or date column types. Columns using BLOB, TEXT, SET, ENUM, BIT, or spatial data types are
not permitted; columns that use floating-point number types are also not permitted. You also may not
use functions or arithmetic expressions in the COLUMNS clause.

The VALUES LESS THAN clause used in a partition definition must specify a literal value for each
column that appears in the COLUMNS() clause; that is, the list of values used for each VALUES
LESS THAN clause must contain the same number of values as there are columns listed in the
COLUMNS clause. An attempt to use more or fewer values in a VALUES LESS THAN clause than
there are in the COLUMNS clause causes the statement to fail with the error Inconsistency
in usage of column lists for partitioning.... You cannot use NULL for any value
appearing in VALUES LESS THAN. It is possible to use MAXVALUE more than once for a given
column other than the first, as shown in this example:

CREATE TABLE rc (
 a INT NOT NULL,
 b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (10,5),
 PARTITION p1 VALUES LESS THAN (20,10),
 PARTITION p2 VALUES LESS THAN (MAXVALUE,15),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

Each value used in a VALUES LESS THAN value list must match the type of the corresponding
column exactly; no conversion is made. For example, you cannot use the string '1' for a value that
matches a column that uses an integer type (you must use the numeral 1 instead), nor can you use
the numeral 1 for a value that matches a column that uses a string type (in such a case, you must
use a quoted string: '1').

For more information, see Section 17.2.1, “RANGE Partitioning”, and Section 17.4, “Partition Pruning”.

• LIST(expr): This is useful when assigning partitions based on a table column with a restricted set
of possible values, such as a state or country code. In such a case, all rows pertaining to a certain
state or country can be assigned to a single partition, or a partition can be reserved for a certain set
of states or countries. It is similar to RANGE, except that only VALUES IN may be used to specify
permissible values for each partition.

VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning
scheme such as the following:

CREATE TABLE Syntax

1348

CREATE TABLE client_firms (
 id INT,
 name VARCHAR(35)
)
PARTITION BY LIST (id) (
 PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
 PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
 PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
 PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);

When using list partitioning, you must define at least one partition using VALUES IN. You cannot use
VALUES LESS THAN with PARTITION BY LIST.

Note

For tables partitioned by LIST, the value list used with VALUES IN must
consist of integer values only. In MySQL 5.7, you can overcome this limitation
using partitioning by LIST COLUMNS, which is described later in this section.

• LIST COLUMNS(column_list): This variant on LIST facilitates partition pruning for queries
using comparison conditions on multiple columns (that is, having conditions such as WHERE a =
5 AND b = 5 or WHERE a = 1 AND b = 10 AND c = 5). It enables you to specify values in
multiple columns by using a list of columns in the COLUMNS clause and a set of column values in
each PARTITION ... VALUES IN (value_list) partition definition clause.

The rules governing regarding data types for the column list used in LIST
COLUMNS(column_list) and the value list used in VALUES IN(value_list) are the same
as those for the column list used in RANGE COLUMNS(column_list) and the value list used
in VALUES LESS THAN(value_list), respectively, except that in the VALUES IN clause,
MAXVALUE is not permitted, and you may use NULL.

There is one important difference between the list of values used for VALUES IN with PARTITION
BY LIST COLUMNS as opposed to when it is used with PARTITION BY LIST. When used with
PARTITION BY LIST COLUMNS, each element in the VALUES IN clause must be a set of column
values; the number of values in each set must be the same as the number of columns used in the
COLUMNS clause, and the data types of these values must match those of the columns (and occur in
the same order). In the simplest case, the set consists of a single column. The maximum number of
columns that can be used in the column_list and in the elements making up the value_list is
16.

The table defined by the following CREATE TABLE statement provides an example of a table using
LIST COLUMNS partitioning:

CREATE TABLE lc (
 a INT NULL,
 b INT NULL
)
PARTITION BY LIST COLUMNS(a,b) (
 PARTITION p0 VALUES IN((0,0), (NULL,NULL)),
 PARTITION p1 VALUES IN((0,1), (0,2), (0,3), (1,1), (1,2)),
 PARTITION p2 VALUES IN((1,0), (2,0), (2,1), (3,0), (3,1)),
 PARTITION p3 VALUES IN((1,3), (2,2), (2,3), (3,2), (3,3))
);

• The number of partitions may optionally be specified with a PARTITIONS num clause, where num
is the number of partitions. If both this clause and any PARTITION clauses are used, num must be
equal to the total number of any partitions that are declared using PARTITION clauses.

CREATE TABLE Syntax

1349

Note

Whether or not you use a PARTITIONS clause in creating a table that is
partitioned by RANGE or LIST, you must still include at least one PARTITION
VALUES clause in the table definition (see below).

• A partition may optionally be divided into a number of subpartitions. This can be indicated by using
the optional SUBPARTITION BY clause. Subpartitioning may be done by HASH or KEY. Either of
these may be LINEAR. These work in the same way as previously described for the equivalent
partitioning types. (It is not possible to subpartition by LIST or RANGE.)

The number of subpartitions can be indicated using the SUBPARTITIONS keyword followed by an
integer value.

• Rigorous checking of the value used in PARTITIONS or SUBPARTITIONS clauses is applied and this
value must adhere to the following rules:

• The value must be a positive, nonzero integer.

• No leading zeros are permitted.

• The value must be an integer literal, and cannot not be an expression. For example, PARTITIONS
0.2E+01 is not permitted, even though 0.2E+01 evaluates to 2. (Bug #15890)

Note

The expression (expr) used in a PARTITION BY clause cannot refer to any
columns not in the table being created; such references are specifically not
permitted and cause the statement to fail with an error. (Bug #29444)

Each partition may be individually defined using a partition_definition clause. The individual
parts making up this clause are as follows:

• PARTITION partition_name: This specifies a logical name for the partition.

• A VALUES clause: For range partitioning, each partition must include a VALUES LESS THAN
clause; for list partitioning, you must specify a VALUES IN clause for each partition. This is used to
determine which rows are to be stored in this partition. See the discussions of partitioning types in
Chapter 17, Partitioning, for syntax examples.

• An optional COMMENT clause may be used to specify a string that describes the partition. Example:

COMMENT = 'Data for the years previous to 1999'

The maximum length for a partition comment is 1024 characters.

• DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where,
respectively, the data and indexes for this partition are to be stored. Both the data_dir and the
index_dir must be absolute system path names. Example:

CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
 PARTITION p1999 VALUES IN (1995, 1999, 2003)
 DATA DIRECTORY = '/var/appdata/95/data'
 INDEX DIRECTORY = '/var/appdata/95/idx',
 PARTITION p2000 VALUES IN (1996, 2000, 2004)
 DATA DIRECTORY = '/var/appdata/96/data'
 INDEX DIRECTORY = '/var/appdata/96/idx',
 PARTITION p2001 VALUES IN (1997, 2001, 2005)
 DATA DIRECTORY = '/var/appdata/97/data'
 INDEX DIRECTORY = '/var/appdata/97/idx',

CREATE TABLE Syntax

1350

 PARTITION p2002 VALUES IN (1998, 2002, 2006)
 DATA DIRECTORY = '/var/appdata/98/data'
 INDEX DIRECTORY = '/var/appdata/98/idx'
);

DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE
statement's table_option clause as used for MyISAM tables.

One data directory and one index directory may be specified per partition. If left unspecified, the data
and indexes are stored by default in the table's database directory.

On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for
individual partitions or subpartitions of MyISAM tables, and the INDEX DIRECTORY option is not
supported for individual partitions or subpartitions of InnoDB tables. These options are ignored on
Windows, except that a warning is generated. (Bug #30459)

Note

The DATA DIRECTORY and INDEX DIRECTORY options are ignored for
creating partitioned tables if NO_DIR_IN_CREATE is in effect. (Bug #24633)

• MAX_ROWS and MIN_ROWS may be used to specify, respectively, the maximum and minimum
number of rows to be stored in the partition. The values for max_number_of_rows and
min_number_of_rows must be positive integers. As with the table-level options with the same
names, these act only as “suggestions” to the server and are not hard limits.

• The partitioning handler accepts a [STORAGE] ENGINE option for both PARTITION and
SUBPARTITION. Currently, the only way in which this can be used is to set all partitions or all
subpartitions to the same storage engine, and an attempt to set different storage engines for
partitions or subpartitions in the same table will give rise to the error ERROR 1469 (HY000):
The mix of handlers in the partitions is not permitted in this version of
MySQL. We expect to lift this restriction on partitioning in a future MySQL release.

• The partition definition may optionally contain one or more subpartition_definition clauses.
Each of these consists at a minimum of the SUBPARTITION name, where name is an identifier for
the subpartition. Except for the replacement of the PARTITION keyword with SUBPARTITION, the
syntax for a subpartition definition is identical to that for a partition definition.

Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LIST partitions.
See Section 17.2.6, “Subpartitioning”.

Partitions can be modified, merged, added to tables, and dropped from tables. For basic information
about the MySQL statements to accomplish these tasks, see Section 13.1.6, “ALTER TABLE Syntax”.
For more detailed descriptions and examples, see Section 17.3, “Partition Management”.

Important

The original CREATE TABLE statement, including all specifications and table
options are stored by MySQL when the table is created. The information is
retained so that if you change storage engines, collations or other settings using
an ALTER TABLE statement, the original table options specified are retained.
This enables you to change between InnoDB and MyISAM table types even
though the row formats supported by the two engines are different.

Because the text of the original statement is retained, but due to the way
that certain values and options may be silently reconfigured (such as the
ROW_FORMAT), the active table definition (accessible through DESCRIBE or with
SHOW TABLE STATUS) and the table creation string (accessible through SHOW
CREATE TABLE) will report different values.

Cloning or Copying a Table

CREATE TABLE Syntax

1351

You can create one table from another by adding a SELECT statement at the end of the CREATE
TABLE statement:

CREATE TABLE new_tbl SELECT * FROM orig_tbl;

For more information, see Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”.

Use LIKE to create an empty table based on the definition of another table, including any column
attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

The copy is created using the same version of the table storage format as the original table. The
SELECT privilege is required on the original table.

LIKE works only for base tables, not for views.

Important

You cannot execute CREATE TABLE or CREATE TABLE ... LIKE while a
LOCK TABLES statement is in effect.

CREATE TABLE ... LIKE makes the same checks as CREATE TABLE and
does not just copy the .frm file. This means that if the current SQL mode is
different from the mode in effect when the original table was created, the table
definition might be considered invalid for the new mode and the statement will
fail.

CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY table
options that were specified for the original table, or any foreign key definitions.

If the original table is a TEMPORARY table, CREATE TABLE ... LIKE does not preserve TEMPORARY.
To create a TEMPORARY destination table, use CREATE TEMPORARY TABLE ... LIKE.

13.1.14.1 CREATE TABLE ... SELECT Syntax

You can create one table from another by adding a SELECT statement at the end of the CREATE
TABLE statement:

CREATE TABLE new_tbl [AS] SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY (a), KEY(b))
 -> ENGINE=MyISAM SELECT b,c FROM test2;

This creates a MyISAM table with three columns, a, b, and c. The ENGINE option is part of the CREATE
TABLE statement, and should not be used following the SELECT; this would result in a syntax error.
The same is true for other CREATE TABLE options such as CHARSET.

Notice that the columns from the SELECT statement are appended to the right side of the table, not
overlapped onto it. Take the following example:

mysql> SELECT * FROM foo;
+---+

CREATE TABLE Syntax

1352

| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default values for the
new columns.

In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TABLE
part come first. Columns named in both parts or only in the SELECT part come after that. The data type
of SELECT columns can be overridden by also specifying the column in the CREATE TABLE part.

If any errors occur while copying the data to the table, it is automatically dropped and not created.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate
unique key values. With IGNORE, new rows that duplicate an existing row on a unique key value are
discarded. With REPLACE, new rows replace rows that have the same unique key value. If neither
IGNORE nor REPLACE is specified, duplicate unique key values result in an error.

Because the ordering of the rows in the underlying SELECT statements cannot always be determined,
CREATE TABLE ... IGNORE SELECT and CREATE TABLE ... REPLACE SELECT statements
are flagged as unsafe for statement-based replication. With this change, such statements produce a
warning in the log when using statement-based mode and are logged using the row-based format when
using MIXED mode. See also Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based
and Row-Based Replication”.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If you want to have indexes in the created
table, you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not
preserved, and VARCHAR columns can become CHAR columns. Retrained attributes are NULL (or NOT
NULL) and, for those columns that have them, CHARACTER SET, COLLATION, COMMENT, and the
DEFAULT clause.

When creating a table with CREATE TABLE ... SELECT, make sure to alias any function calls or
expressions in the query. If you do not, the CREATE statement might fail or result in undesirable column
names.

CREATE TABLE artists_and_works
 SELECT artist.name, COUNT(work.artist_id) AS number_of_works
 FROM artist LEFT JOIN work ON artist.id = work.artist_id
 GROUP BY artist.id;

You can also explicitly specify the data type for a generated column:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

CREATE TABLE Syntax

1353

For CREATE TABLE ... SELECT, if IF NOT EXISTS is given and the target table exists, nothing is
inserted into the destination table, and the statement is not logged.

To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts during CREATE TABLE ... SELECT.

You cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE TABLE
new_table SELECT ... FROM old_table If you attempt to do so, the statement fails.

13.1.14.2 Using FOREIGN KEY Constraints

MySQL supports foreign keys, which let you cross-reference related data across tables, and foreign
key constraints, which help keep this spread-out data consistent. The essential syntax for a foreign key
constraint definition in a CREATE TABLE or ALTER TABLE statement looks like this:

[CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (index_col_name, ...)
 REFERENCES tbl_name (index_col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION

index_name represents a foreign key ID. If given, this is ignored if an index for the foreign key is
defined explicitly. Otherwise, if MySQL creates an index for the foreign key, it uses index_name for
the index name.

Foreign keys definitions are subject to the following conditions:

• Foreign key relationships involve a parent table that holds the central data values, and a child table
with identical values pointing back to its parent. The FOREIGN KEY clause is specified in the child
table. The parent and child tables must use the same storage engine. They must not be TEMPORARY
tables.

• Corresponding columns in the foreign key and the referenced key must have similar data types. The
size and sign of integer types must be the same. The length of string types need not be the same.
For nonbinary (character) string columns, the character set and collation must be the same.

• MySQL requires indexes on foreign keys and referenced keys so that foreign key checks can be
fast and not require a table scan. In the referencing table, there must be an index where the foreign
key columns are listed as the first columns in the same order. Such an index is created on the
referencing table automatically if it does not exist. This index might be silently dropped later, if you
create another index that can be used to enforce the foreign key constraint. index_name, if given, is
used as described previously.

• InnoDB permits a foreign key to reference any index column or group of columns. However, in
the referenced table, there must be an index where the referenced columns are listed as the first
columns in the same order.

• Index prefixes on foreign key columns are not supported. One consequence of this is that BLOB and
TEXT columns cannot be included in a foreign key because indexes on those columns must always
include a prefix length.

• If the CONSTRAINT symbol clause is given, the symbol value, if used, must be unique in the
database. A duplicate symbol will result in an error similar to: ERROR 1022 (2300): Can't
write; duplicate key in table '#sql- 464_1'. If the clause is not given, or a symbol is
not included following the CONSTRAINT keyword, a name for the constraint is created automatically.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This
includes both parent and child tables.

CREATE TABLE Syntax

1354

Referential Actions

This section describes how foreign keys help guarantee referential integrity.

For storage engines supporting foreign keys, MySQL rejects any INSERT or UPDATE operation that
attempts to create a foreign key value in a child table if there is no a matching candidate key value in
the parent table.

When an UPDATE or DELETE operation affects a key value in the parent table that has matching rows
in the child table, the result depends on the referential action specified using ON UPDATE and ON
DELETE subclauses of the FOREIGN KEY clause. MySQL supports five options regarding the action to
be taken, listed here:

• CASCADE: Delete or update the row from the parent table, and automatically delete or update the
matching rows in the child table. Both ON DELETE CASCADE and ON UPDATE CASCADE are
supported. Between two tables, do not define several ON UPDATE CASCADE clauses that act on the
same column in the parent table or in the child table.

Note

Currently, cascaded foreign key actions do not activate triggers.

• SET NULL: Delete or update the row from the parent table, and set the foreign key column or
columns in the child table to NULL. Both ON DELETE SET NULL and ON UPDATE SET NULL
clauses are supported.

If you specify a SET NULL action, make sure that you have not declared the columns in the child
table as NOT NULL.

• RESTRICT: Rejects the delete or update operation for the parent table. Specifying RESTRICT (or NO
ACTION) is the same as omitting the ON DELETE or ON UPDATE clause.

• NO ACTION: A keyword from standard SQL. In MySQL, equivalent to RESTRICT. The MySQL
Server rejects the delete or update operation for the parent table if there is a related foreign key
value in the referenced table. Some database systems have deferred checks, and NO ACTION is a
deferred check. In MySQL, foreign key constraints are checked immediately, so NO ACTION is the
same as RESTRICT.

• SET DEFAULT: This action is recognized by the MySQL parser, but InnoDB rejects table definitions
containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.

For an ON DELETE or ON UPDATE that is not specified, the default action is always RESTRICT.

MySQL supports foreign key references between one column and another within a table. (A column
cannot have a foreign key reference to itself.) In these cases, “child table records” really refers to
dependent records within the same table.

Examples of Foreign Key Clauses

Here is a simple example that relates parent and child tables through a single-column foreign key:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)

CREATE TABLE Syntax

1355

 REFERENCES parent(id)
 ON DELETE CASCADE
) ENGINE=INNODB;

A more complex example in which a product_order table has foreign keys for two other tables. One
foreign key references a two-column index in the product table. The other references a single-column
index in the customer table:

CREATE TABLE product (
 category INT NOT NULL, id INT NOT NULL,
 price DECIMAL,
 PRIMARY KEY(category, id)
) ENGINE=INNODB;

CREATE TABLE customer (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE product_order (
 no INT NOT NULL AUTO_INCREMENT,
 product_category INT NOT NULL,
 product_id INT NOT NULL,
 customer_id INT NOT NULL,

 PRIMARY KEY(no),
 INDEX (product_category, product_id),
 INDEX (customer_id),

 FOREIGN KEY (product_category, product_id)
 REFERENCES product(category, id)
 ON UPDATE CASCADE ON DELETE RESTRICT,

 FOREIGN KEY (customer_id)
 REFERENCES customer(id)
) ENGINE=INNODB;

Adding foreign keys

You can add a new foreign key constraint to an existing table by using ALTER TABLE. The syntax
relating to foreign keys for this statement is shown here:

ALTER TABLE tbl_name
 ADD [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (index_col_name, ...)
 REFERENCES tbl_name (index_col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

The foreign key can be self referential (referring to the same table). When you add a foreign key
constraint to a table using ALTER TABLE, remember to create the required indexes first.

Dropping Foreign Keys

You can also use ALTER TABLE to drop foreign keys, using the syntax shown here:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause included a CONSTRAINT name when you created the foreign key, you can
refer to that name to drop the foreign key. Otherwise, the fk_symbol value is generated internally
when the foreign key is created. To find out the symbol value when you want to drop a foreign key, use
a SHOW CREATE TABLE statement, as shown here:

mysql> SHOW CREATE TABLE ibtest11c\G

CREATE TABLE Syntax

1356

*************************** 1. row ***************************
 Table: ibtest11c
Create Table: CREATE TABLE `ibtest11c` (
 `A` int(11) NOT NULL auto_increment,
 `D` int(11) NOT NULL default '0',
 `B` varchar(200) NOT NULL default '',
 `C` varchar(175) default NULL,
 PRIMARY KEY (`A`,`D`,`B`),
 KEY `B` (`B`,`C`),
 KEY `C` (`C`),
 CONSTRAINT `0_38775` FOREIGN KEY (`A`, `D`)
REFERENCES `ibtest11a` (`A`, `D`)
ON DELETE CASCADE ON UPDATE CASCADE,
 CONSTRAINT `0_38776` FOREIGN KEY (`B`, `C`)
REFERENCES `ibtest11a` (`B`, `C`)
ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=INNODB CHARSET=latin1
1 row in set (0.01 sec)

mysql> ALTER TABLE ibtest11c DROP FOREIGN KEY `0_38775`;

Prior to MySQL 5.6.6, adding and dropping a foreign key in the same ALTER TABLE statement may
be problematic in some cases and is therefore unsupported. Separate statements should be used for
each operation. As of MySQL 5.6.6, adding and dropping a foreign key in the same ALTER TABLE
statement is supported for ALTER TABLE ... ALGORITHM=INPLACE but remains unsupported for
ALTER TABLE ... ALGORITHM=COPY.

In MySQL 5.7, the server prohibits changes to foreign key columns with the potential to cause loss
of referential integrity. A workaround is to use ALTER TABLE ... DROP FOREIGN KEY before
changing the column definition and ALTER TABLE ... ADD FOREIGN KEY afterward.

Foreign Keys and Other MySQL Statements

Table and column identifiers in a FOREIGN KEY ... REFERENCES ... clause can be quoted within
backticks (`). Alternatively, double quotation marks (") can be used if the ANSI_QUOTES SQL mode is
enabled. The setting of the lower_case_table_names system variable is also taken into account.

You can view a child table's foreign key definitions as part of the output of the SHOW CREATE TABLE
statement:

SHOW CREATE TABLE tbl_name;

You can also obtain information about foreign keys by querying the
INFORMATION_SCHEMA.KEY_COLUMN_USAGE table.

You can find information about foreign keys used by InnoDB tables in the INNODB_SYS_FOREIGN and
INNODB_SYS_FOREIGN_COLS tables, also in the INFORMATION_SCHEMA database.

mysqldump produces correct definitions of tables in the dump file, including the foreign keys for child
tables.

To make it easier to reload dump files for tables that have foreign key relationships, mysqldump
automatically includes a statement in the dump output to set foreign_key_checks to 0. This avoids
problems with tables having to be reloaded in a particular order when the dump is reloaded. It is also
possible to set this variable manually:

mysql> SET foreign_key_checks = 0;
mysql> SOURCE dump_file_name;
mysql> SET foreign_key_checks = 1;

This enables you to import the tables in any order if the dump file contains tables that are not correctly
ordered for foreign keys. It also speeds up the import operation. Setting foreign_key_checks

CREATE TABLE Syntax

1357

to 0 can also be useful for ignoring foreign key constraints during LOAD DATA and ALTER TABLE
operations. However, even if foreign_key_checks = 0, MySQL does not permit the creation of
a foreign key constraint where a column references a nonmatching column type. Also, if a table has
foreign key constraints, ALTER TABLE cannot be used to alter the table to use another storage engine.
To change the storage engine, you must drop any foreign key constraints first.

You cannot issue DROP TABLE for a table that is referenced by a FOREIGN KEY constraint, unless you
do SET foreign_key_checks = 0. When you drop a table, any constraints that were defined in the
statement used to create that table are also dropped.

If you re-create a table that was dropped, it must have a definition that conforms to the foreign key
constraints referencing it. It must have the correct column names and types, and it must have indexes
on the referenced keys, as stated earlier. If these are not satisfied, MySQL returns Error 1005 and
refers to Error 150 in the error message, which means that a foreign key constraint was not correctly
formed. Similarly, if an ALTER TABLE fails due to Error 150, this means that a foreign key definition
would be incorrectly formed for the altered table.

For InnoDB tables, you can obtain a detailed explanation of the most recent InnoDB foreign key error
in the MySQL Server, by checking the output of SHOW ENGINE INNODB STATUS.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no storage
engine, including InnoDB, recognizes or enforces the MATCH clause used in
referential-integrity constraint definitions. Use of an explicit MATCH clause will
not have the specified effect, and also causes ON DELETE and ON UPDATE
clauses to be ignored. For these reasons, specifying MATCH should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a
composite (multiple-column) foreign key are handled when comparing to a
primary key. MySQL essentially implements the semantics defined by MATCH
SIMPLE, which permit a foreign key to be all or partially NULL. In that case,
the (child table) row containing such a foreign key is permitted to be inserted,
and does not match any row in the referenced (parent) table. It is possible to
implement other semantics using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance reasons. However, the system does not enforce a requirement that
the referenced columns be UNIQUE or be declared NOT NULL. The handling of
foreign key references to nonunique keys or keys that contain NULL values is
not well defined for operations such as UPDATE or DELETE CASCADE. You are
advised to use foreign keys that reference only UNIQUE (including PRIMARY)
and NOT NULL keys.

Furthermore, MySQL does not recognize or support “inline REFERENCES
specifications” (as defined in the SQL standard) where the references are
defined as part of the column specification. MySQL accepts REFERENCES
clauses only when specified as part of a separate FOREIGN KEY specification.
For storage engines that do not support foreign keys (such as MyISAM), MySQL
Server parses and ignores foreign key specifications.

13.1.14.3 Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE or
ALTER TABLE statement. These might be changes to a data type, to attributes associated with a data
type, or to an index specification.

All changes are subject to the internal row-size limit of 65,535 bytes, which may cause some attempts
at data type changes to fail. See Section E.10.4, “Limits on Table Column Count and Row Size”.

CREATE TRIGGER Syntax

1358

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

• Trailing spaces are automatically deleted from ENUM and SET member values when the table is
created.

• MySQL maps certain data types used by other SQL database vendors to MySQL types. See
Section 11.8, “Using Data Types from Other Database Engines”.

• If you include a USING clause to specify an index type that is not permitted for a given storage
engine, but there is another index type available that the engine can use without affecting query
results, the engine uses the available type.

• If strict SQL mode is not enabled, a VARCHAR column with a length specification greater than 65535
is converted to TEXT, and a VARBINARY column with a length specification greater than 65535 is
converted to BLOB. Otherwise, an error occurs in either of these cases.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they
are created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW
CREATE TABLE statement after creating or altering the table.

Certain other data type changes can occur if you compress a table using myisampack. See
Section 14.3.3.3, “Compressed Table Characteristics”.

13.1.15 CREATE TRIGGER Syntax

CREATE
 [DEFINER = { user | CURRENT_USER }]
 TRIGGER trigger_name
 trigger_time trigger_event
 ON tbl_name FOR EACH ROW
 [trigger_order]
 trigger_body

trigger_time: { BEFORE | AFTER }

trigger_event: { INSERT | UPDATE | DELETE }

trigger_order: { FOLLOWS | PRECEDES } other_trigger_name

This statement creates a new trigger. A trigger is a named database object that is associated with a
table, and that activates when a particular event occurs for the table. The trigger becomes associated
with the table named tbl_name, which must refer to a permanent table. You cannot associate a trigger
with a TEMPORARY table or a view.

CREATE TRIGGER Syntax

1359

Trigger names exist in the schema namespace, meaning that all triggers must have unique names
within a schema. Triggers in different schemas can have the same name.

This section describes CREATE TRIGGER syntax. For additional discussion, see Section 18.3.1,
“Trigger Syntax and Examples”.

CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger. The
statement might also require the SUPER privilege, depending on the DEFINER value, as described later
in this section. If binary logging is enabled, CREATE TRIGGER might require the SUPER privilege, as
described in Section 18.7, “Binary Logging of Stored Programs”.

The DEFINER clause determines the security context to be used when checking access privileges at
trigger activation time, as described later in this section.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger
activates before or after each row to be modified.

trigger_event indicates the kind of operation that activates the trigger. These trigger_event
values are permitted:

• INSERT: The trigger activates whenever a new row is inserted into the table; for example, through
INSERT, LOAD DATA, and REPLACE statements.

• UPDATE: The trigger activates whenever a row is modified; for example, through UPDATE statements.

• DELETE: The trigger activates whenever a row is deleted from the table; for example, through
DELETE and REPLACE statements. DROP TABLE and TRUNCATE TABLE statements on the table
do not activate this trigger, because they do not use DELETE. Dropping a partition does not activate
DELETE triggers, either.

The trigger_event does not represent a literal type of SQL statement that activates the trigger so
much as it represents a type of table operation. For example, an INSERT trigger activates not only for
INSERT statements but also LOAD DATA statements because both statements insert rows into a table.

A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY
UPDATE ... syntax: a BEFORE INSERT trigger activates for every row, followed by either an AFTER
INSERT trigger or both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether
there was a duplicate key for the row.

Note

Cascaded foreign key actions do not activate triggers.

As of MySQL 5.7.2, it is possible to define multiple triggers for a given table that have the same
trigger event and action time. For example, you cannot have two BEFORE UPDATE triggers for a
table. By default, triggers that have the same trigger event and action time activate in the order they
were created. To affect trigger order, specify a trigger_order clause that indicates FOLLOWS or
PRECEDES and the name of an existing trigger that also has the same trigger event and action time.
With FOLLOWS, the new trigger activates after the existing trigger. With PRECEDES, the new trigger
activates before the existing trigger.

Before MySQL 5.7.2, there cannot be multiple triggers for a given table that have the same trigger
event and action time. For example, you cannot have two BEFORE UPDATE triggers for a table. But you
can have a BEFORE UPDATE and a BEFORE INSERT trigger, or a BEFORE UPDATE and an AFTER
UPDATE trigger.

trigger_body is the statement to execute when the trigger activates. To execute multiple
statements, use the BEGIN ... END compound statement construct. This also enables you to use
the same statements that are permitted within stored routines. See Section 13.6.1, “BEGIN ...

CREATE VIEW Syntax

1360

END Compound-Statement Syntax”. Some statements are not permitted in triggers; see Section E.1,
“Restrictions on Stored Programs”.

Within the trigger body, you can refer to columns in the subject table (the table associated with the
trigger) by using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before
it is updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an existing
row after it is updated.

MySQL stores the sql_mode system variable setting in effect when a trigger is created, and always
executes the trigger body with this setting in force, regardless of the current server SQL mode when
the trigger begins executing.

The DEFINER clause specifies the MySQL account to be used when checking access privileges
at trigger activation time. If a user value is given, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER,
or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE TRIGGER
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only permitted user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not actually exist, a warning is generated.

• Although it is possible to create a trigger with a nonexistent DEFINER account, it is not a good idea
for such triggers to be activated until the account actually does exist. Otherwise, the behavior with
respect to privilege checking is undefined.

MySQL takes the DEFINER user into account when checking trigger privileges as follows:

• At CREATE TRIGGER time, the user who issues the statement must have the TRIGGER privilege.

• At trigger activation time, privileges are checked against the DEFINER user. This user must have
these privileges:

• The TRIGGER privilege for the subject table.

• The SELECT privilege for the subject table if references to table columns occur using
OLD.col_name or NEW.col_name in the trigger body.

• The UPDATE privilege for the subject table if table columns are targets of SET NEW.col_name =
value assignments in the trigger body.

• Whatever other privileges normally are required for the statements executed by the trigger.

For more information about trigger security, see Section 18.6, “Access Control for Stored Programs
and Views”.

Within a trigger body, the CURRENT_USER() function returns the account used to check privileges at
trigger activation time. This is the DEFINER user, not the user whose actions caused the trigger to be
activated. For information about user auditing within triggers, see Section 6.3.14, “SQL-Based MySQL
Account Activity Auditing”.

If you use LOCK TABLES to lock a table that has triggers, the tables used within the trigger are also
locked, as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.

For additional discussion of trigger use, see Section 18.3.1, “Trigger Syntax and Examples”.

13.1.16 CREATE VIEW Syntax

CREATE VIEW Syntax

1361

CREATE
 [OR REPLACE]
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = { user | CURRENT_USER }]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

The CREATE VIEW statement creates a new view, or replaces an existing one if the OR REPLACE
clause is given. If the view does not exist, CREATE OR REPLACE VIEW is the same as CREATE VIEW.
If the view does exist, CREATE OR REPLACE VIEW is the same as ALTER VIEW.

The select_statement is a SELECT statement that provides the definition of the view. (When you
select from the view, you select in effect using the SELECT statement.) select_statement can
select from base tables or other views.

The view definition is “frozen” at creation time, so changes to the underlying tables afterward do not
affect the view definition. For example, if a view is defined as SELECT * on a table, new columns
added to the table later do not become part of the view.

The ALGORITHM clause affects how MySQL processes the view. The DEFINER and SQL SECURITY
clauses specify the security context to be used when checking access privileges at view invocation
time. The WITH CHECK OPTION clause can be given to constrain inserts or updates to rows in tables
referenced by the view. These clauses are described later in this section.

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege
for each column selected by the SELECT statement. For columns used elsewhere in the SELECT
statement you must have the SELECT privilege. If the OR REPLACE clause is present, you must also
have the DROP privilege for the view. CREATE VIEW might also require the SUPER privilege, depending
on the DEFINER value, as described later in this section.

When a view is referenced, privilege checking occurs as described later in this section.

A view belongs to a database. By default, a new view is created in the default database. To create the
view explicitly in a given database, specify the name as db_name.view_name when you create it:

mysql> CREATE VIEW test.v AS SELECT * FROM t;

Within a database, base tables and views share the same namespace, so a base table and a view
cannot have the same name.

Columns retrieved by the SELECT statement can be simple references to table columns. They can also
be expressions that use functions, constant values, operators, and so forth.

Views must have unique column names with no duplicates, just like base tables. By default, the
names of the columns retrieved by the SELECT statement are used for the view column names. To
define explicit names for the view columns, the optional column_list clause can be given as a list
of comma-separated identifiers. The number of names in column_list must be the same as the
number of columns retrieved by the SELECT statement.

Unqualified table or view names in the SELECT statement are interpreted with respect to the default
database. A view can refer to tables or views in other databases by qualifying the table or view name
with the proper database name.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other
views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The
following example defines a view that selects two columns from another table, as well as an expression
calculated from those columns:

CREATE VIEW Syntax

1362

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
+------+-------+-------+

A view definition is subject to the following restrictions:

• The SELECT statement cannot contain a subquery in the FROM clause.

• The SELECT statement cannot refer to system or user variables.

• Within a stored program, the definition cannot refer to program parameters or local variables.

• The SELECT statement cannot refer to prepared statement parameters.

• Any table or view referred to in the definition must exist. However, after a view has been created, it is
possible to drop a table or view that the definition refers to. In this case, use of the view results in an
error. To check a view definition for problems of this kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

• Any tables named in the view definition must exist at definition time.

• You cannot associate a trigger with a view.

• Aliases for column names in the SELECT statement are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters).

ORDER BY is permitted in a view definition, but it is ignored if you select from a view using a statement
that has its own ORDER BY.

For other options or clauses in the definition, they are added to the options or clauses of the statement
that references the view, but the effect is undefined. For example, if a view definition includes a
LIMIT clause, and you select from the view using a statement that has its own LIMIT clause, it is
undefined which limit applies. This same principle applies to options such as ALL, DISTINCT, or
SQL_SMALL_RESULT that follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE,
LOCK IN SHARE MODE, and PROCEDURE.

If you create a view and then change the query processing environment by changing system variables,
that may affect the results that you get from the view:

mysql> CREATE VIEW v (mycol) AS SELECT 'abc';
Query OK, 0 rows affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| mycol |
+-------+
1 row in set (0.01 sec)

mysql> SET sql_mode = 'ANSI_QUOTES';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;

CREATE VIEW Syntax

1363

+-------+
| mycol |
+-------+
| abc |
+-------+
1 row in set (0.00 sec)

The DEFINER and SQL SECURITY clauses determine which MySQL account to use when checking
access privileges for the view when a statement is executed that references the view. The valid
SQL SECURITY characteristic values are DEFINER and INVOKER. These indicate that the required
privileges must be held by the user who defined or invoked the view, respectively. The default SQL
SECURITY value is DEFINER.

If a user value is given for the DEFINER clause, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER,
or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE VIEW
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only valid user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not actually exist, a warning is generated.

• Although it is possible to create a view with a nonexistent DEFINER account, an error occurs when
the view is referenced if the SQL SECURITY value is DEFINER but the definer account does not
exist.

For more information about view security, see Section 18.6, “Access Control for Stored Programs and
Views”.

Within a view definition, CURRENT_USER returns the view's DEFINER value by default. For views
defined with the SQL SECURITY INVOKER characteristic, CURRENT_USER returns the account for
the view's invoker. For information about user auditing within views, see Section 6.3.14, “SQL-Based
MySQL Account Activity Auditing”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic,
CURRENT_USER returns the routine's DEFINER value. This also affects a view defined within such a
routine, if the view definition contains a DEFINER value of CURRENT_USER.

View privileges are checked like this:

• At view definition time, the view creator must have the privileges needed to use the top-level objects
accessed by the view. For example, if the view definition refers to table columns, the creator must
have some privilege for each column in the select list of the definition, and the SELECT privilege
for each column used elsewhere in the definition. If the definition refers to a stored function, only
the privileges needed to invoke the function can be checked. The privileges required at function
invocation time can be checked only as it executes: For different invocations, different execution
paths within the function might be taken.

• The user who references a view must have appropriate privileges to access it (SELECT to select from
it, INSERT to insert into it, and so forth.)

• When a view has been referenced, privileges for objects accessed by the view are checked against
the privileges held by the view DEFINER account or invoker, depending on whether the SQL
SECURITY characteristic is DEFINER or INVOKER, respectively.

• If reference to a view causes execution of a stored function, privilege checking for statements
executed within the function depend on whether the function SQL SECURITY characteristic is
DEFINER or INVOKER. If the security characteristic is DEFINER, the function runs with the privileges

CREATE VIEW Syntax

1364

of the DEFINER account. If the characteristic is INVOKER, the function runs with the privileges
determined by the view's SQL SECURITY characteristic.

Example: A view might depend on a stored function, and that function might invoke other stored
routines. For example, the following view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);

Suppose that f() contains a statement such as this:

IF name IS NULL then
 CALL p1();
ELSE
 CALL p2();
END IF;

The privileges required for executing statements within f() need to be checked when f() executes.
This might mean that privileges are needed for p1() or p2(), depending on the execution path within
f(). Those privileges must be checked at runtime, and the user who must possess the privileges is
determined by the SQL SECURITY values of the view v and the function f().

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard
SQL, views are handled using the rules for SQL SECURITY DEFINER. The standard says that the
definer of the view, which is the same as the owner of the view's schema, gets applicable privileges
on the view (for example, SELECT) and may grant them. MySQL has no concept of a schema “owner”,
so MySQL adds a clause to identify the definer. The DEFINER clause is an extension where the intent
is to have what the standard has; that is, a permanent record of who defined the view. This is why the
default DEFINER value is the account of the view creator.

The optional ALGORITHM clause is a MySQL extension to standard SQL. It affects how MySQL
processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. The default
algorithm is UNDEFINED if no ALGORITHM clause is present. For more information, see Section 18.5.2,
“View Processing Algorithms”.

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or
INSERT to update the contents of the underlying table. For a view to be updatable, there must be a
one-to-one relationship between the rows in the view and the rows in the underlying table. There are
also certain other constructs that make a view nonupdatable.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to
rows except those for which the WHERE clause in the select_statement is true.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords
determine the scope of check testing when the view is defined in terms of another view. The LOCAL
keyword restricts the CHECK OPTION only to the view being defined. CASCADED causes the checks for
underlying views to be evaluated as well. When neither keyword is given, the default is CASCADED.

For more information about updatable views and the WITH CHECK OPTION clause, see
Section 18.5.3, “Updatable and Insertable Views”.

Views created before MySQL 5.7.3 containing ORDER BY integer can result in errors at view
evaluation time. Consider these view definitions, which use ORDER BY with an ordinal number:

CREATE VIEW v1 AS SELECT x, y, z FROM t ORDER BY 2;
CREATE VIEW v2 AS SELECT x, 1, z FROM t ORDER BY 2;

In the first case, ORDER BY 2 refers to a named column y. In the second case, it refers to a constant
1. For queries that select from either view fewer than 2 columns (the number named in the ORDER BY
clause), an error occurred if the server evaluated the view using the MERGE algorithm. Examples:

DROP DATABASE Syntax

1365

mysql> SELECT x FROM v1;
ERROR 1054 (42S22): Unknown column '2' in 'order clause'
mysql> SELECT x FROM v2;
ERROR 1054 (42S22): Unknown column '2' in 'order clause'

As of MySQL 5.7.3, to handle view definitions like this, the server writes them differently into the .frm
file that stores the view definition. This difference is visible with SHOW CREATE VIEW. Previously, the
.frm file contained this for the ORDER BY 2 clause:

For v1: ORDER BY 2
For v2: ORDER BY 2

As of 5.7.3, the .frm file contains this:

For v1: ORDER BY `t`.`y`
For v2: ORDER BY ''

That is, for v1, 2 is replaced by a reference to the name of the column referred to. For v2, 2 is replaced
by a constant string expression (ordering by a constant has no effect, so ordering by any constant will
do).

If you experience view-evaluation errors such as just described, drop and recreate the view so that
the .frm file contains the updated view representation. Alternatively, for views like v2 that order by a
constant value, drop and recreate the view with no ORDER BY clause.

13.1.17 DROP DATABASE Syntax

DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this
statement! To use DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is a
synonym for DROP DATABASE.

Important

When a database is dropped, user privileges on the database are not
automatically dropped. See Section 13.7.1.4, “GRANT Syntax”.

IF EXISTS is used to prevent an error from occurring if the database does not exist.

If the default database is dropped, the default database is unset (the DATABASE() function returns
NULL).

If you use DROP DATABASE on a symbolically linked database, both the link and the original database
are deleted.

DROP DATABASE returns the number of tables that were removed. This corresponds to the number of
.frm files removed.

The DROP DATABASE statement removes from the given database directory those files and directories
that MySQL itself may create during normal operation:

• All files with the following extensions.

.BAK .DAT .HSH .MRG

.MYD .MYI .TRG .TRN

.db .frm .ibd .ndb

DROP EVENT Syntax

1366

.par

• The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just listed, the
database directory cannot be removed. In this case, you must remove any remaining files or directories
manually and issue the DROP DATABASE statement again.

You can also drop databases with mysqladmin. See Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”.

13.1.18 DROP EVENT Syntax

DROP EVENT [IF EXISTS] event_name

This statement drops the event named event_name. The event immediately ceases being active, and
is deleted completely from the server.

If the event does not exist, the error ERROR 1517 (HY000): Unknown event 'event_name'
results. You can override this and cause the statement to generate a warning for nonexistent events
instead using IF EXISTS.

This statement requires the EVENT privilege for the schema to which the event to be dropped belongs.

13.1.19 DROP FUNCTION Syntax

The DROP FUNCTION statement is used to drop stored functions and user-defined functions (UDFs):

• For information about dropping stored functions, see Section 13.1.21, “DROP PROCEDURE and DROP
FUNCTION Syntax”.

• For information about dropping user-defined functions, see Section 13.7.3.2, “DROP FUNCTION
Syntax”.

13.1.20 DROP INDEX Syntax

DROP INDEX index_name ON tbl_name
 [algorithm_option | lock_option] ...

algorithm_option:
 ALGORITHM [=] {DEFAULT|INPLACE|COPY}

lock_option:
 LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

DROP INDEX drops the index named index_name from the table tbl_name. This statement is
mapped to an ALTER TABLE statement to drop the index. See Section 13.1.6, “ALTER TABLE
Syntax”.

To drop a primary key, the index name is always PRIMARY, which must be specified as a quoted
identifier because PRIMARY is a reserved word:

DROP INDEX `PRIMARY` ON t;

ALGORITHM and LOCK clauses may be given. These influence the table copying method and level
of concurrency for reading and writing the table while its indexes are being modified. They have the
same meaning as for the ALTER TABLE statement. For more information, see Section 13.1.6, “ALTER
TABLE Syntax”

DROP PROCEDURE and DROP FUNCTION Syntax

1367

13.1.21 DROP PROCEDURE and DROP FUNCTION Syntax

DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

This statement is used to drop a stored procedure or function. That is, the specified routine is
removed from the server. You must have the ALTER ROUTINE privilege for the routine. (If the
automatic_sp_privileges system variable is enabled, that privilege and EXECUTE are granted
automatically to the routine creator when the routine is created and dropped from the creator when the
routine is dropped. See Section 18.2.2, “Stored Routines and MySQL Privileges”.)

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or
function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.

DROP FUNCTION is also used to drop user-defined functions (see Section 13.7.3.2, “DROP FUNCTION
Syntax”).

13.1.22 DROP SERVER Syntax

DROP SERVER [IF EXISTS] server_name

Drops the server definition for the server named server_name. The corresponding row in the
mysql.servers table is deleted. This statement requires the SUPER privilege.

Dropping a server for a table does not affect any FEDERATED tables that used this connection
information when they were created. See Section 13.1.13, “CREATE SERVER Syntax”.

DROP SERVER does not cause an automatic commit.

In MySQL 5.7, DROP SERVER is not written to the binary log, regardless of the logging format that is in
use.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

13.1.23 DROP TABLE Syntax

DROP [TEMPORARY] TABLE [IF EXISTS]
 tbl_name [, tbl_name] ...
 [RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All table
data and the table definition are removed, so be careful with this statement! If any of the tables named
in the argument list do not exist, MySQL returns an error indicating by name which nonexisting tables it
was unable to drop, but it also drops all of the tables in the list that do exist.

Important

When a table is dropped, user privileges on the table are not automatically
dropped. See Section 13.7.1.4, “GRANT Syntax”.

Note that for a partitioned table, DROP TABLE permanently removes the table definition, all of its
partitions, and all of the data which was stored in those partitions. It also removes the partitioning
definition (.par) file associated with the dropped table.

Use IF EXISTS to prevent an error from occurring for tables that do not exist. A NOTE is generated for
each nonexistent table when using IF EXISTS. See Section 13.7.5.39, “SHOW WARNINGS Syntax”.

RESTRICT and CASCADE are permitted to make porting easier. In MySQL 5.7, they do nothing.

DROP TRIGGER Syntax

1368

Note

DROP TABLE automatically commits the current active transaction, unless you
use the TEMPORARY keyword.

The TEMPORARY keyword has the following effects:

• The statement drops only TEMPORARY tables.

• The statement does not end an ongoing transaction.

• No access rights are checked. (A TEMPORARY table is visible only to the session that created it, so
no check is necessary.)

Using TEMPORARY is a good way to ensure that you do not accidentally drop a non-TEMPORARY table.

13.1.24 DROP TRIGGER Syntax

DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name

This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the
trigger is dropped from the default schema. DROP TRIGGER requires the TRIGGER privilege for the
table associated with the trigger.

Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is
generated for a nonexistent trigger when using IF EXISTS. See Section 13.7.5.39, “SHOW WARNINGS
Syntax”.

Triggers for a table are also dropped if you drop the table.

13.1.25 DROP VIEW Syntax

DROP VIEW [IF EXISTS]
 view_name [, view_name] ...
 [RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view. If any of
the views named in the argument list do not exist, MySQL returns an error indicating by name which
nonexisting views it was unable to drop, but it also drops all of the views in the list that do exist.

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause
is given, a NOTE is generated for each nonexistent view. See Section 13.7.5.39, “SHOW WARNINGS
Syntax”.

RESTRICT and CASCADE, if given, are parsed and ignored.

13.1.26 RENAME TABLE Syntax

RENAME TABLE tbl_name TO new_tbl_name
 [, tbl_name2 TO new_tbl_name2] ...

This statement renames one or more tables.

The rename operation is done atomically, which means that no other session can access any of the
tables while the rename is running. For example, if you have an existing table old_table, you can
create another table new_table that has the same structure but is empty, and then replace the
existing table with the empty one as follows (assuming that backup_table does not already exist):

CREATE TABLE new_table (...);

TRUNCATE TABLE Syntax

1369

RENAME TABLE old_table TO backup_table, new_table TO old_table;

If the statement renames more than one table, renaming operations are done from left to right. If you
want to swap two table names, you can do so like this (assuming that tmp_table does not already
exist):

RENAME TABLE old_table TO tmp_table,
 new_table TO old_table,
 tmp_table TO new_table;

As long as two databases are on the same file system, you can use RENAME TABLE to move a table
from one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

If there are any triggers associated with a table which is moved to a different database using RENAME
TABLE, then the statement fails with the error Trigger in wrong schema.

RENAME TABLE also works for views, as long as you do not try to rename a view into a different
database.

Any privileges granted specifically for the renamed table or view are not migrated to the new name.
They must be changed manually.

When you execute RENAME, you cannot have any locked tables or active transactions. You must also
have the ALTER and DROP privileges on the original table, and the CREATE and INSERT privileges on
the new table.

If MySQL encounters any errors in a multiple-table rename, it does a reverse rename for all renamed
tables to return everything to its original state.

You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TABLE instead:

mysql> ALTER TABLE orig_name RENAME new_name;

13.1.27 TRUNCATE TABLE Syntax

TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE empties a table completely. It requires the DROP privilege.

Logically, TRUNCATE TABLE is similar to a DELETE statement that deletes all rows, or a sequence of
DROP TABLE and CREATE TABLE statements. To achieve high performance, it bypasses the DML
method of deleting data. Thus, it cannot be rolled back, it does not cause ON DELETE triggers to fire,
and it cannot be performed for InnoDB tables with parent-child foreign key relationships.

Although TRUNCATE TABLE is similar to DELETE, it is classified as a DDL statement rather than a DML
statement. It differs from DELETE in the following ways in MySQL 5.7:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by
one, particularly for large tables.

• Truncate operations cause an implicit commit, and so cannot be rolled back.

• Truncation operations cannot be performed if the session holds an active table lock.

• TRUNCATE TABLE fails for an InnoDB table if there are any FOREIGN KEY constraints from other
tables that reference the table. Foreign key constraints between columns of the same table are
permitted.

Data Manipulation Statements

1370

• Truncation operations do not return a meaningful value for the number of deleted rows. The usual
result is “0 rows affected,” which should be interpreted as “no information.”

• As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty
table with TRUNCATE TABLE, even if the data or index files have become corrupted.

• Any AUTO_INCREMENT value is reset to its start value. This is true even for MyISAM and InnoDB,
which normally do not reuse sequence values.

• When used with partitioned tables, TRUNCATE TABLE preserves the partitioning; that is, the data
and index files are dropped and re-created, while the partition definitions (.par) file is unaffected.

• The TRUNCATE TABLE statement does not invoke ON DELETE triggers.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

TRUNCATE TABLE is treated for purposes of binary logging and replication as DROP TABLE followed
by CREATE TABLE—that is, as DDL rather than DML. This is due to the fact that, when using
InnoDB and other transactional storage engines where the transaction isolation level does not permit
statement-based logging (READ COMMITTED or READ UNCOMMITTED), the statement was not logged
and replicated when using STATEMENT or MIXED logging mode. (Bug #36763) However, it is still
applied on replication slaves using InnoDB in the manner described previously.

TRUNCATE TABLE can be used with Performance Schema summary tables, but the effect is to reset
the summary columns to 0 or NULL, not to remove rows. See Section 20.9.12, “Performance Schema
Summary Tables”.

13.2 Data Manipulation Statements

13.2.1 CALL Syntax

CALL sp_name([parameter[,...]])
CALL sp_name[()]

The CALL statement invokes a stored procedure that was defined previously with CREATE
PROCEDURE.

Stored procedures that take no arguments can be invoked without parentheses. That is, CALL p()
and CALL p are equivalent.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT
parameters. When the procedure returns, a client program can also obtain the number of rows affected
for the final statement executed within the routine: At the SQL level, call the ROW_COUNT() function;
from the C API, call the mysql_affected_rows() function.

To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by
means of a user variable, and then check the value of the variable after the procedure returns. (If you
are calling the procedure from within another stored procedure or function, you can also pass a routine
parameter or local routine variable as an IN or INOUT parameter.) For an INOUT parameter, initialize
its value before passing it to the procedure. The following procedure has an OUT parameter that the
procedure sets to the current server version, and an INOUT value that the procedure increments by
one from its current value:

CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN
 # Set value of OUT parameter
 SELECT VERSION() INTO ver_param;
 # Increment value of INOUT parameter
 SET incr_param = incr_param + 1;

CALL Syntax

1371

END;

Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling
the procedure, the values of the two variables will have been set or modified:

mysql> SET @increment = 10;
mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+--------------+------------+
| @version | @increment |
+--------------+------------+
| 5.5.3-m3-log | 11 |
+--------------+------------+

In prepared CALL statements used with PREPARE and EXECUTE, placeholders can be used for IN
parameters. For OUT and INOUT parameters, placeholder support is available as of MySQL 5.5.3.
These types of parameters can be used as follows:

mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(?, ?)';
mysql> EXECUTE s USING @version, @increment;
mysql> SELECT @version, @increment;
+--------------+------------+
| @version | @increment |
+--------------+------------+
| 5.5.3-m3-log | 11 |
+--------------+------------+

Before MySQL 5.5.3, placeholder support is not available for OUT or INOUT parameters. To work
around this limitation for OUT and INOUT parameters, forego the use of placeholders; instead, refer to
user variables in the CALL statement itself and do not specify them in the EXECUTE statement:

mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(@version, @increment)';
mysql> EXECUTE s;
mysql> SELECT @version, @increment;
+--------------+------------+
| @version | @increment |
+--------------+------------+
| 5.5.0-m2-log | 11 |
+--------------+------------+

To write C programs that use the CALL SQL statement to execute stored procedures that produce
result sets, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns
a result to indicate the call status, in addition to any result sets that might be returned by statements
executed within the procedure. CLIENT_MULTI_RESULTS must also be enabled if CALL is used to
execute any stored procedure that contains prepared statements. It cannot be determined when such
a procedure is loaded whether those statements will produce result sets, so it is necessary to assume
that they will.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). In MySQL 5.7,
CLIENT_MULTI_RESULTS is enabled by default.

To process the result of a CALL statement executed using mysql_query() or
mysql_real_query(), use a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 21.8.17, “C API Support for Multiple Statement
Execution”.

For programs written in a language that provides a MySQL interface, there is no native method prior
to MySQL 5.5.3 for directly retrieving the results of OUT or INOUT parameters from CALL statements.

DELETE Syntax

1372

To get the parameter values, pass user-defined variables to the procedure in the CALL statement and
then execute a SELECT statement to produce a result set containing the variable values. To handle an
INOUT parameter, execute a statement prior to the CALL that sets the corresponding user variable to
the value to be passed to the procedure.

The following example illustrates the technique (without error checking) for the stored procedure p
described earlier that has an OUT parameter and an INOUT parameter:

mysql_query(mysql, "SET @increment = 10");
mysql_query(mysql, "CALL p(@version, @increment)");
mysql_query(mysql, "SELECT @version, @increment");
result = mysql_store_result(mysql);
row = mysql_fetch_row(result);
mysql_free_result(result);

After the preceding code executes, row[0] and row[1] contain the values of @version and
@increment, respectively.

In MySQL 5.7, C programs can use the prepared-statement interface to execute CALL statements and
access OUT and INOUT parameters. This is done by processing the result of a CALL statement using
a loop that calls mysql_stmt_next_result() to determine whether there are more results. For an
example, see Section 21.8.20, “C API Support for Prepared CALL Statements”. Languages that provide
a MySQL interface can use prepared CALL statements to directly retrieve OUT and INOUT procedure
parameters.

In MySQL 5.7, metadata changes to objects referred to by stored programs are detected and
cause automatic reparsing of the affected statements when the program is next executed. For more
information, see Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.

13.2.2 DELETE Syntax

DELETE is a DML statement that removes rows from a table.

Single-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
 [PARTITION (partition_name,...)]
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

The DELETE statement deletes rows from tbl_name and returns the number of deleted rows. To
check the number of deleted rows, call the ROW_COUNT() function described in Section 12.14,
“Information Functions”.

Main Clauses

The conditions in the optional WHERE clause identify which rows to delete. With no WHERE clause, all
rows are deleted.

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as
described in Section 13.2.9, “SELECT Syntax”.

If the ORDER BY clause is specified, the rows are deleted in the order that is specified. The LIMIT
clause places a limit on the number of rows that can be deleted. These clauses apply to single-table
deletes, but not multi-table deletes.

Multiple-table syntax:

DELETE Syntax

1373

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 tbl_name[.*] [, tbl_name[.*]] ...
 FROM table_references
 [WHERE where_condition]

Or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 FROM tbl_name[.*] [, tbl_name[.*]] ...
 USING table_references
 [WHERE where_condition]

Privileges

You need the DELETE privilege on a table to delete rows from it. You need only the SELECT privilege
for any columns that are only read, such as those named in the WHERE clause.

Performance

When you do not need to know the number of deleted rows, the TRUNCATE TABLE statement is
a faster way to empty a table than a DELETE statement with no WHERE clause. Unlike DELETE,
TRUNCATE TABLE cannot be used within a transaction or if you have a lock on the table. See
Section 13.1.27, “TRUNCATE TABLE Syntax” and Section 13.3.5, “LOCK TABLES and UNLOCK
TABLES Syntax”.

The speed of delete operations may also be affected by factors discussed in Section 8.2.2.3, “Speed of
DELETE Statements”.

To ensure that a given DELETE statement does not take too much time, the MySQL-specific LIMIT
row_count clause for DELETE specifies the maximum number of rows to be deleted. If the number of
rows to delete is larger than the limit, repeat the DELETE statement until the number of affected rows is
less than the LIMIT value.

Subqueries

Currently, you cannot delete from a table and select from the same table in a subquery.

Partitioned Tables

DELETE supports explicit partition selection using the PARTITION option, which takes a comma-
separated list of the names of one or more partitions or subpartitions (or both) from which to select
rows to be dropped. Partitions not included in the list are ignored. Given a partitioned table t with a
partition named p0, executing the statement DELETE FROM t PARTITION (p0) has the same effect
on the table as executing ALTER TABLE t TRUNCATE PARTITION (p0); in both cases, all rows in
partition p0 are dropped.

PARTITION can be used along with a WHERE condition, in which case the condition is tested only
on rows in the listed partitions. For example, DELETE FROM t PARTITION (p0) WHERE c < 5
deletes rows only from partition p0 for which the condition c < 5 is true; rows in any other partitions
are not checked and thus not affected by the DELETE.

The PARTITION option can also be used in multiple-table DELETE statements. You can use up to one
such option per table named in the FROM option.

See Section 17.5, “Partition Selection”, for more information and examples.

Auto-Increment Columns

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value
is not reused for a MyISAM or InnoDB table. If you delete all rows in the table with DELETE FROM

DELETE Syntax

1374

tbl_name (without a WHERE clause) in autocommit mode, the sequence starts over for all storage
engines except InnoDB and MyISAM. There are some exceptions to this behavior for InnoDB tables,
as discussed in Section 14.2.6.5, “AUTO_INCREMENT Handling in InnoDB”.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key.
In this case, reuse of values deleted from the top of the sequence occurs even for MyISAM tables. See
Section 3.6.9, “Using AUTO_INCREMENT”.

Modifiers

The DELETE statement supports the following modifiers:

• If you specify LOW_PRIORITY, the server delays execution of the DELETE until no other clients are
reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

• For MyISAM tables, if you use the QUICK keyword, the storage engine does not merge index leaves
during delete, which may speed up some kinds of delete operations.

• The IGNORE keyword causes MySQL to ignore all errors during the process of deleting rows. (Errors
encountered during the parsing stage are processed in the usual manner.) Errors that are ignored
due to the use of IGNORE are returned as warnings.

Order of Deletion

If the DELETE statement includes an ORDER BY clause, rows are deleted in the order specified by the
clause. This is useful primarily in conjunction with LIMIT. For example, the following statement finds
rows matching the WHERE clause, sorts them by timestamp_column, and deletes the first (oldest)
one:

DELETE FROM somelog WHERE user = 'jcole'
ORDER BY timestamp_column LIMIT 1;

ORDER BY also helps to delete rows in an order required to avoid referential integrity violations.

InnoDB Tables

If you are deleting many rows from a large table, you may exceed the lock table size for an InnoDB
table. To avoid this problem, or simply to minimize the time that the table remains locked, the following
strategy (which does not use DELETE at all) might be helpful:

1. Select the rows not to be deleted into an empty table that has the same structure as the original
table:

INSERT INTO t_copy SELECT * FROM t WHERE ... ;

2. Use RENAME TABLE to atomically move the original table out of the way and rename the copy to
the original name:

RENAME TABLE t TO t_old, t_copy TO t;

3. Drop the original table:

DROP TABLE t_old;

No other sessions can access the tables involved while RENAME TABLE executes, so the rename
operation is not subject to concurrency problems. See Section 13.1.26, “RENAME TABLE Syntax”.

DELETE Syntax

1375

MyISAM Tables

In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations
reuse old row positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE TABLE
statement or the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier to use,
but myisamchk is faster. See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”, and Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”.

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is
most useful for applications where index values for deleted rows are replaced by similar index values
from rows inserted later. In this case, the holes left by deleted values are reused.

DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a range of
index values for which new inserts occur again. In this case, use of QUICK can lead to wasted space in
the index that remains unreclaimed. Here is an example of such a scenario:

1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many rows into the table. Each insert results in an index value that is added to the high end
of the index.

3. Delete a block of rows at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become underfilled but
are not merged with other index blocks due to the use of QUICK. They remain underfilled when new
inserts occur, because new rows do not have index values in the deleted range. Furthermore, they
remain underfilled even if you later use DELETE without QUICK, unless some of the deleted index
values happen to lie in index blocks within or adjacent to the underfilled blocks. To reclaim unused
index space under these circumstances, use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed by
OPTIMIZE TABLE. This rebuilds the index rather than performing many index block merge operations.

Multi-Table Deletes

You can specify multiple tables in a DELETE statement to delete rows from one or more tables
depending on the condition in the WHERE clause. You cannot use ORDER BY or LIMIT in a multiple-
table DELETE. The table_references clause lists the tables involved in the join, as described in
Section 13.2.9.2, “JOIN Syntax”.

For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are
deleted. For the second multiple-table syntax, only matching rows from the tables listed in the FROM
clause (before the USING clause) are deleted. The effect is that you can delete rows from many tables
at the same time and have additional tables that are used only for searching:

DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three tables when searching for rows to delete, but delete matching rows only
from tables t1 and t2.

The preceding examples use INNER JOIN, but multiple-table DELETE statements can use other types
of join permitted in SELECT statements, such as LEFT JOIN. For example, to delete rows that exist in
t1 that have no match in t2, use a LEFT JOIN:

DO Syntax

1376

DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;

The syntax permits .* after each tbl_name for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/
child relationship. In this case, the statement fails and rolls back. Instead, you should delete from a
single table and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to
be modified accordingly.

Note

If you declare an alias for a table, you must use the alias when referring to the
table:

DELETE t1 FROM test AS t1, test2 WHERE ...

Table aliases in a multiple-table DELETE should be declared only in the table_references part of
the statement. Elsewhere, alias references are permitted but not alias declarations.

Correct:

DELETE a1, a2 FROM t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

DELETE FROM a1, a2 USING t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

Incorrect:

DELETE t1 AS a1, t2 AS a2 FROM t1 INNER JOIN t2
WHERE a1.id=a2.id;

DELETE FROM t1 AS a1, t2 AS a2 USING t1 INNER JOIN t2
WHERE a1.id=a2.id;

13.2.3 DO Syntax

DO expr [, expr] ...

DO executes the expressions but does not return any results. In most respects, DO is shorthand for
SELECT expr, ..., but has the advantage that it is slightly faster when you do not care about the
result.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().

Example: This SELECT statement pauses, but also produces a result set:

mysql> SELECT SLEEP(5);
+----------+
| SLEEP(5) |
+----------+
| 0 |
+----------+
1 row in set (5.02 sec)

DO, on the other hand, pauses without producing a result set.:

mysql> DO SLEEP(5);

HANDLER Syntax

1377

Query OK, 0 rows affected (4.99 sec)

This could be useful, for example in a stored function or trigger, which prohibit statements that produce
result sets.

DO only executes expressions. It cannot be used in all cases where SELECT can be used. For example,
DO id FROM t1 is invalid because it references a table.

13.2.4 HANDLER Syntax

HANDLER tbl_name OPEN [[AS] alias]

HANDLER tbl_name READ index_name { = | <= | >= | < | > } (value1,value2,...)
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }
 [WHERE where_condition] [LIMIT ...]

HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is available for
InnoDB and MyISAM tables.

The HANDLER ... OPEN statement opens a table, making it accessible using subsequent
HANDLER ... READ statements. This table object is not shared by other sessions and is not closed
until the session calls HANDLER ... CLOSE or the session terminates. If you open the table using an
alias, further references to the open table with other HANDLER statements must use the alias rather
than the table name.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given
values and the WHERE condition is met. If you have a multiple-column index, specify the index column
values as a comma-separated list. Either specify values for all the columns in the index, or specify
values for a leftmost prefix of the index columns. Suppose that an index my_idx includes three
columns named col_a, col_b, and col_c, in that order. The HANDLER statement can specify values
for all three columns in the index, or for the columns in a leftmost prefix. For example:

HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...

To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier
`PRIMARY`:

HANDLER tbl_name READ `PRIMARY` ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches the
WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches
the WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full table scan
is desired. Natural row order is the order in which rows are stored in a MyISAM table data file. This
statement works for InnoDB tables as well, but there is no such concept because there is no separate
data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To
return a specific number of rows, include a LIMIT clause. It has the same syntax as for the SELECT
statement. See Section 13.2.9, “SELECT Syntax”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

INSERT Syntax

1378

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

• HANDLER is faster than SELECT:

• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object
is reused for subsequent HANDLER statements for that table; it need not be reinitialized for each
one.

• There is less parsing involved.

• There is no optimizer or query-checking overhead.

• The handler interface does not have to provide a consistent look of the data (for example, dirty
reads are permitted), so the storage engine can use optimizations that SELECT does not normally
permit.

• HANDLER makes it easier to port to MySQL applications that use a low-level ISAM-like interface. (See
Section 14.2.16, “InnoDB Integration with memcached” for an alternative way to adapt applications
that use the key-value store paradigm.)

• HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to
accomplish with SELECT. The HANDLER interface is a more natural way to look at data when working
with applications that provide an interactive user interface to the database.

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is,
HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This means
that after a HANDLER ... OPEN statement is issued, table data can be modified (by the current
session or other sessions) and these modifications might be only partially visible to HANDLER ...
NEXT or HANDLER ... PREV scans.

An open handler can be closed and marked for reopen, in which case the handler loses its position in
the table. This occurs when both of the following circumstances are true:

• Any session executes FLUSH TABLES or DDL statements on the handler's table.

• The session in which the handler is open executes non-HANDLER statements that use tables.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

If a table is flushed with FLUSH TABLES tbl_name WITH READ LOCK was opened with HANDLER,
the handler is implicitly flushed and loses its position.

In previous versions of MySQL, HANDLER was not supported with partitioned tables. This limitation is
removed beginning with MySQL 5.7.1.

13.2.5 INSERT Syntax

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 [(col_name,...)]
 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...
 [ON DUPLICATE KEY UPDATE
 col_name=expr
 [, col_name=expr] ...]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]

INSERT Syntax

1379

 SET col_name={expr | DEFAULT}, ...
 [ON DUPLICATE KEY UPDATE
 col_name=expr
 [, col_name=expr] ...]

Or:

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 [(col_name,...)]
 SELECT ...
 [ON DUPLICATE KEY UPDATE
 col_name=expr
 [, col_name=expr] ...]

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ... SET
forms of the statement insert rows based on explicitly specified values. The INSERT ... SELECT
form inserts rows selected from another table or tables. INSERT ... SELECT is discussed further in
Section 13.2.5.1, “INSERT ... SELECT Syntax”.

When inserting into a partitioned table, you can control which partitions and subpartitions accept new
rows. The PARTITION option takes a comma-separated list of the names of one or more partitions
or subpartitions (or both) of the table. If any of the rows to be inserted by a given INSERT statement
do not match one of the partitions listed, the INSERT statement fails with the error Found a row
not matching the given partition set. See Section 17.5, “Partition Selection”, for more
information and examples.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to INSERT
IGNORE in the treatment of new rows that contain unique key values that duplicate old rows: The new
rows are used to replace the old rows rather than being discarded. See Section 13.2.8, “REPLACE
Syntax”.

tbl_name is the table into which rows should be inserted. The columns for which the statement
provides values can be specified as follows:

• You can provide a comma-separated list of column names following the table name. In this case, a
value for each named column must be provided by the VALUES list or the SELECT statement.

• If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SELECT,
values for every column in the table must be provided by the VALUES list or the SELECT statement. If
you do not know the order of the columns in the table, use DESCRIBE tbl_name to find out.

• The SET clause indicates the column names explicitly.

Column values can be given in several ways:

• If you are not running in strict SQL mode, any column not explicitly given a value is set to its default
(explicit or implicit) value. For example, if you specify a column list that does not name all the
columns in the table, unnamed columns are set to their default values. Default value assignment is
described in Section 11.5, “Data Type Default Values”. See also Section 1.8.3.3, “Constraints on
Invalid Data”.

If you want an INSERT statement to generate an error unless you explicitly specify values for all
columns that do not have a default value, you should use strict mode. See Section 5.1.7, “Server
SQL Modes”.

• Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to
write INSERT statements that assign values to all but a few columns, because it enables you to
avoid writing an incomplete VALUES list that does not include a value for each column in the table.
Otherwise, you would have to write out the list of column names corresponding to each value in the
VALUES list.

INSERT Syntax

1380

You can also use DEFAULT(col_name) as a more general form that can be used in expressions to
produce a given column's default value.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column set to
its default value:

INSERT INTO tbl_name () VALUES();

In strict mode, an error occurs if any column doesn't have a default value. Otherwise, MySQL uses
the implicit default value for any column that does not have an explicitly defined default.

• You can specify an expression expr to provide a column value. This might involve type conversion
if the type of the expression does not match the type of the column, and conversion of a given value
can result in different inserted values depending on the data type. For example, inserting the string
'1999.0e-2' into an INT, FLOAT, DECIMAL(10,6), or YEAR column results in the values 1999,
19.9921, 19.992100, and 1999 being inserted, respectively. The reason the value stored in the
INT and YEAR columns is 1999 is that the string-to-integer conversion looks only at as much of the
initial part of the string as may be considered a valid integer or year. For the floating-point and fixed-
point columns, the string-to-floating-point conversion considers the entire string a valid floating-point
value.

An expression expr can refer to any column that was set earlier in a value list. For example, you can
do this because the value for col2 refers to col1, which has previously been assigned:

INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But the following is not legal, because the value for col1 refers to col2, which is assigned after
col1:

INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

One exception involves columns that contain AUTO_INCREMENT values. Because the
AUTO_INCREMENT value is generated after other value assignments, any reference to an
AUTO_INCREMENT column in the assignment returns a 0.

INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists
of column values, each enclosed within parentheses and separated by commas. Example:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);

The values list for each row must be enclosed within parentheses. The following statement is illegal
because the number of values in the list does not match the number of column names:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

VALUE is a synonym for VALUES in this context. Neither implies anything about the number of values
lists, and either may be used whether there is a single values list or multiple lists.

The affected-rows value for an INSERT can be obtained using the ROW_COUNT() function (see
Section 12.14, “Information Functions”), or the mysql_affected_rows() C API function (see
Section 21.8.7.1, “mysql_affected_rows()”).

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT, the
statement returns an information string in this format:

Records: 100 Duplicates: 0 Warnings: 0

INSERT Syntax

1381

Records indicates the number of rows processed by the statement. (This is not necessarily the
number of rows actually inserted because Duplicates can be nonzero.) Duplicates indicates the
number of rows that could not be inserted because they would duplicate some existing unique index
value. Warnings indicates the number of attempts to insert column values that were problematic in
some way. Warnings can occur under any of the following conditions:

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT
statements or INSERT INTO ... SELECT statements, the column is set to the implicit default
value for the column data type. This is 0 for numeric types, the empty string ('') for string types,
and the “zero” value for date and time types. INSERT INTO ... SELECT statements are handled
the same way as multiple-row inserts because the server does not examine the result set from the
SELECT to see whether it returns a single row. (For a single-row INSERT, no warning occurs when
NULL is inserted into a NOT NULL column. Instead, the statement fails with an error.)

• Setting a numeric column to a value that lies outside the column's range. The value is clipped to the
closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing nonnumeric text is stripped
off and the remaining numeric part is inserted. If the string value has no leading numeric part, the
column is set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column's
maximum length. The value is truncated to the column's maximum length.

• Inserting a value into a date or time column that is illegal for the data type. The column is set to the
appropriate zero value for the type.

If you are using the C API, the information string can be obtained by invoking the mysql_info()
function. See Section 21.8.7.36, “mysql_info()”.

If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value
used for that column by using the SQL LAST_INSERT_ID() function. From within the C API,
use the mysql_insert_id() function. However, you should note that the two functions do not
always behave identically. The behavior of INSERT statements with respect to AUTO_INCREMENT
columns is discussed further in Section 12.14, “Information Functions”, and Section 21.8.7.38,
“mysql_insert_id()”.

The INSERT statement supports the following modifiers:

• INSERT DELAYED was deprecated in MySQL 5.6, and is scheduled for eventual removal. Use
INSERT (without DELAYED) instead. See Section 13.2.5.2, “INSERT DELAYED Syntax”.

• If you use the LOW_PRIORITY keyword, execution of the INSERT is delayed until no other clients
are reading from the table. This includes other clients that began reading while existing clients
are reading, and while the INSERT LOW_PRIORITY statement is waiting. It is possible, therefore,
for a client that issues an INSERT LOW_PRIORITY statement to wait for a very long time Note
that LOW_PRIORITY should normally not be used with MyISAM tables because doing so disables
concurrent inserts. See Section 8.10.3, “Concurrent Inserts”.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option
if the server was started with that option. It also causes concurrent inserts not to be used. See
Section 8.10.3, “Concurrent Inserts”.

LOW_PRIORITY and HIGH_PRIORITY affect only storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE).

• If you use the IGNORE keyword, errors that occur while executing the INSERT statement are ignored.
For example, without IGNORE, a row that duplicates an existing UNIQUE index or PRIMARY KEY
value in the table causes a duplicate-key error and the statement is aborted. With IGNORE, the row

INSERT Syntax

1382

still is not inserted, but no error occurs. Ignored errors may generate warnings instead, although
duplicate-key errors do not.

 IGNORE has a similar effect on inserts into partitioned tables where no partition matching a given
value is found. Without IGNORE, such INSERT statements are aborted with an error; however, when
INSERT IGNORE is used, the insert operation fails silently for the row containing the unmatched
value, but any rows that are matched are inserted. For an example, see Section 17.2.2, “LIST
Partitioning”.

Data conversions that would trigger errors abort the statement if IGNORE is not specified. With
IGNORE, invalid values are adjusted to the closest values and inserted; warnings are produced but
the statement does not abort. You can determine with the mysql_info() C API function how many
rows were actually inserted into the table.

• If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate
value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row is performed. The affected-
rows value per row is 1 if the row is inserted as a new row, 2 if an existing row is updated, and
0 if an existing row is set to its current values. If you specify the CLIENT_FOUND_ROWS flag to
mysql_real_connect() when connecting to mysqld, the affected-rows value is 1 (not 0) if an
existing row is set to its current values. See Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”.

Inserting into a table requires the INSERT privilege for the table. If the ON DUPLICATE KEY UPDATE
clause is used and a duplicate key causes an UPDATE to be performed instead, the statement requires
the UPDATE privilege for the columns to be updated. For columns that are read but not modified you
need only the SELECT privilege (such as for a column referenced only on the right hand side of an
col_name=expr assignment in an ON DUPLICATE KEY UPDATE clause).

In MySQL 5.7, an INSERT statement affecting a partitioned table using a storage engine such as
MyISAM that employs table-level locks locks only those partitions into which rows are actually inserted.
(For storage engines such as InnoDB that employ row-level locking, no locking of partitions takes
place.) For more information, see Section 17.6.4, “Partitioning and Locking”.

13.2.5.1 INSERT ... SELECT Syntax

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 [(col_name,...)]
 SELECT ...
 [ON DUPLICATE KEY UPDATE col_name=expr, ...]

With INSERT ... SELECT, you can quickly insert many rows into a table from one or many tables.
For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

The following conditions hold for a INSERT ... SELECT statements:

• Specify IGNORE to ignore rows that would cause duplicate-key violations.

• The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the
query. (This was not possible in some older versions of MySQL.) However, you cannot insert into a
table and select from the same table in a subquery.

When selecting from and inserting into a table at the same time, MySQL creates a temporary table
to hold the rows from the SELECT and then inserts those rows into the target table. However, it
remains true that you cannot use INSERT INTO t ... SELECT ... FROM t when t is a

INSERT Syntax

1383

TEMPORARY table, because TEMPORARY tables cannot be referred to twice in the same statement
(see Section C.5.7.2, “TEMPORARY Table Problems”).

• AUTO_INCREMENT columns work as usual.

• To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts for INSERT ... SELECT statements.

• To avoid ambiguous column reference problems when the SELECT and the INSERT refer to the
same table, provide a unique alias for each table used in the SELECT part, and qualify column
names in that part with the appropriate alias.

You can explicitly select which partitions or subpartitions (or both) of the source or target table (or both)
are to be used with a PARTITION option following the name of the table. When PARTITION is used
with the name of the source table in the SELECT portion of the statement, rows are selected only from
the partitions or subpartitions named in its partition list. When PARTITION is used with the name of the
target table for the INSERT portion of the statement, then it must be possible to insert all rows selected
into the partitions or subpartitions named in the partition list following the option, else the INSERT ...
SELECT statement fails. For more information and examples, see Section 17.5, “Partition Selection”.

In the values part of ON DUPLICATE KEY UPDATE, you can refer to columns in other tables, as long
as you do not use GROUP BY in the SELECT part. One side effect is that you must qualify nonunique
column names in the values part.

The order in which rows are returned by a SELECT statement with no ORDER BY clause is not
determined. This means that, when using replication, there is no guarantee that such a SELECT returns
rows in the same order on the master and the slave; this can lead to inconsistencies between them.
To prevent this from occurring, you should always write INSERT ... SELECT statements that are to
be replicated as INSERT ... SELECT ... ORDER BY column. The choice of column does not
matter as long as the same order for returning the rows is enforced on both the master and the slave.
See also Section 16.4.1.16, “Replication and LIMIT”.

Due to this issue, INSERT ... SELECT ON DUPLICATE KEY UPDATE and INSERT IGNORE ...
SELECT statements are flagged as unsafe for statement-based replication. With this change, such
statements produce a warning in the log when using statement-based mode and are logged using the
row-based format when using MIXED mode. (Bug #11758262, Bug #50439)

See also Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

In MySQL 5.7, an INSERT ... SELECT statement that acted on partitioned tables using a storage
engine such as MyISAM that employs table-level locks locks all partitions of the target table; however,
only those partitions that are actually read from the source table are locked. (This does not occur with
tables using storage engines such as InnoDB that employ row-level locking.) See Section 17.6.4,
“Partitioning and Locking”, for more information.

13.2.5.2 INSERT DELAYED Syntax

INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL. In previous
versions of MySQL, it can be used for certain kinds of tables (such as MyISAM), such that when a client
uses INSERT DELAYED, it gets an okay from the server at once, and the row is queued to be inserted
when the table is not in use by any other thread.

DELAYED inserts and replaces were deprecated in MySQL 5.6.6. In MySQL 5.7, DELAYED is not
supported. The server recognizes but ignores the DELAYED keyword, handles the insert as a
nondelayed insert, and generates an ER_WARN_LEGACY_SYNTAX_CONVERTED warning. (“INSERT
DELAYED is no longer supported. The statement was converted to INSERT.”) The DELAYED keyword
will be removed in a future release.

INSERT Syntax

1384

13.2.5.3 INSERT ... ON DUPLICATE KEY UPDATE Syntax

If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value
in a UNIQUE index or PRIMARY KEY, MySQL performs an UPDATE of the old row. For example, if
column a is declared as UNIQUE and contains the value 1, the following two statements have similar
effect:

INSERT INTO table (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=c+1;

UPDATE table SET c=c+1 WHERE a=1;

(The effects are not identical for an InnoDB table where a is an auto-increment column. With an auto-
increment column, an INSERT statement increases the auto-increment value but UPDATE does not.)

The ON DUPLICATE KEY UPDATE clause can contain multiple column assignments, separated by
commas.

With ON DUPLICATE KEY UPDATE, the affected-rows value per row is 1 if the row is inserted as
a new row, 2 if an existing row is updated, and 0 if an existing row is set to its current values. If you
specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld, the
affected-rows value is 1 (not 0) if an existing row is set to its current values.

If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:

UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid
using an ON DUPLICATE KEY UPDATE clause on tables with multiple unique indexes.

You can use the VALUES(col_name) function in the UPDATE clause to refer to column values from
the INSERT portion of the INSERT ... ON DUPLICATE KEY UPDATE statement. In other words,
VALUES(col_name) in the ON DUPLICATE KEY UPDATE clause refers to the value of col_name
that would be inserted, had no duplicate-key conflict occurred. This function is especially useful in
multiple-row inserts. The VALUES() function is meaningful only in INSERT ... UPDATE statements
and returns NULL otherwise. Example:

INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
 ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

INSERT INTO table (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=3;
INSERT INTO table (a,b,c) VALUES (4,5,6)
 ON DUPLICATE KEY UPDATE c=9;

If a table contains an AUTO_INCREMENT column and INSERT ... ON DUPLICATE KEY UPDATE
inserts or updates a row, the LAST_INSERT_ID() function returns the AUTO_INCREMENT value.

The DELAYED option is ignored when you use ON DUPLICATE KEY UPDATE.

Because the results of INSERT ... SELECT statements depend on the ordering of rows from
the SELECT and this order cannot always be guaranteed, it is possible when logging INSERT ...
SELECT ON DUPLICATE KEY UPDATE statements for the master and the slave to diverge. Thus,
INSERT ... SELECT ON DUPLICATE KEY UPDATE statements are flagged as unsafe for
statement-based replication. With this change, such statements produce a warning in the log when
using statement-based mode and are logged using the row-based format when using MIXED mode.
In addition, an INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more

LOAD DATA INFILE Syntax

1385

than one unique or primary key is also marked as unsafe. (Bug #11765650, Bug #58637) See also
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.

In MySQL 5.7, an INSERT ... ON DUPLICATE KEY UPDATE on a partitioned table using a storage
engine such as MyISAM that employs table-level locks locks any partitions of the table in which a
partitioning key column is updated. (This does not occur with tables using storage engines such as
InnoDB that employ row-level locking.) See Section 17.6.4, “Partitioning and Locking”, for more
information.

13.2.6 LOAD DATA INFILE Syntax

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name,...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number {LINES | ROWS}]
 [(col_name_or_user_var,...)]
 [SET col_name = expr,...]

The LOAD DATA INFILE statement reads rows from a text file into a table at a very high speed.
LOAD DATA INFILE is the complement of SELECT ... INTO OUTFILE. (See Section 13.2.9.1,
“SELECT ... INTO Syntax”.) To write data from a table to a file, use SELECT ... INTO OUTFILE.
To read the file back into a table, use LOAD DATA INFILE. The syntax of the FIELDS and LINES
clauses is the same for both statements. Both clauses are optional, but FIELDS must precede LINES if
both are specified.

You can also load data files by using the mysqlimport utility; it operates by sending a LOAD DATA
INFILE statement to the server. The --local option causes mysqlimport to read data files from
the client host. You can specify the --compress option to get better performance over slow networks
if the client and server support the compressed protocol. See Section 4.5.5, “mysqlimport — A Data
Import Program”.

For more information about the efficiency of INSERT versus LOAD DATA INFILE and speeding up
LOAD DATA INFILE, see Section 8.2.2.1, “Speed of INSERT Statements”.

The file name must be given as a literal string. On Windows, specify backslashes in path names
as forward slashes or doubled backslashes. The character_set_filesystem system variable
controls the interpretation of the file name.

LOAD DATA supports explicit partition selection using the PARTITION option with a comma-separated
list of more or more names of partitions, subpartitions, or both. When this option is used, if any
rows from the file cannot be inserted into any of the partitions or subpartitions named in the list, the
statement fails with the error Found a row not matching the given partition set. For
more information, see Section 17.5, “Partition Selection”.

For partitioned tables using storage engines that employ table locks, such as MyISAM, LOAD DATA
cannot prune any partition locks. This does not apply to tables using storage engines which employ
row-level locking, such as InnoDB. For more information, see Section 17.6.4, “Partitioning and
Locking”.

The character set indicated by the character_set_database system variable is used to interpret
the information in the file. SET NAMES and the setting of character_set_client do not affect
interpretation of input. If the contents of the input file use a character set that differs from the default,

LOAD DATA INFILE Syntax

1386

it is usually preferable to specify the character set of the file by using the CHARACTER SET clause. A
character set of binary specifies “no conversion.”

LOAD DATA INFILE interprets all fields in the file as having the same character set, regardless of the
data types of the columns into which field values are loaded. For proper interpretation of file contents,
you must ensure that it was written with the correct character set. For example, if you write a data file
with mysqldump -T or by issuing a SELECT ... INTO OUTFILE statement in mysql, be sure to
use a --default-character-set option so that output is written in the character set to be used
when the file is loaded with LOAD DATA INFILE.

Note

It is not possible to load data files that use the ucs2, utf16, utf16le, or
utf32 character set.

If you use LOW_PRIORITY, execution of the LOAD DATA statement is delayed until no other clients
are reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

If you specify CONCURRENT with a MyISAM table that satisfies the condition for concurrent inserts (that
is, it contains no free blocks in the middle), other threads can retrieve data from the table while LOAD
DATA is executing. This option affects the performance of LOAD DATA a bit, even if no other thread is
using the table at the same time.

With row-based replication, CONCURRENT is replicated regardless of MySQL version. With statement-
based replication CONCURRENT is not replicated prior to MySQL 5.5.1 (see Bug #34628). For more
information, see Section 16.4.1.17, “Replication and LOAD DATA INFILE”.

The LOCAL keyword affects expected location of the file and error handling, as described later. LOCAL
works only if your server and your client both have been configured to permit it. For example, if mysqld
was started with --local-infile=0, LOCAL does not work. See Section 6.1.6, “Security Issues with
LOAD DATA LOCAL”.

The LOCAL keyword affects where the file is expected to be found:

• If LOCAL is specified, the file is read by the client program on the client host and sent to the server.
The file can be given as a full path name to specify its exact location. If given as a relative path
name, the name is interpreted relative to the directory in which the client program was started.

When using LOCAL with LOAD DATA, a copy of the file is created in the server's temporary directory.
This is not the directory determined by the value of tmpdir or slave_load_tmpdir, but rather the
operating system's temporary directory, and is not configurable in the MySQL Server. (Typically the
system temporary directory is /tmp on Linux systems and C:\WINDOWS\TEMP on Windows.) Lack
of sufficient space for the copy in this directory can cause the LOAD DATA LOCAL statement to fail.

• If LOCAL is not specified, the file must be located on the server host and is read directly by the
server. The server uses the following rules to locate the file:

• If the file name is an absolute path name, the server uses it as given.

• If the file name is a relative path name with one or more leading components, the server searches
for the file relative to the server's data directory.

• If a file name with no leading components is given, the server looks for the file in the database
directory of the default database.

In the non-LOCAL case, these rules mean that a file named as ./myfile.txt is read from the
server's data directory, whereas the file named as myfile.txt is read from the database directory of
the default database. For example, if db1 is the default database, the following LOAD DATA statement
reads the file data.txt from the database directory for db1, even though the statement explicitly
loads the file into a table in the db2 database:

LOAD DATA INFILE Syntax

1387

LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

For security reasons, when reading text files located on the server, the files must either reside in the
database directory or be readable by all. Also, to use LOAD DATA INFILE on server files, you must
have the FILE privilege. See Section 6.2.1, “Privileges Provided by MySQL”. For non-LOCAL load
operations, if the secure_file_priv system variable is set to a nonempty directory name, the file to
be loaded must be located in that directory.

Using LOCAL is a bit slower than letting the server access the files directly, because the contents of the
file must be sent over the connection by the client to the server. On the other hand, you do not need
the FILE privilege to load local files.

LOCAL also affects error handling:

• With LOAD DATA INFILE, data-interpretation and duplicate-key errors terminate the operation.

• With LOAD DATA LOCAL INFILE, data-interpretation and duplicate-key errors become warnings
and the operation continues because the server has no way to stop transmission of the file in the
middle of the operation. For duplicate-key errors, this is the same as if IGNORE is specified. IGNORE
is explained further later in this section.

The REPLACE and IGNORE keywords control handling of input rows that duplicate existing rows on
unique key values:

• If you specify REPLACE, input rows replace existing rows. In other words, rows that have the same
value for a primary key or unique index as an existing row. See Section 13.2.8, “REPLACE Syntax”.

• If you specify IGNORE, input rows that duplicate an existing row on a unique key value are skipped.

• If you do not specify either option, the behavior depends on whether the LOCAL keyword is specified.
Without LOCAL, an error occurs when a duplicate key value is found, and the rest of the text file is
ignored. With LOCAL, the default behavior is the same as if IGNORE is specified; this is because the
server has no way to stop transmission of the file in the middle of the operation.

To ignore foreign key constraints during the load operation, issue a SET foreign_key_checks = 0
statement before executing LOAD DATA.

If you use LOAD DATA INFILE on an empty MyISAM table, all nonunique indexes are created in a
separate batch (as for REPAIR TABLE). Normally, this makes LOAD DATA INFILE much faster when
you have many indexes. In some extreme cases, you can create the indexes even faster by turning
them off with ALTER TABLE ... DISABLE KEYS before loading the file into the table and using
ALTER TABLE ... ENABLE KEYS to re-create the indexes after loading the file. See Section 8.2.2.1,
“Speed of INSERT Statements”.

For both the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements, the syntax of the
FIELDS and LINES clauses is the same. Both clauses are optional, but FIELDS must precede LINES
if both are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED
BY, and ESCAPED BY) is also optional, except that you must specify at least one of them.

If you specify no FIELDS or LINES clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'
LINES TERMINATED BY '\n' STARTING BY ''

(Backslash is the MySQL escape character within strings in SQL statements, so to specify a literal
backslash, you must specify two backslashes for the value to be interpreted as a single backslash. The
escape sequences '\t' and '\n' specify tab and newline characters, respectively.)

In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:

LOAD DATA INFILE Syntax

1388

• Look for line boundaries at newlines.

• Do not skip over any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret characters preceded by the escape character “\” as escape sequences. For example,
“\t”, “\n”, and “\\” signify tab, newline, and backslash, respectively. See the discussion of FIELDS
ESCAPED BY later for the full list of escape sequences.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use “\” to escape instances of tab, newline, or “\” that occur within field values.

• Write newlines at the ends of lines.

Note

If you have generated the text file on a Windows system, you might have to use
LINES TERMINATED BY '\r\n' to read the file properly, because Windows
programs typically use two characters as a line terminator. Some programs,
such as WordPad, might use \r as a line terminator when writing files. To read
such files, use LINES TERMINATED BY '\r'.

If all the lines you want to read in have a common prefix that you want to ignore, you can use LINES
STARTING BY 'prefix_string' to skip over the prefix, and anything before it. If a line does not
include the prefix, the entire line is skipped. Suppose that you issue the following statement:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test
 FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';

If the data file looks like this:

xxx"abc",1
something xxx"def",2
"ghi",3

The resulting rows will be ("abc",1) and ("def",2). The third row in the file is skipped because it
does not contain the prefix.

The IGNORE number LINES option can be used to ignore lines at the start of the file. For example,
you can use IGNORE 1 LINES to skip over an initial header line containing column names:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write data from
a database into a file and then read the file back into the database later, the field- and line-handling
options for both statements must match. Otherwise, LOAD DATA INFILE will not interpret the contents
of the file properly. Suppose that you use SELECT ... INTO OUTFILE to write a file with fields
delimited by commas:

SELECT * INTO OUTFILE 'data.txt'
 FIELDS TERMINATED BY ','
 FROM table2;

LOAD DATA INFILE Syntax

1389

To read the comma-delimited file back in, the correct statement would be:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY ',';

If instead you tried to read in the file with the statement shown following, it wouldn't work because it
instructs LOAD DATA INFILE to look for tabs between fields:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA INFILE can be used to read files obtained from external sources. For example, many
programs can export data in comma-separated values (CSV) format, such that lines have fields
separated by commas and enclosed within double quotation marks, with an initial line of column
names. If the lines in such a file are terminated by carriage return/newline pairs, the statement shown
here illustrates the field- and line-handling options you would use to load the file:

LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
 FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES;

If the input values are not necessarily enclosed within quotation marks, use OPTIONALLY before the
ENCLOSED BY keywords.

Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS
[OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character. The
FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values can be more
than one character. For example, to write lines that are terminated by carriage return/linefeed pairs, or
to read a file containing such lines, specify a LINES TERMINATED BY '\r\n' clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

CREATE TABLE jokes
 (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joke TEXT NOT NULL);
LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
 FIELDS TERMINATED BY ''
 LINES TERMINATED BY '\n%%\n' (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO
OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY character.
An example of such output (using a comma as the field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from columns
that have a string data type (such as CHAR, BINARY, TEXT, or ENUM):

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Note that occurrences of the ENCLOSED BY character within a field value are escaped by prefixing
them with the ESCAPED BY character. Also note that if you specify an empty ESCAPED BY value, it

LOAD DATA INFILE Syntax

1390

is possible to inadvertently generate output that cannot be read properly by LOAD DATA INFILE.
For example, the preceding output just shown would appear as follows if the escape character is
empty. Observe that the second field in the fourth line contains a comma following the quote, which
(erroneously) appears to terminate the field:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is true
regardless of whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpretation.)
Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are interpreted
as part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as
terminating a field value only if followed by the field or line TERMINATED BY sequence. To avoid
ambiguity, occurrences of the ENCLOSED BY character within a field value can be doubled and are
interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified,
quotation marks are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to read or write special characters:

• For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are
stripped and the following character is taken literally as part of a field value. Some two-character
sequences that are exceptions, where the first character is the escape character. These sequences
are shown in the following table (using “\” for the escape character). The rules for NULL handling are
described later in this section.

Character Escape Sequence

\0 An ASCII NUL (0x00) character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character.

\Z ASCII 26 (Control+Z)

\N NULL

For more information about “\”-escape syntax, see Section 9.1.1, “String Literals”.

If the FIELDS ESCAPED BY character is empty, escape-sequence interpretation does not occur.

• For output, if the FIELDS ESCAPED BY character is not empty, it is used to prefix the following
characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII 0 (what is actually written following the escape character is ASCII “0”, not a zero-valued
byte)

LOAD DATA INFILE Syntax

1391

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is nonempty, lines are
also terminated with FIELDS TERMINATED BY.

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a fixed-
row (nondelimited) format is used. With fixed-row format, no delimiters are used between fields
(but you can still have a line terminator). Instead, column values are read and written using a field
width wide enough to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT, INT, and
BIGINT, the field widths are 4, 6, 8, 11, and 20, respectively, no matter what the declared display
width is.

LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest of
the columns are set to their default values. If you do not have a line terminator, you should set this to
''. In this case, the text file must contain all fields for each row.

Fixed-row format also affects handling of NULL values, as described later. Note that fixed-size format
does not work if you are using a multi-byte character set.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a
field value of \N is read as NULL for input (assuming that the ESCAPED BY character is “\”).

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is read as
a NULL value. This differs from the word NULL enclosed within FIELDS ENCLOSED BY characters,
which is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS ENCLOSED BY
are both empty), NULL is written as an empty string. Note that this causes both NULL values and
empty strings in the table to be indistinguishable when written to the file because both are written as
empty strings. If you need to be able to tell the two apart when reading the file back in, you should
not use fixed-row format.

An attempt to load NULL into a NOT NULL column causes assignment of the implicit default value
for the column's data type and a warning, or an error in strict SQL mode. Implicit default values are
discussed in Section 11.5, “Data Type Default Values”.

Some cases are not supported by LOAD DATA INFILE:

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB or
TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE cannot
interpret the input properly. For example, the following FIELDS clause would cause problems:

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS ENCLOSED
BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value causes LOAD
DATA INFILE to stop reading a field or line too early. This happens because LOAD DATA INFILE
cannot properly determine where the field or line value ends.

The following example loads all columns of the persondata table:

LOAD DATA INFILE Syntax

1392

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA INFILE statement, input
lines are expected to contain a field for each table column. If you want to load only some of a table's
columns, specify a column list:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata (col1,col2,...);

You must also specify a column list if the order of the fields in the input file differs from the order of the
columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.

The column list can contain either column names or user variables. With user variables, the SET clause
enables you to perform transformations on their values before assigning the result to columns.

User variables in the SET clause can be used in several ways. The following example uses the first
input column directly for the value of t1.column1, and assigns the second input column to a user
variable that is subjected to a division operation before being used for the value of t1.column2:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @var1)
 SET column2 = @var1/100;

The SET clause can be used to supply values not derived from the input file. The following statement
sets column3 to the current date and time:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can also discard an input value by assigning it to a user variable and not assigning the variable to
a table column:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @dummy, column2, @dummy, column3);

Use of the column/variable list and SET clause is subject to the following restrictions:

• Assignments in the SET clause should have only column names on the left hand side of assignment
operators.

• You can use subqueries in the right hand side of SET assignments. A subquery that returns a value
to be assigned to a column may be a scalar subquery only. Also, you cannot use a subquery to
select from the table that is being loaded.

• Lines ignored by an IGNORE clause are not processed for the column/variable list or SET clause.

• User variables cannot be used when loading data with fixed-row format because user variables do
not have a display width.

When processing an input line, LOAD DATA splits it into fields and uses the values according to the
column/variable list and the SET clause, if they are present. Then the resulting row is inserted into the
table. If there are BEFORE INSERT or AFTER INSERT triggers for the table, they are activated before
or after inserting the row, respectively.

If an input line has too many fields, the extra fields are ignored and the number of warnings is
incremented.

LOAD DATA INFILE Syntax

1393

If an input line has too few fields, the table columns for which input fields are missing are set to their
default values. Default value assignment is described in Section 11.5, “Data Type Default Values”.

An empty field value is interpreted different from a missing field:

• For string types, the column is set to the empty string.

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate “zero” value for the type. See
Section 11.3, “Date and Time Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or
date or time type explicitly in an INSERT or UPDATE statement.

Treatment of empty or incorrect field values differs from that just described if the SQL mode is set to a
restrictive value. For example, if sql_mode='TRADITIONAL, conversion of an empty value or a value
such as 'x' for a numeric column results in an error, not conversion to 0. (With LOCAL, warnings occur
rather than errors, even with a restrictive sql_mode value, because the server has no way to stop
transmission of the file in the middle of the operation.)

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column
(that is, \N) and the column is not declared to permit NULL values, or if the TIMESTAMP column's
default value is the current timestamp and it is omitted from the field list when a field list is specified.

LOAD DATA INFILE regards all input as strings, so you cannot use numeric values for ENUM or SET
columns the way you can with INSERT statements. All ENUM and SET values must be specified as
strings.

BIT values cannot be loaded using binary notation (for example, b'011010'). To work around this,
specify the values as regular integers and use the SET clause to convert them so that MySQL performs
a numeric type conversion and loads them into the BIT column properly:

shell> cat /tmp/bit_test.txt
2
127
shell> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'
 -> INTO TABLE bit_test (@var1) SET b = CAST(@var1 AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| bin(b+0) |
+----------+
| 10 |
| 1111111 |
+----------+
2 rows in set (0.00 sec)

On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (the
example loads a listing of the / directory into the table db1.t1):

mkfifo /mysql/data/db1/ls.dat
chmod 666 /mysql/data/db1/ls.dat
find / -ls > /mysql/data/db1/ls.dat &
mysql -e "LOAD DATA INFILE 'ls.dat' INTO TABLE t1" db1

Note that you must run the command that generates the data to be loaded and the mysql commands
either on separate terminals, or run the data generation process in the background (as shown in the
preceding example). If you do not do this, the pipe will block until data is read by the mysql process.

LOAD XML Syntax

1394

When the LOAD DATA INFILE statement finishes, it returns an information string in the following
format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

Warnings occur under the same circumstances as when values are inserted using the INSERT
statement (see Section 13.2.5, “INSERT Syntax”), except that LOAD DATA INFILE also generates
warnings when there are too few or too many fields in the input row.

You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information
about what went wrong. See Section 13.7.5.39, “SHOW WARNINGS Syntax”.

If you are using the C API, you can get information about the statement by calling the mysql_info()
function. See Section 21.8.7.36, “mysql_info()”.

13.2.7 LOAD XML Syntax

LOAD XML [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE [db_name.]tbl_name
 [PARTITION (partition_name,...)]
 [CHARACTER SET charset_name]
 [ROWS IDENTIFIED BY '<tagname>']
 [IGNORE number {LINES | ROWS}]
 [(column_or_user_var,...)]
 [SET col_name = expr,...]

The LOAD XML statement reads data from an XML file into a table. The file_name must be given as
a literal string. The tagname in the optional ROWS IDENTIFIED BY clause must also be given as a
literal string, and must be surrounded by angle brackets (< and >).

LOAD XML acts as the complement of running the mysql client in XML output mode (that is, starting
the client with the --xml option). To write data from a table to an XML file, use a command such as the
following one from the system shell:

shell> mysql --xml -e 'SELECT * FROM mytable' > file.xml

To read the file back into a table, use LOAD XML INFILE. By default, the <row> element is
considered to be the equivalent of a database table row; this can be changed using the ROWS
IDENTIFIED BY clause.

This statement supports three different XML formats:

• Column names as attributes and column values as attribute values:

<row column1="value1" column2="value2" .../>

• Column names as tags and column values as the content of these tags:

<row>
 <column1>value1</column1>
 <column2>value2</column2>
</row>

• Column names are the name attributes of <field> tags, and values are the contents of these tags:

<row>
 <field name='column1'>value1</field>
 <field name='column2'>value2</field>
</row>

LOAD XML Syntax

1395

This is the format used by other MySQL tools, such as mysqldump.

All three formats can be used in the same XML file; the import routine automatically detects the format
for each row and interprets it correctly. Tags are matched based on the tag or attribute name and the
column name.

The following clauses work essentially the same way for LOAD XML as they do for LOAD DATA:

• LOW_PRIORITY or CONCURRENT

• LOCAL

• REPLACE or IGNORE

• PARTITION

• CHARACTER SET

• (column_or_user_var,...)

• SET

See Section 13.2.6, “LOAD DATA INFILE Syntax”, for more information about these clauses.

The IGNORE number LINES or IGNORE number ROWS clause causes the first number rows in the
XML file to be skipped. It is analogous to the LOAD DATA statement's IGNORE ... LINES clause.

To illustrate how this statement is used, suppose that we have a table created as follows:

USE test;

CREATE TABLE person (
 person_id INT NOT NULL PRIMARY KEY,
 fname VARCHAR(40) NULL,
 lname VARCHAR(40) NULL,
 created TIMESTAMP
);

Suppose further that this table is initially empty.

Now suppose that we have a simple XML file person.xml, whose contents are as shown here:

<?xml version="1.0"?>
<list>
 <person person_id="1" fname="Pekka" lname="Nousiainen"/>
 <person person_id="2" fname="Jonas" lname="Oreland"/>
 <person person_id="3"><fname>Mikael</fname><lname>Ronström</lname></person>
 <person person_id="4"><fname>Lars</fname><lname>Thalmann</lname></person>
 <person><field name="person_id">5</field><field name="fname">Tomas</field>
 <field name="lname">Ulin</field></person>
 <person><field name="person_id">6</field><field name="fname">Martin</field>
 <field name="lname">Sköld</field></person>
</list>

Each of the permissible XML formats discussed previously is represented in this example file.

To import the data in person.xml into the person table, you can use this statement:

mysql> LOAD XML LOCAL INFILE 'person.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';

Query OK, 6 rows affected (0.00 sec)
Records: 6 Deleted: 0 Skipped: 0 Warnings: 0

LOAD XML Syntax

1396

Here, we assume that person.xml is located in the MySQL data directory. If the file cannot be found,
the following error results:

ERROR 2 (HY000): File '/person.xml' not found (Errcode: 2)

The ROWS IDENTIFIED BY '<person>' clause means that each <person> element in the XML
file is considered equivalent to a row in the table into which the data is to be imported. In this case, this
is the person table in the test database.

As can be seen by the response from the server, 6 rows were imported into the test.person table.
This can be verified by a simple SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Pekka	Nousiainen	2007-07-13 16:18:47
2	Jonas	Oreland	2007-07-13 16:18:47
3	Mikael	Ronström	2007-07-13 16:18:47
4	Lars	Thalmann	2007-07-13 16:18:47
5	Tomas	Ulin	2007-07-13 16:18:47
6	Martin	Sköld	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
6 rows in set (0.00 sec)

This shows, as stated earlier in this section, that any or all of the 3 permitted XML formats may appear
in a single file and be read in using LOAD XML.

The inverse of the above operation—that is, dumping MySQL table data into an XML file—can be
accomplished using the mysql client from the system shell, as shown here:

Note

The --xml option causes the mysql client to use XML formatting for its output;
the -e option causes the client to execute the SQL statement immediately
following the option.

shell> mysql --xml -e "SELECT * FROM test.person" > person-dump.xml
shell> cat person-dump.xml
<?xml version="1.0"?>

<resultset statement="SELECT * FROM test.person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <row>
 <field name="person_id">1</field>
 <field name="fname">Pekka</field>
 <field name="lname">Nousiainen</field>
 <field name="created">2007-07-13 16:18:47</field>
 </row>

 <row>
 <field name="person_id">2</field>
 <field name="fname">Jonas</field>
 <field name="lname">Oreland</field>
 <field name="created">2007-07-13 16:18:47</field>
 </row>

 <row>
 <field name="person_id">3</field>
 <field name="fname">Mikael</field>
 <field name="lname">Ronström</field>
 <field name="created">2007-07-13 16:18:47</field>
 </row>

 <row>
 <field name="person_id">4</field>
 <field name="fname">Lars</field>

LOAD XML Syntax

1397

 <field name="lname">Thalmann</field>
 <field name="created">2007-07-13 16:18:47</field>
 </row>

 <row>
 <field name="person_id">5</field>
 <field name="fname">Tomas</field>
 <field name="lname">Ulin</field>
 <field name="created">2007-07-13 16:18:47</field>
 </row>

 <row>
 <field name="person_id">6</field>
 <field name="fname">Martin</field>
 <field name="lname">Sköld</field>
 <field name="created">2007-07-13 16:18:47</field>
 </row>
</resultset>

You can verify that the dump is valid by creating a copy of the person and then importing the dump file
into the new table, like this:

mysql> USE test;
mysql> CREATE TABLE person2 LIKE person;
Query OK, 0 rows affected (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
 -> INTO TABLE person2;
Query OK, 6 rows affected (0.01 sec)
Records: 6 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Pekka	Nousiainen	2007-07-13 16:18:47
2	Jonas	Oreland	2007-07-13 16:18:47
3	Mikael	Ronström	2007-07-13 16:18:47
4	Lars	Thalmann	2007-07-13 16:18:47
5	Tomas	Ulin	2007-07-13 16:18:47
6	Martin	Sköld	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
6 rows in set (0.00 sec)

Using a ROWS IDENTIFIED BY '<tagname>' clause, it is possible to import data from the same
XML file into database tables with different definitions. For this example, suppose that you have a file
named address.xml which contains the following XML:

<?xml version="1.0"?>

<list>
 <person person_id="1">
 <fname>Robert</fname>
 <lname>Jones</lname>
 <address address_id="1" street="Mill Creek Road" zip="45365" city="Sidney"/>
 <address address_id="2" street="Main Street" zip="28681" city="Taylorsville"/>
 </person>

 <person person_id="2">
 <fname>Mary</fname>
 <lname>Smith</lname>
 <address address_id="3" street="River Road" zip="80239" city="Denver"/>
 <!-- <address address_id="4" street="North Street" zip="37920" city="Knoxville"/> -->
 </person>

</list>

You can again use the test.person table as defined previously in this section, after clearing all the
existing records from the table and then showing its structure as shown here:

LOAD XML Syntax

1398

mysql< TRUNCATE person;
Query OK, 0 rows affected (0.04 sec)

mysql< SHOW CREATE TABLE person\G
*************************** 1. row ***************************
 Table: person
Create Table: CREATE TABLE `person` (
 `person_id` int(11) NOT NULL,
 `fname` varchar(40) DEFAULT NULL,
 `lname` varchar(40) DEFAULT NULL,
 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`person_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Now create an address table in the test database using the following CREATE TABLE statement:

CREATE TABLE address (
 address_id INT NOT NULL PRIMARY KEY,
 person_id INT NULL,
 street VARCHAR(40) NULL,
 zip INT NULL,
 city VARCHAR(40) NULL,
 created TIMESTAMP
);

To import the data from the XML file into the person table, execute the following LOAD XML
statement, which specifies that rows are to be specified by the <person> element, as shown here;

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

You can verify that the records were imported using a SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+-------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+-------+---------------------+
| 1 | Robert | Jones | 2007-07-24 17:37:06 |
| 2 | Mary | Smith | 2007-07-24 17:37:06 |
+-----------+--------+-------+---------------------+
2 rows in set (0.00 sec)

Since the <address> elements in the XML file have no corresponding columns in the person table,
they are skipped.

To import the data from the <address> elements into the address table, use the LOAD XML
statement shown here:

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE address
 -> ROWS IDENTIFIED BY '<address>';
Query OK, 3 rows affected (0.00 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 0

You can see that the data was imported using a SELECT statement such as this one:

mysql> SELECT * FROM address;
+------------+-----------+-----------------+-------+--------------+---------------------+
| address_id | person_id | street | zip | city | created |
+------------+-----------+-----------------+-------+--------------+---------------------+

REPLACE Syntax

1399

1	1	Mill Creek Road	45365	Sidney	2007-07-24 17:37:37
2	1	Main Street	28681	Taylorsville	2007-07-24 17:37:37
3	2	River Road	80239	Denver	2007-07-24 17:37:37
+------------+-----------+-----------------+-------+--------------+---------------------+
3 rows in set (0.00 sec)

The data from the <address> element that is enclosed in XML comments is not imported. However,
since there is a person_id column in the address table, the value of the person_id attribute from
the parent <person> element for each <address> is imported into the address table.

Security Considerations. As with the LOAD DATA statement, the transfer of the XML file from the
client host to the server host is initiated by the MySQL server. In theory, a patched server could be built
that would tell the client program to transfer a file of the server's choosing rather than the file named by
the client in the LOAD XML statement. Such a server could access any file on the client host to which
the client user has read access.

In a Web environment, clients usually connect to MySQL from a Web server. A user that can run any
command against the MySQL server can use LOAD XML LOCAL to read any files to which the Web
server process has read access. In this environment, the client with respect to the MySQL server
is actually the Web server, not the remote program being run by the user who connects to the Web
server.

You can disable loading of XML files from clients by starting the server with --local-infile=0 or
--local-infile=OFF. This option can also be used when starting the mysql client to disable LOAD
XML for the duration of the client session.

To prevent a client from loading XML files from the server, do not grant the FILE privilege to the
corresponding MySQL user account, or revoke this privilege if the client user account already has it.

Important

Revoking the FILE privilege (or not granting it in the first place) keeps the
user only from executing the LOAD XML INFILE statement (as well as the
LOAD_FILE() function; it does not prevent the user from executing LOAD XML
LOCAL INFILE. To disallow this statement, you must start the server or the
client with --local-infile=OFF.

In other words, the FILE privilege affects only whether the client can read files
on the server; it has no bearing on whether the client can read files on the local
file system.

For partitioned tables using storage engines that employ table locks, such as MyISAM, LOAD XML
cannot prune any partition locks. This does not apply to tables using storage engines which employ
row-level locking, such as InnoDB. For more information, see Section 17.6.4, “Partitioning and
Locking”.

13.2.8 REPLACE Syntax

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 [(col_name,...)]
 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 SET col_name={expr | DEFAULT}, ...

Or:

REPLACE Syntax

1400

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 [(col_name,...)]
 SELECT ...

REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a new
row for a PRIMARY KEY or a UNIQUE index, the old row is deleted before the new row is inserted. See
Section 13.2.5, “INSERT Syntax”.

REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For
another MySQL extension to standard SQL—that either inserts or updates—see Section 13.2.5.3,
“INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

DELAYED inserts and replaces were deprecated in MySQL 5.6.6. In MySQL 5.7, DELAYED is not
supported. The server recognizes but ignores the DELAYED keyword, handles the replace as a
nondelayed replace, and generates an ER_WARN_LEGACY_SYNTAX_CONVERTED warning. (“REPLACE
DELAYED is no longer supported. The statement was converted to REPLACE.”) The DELAYED
keyword will be removed in a future release.

Note that unless the table has a PRIMARY KEY or UNIQUE index, using a REPLACE statement makes
no sense. It becomes equivalent to INSERT, because there is no index to be used to determine
whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any
missing columns are set to their default values, just as happens for INSERT. You cannot refer to
values from the current row and use them in the new row. If you use an assignment such as SET
col_name = col_name + 1, the reference to the column name on the right hand side is treated as
DEFAULT(col_name), so the assignment is equivalent to SET col_name = DEFAULT(col_name)
+ 1.

To use REPLACE, you must have both the INSERT and DELETE privileges for the table.

REPLACE supports explicit partition selection using the PARTITION keyword with a comma-separated
list of names of partitions, subpartitions, or both. As with INSERT, if it is not possible to insert the new
row into any of these partitions or subpartitions, the REPLACE statement fails with the error Found
a row not matching the given partition set. See Section 17.5, “Partition Selection”, for
more information.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the
rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and no rows
were deleted. If the count is greater than 1, one or more old rows were deleted before the new row was
inserted. It is possible for a single row to replace more than one old row if the table contains multiple
unique indexes and the new row duplicates values for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it
also replaced any rows: Check whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the
mysql_affected_rows() function.

Currently, you cannot replace into a table and select from the same table in a subquery.

MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary key or unique index:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

SELECT Syntax

1401

It is possible that in the case of a duplicate-key error, a storage engine may perform the REPLACE as
an update rather than a delete plus insert, but the semantics are the same. There are no user-visible
effects other than a possible difference in how the storage engine increments Handler_xxx status
variables.

Because the results of REPLACE ... SELECT statements depend on the ordering of rows from the
SELECT and this order cannot always be guaranteed, it is possible when logging these statements for
the master and the slave to diverge. For this reason, REPLACE ... SELECT statements are flagged
as unsafe for statement-based replication. With this change, such statements produce a warning in the
log when using the STATEMENT binary logging mode, and are logged using the row-based format when
using MIXED mode. See also Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based
and Row-Based Replication”.

In MySQL 5.7, a REPLACE statement affecting a partitioned table using a storage engine such as
MyISAM that employs table-level locks locks only those partitions containing rows that match the
REPLACE statement's WHERE clause, as long as none of the table's partitioning columns are updated;
otherwise the entire table is locked. (For storage engines such as InnoDB that employ row-level
locking, no locking of partitions takes place.) For more information, see Section 17.6.4, “Partitioning
and Locking”.

13.2.9 SELECT Syntax

SELECT
 [ALL | DISTINCT | DISTINCTROW]
 [HIGH_PRIORITY]
 [MAX_STATEMENT_TIME]
 [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
 select_expr [, select_expr ...]
 [FROM table_references
 [PARTITION partition_list]
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}
 [ASC | DESC], ... [WITH ROLLUP]]
 [HAVING where_condition]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ...]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
 [PROCEDURE procedure_name(argument_list)]
 [INTO OUTFILE 'file_name'
 [CHARACTER SET charset_name]
 export_options
 | INTO DUMPFILE 'file_name'
 | INTO var_name [, var_name]]
 [FOR UPDATE | LOCK IN SHARE MODE]]

SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements
and subqueries. See Section 13.2.9.4, “UNION Syntax”, and Section 13.2.10, “Subquery Syntax”.

The most commonly used clauses of SELECT statements are these:

• Each select_expr indicates a column that you want to retrieve. There must be at least one
select_expr.

• table_references indicates the table or tables from which to retrieve rows. Its syntax is described
in Section 13.2.9.2, “JOIN Syntax”.

• SELECT supports explicit partition selection using the PARTITION with a list of partitions
or subpartitions (or both) following the name of the table in a table_reference (see
Section 13.2.9.2, “JOIN Syntax”). In this case, rows are selected only from the partitions listed, and
any other partitions of the table are ignored. For more information and examples, see Section 17.5,
“Partition Selection”.

SELECT Syntax

1402

SELECT ... PARTITION from tables using storage engines such as MyISAM that perform
table-level locks (and thus partition locks) lock only the partitions or subpartitions named by the
PARTITION option.

See Section 17.6.4, “Partitioning and Locking”, for more information.

• The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be
selected. where_condition is an expression that evaluates to true for each row to be selected.
The statement selects all rows if there is no WHERE clause.

In the WHERE expression, you can use any of the functions and operators that MySQL supports,
except for aggregate (summary) functions. See Section 9.5, “Expression Syntax”, and Chapter 12,
Functions and Operators.

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;
 -> 2

 You are permitted to specify DUAL as a dummy table name in situations where no tables are
referenced:

mysql> SELECT 1 + 1 FROM DUAL;
 -> 2

DUAL is purely for the convenience of people who require that all SELECT statements should have
FROM and possibly other clauses. MySQL may ignore the clauses. MySQL does not require FROM
DUAL if no tables are referenced.

In general, clauses used must be given in exactly the order shown in the syntax description. For
example, a HAVING clause must come after any GROUP BY clause and before any ORDER BY
clause. The exception is that the INTO clause can appear either as shown in the syntax description or
immediately following the select_expr list. For more information about INTO, see Section 13.2.9.1,
“SELECT ... INTO Syntax”.

The list of select_expr terms comprises the select list that indicates which columns to retrieve.
Terms specify a column or expression or can use *-shorthand:

• A select list consisting only of a single unqualified * can be used as shorthand to select all columns
from all tables:

SELECT * FROM t1 INNER JOIN t2 ...

• tbl_name.* can be used as a qualified shorthand to select all columns from the named table:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ...

• Use of an unqualified * with other items in the select list may produce a parse error. To avoid this
problem, use a qualified tbl_name.* reference

SELECT AVG(score), t1.* FROM t1 ...

The following list provides additional information about other SELECT clauses:

• A select_expr can be given an alias using AS alias_name. The alias is used as the
expression's column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For
example:

SELECT Syntax

1403

SELECT CONCAT(last_name,', ',first_name) AS full_name
 FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr with an identifier. The preceding example
could have been written like this:

SELECT CONCAT(last_name,', ',first_name) full_name
 FROM mytable ORDER BY full_name;

However, because the AS is optional, a subtle problem can occur if you forget the comma between
two select_expr expressions: MySQL interprets the second as an alias name. For example, in the
following statement, columnb is treated as an alias name:

SELECT columna columnb FROM mytable;

For this reason, it is good practice to be in the habit of using AS explicitly when specifying column
aliases.

It is not permissible to refer to a column alias in a WHERE clause, because the column value might not
yet be determined when the WHERE clause is executed. See Section C.5.5.4, “Problems with Column
Aliases”.

• The FROM table_references clause indicates the table or tables from which to retrieve rows.
If you name more than one table, you are performing a join. For information on join syntax, see
Section 13.2.9.2, “JOIN Syntax”. For each table specified, you can optionally specify an alias.

tbl_name [[AS] alias] [index_hint]

The use of index hints provides the optimizer with information about how to choose indexes during
query processing. For a description of the syntax for specifying these hints, see Section 13.2.9.3,
“Index Hint Syntax”.

You can use SET max_seeks_for_key=value as an alternative way to force MySQL to prefer
key scans instead of table scans. See Section 5.1.4, “Server System Variables”.

• You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to
specify a database explicitly. You can refer to a column as col_name, tbl_name.col_name, or
db_name.tbl_name.col_name. You need not specify a tbl_name or db_name.tbl_name prefix
for a column reference unless the reference would be ambiguous. See Section 9.2.1, “Identifier
Qualifiers”, for examples of ambiguity that require the more explicit column reference forms.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
 WHERE t1.name = t2.name;

SELECT t1.name, t2.salary FROM employee t1, info t2
 WHERE t1.name = t2.name;

• Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column
names, column aliases, or column positions. Column positions are integers and begin with 1:

SELECT college, region, seed FROM tournament
 ORDER BY region, seed;

SELECT college, region AS r, seed AS s FROM tournament
 ORDER BY r, s;

SELECT Syntax

1404

SELECT college, region, seed FROM tournament
 ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the
ORDER BY clause that you are sorting by. The default is ascending order; this can be specified
explicitly using the ASC keyword.

If ORDER BY occurs within a subquery and also is applied in the outer query, the outermost ORDER
BY takes precedence. For example, results for the following statement are sorted in descending
order, not ascending order:

(SELECT ... ORDER BY a) ORDER BY a DESC;

Use of column positions is deprecated because the syntax has been removed from the SQL
standard.

• If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you had an
ORDER BY for the same columns. To avoid the overhead of sorting that GROUP BY produces, add
ORDER BY NULL:

SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;

Relying on implicit GROUP BY sorting in MySQL 5.7 is deprecated. To achieve a specific sort order of
grouped results, it is preferable to use an explicit ORDER BY clause. GROUP BY sorting is a MySQL
extension that may change in a future release; for example, to make it possible for the optimizer to
order groupings in whatever manner it deems most efficient and to avoid the sorting overhead.

• MySQL extends the GROUP BY clause so that you can also specify ASC and DESC after columns
named in the clause:

SELECT a, COUNT(b) FROM test_table GROUP BY a DESC;

• MySQL extends the use of GROUP BY to permit selecting fields that are not mentioned in the
GROUP BY clause. If you are not getting the results that you expect from your query, please read the
description of GROUP BY found in Section 12.17, “Functions and Modifiers for Use with GROUP BY
Clauses”.

• GROUP BY permits a WITH ROLLUP modifier. See Section 12.17.2, “GROUP BY Modifiers”.

• The HAVING clause is applied nearly last, just before items are sent to the client, with no
optimization. (LIMIT is applied after HAVING.)

The SQL standard requires that HAVING must reference only columns in the GROUP BY clause or
columns used in aggregate functions. However, MySQL supports an extension to this behavior, and
permits HAVING to refer to columns in the SELECT list and columns in outer subqueries as well.

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following
statement, col2 is ambiguous because it is used as both an alias and a column name:

SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP
BY and as an aliased column in the output column list, preference is given to the column in the
GROUP BY column.

• Do not use HAVING for items that should be in the WHERE clause. For example, do not write the
following:

SELECT col_name FROM tbl_name HAVING col_name > 0;

SELECT Syntax

1405

Write this instead:

SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

SELECT user, MAX(salary) FROM users
 GROUP BY user HAVING MAX(salary) > 10;

(This did not work in some older versions of MySQL.)

• MySQL permits duplicate column names. That is, there can be more than one select_expr with
the same name. This is an extension to standard SQL. Because MySQL also permits GROUP BY and
HAVING to refer to select_expr values, this can result in an ambiguity:

SELECT 12 AS a, a FROM t GROUP BY a;

In that statement, both columns have the name a. To ensure that the correct column is used for
grouping, use different names for each select_expr.

• MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the
select_expr values, then in the columns of the tables in the FROM clause. For GROUP BY or
HAVING clauses, it searches the FROM clause before searching in the select_expr values. (For
GROUP BY and HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules as
for ORDER BY.)

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement.
LIMIT takes one or two numeric arguments, which must both be nonnegative integer constants, with
these exceptions:

• Within prepared statements, LIMIT parameters can be specified using ? placeholder markers.

• Within stored programs, LIMIT parameters can be specified using integer-valued routine
parameters or local variables.

With two arguments, the first argument specifies the offset of the first row to return, and the second
specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large
number for the second parameter. This statement retrieves all rows from the 96th row to the last:

SELECT * FROM tbl LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the result
set:

SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.

For prepared statements, you can use placeholders. The following statements will return one row
from the tbl table:

SET @a=1;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';

SELECT Syntax

1406

EXECUTE STMT USING @a;

The following statements will return the second to sixth row from the tbl table:

SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';
EXECUTE STMT USING @skip, @numrows;

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET offset
syntax.

If LIMIT occurs within a subquery and also is applied in the outer query, the outermost LIMIT takes
precedence. For example, the following statement produces two rows, not one:

(SELECT ... LIMIT 1) LIMIT 2;

• A PROCEDURE clause names a procedure that should process the data in the result set. For
an example, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”, which describes ANALYSE, a
procedure that can be used to obtain suggestions for optimal column data types that may help
reduce table sizes.

• The SELECT ... INTO form of SELECT enables the query result to be written to a file or stored in
variables. For more information, see Section 13.2.9.1, “SELECT ... INTO Syntax”.

• If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current transaction. Using LOCK IN SHARE MODE sets
a shared lock that permits other transactions to read the examined rows but not to update or delete
them. See Section 14.2.2.5, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK
IN SHARE MODE)”.

In addition, you cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE
TABLE new_table SELECT ... FROM old_table (If you attempt to do so, the statement
is rejected with the error Can't update table 'old_table' while 'new_table' is
being created.) This is a change in behavior from MySQL 5.5 and earlier, which permitted
CREATE TABLE ... SELECT statements to make changes in tables other than the table being
created.

Following the SELECT keyword, you can use a number of options that affect the operation of the
statement. HIGH_PRIORITY, MAX_STATEMENT_TIME, STRAIGHT_JOIN, and options beginning with
SQL_ are MySQL extensions to standard SQL.

• The ALL and DISTINCT options specify whether duplicate rows should be returned. ALL (the
default) specifies that all matching rows should be returned, including duplicates. DISTINCT
specifies removal of duplicate rows from the result set. It is an error to specify both options.
DISTINCTROW is a synonym for DISTINCT.

• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table.
You should use this only for queries that are very fast and must be done at once. A SELECT
HIGH_PRIORITY query that is issued while the table is locked for reading runs even if there is an
update statement waiting for the table to be free. This affects only storage engines that use only
table-level locking (such as MyISAM, MEMORY, and MERGE).

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• MAX_STATEMENT_TIME = N sets a statement execution timeout of N milliseconds. If this option is
absent or N is 0, the statement timeout established by the max_statement_time system variable
applies.

The MAX_STATEMENT_TIME option is applicable as follows:

SELECT Syntax

1407

• It applies to top-level SELECT statements. It does not apply to non-top-level statements, such as
subqueries.

• It applies to read-only SELECT statements. Statements that are not read only are those that invoke
a stored function that modifies data as a side effect.

• It does not apply to SELECT statements in stored programs; an error occurs.

This option was added in MySQL 5.7.4.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the
FROM clause. You can use this to speed up a query if the optimizer joins the tables in nonoptimal
order. STRAIGHT_JOIN also can be used in the table_references list. See Section 13.2.9.2,
“JOIN Syntax”.

 STRAIGHT_JOIN does not apply to any table that the optimizer treats as a const or system table.
Such a table produces a single row, is read during the optimization phase of query execution, and
references to its columns are replaced with the appropriate column values before query execution
proceeds. These tables will appear first in the query plan displayed by EXPLAIN. See Section 8.8.1,
“Optimizing Queries with EXPLAIN”. This exception may not apply to const or system tables that
are used on the NULL-complemented side of an outer join (that is, the right-side table of a LEFT
JOIN or the left-side table of a RIGHT JOIN.

• SQL_BIG_RESULT or SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the
optimizer that the result set has many rows or is small, respectively. For SQL_BIG_RESULT, MySQL
directly uses disk-based temporary tables if needed, and prefers sorting to using a temporary table
with a key on the GROUP BY elements. For SQL_SMALL_RESULT, MySQL uses fast temporary
tables to store the resulting table instead of using sorting. This should not normally be needed.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free
the table locks early and helps in cases where it takes a long time to send the result set to the
client. This option can be used only for top-level SELECT statements, not for subqueries or following
UNION.

• SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result
set, disregarding any LIMIT clause. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 12.14, “Information Functions”.

• The SQL_CACHE and SQL_NO_CACHE options affect caching of query results in the query cache
(see Section 8.9.3, “The MySQL Query Cache”). SQL_CACHE tells MySQL to store the result in the
query cache if it is cacheable and the value of the query_cache_type system variable is 2 or
DEMAND. With SQL_NO_CACHE, the server does not use the query cache. It neither checks the query
cache to see whether the result is already cached, nor does it cache the query result.

For views, SQL_NO_CACHE applies if it appears in any SELECT in the query. For a cacheable query,
SQL_CACHE applies if it appears in the first SELECT of a view referred to by the query.

In MySQL 5.7, these two options are mutually exclusive and an error occurs if they are both
specified. Also, these options are not permitted in subqueries (including subqueries in the FROM
clause), and SELECT statements in unions other than the first SELECT.

In MySQL 5.7, a SELECT from a partitioned table using a storage engine such as MyISAM that employs
table-level locks locks only those partitions containing rows that match the SELECT statement's WHERE
clause. (This does not occur with storage engines such as InnoDB that employ row-level locking.) For
more information, see Section 17.6.4, “Partitioning and Locking”.

13.2.9.1 SELECT ... INTO Syntax

The SELECT ... INTO form of SELECT enables a query result to be stored in variables or written to a
file:

SELECT Syntax

1408

• SELECT ... INTO var_list selects column values and stores them into variables.

• SELECT ... INTO OUTFILE writes the selected rows to a file. Column and line terminators can be
specified to produce a specific output format.

• SELECT ... INTO DUMPFILE writes a single row to a file without any formatting.

The SELECT syntax description (see Section 13.2.9, “SELECT Syntax”) shows the INTO clause near
the end of the statement. It is also possible to use INTO immediately following the select_expr list.

An INTO clause should not be used in a nested SELECT because such a SELECT must return its result
to the outer context.

The INTO clause can name a list of one or more variables, which can be user-defined variables, stored
procedure or function parameters, or stored program local variables. (Within a prepared SELECT ...
INTO OUTFILE statement, only user-defined variables are permitted;see Section 13.6.4.2, “Local
Variable Scope and Resolution”.)

The selected values are assigned to the variables. The number of variables must match the number
of columns. The query should return a single row. If the query returns no rows, a warning with error
code 1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple
rows, error 1172 occurs (Result consisted of more than one row). If it is possible that the
statement may retrieve multiple rows, you can use LIMIT 1 to limit the result set to a single row.

SELECT id, data INTO @x, @y FROM test.t1 LIMIT 1;

User variable names are not case sensitive. See Section 9.4, “User-Defined Variables”.

The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows to a
file. The file is created on the server host, so you must have the FILE privilege to use this syntax.
file_name cannot be an existing file, which among other things prevents files such as /etc/passwd
and database tables from being destroyed. The character_set_filesystem system variable
controls the interpretation of the file name.

The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly dump a table
to a text file on the server machine. If you want to create the resulting file on some other host than the
server host, you normally cannot use SELECT ... INTO OUTFILE since there is no way to write a
path to the file relative to the server host's file system.

However, if the MySQL client software is installed on the remote machine, you can instead use a client
command such as mysql -e "SELECT ..." > file_name to generate the file on the client host.

It is also possible to create the resulting file on a different host other than the server host, if the location
of the file on the remote host can be accessed using a network-mapped path on the server's file
system. In this case, the presence of mysql (or some other MySQL client program) is not required on
the target host.

SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE. Column values are written
converted to the character set specified in the CHARACTER SET clause. If no such clause is present,
values are dumped using the binary character set. In effect, there is no character set conversion. If a
result set contains columns in several character sets, the output data file will as well and you may not
be able to reload the file correctly.

The syntax for the export_options part of the statement consists of the same FIELDS and LINES
clauses that are used with the LOAD DATA INFILE statement. See Section 13.2.6, “LOAD DATA
INFILE Syntax”, for information about the FIELDS and LINES clauses, including their default values
and permissible values.

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY
character is not empty, it is used when necessary to avoid ambiguity as a prefix that precedes following
characters on output:

SELECT Syntax

1409

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII NUL (the zero-valued byte; what is actually written following the escape character is ASCII “0”,
not a zero-valued byte)

The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY
characters must be escaped so that you can read the file back in reliably. ASCII NUL is escaped to
make it easier to view with some pagers.

The resulting file does not have to conform to SQL syntax, so nothing else need be escaped.

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

Here is an example that produces a file in the comma-separated values (CSV) format used by many
programs:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 LINES TERMINATED BY '\n'
 FROM test_table;

If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the file,
without any column or line termination and without performing any escape processing. This is useful if
you want to store a BLOB value in a file.

Note

Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users
on the server host. The reason for this is that the MySQL server cannot create
a file that is owned by anyone other than the user under whose account it is
running. (You should never run mysqld as root for this and other reasons.)
The file thus must be world-writable so that you can manipulate its contents.

If the secure_file_priv system variable is set to a nonempty directory
name, the file to be written must be located in that directory.

In the context of SELECT ... INTO statements that occur as part of events executed by the Event
Scheduler, diagnostics messages (not only errors, but also warnings) are written to the error log,
and, on Windows, to the application event log. For additional information, see Section 18.4.5, “Event
Scheduler Status”.

13.2.9.2 JOIN Syntax

MySQL supports the following JOIN syntaxes for the table_references part of SELECT statements
and multiple-table DELETE and UPDATE statements:

table_references:
 escaped_table_reference [, escaped_table_reference] ...

escaped_table_reference:
 table_reference
 | { OJ table_reference }

table_reference:
 table_factor
 | join_table

table_factor:

SELECT Syntax

1410

 tbl_name [PARTITION (partition_names)]
 [[AS] alias] [index_hint_list]
 | table_subquery [AS] alias
 | (table_references)

join_table:
 table_reference [INNER | CROSS] JOIN table_factor [join_condition]
 | table_reference STRAIGHT_JOIN table_factor
 | table_reference STRAIGHT_JOIN table_factor ON conditional_expr
 | table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_condition
 | table_reference NATURAL [{LEFT|RIGHT} [OUTER]] JOIN table_factor

join_condition:
 ON conditional_expr
 | USING (column_list)

index_hint_list:
 index_hint [, index_hint] ...

index_hint:
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | IGNORE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
 | FORCE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
 index_name [, index_name] ...

A table reference is also known as a join expression.

A table reference (when it refers to a partitioned table) may contain a PARTITION option, including
a comma-separated list of partitions, subpartitions, or both. This option follows the name of the table
and precedes any alias declaration. The effect of this option is that rows are selected only from the
listed partitions or subpartitions—in other words, any partitions or subpartitions not named in the list are
ignored For more information, see Section 17.5, “Partition Selection”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts
only table_reference, not a list of them inside a pair of parentheses.

This is a conservative extension if we consider each comma in a list of table_reference items as
equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents (they can replace each
other). In standard SQL, they are not equivalent. INNER JOIN is used with an ON clause, CROSS
JOIN is used otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations.
MySQL also supports nested joins (see Section 8.2.1.11, “Nested Join Optimization”).

Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more
information, see Section 13.2.9.3, “Index Hint Syntax”.

The following list describes general factors to take into account when writing joins.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT Syntax

1411

SELECT t1.name, t2.salary
 FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;

SELECT t1.name, t2.salary
 FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;

• A table_subquery is also known as a subquery in the FROM clause. Such subqueries must
include an alias to give the subquery result a table name. A trivial example follows; see also
Section 13.2.10.8, “Subqueries in the FROM Clause”.

SELECT * FROM (SELECT 1, 2, 3) AS t1;

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both
produce a Cartesian product between the specified tables (that is, each and every row in the first
table is joined to each and every row in the second table).

However, the precedence of the comma operator is less than of INNER JOIN, CROSS JOIN, LEFT
JOIN, and so on. If you mix comma joins with the other join types when there is a join condition, an
error of the form Unknown column 'col_name' in 'on clause' may occur. Information about
dealing with this problem is given later in this section.

• The conditional_expr used with ON is any conditional expression of the form that can be used
in a WHERE clause. Generally, you should use the ON clause for conditions that specify how to join
tables, and the WHERE clause to restrict which rows you want in the result set.

• If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with all
columns set to NULL is used for the right table. You can use this fact to find rows in a table that have
no counterpart in another table:

SELECT left_tbl.*
 FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id
 WHERE right_tbl.id IS NULL;

This example finds all rows in left_tbl with an id value that is not present in right_tbl (that is,
all rows in left_tbl with no corresponding row in right_tbl). This assumes that right_tbl.id
is declared NOT NULL. See Section 8.2.1.9, “LEFT JOIN and RIGHT JOIN Optimization”.

• The USING(column_list) clause names a list of columns that must exist in both tables. If tables a
and b both contain columns c1, c2, and c3, the following join compares corresponding columns from
the two tables:

a LEFT JOIN b USING (c1,c2,c3)

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER
JOIN or a LEFT JOIN with a USING clause that names all columns that exist in both tables.

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is
recommended that you use LEFT JOIN instead of RIGHT JOIN.

• The { OJ ... } syntax shown in the join syntax description exists only for compatibility with
ODBC. The curly braces in the syntax should be written literally; they are not metasyntax as used
elsewhere in syntax descriptions.

SELECT left_tbl.*
 FROM { OJ left_tbl LEFT OUTER JOIN right_tbl ON left_tbl.id = right_tbl.id }
 WHERE right_tbl.id IS NULL;

You can use other types of joins within { OJ ... }, such as INNER JOIN or RIGHT OUTER
JOIN. This helps with compatibility with some third-party applications, but is not official ODBC
syntax.

SELECT Syntax

1412

• STRAIGHT_JOIN is similar to JOIN, except that the left table is always read before the right table.
This can be used for those (few) cases for which the join optimizer puts the tables in the wrong order.

Some join examples:

SELECT * FROM table1, table2;

SELECT * FROM table1 INNER JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 USING (id);

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id
 LEFT JOIN table3 ON table2.id=table3.id;

Join Processing Changes in MySQL 5.0.12

Note

Natural joins and joins with USING, including outer join variants, are processed
according to the SQL:2003 standard. The goal was to align the syntax and
semantics of MySQL with respect to NATURAL JOIN and JOIN ... USING
according to SQL:2003. However, these changes in join processing can result
in different output columns for some joins. Also, some queries that appeared to
work correctly in older versions (prior to 5.0.12) must be rewritten to comply with
the standard.

These changes have five main aspects:

• The way that MySQL determines the result columns of NATURAL or USING join operations (and thus
the result of the entire FROM clause).

• Expansion of SELECT * and SELECT tbl_name.* into a list of selected columns.

• Resolution of column names in NATURAL or USING joins.

• Transformation of NATURAL or USING joins into JOIN ... ON.

• Resolution of column names in the ON condition of a JOIN ... ON.

The following list provides more detail about several effects of current join processing versus join
processing in older versions. The term “previously” means “prior to MySQL 5.0.12.”

• The columns of a NATURAL join or a USING join may be different from previously. Specifically,
redundant output columns no longer appear, and the order of columns for SELECT * expansion may
be different from before.

Consider this set of statements:

CREATE TABLE t1 (i INT, j INT);
CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);

Previously, the statements produced this output:

+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+
+------+------+------+------+

SELECT Syntax

1413

| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+

In the first SELECT statement, column j appears in both tables and thus becomes a join column,
so, according to standard SQL, it should appear only once in the output, not twice. Similarly, in the
second SELECT statement, column j is named in the USING clause and should appear only once
in the output, not twice. But in both cases, the redundant column is not eliminated. Also, the order of
the columns is not correct according to standard SQL.

Now the statements produce this output:

+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+

The redundant column is eliminated and the column order is correct according to standard SQL:

• First, coalesced common columns of the two joined tables, in the order in which they occur in the
first table

• Second, columns unique to the first table, in order in which they occur in that table

• Third, columns unique to the second table, in order in which they occur in that table

The single result column that replaces two common columns is defined using the coalesce
operation. That is, for two t1.a and t2.a the resulting single join column a is defined as a =
COALESCE(t1.a, t2.a), where:

COALESCE(x, y) = (CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END)

If the join operation is any other join, the result columns of the join consists of the concatenation of all
columns of the joined tables. This is the same as previously.

A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column
contains the value of the non-NULL column if one of the two columns is always NULL. If neither or
both columns are NULL, both common columns have the same value, so it doesn't matter which one
is chosen as the value of the coalesced column. A simple way to interpret this is to consider that
a coalesced column of an outer join is represented by the common column of the inner table of a
JOIN. Suppose that the tables t1(a,b) and t2(a,c) have the following contents:

t1 t2
---- ----
1 x 2 z
2 y 3 w

Then:

mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | x | NULL |
| 2 | y | z |

SELECT Syntax

1414

+------+------+------+

Here column a contains the values of t1.a.

mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |
+------+------+------+

Here column a contains the values of t2.a.

Compare these results to the otherwise equivalent queries with JOIN ... ON:

mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+

• Previously, a USING clause could be rewritten as an ON clause that compares corresponding
columns. For example, the following two clauses were semantically identical:

a LEFT JOIN b USING (c1,c2,c3)
a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3

Now the two clauses no longer are quite the same:

• With respect to determining which rows satisfy the join condition, both joins remain semantically
identical.

• With respect to determining which columns to display for SELECT * expansion, the two joins are
not semantically identical. The USING join selects the coalesced value of corresponding columns,
whereas the ON join selects all columns from all tables. For the preceding USING join, SELECT *
selects these values:

COALESCE(a.c1,b.c1), COALESCE(a.c2,b.c2), COALESCE(a.c3,b.c3)

For the ON join, SELECT * selects these values:

a.c1, a.c2, a.c3, b.c1, b.c2, b.c3

With an inner join, COALESCE(a.c1,b.c1) is the same as either a.c1 or b.c1 because both
columns will have the same value. With an outer join (such as LEFT JOIN), one of the two
columns can be NULL. That column will be omitted from the result.

• The evaluation of multi-way natural joins differs in a very important way that affects the result of
NATURAL or USING joins and that can require query rewriting. Suppose that you have three tables

SELECT Syntax

1415

t1(a,b), t2(c,b), and t3(a,c) that each have one row: t1(1,2), t2(10,2), and t3(7,10).
Suppose also that you have this NATURAL JOIN on the three tables:

SELECT ... FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;

Previously, the left operand of the second join was considered to be t2, whereas it should be the
nested join (t1 NATURAL JOIN t2). As a result, the columns of t3 are checked for common
columns only in t2, and, if t3 has common columns with t1, these columns are not used as equi-
join columns. Thus, previously, the preceding query was transformed to the following equi-join:

SELECT ... FROM t1, t2, t3
 WHERE t1.b = t2.b AND t2.c = t3.c;

That join is missing one more equi-join predicate (t1.a = t3.a). As a result, it produces one row,
not the empty result that it should. The correct equivalent query is this:

SELECT ... FROM t1, t2, t3
 WHERE t1.b = t2.b AND t2.c = t3.c AND t1.a = t3.a;

If you require the same query result in current versions of MySQL as in older versions, rewrite the
natural join as the first equi-join.

• Previously, the comma operator (,) and JOIN both had the same precedence, so the join expression
t1, t2 JOIN t3 was interpreted as ((t1, t2) JOIN t3). Now JOIN has higher precedence,
so the expression is interpreted as (t1, (t2 JOIN t3)). This change affects statements that
use an ON clause, because that clause can refer only to columns in the operands of the join, and the
change in precedence changes interpretation of what those operands are.

Example:

CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
INSERT INTO t3 VALUES(1,1);
SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);

Previously, the SELECT was legal due to the implicit grouping of t1,t2 as (t1,t2). Now the
JOIN takes precedence, so the operands for the ON clause are t2 and t3. Because t1.i1 is not a
column in either of the operands, the result is an Unknown column 't1.i1' in 'on clause'
error. To allow the join to be processed, group the first two tables explicitly with parentheses so that
the operands for the ON clause are (t1,t2) and t3:

SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);

Alternatively, avoid the use of the comma operator and use JOIN instead:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);

This change also applies to statements that mix the comma operator with INNER JOIN, CROSS
JOIN, LEFT JOIN, and RIGHT JOIN, all of which now have higher precedence than the comma
operator.

• Previously, the ON clause could refer to columns in tables named to its right. Now an ON clause can
refer only to its operands.

Example:

SELECT Syntax

1416

CREATE TABLE t1 (i1 INT);
CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);
SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;

Previously, the SELECT statement was legal. Now the statement fails with an Unknown column
'i3' in 'on clause' error because i3 is a column in t3, which is not an operand of the ON
clause. The statement should be rewritten as follows:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);

• Resolution of column names in NATURAL or USING joins is different than previously. For column
names that are outside the FROM clause, MySQL now handles a superset of the queries compared to
previously. That is, in cases when MySQL formerly issued an error that some column is ambiguous,
the query now is handled correctly. This is due to the fact that MySQL now treats the common
columns of NATURAL or USING joins as a single column, so when a query refers to such columns,
the query compiler does not consider them as ambiguous.

Example:

SELECT * FROM t1 NATURAL JOIN t2 WHERE b > 1;

Previously, this query would produce an error ERROR 1052 (23000): Column 'b' in where
clause is ambiguous. Now the query produces the correct result:

+------+------+------+
| b | c | y |
+------+------+------+
| 4 | 2 | 3 |
+------+------+------+

One extension of MySQL compared to the SQL:2003 standard is that MySQL enables you to qualify
the common (coalesced) columns of NATURAL or USING joins (just as previously), while the standard
disallows that.

13.2.9.3 Index Hint Syntax

You can provide hints to give the optimizer information about how to choose indexes during query
processing. Section 13.2.9.2, “JOIN Syntax”, describes the general syntax for specifying tables in a
SELECT statement. The syntax for an individual table, including that for index hints, looks like this:

tbl_name [[AS] alias] [index_hint_list]

index_hint_list:
 index_hint [, index_hint] ...

index_hint:
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | IGNORE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
 | FORCE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
 index_name [, index_name] ...

By specifying USE INDEX (index_list), you can tell MySQL to use only one of the named indexes
to find rows in the table. The alternative syntax IGNORE INDEX (index_list) can be used to tell
MySQL to not use some particular index or indexes. These hints are useful if EXPLAIN shows that
MySQL is using the wrong index from the list of possible indexes.

SELECT Syntax

1417

You can also use FORCE INDEX, which acts like USE INDEX (index_list) but with the addition
that a table scan is assumed to be very expensive. In other words, a table scan is used only if there is
no way to use one of the given indexes to find rows in the table.

Each hint requires the names of indexes, not the names of columns. The name of a PRIMARY KEY is
PRIMARY. To see the index names for a table, use SHOW INDEX.

An index_name value need not be a full index name. It can be an unambiguous prefix of an index
name. If a prefix is ambiguous, an error occurs.

Examples:

SELECT * FROM table1 USE INDEX (col1_index,col2_index)
 WHERE col1=1 AND col2=2 AND col3=3;

SELECT * FROM table1 IGNORE INDEX (col3_index)
 WHERE col1=1 AND col2=2 AND col3=3;

The syntax for index hints has the following characteristics:

• It is syntactically valid to specify an empty index_list for USE INDEX, which means “use no
indexes.” Specifying an empty index_list for FORCE INDEX or IGNORE INDEX is a syntax error.

• You can specify the scope of a index hint by adding a FOR clause to the hint. This provides more
fine-grained control over the optimizer's selection of an execution plan for various phases of query
processing. To affect only the indexes used when MySQL decides how to find rows in the table and
how to process joins, use FOR JOIN. To influence index usage for sorting or grouping rows, use FOR
ORDER BY or FOR GROUP BY. (However, if there is a covering index for the table and it is used to
access the table, the optimizer will ignore IGNORE INDEX FOR {ORDER BY|GROUP BY} hints that
disable that index.)

• You can specify multiple index hints:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX FOR ORDER BY (i2) ORDER BY a;

It is not a error to name the same index in several hints (even within the same hint):

SELECT * FROM t1 USE INDEX (i1) USE INDEX (i1,i1);

However, it is an error to mix USE INDEX and FORCE INDEX for the same table:

SELECT * FROM t1 USE INDEX FOR JOIN (i1) FORCE INDEX FOR JOIN (i2);

if you specify no FOR clause for an index hint, the hint by default applies to all parts of the statement.
For example, this hint:

IGNORE INDEX (i1)

is equivalent to this combination of hints:

IGNORE INDEX FOR JOIN (i1)
IGNORE INDEX FOR ORDER BY (i1)
IGNORE INDEX FOR GROUP BY (i1)

To cause the server to use the older behavior for hint scope when no FOR clause is present (so that
hints apply only to row retrieval), enable the old system variable at server startup. Take care about
enabling this variable in a replication setup. With statement-based binary logging, having different
modes for the master and slaves might lead to replication errors.

SELECT Syntax

1418

When index hints are processed, they are collected in a single list by type (USE, FORCE, IGNORE) and
by scope (FOR JOIN, FOR ORDER BY, FOR GROUP BY). For example:

SELECT * FROM t1
 USE INDEX () IGNORE INDEX (i2) USE INDEX (i1) USE INDEX (i2);

is equivalent to:

SELECT * FROM t1
 USE INDEX (i1,i2) IGNORE INDEX (i2);

The index hints then are applied for each scope in the following order:

1. {USE|FORCE} INDEX is applied if present. (If not, the optimizer-determined set of indexes is
used.)

2. IGNORE INDEX is applied over the result of the previous step. For example, the following two
queries are equivalent:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX (i2) USE INDEX (i2);

SELECT * FROM t1 USE INDEX (i1);

For FULLTEXT searches, index hints work as follows:

• For natural language mode searches, index hints are silently ignored. For example, IGNORE
INDEX(i) is ignored with no warning and the index is still used.

For boolean mode searches, index hints with FOR ORDER BY or FOR GROUP BY are silently
ignored. Index hints with FOR JOIN or no FOR modifier are honored. In contrast to how hints apply
for non-FULLTEXT searches, the hint is used for all phases of query execution (finding rows and
retrieval, grouping, and ordering). This is true even if the hint is given for a non-FULLTEXT index.

For example, the following two queries are equivalent:

SELECT * FROM t
 USE INDEX (index1)
 IGNORE INDEX (index1) FOR ORDER BY
 IGNORE INDEX (index1) FOR GROUP BY
 WHERE ... IN BOOLEAN MODE ... ;

SELECT * FROM t
 USE INDEX (index1)
 WHERE ... IN BOOLEAN MODE ... ;

13.2.9.4 UNION Syntax

SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

UNION is used to combine the result from multiple SELECT statements into a single result set.

The column names from the first SELECT statement are used as the column names for the results
returned. Selected columns listed in corresponding positions of each SELECT statement should have
the same data type. (For example, the first column selected by the first statement should have the
same type as the first column selected by the other statements.)

If the data types of corresponding SELECT columns do not match, the types and lengths of the columns
in the UNION result take into account the values retrieved by all of the SELECT statements. For
example, consider the following:

SELECT Syntax

1419

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a |
| bbbbbbbbbb |
+---------------+

The SELECT statements are normal select statements, but with the following restrictions:

• Only the last SELECT statement can use INTO OUTFILE. (However, the entire UNION result is
written to the file.)

• HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION. If you specify
it for the first SELECT, it has no effect. If you specify it for any subsequent SELECT statements, a
syntax error results.

The default behavior for UNION is that duplicate rows are removed from the result. The optional
DISTINCT keyword has no effect other than the default because it also specifies duplicate-row
removal. With the optional ALL keyword, duplicate-row removal does not occur and the result includes
all matching rows from all the SELECT statements.

You can mix UNION ALL and UNION DISTINCT in the same query. Mixed UNION types are treated
such that a DISTINCT union overrides any ALL union to its left. A DISTINCT union can be produced
explicitly by using UNION DISTINCT or implicitly by using UNION with no following DISTINCT or ALL
keyword.

To apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the parentheses that
enclose the SELECT:

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

However, use of ORDER BY for individual SELECT statements implies nothing about the order in which
the rows appear in the final result because UNION by default produces an unordered set of rows.
Therefore, the use of ORDER BY in this context is typically in conjunction with LIMIT, so that it is
used to determine the subset of the selected rows to retrieve for the SELECT, even though it does
not necessarily affect the order of those rows in the final UNION result. If ORDER BY appears without
LIMIT in a SELECT, it is optimized away because it will have no effect anyway.

To use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, parenthesize the
individual SELECT statements and place the ORDER BY or LIMIT after the last one. The following
example uses both clauses:

(SELECT a FROM t1 WHERE a=10 AND B=1)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;

A statement without parentheses is equivalent to one parenthesized as just shown.

This kind of ORDER BY cannot use column references that include a table name (that is, names in
tbl_name.col_name format). Instead, provide a column alias in the first SELECT statement and refer
to the alias in the ORDER BY. (Alternatively, refer to the column in the ORDER BY using its column
position. However, use of column positions is deprecated.)

Also, if a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column
name. The first of the following statements will work, but the second will fail with an Unknown column
'a' in 'order clause' error:

Subquery Syntax

1420

(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;

To cause rows in a UNION result to consist of the sets of rows retrieved by each SELECT one after
the other, select an additional column in each SELECT to use as a sort column and add an ORDER BY
following the last SELECT:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;

To additionally maintain sort order within individual SELECT results, add a secondary column to the
ORDER BY clause:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;

Use of an additional column also enables you to determine which SELECT each row comes from. Extra
columns can provide other identifying information as well, such as a string that indicates a table name.

13.2.10 Subquery Syntax

A subquery is a SELECT statement within another statement.

Starting with MySQL 4.1, all subquery forms and operations that the SQL standard requires are
supported, as well as a few features that are MySQL-specific.

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT
column1 FROM t2) is the subquery. We say that the subquery is nested within the outer query, and
in fact it is possible to nest subqueries within other subqueries, to a considerable depth. A subquery
must always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it is possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins and
unions.

• Many people find subqueries more readable than complex joins or unions. Indeed, it was the
innovation of subqueries that gave people the original idea of calling the early SQL “Structured Query
Language.”

Here is an example statement that shows the major points about subquery syntax as specified by the
SQL standard and supported in MySQL:

DELETE FROM t1
WHERE s11 > ANY
 (SELECT COUNT(*) /* no hint */ FROM t2
 WHERE NOT EXISTS
 (SELECT * FROM t3
 WHERE ROW(5*t2.s1,77)=
 (SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM

Subquery Syntax

1421

 (SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more
rows of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries
that return a particular kind of result often can be used only in certain contexts, as described in the
following sections.

There are few restrictions on the type of statements in which subqueries can be used. A subquery can
contain many of the keywords or clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY,
ORDER BY, LIMIT, joins, index hints, UNION constructs, comments, functions, and so on.

A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO.

In MySQL, you cannot modify a table and select from the same table in a subquery. This applies to
statements such as DELETE, INSERT, REPLACE, UPDATE, and (because subqueries can be used in
the SET clause) LOAD DATA INFILE.

For information about how the optimizer handles subqueries, see Section 8.2.1.18, “Subquery
Optimization”. For a discussion of restrictions on subquery use, including performance issues for
certain forms of subquery syntax, see Section E.4, “Restrictions on Subqueries”.

13.2.10.1 The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a
simple operand, and you can use it almost anywhere a single column value or literal is legal, and you
can expect it to have those characteristics that all operands have: a data type, a length, an indication
that it can be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a
length of 5, a character set and collation equal to the defaults in effect at CREATE TABLE time, and
an indication that the value in the column can be NULL. Nullability of the value selected by a scalar
subquery is not copied because if the subquery result is empty, the result is NULL. For the subquery
just shown, if t1 were empty, the result would be NULL even though s2 is NOT NULL.

There are a few contexts in which a scalar subquery cannot be used. If a statement permits only a
literal value, you cannot use a subquery. For example, LIMIT requires literal integer arguments, and
LOAD DATA INFILE requires a literal string file name. You cannot use subqueries to supply these
values.

When you see examples in the following sections that contain the rather spartan construct (SELECT
column1 FROM t1), imagine that your own code contains much more diverse and complex
constructions.

Suppose that we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

Subquery Syntax

1422

A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is
an operand that provides an argument for a function. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

13.2.10.2 Comparisons Using Subqueries

The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> != <=>

For example:

... WHERE 'a' = (SELECT column1 FROM t1)

MySQL also permits this construct:

non_subquery_operand LIKE (subquery)

At one time the only legal place for a subquery was on the right side of a comparison, and you might
still find some old DBMSs that insist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all
the rows in table t1 for which the column1 value is equal to a maximum value in table t2:

SELECT * FROM t1
 WHERE column1 = (SELECT MAX(column2) FROM t2);

Here is another example, which again is impossible with a join because it involves aggregating for one
of the tables. It finds all rows in table t1 containing a value that occurs twice in a given column:

SELECT * FROM t1 AS t
 WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison of the subquery to a scalar, the subquery must return a scalar. For a comparison of
the subquery to a row constructor, the subquery must be a row subquery that returns a row with the
same number of values as the row constructor. See Section 13.2.10.5, “Row Subqueries”.

13.2.10.3 Subqueries with ANY, IN, or SOME

Syntax:

operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> !=

The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ANY of the values in the column that the subquery returns.” For example:

Subquery Syntax

1423

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if table
t2 contains (20,10), or if table t2 is empty. The expression is unknown (that is, NULL) if table t2
contains (NULL,NULL,NULL).

When used with a subquery, the word IN is an alias for = ANY. Thus, these two statements are the
same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

IN and = ANY are not synonyms when used with an expression list. IN can take an expression list, but
= ANY cannot. See Section 12.3.2, “Comparison Functions and Operators”.

NOT IN is not an alias for <> ANY, but for <> ALL. See Section 13.2.10.4, “Subqueries with ALL”.

The word SOME is an alias for ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but this example shows why it might be useful. To most people, the
English phrase “a is not equal to any b” means “there is no b which is equal to a,” but that is not what is
meant by the SQL syntax. The syntax means “there is some b to which a is not equal.” Using <> SOME
instead helps ensure that everyone understands the true meaning of the query.

13.2.10.4 Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ALL of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if table t2
contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater than 10.
The expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).

Finally, the expression is TRUE if table t2 is empty. So, the following expression is TRUE when table t2
is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

But this expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following expression is NULL when table t2 is empty:

Subquery Syntax

1424

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables containing NULL values and empty tables are “edge cases.” When writing
subqueries, always consider whether you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

13.2.10.5 Row Subqueries

The discussion to this point has been of scalar or column subqueries; that is, subqueries that return a
single value or a column of values. A row subquery is a subquery variant that returns a single row and
can thus return more than one column value. Legal operators for row subquery comparisons are:

= > < >= <= <> != <=>

Here are two examples:

SELECT * FROM t1
 WHERE (col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM t1
 WHERE ROW(col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);

For both queries, if the table t2 contains a single row with id = 10, the subquery returns a single
row. If this row has col3 and col4 values equal to the col1 and col2 values of any rows in t1, the
WHERE expression is TRUE and each query returns those t1 rows. If the t2 row col3 and col4 values
are not equal the col1 and col2 values of any t1 row, the expression is FALSE and the query returns
an empty result set. The expression is unknown (that is, NULL) if the subquery produces no rows. An
error occurs if the subquery produces multiple rows because a row subquery can return at most one
row.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are
equivalent. The row constructor and the row returned by the subquery must contain the same number
of values.

A row constructor is used for comparisons with subqueries that return two or more columns. When
a subquery returns a single column, this is regarded as a scalar value and not as a row, so a row
constructor cannot be used with a subquery that does not return at least two columns. Thus, the
following query fails with a syntax error:

SELECT * FROM t1 WHERE ROW(1) = (SELECT column1 FROM t2)

Row constructors are legal in other contexts. For example, the following two statements are
semantically equivalent (and are handled in the same way by the optimizer):

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The following query answers the request, “find all rows in table t1 that also exist in table t2”:

SELECT column1,column2,column3
 FROM t1
 WHERE (column1,column2,column3) IN
 (SELECT column1,column2,column3 FROM t2);

13.2.10.6 Subqueries with EXISTS or NOT EXISTS

Subquery Syntax

1425

If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is
FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SELECT
column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it makes no
difference.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the
EXISTS condition is TRUE. This is actually an unlikely example because a [NOT] EXISTS subquery
almost always contains correlations. Here are some more realistic examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM stores
 WHERE EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM stores
 WHERE NOT EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM stores s1
 WHERE NOT EXISTS (
 SELECT * FROM cities WHERE NOT EXISTS (
 SELECT * FROM cities_stores
 WHERE cities_stores.city = cities.city
 AND cities_stores.store_type = stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within
a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store that is not in
Stores”? But it is easier to say that a nested NOT EXISTS answers the question “is x TRUE for all y?”

13.2.10.7 Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer
query. For example:

SELECT * FROM t1
 WHERE column1 = ANY (SELECT column1 FROM t2
 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM
clause does not mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer
query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table
t2 contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE
column1 = ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the WHERE
clause within the subquery is FALSE (because (5,6) is not equal to (5,7)), so the expression as a
whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

Subquery Syntax

1426

SELECT column1 FROM t1 AS x
 WHERE x.column1 = (SELECT column1 FROM t2 AS x
 WHERE x.column1 = (SELECT column1 FROM t3
 WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2
AS x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ... is
an outer query that is farther out.

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the outer
select list.

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve
performance.

Aggregate functions in correlated subqueries may contain outer references, provided the function
contains nothing but outer references, and provided the function is not contained in another function or
expression.

13.2.10.8 Subqueries in the FROM Clause

Subqueries are legal in a SELECT statement's FROM clause. The actual syntax is:

SELECT ... FROM (subquery) [AS] name ...

The [AS] name clause is mandatory, because every table in a FROM clause must have a name. Any
columns in the subquery select list must have unique names.

For the sake of illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here is how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3
 FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
 WHERE sb1 > 1;

Result: 2, '2', 4.0.

Here is another example: Suppose that you want to know the average of a set of sums for a grouped
table. This does not work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

However, this query provides the desired information:

SELECT AVG(sum_column1)
 FROM (SELECT SUM(column1) AS sum_column1
 FROM t1 GROUP BY column1) AS t1;

Subquery Syntax

1427

Notice that the column name used within the subquery (sum_column1) is recognized in the outer
query.

Subqueries in the FROM clause can return a scalar, column, row, or table. Subqueries in the FROM
clause cannot be correlated subqueries, unless used within the ON clause of a JOIN operation.

In MySQL 5.7, the optimizer determines information about derived tables in such a way that
materialization of them does not occur for EXPLAIN. See Optimizing Subqueries in the FROM Clause
(Derived Tables).

It is possible under certain circumstances to modify table data using EXPLAIN SELECT. This can
occur if the outer query accesses any tables and an inner query invokes a stored function that changes
one or more rows of a table. Suppose that there are two tables t1 and t2 in database d1, created as
shown here:

mysql> CREATE DATABASE d1;
Query OK, 1 row affected (0.00 sec)

mysql> USE d1;
Database changed

mysql> CREATE TABLE t1 (c1 INT);
Query OK, 0 rows affected (0.15 sec)

mysql> CREATE TABLE t2 (c1 INT);
Query OK, 0 rows affected (0.08 sec)

Now we create a stored function f1 which modifies t2:

mysql> DELIMITER //
mysql> CREATE FUNCTION f1(p1 INT) RETURNS INT
mysql> BEGIN
mysql> INSERT INTO t2 VALUES (p1);
mysql> RETURN p1;
mysql> END //
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

Referencing the function directly in an EXPLAIN SELECT does not have any effect on t2, as shown
here:

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

mysql> EXPLAIN SELECT f1(5);
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | SIMPLE | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

This is because the SELECT statement did not reference any tables, as can be seen in the table and
Extra columns of the output. This is also true of the following nested SELECT:

mysql> EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2;
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |

Subquery Syntax

1428

+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1249 | Select 2 was reduced during optimization |
+-------+------+--+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

However, if the outer SELECT references any tables, the optimizer executes the statement in the
subquery as well:

mysql> EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2;
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
1	PRIMARY	a1	system	NULL	NULL	NULL	NULL	0	const row not found
1	PRIMARY	<derived2>	system	NULL	NULL	NULL	NULL	1	
2	DERIVED	NULL	NULL	NULL	NULL	NULL	NULL	NULL	No tables used
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)

This also means that an EXPLAIN SELECT statement such as the one shown here may take a long
time to execute because the BENCHMARK() function is executed once for each row in t1:

EXPLAIN SELECT * FROM t1 AS a1, (SELECT BENCHMARK(1000000, MD5(NOW())));

13.2.10.9 Subquery Errors

There are some errors that apply only to subqueries. This section describes them.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL doesn't yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that MySQL does not support statements of the following form:

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

Subquery Syntax

1429

SELECT (SELECT column1, column2 FROM t2) FROM t1;

You may use a subquery that returns multiple columns, if the purpose is row comparison. In other
contexts, the subquery must be a scalar operand. See Section 13.2.10.5, “Row Subqueries”.

• Incorrect number of rows from subquery:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error occurs for statements where the subquery must return at most one row but returns multiple
rows. Consider the following example:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

If SELECT column1 FROM t2 returns just one row, the previous query will work. If the subquery
returns more than one row, error 1242 will occur. In that case, the query should be rewritten as:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

This error occurs in cases such as the following, which attempts to modify a table and select from the
same table in the subquery:

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

You can use a subquery for assignment within an UPDATE statement because subqueries are legal
in UPDATE and DELETE statements as well as in SELECT statements. However, you cannot use the
same table (in this case, table t1) for both the subquery FROM clause and the update target.

For transactional storage engines, the failure of a subquery causes the entire statement to fail. For
nontransactional storage engines, data modifications made before the error was encountered are
preserved.

13.2.10.10 Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. The following list provides
some interesting tricks that you might want to play with:

• Use subquery clauses that affect the number or order of the rows in the subquery. For example:

SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT column1 FROM t2 ORDER BY column1);
SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT DISTINCT column1 FROM t2);
SELECT * FROM t1 WHERE EXISTS
 (SELECT * FROM t2 LIMIT 1);

• Replace a join with a subquery. For example, try this:

SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
 SELECT column1 FROM t2);

Subquery Syntax

1430

Instead of this:

SELECT DISTINCT t1.column1 FROM t1, t2
 WHERE t1.column1 = t2.column1;

• Some subqueries can be transformed to joins for compatibility with older versions of MySQL that
do not support subqueries. However, in some cases, converting a subquery to a join may improve
performance. See Section 13.2.10.11, “Rewriting Subqueries as Joins”.

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

Instead of this query:

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

• Use a row subquery instead of a correlated subquery. For example, use this query:

SELECT * FROM t1
 WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:

SELECT * FROM t1
 WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
 AND t2.column2=t1.column2);

• Use NOT (a = ANY (...)) rather than a <> ALL (...).

• Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.

• Use = ANY rather than EXISTS.

• For uncorrelated subqueries that always return one row, IN is always slower than =. For example,
use this query:

SELECT * FROM t1
 WHERE t1.col_name = (SELECT a FROM t2 WHERE b = some_const);

Instead of this query:

SELECT * FROM t1
 WHERE t1.col_name IN (SELECT a FROM t2 WHERE b = some_const);

These tricks might cause programs to go faster or slower. Using MySQL facilities like the
BENCHMARK() function, you can get an idea about what helps in your own situation. See
Section 12.14, “Information Functions”.

Subquery Syntax

1431

Some optimizations that MySQL itself makes are:

• MySQL executes uncorrelated subqueries only once. Use EXPLAIN to make sure that a given
subquery really is uncorrelated.

• MySQL rewrites IN, ALL, ANY, and SOME subqueries in an attempt to take advantage of the
possibility that the select-list columns in the subquery are indexed.

• MySQL replaces subqueries of the following form with an index-lookup function, which EXPLAIN
describes as a special join type (unique_subquery or index_subquery):

... IN (SELECT indexed_column FROM single_table ...)

• MySQL enhances expressions of the following form with an expression involving MIN() or MAX(),
unless NULL values or empty sets are involved:

value {ALL|ANY|SOME} {> | < | >= | <=} (uncorrelated subquery)

For example, this WHERE clause:

WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

See also MySQL Internals: How MySQL Transforms Subqueries.

13.2.10.11 Rewriting Subqueries as Joins

Sometimes there are other ways to test membership in a set of values than by using a subquery. Also,
on some occasions, it is not only possible to rewrite a query without a subquery, but it can be more
efficient to make use of some of these techniques rather than to use subqueries. One of these is the
IN() construct:

For example, this query:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

Can be rewritten as:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

SELECT table1.*
 FROM table1 LEFT JOIN table2 ON table1.id=table2.id
 WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able
to optimize it better—a fact that is not specific to MySQL Server alone. Prior to SQL-92, outer joins did

http://dev.mysql.com/doc/internals/en/transformations.html

UPDATE Syntax

1432

not exist, so subqueries were the only way to do certain things. Today, MySQL Server and many other
modern database systems offer a wide range of outer join types.

MySQL Server supports multiple-table DELETE statements that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time. Multiple-table UPDATE
statements are also supported. See Section 13.2.2, “DELETE Syntax”, and Section 13.2.11, “UPDATE
Syntax”.

13.2.11 UPDATE Syntax

Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_reference
 SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references
 SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
 [WHERE where_condition]

For the single-table syntax, the UPDATE statement updates columns of existing rows in the named
table with new values. The SET clause indicates which columns to modify and the values they should
be given. Each value can be given as an expression, or the keyword DEFAULT to set a column
explicitly to its default value. The WHERE clause, if given, specifies the conditions that identify which
rows to update. With no WHERE clause, all rows are updated. If the ORDER BY clause is specified, the
rows are updated in the order that is specified. The LIMIT clause places a limit on the number of rows
that can be updated.

For the multiple-table syntax, UPDATE updates rows in each table named in table_references that
satisfy the conditions. Each matching row is updated once, even if it matches the conditions multiple
times. For multiple-table syntax, ORDER BY and LIMIT cannot be used.

For partitioned tables, both the single-single and multiple-table forms of this statement support the use
of a PARTITION option as part of a table reference. This option takes a list of one or more partitions
or subpartitions (or both). Only the partitions (or subpartitions) listed are checked for matches, and
a row that is not in any of these partitions or subpartitions is not updated, whether it satisfies the
where_condition or not.

Note

Unlike the case when using PARTITION with an INSERT or REPLACE
statement, an otherwise valid UPDATE ... PARTITION statement is
considered successful even if no rows in the listed partitions (or subpartitions)
match the where_condition.

See Section 17.5, “Partition Selection”, for more information and examples.

where_condition is an expression that evaluates to true for each row to be updated. For expression
syntax, see Section 9.5, “Expression Syntax”.

table_references and where_condition are specified as described in Section 13.2.9, “SELECT
Syntax”.

You need the UPDATE privilege only for columns referenced in an UPDATE that are actually updated.
You need only the SELECT privilege for any columns that are read but not modified.

UPDATE Syntax

1433

The UPDATE statement supports the following modifiers:

• With the LOW_PRIORITY keyword, execution of the UPDATE is delayed until no other clients are
reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

• With the IGNORE keyword, the update statement does not abort even if errors occur during the
update. Rows for which duplicate-key conflicts occur are not updated. Rows for which columns are
updated to values that would cause data conversion errors are updated to the closest valid values
instead.

UPDATE IGNORE statements, including those having an ORDER BY clause, are flagged as unsafe
for statement-based replication. (This is because the order in which the rows are updated determines
which rows are ignored.) With this change, such statements produce a warning in the log when using
statement-based mode and are logged using the row-based format when using MIXED mode. (Bug
#11758262, Bug #50439) See Section 16.1.2.3, “Determination of Safe and Unsafe Statements in
Binary Logging”, for more information.

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. For example, the following statement sets col1 to one more than its current value:

UPDATE t1 SET col1 = col1 + 1;

The second assignment in the following statement sets col2 to the current (updated) col1 value, not
the original col1 value. The result is that col1 and col2 have the same value. This behavior differs
from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates,
there is no guarantee that assignments are carried out in any particular order.

If you set a column to the value it currently has, MySQL notices this and does not update it.

If you update a column that has been declared NOT NULL by setting to NULL, an error occurs if strict
SQL mode is enabled; otherwise, the column is set to the implicit default value for the column data type
and the warning count is incremented. The implicit default value is 0 for numeric types, the empty string
('') for string types, and the “zero” value for date and time types. See Section 11.5, “Data Type Default
Values”.

UPDATE returns the number of rows that were actually changed. The mysql_info() C API function
returns the number of rows that were matched and updated and the number of warnings that occurred
during the UPDATE.

You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-
matched restriction. The statement stops as soon as it has found row_count rows that satisfy the
WHERE clause, whether or not they actually were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified
by the clause. This can be useful in certain situations that might otherwise result in an error. Suppose
that a table t contains a column id that has a unique index. The following statement could fail with a
duplicate-key error, depending on the order in which rows are updated:

UPDATE t SET id = id + 1;

For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated
to 3, an error occurs. To avoid this problem, add an ORDER BY clause to cause the rows with larger id
values to be updated before those with smaller values:

MySQL Transactional and Locking Statements

1434

UPDATE t SET id = id + 1 ORDER BY id DESC;

You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER
BY or LIMIT with a multiple-table UPDATE. The table_references clause lists the tables involved in
the join. Its syntax is described in Section 13.2.9.2, “JOIN Syntax”. Here is an example:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE
statements can use any type of join permitted in SELECT statements, such as LEFT JOIN.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/
child relationship. In this case, the statement fails and rolls back. Instead, update a single table and
rely on the ON UPDATE capabilities that InnoDB provides to cause the other tables to be modified
accordingly. See Section 14.2.6.6, “InnoDB and FOREIGN KEY Constraints”.

Currently, you cannot update a table and select from the same table in a subquery.

Index hints (see Section 13.2.9.3, “Index Hint Syntax”) are accepted but ignored for UPDATE
statements.

In MySQL 5.7, an UPDATE on a partitioned table using a storage engine such as MyISAM that employs
table-level locks locks only those partitions containing rows that match the UPDATE statement's WHERE
clause, as long as none of the table's partitioning columns are updated. (For storage engines such as
InnoDB that employ row-level locking, no locking of partitions takes place.) For more information, see
Section 17.6.4, “Partitioning and Locking”.

13.3 MySQL Transactional and Locking Statements

MySQL supports local transactions (within a given client session) through statements such as
SET autocommit, START TRANSACTION, COMMIT, and ROLLBACK. See Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Syntax”. XA transaction support enables MySQL to
participate in distributed transactions as well. See Section 13.3.7, “XA Transactions”.

13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax

START TRANSACTION
 [transaction_characteristic [, transaction_characteristic] ...]

transaction_characteristic:
 WITH CONSISTENT SNAPSHOT
 | READ WRITE
 | READ ONLY

BEGIN [WORK]
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET autocommit = {0 | 1}

These statements provide control over use of transactions:

• START TRANSACTION or BEGIN start a new transaction.

• COMMIT commits the current transaction, making its changes permanent.

• ROLLBACK rolls back the current transaction, canceling its changes.

• SET autocommit disables or enables the default autocommit mode for the current session.

START TRANSACTION, COMMIT, and ROLLBACK Syntax

1435

By default, MySQL runs with autocommit mode enabled. This means that as soon as you execute a
statement that updates (modifies) a table, MySQL stores the update on disk to make it permanent. The
change cannot be rolled back.

To disable autocommit mode implicitly for a single series of statements, use the START TRANSACTION
statement:

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT
or ROLLBACK. The autocommit mode then reverts to its previous state.

START TRANSACTION permits several modifiers that control transaction characteristics. To specify
multiple modifiers, separate them by commas.

• The WITH CONSISTENT SNAPSHOT modifier starts a consistent read for storage engines
that are capable of it. This applies only to InnoDB. The effect is the same as issuing a START
TRANSACTION followed by a SELECT from any InnoDB table. See Section 14.2.2.4, “Consistent
Nonlocking Reads”. The WITH CONSISTENT SNAPSHOT modifier does not change the current
transaction isolation level, so it provides a consistent snapshot only if the current isolation level
is one that permits a consistent read. The only isolation level that permits a consistent read is
REPEATABLE READ. For all other isolation levels, the WITH CONSISTENT SNAPSHOT clause is
ignored. As of MySQL 5.7.2, a warning is generated when the WITH CONSISTENT SNAPSHOT
clause is ignored.

• The READ WRITE and READ ONLY modifiers set the transaction access mode. They permit
or prohibit changes to tables used in the transaction. The READ ONLY restriction prevents the
transaction from modifying or locking both transactional and nontransactional tables that are visible
to other transactions; the transaction can still modify or lock temporary tables.

MySQL enables extra optimizations for queries on InnoDB tables when the transaction is known to
be read-only. Specifying READ ONLY ensures these optimizations are applied in cases where the
read-only status cannot be determined automatically. See Optimizations for Read-Only Transactions
for more information.

If no access mode is specified, the default mode applies. Unless the default has been changed, it is
read/write. It is not permitted to specify both READ WRITE and READ ONLY in the same statement.

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using
DML statements. Changes made with DDL statements are not permitted, just as with permanent
tables.

For additional information about transaction access mode, including ways to change the default
mode, see Section 13.3.6, “SET TRANSACTION Syntax”.

If the read_only system variable is enabled, explicitly starting a transaction with START
TRANSACTION READ WRITE requires the SUPER privilege.

Important

Many APIs used for writing MySQL client applications (such as JDBC) provide
their own methods for starting transactions that can (and sometimes should) be
used instead of sending a START TRANSACTION statement from the client. See
Chapter 21, Connectors and APIs, or the documentation for your API, for more
information.

To disable autocommit mode explicitly, use the following statement:

START TRANSACTION, COMMIT, and ROLLBACK Syntax

1436

SET autocommit=0;

After disabling autocommit mode by setting the autocommit variable to zero, changes to transaction-
safe tables (such as those for InnoDB or NDBCLUSTER) are not made permanent immediately. You
must use COMMIT to store your changes to disk or ROLLBACK to ignore the changes.

autocommit is a session variable and must be set for each session. To disable autocommit mode for
each new connection, see the description of the autocommit system variable at Section 5.1.4, “Server
System Variables”.

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transaction.
START TRANSACTION is standard SQL syntax, is the recommended way to start an ad-hoc
transaction, and permits modifiers that BEGIN does not.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not begin a transaction. See Section 13.6.1, “BEGIN ... END
Compound-Statement Syntax”.

Note

Within all stored programs (stored procedures and functions, triggers, and
events), the parser treats BEGIN [WORK] as the beginning of a BEGIN ...
END block. Begin a transaction in this context with START TRANSACTION
instead.

The optional WORK keyword is supported for COMMIT and ROLLBACK, as are the CHAIN and RELEASE
clauses. CHAIN and RELEASE can be used for additional control over transaction completion. The
value of the completion_type system variable determines the default completion behavior. See
Section 5.1.4, “Server System Variables”.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the
new transaction has the same isolation level as the just-terminated transaction. The RELEASE clause
causes the server to disconnect the current client session after terminating the current transaction.
Including the NO keyword suppresses CHAIN or RELEASE completion, which can be useful if the
completion_type system variable is set to cause chaining or release completion by default.

Beginning a transaction causes any pending transaction to be committed. See Section 13.3.3,
“Statements That Cause an Implicit Commit”, for more information.

Beginning a transaction also causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock
acquired with FLUSH TABLES WITH READ LOCK.

For best results, transactions should be performed using only tables managed by a single transaction-
safe storage engine. Otherwise, the following problems can occur:

• If you use tables from more than one transaction-safe storage engine (such as InnoDB), and the
transaction isolation level is not SERIALIZABLE, it is possible that when one transaction commits,
another ongoing transaction that uses the same tables will see only some of the changes made
by the first transaction. That is, the atomicity of transactions is not guaranteed with mixed engines
and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET
TRANSACTION ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-transaction
basis as necessary.)

• If you use tables that are not transaction-safe within a transaction, changes to those tables are
stored at once, regardless of the status of autocommit mode.

• If you issue a ROLLBACK statement after updating a nontransactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables are
rolled back, but not changes to nontransaction-safe tables.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Statements That Cannot Be Rolled Back

1437

Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled
back are not logged. (Exception: Modifications to nontransactional tables cannot be rolled back. If a
transaction that is rolled back includes modifications to nontransactional tables, the entire transaction
is logged with a ROLLBACK statement at the end to ensure that modifications to the nontransactional
tables are replicated.) See Section 5.2.4, “The Binary Log”.

You can change the isolation level or access mode for transactions with the SET TRANSACTION
statement. See Section 13.3.6, “SET TRANSACTION Syntax”.

Rolling back can be a slow operation that may occur implicitly without the user having explicitly asked
for it (for example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling
back in the State column for the session, not only for explicit rollbacks performed with the ROLLBACK
statement but also for implicit rollbacks.

Note

In MySQL 5.7, BEGIN, COMMIT, and ROLLBACK are not affected by --
replicate-do-db or --replicate-ignore-db rules.

13.3.2 Statements That Cannot Be Rolled Back

Some statements cannot be rolled back. In general, these include data definition language (DDL)
statements, such as those that create or drop databases, those that create, drop, or alter tables or
stored routines.

You should design your transactions not to include such statements. If you issue a statement early in
a transaction that cannot be rolled back, and then another statement later fails, the full effect of the
transaction cannot be rolled back in such cases by issuing a ROLLBACK statement.

13.3.3 Statements That Cause an Implicit Commit

The statements listed in this section (and any synonyms for them) implicitly end any transaction active
in the current session, as if you had done a COMMIT before executing the statement. As of MySQL
5.5.3, most of these statements also cause an implicit commit after executing; for additional details, see
the end of this section.

• Data definition language (DDL) statements that define or modify database objects. ALTER
DATABASE ... UPGRADE DATA DIRECTORY NAME, ALTER EVENT, ALTER PROCEDURE, ALTER
SERVER, ALTER TABLE, ALTER VIEW, CREATE DATABASE, CREATE EVENT, CREATE INDEX,
CREATE PROCEDURE, CREATE SERVER, CREATE TABLE, CREATE TRIGGER, CREATE VIEW,
DROP DATABASE, DROP EVENT, DROP INDEX, DROP PROCEDURE, DROP SERVER, DROP TABLE,
DROP TRIGGER, DROP VIEW, RENAME TABLE, TRUNCATE TABLE.

ALTER FUNCTION, CREATE FUNCTION and DROP FUNCTION also cause an implicit commit when
used with stored functions, but not with UDFs. (ALTER FUNCTION can only be used with stored
functions.)

CREATE TABLE and DROP TABLE statements do not commit a transaction if the TEMPORARY
keyword is used. (This does not apply to other operations on temporary tables such as ALTER
TABLE and CREATE INDEX, which do cause a commit.) However, although no implicit commit
occurs, neither can the statement be rolled back, which means that the use of such statements
causes transactional atomicity to be violated. For example, if you use CREATE TEMPORARY TABLE
and then roll back the transaction, the table remains in existence.

The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that
a ROLLBACK from the user does not undo CREATE TABLE statements the user made during that
transaction.

CREATE TABLE ... SELECT causes an implicit commit before and after the statement is
executed when you are creating nontemporary tables. (No commit occurs for CREATE TEMPORARY

SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax

1438

TABLE ... SELECT.) This is to prevent an issue during replication where the table could be
created on the master after a rollback, but fail to be recorded in the binary log, and therefore not
replicated to the slave. For more information, see Bug #22865.

• Statements that implicitly use or modify tables in the mysql database. CREATE USER, DROP
USER, GRANT, RENAME USER, REVOKE, SET PASSWORD.

• Transaction-control and locking statements. BEGIN, LOCK TABLES, SET autocommit = 1 (if
the value is not already 1), START TRANSACTION, UNLOCK TABLES.

UNLOCK TABLES commits a transaction only if any tables currently have been locked with LOCK
TABLES to acquire nontransactional table locks. A commit does not occur for UNLOCK TABLES
following FLUSH TABLES WITH READ LOCK because the latter statement does not acquire table-
level locks.

Transactions cannot be nested. This is a consequence of the implicit commit performed for any
current transaction when you issue a START TRANSACTION statement or one of its synonyms.

Statements that cause an implicit commit cannot be used in an XA transaction while the transaction
is in an ACTIVE state.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not cause an implicit commit. See Section 13.6.1, “BEGIN ...
END Compound-Statement Syntax”.

• Data loading statements. LOAD DATA INFILE. LOAD DATA INFILE causes an implicit commit
only for tables using the NDB storage engine. For more information, see Bug #11151.

• Administrative statements. ANALYZE TABLE, CACHE INDEX, CHECK TABLE, LOAD INDEX INTO
CACHE, OPTIMIZE TABLE, REPAIR TABLE.

• Replication control statements. START SLAVE, STOP SLAVE, RESET SLAVE, CHANGE MASTER
TO.

As of MySQL 5.5.3, most statements that previously caused an implicit commit before executing
also do so after executing. The intent is to handle each such statement in its own special transaction
because it cannot be rolled back anyway. The following list provides additional details pertaining to this
change:

• The CREATE TABLE variants (CREATE TABLE for InnoDB tables and CREATE TABLE ...
SELECT) that previously were special cases no longer are so because CREATE TABLE uniformly
causes an implicit commit before and after executing.

• The FLUSH and RESET statements cause an implicit commit.

• Transaction-control and locking statements behave as before.

13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT
Syntax

SAVEPOINT identifier
ROLLBACK [WORK] TO [SAVEPOINT] identifier
RELEASE SAVEPOINT identifier

InnoDB supports the SQL statements SAVEPOINT, ROLLBACK TO SAVEPOINT, RELEASE
SAVEPOINT and the optional WORK keyword for ROLLBACK.

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the
current transaction has a savepoint with the same name, the old savepoint is deleted and a new one is
set.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

LOCK TABLES and UNLOCK TABLES Syntax

1439

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint without
terminating the transaction. Modifications that the current transaction made to rows after the savepoint
was set are undone in the rollback, but InnoDB does not release the row locks that were stored in
memory after the savepoint. (For a new inserted row, the lock information is carried by the transaction
ID stored in the row; the lock is not separately stored in memory. In this case, the row lock is released
in the undo.) Savepoints that were set at a later time than the named savepoint are deleted.

If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint with
the specified name exists:

ERROR 1305 (42000): SAVEPOINT identifier does not exist

The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the
current transaction. No commit or rollback occurs. It is an error if the savepoint does not exist.

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that does
not name a savepoint.

A new savepoint level is created when a stored function is invoked or a trigger is activated. The
savepoints on previous levels become unavailable and thus do not conflict with savepoints on the new
level. When the function or trigger terminates, any savepoints it created are released and the previous
savepoint level is restored.

13.3.5 LOCK TABLES and UNLOCK TABLES Syntax

LOCK TABLES
 tbl_name [[AS] alias] lock_type
 [, tbl_name [[AS] alias] lock_type] ...

lock_type:
 READ [LOCAL]
 | [LOW_PRIORITY] WRITE

UNLOCK TABLES

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with
other sessions for access to tables, or to prevent other sessions from modifying tables during periods
when a session requires exclusive access to them. A session can acquire or release locks only for
itself. One session cannot acquire locks for another session or release locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables. This is
explained in more detail later in this section.

LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired
for base tables or views. You must have the LOCK TABLES privilege, and the SELECT privilege for
each object to be locked.

For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked
and locks them automatically. If you lock a table explicitly with LOCK TABLES, any tables used in
triggers are also locked implicitly, as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.

UNLOCK TABLES explicitly releases any table locks held by the current session. LOCK TABLES
implicitly releases any table locks held by the current session before acquiring new locks.

Another use for UNLOCK TABLES is to release the global read lock acquired with the FLUSH
TABLES WITH READ LOCK statement, which enables you to lock all tables in all databases. See
Section 13.7.6.3, “FLUSH Syntax”. (This is a very convenient way to get backups if you have a file
system such as Veritas that can take snapshots in time.)

A table lock protects only against inappropriate reads or writes by other sessions. The session
holding the lock, even a read lock, can perform table-level operations such as DROP TABLE. Truncate

LOCK TABLES and UNLOCK TABLES Syntax

1440

operations are not transaction-safe, so an error occurs if the session attempts one during an active
transaction or while holding a table lock.

The following discussion applies only to non-TEMPORARY tables. LOCK TABLES is permitted (but
ignored) for a TEMPORARY table. The table can be accessed freely by the session within which it was
created, regardless of what other locking may be in effect. No lock is necessary because no other
session can see the table.

For information about other conditions on the use of LOCK TABLES and statements that cannot
be used while LOCK TABLES is in effect, see Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

Rules for Lock Acquisition

To acquire table locks within the current session, use the LOCK TABLES statement. The following lock
types are available:

READ [LOCAL] lock:

• The session that holds the lock can read the table (but not write it).

• Multiple sessions can acquire a READ lock for the table at the same time.

• Other sessions can read the table without explicitly acquiring a READ lock.

• The LOCAL modifier enables nonconflicting INSERT statements (concurrent inserts) by other
sessions to execute while the lock is held. (See Section 8.10.3, “Concurrent Inserts”.) However,
READ LOCAL cannot be used if you are going to manipulate the database using processes external
to the server while you hold the lock. For InnoDB tables, READ LOCAL is the same as READ.

[LOW_PRIORITY] WRITE lock:

• The session that holds the lock can read and write the table.

• Only the session that holds the lock can access the table. No other session can access it until the
lock is released.

• Lock requests for the table by other sessions block while the WRITE lock is held.

• The LOW_PRIORITY modifier has no effect. In previous versions of MySQL, it affected locking
behavior, but this is no longer true. It is now deprecated and its use produces a warning. Use WRITE
without LOW_PRIORITY instead.

If the LOCK TABLES statement must wait due to locks held by other sessions on any of the tables, it
blocks until all locks can be acquired.

A session that requires locks must acquire all the locks that it needs in a single LOCK TABLES
statement. While the locks thus obtained are held, the session can access only the locked tables.
For example, in the following sequence of statements, an error occurs for the attempt to access t2
because it was not locked in the LOCK TABLES statement:

mysql> LOCK TABLES t1 READ;
mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
mysql> SELECT COUNT(*) FROM t2;
ERROR 1100 (HY000): Table 't2' was not locked with LOCK TABLES

Tables in the INFORMATION_SCHEMA database are an exception. They can be accessed without being
locked explicitly even while a session holds table locks obtained with LOCK TABLES.

LOCK TABLES and UNLOCK TABLES Syntax

1441

You cannot refer to a locked table multiple times in a single query using the same name. Use aliases
instead, and obtain a separate lock for the table and each alias:

mysql> LOCK TABLE t WRITE, t AS t1 READ;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

The error occurs for the first INSERT because there are two references to the same name for a locked
table. The second INSERT succeeds because the references to the table use different names.

If your statements refer to a table by means of an alias, you must lock the table using that same alias. It
does not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;

WRITE locks normally have higher priority than READ locks to ensure that updates are processed
as soon as possible. This means that if one session obtains a READ lock and then another session
requests a WRITE lock, subsequent READ lock requests wait until the session that requested the WRITE
lock has obtained the lock and released it.

LOCK TABLES acquires locks as follows:

1. Sort all tables to be locked in an internally defined order. From the user standpoint, this order is
undefined.

2. If a table is to be locked with a read and a write lock, put the write lock request before the read lock
request.

3. Lock one table at a time until the session gets all locks.

This policy ensures that table locking is deadlock free.

Note

LOCK TABLES or UNLOCK TABLES, when applied to a partitioned table, always
locks or unlocks the entire table; these statements do not support partition lock
pruning. See Section 17.6.4, “Partitioning and Locking”.

Rules for Lock Release

When the table locks held by a session are released, they are all released at the same time. A session
can release its locks explicitly, or locks may be released implicitly under certain conditions.

• A session can release its locks explicitly with UNLOCK TABLES.

• If a session issues a LOCK TABLES statement to acquire a lock while already holding locks, its
existing locks are released implicitly before the new locks are granted.

• If a session begins a transaction (for example, with START TRANSACTION), an implicit UNLOCK
TABLES is performed, which causes existing locks to be released. (For additional information about
the interaction between table locking and transactions, see Section 13.3.5.1, “Interaction of Table
Locking and Transactions”.)

LOCK TABLES and UNLOCK TABLES Syntax

1442

If the connection for a client session terminates, whether normally or abnormally, the server implicitly
releases all table locks held by the session (transactional and nontransactional). If the client
reconnects, the locks will no longer be in effect. In addition, if the client had an active transaction, the
server rolls back the transaction upon disconnect, and if reconnect occurs, the new session begins with
autocommit enabled. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect
in effect, the client is not notified if reconnect occurs but any table locks or current transaction will have
been lost. With auto-reconnect disabled, if the connection drops, an error occurs for the next statement
issued. The client can detect the error and take appropriate action such as reacquiring the locks or
redoing the transaction. See Section 21.8.16, “Controlling Automatic Reconnection Behavior”.

Note

If you use ALTER TABLE on a locked table, it may become unlocked. For
example, if you attempt a second ALTER TABLE operation, the result may be
an error Table 'tbl_name' was not locked with LOCK TABLES.
To handle this, lock the table again prior to the second alteration. See also
Section C.5.7.1, “Problems with ALTER TABLE”.

13.3.5.1 Interaction of Table Locking and Transactions

LOCK TABLES and UNLOCK TABLES interact with the use of transactions as follows:

• LOCK TABLES is not transaction-safe and implicitly commits any active transaction before attempting
to lock the tables.

• UNLOCK TABLES implicitly commits any active transaction, but only if LOCK TABLES has been used
to acquire table locks. For example, in the following set of statements, UNLOCK TABLES releases the
global read lock but does not commit the transaction because no table locks are in effect:

FLUSH TABLES WITH READ LOCK;
START TRANSACTION;
SELECT ... ;
UNLOCK TABLES;

• Beginning a transaction (for example, with START TRANSACTION) implicitly commits any current
transaction and releases existing table locks.

• FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits. For example, START TRANSACTION does not release the global read lock.
See Section 13.7.6.3, “FLUSH Syntax”.

• Other statements that implicitly cause transactions to be committed do not release existing table
locks. For a list of such statements, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

• The correct way to use LOCK TABLES and UNLOCK TABLES with transactional tables, such as
InnoDB tables, is to begin a transaction with SET autocommit = 0 (not START TRANSACTION)
followed by LOCK TABLES, and to not call UNLOCK TABLES until you commit the transaction
explicitly. For example, if you need to write to table t1 and read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes its own
table lock. InnoDB releases its internal table lock at the next commit, but for MySQL to release its
table lock, you have to call UNLOCK TABLES. You should not have autocommit = 1, because then
InnoDB releases its internal table lock immediately after the call of LOCK TABLES, and deadlocks

LOCK TABLES and UNLOCK TABLES Syntax

1443

can very easily happen. InnoDB does not acquire the internal table lock at all if autocommit = 1,
to help old applications avoid unnecessary deadlocks.

• ROLLBACK does not release table locks.

13.3.5.2 LOCK TABLES and Triggers

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly:

• The locks are taken as the same time as those acquired explicitly with the LOCK TABLES statement.

• The lock on a table used in a trigger depends on whether the table is used only for reading. If so, a
read lock suffices. Otherwise, a write lock is used.

• If a table is locked explicitly for reading with LOCK TABLES, but needs to be locked for writing
because it might be modified within a trigger, a write lock is taken rather than a read lock. (That is, an
implicit write lock needed due to the table's appearance within a trigger causes an explicit read lock
request for the table to be converted to a write lock request.)

Suppose that you lock two tables, t1 and t2, using this statement:

LOCK TABLES t1 WRITE, t2 READ;

If t1 or t2 have any triggers, tables used within the triggers will also be locked. Suppose that t1 has a
trigger defined like this:

CREATE TRIGGER t1_a_ins AFTER INSERT ON t1 FOR EACH ROW
BEGIN
 UPDATE t4 SET count = count+1
 WHERE id = NEW.id AND EXISTS (SELECT a FROM t3);
 INSERT INTO t2 VALUES(1, 2);
END;

The result of the LOCK TABLES statement is that t1 and t2 are locked because they appear in the
statement, and t3 and t4 are locked because they are used within the trigger:

• t1 is locked for writing per the WRITE lock request.

• t2 is locked for writing, even though the request is for a READ lock. This occurs because t2 is
inserted into within the trigger, so the READ request is converted to a WRITE request.

• t3 is locked for reading because it is only read from within the trigger.

• t4 is locked for writing because it might be updated within the trigger.

13.3.5.3 Table-Locking Restrictions and Conditions

You can safely use KILL to terminate a session that is waiting for a table lock. See Section 13.7.6.4,
“KILL Syntax”.

LOCK TABLES and UNLOCK TABLES cannot be used within stored programs.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

The following statements are prohibited while a LOCK TABLES statement is in effect: CREATE TABLE,
CREATE TABLE ... LIKE, CREATE VIEW, DROP VIEW, and DDL statements on stored functions
and procedures and events.

For some operations, system tables in the mysql database must be accessed. For example, the HELP
statement requires the contents of the server-side help tables, and CONVERT_TZ() might need to read

SET TRANSACTION Syntax

1444

the time zone tables. The server implicitly locks the system tables for reading as necessary so that you
need not lock them explicitly. These tables are treated as just described:

mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition
mysql.time_zone_transition_type

If you want to explicitly place a WRITE lock on any of those tables with a LOCK TABLES statement, the
table must be the only one locked; no other table can be locked with the same statement.

Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other
session can interfere with any other currently executing SQL statement. However, there are a few
cases when locking tables may provide an advantage:

• If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the tables
you are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting on them
because MySQL does not flush the key cache for the locked tables until UNLOCK TABLES is called.
Normally, the key cache is flushed after each SQL statement.

The downside to locking the tables is that no session can update a READ-locked table (including the
one holding the lock) and no session can access a WRITE-locked table other than the one holding
the lock.

• If you are using tables for a nontransactional storage engine, you must use LOCK TABLES if you
want to ensure that no other session modifies the tables between a SELECT and an UPDATE. The
example shown here requires LOCK TABLES to execute safely:

LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer
 SET total_value=sum_from_previous_statement
 WHERE customer_id=some_id;
UNLOCK TABLES;

Without LOCK TABLES, it is possible that another session might insert a new row in the trans table
between execution of the SELECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer
SET value=value+new_value) or the LAST_INSERT_ID() function. See Section 1.8.2.3,
“Transaction and Atomic Operation Differences”.

You can also avoid locking tables in some cases by using the user-level advisory lock functions
GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See
Section 12.16, “Miscellaneous Functions”.

See Section 8.10.1, “Internal Locking Methods”, for more information on locking policy.

13.3.6 SET TRANSACTION Syntax

SET [GLOBAL | SESSION] TRANSACTION
 transaction_characteristic [, transaction_characteristic] ...

transaction_characteristic:
 ISOLATION LEVEL level

SET TRANSACTION Syntax

1445

 | READ WRITE
 | READ ONLY

level:
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE

This statement specifies transaction characteristics. It takes a list of one or more characteristic values
separated by commas. These characteristics set the transaction isolation level or access mode. The
isolation level is used for operations on InnoDB tables. The access mode may be specified as to
whether transactions operate in read/write or read-only mode.

In addition, SET TRANSACTION can include an optional GLOBAL or SESSION keyword to indicate the
scope of the statement.

Scope of Transaction Characteristics

You can set transaction characteristics globally, for the current session, or for the next transaction:

• With the GLOBAL keyword, the statement applies globally for all subsequent sessions. Existing
sessions are unaffected.

• With the SESSION keyword, the statement applies to all subsequent transactions performed within
the current session.

• Without any SESSION or GLOBAL keyword, the statement applies to the next (not started) transaction
performed within the current session.

A global change to transaction characteristics requires the SUPER privilege. Any session is free to
change its session characteristics (even in the middle of a transaction), or the characteristics for its
next transaction.

SET TRANSACTION without GLOBAL or SESSION is not permitted while there is an active transaction:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.02 sec)

mysql> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
ERROR 1568 (25001): Transaction characteristics can't be changed
while a transaction is in progress

To set the global default isolation level at server startup, use the --transaction-
isolation=level option to mysqld on the command line or in an option file. Values of level for
this option use dashes rather than spaces, so the permissible values are READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. For example, to set the default isolation level to
REPEATABLE READ, use these lines in the [mysqld] section of an option file:

[mysqld]
transaction-isolation = REPEATABLE-READ

It is possible to check or set the global and session transaction isolation levels at runtime by using the
tx_isolation system variable:

SELECT @@GLOBAL.tx_isolation, @@tx_isolation;
SET GLOBAL tx_isolation='REPEATABLE-READ';
SET SESSION tx_isolation='SERIALIZABLE';

Similarly, to set the transaction access mode at server startup or at runtime, use the --transaction-
read-only option or tx_read_only system variable. By default, these are OFF (the mode is read/
write) but can be set to ON for a default mode of read only.

SET TRANSACTION Syntax

1446

Setting the global or session value of tx_isolation or tx_read_only is equivalent to setting the
isolation level or access mode with SET GLOBAL TRANSACTION or SET SESSION TRANSACTION.

Details and Usage of Isolation Levels

InnoDB supports each of the transaction isolation levels described here using different locking
strategies. You can enforce a high degree of consistency with the default REPEATABLE READ level,
for operations on crucial data where ACID compliance is important. Or you can relax the consistency
rules with READ COMMITTED or even READ UNCOMMITTED, in situations such as bulk reporting where
precise consistency and repeatable results are less important than minimizing the amount of overhead
for locking. SERIALIZABLE enforces even stricter rules than REPEATABLE READ, and is used mainly
in specialized situations, such as with XA transactions and for troubleshooting issues with concurrency
and deadlocks.

For full information about how these isolation levels work with InnoDB transactions, see
Section 14.2.2.2, “The InnoDB Transaction Model and Locking”. In particular, for additional information
about InnoDB record-level locks and how it uses them to execute various types of statements, see
Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key Locks” and Section 14.2.2.8, “Locks Set by
Different SQL Statements in InnoDB”.

The following list describes how MySQL supports the different transaction levels. The list goes from the
most commonly used level to the least used.

• REPEATABLE READ

This is the default isolation level for InnoDB. For consistent reads, there is an important difference
from the READ COMMITTED isolation level: All consistent reads within the same transaction read
the snapshot established by the first read. This convention means that if you issue several plain
(nonlocking) SELECT statements within the same transaction, these SELECT statements are
consistent also with respect to each other. See Section 14.2.2.4, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE
statements, locking depends on whether the statement uses a unique index with a unique search
condition, or a range-type search condition. For a unique index with a unique search condition,
InnoDB locks only the index record found, not the gap before it. For other search conditions,
InnoDB locks the index range scanned, using gap locks or next-key locks to block insertions by
other sessions into the gaps covered by the range.

• READ COMMITTED

A somewhat Oracle-like isolation level with respect to consistent (nonlocking) reads: Each consistent
read, even within the same transaction, sets and reads its own fresh snapshot. See Section 14.2.2.4,
“Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE statements, and
DELETE statements, InnoDB locks only index records, not the gaps before them, and thus permits
the free insertion of new records next to locked records.

Note

In MySQL 5.7, when READ COMMITTED isolation level is used, or the
deprecated innodb_locks_unsafe_for_binlog system variable is
enabled, there is no InnoDB gap locking except for foreign-key constraint
checking and duplicate-key checking. Also, record locks for nonmatching
rows are released after MySQL has evaluated the WHERE condition.

If you use READ COMMITTED or enable
innodb_locks_unsafe_for_binlog, you must use row-based binary
logging.

• READ UNCOMMITTED

XA Transactions

1447

SELECT statements are performed in a nonlocking fashion, but a possible earlier version of a row
might be used. Thus, using this isolation level, such reads are not consistent. This is also called a
dirty read. Otherwise, this isolation level works like READ COMMITTED.

• SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements
to SELECT ... LOCK IN SHARE MODE if autocommit is disabled. If autocommit is enabled,
the SELECT is its own transaction. It therefore is known to be read only and can be serialized if
performed as a consistent (nonlocking) read and need not block for other transactions. (To force a
plain SELECT to block if other transactions have modified the selected rows, disable autocommit.)

Transaction Access Mode

The transaction access mode may be specified with SET TRANSACTION. By default, a transaction
takes place in read/write mode, with both reads and writes permitted to tables used in the transaction.
This mode may be specified explicitly using an access mode of READ WRITE.

If the transaction access mode is set to READ ONLY, changes to tables are prohibited. This may enable
storage engines to make performance improvements that are possible when writes are not permitted.

It is not permitted to specify both READ WRITE and READ ONLY in the same statement.

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using
DML statements. Changes made with DDL statements are not permitted, just as with permanent
tables.

The READ WRITE and READ ONLY access modes also may be specified for an individual transaction
using the START TRANSACTION statement.

13.3.7 XA Transactions

Support for XA transactions is available for the InnoDB storage engine. The MySQL XA
implementation is based on the X/Open CAE document Distributed Transaction Processing:
The XA Specification. This document is published by The Open Group and available at http://
www.opengroup.org/public/pubs/catalog/c193.htm. Limitations of the current XA implementation are
described in Section E.6, “Restrictions on XA Transactions”.

On the client side, there are no special requirements. The XA interface to a MySQL server consists of
SQL statements that begin with the XA keyword. MySQL client programs must be able to send SQL
statements and to understand the semantics of the XA statement interface. They do not need be linked
against a recent client library. Older client libraries also will work.

Currently, among the MySQL Connectors, MySQL Connector/J 5.0.0 and higher supports XA directly,
by means of a class interface that handles the XA SQL statement interface for you.

XA supports distributed transactions, that is, the ability to permit multiple separate transactional
resources to participate in a global transaction. Transactional resources often are RDBMSs but may be
other kinds of resources.

A global transaction involves several actions that are transactional in themselves, but that all must
either complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID
properties “up a level” so that multiple ACID transactions can be executed in concert as components of
a global operation that also has ACID properties. (However, for a distributed transaction, you must use
the SERIALIZABLE isolation level to achieve ACID properties. It is enough to use REPEATABLE READ
for a nondistributed transaction, but not for a distributed transaction.)

Some examples of distributed transactions:

http://www.opengroup.org/public/pubs/catalog/c193.htm
http://www.opengroup.org/public/pubs/catalog/c193.htm

XA Transactions

1448

• An application may act as an integration tool that combines a messaging service with an RDBMS.
The application makes sure that transactions dealing with message sending, retrieval, and
processing that also involve a transactional database all happen in a global transaction. You can
think of this as “transactional email.”

• An application performs actions that involve different database servers, such as a MySQL server
and an Oracle server (or multiple MySQL servers), where actions that involve multiple servers must
happen as part of a global transaction, rather than as separate transactions local to each server.

• A bank keeps account information in an RDBMS and distributes and receives money through
automated teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected
in the accounts, but this cannot be done with the RDBMS alone. A global transaction manager
integrates the ATM and database resources to ensure overall consistency of financial transactions.

Applications that use global transactions involve one or more Resource Managers and a Transaction
Manager:

• A Resource Manager (RM) provides access to transactional resources. A database server is one
kind of resource manager. It must be possible to either commit or roll back transactions managed by
the RM.

• A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It
communicates with the RMs that handle each of these transactions. The individual transactions
within a global transaction are “branches” of the global transaction. Global transactions and their
branches are identified by a naming scheme described later.

The MySQL implementation of XA MySQL enables a MySQL server to act as a Resource Manager
that handles XA transactions within a global transaction. A client program that connects to the MySQL
server acts as the Transaction Manager.

To carry out a global transaction, it is necessary to know which components are involved, and
bring each component to a point when it can be committed or rolled back. Depending on what each
component reports about its ability to succeed, they must all commit or roll back as an atomic group.
That is, either all components must commit, or all components must roll back. To manage a global
transaction, it is necessary to take into account that any component or the connecting network might
fail.

The process for executing a global transaction uses two-phase commit (2PC). This takes place after
the actions performed by the branches of the global transaction have been executed.

1. In the first phase, all branches are prepared. That is, they are told by the TM to get ready to
commit. Typically, this means each RM that manages a branch records the actions for the branch in
stable storage. The branches indicate whether they are able to do this, and these results are used
for the second phase.

2. In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated
when they were prepared that they will be able to commit, all branches are told to commit. If any
branch indicated when it was prepared that it will not be able to commit, all branches are told to roll
back.

In some cases, a global transaction might use one-phase commit (1PC). For example, when a
Transaction Manager finds that a global transaction consists of only one transactional resource (that is,
a single branch), that resource can be told to prepare and commit at the same time.

13.3.7.1 XA Transaction SQL Syntax

To perform XA transactions in MySQL, use the following statements:

XA {START|BEGIN} xid [JOIN|RESUME]

XA Transactions

1449

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER

For XA START, the JOIN and RESUME clauses are not supported.

For XA END the SUSPEND [FOR MIGRATE] clause is not supported.

Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is
an XA transaction identifier. It indicates which transaction the statement applies to. xid values are
supplied by the client, or generated by the MySQL server. An xid value has from one to three parts:

xid: gtrid [, bqual [, formatID]]

gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that
identifies the format used by the gtrid and bqual values. As indicated by the syntax, bqual and
formatID are optional. The default bqual value is '' if not given. The default formatID value is 1 if
not given.

gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and bqual
can be specified in several ways. You can use a quoted string ('ab'), hex string (0x6162, X'ab'), or
bit value (b'nnnn').

formatID is an unsigned integer.

The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support
routines. However, while an SQL statement containing an XA statement is being parsed, the server
works with some specific character set. To be safe, write gtrid and bqual as hex strings.

xid values typically are generated by the Transaction Manager. Values generated by one TM must
be different from values generated by other TMs. A given TM must be able to recognize its own xid
values in a list of values returned by the XA RECOVER statement.

XA START xid starts an XA transaction with the given xid value. Each XA transaction must have a
unique xid value, so the value must not currently be used by another XA transaction. Uniqueness is
assessed using the gtrid and bqual values. All following XA statements for the XA transaction must
be specified using the same xid value as that given in the XA START statement. If you use any of
those statements but specify an xid value that does not correspond to some existing XA transaction,
an error occurs.

One or more XA transactions can be part of the same global transaction. All XA transactions within
a given global transaction must use the same gtrid value in the xid value. For this reason, gtrid
values must be globally unique so that there is no ambiguity about which global transaction a given
XA transaction is part of. The bqual part of the xid value must be different for each XA transaction
within a global transaction. (The requirement that bqual values be different is a limitation of the current
MySQL XA implementation. It is not part of the XA specification.)

The XA RECOVER statement returns information for those XA transactions on the MySQL server that
are in the PREPARED state. (See Section 13.3.7.2, “XA Transaction States”.) The output includes a row
for each such XA transaction on the server, regardless of which client started it.

XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc',
'def', and 7):

mysql> XA RECOVER;

XA Transactions

1450

+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+

The output columns have the following meanings:

• formatID is the formatID part of the transaction xid

• gtrid_length is the length in bytes of the gtrid part of the xid

• bqual_length is the length in bytes of the bqual part of the xid

• data is the concatenation of the gtrid and bqual parts of the xid

13.3.7.2 XA Transaction States

An XA transaction progresses through the following states:

1. Use XA START to start an XA transaction and put it in the ACTIVE state.

2. For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then
issue an XA END statement. XA END puts the transaction in the IDLE state.

3. For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA
COMMIT ... ONE PHASE statement:

• XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this
point will include the transaction's xid value in its output, because XA RECOVER lists all XA
transactions that are in the PREPARED state.

• XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value will not be
listed by XA RECOVER because the transaction terminates.

4. For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and terminate
the transaction, or XA ROLLBACK to roll back and terminate the transaction.

Here is a simple XA transaction that inserts a row into a table as part of a global transaction:

mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)

mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)

Within the context of a given client connection, XA transactions and local (non-XA) transactions are
mutually exclusive. For example, if XA START has been issued to begin an XA transaction, a local
transaction cannot be started until the XA transaction has been committed or rolled back. Conversely,
if a local transaction has been started with START TRANSACTION, no XA statements can be used until
the transaction has been committed or rolled back.

Note that if an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an
implicit commit. That would violate the XA contract because you could not roll back the XA transaction.
You will receive the following error if you try to execute such a statement:

Replication Statements

1451

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state

Statements to which the preceding remark applies are listed at Section 13.3.3, “Statements That Cause
an Implicit Commit”.

13.4 Replication Statements

Replication can be controlled through the SQL interface using the statements described in this section.
One group of statements controls master servers, the other controls slave servers.

13.4.1 SQL Statements for Controlling Master Servers

This section discusses statements for managing master replication servers. Section 13.4.2, “SQL
Statements for Controlling Slave Servers”, discusses statements for managing slave servers.

In addition to the statements described here, the following SHOW statements are used with master
servers in replication. For information about these statements, see Section 13.7.5, “SHOW Syntax”.

• SHOW BINARY LOGS

• SHOW BINLOG EVENTS

• SHOW MASTER STATUS

• SHOW SLAVE HOSTS

13.4.1.1 PURGE BINARY LOGS Syntax

PURGE { BINARY | MASTER } LOGS
 { TO 'log_name' | BEFORE datetime_expr }

The binary log is a set of files that contain information about data modifications made by the MySQL
server. The log consists of a set of binary log files, plus an index file (see Section 5.2.4, “The Binary
Log”).

The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior
to the specified log file name or date. BINARY and MASTER are synonyms. Deleted log files also are
removed from the list recorded in the index file, so that the given log file becomes the first in the list.

This statement has no effect if the server was not started with the --log-bin option to enable binary
logging.

Examples:

PURGE BINARY LOGS TO 'mysql-bin.010';
PURGE BINARY LOGS BEFORE '2008-04-02 22:46:26';

The BEFORE variant's datetime_expr argument should evaluate to a DATETIME value (a value in
'YYYY-MM-DD hh:mm:ss' format).

This statement is safe to run while slaves are replicating. You need not stop them. If you have an active
slave that currently is reading one of the log files you are trying to delete, this statement does nothing.
In MySQL 5.7.2 and later, it fails with an error in such cases. (Bug #13727933) However, if a slave is
not connected and you happen to purge one of the log files it has yet to read, the slave will be unable
to replicate after it reconnects.

To safely purge binary log files, follow this procedure:

SQL Statements for Controlling Master Servers

1452

1. On each slave server, use SHOW SLAVE STATUS to check which log file it is reading.

2. Obtain a listing of the binary log files on the master server with SHOW BINARY LOGS.

3. Determine the earliest log file among all the slaves. This is the target file. If all the slaves are up to
date, this is the last log file on the list.

4. Make a backup of all the log files you are about to delete. (This step is optional, but always
advisable.)

5. Purge all log files up to but not including the target file.

You can also set the expire_logs_days system variable to expire binary log files automatically after
a given number of days (see Section 5.1.4, “Server System Variables”). If you are using replication, you
should set the variable no lower than the maximum number of days your slaves might lag behind the
master.

PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE both fail with an error when binary log
files listed in the .index file had been removed from the system by some other means (such as using
rm on Linux). (Bug #18199, Bug #18453) To handle such errors, edit the .index file (which is a simple
text file) manually to ensure that it lists only the binary log files that are actually present, then run again
the PURGE BINARY LOGS statement that failed.

13.4.1.2 RESET MASTER Syntax

RESET MASTER

Deletes all binary log files listed in the index file, resets the binary log index file to be empty, and
creates a new binary log file.

RESET MASTER also clears the values of the gtid_purged system variable as well as the global
value of the gtid_executed system variable (but not its session value); that is, executing this
statement sets each of these values to an empty string ('').

This statement is intended to be used only when the master is started for the first time.

Important

The effects of RESET MASTER differ from those of PURGE BINARY LOGS in 2
key ways:

1. RESET MASTER removes all binary log files that are listed in the index file,
leaving only a single, empty binary log file with a numeric suffix of .000001,
whereas the numbering is not reset by PURGE BINARY LOGS.

2. RESET MASTER is not intended to be used while any replication slaves
are running. The behavior of RESET MASTER when used while slaves are
running is undefined (and thus unsupported), whereas PURGE BINARY
LOGS may be safely used while replication slaves are running.

See also Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

RESET MASTER can prove useful when you first set up the master and the slave, so that you can verify
the setup as follows:

1. Start the master and slave, and start replication (see Section 16.1.1, “How to Set Up Replication”).

2. Execute a few test queries on the master.

3. Check that the queries were replicated to the slave.

SQL Statements for Controlling Slave Servers

1453

4. When replication is running correctly, issue STOP SLAVE followed by RESET SLAVE on the slave,
then verify that any unwanted data no longer exists on the slave.

5. Issue RESET MASTER on the master to clean up the test queries.

After verifying the setup and getting rid of any unwanted and log files generated by testing, you can
start the slave and begin replicating.

13.4.1.3 SET sql_log_bin Syntax

SET sql_log_bin = {0|1}

The sql_log_bin variable controls whether logging to the binary log is done. The default value is 1
(do logging). To change logging for the current session, change the session value of this variable. The
session user must have the SUPER privilege to set this variable.

In MySQL 5.7, it is not possible to set @@session.sql_log_bin within a transaction or subquery.
(Bug #53437)

13.4.2 SQL Statements for Controlling Slave Servers

This section discusses statements for managing slave replication servers. Section 13.4.1, “SQL
Statements for Controlling Master Servers”, discusses statements for managing master servers.

In addition to the statements described here, SHOW SLAVE STATUS and SHOW RELAYLOG EVENTS
are also used with replication slaves. For information about these statements, see Section 13.7.5.33,
“SHOW SLAVE STATUS Syntax”, and Section 13.7.5.31, “SHOW RELAYLOG EVENTS Syntax”.

13.4.2.1 CHANGE MASTER TO Syntax

CHANGE MASTER TO option [, option] ...

option:
 MASTER_BIND = 'interface_name'
 | MASTER_HOST = 'host_name'
 | MASTER_USER = 'user_name'
 | MASTER_PASSWORD = 'password'
 | MASTER_PORT = port_num
 | MASTER_CONNECT_RETRY = interval
 | MASTER_RETRY_COUNT = count
 | MASTER_DELAY = interval
 | MASTER_HEARTBEAT_PERIOD = interval
 | MASTER_LOG_FILE = 'master_log_name'
 | MASTER_LOG_POS = master_log_pos
 | MASTER_AUTO_POSITION = {0|1}
 | RELAY_LOG_FILE = 'relay_log_name'
 | RELAY_LOG_POS = relay_log_pos
 | MASTER_SSL = {0|1}
 | MASTER_SSL_CA = 'ca_file_name'
 | MASTER_SSL_CAPATH = 'ca_directory_name'
 | MASTER_SSL_CERT = 'cert_file_name'
 | MASTER_SSL_CRL = 'crl_file_name'
 | MASTER_SSL_CRLPATH = 'crl_directory_name'
 | MASTER_SSL_KEY = 'key_file_name'
 | MASTER_SSL_CIPHER = 'cipher_list'
 | MASTER_SSL_VERIFY_SERVER_CERT = {0|1}
 | IGNORE_SERVER_IDS = (server_id_list)

server_id_list:
 [server_id [, server_id] ...]

CHANGE MASTER TO changes the parameters that the slave server uses for connecting to the master
server, for reading the master binary log, and reading the slave relay log. It also updates the contents
of the master info and relay log info repositories (see Section 16.2.2, “Replication Relay and Status

SQL Statements for Controlling Slave Servers

1454

Logs”). In MySQL 5.7.1 and later, gtid_next must be set to AUTOMATIC before you can use CHANGE
MASTER TO (Bug #16062608).

Priot to MySQL 5.7.4, the slave replication threads must be stopped, using STOP SLAVE if necessary,
before issuing this statement. In MySQL 5.7.4 and later, you can issue CHANGE MASTER TO
statements on a running slave without doing this, depending on the states of the slave SQL thread and
slave I/O thread. The rules governing such use are provided later in this section.

Options not specified retain their value, except as indicated in the following discussion. Thus, in most
cases, there is no need to specify options that do not change. For example, in MySQL 5.7.3 and
earlier, if the password to connect to your MySQL master has changed, you just need to issue these
statements to tell the slave about the new password:

STOP SLAVE; -- if replication was running
CHANGE MASTER TO MASTER_PASSWORD='new3cret';
START SLAVE; -- if you want to restart replication

In MySQL 5.7.4 and later, the STOP SLAVE and START SLAVE statements are not needed with the
CHANGE MASTER TO statement just shown if the I/O thread is stopped, as discussed later in this
section.

MASTER_HOST, MASTER_USER, MASTER_PASSWORD, and MASTER_PORT provide information to the
slave about how to connect to its master:

• MASTER_HOST and MASTER_PORT are the host name (or IP address) of the master host and its TCP/
IP port.

Note

Replication cannot use Unix socket files. You must be able to connect to the
master MySQL server using TCP/IP.

If you specify the MASTER_HOST or MASTER_PORT option, the slave assumes that the master
server is different from before (even if the option value is the same as its current value.) In this
case, the old values for the master binary log file name and position are considered no longer
applicable, so if you do not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement,
MASTER_LOG_FILE='' and MASTER_LOG_POS=4 are silently appended to it.

Setting MASTER_HOST='' (that is, setting its value explicitly to an empty string) is not the same as
not setting MASTER_HOST at all. Beginning with MySQL 5.5, trying to set MASTER_HOST to an empty
string fails with an error. Previously, setting MASTER_HOST to an empty string caused START SLAVE
subsequently to fail. (Bug #28796)

Values used for MASTER_HOST and other CHANGE MASTER TO options are checked for linefeed (\n
or 0x0A) characters; the presence of such characters in these values causes the statement to fail
with ER_MASTER_INFO. (Bug #11758581, Bug #50801)

• MASTER_USER and MASTER_PASSWORD are the user name and password of the account to use for
connecting to the master.

MASTER_USER cannot be made empty; setting MASTER_USER = '' or leaving it unset when setting
a value for for MASTER_PASSWORD causes an error (Bug #13427949).

Currently, a password used for a replication slave account is effectively limited to 32 characters in
length; if the password is longer, any excess characters are truncated. This is not due to any limit
imposed by the MySQL Server generally, but rather is an issue specific to MySQL Replication. (For
more information, see Bug #43439.)

The text of a running CHANGE MASTER TO statement, including values for MASTER_USER and
MASTER_PASSWORD, can be seen in the output of a concurrent SHOW PROCESSLIST statement.
(The complete text of a START SLAVE statement is also visible to SHOW PROCESSLIST.)

SQL Statements for Controlling Slave Servers

1455

The MASTER_SSL_xxx options provide information about using SSL for the connection. They
correspond to the --ssl-xxx options described in Section 6.3.11.4, “SSL Command Options”, and
Section 16.3.7, “Setting Up Replication Using SSL”. These options can be changed even on slaves that
are compiled without SSL support. They are saved to the master info repository, but are ignored if the
slave does not have SSL support enabled.

As of MySQL 5.7.3, the MASTER_SSL=1 is prescriptive, not advisory. When given, the slave connection
to the master must use SSL or the connection attempt fails. Before 5.7.3, an SSL connection is
permitted but not required. This is analogous to the client-side meaning of the --ssl command-line
option; see Section 6.3.11.4, “SSL Command Options”.

MASTER_CONNECT_RETRY specifies how many seconds to wait between connect retries. The default is
60.

MASTER_RETRY_COUNT limits the number of reconnection attempts and updates the value of the
Master_Retry_Count column in the output of SHOW SLAVE STATUS. The default value is 24
* 3600 = 86400. MASTER_RETRY_COUNT is intended to replace the older --master-retry-
count server option, and is now the preferred method for setting this limit. You are encouraged
not to rely on --master-retry-count in new applications and, when upgrading to MySQL 5.7,
to update any existing applications that rely on it, so that they use CHANGE MASTER TO ...
MASTER_RETRY_COUNT instead.

MASTER_DELAY specifies how many seconds behind the master the slave must lag. An event received
from the master is not executed until at least interval seconds later than its execution on the master.
The default is 0. An error occurs if interval is not a nonnegative integer in the range from 0 to 231–1.
For more information, see Section 16.3.9, “Delayed Replication”.

In MySQL 5.7.4 and later, a CHANGE MASTER TO statement employing the MASTER_DELAY option can
be executed on a running slave when the slave SQL thread is stopped.

MASTER_BIND is for use on replication slaves having multiple network interfaces, and determines
which of the slave's network interfaces is chosen for connecting to the master.

The address configured with this option, if any, can be seen in the Master_Bind column of the
output from SHOW SLAVE STATUS. If you are using slave status log tables (server started with --
master-info-repository=TABLE), the value can also be seen as the Master_bind column of
the mysql.slave_master_info table.

MASTER_HEARTBEAT_PERIOD sets the interval in seconds between replication heartbeats. Whenever
the master's binary log is updated with an event, the waiting period for the next heartbeat is reset.
interval is a decimal value having the range 0 to 4294967 seconds and a resolution in milliseconds;
the smallest nonzero value is 0.001. Heartbeats are sent by the master only if there are no unsent
events in the binary log file for a period longer than interval.

Prior to MySQL 5.7.4, not including MASTER_HEARTBEAT_PERIOD caused CHANGE
MASTER TO to reset the heartbeat period (Slave_heartbeat_period) to the default, and
Slave_received_heartbeats to 0. (Bug #18185490)

If you are logging master connection information to tables, MASTER_HEARTBEAT_PERIOD can be seen
as the value of the Heartbeat column of the mysql.slave_master_info table.

Setting interval to 0 disables heartbeats altogether. The default value for interval is equal to the
value of slave_net_timeout divided by 2.

Setting @@global.slave_net_timeout to a value less than that of the current heartbeat interval
results in a warning being issued. The effect of issuing RESET SLAVE on the heartbeat interval is to
reset it to the default value.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread
should begin reading from the master the next time the thread starts. RELAY_LOG_FILE and

SQL Statements for Controlling Slave Servers

1456

RELAY_LOG_POS are the coordinates at which the slave SQL thread should begin reading
from the relay log the next time the thread starts. If you specify either of MASTER_LOG_FILE or
MASTER_LOG_POS, you cannot specify RELAY_LOG_FILE or RELAY_LOG_POS. If you specify either of
MASTER_LOG_FILE or MASTER_LOG_POS, you also cannot specify MASTER_AUTO_POSITION = 1
(described later in this section). If neither of MASTER_LOG_FILE or MASTER_LOG_POS is specified, the
slave uses the last coordinates of the slave SQL thread before CHANGE MASTER TO was issued. This
ensures that there is no discontinuity in replication, even if the slave SQL thread was late compared to
the slave I/O thread, when you merely want to change, say, the password to use.

In MySQL 5.7.4 and later, a CHANGE MASTER TO statement employing RELAY_LOG_FILE,
RELAY_LOG_POS, or both options can be executed on a running slave when the slave SQL thread is
stopped.

If MASTER_AUTO_POSITION = 1 is used with CHANGE MASTER TO, the slave attempts to connect
to the master using the GTID-based replication protocol. In MySQL 5.7.4 and later, this option can be
employed by CHANGE MASTER TO only if both the slave SQL and slave I/O threads are stopped.

When using GTIDs, the slave tells the master which transactions it has already received, executed,
or both. To compute this set, it reads the global value of gtid_executed and the value of the
Retrieved_gtid_set column from SHOW SLAVE STATUS. Since the GTID of the last transmitted
transaction is included in Retrieved_gtid_set even if the transaction was only partially transmitted,
the last received GTID is subtracted from this set. Thus, the slave computes the following set:

UNION(@@global.gtid_executed, Retrieved_gtid_set - last_received_GTID)

This set is sent to the master as part of the initial handshake, and the master sends back all
transactions that it has executed which are not part of the set. If any of these transactions
have been already purged from the master's binary log, the master sends the error
ER_MASTER_HAS_PURGED_REQUIRED_GTIDS to the slave, and replication does not start.

When GTID-based replication is employed, the coordinates represented by MASTER_LOG_FILE and
MASTER_LOG_POS are not used, and global transaction identifiers are used instead. Thus the use of
either or both of these options together with MASTER_AUTO_POSITION causes an error.

Beginning with MySQL 5.7.1, you can see whether replication is running with autopositioning enabled
by checking the output of SHOW SLAVE STATUS. (Bug #15992220)

gtid_mode must also be enabled before issuing CHANGE MASTER TO ...
MASTER_AUTO_POSITION = 1. Otherwise, the statement fails with an error.

To revert to the older file-based replication protocol after using GTIDs, you can issue a new CHANGE
MASTER TO statement that specifies MASTER_AUTO_POSITION = 0, as well as at least one of
MASTER_LOG_FILE or MASTER_LOG_POSITION.

Prior to MySQL 5.7.4, CHANGE MASTER TO deletes all relay log files and starts a new one,
unless you specify RELAY_LOG_FILE or RELAY_LOG_POS. In that case, relay log files are kept;
the relay_log_purge global variable is set silently to 0. In MySQL 5.7.4 and later, relay logs
are preserved when neither the slave SQL thread nor the slave I/O thread is stopped; if both
threads are stopped, all relay log files are deleted unless you at least one of RELAY_LOG_FILE or
RELAY_LOG_POS is specified.

RELAY_LOG_FILE can use either an absolute or relative path, and uses the same basename as
MASTER_LOG_FILE. (Bug #12190)

IGNORE_SERVER_IDS takes a comma-separated list of 0 or more server IDs. Events originating from
the corresponding servers are ignored, with the exception of log rotation and deletion events, which are
still recorded in the relay log.

In circular replication, the originating server normally acts as the terminator of its own events, so that
they are not applied more than once. Thus, this option is useful in circular replication when one of the

SQL Statements for Controlling Slave Servers

1457

servers in the circle is removed. Suppose that you have a circular replication setup with 4 servers,
having server IDs 1, 2, 3, and 4, and server 3 fails. When bridging the gap by starting replication from
server 2 to server 4, you can include IGNORE_SERVER_IDS = (3) in the CHANGE MASTER TO
statement that you issue on server 4 to tell it to use server 2 as its master instead of server 3. Doing so
causes it to ignore and not to propagate any statements that originated with the server that is no longer
in use.

If a CHANGE MASTER TO statement is issued without any IGNORE_SERVER_IDS option, any existing
list is preserved; RESET SLAVE also has no effect on the server ID list. To clear the list of ignored
servers, it is necessary to use the option with an empty list:

CHANGE MASTER TO IGNORE_SERVER_IDS = ();

If IGNORE_SERVER_IDS contains the server's own ID and the server was started with the --
replicate-same-server-id option enabled, an error results.

In MySQL 5.7, the master info repository and the output of SHOW SLAVE STATUS provide the list of
servers that are currently ignored. For more information, see Section 16.2.2.2, “Slave Status Logs”, and
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”.

In MySQL 5.7, invoking CHANGE MASTER TO causes the previous values for MASTER_HOST,
MASTER_PORT, MASTER_LOG_FILE, and MASTER_LOG_POS to be written to the error log, along with
other information about the slave's state prior to execution.

In MySQL 5.7, CHANGE MASTER TO causes an implicit commit of an ongoing transaction. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

In MySQL 5.7.4 and later, the strict requirement to execute STOP SLAVE prior to issuing any CHANGE
MASTER TO statement (and START SLAVE afterward) is removed. Instead of depending on whether
the slave is stopped, the behavior of CHANGE MASTER TO depends (in MySL 5.7.4 and later) on the
states of the slave SQL thread and slave I/O threads; which of these threads is stopped or running now
determines the options that can or cannot be used with a CHANGE MASTER TO statement at a given
point in time. The rules for making this determination are listed here:

• If the SQL thread is stopped, you can execute CHANGE MASTER TO using any combination that is
otherwise allowed of RELAY_LOG_FILE, RELAY_LOG_POS, and MASTER_DELAY options, even if the
slave I/O thread is running. No other options may be used with this statement when the I/O thread is
running.

• If the I/O thread is stopped, you can execute CHANGE MASTER TO using any of the options for
this statement (in any allowed combination) except RELAY_LOG_FILE, RELAY_LOG_POS, or
MASTER_DELAY, even when the SQL thread is running. These three options may not be used when
the I/O thread is running.

• Both the SQL thread and the I/O thread must be stopped before issuing a CHANGE MASTER TO
statement that employs MASTER_AUTO_POSITION = 1.

You can check the current state of the slave SQL and I/O threads using SHOW SLAVE STATUS.

For more information, see Section 16.3.6, “Switching Masters During Failover”.

If you are using statement-based replication and temporary tables, it is possible for a CHANGE MASTER
TO statement following a STOP SLAVE statement to leave behind temporary tables on the slave.
In MySQL 5.7.4 and later, a warning (ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO) is now
issued whenever this occurs. You can avoid this in such cases by making sure that the value of the
Slave_open_temp_tables system status variable is equal to 0 prior to executing such a CHANGE
MASTER TO statement.

CHANGE MASTER TO is useful for setting up a slave when you have the snapshot of the master and
have recorded the master binary log coordinates corresponding to the time of the snapshot. After

SQL Statements for Controlling Slave Servers

1458

loading the snapshot into the slave to synchronize it with the master, you can run CHANGE MASTER
TO MASTER_LOG_FILE='log_name', MASTER_LOG_POS=log_pos on the slave to specify the
coordinates at which the slave should begin reading the master binary log.

The following example changes the master server the slave uses and establishes the master binary
log coordinates from which the slave begins reading. This is used when you want to set up the slave to
replicate the master:

CHANGE MASTER TO
 MASTER_HOST='master2.mycompany.com',
 MASTER_USER='replication',
 MASTER_PASSWORD='bigs3cret',
 MASTER_PORT=3306,
 MASTER_LOG_FILE='master2-bin.001',
 MASTER_LOG_POS=4,
 MASTER_CONNECT_RETRY=10;

The next example shows an operation that is less frequently employed. It is used when the slave
has relay log files that you want it to execute again for some reason. To do this, the master need not
be reachable. You need only use CHANGE MASTER TO and start the SQL thread (START SLAVE
SQL_THREAD):

CHANGE MASTER TO
 RELAY_LOG_FILE='slave-relay-bin.006',
 RELAY_LOG_POS=4025;

You can even use the second operation in a nonreplication setup with a standalone, nonslave server
for recovery following a crash. Suppose that your server has crashed and you have restored it from
a backup. You want to replay the server's own binary log files (not relay log files, but regular binary
log files), named (for example) myhost-bin.*. First, make a backup copy of these binary log files in
some safe place, in case you don't exactly follow the procedure below and accidentally have the server
purge the binary log. Use SET GLOBAL relay_log_purge=0 for additional safety. Then start the
server without the --log-bin option, Instead, use the --replicate-same-server-id, --relay-
log=myhost-bin (to make the server believe that these regular binary log files are relay log files) and
--skip-slave-start options. After the server starts, issue these statements:

CHANGE MASTER TO
 RELAY_LOG_FILE='myhost-bin.153',
 RELAY_LOG_POS=410,
 MASTER_HOST='some_dummy_string';
START SLAVE SQL_THREAD;

The server reads and executes its own binary log files, thus achieving crash recovery. Once the
recovery is finished, run STOP SLAVE, shut down the server, clear the master info and relay log info
repositories, and restart the server with its original options.

Specifying the MASTER_HOST option (even with a dummy value) is required to make the server think it
is a slave.

The following table shows the maximum permissible length for the string-valued options.

Option Maximum Length

MASTER_HOST 60

MASTER_USER 16

MASTER_PASSWORD 32

MASTER_LOG_FILE 255

RELAY_LOG_FILE 255

SQL Statements for Controlling Slave Servers

1459

Option Maximum Length

MASTER_SSL_CA 255

MASTER_SSL_CAPATH 255

MASTER_SSL_CERT 255

MASTER_SSL_CRL 255

MASTER_SSL_CRLPATH 255

MASTER_SSL_KEY 255

MASTER_SSL_CIPHER 511

13.4.2.2 CHANGE REPLICATION FILTER Syntax

CHANGE REPLICATION FILTER filter[, filter][, ...]

filter:
 REPLICATE_DO_DB = (db_list)
 | REPLICATE_IGNORE_DB = (db_list)
 | REPLICATE_DO_TABLE = (tbl_list)
 | REPLICATE_IGNORE_TABLE = (tbl_list)
 | REPLICATE_WILD_DO_TABLE = (wild_tbl_list)
 | REPLICATE_WILD_IGNORE_TABLE = (wild_tbl_list)
 | REPLICATE_REWRITE_DB = (db_pair_list)

db_list:
 db_name[, db_name][, ...]

tbl_list:
 tbl_name[, tbl_name][, ...]

wild_tbl_list:
 'pattern'[, 'pattern'][, ...]

db_pair_list:
 (db_pair)[, (db_pair)][, ...]

db_pair:
 from_db, to_db

In MySQL 5.7.3 and later, CHANGE REPLICATION FILTER sets one or more replication filtering
rules on the slave in the same way as starting the slave mysqld with replication filtering options
such as --replicate-do-db or --replicate-wild-ignore-table. Unlike the case with the
server options, this statement does not require restarting the server to take effect, only that the slave
SQL thread be stopped using STOP SLAVE SQL_THREAD first (and restarted with START SLAVE
SQL_THREAD afterwards).

CHANGE REPLICATION FILTER options have the effects described and relate to --replicate-*
server options shown in the following list:

• REPLICATE_DO_DB: Include updates based on database name. Equivalent to --replicate-do-
db.

• REPLICATE_IGNORE_DB: Exclude updates based on database name. Equivalent to --replicate-
ignore-db.

• REPLICATE_DO_TABLE: Include updates based on table name. Equivalent to --replicate-do-
table.

• REPLICATE_IGNORE_TABLE: Exclude updates based on table name. Equivalent to --replicate-
ignore-table.

• REPLICATE_WILD_DO_TABLE: Include updates based on wildcard pattern matching table name.
Equivalent to --replicate-wild-do-table.

SQL Statements for Controlling Slave Servers

1460

• REPLICATE_WILD_IGNORE_TABLE: Exclude updates based on wildcard pattern matching table
name. Equivalent to --replicate-wild-ignore-table.

• REPLICATE_REWRITE_DB: Perform updates on slave after substituting new name on slave for
specified database on master. Equivalent to --replicate-rewrite-db.

The precise effects of REPLICATE_DO_DB and REPLICATE_IGNORE_DB filters are dependent on
whether statement-based or row-based replication is in effect. See Section 16.2.3, “How Servers
Evaluate Replication Filtering Rules”, for more information.

Mutliple replication filtering rules can be created in a single CHANGE REPLICATION FILTER
statement by separating the rules with commas, as shown here:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (d1), REPLICATE_IGNORE_DB = (d2);

Issuing the statement just shown is equivalent to starting the slave mysqld with the options --
replicate-do-db=d1 --replicate-ignore-db=d2.

If the same filtering rule is specified multiple times, only the last such rule is actually used.
For example, the two statements shown here have exactly the same effect, because the first
REPLICATE_DO_DB rule in the first statement is ignored:

CHANGE REPLICATION FILTER
 REPLICATION_DO_DB = (db1, db2), REPLICATE_DO_DB = (db3, db4);

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (db3,db4);

Caution

This behavior differs from that of the --replicate-* filter options where
specifying the same option multiple times causes the creation of multiple filter
rules.

Names of tables and database not containing any special characters need not be quoted. Values used
with REPLICATION_WILD_TABLE and REPLICATION_WILD_IGNORE_TABLE are string expressions,
possibly containing (special) wildcard characters, and so must be quoted. This is shown in the following
example statements:

CHANGE REPLICATION FILTER
 REPLICATE_WILD_DO_TABLE = ('db1.old%');

CHANGE REPLICATION FILTER
 REPLICATE_WILD_IGNORE_TABLE = ('db1.new%', 'db2.new*');

Values used with REPLICATE_REWRITE_DB represent pairs of database names; each such value
must be enclosed in parentheses. The following statement rewrites statements occurring on database
dbA on the master to database dbB on the slave:

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB = ((db1, db2));

The statement just shown contains two sets of parentheses, one enclosing the pair of database names,
and the other enclosing the entire list. This is perhap more easily seen in the following example, which
creates two rewrite-db rules, one rewriting database dbA to dbB, and one rewriting database dbC to
dbD:

CHANGE REPLICATION FILTER
 REPLICATE_REWRITE_DB = ((dbA, dbB), (dbC, dbD));

SQL Statements for Controlling Slave Servers

1461

This statement leaves any existing replication filtering rules unchanged; to unset all filters of a given
type, set the filter's value to an explicitly empty list, as shown in this example, which removes all
existing REPLICATE_DO_DB and REPLICATE_IGNORE_DB rules:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (), REPLICATE_IGNORE_DB = ();

Setting a filter to empty in this way removes all existing rules, does not create any new ones, and does
not restore any rules set at mysqld startup using --replicate-* options on the command line or in
the configuration file.

For more information, see Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

13.4.2.3 MASTER_POS_WAIT() Syntax

SELECT MASTER_POS_WAIT('master_log_file', master_log_pos [, timeout])

This is actually a function, not a statement. It is used to ensure that the slave has read and executed
events up to a given position in the master's binary log. See Section 12.16, “Miscellaneous Functions”,
for a full description.

13.4.2.4 RESET SLAVE Syntax

RESET SLAVE [ALL]

RESET SLAVE makes the slave forget its replication position in the master's binary log. This statement
is meant to be used for a clean start: It clears the master info and relay log info repositories, deletes
all the relay log files, and starts a new relay log file. It also resets to 0 the replication delay specified
with the MASTER_DELAY option to CHANGE MASTER TO. To use RESET SLAVE, the slave replication
threads must be stopped (use STOP SLAVE if necessary).

Note

All relay log files are deleted, even if they have not been completely executed
by the slave SQL thread. (This is a condition likely to exist on a replication slave
if you have issued a STOP SLAVE statement or if the slave is highly loaded.)

In MySQL 5.7 (unlike the case in MySQL 5.1 and earlier), RESET SLAVE does not change any
replication connection parameters such as master host, master port, master user, or master password,
which are retained in memory. This means that START SLAVE can be issued without requiring a
CHANGE MASTER TO statement following RESET SLAVE.

Connection parameters are reset by RESET SLAVE ALL. (RESET SLAVE followed by a restart of the
slave mysqld also does this.)

In MySQL 5.7, RESET SLAVE causes an implicit commit of an ongoing transaction. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

If the slave SQL thread was in the middle of replicating temporary tables when it was stopped, and
RESET SLAVE is issued, these replicated temporary tables are deleted on the slave.

13.4.2.5 SET GLOBAL sql_slave_skip_counter Syntax

SET GLOBAL sql_slave_skip_counter = N

This statement skips the next N events from the master. This is useful for recovering from replication
stops caused by a statement.

SQL Statements for Controlling Slave Servers

1462

This statement is valid only when the slave threads are not running. Otherwise, it produces an error.

When using this statement, it is important to understand that the binary log is actually organized as a
sequence of groups known as event groups. Each event group consists of a sequence of events.

• For transactional tables, an event group corresponds to a transaction.

• For nontransactional tables, an event group corresponds to a single SQL statement.

Note

A single transaction can contain changes to both transactional and
nontransactional tables.

When you use SET GLOBAL sql_slave_skip_counter to skip events and the result is in the
middle of a group, the slave continues to skip events until it reaches the end of the group. Execution
then starts with the next event group.

In MySQL 5.7, issuing this statement causes the previous values of RELAY_LOG_FILE,
RELAY_LOG_POS, and sql_slave_skip_counter to be written to the error log.

13.4.2.6 START SLAVE Syntax

START SLAVE [thread_types] [until_option] [connection_options]

thread_types:
 [thread_type [, thread_type] ...]

thread_type:
 IO_THREAD | SQL_THREAD

until_option:
 UNTIL { {SQL_BEFORE_GTIDS | SQL_AFTER_GTIDS} = gtid_set
 | MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
 | RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
 | SQL_AFTER_MTS_GAPS }

connection_options:
 [USER='user_name'] [PASSWORD='user_pass'] [DEFAULT_AUTH='plugin_name'] [PLUGIN_DIR='plugin_dir']

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9,A-F]

interval:
 n[-n]

 (n >= 1)

START SLAVE with no thread_type options starts both of the slave threads. The I/O thread reads
events from the master server and stores them in the relay log. The SQL thread reads events from the
relay log and executes them. START SLAVE requires the SUPER privilege.

If START SLAVE succeeds in starting the slave threads, it returns without any error. However, even
in that case, it might be that the slave threads start and then later stop (for example, because they do
not manage to connect to the master or read its binary log, or some other problem). START SLAVE

SQL Statements for Controlling Slave Servers

1463

does not warn you about this. You must check the slave's error log for error messages generated by
the slave threads, or check that they are running satisfactorily with SHOW SLAVE STATUS.

In MySQL 5.7, START SLAVE causes an implicit commit of an ongoing transaction. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

Beginning with MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement
(Bug #16062608).

MySQL 5.7 supports pluggable user-password authentication with START SLAVE with the USER,
PASSWORD, DEFAULT_AUTH and PLUGIN_DIR options, as described in the following list:

• USER: User name. Cannot be set to an empty or null string, or left unset if PASSWORD is used.

• PASSWORD: Password.

• DEFAULT_AUTH: Name of plugin; default is MySQL native authentication.

• PLUGIN_DIR: Location of plugin.

You cannot use the SQL_THREAD option when specifying any of USER, PASSWORD, DEFAULT_AUTH, or
PLUGIN_DIR, unless the IO_THREAD option is also provided.

See Section 6.3.8, “Pluggable Authentication”, for more information.

If an insecure connection is used with any these options, the server issues the warning Sending
passwords in plain text without SSL/TLS is extremely insecure.

START SLAVE ... UNTIL supports two additional options for use with global transaction identifiers
(GTIDs) (see Section 16.1.3, “Replication with Global Transaction Identifiers”). Each of these takes a
set of one or more global transaction identifiers gtid_set as an argument (see GTID sets, for more
information).

When no thread_type is specified, START SLAVE UNTIL SQL_BEFORE_GTIDS causes the slave
SQL thread to process transactions until it has reached the first transaction whose GTID is listed in
the gtid_set. START SLAVE UNTIL SQL_AFTER_GTIDS causes the slave threads to process
all transactions until the last transaction in the gtid_set has been processed by both threads. In
other words, START SLAVE UNTIL SQL_BEFORE_GTIDS causes the slave SQL thread to process all
transactions occurring before the first GTID in the gtid_set is reached, and START SLAVE UNTIL
SQL_AFTER_GTIDS causes the slave threads to handle all transactions, including those whose GTIDs
are found in gtid_set, until each has encountered a transaction whose GTID is not part of the set.
SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS each support the SQL_THREAD and IO_THREAD
options, although using IO_THREAD with them currently has no effect.

For example, START SLAVE SQL_THREAD UNTIL SQL_BEFORE_GTIDS =
3E11FA47-71CA-11E1-9E33-C80AA9429562:11-56 causes the slave SQL thread
to process all transactions originating from the master whose server_uuid [2037] is
3E11FA47-71CA-11E1-9E33-C80AA9429562 until it encounters the transaction having
sequence number 11; it then stops without processing this transaction. In other words, all
transactions up to and including the transaction with sequence number 10 are processed. Executing
START SLAVE SQL_THREAD UNTIL SQL_AFTER_GTIDS = 3E11FA47-71CA-11E1-9E33-
C80AA9429562:11-56, on the other hand, would cause the slave SQL thread to obtain all
transactions just mentioned from the master, including all of the transactions having the sequence
numbers 11 through 56, and then to stop without processing any additional transactions; that is, the
transaction having sequence number 56 would be the last transaction fetched by the slave SQL thread.

Prior to MySQL 5.7.3, SQL_AFTER_GTIDS did not stop the slave once the indicated transaction waa
completed, but waited until another GTID event was received (Bug #14767986).

START SLAVE UNTIL SQL_AFTER_MTS_GAPS causes a multi-threaded slave's SQL threads
to run until no more gaps are found in the relay log, and then to stop. This statement can take

SQL Statements for Controlling Slave Servers

1464

an SQL_THREAD option, but the effects of the statement remain unchanged. It has no effect on
the slave I/O thread (and cannot be used with the IO_THREAD option). START SLAVE UNTIL
SQL_AFTER_MTS_GAPS should be used before switching the slave from multi-threaded mode to
single-threaded mode (that is, when resetting slave_parallel_workers back to 0 from a positive,
nonzero value) after slave has failed with errors in multi-threaded mode.

To change a failed multi-threaded slave to single-threaded mode, you can issue the following series of
statements, in the order shown:

START SLAVE UNTIL SQL_AFTER_MTS_GAPS;

SET @@GLOBAL.slave_parallel_workers = 0;

START SLAVE SQL_THREAD;

If you were running the failed multi-threaded slave with relay_log_recovery enabled, then you
must issue START SLAVE UNTIL SQL_AFTER_MTS_GAPS prior to executing CHANGE MASTER TO.
Otherwise the latter statement fails.

Note

It is possible to view the entire text of a running START SLAVE ...
statement, including any USER or PASSWORD values used, in the output of
SHOW PROCESSLIST. This is also true for the text of a running CHANGE
MASTER TO statement, including any values it employs for MASTER_USER or
MASTER_PASSWORD.

START SLAVE sends an acknowledgment to the user after both the I/O thread and the SQL thread
have started. However, the I/O thread may not yet have connected. For this reason, a successful
START SLAVE causes SHOW SLAVE STATUS to show Slave_SQL_Running=Yes, but this does not
guarantee that Slave_IO_Running=Yes (because Slave_IO_Running=Yes only if the I/O thread is
running and connected). For more information, see Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”,
and Section 16.1.5.1, “Checking Replication Status”.

You can add IO_THREAD and SQL_THREAD options to the statement to name which of the
threads to start. The SQL_THREAD option is disallowed when specifying any of USER, PASSWORD,
DEFAULT_AUTH, or PLUGIN_DIR, unless the IO_THREAD option is also provided.

An UNTIL clause (until_option, in the preceding grammar) may be added to specify that the slave
should start and run until the SQL thread reaches a given point in the master binary log, specified
by the MASTER_LOG_POS and MASTER_LOG_FILE options, or a given point in the slave relay log,
indicated with the RELAY_LOG_POS and RELAY_LOG_FILE options. When the SQL thread reaches
the point specified, it stops. If the SQL_THREAD option is specified in the statement, it starts only the
SQL thread. Otherwise, it starts both slave threads. If the SQL thread is running, the UNTIL clause is
ignored and a warning is issued. You cannot use an UNTIL clause with the IO_THREAD option.

It is also possible with START SLAVE UNTIL to specify a stop point relative to a given GTID or set of
GTIDs using one of the options SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS, as explained previously
in this section. When using one of these options, you can specify SQL_THREAD, IO_THREAD, both of
these, or neither of them. If you specify only SQL_THREAD, then only the slave SQL thread is affected
by the statement; if only IO_THREAD is used, then only the slave I/O is affected. If both SQL_THREAD
and IO_THREAD are used, or if neither of them is used, then both the SQL and I/O threads are affected
by the statement.

The UNTIL clause is not supported for multi-threaded slaves except when also using
SQL_AFTER_MTS_GAPS.

For an UNTIL clause, you must specify any one of the following:

• Both a log file name and a position in that file

SQL Statements for Controlling Slave Servers

1465

• Either of SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS

• SQL_AFTER_MTS_GAPS

Do not mix master and relay log options. Do not mix log file options with GTID options.

Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE statement
that includes no UNTIL clause, or a server restart.

When specifying a log file and position, you can use the IO_THREAD option with START SLAVE ...
UNTIL even though only the SQL thread is affected by this statement. The IO_THREAD option is
ignored in such cases. The preceding restriction does not apply when using one of the GTID options
(SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS); the GTID options support both SQL_THREAD and
IO_THREAD, as explained previously in this section.

The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until just
before the point where you want to avoid having the slave replicate an event. For example, if an unwise
DROP TABLE statement was executed on the master, you can use UNTIL to tell the slave to execute
up to that point but no farther. To find what the event is, use mysqlbinlog with the master binary log
or slave relay log, or by using a SHOW BINLOG EVENTS statement.

If you are using UNTIL to have the slave process replicated queries in sections, it is recommended
that you start the slave with the --skip-slave-start option to prevent the SQL thread from running
when the slave server starts. It is probably best to use this option in an option file rather than on the
command line, so that an unexpected server restart does not cause it to be forgotten.

The SHOW SLAVE STATUS statement includes output fields that display the current values of the
UNTIL condition.

In very old versions of MySQL (before 4.0.5), this statement was called SLAVE START. In MySQL 5.7,
that syntax produces an error.

13.4.2.7 STOP SLAVE Syntax

STOP SLAVE [thread_types]

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

Stops the slave threads. STOP SLAVE requires the SUPER privilege. Recommended best practice
is to execute STOP SLAVE on the slave before stopping the slave server (see Section 5.1.12, “The
Shutdown Process”, for more information).

When using the row-based logging format: You should execute STOP SLAVE or STOP SLAVE
SQL_THREAD on the slave prior to shutting down the slave server if you are replicating any tables that
use a nontransactional storage engine (see the Note later in this section).

Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to
name the thread or threads to be stopped.

In MySQL 5.7, STOP SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3,
“Statements That Cause an Implicit Commit”.

Beginning with MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement
(Bug #16062608).

In MySQL 5.7.2 and later, you can control how long STOP SLAVE waits before timing out by setting
the rpl_stop_slave_timeout system variable. This can be used to avoid deadlocks between

SQL Syntax for Prepared Statements

1466

STOP SLAVE and other slave SQL statements using different client connections to the slave. (Bug
#16856735)

Prior to MySQL 5.7.4, it was necessary to issue this statement on a running slave prior to executing
CHANGE MASTER TO. In MySQL 5.7.4 and later, this is no longer always the case; some CHANGE
MASTER TO statements are now allowed while the slave is running, depending on the states of the
slave SQL and I/O threads. However, using STOP SLAVE prior to executing CHANGE MASTER TO in
such cases is still supported. See Section 13.4.2.1, “CHANGE MASTER TO Syntax”, and Section 16.3.6,
“Switching Masters During Failover”, for more information.

When using statement-based replication, changing the master while it has open temporary tables is
potentially unsafe. (This is one of the reasons why statement-based replication of temporary tables is
not recommended.) In MySQL 5.7.4 and later, CHANGE MASTER TO following STOP SLAVE causes
a warning (ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO) if there are any temporary tables open
on the slave. You can find out whether there are any temporary tables on the slave by checking the
value of Slave_open_temp_tables; when using statement-based replication, this value should be 0
before executing CHANGE MASTER TO.

Note

In MySQL 5.7, STOP SLAVE waits until the current replication event group
affecting one or more nontransactional tables has finished executing (if there
is any such replication group), or until the user issues a KILL QUERY or KILL
CONNECTION statement. (Bug #319, Bug #38205)

In very old versions of MySQL (before 4.0.5), this statement was called SLAVE STOP. In MySQL 5.7,
that syntax produces an error.

13.5 SQL Syntax for Prepared Statements

MySQL 5.7 provides support for server-side prepared statements. This support takes advantage of
the efficient client/server binary protocol available since MySQL 4.1. Using prepared statements with
placeholders for parameter values has the following benefits:

• Less overhead for parsing the statement each time it is executed. Typically, database applications
process large volumes of almost-identical statements, with only changes to literal or variable values
in clauses such as WHERE for queries and deletes, SET for updates, and VALUES for inserts.

• Protection against SQL injection attacks. The parameter values can contain unescaped SQL quote
and delimiter characters.

Prepared Statements in Application Programs

You can use server-side prepared statements through client programming interfaces, including the
MySQL C API client library or MySQL Connector/C for C programs, MySQL Connector/J for Java
programs, and MySQL Connector/Net for programs using .NET technologies. For example, the C API
provides a set of function calls that make up its prepared statement API. See Section 21.8.8, “C API
Prepared Statements”. Other language interfaces can provide support for prepared statements that use
the binary protocol by linking in the C client library, one example being the mysqli extension, available
in PHP 5.0 and later.

Prepared Statements in SQL Scripts

An alternative SQL interface to prepared statements is available. This interface is not as efficient as
using the binary protocol through a prepared statement API, but requires no programming because it is
available directly at the SQL level:

• You can use it when no programming interface is available to you.

http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://php.net/mysqli

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

1467

• You can use it from any program that can send SQL statements to the server to be executed, such
as the mysql client program.

• You can use it even if the client is using an old version of the client library, as long as you connect to
a server running MySQL 4.1 or higher.

SQL syntax for prepared statements is intended to be used for situations such as these:

• To test how prepared statements work in your application before coding it.

• To use prepared statements when you do not have access to a programming API that supports
them.

• To interactively troubleshoot application issues with prepared statements.

• To create a test case that reproduces a problem with prepared statements, so that you can file a bug
report.

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

SQL syntax for prepared statements is based on three SQL statements:

• PREPARE prepares a statement for execution (see Section 13.5.1, “PREPARE Syntax”).

• EXECUTE executes a prepared statement (see Section 13.5.2, “EXECUTE Syntax”).

• DEALLOCATE PREPARE releases a prepared statement (see Section 13.5.3, “DEALLOCATE
PREPARE Syntax”).

The following examples show two equivalent ways of preparing a statement that computes the
hypotenuse of a triangle given the lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the text
of the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement as a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

Here is an additional example that demonstrates how to choose the table on which to perform a query
at runtime, by storing the name of the table as a user variable:

mysql> USE test;

SQL Syntax Allowed in Prepared Statements

1468

mysql> CREATE TABLE t1 (a INT NOT NULL);
mysql> INSERT INTO t1 VALUES (4), (8), (11), (32), (80);

mysql> SET @table = 't1';
mysql> SET @s = CONCAT('SELECT * FROM ', @table);

mysql> PREPARE stmt3 FROM @s;
mysql> EXECUTE stmt3;
+----+
| a |
+----+
| 4 |
| 8 |
| 11 |
| 32 |
| 80 |
+----+

mysql> DEALLOCATE PREPARE stmt3;

A prepared statement is specific to the session in which it was created. If you terminate a session
without deallocating a previously prepared statement, the server deallocates it automatically.

A prepared statement is also global to the session. If you create a prepared statement within a stored
routine, it is not deallocated when the stored routine ends.

To guard against too many prepared statements being created simultaneously, set the
max_prepared_stmt_count system variable. To prevent the use of prepared statements, set the
value to 0.

SQL Syntax Allowed in Prepared Statements

The following SQL statements can be used as prepared statements:

ALTER TABLE
ALTER USER
ANALYZE TABLE
CACHE INDEX
CALL
CHANGE MASTER
CHECKSUM {TABLE | TABLES}
COMMIT
{CREATE | DROP} INDEX
{CREATE | RENAME | DROP} DATABASE
{CREATE | DROP} TABLE
{CREATE | RENAME | DROP} USER
{CREATE | DROP} VIEW
DELETE
DO
FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES
 | LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES}
GRANT
INSERT
INSTALL PLUGIN
KILL
LOAD INDEX INTO CACHE
OPTIMIZE TABLE
RENAME TABLE
REPAIR TABLE
REPLACE
RESET {MASTER | SLAVE | QUERY CACHE}
REVOKE
SELECT
SET
SHOW {WARNINGS | ERRORS}
SHOW BINLOG EVENTS
SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW}
SHOW {MASTER | BINARY} LOGS
SHOW {MASTER | SLAVE} STATUS

PREPARE Syntax

1469

SLAVE {START | STOP}
TRUNCATE TABLE
UNINSTALL PLUGIN
UPDATE

As of MySQL 5.7.2, for compliance with the SQL standard, which states that diagnostics statements
are not preparable, MySQL does not support the following as prepared statements:

• SHOW WARNINGS, SHOW COUNT(*) WARNINGS

• SHOW ERRORS, SHOW COUNT(*) ERRORS

• Statements containing any reference to the warning_count or error_count system variable.

Other statements are not supported in MySQL 5.7.

Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. Exceptions are noted in Section E.1, “Restrictions on Stored Programs”.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.

Placeholders can be used for the arguments of the LIMIT clause when using prepared statements.
See Section 13.2.9, “SELECT Syntax”.

In prepared CALL statements used with PREPARE and EXECUTE, placeholder support for OUT and
INOUT parameters is available beginning with MySQL 5.7. See Section 13.2.1, “CALL Syntax”, for
an example and a workaround for earlier versions. Placeholders can be used for IN parameters
regardless of version.

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to
PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements is distinct from using prepared statement API calls. For example,
you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or
DEALLOCATE PREPARE statement.

SQL syntax for prepared statements can be used within stored procedures, but not in stored functions
or triggers. However, a cursor cannot be used for a dynamic statement that is prepared and executed
with PREPARE and EXECUTE. The statement for a cursor is checked at cursor creation time, so the
statement cannot be dynamic.

SQL syntax for prepared statements does not support multi-statements (that is, multiple statements
within a single string separated by “;” characters).

Prepared statements use the query cache under the conditions described in Section 8.9.3.1, “How the
Query Cache Operates”.

To write C programs that use the CALL SQL statement to execute stored procedures that contain
prepared statements, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each
CALL returns a result to indicate the call status, in addition to any result sets that might be returned by
statements executed within the procedure.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). For additional
information, see Section 13.2.1, “CALL Syntax”.

13.5.1 PREPARE Syntax

PREPARE stmt_name FROM preparable_stmt

EXECUTE Syntax

1470

The PREPARE statement prepares a SQL statement and assigns it a name, stmt_name, by which
to refer to the statement later. The prepared statement is executed with EXECUTE and released with
DEALLOCATE PREPARE. For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.

Statement names are not case sensitive. preparable_stmt is either a string literal or a user variable
that contains the text of the SQL statement. The text must represent a single statement, not multiple
statements. Within the statement, ? characters can be used as parameter markers to indicate where
data values are to be bound to the query later when you execute it. The ? characters should not be
enclosed within quotation marks, even if you intend to bind them to string values. Parameter markers
can be used only where data values should appear, not for SQL keywords, identifiers, and so forth.

If a prepared statement with the given name already exists, it is deallocated implicitly before the new
statement is prepared. This means that if the new statement contains an error and cannot be prepared,
an error is returned and no statement with the given name exists.

The scope of a prepared statement is the session within which it is created, which as several
implications:

• A prepared statement created in one session is not available to other sessions.

• When a session ends, whether normally or abnormally, its prepared statements no longer exist.
If auto-reconnect is enabled, the client is not notified that the connection was lost. For this
reason, clients may wish to disable auto-reconnect. See Section 21.8.16, “Controlling Automatic
Reconnection Behavior”.

• A prepared statement created within a stored program continues to exist after the program finishes
executing and can be executed outside the program later.

• A statement prepared in stored program context cannot refer to stored procedure or function
parameters or local variables because they go out of scope when the program ends and would be
unavailable were the statement to be executed later outside the program. As a workaround, refer
instead to user-defined variables, which also have session scope; see Section 9.4, “User-Defined
Variables”.

13.5.2 EXECUTE Syntax

EXECUTE stmt_name
 [USING @var_name [, @var_name] ...]

After preparing a statement with PREPARE, you execute it with an EXECUTE statement that refers to
the prepared statement name. If the prepared statement contains any parameter markers, you must
supply a USING clause that lists user variables containing the values to be bound to the parameters.
Parameter values can be supplied only by user variables, and the USING clause must name exactly as
many variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing different variables to it or setting
the variables to different values before each execution.

For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.

13.5.3 DEALLOCATE PREPARE Syntax

{DEALLOCATE | DROP} PREPARE stmt_name

To deallocate a prepared statement produced with PREPARE, use a DEALLOCATE PREPARE statement
that refers to the prepared statement name. Attempting to execute a prepared statement after
deallocating it results in an error. If too many prepared statements are created and not deallocated by
either the DEALLOCATE PREPARE statement or the end of the session, you might encounter the upper
limit enforced by the max_prepared_stmt_count system variable.

MySQL Compound-Statement Syntax

1471

For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.

13.6 MySQL Compound-Statement Syntax

This section describes the syntax for the BEGIN ... END compound statement and other statements
that can be used in the body of stored programs: Stored procedures and functions, triggers, and
events. These objects are defined in terms of SQL code that is stored on the server for later invocation
(see Chapter 18, Stored Programs and Views).

A compound statement is a block that can contain other blocks; declarations for variables, condition
handlers, and cursors; and flow control constructs such as loops and conditional tests.

13.6.1 BEGIN ... END Compound-Statement Syntax

[begin_label:] BEGIN
 [statement_list]
END [end_label]

BEGIN ... END syntax is used for writing compound statements, which can appear within stored
programs (stored procedures and functions, triggers, and events). A compound statement can contain
multiple statements, enclosed by the BEGIN and END keywords. statement_list represents
a list of one or more statements, each terminated by a semicolon (;) statement delimiter. The
statement_list itself is optional, so the empty compound statement (BEGIN END) is legal.

BEGIN ... END blocks can be nested.

Use of multiple statements requires that a client is able to send statement strings containing the ;
statement delimiter. In the mysql command-line client, this is handled with the delimiter command.
Changing the ; end-of-statement delimiter (for example, to //) permit ; to be used in a program body.
For an example, see Section 18.1, “Defining Stored Programs”.

A BEGIN ... END block can be labeled. See Section 13.6.2, “Statement Label Syntax”.

The optional [NOT] ATOMIC clause is not supported. This means that no transactional savepoint is
set at the start of the instruction block and the BEGIN clause used in this context has no effect on the
current transaction.

Note

Within all stored programs, the parser treats BEGIN [WORK] as the beginning
of a BEGIN ... END block. To begin a transaction in this context, use START
TRANSACTION instead.

13.6.2 Statement Label Syntax

[begin_label:] BEGIN
 [statement_list]
END [end_label]

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

DECLARE Syntax

1472

Labels are permitted for BEGIN ... END blocks and for the LOOP, REPEAT, and WHILE statements.
Label use for those statements follows these rules:

• begin_label must be followed by a colon.

• begin_label can be given without end_label. If end_label is present, it must be the same as
begin_label.

• end_label cannot be given without begin_label.

• Labels at the same nesting level must be distinct.

• Labels can be up to 16 characters long.

To refer to a label within the labeled construct, use an ITERATE or LEAVE statement. The following
example uses those statements to continue iterating or terminate the loop:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN ITERATE label1; END IF;
 LEAVE label1;
 END LOOP label1;
END;

The scope of a block label does not include the code for handlers declared within the block. For details,
see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

13.6.3 DECLARE Syntax

The DECLARE statement is used to define various items local to a program:

• Local variables. See Section 13.6.4, “Variables in Stored Programs”.

• Conditions and handlers. See Section 13.6.7, “Condition Handling”.

• Cursors. See Section 13.6.6, “Cursors”.

DECLARE is permitted only inside a BEGIN ... END compound statement and must be at its start,
before any other statements.

Declarations must follow a certain order. Cursor declarations must appear before handler declarations.
Variable and condition declarations must appear before cursor or handler declarations.

13.6.4 Variables in Stored Programs

System variables and user-defined variables can be used in stored programs, just as they can be
used outside stored-program context. In addition, stored programs can use DECLARE to define local
variables, and stored routines (procedures and functions) can be declared to take parameters that
communicate values between the routine and its caller.

• To declare local variables, use the DECLARE statement, as described in Section 13.6.4.1, “Local
Variable DECLARE Syntax”.

• Variables can be set directly with the SET statement. See Section 13.7.4, “SET Syntax”.

• Results from queries can be retrieved into local variables using SELECT ... INTO var_list or
by opening a cursor and using FETCH ... INTO var_list. See Section 13.2.9.1, “SELECT ...
INTO Syntax”, and Section 13.6.6, “Cursors”.

For information about the scope of local variables and how MySQL resolves ambiguous names, see
Section 13.6.4.2, “Local Variable Scope and Resolution”.

Variables in Stored Programs

1473

It is not permitted to assign the value DEFAULT to stored procedure or function parameters or stored
program local variables (for example with a SET var_name = DEFAULT statement). In MySQL 5.7,
this results in a syntax error.

13.6.4.1 Local Variable DECLARE Syntax

DECLARE var_name [, var_name] ... type [DEFAULT value]

This statement declares local variables within stored programs. To provide a default value for a
variable, include a DEFAULT clause. The value can be specified as an expression; it need not be a
constant. If the DEFAULT clause is missing, the initial value is NULL.

Local variables are treated like stored routine parameters with respect to data type and overflow
checking. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.

Variable declarations must appear before cursor or handler declarations.

Local variable names are not case sensitive. Permissible characters and quoting rules are the same as
for other identifiers, as described in Section 9.2, “Schema Object Names”.

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can
be referred to in blocks nested within the declaring block, except those blocks that declare a variable
with the same name.

13.6.4.2 Local Variable Scope and Resolution

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can
be referred to in blocks nested within the declaring block, except those blocks that declare a variable
with the same name.

Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the
current session, not the stored program, so the statement could be executed after the program ends, at
which point the variables would no longer be in scope. For example, SELECT ... INTO local_var
cannot be used as a prepared statement. This restriction also applies to stored procedure and function
parameters. See Section 13.5.1, “PREPARE Syntax”.

A local variable should not have the same name as a table column. If an SQL statement, such as a
SELECT ... INTO statement, contains a reference to a column and a declared local variable with
the same name, MySQL currently interprets the reference as the name of a variable. Consider the
following procedure definition:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;

 SELECT xname, id INTO newname, xid
 FROM table1 WHERE xname = xname;
 SELECT newname;
END;

MySQL interprets xname in the SELECT statement as a reference to the xname variable rather than the
xname column. Consequently, when the procedure sp1()is called, the newname variable returns the
value 'bob' regardless of the value of the table1.xname column.

Similarly, the cursor definition in the following procedure contains a SELECT statement that refers
to xname. MySQL interprets this as a reference to the variable of that name rather than a column
reference.

Flow Control Statements

1474

CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;
 DECLARE done TINYINT DEFAULT 0;
 DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

 OPEN cur1;
 read_loop: LOOP
 FETCH FROM cur1 INTO newname, xid;
 IF done THEN LEAVE read_loop; END IF;
 SELECT newname;
 END LOOP;
 CLOSE cur1;
END;

See also Section E.1, “Restrictions on Stored Programs”.

13.6.5 Flow Control Statements

MySQL supports the IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs for flow
control within stored programs. It also supports RETURN within stored functions.

Many of these constructs contain other statements, as indicated by the grammar specifications in the
following sections. Such constructs may be nested. For example, an IF statement might contain a
WHILE loop, which itself contains a CASE statement.

MySQL does not support FOR loops.

13.6.5.1 CASE Syntax

CASE case_value
 WHEN when_value THEN statement_list
 [WHEN when_value THEN statement_list] ...
 [ELSE statement_list]
END CASE

Or:

CASE
 WHEN search_condition THEN statement_list
 [WHEN search_condition THEN statement_list] ...
 [ELSE statement_list]
END CASE

The CASE statement for stored programs implements a complex conditional construct.

Note

There is also a CASE expression, which differs from the CASE statement
described here. See Section 12.4, “Control Flow Functions”. The CASE
statement cannot have an ELSE NULL clause, and it is terminated with END
CASE instead of END.

For the first syntax, case_value is an expression. This value is compared to the when_value
expression in each WHEN clause until one of them is equal. When an equal when_value is found, the
corresponding THEN clause statement_list executes. If no when_value is equal, the ELSE clause
statement_list executes, if there is one.

This syntax cannot be used to test for equality with NULL because NULL = NULL is false. See
Section 3.3.4.6, “Working with NULL Values”.

Flow Control Statements

1475

For the second syntax, each WHEN clause search_condition expression is evaluated until
one is true, at which point its corresponding THEN clause statement_list executes. If no
search_condition is equal, the ELSE clause statement_list executes, if there is one.

If no when_value or search_condition matches the value tested and the CASE statement contains
no ELSE clause, a Case not found for CASE statement error results.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

To handle situations where no value is matched by any WHEN clause, use an ELSE containing an empty
BEGIN ... END block, as shown in this example. (The indentation used here in the ELSE clause is for
purposes of clarity only, and is not otherwise significant.)

DELIMITER |

CREATE PROCEDURE p()
 BEGIN
 DECLARE v INT DEFAULT 1;

 CASE v
 WHEN 2 THEN SELECT v;
 WHEN 3 THEN SELECT 0;
 ELSE
 BEGIN
 END;
 END CASE;
 END;
 |

13.6.5.2 IF Syntax

IF search_condition THEN statement_list
 [ELSEIF search_condition THEN statement_list] ...
 [ELSE statement_list]
END IF

The IF statement for stored programs implements a basic conditional construct.

Note

There is also an IF() function, which differs from the IF statement described
here. See Section 12.4, “Control Flow Functions”. The IF statement can have
THEN, ELSE, and ELSEIF clauses, and it is terminated with END IF.

If the search_condition evaluates to true, the corresponding THEN or ELSEIF clause
statement_list executes. If no search_condition matches, the ELSE clause statement_list
executes.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

An IF ... END IF block, like all other flow-control blocks used within stored programs, must be
terminated with a semicolon, as shown in this example:

DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
 RETURNS VARCHAR(20)

 BEGIN
 DECLARE s VARCHAR(20);

Flow Control Statements

1476

 IF n > m THEN SET s = '>';
 ELSEIF n = m THEN SET s = '=';
 ELSE SET s = '<';
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m);

 RETURN s;
 END //

DELIMITER ;

As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control
constructs, including other IF statements. Each IF must be terminated by its own END IF followed
by a semicolon. You can use indentation to make nested flow-control blocks more easily readable by
humans (although this is not required by MySQL), as shown here:

DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
 RETURNS VARCHAR(50)

 BEGIN
 DECLARE s VARCHAR(50);

 IF n = m THEN SET s = 'equals';
 ELSE
 IF n > m THEN SET s = 'greater';
 ELSE SET s = 'less';
 END IF;

 SET s = CONCAT('is ', s, ' than');
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m, '.');

 RETURN s;
 END //

DELIMITER ;

In this example, the inner IF is evaluated only if n is not equal to m.

13.6.5.3 ITERATE Syntax

ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “start the
loop again.”

For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.4 LEAVE Syntax

LEAVE label

This statement is used to exit the flow control construct that has the given label. If the label is for the
outermost stored program block, LEAVE exits the program.

LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).

For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.5 LOOP Syntax

Flow Control Statements

1477

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of the statement list, which
consists of one or more statements, each terminated by a semicolon (;) statement delimiter. The
statements within the loop are repeated until the loop is terminated. Usually, this is accomplished with a
LEAVE statement. Within a stored function, RETURN can also be used, which exits the function entirely.

Neglecting to include a loop-termination statement results in an infinite loop.

A LOOP statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN
 ITERATE label1;
 END IF;
 LEAVE label1;
 END LOOP label1;
 SET @x = p1;
END;

13.6.5.6 REPEAT Syntax

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition expression is
true. Thus, a REPEAT always enters the loop at least once. statement_list consists of one or more
statements, each terminated by a semicolon (;) statement delimiter.

A REPEAT statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT
 -> SET @x = @x + 1;
 -> UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+

Cursors

1478

| 1001 |
+------+
1 row in set (0.00 sec)

13.6.5.7 RETURN Syntax

RETURN expr

The RETURN statement terminates execution of a stored function and returns the value expr to the
function caller. There must be at least one RETURN statement in a stored function. There may be more
than one if the function has multiple exit points.

This statement is not used in stored procedures, triggers, or events. The LEAVE statement can be used
to exit a stored program of those types.

13.6.5.8 WHILE Syntax

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

The statement list within a WHILE statement is repeated as long as the search_condition
expression is true. statement_list consists of one or more SQL statements, each terminated by a
semicolon (;) statement delimiter.

A WHILE statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:

CREATE PROCEDURE dowhile()
BEGIN
 DECLARE v1 INT DEFAULT 5;

 WHILE v1 > 0 DO
 ...
 SET v1 = v1 - 1;
 END WHILE;
END;

13.6.6 Cursors

MySQL supports cursors inside stored programs. The syntax is as in embedded SQL. Cursors have
these properties:

• Asensitive: The server may or may not make a copy of its result table

• Read only: Not updatable

• Nonscrollable: Can be traversed only in one direction and cannot skip rows

Cursor declarations must appear before handler declarations and after variable and condition
declarations.

Example:

CREATE PROCEDURE curdemo()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE a CHAR(16);

Cursors

1479

 DECLARE b, c INT;
 DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
 DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur1;
 OPEN cur2;

 read_loop: LOOP
 FETCH cur1 INTO a, b;
 FETCH cur2 INTO c;
 IF done THEN
 LEAVE read_loop;
 END IF;
 IF b < c THEN
 INSERT INTO test.t3 VALUES (a,b);
 ELSE
 INSERT INTO test.t3 VALUES (a,c);
 END IF;
 END LOOP;

 CLOSE cur1;
 CLOSE cur2;
END;

13.6.6.1 Cursor CLOSE Syntax

CLOSE cursor_name

This statement closes a previously opened cursor. For an example, see Section 13.6.6, “Cursors”.

An error occurs if the cursor is not open.

If not closed explicitly, a cursor is closed at the end of the BEGIN ... END block in which it was
declared.

13.6.6.2 Cursor DECLARE Syntax

DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor and associates it with a SELECT statement that retrieves the rows to
be traversed by the cursor. To fetch the rows later, use a FETCH statement. The number of columns
retrieved by the SELECT statement must match the number of output variables specified in the FETCH
statement.

The SELECT statement cannot have an INTO clause.

Cursor declarations must appear before handler declarations and after variable and condition
declarations.

A stored program may contain multiple cursor declarations, but each cursor declared in a given block
must have a unique name. For an example, see Section 13.6.6, “Cursors”.

For information available through SHOW statements, it is possible in many cases to obtain equivalent
information by using a cursor with an INFORMATION_SCHEMA table.

13.6.6.3 Cursor FETCH Syntax

FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...

This statement fetches the next row for the SELECT statement associated with the specified cursor
(which must be open), and advances the cursor pointer. If a row exists, the fetched columns are stored

Condition Handling

1480

in the named variables. The number of columns retrieved by the SELECT statement must match the
number of output variables specified in the FETCH statement.

If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it (or for a NOT FOUND condition). For an example, see
Section 13.6.6, “Cursors”.

13.6.6.4 Cursor OPEN Syntax

OPEN cursor_name

This statement opens a previously declared cursor. For an example, see Section 13.6.6, “Cursors”.

13.6.7 Condition Handling

Conditions may arise during stored program execution that require special handling, such as exiting the
current program block or continuing execution. Handlers can be defined for general conditions such as
warnings or exceptions, or for specific conditions such as a particular error code. Specific conditions
can be assigned names and referred to that way in handlers.

To name a condition, use the DECLARE ... CONDITION statement. To declare a handler, use the
DECLARE ... HANDLER statement. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”, and
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”. For information about how the server chooses
handlers when a condition occurs, see Section 13.6.7.6, “Scope Rules for Handlers”.

To raise a condition, use the SIGNAL statement. To modify condition information within a condition
handler, use RESIGNAL. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”, and
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

13.6.7.1 DECLARE ... CONDITION Syntax

DECLARE condition_name CONDITION FOR condition_value

condition_value:
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value

The DECLARE ... CONDITION statement declares a named error condition, associating a name with
a condition that needs specific handling. The name can be referred to in a subsequent DECLARE ...
HANDLER statement (see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”).

Condition declarations must appear before cursor or handler declarations.

The condition_value for DECLARE ... CONDITION can be a MySQL error code (a number) or an
SQLSTATE value (a 5-character string literal). You should not use MySQL error code 0 or SQLSTATE
values that begin with '00', because those indicate success rather than an error condition. For a list of
MySQL error codes and SQLSTATE values, see Section C.3, “Server Error Codes and Messages”.

Using names for conditions can help make stored program code clearer. For example, this handler
applies to attempts to drop a nonexistent table, but that is apparent only if you know the meaning of
MySQL error code 1051:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler

Condition Handling

1481

 END;

By declaring a name for the condition, the purpose of the handler is more readily seen:

DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

Here is a named condition for the same condition, but based on the corresponding SQLSTATE value
rather than the MySQL error code:

DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

Condition names referred to in SIGNAL or use RESIGNAL statements must be associated with
SQLSTATE values, not MySQL error codes.

13.6.7.2 DECLARE ... HANDLER Syntax

DECLARE handler_action HANDLER
 FOR condition_value [, condition_value] ...
 statement

handler_action:
 CONTINUE
 | EXIT
 | UNDO

condition_value:
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
 | condition_name
 | SQLWARNING
 | NOT FOUND
 | SQLEXCEPTION

The DECLARE ... HANDLER statement specifies a handler that deals with one or more conditions.
If one of these conditions occurs, the specified statement executes. statement can be a simple
statement such as SET var_name = value, or a compound statement written using BEGIN and END
(see Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”).

Handler declarations must appear after variable or condition declarations.

The handler_action value indicates what action the handler takes after execution of the handler
statement:

• CONTINUE: Execution of the current program continues.

• EXIT: Execution terminates for the BEGIN ... END compound statement in which the handler is
declared. This is true even if the condition occurs in an inner block.

• UNDO: Not supported.

The condition_value for DECLARE ... HANDLER indicates the specific condition or class of
conditions that activates the handler:

• A MySQL error code (a number) or an SQLSTATE value (a 5-character string literal). You should
not use MySQL error code 0 or SQLSTATE values that begin with '00', because those indicate

Condition Handling

1482

success rather than an error condition. For a list of MySQL error codes and SQLSTATE values, see
Section C.3, “Server Error Codes and Messages”.

• A condition name previously specified with DECLARE ... CONDITION. A condition name can be
associated with a MySQL error code or SQLSTATE value. See Section 13.6.7.1, “DECLARE ...
CONDITION Syntax”.

• SQLWARNING is shorthand for the class of SQLSTATE values that begin with '01'.

• NOT FOUND is shorthand for the class of SQLSTATE values that begin with '02'. This is relevant
within the context of cursors and is used to control what happens when a cursor reaches the end
of a data set. If no more rows are available, a No Data condition occurs with SQLSTATE value
'02000'. To detect this condition, you can set up a handler for it (or for a NOT FOUND condition).
For an example, see Section 13.6.6, “Cursors”. This condition also occurs for SELECT ... INTO
var_list statements that retrieve no rows.

• SQLEXCEPTION is shorthand for the class of SQLSTATE values that do not begin with '00', '01',
or '02'.

For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6,
“Scope Rules for Handlers”.

If a condition occurs for which no handler has been declared, the action taken depends on the
condition class:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the
condition, as if there were an EXIT handler. If the program was called by another stored program,
the calling program handles the condition using the handler selection rules applied to its own
handlers.

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE
handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was
raised by SIGNAL or RESIGNAL, the action is EXIT.

The following example uses a handler for SQLSTATE '23000', which occurs for a duplicate-key error:

mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
 -> BEGIN
 -> DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
 -> SET @x = 1;
 -> INSERT INTO test.t VALUES (1);
 -> SET @x = 2;
 -> INSERT INTO test.t VALUES (1);
 -> SET @x = 3;
 -> END;
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
 +------+
 | @x |
 +------+
 | 3 |
 +------+
 1 row in set (0.00 sec)

Condition Handling

1483

Notice that @x is 3 after the procedure executes, which shows that execution continued to the end
of the procedure after the error occurred. If the DECLARE ... HANDLER statement had not been
present, MySQL would have taken the default action (EXIT) after the second INSERT failed due to the
PRIMARY KEY constraint, and SELECT @x would have returned 2.

To ignore a condition, declare a CONTINUE handler for it and associate it with an empty block. For
example:

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

The scope of a block label does not include the code for handlers declared within the block. Therefore,
the statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that
enclose the handler declaration. Consider the following example, where the REPEAT block has a label
of retry:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 ITERATE retry; # illegal
 END;
 IF i < 0 THEN
 LEAVE retry; # legal
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

The retry label is in scope for the IF statement within the block. It is not in scope for the CONTINUE
handler, so the reference there is invalid and results in an error:

ERROR 1308 (42000): LEAVE with no matching label: retry

To avoid references to outer labels in handlers, use one of these strategies:

• To leave the block, use an EXIT handler. If no block cleanup is required, the BEGIN ... END
handler body can be empty:

DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;

Otherwise, put the cleanup statements in the handler body:

DECLARE EXIT HANDLER FOR SQLWARNING
 BEGIN
 block cleanup statements
 END;

• To continue execution, set a status variable in a CONTINUE handler that can be checked in the
enclosing block to determine whether the handler was invoked. The following example uses the
variable done for this purpose:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 DECLARE done INT DEFAULT FALSE;
 retry:

Condition Handling

1484

 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 SET done = TRUE;
 END;
 IF done OR i < 0 THEN
 LEAVE retry;
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

13.6.7.3 GET DIAGNOSTICS Syntax

GET [CURRENT | STACKED] DIAGNOSTICS
{
 statement_information_item
 [, statement_information_item] ...
 | CONDITION condition_number
 condition_information_item
 [, condition_information_item] ...
}

statement_information_item:
 target = statement_information_item_name

condition_information_item:
 target = condition_information_item_name

statement_information_item_name:
 NUMBER
 | ROW_COUNT

condition_information_item_name:
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | RETURNED_SQLSTATE
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME

condition_number, target:
 (see following discussion)

SQL statements produce diagnostic information that populates the diagnostics area. The GET
DIAGNOSTICS statement enables applications to inspect this information. (You can also use SHOW
WARNINGS or SHOW ERRORS to see conditions or errors.)

No special privileges are required to execute GET DIAGNOSTICS.

The keyword CURRENT means to retrieve information from the current diagnostics area. The keyword
STACKED means to retrieve information from the second diagnostics area, which is available only if
the current context is a condition handler. If neither keyword is given, the default is to use the current
diagnostics area.

The GET DIAGNOSTICS statement is typically used in a handler within a stored program. It is a
MySQL extension that GET [CURRENT] DIAGNOSTICS is permitted outside handler context to check
the execution of any SQL statement. For example, if you invoke the mysql client program, you can
enter these statements at the prompt:

Condition Handling

1485

mysql> DROP TABLE test.no_such_table;
ERROR 1051 (42S02): Unknown table 'test.no_such_table'
mysql> GET DIAGNOSTICS CONDITION 1
 -> @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT;
mysql> SELECT @p1, @p2;
+-------+------------------------------------+
| @p1 | @p2 |
+-------+------------------------------------+
| 42S02 | Unknown table 'test.no_such_table' |
+-------+------------------------------------+

This extension applies only to the current diagnostics area. It does not apply to the second diagnostics
area because GET STACKED DIAGNOSTICS is permitted only if the current context is a condition
handler. If that is not the case, a GET STACKED DIAGNOSTICS when handler not active error
occurs.

For a description of the diagnostics area, see Section 13.6.7.7, “The MySQL Diagnostics Area”. Briefly,
it contains two kinds of information:

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no
conditions, this part of the diagnostics area is empty.

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

GET DIAGNOSTICS can obtain either statement or condition information, but not both in the same
statement:

• To obtain statement information, retrieve the desired statement items into target variables. This
instance of GET DIAGNOSTICS assigns the number of available conditions and the rows-affected
count to the user variables @p1 and @p2:

GET DIAGNOSTICS @p1 = NUMBER, @p2 = ROW_COUNT;

• To obtain condition information, specify the condition number and retrieve the desired condition items
into target variables. This instance of GET DIAGNOSTICS assigns the SQLSTATE value and error
message to the user variables @p3 and @p4:

GET DIAGNOSTICS CONDITION 1
 @p3 = RETURNED_SQLSTATE, @p4 = MESSAGE_TEXT;

The retrieval list specifies one or more target = item_name assignments, separated by commas.
Each assignment names a target variable and either a statement_information_item_name or

Condition Handling

1486

condition_information_item_name designator, depending on whether the statement retrieves
statement or condition information.

Valid target designators for storing item information can be stored procedure or function parameters,
stored program local variables declared with DECLARE, or user-defined variables.

Valid condition_number designators can be stored procedure or function parameters, stored
program local variables declared with DECLARE, user-defined variables, system variables, or literals. A
character literal may include a _charset introducer. A warning occurs if the condition number is not
in the range from 1 to the number of condition areas that have information. In this case, the warning is
added to the diagnostics area without clearing it.

Currently, when a condition occurs, MySQL does not populate all condition items recognized by GET
DIAGNOSTICS. For example:

mysql> GET DIAGNOSTICS CONDITION 1
 -> @p5 = SCHEMA_NAME, @p6 = TABLE_NAME;
mysql> SELECT @p5, @p6;
+------+------+
| @p5 | @p6 |
+------+------+
| | |
+------+------+

In standard SQL, if there are multiple conditions, the first condition relates to the SQLSTATE value
returned for the previous SQL statement. In MySQL, this is not guaranteed. To get the main error, you
cannot do this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

Instead, retrieve the condition count first, then use it to specify which condition number to inspect:

GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

For information about permissible statement and condition information items, and which ones are
populated when a condition occurs, see Diagnostics Area Information Items.

Here is an example that uses GET DIAGNOSTICS and an exception handler in stored procedure
context to assess the outcome of an insert operation. If the insert was successful, the procedure uses
GET DIAGNOSTICS to get the rows-affected count. This shows that you can use GET DIAGNOSTICS
multiple times to retrieve information about a statement as long as the current diagnostics area has not
been cleared.

CREATE PROCEDURE do_insert(value INT)
BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE code CHAR(5) DEFAULT '00000';
 DECLARE msg TEXT;
 DECLARE rows INT;
 DECLARE result TEXT;
 -- Declare exception handler for failed insert
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 GET DIAGNOSTICS CONDITION 1
 code = RETURNED_SQLSTATE, msg = MESSAGE_TEXT;
 END;

 -- Perform the insert
 INSERT INTO t1 (int_col) VALUES(value);
 -- Check whether the insert was successful
 IF code = '00000' THEN

Condition Handling

1487

 GET DIAGNOSTICS rows = ROW_COUNT;
 SET result = CONCAT('insert succeeded, row count = ',rows);
 ELSE
 SET result = CONCAT('insert failed, error = ',code,', message = ',msg);
 END IF;
 -- Say what happened
 SELECT result;
END;

Suppose that t1.int_col is an integer column that is declared as NOT NULL. The procedure
produces these results when invoked to insert non-NULL and NULL values:

mysql> CALL do_insert(1);
+---------------------------------+
| result |
+---------------------------------+
| insert succeeded, row count = 1 |
+---------------------------------+

mysql> CALL do_insert(NULL);
+---+
| result |
+---+
| insert failed, error = 23000, message = Column 'int_col' cannot be null |
+---+

When a condition handler activates, a push to the diagnostics area stack occurs. The first (current)
diagnostics area becomes the second (stacked) diagnostics area and a new current diagnostics area is
created as a copy of it. GET [CURRENT] DIAGNOSTICS and GET STACKED DIAGNOSTICS can be
used within the handler to access the contents of the current and stacked diagnostics areas. Initially,
they return the same result, so it is possible to get information from the current diagnostics area about
the condition that activated the handler, as long as you execute no statements within the handler that
change its current diagnostics area. However, statements executing within the handler can modify the
current diagnostics area, clearing and setting its contents according to the normal rules (see How the
Diagnostics Area is Populated).

A more reliable way to obtain information about the handler-activating condition is to use the
stacked diagnostics area, which cannot be modified by statements executing within the handler
except RESIGNAL. For information about when the current diagnostics area is set and cleared, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

The next example shows how GET STACKED DIAGNOSTICS can be used within a handler to obtain
information about the handled exception, even after the current diagnostics area has been modified by
handler statements.

Within a stored procedure p(), we attempt to insert two values into a table that contains a TEXT NOT
NULL column. The first value is a non-NULL string and the second is NULL. The column prohibits NULL
values, so the first insert succeeds but the second causes an exception. The procedure includes an
exception handler that maps attempts to insert NULL into inserts of the empty string:

DROP TABLE IF EXISTS t1;
CREATE TABLE t1 (c1 TEXT NOT NULL);
DROP PROCEDURE IF EXISTS p;
delimiter //
END//
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 DECLARE num INT;
 DECLARE errno INT;
 DECLARE msg TEXT;

 -- Here the current DA is nonempty because the handler was invoked

Condition Handling

1488

 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA before mapped insert' AS op, errno, msg;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA before mapped insert' AS op, errno, msg;

 -- Map attempted NULL insert to empty string insert
 INSERT INTO t1 (c1) VALUES('');

 -- Here the current DA should be empty (if the INSERT succeeded),
 -- so check whether there are conditions before attempting to
 -- obtain condition information
 GET CURRENT DIAGNOSTICS num = NUMBER;
 IF num = 0
 THEN
 SELECT 'INSERT succeeded, current DA is empty' AS op;
 ELSE
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA after mapped insert' AS op, errno, msg;
 END IF ;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA after mapped insert' AS op, errno, msg;
 END;
 INSERT INTO t1 (c1) VALUES('string 1');
 INSERT INTO t1 (c1) VALUES(NULL);
END;
//
delimiter ;
CALL p();
SELECT * FROM t1;

When the handler activates, a copy of the current diagnostics area is pushed to the diagnostics area
stack. The handler first displays the contents of the current and stacked diagnostics areas, which are
both the same initially:

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| current DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| stacked DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

Then the handler maps the NULL insert to an empty-string insert and displays the result. The new insert
succeeds and clears the current diagnostics area, but the stacked diagnostics area remains unchanged
and still contains information about the condition that activated the handler:

+---------------------------------------+
| op |
+---------------------------------------+
| INSERT succeeded, current DA is empty |
+---------------------------------------+

+--------------------------------+-------+----------------------------+
| op | errno | msg |
+--------------------------------+-------+----------------------------+
| stacked DA after mapped insert | 1048 | Column 'c1' cannot be null |
+--------------------------------+-------+----------------------------+

When the condition handler ends, its current diagnostics area is popped from the stack and the stacked
diagnostics area becomes the current diagnostics area in the stored procedure.

Condition Handling

1489

After the procedure returns, the table contains two rows. The empty row results from the attempt to
insert NULL that was mapped to an empty-string insert:

+----------+
| c1 |
+----------+
| string 1 |
| |
+----------+

13.6.7.4 RESIGNAL Syntax

RESIGNAL [condition_value]
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value:
 SQLSTATE [VALUE] sqlstate_value
 | condition_name

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name:
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME

condition_name, simple_value_specification:
 (see following discussion)

RESIGNAL passes on the error condition information that is available during execution of a condition
handler within a compound statement inside a stored procedure or function, trigger, or event.
RESIGNAL may change some or all information before passing it on. RESIGNAL is related to SIGNAL,
but instead of originating a condition as SIGNAL does, RESIGNAL relays existing condition information,
possibly after modifying it.

RESIGNAL makes it possible to both handle an error and return the error information. Otherwise, by
executing an SQL statement within the handler, information that caused the handler's activation is
destroyed. RESIGNAL also can make some procedures shorter if a given handler can handle part of a
situation, then pass the condition “up the line” to another handler.

No special privileges are required to execute the RESIGNAL statement.

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

For condition_value and signal_information_item, the definitions and rules are the same
for RESIGNAL as for SIGNAL. For example, the condition_value can be an SQLSTATE value, and
the value can indicate errors, warnings, or “not found.” For additional information, see Section 13.6.7.5,
“SIGNAL Syntax”.

Condition Handling

1490

The RESIGNAL statement takes condition_value and SET clauses, both of which are optional. This
leads to several possible uses:

• RESIGNAL alone:

RESIGNAL;

• RESIGNAL with new signal information:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

• RESIGNAL with a condition value and possibly new signal information:

RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];

These use cases all cause changes to the diagnostics and condition areas:

• A diagnostics area contains one or more condition areas.

• A condition area contains condition information items, such as the SQLSTATE value, MYSQL_ERRNO,
or MESSAGE_TEXT.

There is a stack of diagnostics areas. When a handler takes control, it pushes a diagnostics area to the
top of the stack, so there are two diagnostics areas during handler execution:

• The first (current) diagnostics area, which starts as a copy of the last diagnostics area, but will be
overwritten by the first statement in the handler that changes the current diagnostics area.

• The last (stacked) diagnostics area, which has the condition areas that were set up before the
handler took control.

The maximum number of condition areas in a diagnostics area is determined by the value of the
max_error_count system variable. See Diagnostics Area-Related System Variables.

RESIGNAL Alone

A simple RESIGNAL alone means “pass on the error with no change.” It restores the last diagnostics
area and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack.

Within a condition handler that catches a condition, one use for RESIGNAL alone is to perform some
other actions, and then pass on without change the original condition information (the information that
existed before entry into the handler).

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Condition Handling

1491

Suppose that the DROP TABLE xx statement fails. The diagnostics area stack looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

Then execution enters the EXIT handler. It starts by pushing a diagnostics area to the top of the stack,
which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, the contents of the first (current) and second (stacked) diagnostics areas are the same.
The first diagnostics area may be modified by statements executing subsequently within the handler.

Usually a procedure statement clears the first diagnostics area. BEGIN is an exception, it does not
clear, it does nothing. SET is not an exception, it clears, performs the operation, and produces a result
of “success.” The diagnostics area stack now looks like this:

DA 1. ERROR 0000 (00000): Successful operation
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, if @a = 0, RESIGNAL pops the diagnostics area stack, which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

And that is what the caller sees.

If @a is not 0, the handler simply ends, which means that there is no more use for the current
diagnostics area (it has been “handled”), so it can be thrown away, causing the stacked diagnostics
area to become the current diagnostics area again. The diagnostics area stack looks like this:

DA 1. ERROR 0000 (00000): Successful operation

The details make it look complex, but the end result is quite useful: Handlers can execute without
destroying information about the condition that caused activation of the handler.

RESIGNAL with New Signal Information

RESIGNAL with a SET clause provides new signal information, so the statement means “pass on the
error with changes”:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

As with RESIGNAL alone, the idea is to pop the diagnostics area stack so that the original information
will go out. Unlike RESIGNAL alone, anything specified in the SET clause changes.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SET MYSQL_ERRNO = 5; END IF;
 END;
 DROP TABLE xx;
END//

Condition Handling

1492

delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Remember from the previous discussion that RESIGNAL alone results in a diagnostics area stack like
this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

The RESIGNAL SET MYSQL_ERRNO = 5 statement results in this stack instead, which is what the
caller sees:

DA 1. ERROR 5 (42S02): Unknown table 'xx'

In other words, it changes the error number, and nothing else.

The RESIGNAL statement can change any or all of the signal information items, making the first
condition area of the diagnostics area look quite different.

RESIGNAL with a Condition Value and Optional New Signal Information

RESIGNAL with a condition value means “push a condition into the current diagnostics area.” If the SET
clause is present, it also changes the error information.

RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];

This form of RESIGNAL restores the last diagnostics area and makes it the current diagnostics area.
That is, it “pops” the diagnostics area stack, which is the same as what a simple RESIGNAL alone
would do. However, it also changes the diagnostics area depending on the condition value or signal
information.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SQLSTATE '45000' SET MYSQL_ERRNO=5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
SET @@max_error_count = 2;
CALL p();
SHOW ERRORS;

This is similar to the previous example, and the effects are the same, except that if RESIGNAL
happens, the current condition area looks different at the end. (The reason the condition adds to rather
than replaces the existing condition is the use of a condition value.)

The RESIGNAL statement includes a condition value (SQLSTATE '45000'), so it adds a new
condition area, resulting in a diagnostics area stack that looks like this:

DA 1. (condition 2) ERROR 1051 (42S02): Unknown table 'xx'

Condition Handling

1493

 (condition 1) ERROR 5 (45000) Unknown table 'xx'

The result of CALL p() and SHOW ERRORS for this example is:

mysql> CALL p();
ERROR 5 (45000): Unknown table 'xx'
mysql> SHOW ERRORS;
+-------+------+----------------------------------+
| Level | Code | Message |
+-------+------+----------------------------------+
| Error | 1051 | Unknown table 'xx' |
| Error | 5 | Unknown table 'xx' |
+-------+------+----------------------------------+

RESIGNAL Requires Condition Handler Context

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs. For example:

mysql> CREATE PROCEDURE p () RESIGNAL;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p();
ERROR 1645 (0K000): RESIGNAL when handler not active

Here is a more difficult example:

delimiter //
CREATE FUNCTION f () RETURNS INT
BEGIN
 RESIGNAL;
 RETURN 5;
END//
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION SET @a=f();
 SIGNAL SQLSTATE '55555';
END//
delimiter ;
CALL p();

RESIGNAL occurs within the stored function f(). Although f() itself is invoked within the context
of the EXIT handler, execution within f() has its own context, which is not handler context. Thus,
RESIGNAL within f() results in a “handler not active” error.

13.6.7.5 SIGNAL Syntax

SIGNAL condition_value
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value:
 SQLSTATE [VALUE] sqlstate_value
 | condition_name

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name:
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA

Condition Handling

1494

 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME

condition_name, simple_value_specification:
 (see following discussion)

SIGNAL is the way to “return” an error. SIGNAL provides error information to a handler, to an outer
portion of the application, or to the client. Also, it provides control over the error's characteristics (error
number, SQLSTATE value, message). Without SIGNAL, it is necessary to resort to workarounds such
as deliberately referring to a nonexistent table to cause a routine to return an error.

No special privileges are required to execute the SIGNAL statement.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

The condition_value in a SIGNAL statement indicates the error value to be returned. It can
be an SQLSTATE value (a 5-character string literal) or a condition_name that refers to a named
condition previously defined with DECLARE ... CONDITION (see Section 13.6.7.1, “DECLARE ...
CONDITION Syntax”).

An SQLSTATE value can indicate errors, warnings, or “not found.” The first two characters of the value
indicate its error class, as discussed in Signal Condition Information Items. Some signal values cause
statement termination; see Effect of Signals on Handlers, Cursors, and Statements.

The SQLSTATE value for a SIGNAL statement should not start with '00' because such values indicate
success and are not valid for signaling an error. This is true whether the SQLSTATE value is specified
directly in the SIGNAL statement or in a named condition referred to in the statement. If the value is
invalid, a Bad SQLSTATE error occurs.

To signal a generic SQLSTATE value, use '45000', which means “unhandled user-defined exception.”

The SIGNAL statement optionally includes a SET clause that contains multiple signal
items, in a comma-separated list of condition_information_item_name =
simple_value_specification assignments.

Each condition_information_item_name may be specified only once in the SET clause.
Otherwise, a Duplicate condition information item error occurs.

Valid simple_value_specification designators can be specified using stored procedure or
function parameters, stored program local variables declared with DECLARE, user-defined variables,
system variables, or literals. A character literal may include a _charset introducer.

For information about permissible condition_information_item_name values, see Signal
Condition Information Items.

The following procedure signals an error or warning depending on the value of pval, its input
parameter:

CREATE PROCEDURE p (pval INT)
BEGIN
 DECLARE specialty CONDITION FOR SQLSTATE '45000';
 IF pval = 0 THEN
 SIGNAL SQLSTATE '01000';
 ELSEIF pval = 1 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred';

Condition Handling

1495

 ELSEIF pval = 2 THEN
 SIGNAL specialty
 SET MESSAGE_TEXT = 'An error occurred';
 ELSE
 SIGNAL SQLSTATE '01000'
 SET MESSAGE_TEXT = 'A warning occurred', MYSQL_ERRNO = 1000;
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred', MYSQL_ERRNO = 1001;
 END IF;
END;

If pval is 0, p() signals a warning because SQLSTATE values that begin with '01' are signals in the
warning class. The warning does not terminate the procedure, and can be seen with SHOW WARNINGS
after the procedure returns.

If pval is 1, p() signals an error and sets the MESSAGE_TEXT condition information item. The error
terminates the procedure, and the text is returned with the error information.

If pval is 2, the same error is signaled, although the SQLSTATE value is specified using a named
condition in this case.

If pval is anything else, p() first signals a warning and sets the message text and error number
condition information items. This warning does not terminate the procedure, so execution continues
and p() then signals an error. The error does terminate the procedure. The message text and error
number set by the warning are replaced by the values set by the error, which are returned with the
error information.

SIGNAL is typically used within stored programs, but it is a MySQL extension that it is permitted outside
handler context. For example, if you invoke the mysql client program, you can enter any of these
statements at the prompt:

mysql> SIGNAL SQLSTATE '77777';
mysql> CREATE TRIGGER t_bi BEFORE INSERT ON t
 -> FOR EACH ROW SIGNAL SQLSTATE '77777';
mysql> CREATE EVENT e ON SCHEDULE EVERY 1 SECOND
 -> DO SIGNAL SQLSTATE '77777';

SIGNAL executes according to the following rules:

If the SIGNAL statement indicates a particular SQLSTATE value, that value is used to signal the
condition specified. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 IF divisor = 0 THEN
 SIGNAL SQLSTATE '22012';
 END IF;
END;

If the SIGNAL statement uses a named condition, the condition must be declared in some scope that
applies to the SIGNAL statement, and must be defined using an SQLSTATE value, not a MySQL error
number. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE divide_by_zero CONDITION FOR SQLSTATE '22012';
 IF divisor = 0 THEN
 SIGNAL divide_by_zero;
 END IF;
END;

If the named condition does not exist in the scope of the SIGNAL statement, an Undefined
CONDITION error occurs.

Condition Handling

1496

If SIGNAL refers to a named condition that is defined with a MySQL error number rather than
an SQLSTATE value, a SIGNAL/RESIGNAL can only use a CONDITION defined with
SQLSTATE error occurs. The following statements cause that error because the named condition is
associated with a MySQL error number:

DECLARE no_such_table CONDITION FOR 1051;
SIGNAL no_such_table;

If a condition with a given name is declared multiple times in different scopes, the declaration with the
most local scope applies. Consider the following procedure:

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '45000';
 IF divisor = 0 THEN
 BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '22012';
 SIGNAL my_error;
 END;
 END IF;
 SIGNAL my_error;
END;

If divisor is 0, the first SIGNAL statement executes. The innermost my_error condition declaration
applies, raising SQLSTATE '22012'.

If divisor is not 0, the second SIGNAL statement executes. The outermost my_error condition
declaration applies, raising SQLSTATE '45000'.

For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6,
“Scope Rules for Handlers”.

Signals can be raised within exception handlers:

CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SIGNAL SQLSTATE VALUE '99999'
 SET MESSAGE_TEXT = 'An error occurred';
 END;
 DROP TABLE no_such_table;
END;

CALL p() reaches the DROP TABLE statement. There is no table named no_such_table, so the
error handler is activated. The error handler destroys the original error (“no such table”) and makes a
new error with SQLSTATE '99999' and message An error occurred.

Signal Condition Information Items

The following table lists the names of diagnostics area condition information items that can be set
in a SIGNAL (or RESIGNAL) statement. All items are standard SQL except MYSQL_ERRNO, which
is a MySQL extension. For more information about these items see Section 13.6.7.7, “The MySQL
Diagnostics Area”.

Item Name Definition
--------- ----------
CLASS_ORIGIN VARCHAR(64)
SUBCLASS_ORIGIN VARCHAR(64)
CONSTRAINT_CATALOG VARCHAR(64)
CONSTRAINT_SCHEMA VARCHAR(64)
CONSTRAINT_NAME VARCHAR(64)
CATALOG_NAME VARCHAR(64)

Condition Handling

1497

SCHEMA_NAME VARCHAR(64)
TABLE_NAME VARCHAR(64)
COLUMN_NAME VARCHAR(64)
CURSOR_NAME VARCHAR(64)
MESSAGE_TEXT VARCHAR(128)
MYSQL_ERRNO SMALLINT UNSIGNED

The character set for character items is UTF-8.

It is illegal to assign NULL to a condition information item in a SIGNAL statement.

A SIGNAL statement always specifies an SQLSTATE value, either directly, or indirectly by referring to a
named condition defined with an SQLSTATE value. The first two characters of an SQLSTATE value are
its class, and the class determines the default value for the condition information items:

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

MESSAGE_TEXT = 'Unhandled user-defined warning condition';
MYSQL_ERRNO = ER_SIGNAL_WARN

• Class = '02' (not found)

MESSAGE_TEXT = 'Unhandled user-defined not found condition';
MYSQL_ERRNO = ER_SIGNAL_NOT_FOUND

• Class > '02' (exception)

MESSAGE_TEXT = 'Unhandled user-defined exception condition';
MYSQL_ERRNO = ER_SIGNAL_EXCEPTION

For legal classes, the other condition information items are set as follows:

CLASS_ORIGIN = SUBCLASS_ORIGIN = '';
CONSTRAINT_CATALOG = CONSTRAINT_SCHEMA = CONSTRAINT_NAME = '';
CATALOG_NAME = SCHEMA_NAME = TABLE_NAME = COLUMN_NAME = '';
CURSOR_NAME = '';

The error values that are accessible after SIGNAL executes are the SQLSTATE value raised by the
SIGNAL statement and the MESSAGE_TEXT and MYSQL_ERRNO items. These values are available from
the C API:

• SQLSTATE value: Call mysql_sqlstate()

• MYSQL_ERRNO value: Call mysql_errno()

• MESSAGE_TEXT value: Call mysql_error()

From SQL, the output from SHOW WARNINGS and SHOW ERRORS indicates the MYSQL_ERRNO and
MESSAGE_TEXT values in the Code and Message columns.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

Effect of Signals on Handlers, Cursors, and Statements

Signals have different effects on statement execution depending on the signal class. The class
determines how severe an error is. MySQL ignores the value of the sql_mode system variable; in

Condition Handling

1498

particular, strict SQL mode does not matter. MySQL also ignores IGNORE: The intent of SIGNAL is to
raise a user-generated error explicitly, so a signal is never ignored.

In the following descriptions, “unhandled” means that no handler for the signaled SQLSTATE value has
been defined with DECLARE ... HANDLER.

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

The value of the warning_count system variable goes up. SHOW WARNINGS shows the signal.
SQLWARNING handlers catch the signal. If the signal is unhandled in a function, statements do not
end.

• Class = '02' (not found)

NOT FOUND handlers catch the signal. There is no effect on cursors. If the signal is unhandled in a
function, statements end.

• Class > '02' (exception)

SQLEXCEPTION handlers catch the signal. If the signal is unhandled in a function, statements end.

• Class = '40'

Treated as an ordinary exception.

Example:

mysql> delimiter //
mysql> CREATE FUNCTION f () RETURNS INT
 -> BEGIN
 -> SIGNAL SQLSTATE '01234'; -- signal a warning
 -> RETURN 5;
 -> END//
mysql> delimiter ;
mysql> CREATE TABLE t (s1 INT);
mysql> INSERT INTO t VALUES (f());

The result is that a row containing 5 is inserted into table t. The warning that is signaled can be viewed
with SHOW WARNINGS.

13.6.7.6 Scope Rules for Handlers

A stored program may include handlers to be invoked when certain conditions occur within the
program. The applicability of each handler depends on its location within the program definition and on
the condition or conditions that it handles:

• A handler declared in a BEGIN ... END block is in scope only for the SQL statements following
the handler declarations in the block. If the handler itself raises a condition, it cannot handle that
condition, nor can any other handlers declared in the block. In the following example, handlers H1
and H2 are in scope for conditions raised by statements stmt1 and stmt2. But neither H1 nor H2
are in scope for conditions raised in the body of H1 or H2.

BEGIN -- outer block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 DECLARE EXIT HANDLER FOR ...; -- handler H2
 stmt1;
 stmt2;
END;

Condition Handling

1499

• A handler is in scope only for the block in which it is declared, and cannot be activated for conditions
occurring outside that block. In the following example, handler H1 is in scope for stmt1 in the inner
block, but not for stmt2 in the outer block:

BEGIN -- outer block
 BEGIN -- inner block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 stmt1;
 END;
 stmt2;
END;

• A handler can be specific or general. A specific handler is for a MySQL error code, SQLSTATE value,
or condition name. A general handler is for a condition in the SQLWARNING, SQLEXCEPTION, or NOT
FOUND class. Condition specificity is related to condition precedence, as described later.

Multiple handlers can be declared in different scopes and with different specificities. For example,
there might be a specific MySQL error code handler in an outer block, and a general SQLWARNING
handler in an inner block. Or there might be handlers for a specific MySQL error code and the general
SQLWARNING class in the same block.

Whether a handler is activated depends not only on its own scope and condition value, but on what
other handlers are present. When a condition occurs in a stored program, the server searches for
applicable handlers in the current scope (current BEGIN ... END block). If there are no applicable
handlers, the search continues outward with the handlers in each successive containing scope (block).
When the server finds one or more applicable handlers at a given scope, it chooses among them
based on condition precedence:

• A MySQL error code handler takes precedence over an SQLSTATE value handler.

• An SQLSTATE value handler takes precedence over general SQLWARNING, SQLEXCEPTION, or NOT
FOUND handlers.

• An SQLEXCEPTION handler takes precedence over an SQLWARNING handler.

• The precedence of NOT FOUND depends on how the condition is raised:

• Normally, a condition in the NOT FOUND class can be handled by an SQLWARNING or NOT FOUND
handler, with the SQLWARNING handler taking precedence if both are present. Normal occurrence
of NOT FOUND takes place when a cursor used to fetch a set of rows reaches the end of the data
set, or for instances of SELECT ... INTO var_list such that the WHERE clause finds no rows.

• If a NOT FOUND condition is raised by a SIGNAL (or RESIGNAL) statement, the condition can be
handled by a NOT FOUND handler but not an SQLWARNING handler.

• It is possible to have several applicable handlers with the same precedence. For example, a
statement could generate multiple warnings with different error codes, for each of which an error-
specific handler exists. In this case, the choice of which handler the server activates is indeterminate,
and may change depending on the circumstances under which the condition occurs.

One implication of the handler selection rules is that if multiple applicable handlers occur in different
scopes, handlers with the most local scope take precedence over handlers in outer scopes, even over
those for more specific conditions.

If there is no appropriate handler when a condition occurs, the action taken depends on the class of the
condition:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the
condition, as if there were an EXIT handler. If the program was called by another stored program,
the calling program handles the condition using the handler selection rules applied to its own
handlers.

Condition Handling

1500

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE
handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was
raised by SIGNAL or RESIGNAL, the action is EXIT.

The following examples demonstrate how MySQL applies the handler selection rules.

This procedure contains two handlers, one for the specific SQLSTATE value ('42S02') that occurs for
attempts to drop a nonexistent table, and one for the general SQLEXCEPTION class:

CREATE PROCEDURE p1()
BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t;
END;

Both handlers are declared in the same block and have the same scope. However, SQLSTATE
handlers take precedence over SQLEXCEPTION handlers, so if the table t is nonexistent, the DROP
TABLE statement raises a condition that activates the SQLSTATE handler:

mysql> CALL p1();
+--------------------------------+
| msg |
+--------------------------------+
| SQLSTATE handler was activated |
+--------------------------------+

This procedure contains the same two handlers. But this time, the DROP TABLE statement and
SQLEXCEPTION handler are in an inner block relative to the SQLSTATE handler:

CREATE PROCEDURE p2()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t; -- occurs within inner block
 END;
END;

In this case, the handler that is more local to where the condition occurs takes precedence. The
SQLEXCEPTION handler activates, even though it is more general than the SQLSTATE handler:

mysql> CALL p2();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, one of the handlers is declared in a block inner to the scope of the DROP TABLE
statement:

CREATE PROCEDURE p3()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

Condition Handling

1501

 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block
END;

Only the SQLEXCEPTION handler applies because the other one is not in scope for the condition raised
by the DROP TABLE:

mysql> CALL p3();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, both handlers are declared in a block inner to the scope of the DROP TABLE
statement:

CREATE PROCEDURE p4()
BEGIN -- outer block
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block
END;

Neither handler applies because they are not in scope for the DROP TABLE. The condition raised by
the statement goes unhandled and terminates the procedure with an error:

mysql> CALL p4();
ERROR 1051 (42S02): Unknown table 'test.t'

13.6.7.7 The MySQL Diagnostics Area

SQL statements produce diagnostic information that populates the diagnostics area. Standard SQL has
a diagnostics area stack, containing a diagnostics area for each nested execution context. Standard
SQL also supports GET STACKED DIAGNOSTICS syntax for referring to the second diagnostics area
during condition handler execution. MySQL supports the STACKED keyword as of MySQL 5.7. Before
that, MySQL does not support STACKED; there is a single diagnostics area containing information from
the most recent statement that wrote to it.

This section describes the structure of the diagnostics area in MySQL, the information items
recognized by MySQL, how statements clear and set the diagnostics area, and how diagnostics areas
are pushed to and popped from the stack.

Diagnostics Area Structure

The diagnostics area contains two kinds of information:

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no
conditions, this part of the diagnostics area is empty.

Condition Handling

1502

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

Diagnostics Area Information Items

The diagnostics area contains statement and condition information items. Numeric items are integers.
The character set for character items is UTF-8. No item can be NULL. If a statement or condition item is
not set by a statement that populates the diagnostics area, its value is 0 or the empty string, depending
on the item data type.

The statement information part of the diagnostics area contains these items:

• NUMBER: An integer indicating the number of condition areas that have information.

• ROW_COUNT: An integer indicating the number of rows affected by the statement. ROW_COUNT has
the same value as the ROW_COUNT() function (see Section 12.14, “Information Functions”).

The condition information part of the diagnostics area contains a condition area for each condition.
Condition areas are numbered from 1 to the value of the NUMBER statement condition item. If NUMBER
is 0, there are no condition areas.

Each condition area contains the items in the following list. All items are standard SQL except
MYSQL_ERRNO, which is a MySQL extension. The definitions apply for conditions generated other than
by a signal (that is, by a SIGNAL or RESIGNAL statement). For nonsignal conditions, MySQL populates
only those condition items not described as always empty. The effects of signals on the condition area
are described later.

• CLASS_ORIGIN: A string containing the class of the RETURNED_SQLSTATE value. If the
RETURNED_SQLSTATE value begins with a class value defined in SQL standards document ISO
9075-2 (section 24.1, SQLSTATE), CLASS_ORIGIN is 'ISO 9075'. Otherwise, CLASS_ORIGIN is
'MySQL'.

• SUBCLASS_ORIGIN: A string containing the subclass of the RETURNED_SQLSTATE value. If
CLASS_ORIGIN is 'ISO 9075' or RETURNED_SQLSTATE ends with '000', SUBCLASS_ORIGIN is
'ISO 9075'. Otherwise, SUBCLASS_ORIGIN is 'MySQL'.

• RETURNED_SQLSTATE: A string that indicates the SQLSTATE value for the condition.

• MESSAGE_TEXT: A string that indicates the error message for the condition.

• MYSQL_ERRNO: An integer that indicates the MySQL error code for the condition.

• CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME: Strings that indicate the
catalog, schema, and name for a violated constraint. They are always empty.

• CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_NAME: Strings that indicate the catalog,
schema, table, and column related to the condition. They are always empty.

Condition Handling

1503

• CURSOR_NAME: A string that indicates the cursor name. This is always empty.

For the RETURNED_SQLSTATE, MESSAGE_TEXT, and MYSQL_ERRNO values for particular errors, see
Section C.3, “Server Error Codes and Messages”.

If a SIGNAL (or RESIGNAL) statement populates the diagnostics area, its SET clause can assign to any
condition information item except RETURNED_SQLSTATE any value that is legal for the item data type.
SIGNAL also sets the RETURNED_SQLSTATE value, but not directly in its SET clause. That value comes
from the SIGNAL statement SQLSTATE argument.

SIGNAL also sets statement information items. It sets NUMBER to 1. It sets ROW_COUNT to –1 for errors
and 0 otherwise.

How the Diagnostics Area is Populated

Nondiagnostic SQL statements populate the diagnostics area automatically, and its contents can be set
explicitly with the SIGNAL and RESIGNAL statements. The diagnostics area can be examined with GET
DIAGNOSTICS to extract specific items, or with SHOW WARNINGS or SHOW ERRORS to see conditions
or errors.

SQL statements clear and set the diagnostics area as follows:

• When the server starts executing a statement after parsing it, it clears the diagnostics area
for nondiagnostic statements. (Before MySQL 5.7.2, the server clears the diagnostics area for
nondiagnostic statements that use tables.) Diagnostic statements do not clear the diagnostics area
(SHOW WARNINGS, SHOW ERRORS, GET DIAGNOSTICS).

• If a statement raises a condition, the diagnostics area is cleared of conditions that belong to earlier
statements. The exception is that conditions raised by GET DIAGNOSTICS and RESIGNAL are
added to the diagnostics area without clearing it.

Thus, even a statement that does not normally clear the diagnostics area when it begins executing
clears it if the statement raises a condition.

The following example shows the effect of various statements on the diagnostics area, using SHOW
WARNINGS to display information about conditions stored there.

This DROP TABLE statement clears the diagnostics area and populates it when the condition occurs:

mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

This SET statement generates an error, so it clears and populates the diagnostics area:

mysql> SET @x = @@x;
ERROR 1193 (HY000): Unknown system variable 'x'

mysql> SHOW WARNINGS;
+-------+------+-----------------------------+
| Level | Code | Message |
+-------+------+-----------------------------+
| Error | 1193 | Unknown system variable 'x' |
+-------+------+-----------------------------+
1 row in set (0.00 sec)

Condition Handling

1504

The previous SET statement produced a single condition, so 1 is the only valid condition number
for GET DIAGNOSTICS at this point. The following statement uses a condition number of 2, which
produces a warning that is added to the diagnostics area without clearing it:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------+
| Level | Code | Message |
+-------+------+------------------------------+
| Error | 1193 | Unknown system variable 'xx' |
| Error | 1753 | Invalid condition number |
+-------+------+------------------------------+
2 rows in set (0.00 sec)

Now there are two conditions in the diagnostics area, so the same GET DIAGNOSTICS statement
succeeds:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p;
+--------------------------+
| @p |
+--------------------------+
| Invalid condition number |
+--------------------------+
1 row in set (0.01 sec)

How the Diagnostics Area Stack Works

When a push to the diagnostics area stack occurs, the first (current) diagnostics area becomes the
second (stacked) diagnostics area and a new current diagnostics area is created as a copy of it.
Diagnostics areas are pushed to and popped from the stack under the following circumstances:

• Execution of a stored program

A push occurs before the program executes and a pop occurs afterward. If the stored program ends
while handlers are executing, there can be more than one diagnostics area to pop; this occurs due to
an exception for which there are no appropriate handlers or due to RETURN in the handler.

Any warning or error conditions occurring during stored program execution then are added to the
current diagnostics area, except that, for triggers, only errors are added. When the stored program
ends, the caller sees these conditions in its current diagonstics area.

• Execution of a condition handler within a stored program

When a push occurs as a result of condition handler activation, the stacked diagnostics area is the
area that was current within the stored program prior to the push. The new now-current diagnostics
area is the handler's current diagnostics area. GET [CURRENT] DIAGNOSTICS and GET STACKED
DIAGNOSTICS can be used within the handler to access the contents of the current (handler) and
stacked (stored program) diagnostics areas. Initially, they return the same result, but statements
executing within the handler modify the current diagnostics area, clearing and setting its contents
according to the normal rules (see How the Diagnostics Area is Populated). The stacked diagnostics
area cannot be modified by statements executing within the handler except RESIGNAL.

If the handler executes successfully, the current (handler) diagnostics area is popped and the
stacked (stored program) diagnostics area again becomes the current diagnostics area. Conditions
added to the handler diagnostics area during handler execution are added to the current diagnostics
area.

• Execution of RESIGNAL

Database Administration Statements

1505

The RESIGNAL statement passes on the error condition information that is available during execution
of a condition handler within a compound statement inside a stored program. RESIGNAL may
change some or all information before passing it on, modifying the diagnostics stack as described in
Section 13.6.7.4, “RESIGNAL Syntax”.

Diagnostics Area-Related System Variables

Certain system variables control or are related to some aspects of the diagnostics area:

• max_error_count controls the number of condition areas in the diagnostics area. If more
conditions than this occur, MySQL silently discards information for the excess conditions. (Conditions
added by RESIGNAL are always added, with older conditions being discarded as necessary to make
room.)

• warning_count indicates the number of conditions that occurred. This includes errors, warnings,
and notes. Normally, NUMBER and warning_count are the same. However, as the number of
conditions generated exceeds max_error_count, the value of warning_count continues to
rise whereas NUMBER remains capped at max_error_count because no additional conditions are
stored in the diagnostics area.

• error_count indicates the number of errors that occurred. This value includes “not found” and
exception conditions, but excludes warnings and notes. Like warning_count, its value can exceed
max_error_count.

• If the sql_notes system variable is set to 0, notes are not stored and do not increment
warning_count.

Example: If max_error_count is 10, the diagnostics area can contain a maximum of 10 condition
areas. Suppose that a statement raises 20 conditions, 12 of which are errors. In that case, the
diagnostics area contains the first 10 conditions, NUMBER is 10, warning_count is 20, and
error_count is 12.

Changes to the value of max_error_count have no effect until the next attempt to modify the
diagnostics area. If the diagnostics area contains 10 condition areas and max_error_count is set to
5, that has no immediate effect on the size or content of the diagnostics area.

13.7 Database Administration Statements

13.7.1 Account Management Statements

MySQL account information is stored in the tables of the mysql database. This database and the
access control system are discussed extensively in Chapter 5, MySQL Server Administration, which
you should consult for additional details.

Important

Some releases of MySQL introduce changes to the structure of the grant
tables to add new privileges or features. To make sure that you can take
advantage of any new capabilities, update your grant tables to have the current
structure whenever you update to a new version of MySQL. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

13.7.1.1 ALTER USER Syntax

ALTER USER user_specification [, user_specification] ...

user_specification:
 user alter_option

Account Management Statements

1506

alter_option: {
 PASSWORD EXPIRE
 | PASSWORD EXPIRE DEFAULT
 | PASSWORD EXPIRE NEVER
 | PASSWORD EXPIRE INTERVAL N DAY
}

The ALTER USER statement alters MySQL accounts. To use it, you must have the global CREATE
USER privilege or the INSERT privilege for the mysql database.

Each user_specification clause consists of an account name and an option specifying the action
to take for that account regarding its password.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. If you
specify only the user name part of the account name, a host name part of '%' is used.

ALTER USER permits the following alter_option values. The first option manually expires an
account password. The others establish password expiration policy for the account. They do not
expire the password but determine how the server applies automatic expiration to the account (see
Section 6.3.6, “Password Expiration Policy”).

• PASSWORD EXPIRE

This option expires the account password. For example:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

• PASSWORD EXPIRE DEFAULT

This option sets the account so that the global expiration policy applies, as specified by the
default_password_lifetime system variable. For example:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

This option was added in MySQL 5.7.4.

• PASSWORD EXPIRE NEVER

This option disables password expiration for the account so that its password never expires. For
example:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

This option was added in MySQL 5.7.4.

• PASSWORD EXPIRE INTERVAL N DAY

This option sets the account password lifetime to N days. For example, this statement requires the
password to be changed every 180 days:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 180 DAY;

This option was added in MySQL 5.7.4.

A client session operates in restricted mode if the account password was expired manually or if
the password is considered past its lifetime per the automatic expiration policy. In restricted mode,
operations performed in the session result in an error until the user issues a SET PASSWORD statement
to establish a new account password:

mysql> SELECT 1;

Account Management Statements

1507

ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

mysql> SET PASSWORD = PASSWORD('new_password');
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

This restricted mode of operation permits SET statements, which is useful if the account password uses
a hashing format that requires old_passwords to be set to a value different from its default.

It is also possible for an administrative user to reset the account password, but any existing sessions
for the account remain restricted. Clients using the account must disconnect and reconnect before
statements can be executed successfully.

Note

It is possible to “reset” a password with SET PASSWORD by setting it to its
current value. As a matter of good policy, it is preferable to choose a different
password.

Note

As of MySQL 5.7.3, it is not possible to use ALTER USER for anonymous-
user accounts. This constraint is imposed because an anonymous user cannot
execute SET PASSWORD to reset the account password.

13.7.1.2 CREATE USER Syntax

CREATE USER user_specification [, user_specification] ...

user_specification:
 user
 [
 | IDENTIFIED WITH auth_plugin [AS 'auth_string']
 IDENTIFIED BY [PASSWORD] 'password'
]

The CREATE USER statement creates new MySQL accounts. An error occurs for accounts that already
exist. To use this statement, you must have the global CREATE USER privilege or the INSERT privilege
for the mysql database. For each account, CREATE USER creates a new row in the mysql.user
table with no privileges and assigns the account an authentication plugin. Depending on the syntax
used, CREATE USER may also assign the account a password.

Each user_specification clause consists of an account name and information about how
authentication occurs for clients that use the account. This part of CREATE USER syntax is shared with
GRANT, so the description here applies to GRANT as well.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';

If you specify only the user name part of the account name, a host name part of '%' is used.

The server assigns an authentication plugin and password to each account as follows, depending on
whether the user specification clause includes IDENTIFIED WITH to specify a plugin or IDENTIFIED
BY to specify a password:

Account Management Statements

1508

• With IDENTIFIED WITH, the server assigns the specified plugin and the account has no password.

• With IDENTIFIED BY, the server assigns the plugin implicitly and assigns the specified password.

• With neither IDENTIFIED WITH nor IDENTIFIED BY, the server assigns the plugin implicitly and
the account has no password.

If the account has no password, the Password column in the account's mysql.user table row
remains empty, which is insecure. To set the password, use SET PASSWORD. See Section 13.7.1.7,
“SET PASSWORD Syntax”.

For implicit plugin assignment, the default plugin becomes the value of the plugin column in the
account's mysql.user table row. The default plugin is mysql_native_password unless the
default_authentication_plugin system variable is set otherwise.

For client connections that use a given account, the server invokes the authentication plugin assigned
to the account and the client must provide credentials as required by the authentication method that the
plugin implements. If the server cannot find the plugin, either at account-creation time or connect time,
an error occurs

If an account's mysql.user table row has a nonempty plugin column:

• The server authenticates client connection attempts using the named plugin.

• Changes to the account password using SET PASSWORD with PASSWORD() must be made
with the old_passwords system variable set to the value required by the authentication
plugin, so that PASSWORD() uses the appropriate password hashing method. If the plugin
is mysql_old_password, the password can also be changed using SET PASSWORD
with OLD_PASSWORD(), which uses pre-4.1 password hashing regardless of the value of
old_passwords.

If an account's mysql.user table row has an empty plugin column:

• As of MySQL 5.7.2, the server disables any account with an empty plugin until the DBA assigns a
nonempty one. Before MySQL 5.7.2, the server authenticates client connection attempts using the
mysql_native_password or mysql_old_password authentication plugin, depending on the
hash format of the password stored in the Password column.

• Changes to the account password using SET PASSWORD can be made with PASSWORD(),
with old_passwords set to 0 or 1 for 4.1 or pre-4.1 password hashing, respectively, or
with OLD_PASSWORD(), which uses pre-4.1 password hashing regardless of the value of
old_passwords.

CREATE USER examples:

• To specify an authentication plugin for an account, use IDENTIFIED WITH auth_plugin. The
plugin name can be a quoted string literal or an unquoted name. 'auth_string' is an optional
quoted string literal to pass to the plugin. The plugin interprets the meaning of the string, so its
format is plugin specific. Consult the documentation for a given plugin for information about the
authentication string values it accepts, if any.

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password;

The server assigns the given authentication plugin to the account but no password. Clients must
provide no password when they connect. However, an account with no password is insecure.
To ensure that an account uses a specific authentication plugin and has a password with the
corresponding hash format, specify the plugin explicitly with IDENTIFIED WITH, then use SET
PASSWORD to set the password:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password;

Account Management Statements

1509

SET old_passwords = 0;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('mypass');

Changes to the account password using SET PASSWORD with PASSWORD() must be made with
the old_passwords system variable set to the value required by the account's authentication
plugin, so that PASSWORD() uses the appropriate password hashing method. Therefore, to use the
sha256_password or mysql_old_password plugin instead, name that plugin in the CREATE
USER statement and set old_passwords to 2 or 1, respectively, before using SET PASSWORD. (Use
of mysql_old_password is not recommended. It is deprecated and support for it will be removed in
a future MySQL release.)

• To specify a password for an account at account-creation time, use IDENTIFIED BY with the literal
plaintext password value:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';

The server assigns an authentication plugin to the account implicitly, as described previously, and
assigns the given password. Clients must provide the given password when they connect.

If the implicitly assigned plugin is mysql_native_password, the old_passwords system variable
must be set to 0. Otherwise, CREATE USER does not hash the password in the format required by
the plugin and an error occurs:

mysql> SET old_passwords = 1;
mysql> CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
ERROR 1827 (HY000): The password hash doesn't have the expected
format. Check if the correct password algorithm is being used with
the PASSWORD() function.

mysql> SET old_passwords = 0;
mysql> CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
Query OK, 0 rows affected (0.00 sec)

• To avoid specifying the plaintext password if you know its hash value (the value that PASSWORD()
would return for the password), specify the hash value preceded by the keyword PASSWORD:

CREATE USER 'jeffrey'@'localhost'
IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';

The server assigns an authentication plugin to the account implicitly, as described previously, and
assigns the given password. The password hash must be in the format required by the assigned
plugin. Clients must provide the password when they connect.

• To enable the user to connect with no password, include no IDENTIFIED BY clause:

CREATE USER 'jeffrey'@'localhost';

The server assigns an authentication plugin to the account implicitly, as described previously, but
no password. Clients must provide no password when they connect. However, an account with no
password is insecure. To avoid this, use SET PASSWORD to set the account password.

As mentioned previously, implicit plugin assignment depends on the default authentication plugin.
Permitted values of default_authentication_plugin are mysql_native_plugin and
sha256_password, but not mysql_old_password. This means it is not possible to set the
default plugin so as to be able to create an account that uses mysql_old_password with CREATE
USER ... IDENTIFIED BY syntax. To create an account that uses mysql_old_password, use
CREATE USER ... IDENTIFIED WITH to name the plugin explicitly, then set the password:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_old_password;
SET old_passwords = 1;

Account Management Statements

1510

SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('mypass');

However, the preceding procedure is not recommended because mysql_old_password is
deprecated.

For additional information about setting passwords and authentication plugins, see Section 6.3.5,
“Assigning Account Passwords”, and Section 6.3.8, “Pluggable Authentication”.

Important

CREATE USER may be recorded in server logs or in a history file such as
~/.mysql_history, which means that cleartext passwords may be read by
anyone having read access to that information. See Section 6.1.2, “Keeping
Passwords Secure”.

Important

Some releases of MySQL introduce changes to the structure of the grant
tables to add new privileges or features. To make sure that you can take
advantage of any new capabilities, update your grant tables to have the current
structure whenever you update to a new version of MySQL. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

13.7.1.3 DROP USER Syntax

DROP USER user [, user] ...

The DROP USER statement removes one or more MySQL accounts and their privileges. It removes
privilege rows for the account from all grant tables. An error occurs for accounts that do not exist. To
use this statement, you must have the global CREATE USER privilege or the DELETE privilege for the
mysql database.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

DROP USER 'jeffrey'@'localhost';

If you specify only the user name part of the account name, a host name part of '%' is used.

Important

DROP USER does not automatically close any open user sessions. Rather, in
the event that a user with an open session is dropped, the statement does not
take effect until that user's session is closed. Once the session is closed, the
user is dropped, and that user's next attempt to log in will fail. This is by design.

DROP USER does not automatically drop or invalidate databases or objects within them that the
old user created. This includes stored programs or views for which the DEFINER attribute names
the dropped user. Attempts to access such objects may produce an error if they execute in definer
security context. (For information about security context, see Section 18.6, “Access Control for Stored
Programs and Views”.)

13.7.1.4 GRANT Syntax

GRANT
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 TO user_specification [, user_specification] ...

Account Management Statements

1511

 [REQUIRE {NONE | ssl_option [[AND] ssl_option] ...}]
 [WITH with_option ...]

GRANT PROXY ON user_specification
 TO user_specification [, user_specification] ...
 [WITH GRANT OPTION]

object_type:
 TABLE
 | FUNCTION
 | PROCEDURE

priv_level:
 *
 | *.*
 | db_name.*
 | db_name.tbl_name
 | tbl_name
 | db_name.routine_name

user_specification:
 user
 [
 | IDENTIFIED WITH auth_plugin [AS 'auth_string']
 IDENTIFIED BY [PASSWORD] 'password'
]

ssl_option:
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'

with_option:
 GRANT OPTION
 | MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count

The GRANT statement grants privileges to MySQL user accounts. GRANT also serves to specify other
account characteristics such as use of secure connections and limits on access to server resources.
To use GRANT, you must have the GRANT OPTION privilege, and you must have the privileges that you
are granting.

Normally, a database administrator first uses CREATE USER to create an account, then GRANT to
define its privileges and characteristics. For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
GRANT ALL ON db1.* TO 'jeffrey'@'localhost';
GRANT SELECT ON db2.invoice TO 'jeffrey'@'localhost';
GRANT USAGE ON *.* TO 'jeffrey'@'localhost' WITH MAX_QUERIES_PER_HOUR 90;

However, if an account named in a GRANT statement does not already exist, GRANT may create it
under the conditions described later in the discussion of the NO_AUTO_CREATE_USER SQL mode.

The REVOKE statement is related to GRANT and enables administrators to remove account privileges.
See Section 13.7.1.6, “REVOKE Syntax”.

When successfully executed from the mysql program, GRANT responds with Query OK, 0
rows affected. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 13.7.5.20, “SHOW GRANTS Syntax”.

There are several aspects to the GRANT statement, described under the following topics in this section:

• Privileges Supported by MySQL

Account Management Statements

1512

• Global Privileges

• Database Privileges

• Table Privileges

• Column Privileges

• Stored Routine Privileges

• Proxy User Privileges

• Account Names and Passwords

• Other Account Characteristics

• MySQL and Standard SQL Versions of GRANT

Important

Some releases of MySQL introduce changes to the structure of the grant
tables to add new privileges or features. To make sure that you can take
advantage of any new capabilities, update your grant tables to have the current
structure whenever you update to a new version of MySQL. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

Privileges Supported by MySQL

The following table summarizes the permissible priv_type privilege types that can be specified
for the GRANT and REVOKE statements, and the levels at which each privilege can be granted. For
additional information about these privileges, see Section 6.2.1, “Privileges Provided by MySQL”.

Table 13.1 Permissible Privileges for GRANT and REVOKE

Privilege Meaning and Grantable Levels

ALL [PRIVILEGES] Grant all privileges at specified access level except GRANT OPTION

ALTER Enable use of ALTER TABLE. Levels: Global, database, table.

ALTER ROUTINE Enable stored routines to be altered or dropped. Levels: Global,
database, procedure.

CREATE Enable database and table creation. Levels: Global, database, table.

CREATE ROUTINE Enable stored routine creation. Levels: Global, database.

CREATE TABLESPACE Enable tablespaces and log file groups to be created, altered, or
dropped. Level: Global.

CREATE TEMPORARY
TABLES

Enable use of CREATE TEMPORARY TABLE. Levels: Global, database.

CREATE USER Enable use of CREATE USER, DROP USER, RENAME USER, and
REVOKE ALL PRIVILEGES. Level: Global.

CREATE VIEW Enable views to be created or altered. Levels: Global, database, table.

DELETE Enable use of DELETE. Level: Global, database, table.

DROP Enable databases, tables, and views to be dropped. Levels: Global,
database, table.

EVENT Enable use of events for the Event Scheduler. Levels: Global,
database.

EXECUTE Enable the user to execute stored routines. Levels: Global, database,
table.

Account Management Statements

1513

Privilege Meaning and Grantable Levels

FILE Enable the user to cause the server to read or write files. Level: Global.

GRANT OPTION Enable privileges to be granted to or removed from other accounts.
Levels: Global, database, table, procedure, proxy.

INDEX Enable indexes to be created or dropped. Levels: Global, database,
table.

INSERT Enable use of INSERT. Levels: Global, database, table, column.

LOCK TABLES Enable use of LOCK TABLES on tables for which you have the SELECT
privilege. Levels: Global, database.

PROCESS Enable the user to see all processes with SHOW PROCESSLIST. Level:
Global.

PROXY Enable user proxying. Level: From user to user.

REFERENCES Not implemented

RELOAD Enable use of FLUSH operations. Level: Global.

REPLICATION CLIENT Enable the user to ask where master or slave servers are. Level:
Global.

REPLICATION SLAVE Enable replication slaves to read binary log events from the master.
Level: Global.

SELECT Enable use of SELECT. Levels: Global, database, table, column.

SHOW DATABASES Enable SHOW DATABASES to show all databases. Level: Global.

SHOW VIEW Enable use of SHOW CREATE VIEW. Levels: Global, database, table.

SHUTDOWN Enable use of mysqladmin shutdown. Level: Global.

SUPER Enable use of other administrative operations such as CHANGE
MASTER TO, KILL, PURGE BINARY LOGS, SET GLOBAL, and
mysqladmin debug command. Level: Global.

TRIGGER Enable trigger operations. Levels: Global, database, table.

UPDATE Enable use of UPDATE. Levels: Global, database, table, column.

USAGE Synonym for “no privileges”

A trigger is associated with a table, so to create or drop a trigger, you must have the TRIGGER privilege
for the table, not the trigger.

In GRANT statements, the ALL [PRIVILEGES] or PROXY privilege must be named by itself and cannot
be specified along with other privileges. ALL [PRIVILEGES] stands for all privileges available for the
level at which privileges are to be granted except for the GRANT OPTION and PROXY privileges.

USAGE can be specified to create a user that has no privileges, or to specify the REQUIRE or WITH
clauses for an account without changing its existing privileges.

MySQL account information is stored in the tables of the mysql database. This database and the
access control system are discussed extensively in Section 6.2, “The MySQL Access Privilege
System”, which you should consult for additional details.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to
revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not
create such rows when lower_case_table_names is set, but such rows might have been created
prior to setting that variable.)

Privileges can be granted at several levels, depending on the syntax used for the ON clause. For
REVOKE, the same ON syntax specifies which privileges to take away. The examples shown here

Account Management Statements

1514

include no IDENTIFIED BY 'password' clause for brevity, but you should include one if the
account does not already exist, to avoid creating an insecure account that has no password.

Global Privileges

Global privileges are administrative or apply to all databases on a given server. To assign global
privileges, use ON *.* syntax:

GRANT ALL ON *.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';

The CREATE TABLESPACE, CREATE USER, FILE, PROCESS, RELOAD, REPLICATION CLIENT,
REPLICATION SLAVE, SHOW DATABASES, SHUTDOWN, and SUPER privileges are administrative and
can only be granted globally.

Other privileges can be granted globally or at more specific levels.

MySQL stores global privileges in the mysql.user table.

Database Privileges

Database privileges apply to all objects in a given database. To assign database-level privileges, use
ON db_name.* syntax:

GRANT ALL ON mydb.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';

If you use ON * syntax (rather than ON *.*) and you have selected a default database, privileges are
assigned at the database level for the default database. An error occurs if there is no default database.

The CREATE, DROP, EVENT, GRANT OPTION, and LOCK TABLES privileges can be specified at the
database level. Table or routine privileges also can be specified at the database level, in which case
they apply to all tables or routines in the database.

MySQL stores database privileges in the mysql.db table.

Table Privileges

Table privileges apply to all columns in a given table. To assign table-level privileges, use ON
db_name.tbl_name syntax:

GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';

If you specify tbl_name rather than db_name.tbl_name, the statement applies to tbl_name in the
default database. An error occurs if there is no default database.

The permissible priv_type values at the table level are ALTER, CREATE VIEW, CREATE, DELETE,
DROP, GRANT OPTION, INDEX, INSERT, SELECT, SHOW VIEW, TRIGGER, and UPDATE.

MySQL stores table privileges in the mysql.tables_priv table.

Column Privileges

Column privileges apply to single columns in a given table. Each privilege to be granted at the column
level must be followed by the column or columns, enclosed within parentheses.

GRANT SELECT (col1), INSERT (col1,col2) ON mydb.mytbl TO 'someuser'@'somehost';

Account Management Statements

1515

The permissible priv_type values for a column (that is, when you use a column_list clause) are
INSERT, SELECT, and UPDATE.

MySQL stores column privileges in the mysql.columns_priv table.

Stored Routine Privileges

The ALTER ROUTINE, CREATE ROUTINE, EXECUTE, and GRANT OPTION privileges apply to stored
routines (procedures and functions). They can be granted at the global and database levels. Except for
CREATE ROUTINE, these privileges can be granted at the routine level for individual routines.

GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost';
GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';

The permissible priv_type values at the routine level are ALTER ROUTINE, EXECUTE, and GRANT
OPTION. CREATE ROUTINE is not a routine-level privilege because you must have this privilege to
create a routine in the first place.

MySQL stores routine-level privileges in the mysql.procs_priv table.

Proxy User Privileges

The PROXY privilege enables one user to be a proxy for another. The proxy user impersonates or takes
the identity of the proxied user.

GRANT PROXY ON 'localuser'@'localhost' TO 'externaluser'@'somehost';

When PROXY is granted, it must be the only privilege named in the GRANT statement, the REQUIRE
clause cannot be given, and the only permitted WITH option is WITH GRANT OPTION.

Proxying requires that the proxy user authenticate through a plugin that returns the name of the proxied
user to the server when the proxy user connects, and that the proxy user have the PROXY privilege for
the proxied user. For details and examples, see Section 6.3.10, “Proxy Users”.

MySQL stores proxy privileges in the mysql.proxies_priv table.

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at
the level you are granting. For example, GRANT ALL ON db_name.* is a database-level statement,
so it does not grant any global-only privileges such as FILE. Granting ALL does not assign the PROXY
privilege.

The object_type clause, if present, should be specified as TABLE, FUNCTION, or PROCEDURE when
the following object is a table, a stored function, or a stored procedure.

The privileges for a database, table, column, or routine are formed additively as the logical OR of the
privileges at each of the privilege levels. For example, if a user has a global SELECT privilege, the
privilege cannot be denied by an absence of the privilege at the database, table, or column level.
Details of the privilege-checking procedure are presented in Section 6.2.5, “Access Control, Stage 2:
Request Verification”.

MySQL enables you to grant privileges on databases or tables that do not exist. For tables, the
privileges to be granted must include the CREATE privilege. This behavior is by design, and is intended
to enable the database administrator to prepare user accounts and privileges for databases or tables
that are to be created at a later time.

Important

MySQL does not automatically revoke any privileges when you drop a database
or table. However, if you drop a routine, any routine-level privileges granted for
that routine are revoked.

Account Management Statements

1516

Account Names and Passwords

The user value indicates the MySQL account to which the GRANT statement applies. To accommodate
granting rights to users from arbitrary hosts, MySQL supports specifying the user value in the form
user_name@host_name. If a user_name or host_name value is legal as an unquoted identifier, you
need not quote it. However, quotation marks are necessary to specify a user_name string containing
special characters (such as “-”), or a host_name string containing special characters or wildcard
characters (such as “%”); for example, 'test-user'@'%.com'. Quote the user name and host name
separately.

You can specify wildcards in the host name. For example, user_name@'%.example.com' applies to
user_name for any host in the example.com domain, and user_name@'192.168.1.%' applies to
user_name for any host in the 192.168.1 class C subnet.

The simple form user_name is a synonym for user_name@'%'.

MySQL does not support wildcards in user names. To refer to an anonymous user, specify an account
with an empty user name with the GRANT statement:

GRANT ALL ON test.* TO ''@'localhost' ...

In this case, any user who connects from the local host with the correct password for the anonymous
user will be permitted access, with the privileges associated with the anonymous-user account.

For additional information about user name and host name values in account names, see
Section 6.2.3, “Specifying Account Names”.

To specify quoted values, quote database, table, column, and routine names as identifiers. Quote user
names and host names as identifiers or as strings. Quote passwords as strings. For string-quoting
and identifier-quoting guidelines, see Section 9.1.1, “String Literals”, and Section 9.2, “Schema Object
Names”.

The “_” and “%” wildcards are permitted when specifying database names in GRANT statements that
grant privileges at the global or database levels. This means, for example, that if you want to use a “_”
character as part of a database name, you should specify it as “_” in the GRANT statement, to prevent
the user from being able to access additional databases matching the wildcard pattern; for example,
GRANT ... ON `foo_bar`.* TO

Warning

If you permit anonymous users to connect to the MySQL server, you should
also grant privileges to all local users as user_name@localhost. Otherwise,
the anonymous user account for localhost in the mysql.user table (created
during MySQL installation) is used when named users try to log in to the MySQL
server from the local machine. For details, see Section 6.2.4, “Access Control,
Stage 1: Connection Verification”.

To determine whether the preceding warning applies to you, execute the following query, which lists
any anonymous users:

SELECT Host, User FROM mysql.user WHERE User='';

To avoid the problem just described, delete the local anonymous user account using this statement:

DROP USER ''@'localhost';

GRANT supports host names up to 60 characters long. Database, table, column, and routine names can
be up to 64 characters. User names can be up to 16 characters.

Account Management Statements

1517

Warning

The permissible length for user names cannot be changed by altering the
mysql.user table. Attempting to do so results in unpredictable behavior
which may even make it impossible for users to log in to the MySQL server.
You should never alter any of the tables in the mysql database in any manner
whatsoever except by means of the procedure described in Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

To indicate how the user should authenticate when connecting to the server, the
user_specification clause may include IDENTIFIED WITH to specify an authentication plugin
or IDENTIFIED BY to specify a password. Syntax of the user specification is the same as for the
CREATE USER statement. For details, see Section 13.7.1.2, “CREATE USER Syntax”.

When IDENTIFIED BY is present and you have the global grant privilege (GRANT OPTION), the
password becomes the new password for the account, even if the account exists and already has a
password. Without IDENTIFIED BY, the account password remains unchanged.

If an account named in a GRANT statement does not exist, the action taken depends on the
NO_AUTO_CREATE_USER SQL mode:

• If NO_AUTO_CREATE_USER is not enabled, GRANT creates the account. This is very insecure unless
you specify a nonempty password using IDENTIFIED BY.

• If NO_AUTO_CREATE_USER is enabled, GRANT fails and does not create the account, unless you
specify a nonempty password using IDENTIFIED BY or name an authentication plugin using
IDENTIFIED WITH.

As of MySQL 5.7.2, if the account already exists, IDENTIFIED WITH is prohibited because it is
intended only for use when creating new accounts.

Important

GRANT may be recorded in server logs or in a history file such as
~/.mysql_history, which means that cleartext passwords may be read by
anyone having read access to that information. See Section 6.1.2, “Keeping
Passwords Secure”.

Other Account Characteristics

The WITH clause is used for several purposes:

• To enable a user to grant privileges to other users

• To specify resource limits for a user

• To specify whether and how a user must use secure connections to the server

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges the
user has at the specified privilege level. You should be careful to whom you give the GRANT OPTION
privilege because two users with different privileges may be able to combine privileges!

You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION
privilege enables you to assign only those privileges which you yourself possess.

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any
privileges the user possesses (or may be given in the future) at that level can also be granted by that
user to other users. Suppose that you grant a user the INSERT privilege on a database. If you then
grant the SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to

Account Management Statements

1518

other users not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to
the user on the database, the user can grant INSERT, SELECT, and UPDATE.

For a nonadministrative user, you should not grant the ALTER privilege globally or for the mysql
database. If you do that, the user can try to subvert the privilege system by renaming tables!

For additional information about security risks associated with particular privileges, see Section 6.2.1,
“Privileges Provided by MySQL”.

Several WITH clause options specify limits on use of server resources by an account:

• The MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count, and
MAX_CONNECTIONS_PER_HOUR count limits restrict the number of queries, updates, and
connections to the server permitted to this account during any given one-hour period. (Queries for
which results are served from the query cache do not count against the MAX_QUERIES_PER_HOUR
limit.) If count is 0 (the default), this means that there is no limitation for the account.

• The MAX_USER_CONNECTIONS count limit restricts the maximum number of simultaneous
connections to the server by the account. A nonzero count specifies the limit for the account
explicitly. If count is 0 (the default), the server determines the number of simultaneous connections
for the account from the global value of the max_user_connections system variable. If
max_user_connections is also zero, there is no limit for the account.

To specify resource limits for an existing user without affecting existing privileges, use GRANT USAGE
at the global level (ON *.*) and name the limits to be changed. For example:

GRANT USAGE ON *.* TO ...
 WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

Limits not specified retain their current values.

For more information on restricting access to server resources, see Section 6.3.4, “Setting Account
Resource Limits”.

MySQL can check X509 certificate attributes in addition to the usual authentication that is based on
the user name and password. To specify SSL-related options for a MySQL account, use the REQUIRE
clause of the GRANT statement. (For background information on the use of SSL with MySQL, see
Section 6.3.11, “Using SSL for Secure Connections”.)

There are a number of different possibilities for limiting connection types for a given account:

• REQUIRE NONE indicates that the account has no SSL or X509 requirements. This is the default if
no SSL-related REQUIRE options are specified. Unencrypted connections are permitted if the user
name and password are valid. However, encrypted connections can also be used, at the client's
option, if the client has the proper certificate and key files. That is, the client need not specify any
SSL command options, in which case the connection will be unencrypted. To use an encrypted
connection, the client must specify either the --ssl-ca option, or all three of the --ssl-ca, --
ssl-key, and --ssl-cert options.

• The REQUIRE SSL option tells the server to permit only SSL-encrypted connections for the account.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 IDENTIFIED BY 'goodsecret' REQUIRE SSL;

To connect, the client must specify the --ssl-ca option to authenticate the server certificate, and
may additionally specify the --ssl-key and --ssl-cert options. If neither --ssl-ca option nor
--ssl-capath option is specified, the client does not authenticate the server certificate.

• REQUIRE X509 means that the client must have a valid certificate but that the exact certificate,
issuer, and subject do not matter. The only requirement is that it should be possible to verify its
signature with one of the CA certificates.

Account Management Statements

1519

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 IDENTIFIED BY 'goodsecret' REQUIRE X509;

To connect, the client must specify the --ssl-ca, --ssl-key, and --ssl-cert options. This is
also true for ISSUER and SUBJECT because those REQUIRE options imply X509.

• REQUIRE ISSUER 'issuer' places the restriction on connection attempts that the client must
present a valid X509 certificate issued by CA 'issuer'. If the client presents a certificate that is
valid but has a different issuer, the server rejects the connection. Use of X509 certificates always
implies encryption, so the SSL option is unnecessary in this case.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 IDENTIFIED BY 'goodsecret'
 REQUIRE ISSUER '/C=FI/ST=Some-State/L=Helsinki/
 O=MySQL Finland AB/CN=Tonu Samuel/emailAddress=tonu@example.com';

The 'issuer' value should be entered as a single string.

Note

If MySQL is linked against a version of OpenSSL older than 0.9.6h, use
Email rather than emailAddress in the 'issuer' value.

• REQUIRE SUBJECT 'subject' places the restriction on connection attempts that the client must
present a valid X509 certificate containing the subject subject. If the client presents a certificate
that is valid but has a different subject, the server rejects the connection.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 IDENTIFIED BY 'goodsecret'
 REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/
 O=MySQL demo client certificate/
 CN=Tonu Samuel/emailAddress=tonu@example.com';

The 'subject' value should be entered as a single string. MySQL does a simple string comparison
of this value to the value in the certificate, so lettercase and component ordering must be given
exactly as present in the certificate.

Note

Regarding emailAddress, see the note in the description of REQUIRE
ISSUER.

• REQUIRE CIPHER 'cipher' is needed to ensure that ciphers and key lengths of sufficient
strength are used. SSL itself can be weak if old algorithms using short encryption keys are used.
Using this option, you can ask that a specific cipher method is used for a connection.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 IDENTIFIED BY 'goodsecret'
 REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 IDENTIFIED BY 'goodsecret'
 REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/
 O=MySQL demo client certificate/
 CN=Tonu Samuel/emailAddress=tonu@example.com'
 AND ISSUER '/C=FI/ST=Some-State/L=Helsinki/
 O=MySQL Finland AB/CN=Tonu Samuel/emailAddress=tonu@example.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

Account Management Statements

1520

The order of the options does not matter, but no option can be specified twice. The AND keyword is
optional between REQUIRE options.

If you are using table, column, or routine privileges for even one user, the server examines table,
column, and routine privileges for all users and this slows down MySQL a bit. Similarly, if you limit the
number of queries, updates, or connections for any users, the server must monitor these values.

MySQL and Standard SQL Versions of GRANT

The biggest differences between the MySQL and standard SQL versions of GRANT are:

• MySQL associates privileges with the combination of a host name and user name and not with only a
user name.

• Standard SQL does not have global or database-level privileges, nor does it support all the privilege
types that MySQL supports.

• MySQL does not support the standard SQL UNDER privilege.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges
the user has been granted are revoked. This is also true in MySQL if you use DROP USER. See
Section 13.7.1.3, “DROP USER Syntax”.

• In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL,
when you revoke a privilege, all privileges that were granted based on that privilege are also
revoked. In MySQL, privileges can be dropped only with explicit DROP USER or REVOKE statements
or by manipulating the MySQL grant tables directly.

• In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this
case, you can still execute INSERT statements on the table, provided that you insert values only for
those columns for which you have the INSERT privilege. The omitted columns are set to their implicit
default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any of the
omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege on
all columns.) Section 5.1.7, “Server SQL Modes”, discusses strict mode. Section 11.5, “Data Type
Default Values”, discusses implicit default values.

13.7.1.5 RENAME USER Syntax

RENAME USER old_user TO new_user
 [, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. An error occurs for old accounts
that do not exist or new accounts that already exist. To use this statement, you must have the global
CREATE USER privilege or the UPDATE privilege for the mysql database.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

RENAME USER 'jeffrey'@'localhost' TO 'jeff'@'127.0.0.1';

If you specify only the user name part of the account name, a host name part of '%' is used.

RENAME USER causes the privileges held by the old user to be those held by the new user. However,
RENAME USER does not automatically drop or invalidate databases or objects within them that the old
user created. This includes stored programs or views for which the DEFINER attribute names the old
user. Attempts to access such objects may produce an error if they execute in definer security context.
(For information about security context, see Section 18.6, “Access Control for Stored Programs and
Views”.)

The privilege changes take effect as indicated in Section 6.2.6, “When Privilege Changes Take Effect”.

Account Management Statements

1521

13.7.1.6 REVOKE Syntax

REVOKE
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 FROM user [, user] ...

REVOKE ALL PRIVILEGES, GRANT OPTION
 FROM user [, user] ...

REVOKE PROXY ON user
 FROM user [, user] ...

The REVOKE statement enables system administrators to revoke privileges from MySQL accounts.
Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

REVOKE INSERT ON *.* FROM 'jeffrey'@'localhost';

If you specify only the user name part of the account name, a host name part of '%' is used.

For details on the levels at which privileges exist, the permissible priv_type and priv_level
values, and the syntax for specifying users and passwords, see Section 13.7.1.4, “GRANT Syntax”

To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the
privileges that you are revoking.

To revoke all privileges, use the second syntax, which drops all global, database, table, column, and
routine privileges for the named user or users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

To use this REVOKE syntax, you must have the global CREATE USER privilege or the UPDATE privilege
for the mysql database.

REVOKE removes privileges, but does not drop mysql.user table entries. To remove a user account
entirely, use DROP USER (see Section 13.7.1.3, “DROP USER Syntax”) or DELETE.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to
revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not
create such rows when lower_case_table_names is set, but such rows might have been created
prior to setting the variable.)

When successfully executed from the mysql program, REVOKE responds with Query OK, 0
rows affected. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 13.7.5.20, “SHOW GRANTS Syntax”.

13.7.1.7 SET PASSWORD Syntax

SET PASSWORD [FOR user] =
 {
 PASSWORD('cleartext password')
 | OLD_PASSWORD('cleartext password')
 | 'encrypted password'
 }

The SET PASSWORD statement assigns a password to a MySQL user account:

Account Management Statements

1522

• With no FOR user clause, this statement sets the password for the current user:

SET PASSWORD = PASSWORD('cleartext password');

Any client who connects to the server using a nonanonymous account can change the password for
that account. To see which account the server authenticated you for, invoke the CURRENT_USER()
function:

SELECT CURRENT_USER();

• With a FOR user clause, this statement sets the password for the named account, which must exist:

SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('cleartext password');

In this case, you must have the UPDATE privilege for the mysql database.

When the read_only system variable is enabled, SET PASSWORD requires the SUPER privilege, in
addition to any other required privileges.

If a FOR user clause is given, the account name uses the format described in Section 6.2.3,
“Specifying Account Names”. The user value should be given as 'user_name'@'host_name',
where 'user_name' and 'host_name' are exactly as listed in the User and Host columns of the
account's mysql.user table row. (If you specify only a user name, a host name of '%' is used.)
For example, to set the password for an account with User and Host column values of 'bob' and
'%.example.org', write the statement like this:

SET PASSWORD FOR 'bob'@'%.example.org' = PASSWORD('cleartext password');

The password can be specified in these ways:

• Using the PASSWORD() function

The function argument is the cleartext (unencrypted) password. PASSWORD() hashes the password
and returns the encrypted password string.

The old_passwords system variable value determines the hashing method used by PASSWORD().
If SET PASSWORD rejects the password as not being in the correct format, it may be necessary
to change old_passwords to change the hashing method. For example, if the account uses the
mysql_native_password plugin, the old_passwords value must be 0:

SET old_passwords = 0;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('mypass');

If the old_passwords value differs from that required by the authentication plugin, hashed
password values returned by PASSWORD() are not acceptable for that plugin and attempts to set the
password produce an error. For example:

mysql> SET old_passwords = 1;
mysql> SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('mypass');
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number

• Using the OLD_PASSWORD() function:

The function argument is the cleartext (unencrypted) password. OLD_PASSWORD() hashes the
password using pre-4.1 hashing and returns the encrypted password string. This hashing method is
appropriate only for accounts that use the mysql_old_password authentication plugin.

• Using an already encrypted password string

Table Maintenance Statements

1523

The password is specified as a string literal. It must represent the already encrypted password value,
in the hash format required by the authentication method used for the account.

The following table shows the permitted values of old_passwords, the password hashing method for
each value, and which authentication plugins use passwords hashed with each method.

Value Password Hashing Method Associated Authentication Plugin

0 MySQL 4.1 native hashing mysql_native_password

1 Pre-4.1 (“old”) hashing mysql_old_password

2 SHA-256 hashing sha256_password

For more information about setting passwords, see Section 6.3.5, “Assigning Account Passwords”

Important

SET PASSWORD may be recorded in server logs or in a history file such as
~/.mysql_history, which means that cleartext passwords may be read by
anyone having read access to that information. See Section 6.1.2, “Keeping
Passwords Secure”.

Caution

If you are connecting to a MySQL 4.1 or later server using a pre-4.1 client
program, do not change your password without first reading Section 6.1.2.4,
“Password Hashing in MySQL”. The default password hashing format changed
in MySQL 4.1, and if you change your password, it might be stored using a
hashing format that pre-4.1 clients cannot generate, thus preventing you from
connecting to the server afterward.

If you are using MySQL Replication, be aware that, currently, a password used by a replication slave
as part of a CHANGE MASTER TO statement is effectively limited to 32 characters in length; if the
password is longer, any excess characters are truncated. This is not due to any limit imposed by the
MySQL Server generally, but rather is an issue specific to MySQL Replication. (For more information,
see Bug #43439.)

13.7.2 Table Maintenance Statements

13.7.2.1 ANALYZE TABLE Syntax

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
 tbl_name [, tbl_name] ...

ANALYZE TABLE analyzes and stores the key distribution for a table. During the analysis, the table is
locked with a read lock for InnoDB and MyISAM. This statement works with InnoDB, NDB, and MyISAM
tables. For MyISAM tables, this statement is equivalent to using myisamchk --analyze.

For more information on how the analysis works within InnoDB, see Persistent Optimizer Statistics for
InnoDB Tables and Section 14.2.6.7, “Limits on InnoDB Tables”. In particular, when you enable the
innodb_stats_persistent option, you must run ANALYZE TABLE after loading substantial data
into an InnoDB table, or creating a new index for one.

MySQL uses the stored key distribution to decide the order in which tables should be joined when you
perform a join on something other than a constant. In addition, key distributions can be used when
deciding which indexes to use for a specific table within a query.

This statement requires SELECT and INSERT privileges for the table.

Table Maintenance Statements

1524

ANALYZE TABLE is supported for partitioned tables, and you can use ALTER TABLE ... ANALYZE
PARTITION to analyze one or more partitions; for more information, see Section 13.1.6, “ALTER
TABLE Syntax”, and Section 17.3.4, “Maintenance of Partitions”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

ANALYZE TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always analyze

Msg_type status, error, info, note, or warning

Msg_text An informational message

You can check the stored key distribution with the SHOW INDEX statement. See Section 13.7.5.21,
“SHOW INDEX Syntax”.

If the table has not changed since the last ANALYZE TABLE statement, the table is not analyzed again.

By default, the server writes ANALYZE TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its
alias LOCAL.

13.7.2.2 CHECK TABLE Syntax

CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option = {FOR UPGRADE | QUICK | FAST | MEDIUM | EXTENDED | CHANGED}

CHECK TABLE checks a table or tables for errors. CHECK TABLE works for InnoDB, MyISAM,
ARCHIVE, and CSV tables. For MyISAM tables, the key statistics are updated as well.

To check a table, you must have some privilege for it.

CHECK TABLE can also check views for problems, such as tables that are referenced in the view
definition that no longer exist.

CHECK TABLE is supported for partitioned tables, and you can use ALTER TABLE ... CHECK
PARTITION to check one or more partitions; for more information, see Section 13.1.6, “ALTER TABLE
Syntax”, and Section 17.3.4, “Maintenance of Partitions”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

Output

CHECK TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always check

Msg_type status, error, info, note, or warning

Msg_text An informational message

Table Maintenance Statements

1525

Note that the statement might produce many rows of information for each checked table. The last row
has a Msg_type value of status and the Msg_text normally should be OK. If you don't get OK, or
Table is already up to date you should normally run a repair of the table. See Section 7.6,
“MyISAM Table Maintenance and Crash Recovery”. Table is already up to date means that
the storage engine for the table indicated that there was no need to check the table.

Checking Version Compatibility

The FOR UPGRADE option checks whether the named tables are compatible with the current version
of MySQL. With FOR UPGRADE, the server checks each table to determine whether there have been
any incompatible changes in any of the table's data types or indexes since the table was created. If not,
the check succeeds. Otherwise, if there is a possible incompatibility, the server runs a full check on the
table (which might take some time). If the full check succeeds, the server marks the table's .frm file
with the current MySQL version number. Marking the .frm file ensures that further checks for the table
with the same version of the server will be fast.

Incompatibilities might occur because the storage format for a data type has changed or because its
sort order has changed. Our aim is to avoid these changes, but occasionally they are necessary to
correct problems that would be worse than an incompatibility between releases.

Currently, FOR UPGRADE discovers these incompatibilities:

• The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed
between MySQL 4.1 and 5.0.

• The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.

• If your table was created by a different version of the MySQL server than the one you are currently
running, FOR UPGRADE indicates that the table has an .frm file with an incompatible version.
In this case, the result set returned by CHECK TABLE contains a line with a Msg_type value of
error and a Msg_text value of Table upgrade required. Please do "REPAIR TABLE
`tbl_name`" to fix it!

• Changes are sometimes made to character sets or collations that require table indexes to be
rebuilt. For details about these changes and when FOR UPGRADE detects them, see Section 2.10.3,
“Checking Whether Tables or Indexes Must Be Rebuilt”.

• The YEAR(2) is deprecated as of MySQL 5.6.6. CHECK TABLE recommends REPAIR TABLE for
tables containing this data type. REPAIR TABLE converts YEAR(2) to YEAR(4).

• As of MySQL 5.7.2, trigger creation time is maintained. If run against a table that has triggers, CHECK
TABLE ... FOR UPGRADE displays this warning for each trigger created before MySQL 5.7.2:

Trigger db_name.tbl_name.trigger_name does not have CREATED attribute.

The warning is informational only. No change is made to the trigger.

Checking Data Consistency

The other check options that can be given are shown in the following table. These options are passed
to the storage engine, which may use them or not.

Type Meaning

QUICK Do not scan the rows to check for incorrect links. Applies to InnoDB and MyISAM
tables and views.

FAST Check only tables that have not been closed properly. Applies only to MyISAM tables
and views; ignored for InnoDB.

Table Maintenance Statements

1526

Type Meaning

CHANGED Check only tables that have been changed since the last check or that have not been
closed properly. Applies only to MyISAM tables and views; ignored for InnoDB.

MEDIUM Scan rows to verify that deleted links are valid. This also calculates a key checksum
for the rows and verifies this with a calculated checksum for the keys. Applies only to
MyISAM tables and views; ignored for InnoDB.

EXTENDED Do a full key lookup for all keys for each row. This ensures that the table is 100%
consistent, but takes a long time. Applies only to MyISAM tables and views; ignored for
InnoDB.

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dynamic-
format MyISAM tables is MEDIUM. This has the same result as running myisamchk --medium-check
tbl_name on the table. The default check type also is MEDIUM for static-format MyISAM tables, unless
CHANGED or FAST is specified. In that case, the default is QUICK. The row scan is skipped for CHANGED
and FAST because the rows are very seldom corrupted.

You can combine check options, as in the following example that does a quick check on the table to
determine whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note

In some cases, CHECK TABLE changes the table. This happens if the table is
marked as “corrupted” or “not closed properly” but CHECK TABLE does not find
any problems in the table. In this case, CHECK TABLE marks the table as okay.

If a table is corrupted, it is most likely that the problem is in the indexes and not in the data part. All of
the preceding check types check the indexes thoroughly and should thus find most errors.

If you just want to check a table that you assume is okay, you should use no check options or the
QUICK option. The latter should be used when you are in a hurry and can take the very small risk that
QUICK does not find an error in the data file. (In most cases, under normal usage, MySQL should find
any error in the data file. If this happens, the table is marked as “corrupted” and cannot be used until it
is repaired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from
cron) if you want to check tables from time to time. In most cases, FAST is to be preferred over
CHANGED. (The only case when it is not preferred is when you suspect that you have found a bug in the
MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get strange errors from a table
when MySQL tries to update a row or find a row by key. This is very unlikely if a normal check has
succeeded.

Use of CHECK TABLE ... EXTENDED might influence the execution plan generated by the query
optimizer.

Some problems reported by CHECK TABLE cannot be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column contains the
value 0. (It is possible to create a row where the AUTO_INCREMENT column is 0 by explicitly setting
the column to 0 with an UPDATE statement.)

This is not an error in itself, but could cause trouble if you decide to dump the table and restore it
or do an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes value

Table Maintenance Statements

1527

according to the rules of AUTO_INCREMENT columns, which could cause problems such as a
duplicate-key error.

To get rid of the warning, simply execute an UPDATE statement to set the column to some value
other than 0.

InnoDB Tables

The following notes apply to InnoDB tables:

• If CHECK TABLE finds a problem for an InnoDB table, the server shuts down to prevent error
propagation. Details of the error will be written to the error log.

• If CHECK TABLE encounters corruptions or errors in InnoDB tables or indexes, it reports an error. It
does not shut down the server. Starting with MySQL 5.5, CHECK TABLE usually marks the index and
sometimes marks the table as corrupted, preventing further use of the index or table.

• If CHECK TABLE finds the wrong number of entries in a secondary index, it will report an error but will
not shut down the server or prevent access to the file.

• CHECK TABLE surveys the index page structure, then surveys each key entry. It does not validate
the key pointer to a clustered record or follow the path for BLOB pointers.

• When an InnoDB table is stored in its own .ibd file in file-per-table mode, the first 3 pages of the
.ibd contain header information rather than table or index data. The CHECK TABLE statement
does not detect inconsistencies that only affect the header data. To verify the entire contents of an
InnoDB .ibd file, use the innochecksum command.

• When running CHECK TABLE on large InnoDB tables, other threads may be blocked during CHECK
TABLE execution. To avoid timeouts, the semaphore wait threshold (600 seconds) is extended by
2 hours (7200 seconds) for CHECK TABLE operations. If InnoDB detects semaphore waits of 240
seconds or more it starts printing InnoDB monitor output to the error log. If a lock request extends
beyond the semaphore wait threshold, InnoDB will abort the process. To avoid the possibility of a
semaphore wait timeout entirely, you can run CHECK TABLE QUICK instead of CHECK TABLE.

13.7.2.3 CHECKSUM TABLE Syntax

CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

CHECKSUM TABLE reports a checksum for the contents of a table. You can use this statement to verify
that the contents are the same before and after a backup, rollback, or other operation that is intended
to put the data back to a known state. This statement requires the SELECT privilege for the table.

Performance Considerations

By default, the entire table is read row by row and the checksum is calculated. For large tables, this
could take a long time, thus you would only perform this operation occasionally. This row-by-row
calculation is what you get with the EXTENDED clause, with InnoDB and all other storage engines other
than MyISAM, and with MyISAM tables not created with the CHECKSUM=1 clause.

For MyISAM tables created with the CHECKSUM=1 clause, CHECKSUM TABLE or CHECKSUM
TABLE ... QUICK returns the “live” table checksum that can be returned very fast. If the table does
not meet all these conditions, the QUICK method returns NULL. See Section 13.1.14, “CREATE TABLE
Syntax” for the syntax of the CHECKSUM clause.

For a nonexistent table, CHECKSUM TABLE returns NULL and generates a warning.

The checksum value depends on the table row format. If the row format changes, the checksum also
changes. For example, the storage format for VARCHAR changed between MySQL 4.1 and 5.0, so if a
4.1 table is upgraded to MySQL 5.0, the checksum value may change.

Table Maintenance Statements

1528

Important

If the checksums for two tables are different, then it is almost certain that the
tables are different in some way. However, because the hashing function used
by CHECKSUM TABLE is not guaranteed to be collision-free, there is a slight
chance that two tables which are not identical can produce the same checksum.

13.7.2.4 OPTIMIZE TABLE Syntax

OPTIMIZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
 tbl_name [, tbl_name] ...

Reorganizes the physical storage of table data and associated index data, to reduce storage space and
improve I/O efficiency when accessing the table. The exact changes made to each table depend on the
storage engine used by that table.

Use OPTIMIZE TABLE in these cases, depending on the type of table:

• After doing substantial insert, update, or delete operations on an InnoDB table that has its own
.ibd file because it was created with the innodb_file_per_table option enabled. The table and
indexes are reorganized, and disk space can be reclaimed for use by the operating system.

• After doing substantial insert, update, or delete operations on columns that
are part of a FULLTEXT index in an InnoDB table. Set the configuration option
innodb_optimize_fulltext_only=1 first. To keep the index maintenance period to a
reasonable time, set the innodb_ft_num_word_optimize option to specify how many words to
update in the search index, and run a sequence of OPTIMIZE TABLE statements until the search
index is fully updated.

• After deleting a large part of a MyISAM or ARCHIVE table, or making many changes to a MyISAM or
ARCHIVE table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT
columns). Deleted rows are maintained in a linked list and subsequent INSERT operations reuse
old row positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defragment
the data file. After extensive changes to a table, this statement may also improve performance of
statements that use the table, sometimes significantly.

This statement requires SELECT and INSERT privileges for the table.

OPTIMIZE TABLE is also supported for partitioned tables. For information about using this statement
with partitioned tables and table partitions, see Section 17.3.4, “Maintenance of Partitions”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

OPTIMIZE TABLE works for InnoDB, MyISAM, and ARCHIVE tables.

By default, OPTIMIZE TABLE does not work for tables created using any other storage engine and
returns a result indicating this lack of support. You can make OPTIMIZE TABLE work for other storage
engines by starting mysqld with the --skip-new option. In this case, OPTIMIZE TABLE is just
mapped to ALTER TABLE.

InnoDB Details

For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE ... FORCE, which rebuilds the
table to update index statistics and free unused space in the clustered index. This is displayed in the
output of OPTIMIZE TABLE when you run it on an InnoDB table, as shown here:

mysql> OPTIMIZE TABLE foo;
+----------+----------+----------+---+
| Table | Op | Msg_type | Msg_text |

Table Maintenance Statements

1529

+----------+----------+----------+---+
| test.foo | optimize | note | Table does not support optimize, doing recreate + analyze instead |
| test.foo | optimize | status | OK |
+----------+----------+----------+---+

Prior to Mysql 5.7.4, OPTIMIZE TABLE does not use online DDL (ALGORITHM=INPLACE).
Consequently, concurrent DML (INSERT, UPDATE, DELETE) is not permitted on a table while
OPTIMIZE TABLE is running, i.e. the table is locked. Also, secondary indexes are not created as
efficiently because keys are inserted in the order they appeared in the primary key.

As of 5.7.4, OPTIMIZE TABLE uses online DDL (ALGORITHM=INPLACE) for both regular and
partitioned InnoDB tables. The table rebuild, triggered by OPTIMIZE TABLE and performed under the
cover by ALTER TABLE ... FORCE, is now performed using online DDL (ALGORITHM=INPLACE)
and only locks the table for a brief interval, which reduces downtime for concurrent DML operations.

OPTIMIZE TABLE continues to use ALGORITHM=COPY under the following conditions:

• When the old_alter_table system variable is turned ON.

• When the mysqld --skip-new option is enabled.

OPTIMIZE TABLE using online DDL (ALGORITHM=INPLACE) is not supported for InnoDB tables that
contain FULLTEXT indexes. ALGORITHM=COPY must be used instead.

InnoDB stores data using a page-allocation method and does not suffer from fragmentation in the
same way that legacy storage engines (such as MyISAM) will. When considering whether or not to run
optimize, consider the workload of transactions that your server will process:

• Some level of fragmentation is expected. InnoDB only fills pages 93% full, to leave room for updates
without having to split pages.

• Delete operations might leave gaps that leave pages less filled than desired, which could make it
worthwhile to optimize the table.

• Updates to rows usually rewrite the data within the same page, depending on the data type and
row format, when sufficient space is available. See Section 14.2.7.5, “How Compression Works for
InnoDB Tables” and Section 14.2.9.1, “Overview of InnoDB Row Storage”.

• High-concurrency workloads might leave gaps in indexes over time, as InnoDB retains multiple
versions of the same data due through its MVCC mechanism. See Section 14.2.2.12, “InnoDB Multi-
Versioning”.

MyISAM Details

For MyISAM tables, OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the table's statistics are not up to date (and the repair could not be accomplished by sorting the
index), update them.

Other Considerations

OPTIMIZE TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always optimize

Table Maintenance Statements

1530

Column Value

Msg_type status, error, info, note, or warning

Msg_text An informational message

For InnoDB tables prior to 5.7.4 and other table types, MySQL locks the table during the time
OPTIMIZE TABLE is running. As of MySQL 5.7.4, OPTIMIZE TABLE is performed online for regular
and partitioned InnoDB tables.

By default, the server writes OPTIMIZE TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its
alias LOCAL.

OPTIMIZE TABLE does not sort R-tree indexes, such as spatial indexes on POINT columns. (Bug
#23578)

OPTIMIZE TABLE table catches and throws any errors that occur while copying table statistics from
the old file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD, or
.MYI file is different from the user ID of the mysqld process, OPTIMIZE TABLE generates a "cannot
change ownership of the file" error unless mysqld is started by the root user.

13.7.2.5 REPAIR TABLE Syntax

REPAIR [NO_WRITE_TO_BINLOG | LOCAL] TABLE
 tbl_name [, tbl_name] ...
 [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table, for certain storage engines only. By default, it has
the same effect as myisamchk --recover tbl_name.

Note

REPAIR TABLE only applies to MyISAM, ARCHIVE, and CSV tables. See
Section 14.3, “The MyISAM Storage Engine”, and Section 14.6, “The ARCHIVE
Storage Engine”, and Section 14.5, “The CSV Storage Engine”

This statement requires SELECT and INSERT privileges for the table.

REPAIR TABLE is supported for partitioned tables. However, the USE_FRM option cannot be used with
this statement on a partitioned table.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

You can use ALTER TABLE ... REPAIR PARTITION to repair one or more partitions; for more
information, see Section 13.1.6, “ALTER TABLE Syntax”, and Section 17.3.4, “Maintenance of
Partitions”.

Although normally you should never have to run REPAIR TABLE, if disaster strikes, this statement is
very likely to get back all your data from a MyISAM table. If your tables become corrupted often, try to
find the reason for it, to eliminate the need to use REPAIR TABLE. See Section C.5.4.2, “What to Do If
MySQL Keeps Crashing”, and Section 14.3.4, “MyISAM Table Problems”.

Caution

Make a backup of a table before performing a table repair operation; under
some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors. See Chapter 7, Backup and
Recovery.

Table Maintenance Statements

1531

Warning

If the server crashes during a REPAIR TABLE operation, it is essential after
restarting it that you immediately execute another REPAIR TABLE statement
for the table before performing any other operations on it. In the worst case,
you might have a new clean index file without information about the data file,
and then the next operation you perform could overwrite the data file. This is an
unlikely but possible scenario that underscores the value of making a backup
first.

REPAIR TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always repair

Msg_type status, error, info, note, or warning

Msg_text An informational message

The REPAIR TABLE statement might produce many rows of information for each repaired table. The
last row has a Msg_type value of status and Msg_test normally should be OK. If you do not get OK
for a MyISAM table, you should try repairing it with myisamchk --safe-recover. (REPAIR TABLE
does not implement all the options of myisamchk.) With myisamchk --safe-recover, you can also
use options that REPAIR TABLE does not support, such as --max-record-length.

If you use the QUICK option, REPAIR TABLE tries to repair only the index file, and not the data file.
This type of repair is like that done by myisamchk --recover --quick.

If you use the EXTENDED option, MySQL creates the index row by row instead of creating one index at
a time with sorting. This type of repair is like that done by myisamchk --safe-recover.

The USE_FRM option is available for use if the .MYI index file is missing or if its header is corrupted.
This option tells MySQL not to trust the information in the .MYI file header and to re-create it using
information from the .frm file. This kind of repair cannot be done with myisamchk.

Note

Use the USE_FRM option only if you cannot use regular REPAIR modes! Telling
the server to ignore the .MYI file makes important table metadata stored
in the .MYI unavailable to the repair process, which can have deleterious
consequences:

• The current AUTO_INCREMENT value is lost.

• The link to deleted records in the table is lost, which means that free space
for deleted records will remain unoccupied thereafter.

• The .MYI header indicates whether the table is compressed. If the server
ignores this information, it cannot tell that a table is compressed and repair
can cause change or loss of table contents. This means that USE_FRM should
not be used with compressed tables. That should not be necessary, anyway:
Compressed tables are read only, so they should not become corrupt.

Caution

If you use USE_FRM for a table that was created by a different version of the
MySQL server than the one you are currently running, REPAIR TABLE will
not attempt to repair the table. In this case, the result set returned by REPAIR

Plugin and User-Defined Function Statements

1532

TABLE contains a line with a Msg_type value of error and a Msg_text value
of Failed repairing incompatible .FRM file.

If USE_FRM is not used, REPAIR TABLE checks the table to see whether an upgrade is required. If
so, it performs the upgrade, following the same rules as CHECK TABLE ... FOR UPGRADE. See
Section 13.7.2.2, “CHECK TABLE Syntax”, for more information. REPAIR TABLE without USE_FRM
upgrades the .frm file to the current version.

By default, the server writes REPAIR TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its
alias LOCAL.

Important

In the event that a table on the master becomes corrupted and you run REPAIR
TABLE on it, any resulting changes to the original table are not propagated to
slaves.

You may be able to increase REPAIR TABLE performance by setting certain system variables. See
Section 8.6.3, “Speed of REPAIR TABLE Statements”.

REPAIR TABLE table catches and throws any errors that occur while copying table statistics from the
old corrupted file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD,
or .MYI file is different from the user ID of the mysqld process, REPAIR TABLE generates a "cannot
change ownership of the file" error unless mysqld is started by the root user.

13.7.3 Plugin and User-Defined Function Statements

13.7.3.1 CREATE FUNCTION Syntax for User-Defined Functions

CREATE [AGGREGATE] FUNCTION function_name RETURNS {STRING|INTEGER|REAL|DECIMAL}
 SONAME shared_library_name

A user-defined function (UDF) is a way to extend MySQL with a new function that works like a native
(built-in) MySQL function such as ABS() or CONCAT().

function_name is the name that should be used in SQL statements to invoke the function. The
RETURNS clause indicates the type of the function's return value. DECIMAL is a legal value after
RETURNS, but currently DECIMAL functions return string values and should be written like STRING
functions.

shared_library_name is the basename of the shared object file that contains the code that
implements the function. The file must be located in the plugin directory. This directory is given by the
value of the plugin_dir system variable. For more information, see Section 22.3.2.5, “Compiling and
Installing User-Defined Functions”.

To create a function, you must have the INSERT privilege for the mysql database. This is necessary
because CREATE FUNCTION adds a row to the mysql.func system table that records the
function's name, type, and shared library name. If you do not have this table, you should run the
mysql_upgrade command to create it. See Section 4.4.7, “mysql_upgrade — Check and Upgrade
MySQL Tables”.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld
with the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are
unavailable.

For instructions on writing user-defined functions, see Section 22.3.2, “Adding a New User-Defined
Function”. For the UDF mechanism to work, functions must be written in C or C++ (or another language

Plugin and User-Defined Function Statements

1533

that can use C calling conventions), your operating system must support dynamic loading and you
must have compiled mysqld dynamically (not statically).

An AGGREGATE function works exactly like a native MySQL aggregate (summary) function such as SUM
or COUNT(). For AGGREGATE to work, your mysql.func table must contain a type column. If your
mysql.func table does not have this column, you should run the mysql_upgrade program to create
it (see Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”).

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION
statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may crash.

13.7.3.2 DROP FUNCTION Syntax

DROP FUNCTION function_name

This statement drops the user-defined function (UDF) named function_name.

To drop a function, you must have the DELETE privilege for the mysql database. This is because DROP
FUNCTION removes a row from the mysql.func system table that records the function's name, type,
and shared library name.

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION
statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may crash.

DROP FUNCTION is also used to drop stored functions (see Section 13.1.21, “DROP PROCEDURE and
DROP FUNCTION Syntax”).

13.7.3.3 INSTALL PLUGIN Syntax

INSTALL PLUGIN plugin_name SONAME 'shared_library_name'

This statement installs a server plugin. It requires the INSERT privilege for the mysql.plugin
table.

plugin_name is the name of the plugin as defined in the plugin descriptor structure contained in
the library file (see Section 22.2.4.2, “Plugin Data Structures”). Plugin names are not case sensitive.
For maximal compatibility, plugin names should be limited to ASCII letters, digits, and underscore
because they are used in C source files, shell command lines, M4 and Bourne shell scripts, and SQL
environments.

shared_library_name is the name of the shared library that contains the plugin code. The
name includes the file name extension (for example, libmyplugin.so, libmyplugin.dll, or
libmyplugin.dylib).

The shared library must be located in the plugin directory (the directory named by the plugin_dir
system variable). The library must be in the plugin directory itself, not in a subdirectory. By default,
plugin_dir is the plugin directory under the directory named by the pkglibdir configuration
variable, but it can be changed by setting the value of plugin_dir at server startup. For example, set
its value in a my.cnf file:

Plugin and User-Defined Function Statements

1534

[mysqld]
plugin_dir=/path/to/plugin/directory

If the value of plugin_dir is a relative path name, it is taken to be relative to the MySQL base
directory (the value of the basedir system variable).

INSTALL PLUGIN loads and initializes the plugin code to make the plugin available for use. A plugin is
initialized by executing its initialization function, which handles any setup that the plugin must perform
before it can be used. When the server shuts down, it executes the deinitialization function for each
plugin that is loaded so that the plugin has a change to perform any final cleanup.

INSTALL PLUGIN also registers the plugin by adding a line that indicates the plugin name and library
file name to the mysql.plugin table. At server startup, the server loads and initializes any plugin that
is listed in the mysql.plugin table. This means that a plugin is installed with INSTALL PLUGIN only
once, not every time the server starts. Plugin loading at startup does not occur if the server is started
with the --skip-grant-tables option.

A plugin library can contain multiple plugins. For each of them to be installed, use a separate INSTALL
PLUGIN statement. Each statement names a different plugin, but all of them specify the same library
name.

INSTALL PLUGIN causes the server to read option (my.cnf) files just as during server startup. This
enables the plugin to pick up any relevant options from those files. It is possible to add plugin options
to an option file even before loading a plugin (if the loose prefix is used). It is also possible to uninstall
a plugin, edit my.cnf, and install the plugin again. Restarting the plugin this way enables it to the new
option values without a server restart.

For options that control individual plugin loading at server startup, see Section 5.1.8.1, “Installing and
Uninstalling Plugins”. If you need to load plugins for a single server startup when the --skip-grant-
tables option is given (which tells the server not to read system tables), use the --plugin-load
option. See Section 5.1.3, “Server Command Options”.

To remove a plugin, use the UNINSTALL PLUGIN statement.

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

To see what plugins are installed, use the SHOW PLUGINS statement or query the
INFORMATION_SCHEMA.PLUGINS table.

If you recompile a plugin library and need to reinstall it, you can use either of the following methods:

• Use UNINSTALL PLUGIN to uninstall all plugins in the library, install the new plugin library file
in the plugin directory, and then use INSTALL PLUGIN to install all plugins in the library. This
procedure has the advantage that it can be used without stopping the server. However, if the plugin
library contains many plugins, you must issue many INSTALL PLUGIN and UNINSTALL PLUGIN
statements.

• Stop the server, install the new plugin library file in the plugin directory, and restart the server.

13.7.3.4 UNINSTALL PLUGIN Syntax

UNINSTALL PLUGIN plugin_name

This statement removes an installed server plugin. It requires the DELETE privilege for the
mysql.plugin table.

plugin_name must be the name of some plugin that is listed in the mysql.plugin table. The
server executes the plugin's deinitialization function and removes the row for the plugin from the

SET Syntax

1535

mysql.plugin table, so that subsequent server restarts will not load and initialize the plugin.
UNINSTALL PLUGIN does not remove the plugin's shared library file.

You cannot uninstall a plugin if any table that uses it is open.

Plugin removal has implications for the use of associated tables. For example, if a full-text parser plugin
is associated with a FULLTEXT index on the table, uninstalling the plugin makes the table unusable.
Any attempt to access the table results in an error. The table cannot even be opened, so you cannot
drop an index for which the plugin is used. This means that uninstalling a plugin is something to do with
care unless you do not care about the table contents. If you are uninstalling a plugin with no intention of
reinstalling it later and you care about the table contents, you should dump the table with mysqldump
and remove the WITH PARSER clause from the dumped CREATE TABLE statement so that you can
reload the table later. If you do not care about the table, DROP TABLE can be used even if any plugins
associated with the table are missing.

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

13.7.4 SET Syntax

SET variable_assignment [, variable_assignment] ...

variable_assignment:
 user_var_name = expr
 | [GLOBAL | SESSION] system_var_name = expr
 | [@@global. | @@session. | @@]system_var_name = expr

The SET statement assigns values to different types of variables that affect the operation of the server
or your client.

This section describes use of SET for assigning values to variables. The SET statement can be used to
assign values to these types of variables:

• System variables. See Section 5.1.4, “Server System Variables”. System variables also can be set at
server startup, as described in Section 5.1.5, “Using System Variables”.

User-defined variables. See Section 9.4, “User-Defined Variables”.

• Stored procedure and function parameters, and stored program local variables. See Section 13.6.4,
“Variables in Stored Programs”.

Some variants of SET syntax are used in other contexts:

• SET CHARACTER SET and SET NAMES assign values to character set and collation variables
associated with the connection to the server. SET ONE_SHOT is used for replication. These variants
are described later in this section.

• SET PASSWORD assigns account passwords. See Section 13.7.1.7, “SET PASSWORD Syntax”.

• SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See
Section 13.3.6, “SET TRANSACTION Syntax”.

The following discussion shows the different SET syntaxes that you can use to set variables. The
examples use the = assignment operator, but you can also use the := assignment operator for this
purpose.

A user variable is written as @var_name and can be set as follows:

SET @var_name = expr;

SET Syntax

1536

Many system variables are dynamic and can be changed while the server runs by using the SET
statement. For a list, see Section 5.1.5.2, “Dynamic System Variables”. To change a system variable
with SET, refer to it as var_name, optionally preceded by a modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global..
The SUPER privilege is required to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION,
@@session., or @@. Setting a session variable requires no special privilege, but a client can change
only its own session variables, not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

A SET statement can contain multiple variable assignments, separated by commas. For example,
the statement can assign values to a user-defined variable and a system variable. If you set several
system variables, the most recent GLOBAL or SESSION modifier in the statement is used for following
variables that have no modifier specified.

Examples:

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

The @@var_name syntax for system variables is supported for compatibility with some other database
systems.

If you change a session system variable, the value remains in effect until your session ends or until you
change the variable to a different value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until
the server restarts. (To make a global system variable setting permanent, you should set it in an option
file.) The change is visible to any client that accesses that global variable. However, the change affects
the corresponding session variable only for clients that connect after the change. The global variable
change does not affect the session variable for any client that is currently connected (not even that of
the client that issues the SET GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that
can only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a
global variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default
value, use the DEFAULT keyword. For example, the following two statements are identical in setting the
session value of max_join_size to the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

It is not permitted to assign the value DEFAULT to user-defined variables, stored procedure or function
parameters, or stored program local variables. This results in a syntax error for user-defined variables,
parameters, and local variables.

You can refer to the values of specific global or session system variables in expressions by using one
of the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:

SET Syntax

1537

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not
specify @@global. or @@session.), MySQL returns the session value if it exists and the global value
otherwise. (This differs from SET @@var_name = value, which always refers to the session value.)

Note

Some variables displayed by SHOW VARIABLES may not be available using
SELECT @@var_name syntax; an Unknown system variable occurs.
As a workaround in such cases, you can use SHOW VARIABLES LIKE
'var_name'.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

To display system variables names and values, use the SHOW VARIABLES statement. (See
Section 13.7.5.38, “SHOW VARIABLES Syntax”.)

The following list describes SET options that have nonstandard syntax (that is, options that are not set
with name = value syntax).

• CHARACTER SET {charset_name | DEFAULT}

This maps all strings from and to the client with the given mapping. You can add new mappings
by editing sql/convert.cc in the MySQL source distribution. SET CHARACTER SET sets
three session system variables: character_set_client and character_set_results
are set to the given character set, and character_set_connection to the value of
character_set_database. See Section 10.1.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using the value DEFAULT. The default depends on the
server configuration.

ucs2, utf16, and utf32 cannot be used as a client character set, which means that they do not
work for SET CHARACTER SET.

• NAMES {'charset_name' [COLLATE 'collation_name'] | DEFAULT}

SET NAMES sets the three session system variables character_set_client,
character_set_connection, and character_set_results to the given character set.
Setting character_set_connection to charset_name also sets collation_connection
to the default collation for charset_name. The optional COLLATE clause may be used to specify a
collation explicitly. See Section 10.1.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using a value of DEFAULT. The default depends on the
server configuration.

ucs2, utf16, and utf32 cannot be used as a client character set, which means that they do not
work for SET NAMES.

SHOW Syntax

1538

13.7.5 SHOW Syntax

SHOW has many forms that provide information about databases, tables, columns, or status information
about the server. This section describes those following:

SHOW {BINARY | MASTER} LOGS
SHOW BINLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW CHARACTER SET [like_or_where]
SHOW COLLATION [like_or_where]
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]
SHOW CREATE DATABASE db_name
SHOW CREATE EVENT event_name
SHOW CREATE FUNCTION func_name
SHOW CREATE PROCEDURE proc_name
SHOW CREATE TABLE tbl_name
SHOW CREATE TRIGGER trigger_name
SHOW CREATE VIEW view_name
SHOW DATABASES [like_or_where]
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW EVENTS
SHOW FUNCTION CODE func_name
SHOW FUNCTION STATUS [like_or_where]
SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW MASTER STATUS
SHOW OPEN TABLES [FROM db_name] [like_or_where]
SHOW PLUGINS
SHOW PROCEDURE CODE proc_name
SHOW PROCEDURE STATUS [like_or_where]
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
SHOW PROFILES
SHOW SLAVE HOSTS
SHOW SLAVE STATUS [NONBLOCKING]
SHOW [GLOBAL | SESSION] STATUS [like_or_where]
SHOW TABLE STATUS [FROM db_name] [like_or_where]
SHOW [FULL] TABLES [FROM db_name] [like_or_where]
SHOW TRIGGERS [FROM db_name] [like_or_where]
SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]
SHOW WARNINGS [LIMIT [offset,] row_count]

like_or_where:
 LIKE 'pattern'
 | WHERE expr

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string
that can contain the SQL “%” and “_” wildcard characters. The pattern is useful for restricting statement
output to matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which
rows to display. See Section 19.31, “Extensions to SHOW Statements”.

Many MySQL APIs (such as PHP) enable you to treat the result returned from a SHOW statement
as you would a result set from a SELECT; see Chapter 21, Connectors and APIs, or your API
documentation for more information. In addition, you can work in SQL with results from queries on
tables in the INFORMATION_SCHEMA database, which you cannot easily do with results from SHOW
statements. See Chapter 19, INFORMATION_SCHEMA Tables.

13.7.5.1 SHOW BINARY LOGS Syntax

SHOW BINARY LOGS
SHOW MASTER LOGS

SHOW Syntax

1539

Lists the binary log files on the server. This statement is used as part of the procedure described in
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”, that shows how to determine which logs can be
purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS.

A user with the SUPER or REPLICATION CLIENT privilege may execute this statement.

13.7.5.2 SHOW BINLOG EVENTS Syntax

SHOW BINLOG EVENTS
 [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is displayed.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

Note

Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time-
and resource-consuming process because the server returns to the client the
complete contents of the binary log (which includes all statements executed by
the server that modify data). As an alternative to SHOW BINLOG EVENTS, use
the mysqlbinlog utility to save the binary log to a text file for later examination
and analysis. See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary
Log Files”.

Note

Some events relating to the setting of user and system variables are not
included in the output from SHOW BINLOG EVENTS. To get complete coverage
of events within a binary log, use mysqlbinlog.

Note

SHOW BINLOG EVENTS does not work with relay log files. You can use SHOW
RELAYLOG EVENTS for this purpose.

13.7.5.3 SHOW CHARACTER SET Syntax

SHOW CHARACTER SET
 [LIKE 'pattern' | WHERE expr]

The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if
present, indicates which character set names to match. The WHERE clause can be given to select rows
using more general conditions, as discussed in Section 19.31, “Extensions to SHOW Statements”. For
example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |

SHOW Syntax

1540

+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

The Maxlen column shows the maximum number of bytes required to store one character.

The filename character set is for internal use only; consequently, SHOW CHARACTER SET does not
display it.

13.7.5.4 SHOW COLLATION Syntax

SHOW COLLATION
 [LIKE 'pattern' | WHERE expr]

This statement lists collations supported by the server. By default, the output from SHOW COLLATION
includes all available collations. The LIKE clause, if present, indicates which collation names to
match. The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 19.31, “Extensions to SHOW Statements”. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

The Collation and Charset columns indicate the names of the collation and the character set with
which it is associated. Id is the collation ID. Default indicates whether the collation is the default for
its character set. Compiled indicates whether the character set is compiled into the server. Sortlen
is related to the amount of memory required to sort strings expressed in the character set.

To see the default collation for each character set, use the following statement. Default is a reserved
word, so to use it as an identifier, it must be quoted as such:

mysql> SHOW COLLATION WHERE `Default` = 'Yes';
+---------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+----------+----+---------+----------+---------+
big5_chinese_ci	big5	1	Yes	Yes	1
dec8_swedish_ci	dec8	3	Yes	Yes	1
cp850_general_ci	cp850	4	Yes	Yes	1
hp8_english_ci	hp8	6	Yes	Yes	1
koi8r_general_ci	koi8r	7	Yes	Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
...

13.7.5.5 SHOW COLUMNS Syntax

SHOW [FULL] COLUMNS {FROM | IN} tbl_name [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW COLUMNS displays information about the columns in a given table. It also works for views. The
LIKE clause, if present, indicates which column names to match. The WHERE clause can be given

SHOW Syntax

1541

to select rows using more general conditions, as discussed in Section 19.31, “Extensions to SHOW
Statements”.

SHOW COLUMNS displays information only for those columns for which you have some privilege.

mysql> SHOW COLUMNS FROM City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

If the data types differ from what you expect them to be based on a CREATE TABLE statement, note
that MySQL sometimes changes data types when you create or alter a table. The conditions under
which this occurs are described in Section 13.1.14.3, “Silent Column Specification Changes”.

The FULL keyword causes the output to include the column collation and comments, as well as the
privileges you have for each column.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. In
other words, these two statements are equivalent:

mysql> SHOW COLUMNS FROM mytable FROM mydb;
mysql> SHOW COLUMNS FROM mydb.mytable;

SHOW COLUMNS displays the following values for each table column:

Field indicates the column name.

Type indicates the column data type.

Collation indicates the collation for nonbinary string columns, or NULL for other columns. This value
is displayed only if you use the FULL keyword.

The Null field contains YES if NULL values can be stored in the column, NO if not.

The Key field indicates whether the column is indexed:

• If Key is empty, the column either is not indexed or is indexed only as a secondary column in a
multiple-column, nonunique index.

• If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column PRIMARY
KEY.

• If Key is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits multiple
NULL values, but you can tell whether the column permits NULL by checking the Null field.)

• If Key is MUL, the column is the first column of a nonunique index in which multiple occurrences of a
given value are permitted within the column.

If more than one of the Key values applies to a given column of a table, Key displays the one with the
highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

SHOW Syntax

1542

The Default field indicates the default value that is assigned to the column. This is NULL if the
column has an explicit default of NULL, or if the column definition has no DEFAULT clause.

The Extra field contains any additional information that is available about a given column. The value
is nonempty in these cases: auto_increment for columns that have the AUTO_INCREMENT attribute;
on update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON UPDATE
CURRENT_TIMESTAMP attribute.

Privileges indicates the privileges you have for the column. This value is displayed only if you use
the FULL keyword.

Comment indicates any comment the column has. This value is displayed only if you use the FULL
keyword.

SHOW FIELDS is a synonym for SHOW COLUMNS. You can also list a table's columns with the
mysqlshow db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 13.8.1,
“DESCRIBE Syntax”.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Syntax”.

13.7.5.6 SHOW CREATE DATABASE Syntax

SHOW CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

Shows the CREATE DATABASE statement that creates the named database. If the SHOW statement
includes an IF NOT EXISTS clause, the output too includes such a clause. SHOW CREATE SCHEMA is
a synonym for SHOW CREATE DATABASE.

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

SHOW CREATE DATABASE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.4, “Server System Variables”.

13.7.5.7 SHOW CREATE EVENT Syntax

SHOW CREATE EVENT event_name

This statement displays the CREATE EVENT statement needed to re-create a given event. It requires
the EVENT privilege for the database from which the event is to be shown. For example (using the
same event e_daily defined and then altered in Section 13.7.5.17, “SHOW EVENTS Syntax”):

mysql> SHOW CREATE EVENT test.e_daily\G
*************************** 1. row ***************************
 Event: e_daily
 sql_mode:
 time_zone: SYSTEM

SHOW Syntax

1543

 Create Event: CREATE EVENT `e_daily`
 ON SCHEDULE EVERY 1 DAY
 STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR
 ON COMPLETION NOT PRESERVE
 ENABLE
 COMMENT 'Saves total number of sessions then
 clears the table each day'
 DO BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the event was created. collation_connection is the session value of the
collation_connection system variable when the event was created. Database Collation is
the collation of the database with which the event is associated.

Note that the output reflects the current status of the event (ENABLE) rather than the status with which
it was created.

13.7.5.8 SHOW CREATE FUNCTION Syntax

SHOW CREATE FUNCTION func_name

This statement is similar to SHOW CREATE PROCEDURE but for stored functions. See Section 13.7.5.9,
“SHOW CREATE PROCEDURE Syntax”.

13.7.5.9 SHOW CREATE PROCEDURE Syntax

SHOW CREATE PROCEDURE proc_name

This statement is a MySQL extension. It returns the exact string that can be used to re-create the
named stored procedure. A similar statement, SHOW CREATE FUNCTION, displays information about
stored functions (see Section 13.7.5.8, “SHOW CREATE FUNCTION Syntax”).

To use either statement, you must be the owner of the routine or have SELECT access to the
mysql.proc table. If you do not have privileges for the routine itself, the value displayed for the
Create Procedure or Create Function field will be NULL.

mysql> SHOW CREATE PROCEDURE test.simpleproc\G
*************************** 1. row ***************************
 Procedure: simpleproc
 sql_mode:
 Create Procedure: CREATE PROCEDURE `simpleproc`(OUT param1 INT)
 BEGIN
 SELECT COUNT(*) INTO param1 FROM t;
 END
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************
 Function: hello
 sql_mode:
 Create Function: CREATE FUNCTION `hello`(s CHAR(20))
 RETURNS CHAR(50)
 RETURN CONCAT('Hello, ',s,'!')
character_set_client: latin1

SHOW Syntax

1544

collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation is
the collation of the database with which the routine is associated.

13.7.5.10 SHOW CREATE TABLE Syntax

SHOW CREATE TABLE tbl_name

Shows the CREATE TABLE statement that creates the named table. To use this statement, you must
have some privilege for the table. This statement also works with views.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE t (
 id INT(11) default NULL auto_increment,
 s char(60) default NULL,
 PRIMARY KEY (id)
) ENGINE=MyISAM

SHOW CREATE TABLE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.4, “Server System Variables”.

13.7.5.11 SHOW CREATE TRIGGER Syntax

SHOW CREATE TRIGGER trigger_name

This statement shows the CREATE TRIGGER statement that creates the named trigger.

mysql> SHOW CREATE TRIGGER ins_sum\G
*************************** 1. row ***************************
 Trigger: ins_sum
 sql_mode: STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION
SQL Original Statement: CREATE DEFINER=`me`@`localhost` TRIGGER ins_sum
 BEFORE INSERT ON account
 FOR EACH ROW SET @sum = @sum + NEW.amount
 character_set_client: utf8
 collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci
 Created: 2013-07-09 10:39:34.96

SHOW CREATE TRIGGER output has the following columns:

• Trigger: The trigger name.

• sql_mode: The SQL mode in effect when the trigger executes.

• SQL Original Statement: The CREATE TRIGGER statement that defines the trigger.

• character_set_client: The session value of the character_set_client system variable
when the trigger was created.

• collation_connection: The session value of the collation_connection system variable
when the trigger was created.

• Database Collation: The collation of the database with which the trigger is associated.

SHOW Syntax

1545

• Created: The date and time when the trigger was created. This is a TIMESTAMP(2) value (with
a fractional part in hundredths of seconds) for triggers created in MySQL 5.7.2 or later, NULL for
triggers created prior to 5.7.2. This column was added in MySQL 5.7.2.

You can also obtain information about trigger objects from INFORMATION_SCHEMA, which contains a
TRIGGERS table. See Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.12 SHOW CREATE VIEW Syntax

SHOW CREATE VIEW view_name

This statement shows the CREATE VIEW statement that creates the named view.

mysql> SHOW CREATE VIEW v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE ALGORITHM=UNDEFINED
 DEFINER=`bob`@`localhost`
 SQL SECURITY DEFINER VIEW
 `v` AS select 1 AS `a`,2 AS `b`
character_set_client: latin1
collation_connection: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the view was created. collation_connection is the session value of the
collation_connection system variable when the view was created.

Use of SHOW CREATE VIEW requires the SHOW VIEW privilege and the SELECT privilege for the view
in question.

You can also obtain information about view objects from INFORMATION_SCHEMA, which contains a
VIEWS table. See Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support.
For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard
SQL concatenation operator, the double bar (||), in your queries. If you then create a view that
concatenates items, you might worry that changing the sql_mode setting to a value different from
ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a
view definition, MySQL always stores it the same way, in a canonical form. Here is an example that
shows how the server changes a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW CREATE VIEW test.v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE VIEW "v" AS select concat('a','b') AS "col1"
...
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value
of sql_mode will not affect the results from the view. However an additional consequence is that
comments prior to SELECT are stripped from the definition by the server.

13.7.5.13 SHOW DATABASES Syntax

SHOW {DATABASES | SCHEMAS}

SHOW Syntax

1546

 [LIKE 'pattern' | WHERE expr]

SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym
for SHOW DATABASES. The LIKE clause, if present, indicates which database names to match.
The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 19.31, “Extensions to SHOW Statements”.

You see only those databases for which you have some kind of privilege, unless you have the global
SHOW DATABASES privilege. You can also get this list using the mysqlshow command.

If the server was started with the --skip-show-database option, you cannot use this statement at
all unless you have the SHOW DATABASES privilege.

MySQL implements databases as directories in the data directory, so this statement simply lists
directories in that location. However, the output may include names of directories that do not
correspond to actual databases.

13.7.5.14 SHOW ENGINE Syntax

SHOW ENGINE engine_name {STATUS | MUTEX}

SHOW ENGINE displays operational information about a storage engine. It requires the PROCESS
privilege. The statement has these variants:

SHOW ENGINE INNODB STATUS
SHOW ENGINE INNODB MUTEX
SHOW ENGINE PERFORMANCE_SCHEMA STATUS

SHOW ENGINE INNODB STATUS displays extensive information from the standard InnoDB Monitor
about the state of the InnoDB storage engine. For information about the standard monitor and other
InnoDB Monitors that provide information about InnoDB processing, see Section 14.2.12.4, “InnoDB
Monitors”.

SHOW ENGINE INNODB MUTEX displays InnoDB mutex and rw-lock statistics. Statement output has
the following columns:

Note

SHOW ENGINE INNODB MUTEX output is removed in MySQL 5.7.2.
Comparable information can be generated by creating views on Performance
Schema tables.

• Type

Always InnoDB.

• Name

The source file where the mutex is implemented, and the line number in the file where the mutex is
created. The line number is specific to your version of MySQL.

• Status

The mutex status. This field displays several values if WITH_DEBUG was defined at MySQL
compilation time. If WITH_DEBUG was not defined, the statement displays only the os_waits value.
In the latter case (without WITH_DEBUG), the information on which the output is based is insufficient
to distinguish regular mutexes and mutexes that protect rw-locks (which permit multiple readers or a
single writer). Consequently, the output may appear to contain multiple rows for the same mutex.

• count indicates how many times the mutex was requested.

SHOW Syntax

1547

• spin_waits indicates how many times the spinlock had to run.

• spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by spin_waits
provides the average round count.)

• os_waits indicates the number of operating system waits. This occurs when the spinlock did not
work (the mutex was not locked during the spinlock and it was necessary to yield to the operating
system and wait).

• os_yields indicates the number of times a thread trying to lock a mutex gave up its timeslice and
yielded to the operating system (on the presumption that permitting other threads to run will free
the mutex so that it can be locked).

• os_wait_times indicates the amount of time (in ms) spent in operating system waits. In MySQL
5.7 timing is disabled and this value is always 0.

SHOW ENGINE INNODB MUTEX skips the mutexes and rw-locks of buffer pool blocks, as the amount
of output can be overwhelming on systems with a large buffer pool. (There is one mutex and one rw-
lock in each 16K buffer pool block, and there are 65,536 blocks per gigabyte.) SHOW ENGINE INNODB
MUTEX also does not list any mutexes or rw-locks that have never been waited on (os_waits=0).
Thus, SHOW ENGINE INNODB MUTEX only displays information about mutexes and rw-locks outside
of the buffer pool that have caused at least one OS-level wait.

SHOW ENGINE INNODB MUTEX information can be used to diagnose system problems. For example,
large values of spin_waits and spin_rounds may indicate scalability problems.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the
Performance Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements.

Name values consist of two parts, which name an internal buffer and a buffer attribute, respectively.
Interpret buffer names as follows:

• An internal buffer that is not exposed as a table is named within parentheses. Examples:
(pfs_cond_class).size, (pfs_mutex_class).memory.

• An internal buffer that is exposed as a table in the performance_schema database is
named after the table, without parentheses. Examples: events_waits_history.size,
mutex_instances.count.

SHOW Syntax

1548

• A value that applies to the Performance Schema as a whole begins with performance_schema.
Example: performance_schema.memory.

Buffer attributes have these meanings:

• size is the size of the internal record used by the implementation, such as the size of a row in a
table. size values cannot be changed.

• count is the number of internal records, such as the number of rows in a table. count values can
be changed using Performance Schema configuration options.

• For a table, tbl_name.memory is the product of size and count. For the Performance Schema as
a whole, performance_schema.memory is the sum of all the memory used (the sum of all other
memory values).

Some size and count attributes were named row_size and row_count before MySQL 5.7.1.

In some cases, there is a direct relationship between a Performance Schema configuration
parameter and a SHOW ENGINE value. For example, events_waits_history_long.count
corresponds to performance_schema_events_waits_history_long_size. In other cases,
the relationship is more complex. For example, events_waits_history.count corresponds to
performance_schema_events_waits_history_size (the number of rows per thread) multiplied
by performance_schema_max_thread_instances (the number of threads).

13.7.5.15 SHOW ENGINES Syntax

SHOW [STORAGE] ENGINES

SHOW ENGINES displays status information about the server's storage engines. This is particularly
useful for checking whether a storage engine is supported, or to see what the default engine is. This
information can also be obtained from the INFORMATION_SCHEMA ENGINES table. See Section 19.6,
“The INFORMATION_SCHEMA ENGINES Table”.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 4. row ***************************
 Engine: EXAMPLE
 Support: YES
 Comment: Example storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: ARCHIVE

SHOW Syntax

1549

 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 7. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write »
 to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 8. row ***************************
 Engine: FEDERATED
 Support: YES
 Comment: Federated MySQL storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 9. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO

The output from SHOW ENGINES may vary according to the MySQL version used and other factors.
The values shown in the Support column indicate the server's level of support for the storage engine,
as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log file
should contain a reason indicating why the option is disabled. See Section 5.2.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option.

All MySQL servers support MyISAM tables, because MyISAM is the default storage engine. It is not
possible to disable MyISAM.

The Transactions, XA, and Savepoints columns indicate whether the storage engine supports
transactions, XA transactions, and savepoints, respectively.

13.7.5.16 SHOW ERRORS Syntax

SHOW Syntax

1550

SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

SHOW ERRORS is a diagnostic statement that is similar to SHOW WARNINGS, except that it displays
information only for errors, rather than for errors, warnings, and notes.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this
number from the error_count variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

SHOW ERRORS and error_count apply only to errors, not warnings or notes. In other respects, they
are similar to SHOW WARNINGS and warning_count. In particular, SHOW ERRORS cannot display
information for more than max_error_count messages, and error_count can exceed the value of
max_error_count if the number of errors exceeds max_error_count.

For more information, see Section 13.7.5.39, “SHOW WARNINGS Syntax”.

13.7.5.17 SHOW EVENTS Syntax

SHOW EVENTS [{FROM | IN} schema_name]
 [LIKE 'pattern' | WHERE expr]

This statement displays information about Event Manager events. It requires the EVENT privilege for
the database from which the events are to be shown.

In its simplest form, SHOW EVENTS lists all of the events in the current schema:

mysql> SELECT CURRENT_USER(), SCHEMA();
+----------------+----------+
| CURRENT_USER() | SCHEMA() |
+----------------+----------+
| jon@ghidora | myschema |
+----------------+----------+
1 row in set (0.00 sec)

mysql> SHOW EVENTS\G
*************************** 1. row ***************************
 Db: myschema
 Name: e_daily
 Definer: jon@ghidora
 Time zone: SYSTEM
 Type: RECURRING
 Execute at: NULL
 Interval value: 10
 Interval field: SECOND
 Starts: 2006-02-09 10:41:23
 Ends: NULL
 Status: ENABLED
 Originator: 0
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

To see events for a specific schema, use the FROM clause. For example, to see events for the test
schema, use the following statement:

SHOW EVENTS FROM test;

SHOW Syntax

1551

The LIKE clause, if present, indicates which event names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 19.31, “Extensions to SHOW
Statements”.

SHOW EVENTS output has the following columns:

• Db: The schema (database) on which the event is defined.

• Name: The name of the event.

• Time zone: The event time zone, which is the time zone used for scheduling the event and that is in
effect within the event as it executes. The default value is SYSTEM.

• Definer: The account of the user who created the event, in 'user_name'@'host_name' format.

• Type: The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• Execute At: The date and time when a transient event is set to execute. Shown as a DATETIME
value.

For a recurring event, the value of this column is always NULL.

• Interval Value: For a recurring event, the number of intervals to wait between event executions.

For a transient event, the value of this column is always NULL.

• Interval Field: The time units used for the interval which a recurring event waits before
repeating.

For a transient event, the value of this column is always NULL.

• Starts: The start date and time for a recurring event. This is displayed as a DATETIME value, and
is NULL if no start date and time are defined for the event.

For a transient event, this column is always NULL.

• Ends: The end date and time for a recurring event. This is displayed as a DATETIME value, and
defaults to NULL if no end date and time is defined for the event.

For a transient event, this column is always NULL.

• Status: The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED.

SLAVESIDE_DISABLED indicates that the creation of the event occurred on another MySQL server
acting as a replication master and replicated to the current MySQL server which is acting as a slave,
but the event is not presently being executed on the slave.

• Originator: The server ID of the MySQL server on which the event was created. Defaults to 0.

• character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation
is the collation of the database with which the routine is associated.

For more information about SLAVE_DISABLED and the Originator column, see Section 16.4.1.11,
“Replication of Invoked Features”.

The event action statement is not shown in the output of SHOW EVENTS. Use SHOW CREATE EVENT or
the INFORMATION_SCHEMA.EVENTS table.

Times displayed by SHOW EVENTS are given in the event time zone, as discussed in Section 18.4.4,
“Event Metadata”.

SHOW Syntax

1552

The columns in the output of SHOW EVENTS are similar to, but not identical to the columns in the
INFORMATION_SCHEMA.EVENTS table. See Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”.

13.7.5.18 SHOW FUNCTION CODE Syntax

SHOW FUNCTION CODE func_name

This statement is similar to SHOW PROCEDURE CODE but for stored functions. See Section 13.7.5.26,
“SHOW PROCEDURE CODE Syntax”.

13.7.5.19 SHOW FUNCTION STATUS Syntax

SHOW FUNCTION STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is similar to SHOW PROCEDURE STATUS but for stored functions. See
Section 13.7.5.27, “SHOW PROCEDURE STATUS Syntax”.

13.7.5.20 SHOW GRANTS Syntax

SHOW GRANTS [FOR user]

This statement lists the GRANT statement or statements that must be issued to duplicate the privileges
that are granted to a MySQL user account. The account is named using the same format as for the
GRANT statement; for example, 'jeffrey'@'localhost'. If you specify only the user name part
of the account name, a host name part of '%' is used. For additional information about specifying
account names, see Section 13.7.1.4, “GRANT Syntax”.

mysql> SHOW GRANTS FOR 'root'@'localhost';
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+

To list the privileges granted to the account that you are using to connect to the server, you can use
any of the following statements:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

If SHOW GRANTS FOR CURRENT_USER (or any of the equivalent syntaxes) is used in DEFINER
context, such as within a stored procedure that is defined with SQL SECURITY DEFINER), the grants
displayed are those of the definer and not the invoker.

SHOW GRANTS displays only the privileges granted explicitly to the named account. Other privileges
might be available to the account, but they are not displayed. For example, if an anonymous account
exists, the named account might be able to use its privileges, but SHOW GRANTS will not display them.

SHOW GRANTS requires the SELECT privilege for the mysql database, except to see the privileges for
the current user.

13.7.5.21 SHOW INDEX Syntax

SHOW {INDEX | INDEXES | KEYS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]

SHOW Syntax

1553

 [WHERE expr]

SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in
ODBC. This statement requires some privilege for any column in the table.

SHOW INDEX returns the following fields:

• Table

The name of the table.

• Non_unique

0 if the index cannot contain duplicates, 1 if it can.

• Key_name

The name of the index. If the index is the primary key, the name is always PRIMARY.

• Seq_in_index

The column sequence number in the index, starting with 1.

• Column_name

The column name.

• Collation

How the column is sorted in the index. In MySQL, this can have values “A” (Ascending) or NULL (Not
sorted).

• Cardinality

An estimate of the number of unique values in the index. This is updated by running ANALYZE
TABLE or myisamchk -a. Cardinality is counted based on statistics stored as integers, so
the value is not necessarily exact even for small tables. The higher the cardinality, the greater the
chance that MySQL uses the index when doing joins.

• Sub_part

The number of indexed characters if the column is only partly indexed, NULL if the entire column is
indexed.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL values and '' if not.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Information about the index not described in its own column, such as disabled if the index is
disabled.

• Index_comment

Any comment provided for the index with a COMMENT attribute when the index was created.

SHOW Syntax

1554

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. These
two statements are equivalent:

SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;

The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 19.31, “Extensions to SHOW Statements”.

You can also list a table's indexes with the mysqlshow -k db_name tbl_name command.

13.7.5.22 SHOW MASTER STATUS Syntax

SHOW MASTER STATUS

This statement provides status information about the binary log files of the master. It requires either the
SUPER or REPLICATION CLIENT privilege.

Example:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: master-bin.000002
 Position: 1307
 Binlog_Do_DB: test
 Binlog_Ignore_DB: manual, mysql
Executed_Gtid_Set: 3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
1 row in set (0.00 sec)

When global transaction IDs are in use, Executed_Gtid_Set shows the set of GTIDs for transactions
that have been executed on the master. This is the same as the master's value for the global
gtid_executed system variable, as well as the slave's value for Executed_Gtid_Set in the output
of SHOW SLAVE STATUS.

13.7.5.23 SHOW OPEN TABLES Syntax

SHOW OPEN TABLES [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”. The FROM clause, if present, restricts the
tables shown to those present in the db_name database. The LIKE clause, if present, indicates which
table names to match. The WHERE clause can be given to select rows using more general conditions,
as discussed in Section 19.31, “Extensions to SHOW Statements”.

SHOW OPEN TABLES output has the following columns:

• Database

The database containing the table.

• Table

The table name.

• In_use

The number of table locks or lock requests there are for the table. For example, if one client acquires
a lock for a table using LOCK TABLE t1 WRITE, In_use will be 1. If another client issues LOCK
TABLE t1 WRITE while the table remains locked, the client will block waiting for the lock, but

SHOW Syntax

1555

the lock request causes In_use to be 2. If the count is zero, the table is open but not currently
being used. In_use is also increased by the HANDLER ... OPEN statement and decreased by
HANDLER ... CLOSE.

• Name_locked

Whether the table name is locked. Name locking is used for operations such as dropping or
renaming tables.

If you have no privileges for a table, it does not show up in the output from SHOW OPEN TABLES.

13.7.5.24 SHOW PLUGINS Syntax

SHOW PLUGINS

SHOW PLUGINS displays information about server plugins. Plugin information is also available in the
INFORMATION_SCHEMA.PLUGINS table. See Section 19.15, “The INFORMATION_SCHEMA PLUGINS
Table”.

Example of SHOW PLUGINS output:

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 2. row ***************************
 Name: CSV
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 3. row ***************************
 Name: MEMORY
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 4. row ***************************
 Name: MyISAM
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...

SHOW PLUGINS output has the following columns:

• Name: The name used to refer to the plugin in statements such as INSTALL PLUGIN and
UNINSTALL PLUGIN.

• Status: The plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• Type: The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or
AUTHENTICATION.

• Library: The name of the plugin shared object file. This is the name used to refer to the plugin
file in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the
directory named by the plugin_dir system variable. If the library name is NULL, the plugin is
compiled in and cannot be uninstalled with UNINSTALL PLUGIN.

• License: How the plugin is licensed; for example, GPL.

SHOW Syntax

1556

For plugins installed with INSTALL PLUGIN, the Name and Library values are also registered in the
mysql.plugin table.

For information about plugin data structures that form the basis of the information displayed by SHOW
PLUGINS, see Section 22.2, “The MySQL Plugin API”.

13.7.5.25 SHOW PRIVILEGES Syntax

SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The exact list
of privileges depends on the version of your server.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
 Context: Tables
 Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
 Context: Functions,Procedures
 Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
 Context: Databases,Tables,Indexes
 Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
 Context: Databases
 Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
 Context: Databases
 Comment: To use CREATE TEMPORARY TABLE
...

Privileges belonging to a specific user are displayed by the SHOW GRANTS statement. See
Section 13.7.5.20, “SHOW GRANTS Syntax”, for more information.

13.7.5.26 SHOW PROCEDURE CODE Syntax

SHOW PROCEDURE CODE proc_name

This statement is a MySQL extension that is available only for servers that have been built with
debugging support. It displays a representation of the internal implementation of the named stored
procedure. A similar statement, SHOW FUNCTION CODE, displays information about stored functions
(see Section 13.7.5.18, “SHOW FUNCTION CODE Syntax”).

To use either statement, you must be the owner of the routine or have SELECT access to the
mysql.proc table.

If the named routine is available, each statement produces a result set. Each row in the result set
corresponds to one “instruction” in the routine. The first column is Pos, which is an ordinal number
beginning with 0. The second column is Instruction, which contains an SQL statement (usually
changed from the original source), or a directive which has meaning only to the stored-routine handler.

mysql> DELIMITER //
mysql> CREATE PROCEDURE p1 ()
 -> BEGIN
 -> DECLARE fanta INT DEFAULT 55;
 -> DROP TABLE t2;
 -> LOOP
 -> INSERT INTO t3 VALUES (fanta);

SHOW Syntax

1557

 -> END LOOP;
 -> END//
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW PROCEDURE CODE p1//
+-----+--+
| Pos | Instruction |
+-----+--+
0	set fanta@0 55
1	stmt 9 "DROP TABLE t2"
2	stmt 5 "INSERT INTO t3 VALUES (fanta)"
3	jump 2
+-----+--+
4 rows in set (0.00 sec)

In this example, the nonexecutable BEGIN and END statements have disappeared, and for the
DECLARE variable_name statement, only the executable part appears (the part where the default is
assigned). For each statement that is taken from source, there is a code word stmt followed by a type
(9 means DROP, 5 means INSERT, and so on). The final row contains an instruction jump 2, meaning
GOTO instruction #2.

13.7.5.27 SHOW PROCEDURE STATUS Syntax

SHOW PROCEDURE STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is a MySQL extension. It returns characteristics of a stored procedure, such as the
database, name, type, creator, creation and modification dates, and character set information. A
similar statement, SHOW FUNCTION STATUS, displays information about stored functions (see
Section 13.7.5.19, “SHOW FUNCTION STATUS Syntax”).

The LIKE clause, if present, indicates which procedure or function names to match. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 19.31, “Extensions
to SHOW Statements”.

mysql> SHOW PROCEDURE STATUS LIKE 'sp1'\G
*************************** 1. row ***************************
 Db: test
 Name: sp1
 Type: PROCEDURE
 Definer: testuser@localhost
 Modified: 2004-08-03 15:29:37
 Created: 2004-08-03 15:29:37
 Security_type: DEFINER
 Comment:
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation is
the collation of the database with which the routine is associated.

You can also get information about stored routines from the ROUTINES table in
INFORMATION_SCHEMA. See Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”.

13.7.5.28 SHOW PROCESSLIST Syntax

SHOW [FULL] PROCESSLIST

SHOW PROCESSLIST shows you which threads are running. You can also get this information from the
INFORMATION_SCHEMA PROCESSLIST table or the mysqladmin processlist command. If you

SHOW Syntax

1558

have the PROCESS privilege, you can see all threads. Otherwise, you can see only your own threads
(that is, threads associated with the MySQL account that you are using). If you do not use the FULL
keyword, only the first 100 characters of each statement are shown in the Info field.

Process information is also available from the performance_schema.threads table. However,
access to threads does not require a mutex and has minimal impact on server performance.
INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance
consequences because they require a mutex. threads also shows information about background
threads, which INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST do not. This means
that threads can be used to monitor activity the other thread information sources cannot.

The SHOW PROCESSLIST statement is very useful if you get the “too many connections” error
message and want to find out what is going on. MySQL reserves one extra connection to be used by
accounts that have the SUPER privilege, to ensure that administrators should always be able to connect
and check the system (assuming that you are not giving this privilege to all your users).

Threads can be killed with the KILL statement. See Section 13.7.6.4, “KILL Syntax”.

Here is an example of SHOW PROCESSLIST output:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
Id: 1
User: system user
Host:
db: NULL
Command: Connect
Time: 1030455
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 2
User: system user
Host:
db: NULL
Command: Connect
Time: 1004
State: Has read all relay log; waiting for the slave
 I/O thread to update it
Info: NULL
*************************** 3. row ***************************
Id: 3112
User: replikator
Host: artemis:2204
db: NULL
Command: Binlog Dump
Time: 2144
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 4. row ***************************
Id: 3113
User: replikator
Host: iconnect2:45781
db: NULL
Command: Binlog Dump
Time: 2086
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 5. row ***************************
Id: 3123
User: stefan
Host: localhost
db: apollon
Command: Query
Time: 0
State: NULL
Info: SHOW FULL PROCESSLIST
5 rows in set (0.00 sec)

SHOW Syntax

1559

The columns produced by SHOW PROCESSLIST have the following meanings:

• Id

The connection identifier.

• User

The MySQL user who issued the statement. If this is system user, it refers to a nonclient thread
spawned by the server to handle tasks internally. This could be the I/O or SQL thread used on
replication slaves or a delayed-row handler. unauthenticated user refers to a thread that has
become associated with a client connection but for which authentication of the client user has not yet
been done. event_scheduler refers to the thread that monitors scheduled events. For system
user, there is no host specified in the Host column.

• Host

The host name of the client issuing the statement (except for system user where there is no host).
SHOW PROCESSLIST reports the host name for TCP/IP connections in host_name:client_port
format to make it easier to determine which client is doing what.

• db

The default database, if one is selected, otherwise NULL.

• Command

The type of command the thread is executing. For descriptions for thread commands, see
Section 8.12.5, “Examining Thread Information”. The value of this column corresponds to the
COM_xxx commands of the client/server protocol and Com_xxx status variables. See Section 5.1.6,
“Server Status Variables”

• Time

The time in seconds that the thread has been in its current state. For a slave SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
slave machine. See Section 16.2.1, “Replication Implementation Details”.

• State

An action, event, or state that indicates what the thread is doing. Descriptions for State values can
be found at Section 8.12.5, “Examining Thread Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

For the SHOW PROCESSLIST statement, the value of State is NULL.

• Info

The statement the thread is executing, or NULL if it is not executing any statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the Info value shows the SELECT statement.

13.7.5.29 SHOW PROFILE Syntax

SHOW PROFILE [type [, type] ...]
 [FOR QUERY n]
 [LIMIT row_count [OFFSET offset]]

type:

SHOW Syntax

1560

 ALL
 | BLOCK IO
 | CONTEXT SWITCHES
 | CPU
 | IPC
 | MEMORY
 | PAGE FAULTS
 | SOURCE
 | SWAPS

The SHOW PROFILE and SHOW PROFILES statements display profiling information that indicates
resource usage for statements executed during the course of the current session.

Note

These statements are deprecated and will be removed in a future MySQL
release. Use the Performance Schema instead; see Chapter 20, MySQL
Performance Schema.

Profiling is controlled by the profiling session variable, which has a default value of 0 (OFF).
Profiling is enabled by setting profiling to 1 or ON:

mysql> SET profiling = 1;

SHOW PROFILES displays a list of the most recent statements sent to the server. The size of the list is
controlled by the profiling_history_size session variable, which has a default value of 15. The
maximum value is 100. Setting the value to 0 has the practical effect of disabling profiling.

All statements are profiled except SHOW PROFILE and SHOW PROFILES, so you will find neither of
those statements in the profile list. Malformed statements are profiled. For example, SHOW PROFILING
is an illegal statement, and a syntax error occurs if you try to execute it, but it will show up in the
profiling list.

SHOW PROFILE displays detailed information about a single statement. Without the FOR QUERY n
clause, the output pertains to the most recently executed statement. If FOR QUERY n is included, SHOW
PROFILE displays information for statement n. The values of n correspond to the Query_ID values
displayed by SHOW PROFILES.

The LIMIT row_count clause may be given to limit the output to row_count rows. If LIMIT is
given, OFFSET offset may be added to begin the output offset rows into the full set of rows.

By default, SHOW PROFILE displays Status and Duration columns. The Status values are like
the State values displayed by SHOW PROCESSLIST, although there might be some minor differences
in interpretion for the two statements for some status values (see Section 8.12.5, “Examining Thread
Information”).

Optional type values may be specified to display specific additional types of information:

• ALL displays all information

• BLOCK IO displays counts for block input and output operations

• CONTEXT SWITCHES displays counts for voluntary and involuntary context switches

• CPU displays user and system CPU usage times

• IPC displays counts for messages sent and received

• MEMORY is not currently implemented

• PAGE FAULTS displays counts for major and minor page faults

SHOW Syntax

1561

• SOURCE displays the names of functions from the source code, together with the name and line
number of the file in which the function occurs

• SWAPS displays swap counts

Profiling is enabled per session. When a session ends, its profiling information is lost.

mysql> SELECT @@profiling;
+-------------+
| @@profiling |
+-------------+
| 0 |
+-------------+
1 row in set (0.00 sec)

mysql> SET profiling = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> CREATE TABLE T1 (id INT);
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROFILES;
+----------+----------+--------------------------+
| Query_ID | Duration | Query |
+----------+----------+--------------------------+
0	0.000088	SET PROFILING = 1
1	0.000136	DROP TABLE IF EXISTS t1
2	0.011947	CREATE TABLE t1 (id INT)
+----------+----------+--------------------------+
3 rows in set (0.00 sec)

mysql> SHOW PROFILE;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
checking permissions	0.000040
creating table	0.000056
After create	0.011363
query end	0.000375
freeing items	0.000089
logging slow query	0.000019
cleaning up	0.000005
+----------------------+----------+
7 rows in set (0.00 sec)

mysql> SHOW PROFILE FOR QUERY 1;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
query end	0.000107
freeing items	0.000008
logging slow query	0.000015
cleaning up	0.000006
+--------------------+----------+
4 rows in set (0.00 sec)

mysql> SHOW PROFILE CPU FOR QUERY 2;
+----------------------+----------+----------+------------+
| Status | Duration | CPU_user | CPU_system |
+----------------------+----------+----------+------------+
checking permissions	0.000040	0.000038	0.000002
creating table	0.000056	0.000028	0.000028
After create	0.011363	0.000217	0.001571
query end	0.000375	0.000013	0.000028
freeing items	0.000089	0.000010	0.000014
logging slow query	0.000019	0.000009	0.000010
cleaning up	0.000005	0.000003	0.000002
+----------------------+----------+----------+------------+

SHOW Syntax

1562

7 rows in set (0.00 sec)

Note

Profiling is only partially functional on some architectures. For values that
depend on the getrusage() system call, NULL is returned on systems such
as Windows that do not support the call. In addition, profiling is per process and
not per thread. This means that activity on threads within the server other than
your own may affect the timing information that you see.

You can also get profiling information from the PROFILING table in INFORMATION_SCHEMA. See
Section 19.17, “The INFORMATION_SCHEMA PROFILING Table”. For example, the following queries
produce the same result:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

13.7.5.30 SHOW PROFILES Syntax

SHOW PROFILES

The SHOW PROFILES statement, together with SHOW PROFILE, displays profiling information that
indicates resource usage for statements executed during the course of the current session. For more
information, see Section 13.7.5.29, “SHOW PROFILE Syntax”.

Note

These statements are deprecated and will be removed in a future MySQL
release. Use the Performance Schema instead; see Chapter 20, MySQL
Performance Schema.

13.7.5.31 SHOW RELAYLOG EVENTS Syntax

SHOW RELAYLOG EVENTS
 [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the relay log of a replication slave. If you do not specify 'log_name', the first
relay log is displayed. This statement has no effect on the master.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

Note

Issuing a SHOW RELAYLOG EVENTS with no LIMIT clause could start a very
time- and resource-consuming process because the server returns to the client
the complete contents of the relay log (including all statements modifying data
that have been received by the slave).

Note

Some events relating to the setting of user and system variables are not
included in the output from SHOW RELAYLOG EVENTS. To get complete
coverage of events within a relay log, use mysqlbinlog.

13.7.5.32 SHOW SLAVE HOSTS Syntax

SHOW Syntax

1563

SHOW SLAVE HOSTS

Displays a list of replication slaves currently registered with the master.

SHOW SLAVE HOSTS should be executed on a server that acts as a replication master. The statement
displays information about servers that are or have been connected as replication slaves, with each
row of the result corresponding to one slave server, as shown here:

mysql> SHOW SLAVE HOSTS;
+-----------+-----------+-------+-----------+--------------------------------------+
| Server_id | Host | Port | Master_id | Slave_UUID |
+-----------+-----------+-------+-----------+--------------------------------------+
| 192168010 | iconnect2 | 3306 | 192168011 | 14cb6624-7f93-11e0-b2c0-c80aa9429562 |
| 1921680101 | athena | 3306 | 192168011 | 07af4990-f41f-11df-a566-7ac56fdaf645 |
+------------+-----------+------+-----------+--------------------------------------+

• Server_id: The unique server ID of the slave server, as configured in the slave server's option file,
or on the command line with --server-id=value [2037].

• Host: The host name of the slave server, as configured in the slave server's option file, or on the
command line with --report-host=host_name. Note that this can differ from the machine name
as configured in the operating system.

• Port: The port on the master to which the slave server is listening.

A zero in this column means that the slave port (--report-port) was not set.

• Master_id: The unique server ID of the master server that the slave server is replicating from. This
is the server ID of the server on which SHOW SLAVE HOSTS is executed, so this same value is listed
for each row in the result.

• Slave_UUID: The globally unique ID of this slave, as generated on the slave and found in the
slave's auto.cnf file.

13.7.5.33 SHOW SLAVE STATUS Syntax

SHOW SLAVE STATUS [NONBLOCKING]

This statement provides status information on essential parameters of the slave threads. It requires
either the SUPER or REPLICATION CLIENT privilege.

The NONBLOCKING option causes SHOW SLAVE STATUS, when run concurrently with STOP SLAVE,
to return without waiting for STOP SLAVE to finish shutting down the slave SQL thread or slave I/O
thread (or both). This option is intended for use in monitoring and other applications where getting an
immediate response from SHOW SLAVE STATUS is more important than ensuring that it returns the
latest data.

If you issue this statement using the mysql client, you can use a \G statement terminator rather than a
semicolon to obtain a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: localhost
 Master_User: root
 Master_Port: 13000
 Connect_Retry: 60
 Master_Log_File: master-bin.000002
 Read_Master_Log_Pos: 1307
 Relay_Log_File: slave-relay-bin.000003
 Relay_Log_Pos: 1508
 Relay_Master_Log_File: master-bin.000002

SHOW Syntax

1564

 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 1307
 Relay_Log_Space: 1858
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1
 Master_UUID: 3e11fa47-71ca-11e1-9e33-c80aa9429562
 Master_Info_File: /var/mysqld.2/data/master.info
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Slave_SQL_Running_State: Slave has read all relay log; waiting for the slave I/O thread to update it
 Master_Retry_Count: 10
 Master_Bind:
 Last_IO_Error_Timestamp:
 Last_SQL_Error_Timestamp:
 Master_SSL_Crl:
 Master_SSL_Crlpath:
 Retrieved_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
 Executed_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
 Auto_Position: 1
1 row in set (0.00 sec)

As of MySQL 5.7.2, the Performance Schema provides tables that expose replication information. This
is similar to the information available from the SHOW SLAVE STATUS statement, but represented in
table form. For details, see Section 20.9.10, “Performance Schema Replication Tables”.

The following list describes the fields returned by SHOW SLAVE STATUS. For additional information
about interpreting their meanings, see Section 16.1.5.1, “Checking Replication Status”.

• Slave_IO_State

A copy of the State field of the SHOW PROCESSLIST output for the slave I/O thread. This tells
you what the thread is doing: trying to connect to the master, waiting for events from the master,
reconnecting to the master, and so on. For a listing of possible states, see Section 8.12.5.5,
“Replication Slave I/O Thread States”.

• Master_Host

The master host that the slave is connected to.

• Master_User

The user name of the account used to connect to the master.

• Master_Port

SHOW Syntax

1565

The port used to connect to the master.

• Connect_Retry

The number of seconds between connect retries (default 60). This can be set with the CHANGE
MASTER TO statement.

• Master_Log_File

The name of the master binary log file from which the I/O thread is currently reading.

• Read_Master_Log_Pos

The position in the current master binary log file up to which the I/O thread has read.

• Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and executing.

• Relay_Log_Pos

The position in the current relay log file up to which the SQL thread has read and executed.

• Relay_Master_Log_File

The name of the master binary log file containing the most recent event executed by the SQL thread.

• Slave_IO_Running

Whether the I/O thread is started and has connected successfully to the master. Internally, the state
of this thread is represented by one of the following three values:

• MYSQL_SLAVE_NOT_RUN. The slave I/O thread is not running. For this state,
Slave_IO_Running is No.

• MYSQL_SLAVE_RUN_NOT_CONNECT. The slave I/O thread is running, but is not connected to a
replication master. For this state, Slave_IO_Running depends on the server version as shown in
the following table.

MySQL Version Slave_IO_Running

4.1 (4.1.13 and earlier); 5.0 (5.0.11 and earlier) Yes

4.1 (4.1.14 and later); 5.0 (5.0.12 and later) No

5.1 (5.1.45 and earlier) No

5.1 (5.1.46 and later); 5.5; 5.6 Connecting

• MYSQL_SLAVE_RUN_CONNECT. The slave I/O thread is running, and is connected to a
replication master. For this state, Slave_IO_Running is Yes.

The value of the Slave_running system status variable corresponds with this value.

• Slave_SQL_Running

Whether the SQL thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB

The lists of databases that were specified with the --replicate-do-db and --replicate-
ignore-db options, if any.

• Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table,
Replicate_Wild_Ignore_Table

SHOW Syntax

1566

The lists of tables that were specified with the --replicate-do-table, --replicate-ignore-
table, --replicate-wild-do-table, and --replicate-wild-ignore-table options, if
any.

• Last_Errno, Last_Error

These columns are aliases for Last_SQL_Errno and Last_SQL_Error.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

Note

When the slave SQL thread receives an error, it reports the error first, then
stops the SQL thread. This means that there is a small window of time during
which SHOW SLAVE STATUS shows a nonzero value for Last_SQL_Errno
even though Slave_SQL_Running still displays Yes.

• Skip_Counter

The current value of the sql_slave_skip_counter system variable. See Section 13.4.2.5, “SET
GLOBAL sql_slave_skip_counter Syntax”.

• Exec_Master_Log_Pos

The position in the current master binary log file to which the SQL thread has read and executed,
marking the start of the next transaction or event to be processed. You can use this value with
the CHANGE MASTER TO statement's MASTER_LOG_POS option when starting a new slave
from an existing slave, so that the new slave reads from this point. The coordinates given by
(Relay_Master_Log_File, Exec_Master_Log_Pos) in the master's binary log correspond to the
coordinates given by (Relay_Log_File, Relay_Log_Pos) in the relay log.

When using a multi-threaded slave (by setting slave_parallel_workers to a nonzero value),
the value in this column actually represents a “low-water” mark, before which no uncommitted
transactions remain. Because the current implementation allows execution of transactions on
different databases in a different order on the slave than on the master, this is not necessarily the
position of the most recently executed transaction.

• Relay_Log_Space

The total combined size of all existing relay log files.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:

• None if no UNTIL clause was specified

• Master if the slave is reading until a given position in the master's binary log

• Relay if the slave is reading until a given position in its relay log

Until_Log_File and Until_Log_Pos indicate the log file name and position that define the
coordinates at which the SQL thread stops executing.

• Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert,
Master_SSL_Cipher, Master_SSL_CRL_File, Master_SSL_CRL_Path, Master_SSL_Key,
Master_SSL_Verify_Server_Cert

These fields show the SSL parameters used by the slave to connect to the master, if any.

SHOW Syntax

1567

Master_SSL_Allowed has these values:

• Yes if an SSL connection to the master is permitted

• No if an SSL connection to the master is not permitted

• Ignored if an SSL connection is permitted but the slave server does not have SSL support
enabled

The values of the other SSL-related fields correspond to the values of the MASTER_SSL_CA,
MASTER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL,
MASTER_SSL_CRLPATH, MASTER_SSL_KEY, and MASTER_SSL_VERIFY_SERVER_CERT options to
the CHANGE MASTER TO statement. See Section 13.4.2.1, “CHANGE MASTER TO Syntax”.

• Seconds_Behind_Master

This field is an indication of how “late” the slave is:

• When the slave is actively processing updates, this field shows the difference between the current
timestamp on the slave and the original timestamp logged on the master for the most event
currently being processed on the slave.

• When no event is currently being processed on the slave, this value is 0.

In essence, this field measures the time difference in seconds between the slave SQL thread
and the slave I/O thread. If the network connection between master and slave is fast, the slave
I/O thread is very close to the master, so this field is a good approximation of how late the slave
SQL thread is compared to the master. If the network is slow, this is not a good approximation;
the slave SQL thread may quite often be caught up with the slow-reading slave I/O thread, so
Seconds_Behind_Master often shows a value of 0, even if the I/O thread is late compared to the
master. In other words, this column is useful only for fast networks.

This time difference computation works even if the master and slave do not have identical clock
times, provided that the difference, computed when the slave I/O thread starts, remains constant
from then on. Any changes—including NTP updates—can lead to clock skews that can make
calculation of Seconds_Behind_Master less reliable.

In MySQL 5.7, this field is NULL (undefined or unknown) if the slave SQL thread is not running,
or if the SQL thread has consumed all of the relay log and the slave I/O thread is not running. (In
older versions of MySQL, this field was NULL if the slave SQL thread or the slave I/O thread was
not running or was not connected to the master.) If the I/O thread is running but the relay log is
exhausted, Seconds_Behind_Master is set to 0.

The value of Seconds_Behind_Master is based on the timestamps stored in events, which are
preserved through replication. This means that if a master M1 is itself a slave of M0, any event from
M1's binary log that originates from M0's binary log has M0's timestamp for that event. This enables
MySQL to replicate TIMESTAMP successfully. However, the problem for Seconds_Behind_Master
is that if M1 also receives direct updates from clients, the Seconds_Behind_Master value
randomly fluctuates because sometimes the last event from M1 originates from M0 and sometimes is
the result of a direct update on M1.

When using a multi-threaded slave, you should keep in mind that this value is based on
Exec_Master_Log_Pos, and so may not reflect the position of the most recently committed
transaction.

• Last_IO_Errno, Last_IO_Error

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_IO_Error value is
not empty, the error values also appear in the slave's error log.

SHOW Syntax

1568

I/O error information includes a timestamp showing when the most recent I/O thread
error occurred. This timestamp uses the format YYMMDD HH:MM:SS, and appears in the
Last_SQL_Error_Timestamp column.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

• Last_SQL_Errno, Last_SQL_Error

The error number and error message of the most recent error that caused the SQL thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_SQL_Error value
is not empty, the error values also appear in the slave's error log.

If the slave is multi-threaded, the SQL thread is the coordinator for worker threads. In this case, as of
MySQL 5.7.2, the Last_SQL_Error field shows exactly what the Last_Error_Message column
in the Performance Schema replication_execute_status_by_coordinator table shows.
The field value is modified to suggest that there may be more failures in the other worker threads
which can be seen in the replication_execute_status_by_worker table that shows each
worker thread's status. If that table is not available, the slave error log can be used. The log or the
replication_execute_status_by_worker table should also be used to learn more about the
failure shown by SHOW SLAVE STATUS or the coordinator table.

SQL error information includes a timestamp showing when the most recent SQL thread
error occurred. This timestamp uses the format YYMMDD HH:MM:SS, and appears in the
Last_SQL_Error_Timestamp column.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

In MySQL 5.7, all error codes and messages displayed in the Last_SQL_Errno and
Last_SQL_Error columns correspond to error values listed in Section C.3, “Server Error Codes
and Messages”. This was not always true in previous versions. (Bug #11760365, Bug #52768)

• Replicate_Ignore_Server_Ids

In MySQL 5.7, you can tell a slave to ignore events from 0 or more masters using the
IGNORE_SERVER_IDS option of the CHANGE MASTER TO statement. This is normally of interest
only when using a circular or other multi-master replication setup.

The message shown for Replicate_Ignore_Server_Ids consists of a space-delimited list of
one or more numbers, the first value indicating the number of servers to be ignored; if not 0 (the
default), this server-count value is followed by the actual server IDs. For example, if a CHANGE
MASTER TO statement containing the IGNORE_SERVER_IDS = (2,6,9) option has been issued to
tell a slave to ignore masters having the server ID 2, 6, or 9, that information appears as shown here:

 Replicate_Ignore_Server_Ids: 3 2 6 9

Replicate_Ignore_Server_Ids filtering is performed by the I/O thread, rather than by the SQL
thread, which means that events which are filtered out are not written to the relay log. This differs
from the filtering actions taken by server options such --replicate-do-table, which apply to the
SQL thread.

• Master_Server_Id

The server_id value from the master.

• Master_UUID

The server_uuid [2037] value from the master.

• Master_Info_File

SHOW Syntax

1569

The location of the master.info file.

• SQL_Delay

The number of seconds that the slave must lag the master.

• SQL_Remaining_Delay

When Slave_SQL_Running_State is Waiting until MASTER_DELAY seconds after
master executed event, this field contains the number of delay seconds remaining. At other
times, this field is NULL.

• Slave_SQL_Running_State

The state of the SQL thread (analogous to Slave_IO_State). The value is identical to the State
value of the SQL thread as displayed by SHOW PROCESSLIST. Section 8.12.5.6, “Replication Slave
SQL Thread States”, provides a listing of possible states

• Master_Retry_Count

The number of times the slave can attempt to reconnect to the master in the event of a lost
connection. This value can be set using the MASTER_RETRY_COUNT option of the CHANGE MASTER
TO statement (preferred) or the older --master-retry-count server option (still supported for
backward compatibility).

• Master_Bind

The network interface that the slave is bound to, if any. This is set using the MASTER_BIND option for
the CHANGE MASTER TO statement.

• Last_IO_Error_Timestamp

A timestamp in YYMMDD HH:MM:SS format that shows when the most recent I/O error took place.

• Last_SQL_Error_Timestamp

A timestamp in YYMMDD HH:MM:SS format that shows when the last SQL error occurred.

• Retrieved_Gtid_Set

The set of global transaction IDs corresponding to all transactions received by this slave. Empty if
GTIDs are not in use.

This is the set of all GTIDs that exist or have existed in the relay logs. Each GTID is added as soon
as the Gtid_log_event is received. This can cause partially transmitted transactions to have their
GTIDs included in the set.

When all relay logs are lost due to executing RESET SLAVE or CHANGE MASTER TO, or due to the
effects of the --relay-log-recovery option, the set is cleared. When relay_log_purge = 1,
the newest relay log is always kept, and the set is not cleared.

Prior to MySQL 5.7.1, this value was printed using uppercase. In MySQL 5.7.1 and later, it is always
printed using lowercase. (Bug #15869441)

• Executed_Gtid_Set

The set of global transaction IDs written in the binary log. This is the same as the master's
value for the global gtid_executed system variable, as well as the master's value for
Executed_Gtid_Set in the output of SHOW MASTER STATUS. Empty if GTIDs are not in use.

Prior to MySQL 5.7.1, this value was printed using uppercase. In MySQL 5.7.1 and later, it is always
printed using lowercase. (Bug #15869441)

SHOW Syntax

1570

• Auto_Position

1 if autopositioning is in use; otherwise 0.

This column was added in MySQL 5.7.1. (Bug #15992220)

13.7.5.34 SHOW STATUS Syntax

SHOW [GLOBAL | SESSION] STATUS
 [LIKE 'pattern' | WHERE expr]

SHOW STATUS provides server status information. This information also can be obtained using the
mysqladmin extended-status command. The LIKE clause, if present, indicates which variable
names to match. The WHERE clause can be given to select rows using more general conditions, as
discussed in Section 19.31, “Extensions to SHOW Statements”. This statement does not require any
privilege. It requires only the ability to connect to the server.

Partial output is shown here. The list of names and values may be different for your server. The
meaning of each variable is given in Section 5.1.6, “Server Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_tables	8340
Created_tmp_files	60
...	
Open_tables	1
Open_files	2
Open_streams	0
Opened_tables	44600
Questions	2026873
...	
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_created	30022
Threads_connected	1
Threads_running	1
Uptime	80380
+--------------------------+------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern:

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040
Key_write_requests	7589728
Key_writes	3813196
+--------------------+----------+

With the GLOBAL modifier, SHOW STATUS displays the status values for all connections to MySQL.
With SESSION, it displays the status values for the current connection. If no modifier is present, the
default is SESSION. LOCAL is a synonym for SESSION.

SHOW Syntax

1571

Some status variables have only a global value. For these, you get the same value for both GLOBAL
and SESSION. The scope for each status variable is listed at Section 5.1.6, “Server Status Variables”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the
global Created_tmp_tables value.

13.7.5.35 SHOW TABLE STATUS Syntax

SHOW TABLE STATUS [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLE STATUS works likes SHOW TABLES, but provides a lot of information about each
non-TEMPORARY table. You can also get this list using the mysqlshow --status db_name
command. The LIKE clause, if present, indicates which table names to match. The WHERE clause can
be given to select rows using more general conditions, as discussed in Section 19.31, “Extensions to
SHOW Statements”.

This statement also displays information about views.

SHOW TABLE STATUS output has the following columns:

• Name

The name of the table.

• Engine

The storage engine for the table. See Chapter 14, Storage Engines.

• Version

The version number of the table's .frm file.

• Row_format

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM
tables, (Dynamic corresponds to what myisamchk -dvv reports as Packed. The format of InnoDB
tables is reported as Redundant or Compact. For the Barracuda file format of the InnoDB
Plugin, the format may be Compressed or Dynamic.

• Rows

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other
storage engines, such as InnoDB, this value is an approximation, and may vary from the actual
value by as much as 40 to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.

The Rows value is NULL for tables in the INFORMATION_SCHEMA database.

• Avg_row_length

The average row length.

• Data_length

The length of the data file.

• Max_data_length

The maximum length of the data file. This is the total number of bytes of data that can be stored in
the table, given the data pointer size used.

• Index_length

The length of the index file.

SHOW Syntax

1572

• Data_free

The number of allocated but unused bytes.

This information is also shown for InnoDB tables (previously, it was in the Comment value). InnoDB
tables report the free space of the tablespace to which the table belongs. For a table located in
the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of completely free 1MB extents minus a safety margin. Even if free space
displays as 0, it may be possible to insert rows as long as new extents need not be allocated.

For partitioned tables, this value is only an estimate and may not be absolutely correct.
A more accurate method of obtaining this information in such cases is to query the
INFORMATION_SCHEMA.PARTITIONS table, as shown in this example:

SELECT SUM(DATA_FREE)
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_SCHEMA = 'mydb'
 AND TABLE_NAME = 'mytable';

For more information, see Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”.

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

• Update_time

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its system tablespace and the data file timestamp does not apply.
Even with file-per-table mode with each InnoDB table in a separate .ibd file, change buffering can
delay the write to the data file, so the file modification time is different from the time of the last insert,
update, or delete. For MyISAM, the data file timestamp is used; however, on Windows the timestamp
is not updated by updates so the value is inaccurate.

• Check_time

When the table was last checked. Not all storage engines update this time, in which case the value is
always NULL.

• Collation

The table's character set and collation.

• Checksum

The live checksum value (if any).

• Create_options

Extra options used with CREATE TABLE. The original options supplied when CREATE TABLE
is called are retained and the options reported here may differ from the active table settings and
options.

• Comment

The comment used when creating the table (or information as to why MySQL could not access the
table information).

SHOW Syntax

1573

For MEMORY tables, the Data_length, Max_data_length, and Index_length values approximate
the actual amount of allocated memory. The allocation algorithm reserves memory in large amounts to
reduce the number of allocation operations.

For views, all the fields displayed by SHOW TABLE STATUS are NULL except that Name indicates the
view name and Comment says view.

13.7.5.36 SHOW TABLES Syntax

SHOW [FULL] TABLES [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using
the mysqlshow db_name command. The LIKE clause, if present, indicates which table names to
match. The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 19.31, “Extensions to SHOW Statements”.

Matching performed by the LIKE clause is dependent on the setting of the
lower_case_table_names system variable.

This statement also lists any views in the database. The FULL modifier is supported such that SHOW
FULL TABLES displays a second output column. Values for the second column are BASE TABLE for a
table and VIEW for a view.

If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES
or mysqlshow db_name.

13.7.5.37 SHOW TRIGGERS Syntax

SHOW TRIGGERS [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TRIGGERS lists the triggers currently defined for tables in a database (the default database
unless a FROM clause is given). This statement returns results only for databases and tables for which
you have the TRIGGER privilege. The LIKE clause, if present, indicates which table names to match
(not trigger names) and causes the statement to display triggers for those tables. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 19.31, “Extensions
to SHOW Statements”.

For the trigger ins_sum as defined in Section 18.3, “Using Triggers”, the output of this statement is as
shown here:

mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************
 Trigger: ins_sum
 Event: INSERT
 Table: account
 Statement: SET @sum = @sum + NEW.amount
 Timing: BEFORE
 Created: 2013-07-09 10:39:34.96
 sql_mode: NO_ENGINE_SUBSTITUTION
 Definer: me@localhost
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

SHOW TRIGGERS output has the following columns:

• Trigger: The trigger name.

• Event: The type of operation that causes trigger activation. The value is 'INSERT', 'UPDATE', or
'DELETE'.

SHOW Syntax

1574

• Table: The table for which the trigger is defined.

• Statement: The trigger body; that is, the statement executed when the trigger activates.

• Timing: Whether the trigger activates before or after the triggering event. The value is 'BEFORE' or
'AFTER'.

• Created: The date and time when the trigger was created. This is a TIMESTAMP(2) value (with
a fractional part in hundredths of seconds) for triggers created in MySQL 5.7.2 or later, NULL for
triggers created prior to 5.7.2.

• sql_mode: The SQL mode in effect when the trigger executes.

• Definer: The account of the user who created the trigger, in 'user_name'@'host_name' format.

• character_set_client: The session value of the character_set_client system variable
when the trigger was created.

• collation_connection: The session value of the collation_connection system variable
when the trigger was created.

• Database Collation: The collation of the database with which the trigger is associated.

You can also obtain information about trigger objects from INFORMATION_SCHEMA, which contains a
TRIGGERS table. See Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.38 SHOW VARIABLES Syntax

SHOW [GLOBAL | SESSION] VARIABLES
 [LIKE 'pattern' | WHERE expr]

SHOW VARIABLES shows the values of MySQL system variables. This information also can be
obtained using the mysqladmin variables command. The LIKE clause, if present, indicates
which variable names to match. The WHERE clause can be given to select rows using more general
conditions, as discussed in Section 19.31, “Extensions to SHOW Statements”. This statement does not
require any privilege. It requires only the ability to connect to the server.

With the GLOBAL modifier, SHOW VARIABLES displays the values that are used for new connections to
MySQL. In MySQL 5.7, if a variable has no global value, no value is displayed. With SESSION, SHOW
VARIABLES displays the values that are in effect for the current connection. If no modifier is present,
the default is SESSION. LOCAL is a synonym for SESSION.

SHOW VARIABLES is subject to a version-dependent display-width limit. For variables with very long
values that are not completely displayed, use SELECT as a workaround. For example:

SELECT @@GLOBAL.innodb_data_file_path;

If the default system variable values are unsuitable, you can set them using command options when
mysqld starts, and most can be changed at runtime with the SET statement. See Section 5.1.5, “Using
System Variables”, and Section 13.7.4, “SET Syntax”.

Partial output is shown here. The list of names and values may be different for your server.
Section 5.1.4, “Server System Variables”, describes the meaning of each variable, and Section 8.11.2,
“Tuning Server Parameters”, provides information about tuning them.

mysql> SHOW VARIABLES;
+---+---------------------------+
| Variable_name | Value |
+---+---------------------------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |

SHOW Syntax

1575

autocommit	ON
automatic_sp_privileges	ON
back_log	50
basedir	/home/jon/bin/mysql-5.5
big_tables	OFF
binlog_cache_size	32768
binlog_direct_non_transactional_updates	OFF
binlog_format	STATEMENT
binlog_stmt_cache_size	32768
bulk_insert_buffer_size	8388608
...	
max_allowed_packet	1048576
max_binlog_cache_size	18446744073709547520
max_binlog_size	1073741824
max_binlog_stmt_cache_size	18446744073709547520
max_connect_errors	10
max_connections	151
max_delayed_threads	20
max_error_count	64
max_heap_table_size	16777216
max_insert_delayed_threads	20
max_join_size	18446744073709551615
...

thread_handling	one-thread-per-connection
thread_stack	262144
time_format	%H:%i:%s
time_zone	SYSTEM
timed_mutexes	OFF
timestamp	1316689732
tmp_table_size	16777216
tmpdir	/tmp
transaction_alloc_block_size	8192
transaction_prealloc_size	4096
tx_isolation	REPEATABLE-READ
unique_checks	ON
updatable_views_with_limit	YES
version	5.5.17-log
version_comment	Source distribution
version_compile_machine	x86_64
version_compile_os	Linux
wait_timeout	28800
warning_count	0
+---+---------------------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern. To obtain the row for a specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because “_” is a wildcard that matches any single character, you should escape it as “_” to match it
literally. In practice, this is rarely necessary.

13.7.5.39 SHOW WARNINGS Syntax

SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS is a diagnostic statement that displays information about the conditions (errors,
warnings, and notes) resulting from executing a statement in the current session. Warnings are

SHOW Syntax

1576

generated for DML statements such as INSERT, UPDATE, and LOAD DATA INFILE as well as DDL
statements such as CREATE TABLE and ALTER TABLE.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

SHOW WARNINGS is also used following EXPLAIN EXTENDED, to display the extra information
generated by EXPLAIN when the EXTENDED keyword is used. See Section 8.8.4, “EXPLAIN
EXTENDED Output Format”.

As of MySQL 5.7.2, SHOW WARNINGS displays information about the conditions resulting from
execution of the most recent nondiagnostic statement in the current session. If the most recent
statement resulted in an error during parsing, SHOW WARNINGS shows the resulting conditions,
regardless of statement type (diagnostic or nondiagnostic).

Before MySQL 5.7.2, SHOW WARNINGS displays information about the conditions resulting from the
most recent statement in the current session that generated messages. It shows nothing if the most
recent statement used a table and generated no messages. (That is, statements that use a table but
generate no messages clear the message list.) Statements that do not use tables and do not generate
messages have no effect on the message list.

The SHOW COUNT(*) WARNINGS diagnostic statement displays the total number of errors, warnings,
and notes. You can also retrieve this number from the warning_count system variable:

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

A difference in these statements is that the first is a diagnostic statement that does not clear the
message list. The second, because it is a SELECT statement is considered nondiagnostic and, as of
MySQL 5.7.2, does clear the message list.

A related diagnostic statement, SHOW ERRORS, shows only error conditions (it excludes warnings
and notes), and SHOW COUNT(*) ERRORS statement displays the total number of errors. See
Section 13.7.5.16, “SHOW ERRORS Syntax”. GET DIAGNOSTICS can be used to examine information
for individual conditions. See Section 13.6.7.3, “GET DIAGNOSTICS Syntax”.

Here is a simple example that shows data-conversion warnings for INSERT:

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4));
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t1 VALUES(10,'mysql'), (NULL,'test'), (300,'xyz');
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1265
Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
 Level: Warning
 Code: 1048
Message: Column 'a' cannot be null
*************************** 3. row ***************************
 Level: Warning
 Code: 1264
Message: Out of range value for column 'a' at row 3
3 rows in set (0.00 sec)

The max_error_count system variable controls the maximum number of error, warning, and note
messages for which the server stores information, and thus the number of messages that SHOW
WARNINGS displays. To change the number of messages the server can store, change the value of
max_error_count. The default is 64.

SHOW Syntax

1577

max_error_count controls only how many messages are stored, not how many are counted. The
value of warning_count is not limited by max_error_count, even if the number of messages
generated exceeds max_error_count. The following example demonstrates this. The ALTER TABLE
statement produces three warning messages (strict SQL mode is disabled for the example to prevent
an error from occuring after a single conversion issue). Only one message is stored and displayed
because max_error_count has been set to 1, but all three are counted (as shown by the value of
warning_count):

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> SET max_error_count=1, sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |
+-----------------+
1 row in set (0.01 sec)

To disable message storage, set max_error_count to 0. In this case, warning_count still indicates
how many warnings occurred, but messages are not stored and cannot be displayed.

The sql_notes system variable controls whether note messages increment warning_count and
whether the server stores them. By default, sql_notes is 1, but if set to 0, notes do not increment
warning_count and the server does not store them:

mysql> SET sql_notes = 1;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

mysql> SET sql_notes = 0;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW WARNINGS;
Empty set (0.00 sec)

The MySQL server sends to each client a count indicating the total number of errors, warnings,
and notes resulting from the most recent statement executed by that client. From the C API,
this value can be obtained by calling mysql_warning_count(). See Section 21.8.7.77,
“mysql_warning_count()”.

Other Administrative Statements

1578

13.7.6 Other Administrative Statements

13.7.6.1 BINLOG Syntax

BINLOG 'str'

BINLOG is an internal-use statement. It is generated by the mysqlbinlog program as the printable
representation of certain events in binary log files. (See Section 4.6.7, “mysqlbinlog — Utility for
Processing Binary Log Files”.) The 'str' value is a base 64-encoded string the that server decodes
to determine the data change indicated by the corresponding event. This statement requires the SUPER
privilege.

As of MySQL 5.6, this statement can execute only format description events and row events.
Previously it could execute all types of events.

13.7.6.2 CACHE INDEX Syntax

CACHE INDEX
 tbl_index_list [, tbl_index_list] ...
 [PARTITION (partition_list | ALL)]
 IN key_cache_name

tbl_index_list:
 tbl_name [[INDEX|KEY] (index_name[, index_name] ...)]

partition_list:
 partition_name[, partition_name][, ...]

The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for MyISAM
tables. After the indexes have been assigned, they can be preloaded into the cache if desired with
LOAD INDEX INTO CACHE.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named
hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should
be assigned to the cache. The current implementation assigns all the table's indexes to the cache, so
there is no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a
parameter setting statement or in the server parameter settings. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters can be accessed as members of a structured system variable. See
Section 5.1.5.1, “Structured System Variables”.

A key cache must exist before you can assign indexes to it:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

Other Administrative Statements

1579

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it become assigned to the default key cache
again.

Index assignment affects the server globally: If one client assigns an index to a given cache, this cache
is used for all queries involving the index, no matter which client issues the queries.

In MySQL 5.7, this statement is also supported for partitioned MyISAM tables. You can assign one
or more indexes for one, several, or all partitions to a given key cache. For example, you can do the
following:

CREATE TABLE pt (c1 INT, c2 VARCHAR(50), INDEX i(c1))
 PARTITION BY HASH(c1)
 PARTITIONS 4;

SET GLOBAL kc_fast.key_buffer_size = 128 * 1024;
SET GLOBAL kc_slow.key_buffer_size = 128 * 1024;

CACHE INDEX pt PARTITION (p0) IN kc_fast;
CACHE INDEX pt PARTITION (p1, p3) IN kc_slow;

The previous set of statements performs the following actions:

• Creates a partitioned table with 4 partitions; these partitions are automatically named p0, ..., p3; this
table has an index named i on column c1.

• Creates 2 key caches named kc_fast and kc_slow

• Assigns the index for partition p0 to the kc_fast key cache and the index for partitions p1 and p3
to the kc_slow key cache; the index for the remaining partition (p2) uses the server's default key
cache.

If you wish instead to assign the indexes for all partitions in table pt to a single key cache named
kc_all, you can use either one of the following 2 statements:

CACHE INDEX pt PARTITION (ALL) IN kc_all;

CACHE INDEX pt IN kc_all;

The two statements just shown are equivalent, and issuing either one of them has exactly the same
effect. In other words, if you wish to assign indexes for all partitions of a partitioned table to the same
key cache, then the PARTITION (ALL) clause is optional.

When assigning indexes for multiple partitions to a key cache, the partitions do not have to be
contiguous, and you are not required to list their names in any particular order. Indexes for any
partitions that are not explicitly assigned to a key cache automatically use the server's default key
cache.

In MySQL 5.7, index preloading is also supported for partitioned MyISAM tables. For more information,
see Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

13.7.6.3 FLUSH Syntax

FLUSH [NO_WRITE_TO_BINLOG | LOCAL]
 flush_option [, flush_option] ...

The FLUSH statement has several variant forms that clear or reload various internal caches, flush
tables, or acquire locks. To execute FLUSH, you must have the RELOAD privilege. Specific flush options
might require additional privileges, as described later.

Other Administrative Statements

1580

By default, the server writes FLUSH statements to the binary log so that they replicate to replication
slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

Note

FLUSH LOGS, FLUSH TABLES WITH READ LOCK (with or without a table
list), and FLUSH TABLES tbl_name ... FOR EXPORT are not written to the
binary log in any case because they would cause problems if replicated to a
slave.

Sending a SIGHUP signal to the server causes several flush operations to occur that are similar to
various forms of the FLUSH statement. See Section 5.1.11, “Server Response to Signals”.

The FLUSH statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an
Implicit Commit”.

The RESET statement is similar to FLUSH. See Section 13.7.6.6, “RESET Syntax”, for information about
using the RESET statement with replication.

flush_option can be any of the following items.

• DES_KEY_FILE

Reloads the DES keys from the file that was specified with the --des-key-file option at server
startup time.

• HOSTS

Empties the host cache. You should flush the host cache if some of your hosts change IP address
or if the error message Host 'host_name' is blocked occurs. (See Section C.5.2.6, “Host
'host_name' is blocked”.) When more than max_connect_errors errors occur successively
for a given host while connecting to the MySQL server, MySQL assumes that something is wrong
and blocks the host from further connection requests. Flushing the host cache enables further
connection attempts from the host. The default value of max_connect_errors is 10. To avoid this
error message, start the server with max_connect_errors set to a large value.

• [log_type] LOGS

With no log_type option, FLUSH LOGS closes and reopens all log files. If binary logging is enabled,
the sequence number of the binary log file is incremented by one relative to the previous file.

With a log_type option, only the specified log type is flushed. These log_type options are
permitted:

• BINARY closes and reopens the binary log files.

• ENGINE closes and reopens any flushable logs for installed storage engines. Currently, this
causes InnoDB to flush its logs to disk.

• ERROR closes and reopens the error log file.

• GENERAL closes and reopens the general query log file.

• RELAY closes and reopens the relay log files.

• SLOW closes and reopens the slow query log file.

• PRIVILEGES

Reloads the privileges from the grant tables in the mysql database.

The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER,
and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE,

Other Administrative Statements

1581

DROP USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes
many instances of the statements that cause caching, there will be an increase in memory use. This
cached memory can be freed with FLUSH PRIVILEGES.

• QUERY CACHE

Defragment the query cache to better utilize its memory. FLUSH QUERY CACHE does not remove
any queries from the cache, unlike FLUSH TABLES or RESET QUERY CACHE.

• STATUS

This option adds the current thread's session status variable values to the global values and resets
the session values to zero. Some global variables may be reset to zero as well. It also resets the
counters for key caches (default and named) to zero and sets Max_used_connections to the
current number of open connections. This is something you should use only when debugging a
query. See Section 1.7, “How to Report Bugs or Problems”.

• TABLES

FLUSH TABLES flushes tables, and, depending on the variant used, acquires locks. The permitted
syntax is discussed later in this section.

• USER_RESOURCES

Resets all per-hour user resources to zero. This enables clients that have reached their hourly
connection, query, or update limits to resume activity immediately. FLUSH USER_RESOURCES does
not apply to the limit on maximum simultaneous connections. See Section 6.3.4, “Setting Account
Resource Limits”.

The mysqladmin utility provides a command-line interface to some flush operations, using commands
such as flush-hosts, flush-logs, flush-privileges, flush-status, and flush-tables.
See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.

Note

It is not possible to issue FLUSH statements within stored functions or triggers.
However, you may use FLUSH in stored procedures, so long as these are not
called from stored functions or triggers. See Section E.1, “Restrictions on Stored
Programs”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

FLUSH TABLES Syntax

FLUSH TABLES has several forms, described following. If any variant of the TABLES option is used in a
FLUSH statement, it must be the only option used. FLUSH TABLE is a synonym for FLUSH TABLES.

• FLUSH TABLES

Closes all open tables, forces all tables in use to be closed, and flushes the query cache. FLUSH
TABLES also removes all query results from the query cache, like the RESET QUERY CACHE
statement.

In MySQL 5.7, FLUSH TABLES is not permitted when there is an active LOCK TABLES ... READ.
To flush and lock tables, use FLUSH TABLES tbl_name ... WITH READ LOCK instead.

• FLUSH TABLES tbl_name [, tbl_name] ...

With a list of one or more comma-separated table names, this statement is like FLUSH TABLES with
no names except that the server flushes only the named tables. No error occurs if a named table
does not exist.

Other Administrative Statements

1582

• FLUSH TABLES WITH READ LOCK

Closes all open tables and locks all tables for all databases with a global read lock. This is a very
convenient way to get backups if you have a file system such as Veritas or ZFS that can take
snapshots in time. Use UNLOCK TABLES to release the lock.

FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits:

• UNLOCK TABLES implicitly commits any active transaction only if any tables currently have been
locked with LOCK TABLES. The commit does not occur for UNLOCK TABLES following FLUSH
TABLES WITH READ LOCK because the latter statement does not acquire table locks.

• Beginning a transaction causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock
acquired with FLUSH TABLES WITH READ LOCK.

FLUSH TABLES WITH READ LOCK does not prevent the server from inserting rows into the log
tables (see Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).

• FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK

This statement flushes and acquires read locks for the named tables. The statement first acquires
exclusive metadata locks for the tables, so it waits for transactions that have those tables open to
complete. Then the statement flushes the tables from the table cache, reopens the tables, acquires
table locks (like LOCK TABLES ... READ), and downgrades the metadata locks from exclusive to
shared. After the statement acquires locks and downgrades the metadata locks, other sessions can
read but not modify the tables.

Because this statement acquires table locks, you must have the LOCK TABLES privilege for each
table, in addition to the RELOAD privilege that is required to use any FLUSH statement.

This statement applies only to existing base tables. If a name refers to a base table, that
table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an
ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

Use UNLOCK TABLES to release the locks, LOCK TABLES to release the locks and acquire other
locks, or START TRANSACTION to release the locks and begin a new transaction.

This variant of FLUSH enables tables to be flushed and locked in a single operation. It provides a
workaround for the restriction in MySQL 5.7 that FLUSH TABLES is not permitted when there is an
active LOCK TABLES ... READ.

This statement does not perform an implicit UNLOCK TABLES, so an error results if you use the
statement while there is any active LOCK TABLES or use it a second time without first releasing the
locks acquired.

If a flushed table was opened with HANDLER, the handler is implicitly flushed and loses its position.

• FLUSH TABLES tbl_name [, tbl_name] ... FOR EXPORT

This FLUSH TABLES variant applies to InnoDB tables. It ensures that changes to the named tables
have been flushed to disk so that binary table copies can be made while the server is running.

The statement works like this:

1. It acquires shared metadata locks for the named tables. The statement blocks as long as other
sessions have active transactions that have modified those tables or hold table locks for them.
When the locks have been acquired, the statement blocks transactions that attempt to update the
tables while permitting read-only operations to continue.

Other Administrative Statements

1583

2. It checks whether all storage engines for the tables support FOR EXPORT. If any do not, an
ER_ILLEGAL_HA error occurs and the statement fails.

3. The statement notifies the storage engine for each table to make the table ready for export. The
storage engine must ensure that any pending changes are written to disk.

4. The statement puts the session in lock-tables mode so that the metadata locks acquired earlier
are not released when the FOR EXPORT statement completes.

The FLUSH TABLES ... FOR EXPORT statement requires that you have the SELECT privilege
for each table. Because this statement acquires table locks, you must also have the LOCK TABLES
privilege for each table, in addition to the RELOAD privilege that is required to use any FLUSH
statement.

This statement applies only to existing base tables. If a name refers to a base table, that
table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an
ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

InnoDB supports FOR EXPORT for tables that have their own .ibd file file (that is, tables that were
created with the innodb_file_per_table setting enabled). InnoDB ensures when notified by
the FOR EXPORT statement that any changes have been flushed to disk. This permits a binary copy
of table contents to be made while the FOR EXPORT statement is in effect because the .ibd file is
transaction consistent and can be copied while the server is running. FOR EXPORT does not apply to
InnoDB system tablespace files, or to InnoDB tables that have any FULLTEXT indexes.

FLUSH TABLES ...FOR EXPORT does not work with partitioned InnoDB tables prior to MySQL
5.7.4, but is supported for such tables in MySQL 5.7.4 and later. (Bug #16943907)

When notified by FOR EXPORT, InnoDB writes to disk certain kinds of data that is normally held
in memory or in separate disk buffers outside the tablespace files. For each table, InnoDB also
produces a file named table_name.cfg in the same database directory as the table. The .cfg file
contains metadata needed to reimport the tablespace files later, into the same or different server.

When the FOR EXPORT statement completes, InnoDB will have flushed all dirty pages to the table
data files. Any change buffer entries are merged prior to flushing. At this point, the tables are locked
and quiescent: The tables are in a transactionally consistent state on disk and you can copy the
.ibd tablespace files along with the corresponding .cfg files to get a consistent snapshot of those
tables.

For the procedure to reimport the copied table data into a MySQL instance, see Section 14.2.5.5,
“Copying Tablespaces to Another Server (Transportable Tablespaces)”.

After you are done with the tables, use UNLOCK TABLES to release the locks, LOCK TABLES to
release the locks and acquire other locks, or START TRANSACTION to release the locks and begin a
new transaction.

While any of these statements is in effect within the session, attempts to use FLUSH TABLES ...
FOR EXPORT produce an error:

FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT
LOCK TABLES ... READ
LOCK TABLES ... WRITE

While FLUSH TABLES ... FOR EXPORT is in effect within the session, attempts to use any of
these statements produce an error:

FLUSH TABLES WITH READ LOCK
FLUSH TABLES ... WITH READ LOCK

Other Administrative Statements

1584

FLUSH TABLES ... FOR EXPORT

13.7.6.4 KILL Syntax

KILL [CONNECTION | QUERY] thread_id

Each connection to mysqld runs in a separate thread. You can see which threads are running with the
SHOW PROCESSLIST statement and kill a thread with the KILL thread_id statement.

KILL permits an optional CONNECTION or QUERY modifier:

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated
with the given thread_id.

• KILL QUERY terminates the statement that the connection is currently executing, but leaves the
connection itself intact.

If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege, you can
kill all threads and statements. Otherwise, you can see and kill only your own threads and statements.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine
and kill threads.

Note

You cannot use KILL with the Embedded MySQL Server library because the
embedded server merely runs inside the threads of the host application. It does
not create any connection threads of its own.

When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some
time for the thread to die because the kill flag is checked only at specific intervals:

• In SELECT, ORDER BY and GROUP BY loops, the flag is checked after reading a block of rows. If the
kill flag is set, the statement is aborted.

• During ALTER TABLE, the kill flag is checked before each block of rows are read from the original
table. If the kill flag was set, the statement is aborted and the temporary table is deleted.

• During UPDATE or DELETE operations, the kill flag is checked after each block read and after each
updated or deleted row. If the kill flag is set, the statement is aborted. Note that if you are not using
transactions, the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error
message.

• Warning

Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table
results in a table that is corrupted and unusable. Any reads or writes to such a
table fail until you optimize or repair it again (without interruption).

13.7.6.5 LOAD INDEX INTO CACHE Syntax

LOAD INDEX INTO CACHE
 tbl_index_list [, tbl_index_list] ...

tbl_index_list:

Other Administrative Statements

1585

 tbl_name
 [PARTITION (partition_list | ALL)]
 [[INDEX|KEY] (index_name[, index_name] ...)]
 [IGNORE LEAVES]

partition_list:
 partition_name[, partition_name][, ...]

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has
been assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise.

LOAD INDEX INTO CACHE is used only for MyISAM tables. In MySQL 5.7, it is also supported for
partitioned MyISAM tables; in addition, indexes on partitioned tables can be preloaded for one, several,
or all partitions.

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.

IGNORE LEAVES is also supported for partitioned MyISAM tables.

The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the nonleaf nodes from t2.

The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a
table should be preloaded. The current implementation preloads all the table's indexes into the cache,
so there is no reason to specify anything other than the table name.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

In MySQL 5.7, it is possible to preload indexes on specific partitions of partitioned MyISAM tables. For
example, of the following 2 statements, the first preloads indexes for partition p0 of a partitioned table
pt, while the second preloads the indexes for partitions p1 and p3 of the same table:

LOAD INDEX INTO CACHE pt PARTITION (p0);
LOAD INDEX INTO CACHE pt PARTITION (p1, p3);

To preload the indexes for all partitions in table pt, you can use either one of the following 2
statements:

LOAD INDEX INTO CACHE pt PARTITION (ALL);

LOAD INDEX INTO CACHE pt;

The two statements just shown are equivalent, and issuing either one of them has exactly the same
effect. In other words, if you wish to preload indexes for all partitions of a partitioned table, then the
PARTITION (ALL) clause is optional.

When preloading indexes for multiple partitions, the partitions do not have to be contiguous, and you
are not required to list their names in any particular order.

LOAD INDEX INTO CACHE ... IGNORE LEAVES fails unless all indexes in a table have the same
block size. You can determine index block sizes for a table by using myisamchk -dv and checking
the Blocksize column.

MySQL Utility Statements

1586

13.7.6.6 RESET Syntax

RESET reset_option [, reset_option] ...

The RESET statement is used to clear the state of various server operations. You must have the
RELOAD privilege to execute RESET.

RESET acts as a stronger version of the FLUSH statement. See Section 13.7.6.3, “FLUSH Syntax”.

The RESET statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an
Implicit Commit”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

reset_option can be any of the following:

• MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates
a new binary log file.

• QUERY CACHE

Removes all query results from the query cache.

• SLAVE

Makes the slave forget its replication position in the master binary logs. Also resets the relay log by
deleting any existing relay log files and beginning a new one.

13.8 MySQL Utility Statements

13.8.1 DESCRIBE Syntax

The DESCRIBE and EXPLAIN statements are synonyms, used either to obtain information about table
structure or query execution plans. For more information, see Section 13.7.5.5, “SHOW COLUMNS
Syntax”, and Section 13.8.2, “EXPLAIN Syntax”.

13.8.2 EXPLAIN Syntax

{EXPLAIN | DESCRIBE | DESC}
 tbl_name [col_name | wild]

{EXPLAIN | DESCRIBE | DESC}
 [explain_type]
 {explainable_stmt | FOR CONNECTION connection_id}

explain_type: {
 EXTENDED
 | PARTITIONS
 | FORMAT = format_name
}

format_name: {
 TRADITIONAL
 | JSON
}

explainable_stmt: {
 SELECT statement
 | DELETE statement
 | INSERT statement

EXPLAIN Syntax

1587

 | REPLACE statement
 | UPDATE statement
}

The DESCRIBE and EXPLAIN statements are synonyms. In practice, the DESCRIBE keyword is more
often used to obtain information about table structure, whereas EXPLAIN is used to obtain a query
execution plan (that is, an explanation of how MySQL would execute a query). The following discussion
uses the DESCRIBE and EXPLAIN keywords in accordance with those uses, but the MySQL parser
treats them as completely synonymous.

Obtaining Table Structure Information

DESCRIBE provides information about the columns in a table:

mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+

DESCRIBE is a shortcut for SHOW COLUMNS. These statements also display information for views.
The description for SHOW COLUMNS provides more information about the output columns. See
Section 13.7.5.5, “SHOW COLUMNS Syntax”.

By default, DESCRIBE displays information about all columns in the table. col_name, if given, is the
name of a column in the table. In this case, the statement displays information only for the named
column. wild, if given, is a pattern string. It can contain the SQL “%” and “_” wildcard characters. In
this case, the statement displays output only for the columns with names matching the string. There
is no need to enclose the string within quotation marks unless it contains spaces or other special
characters.

The DESCRIBE statement is provided for compatibility with Oracle.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Syntax”.

Obtaining Execution Plan Information

The EXPLAIN statement provides information about how MySQL executes statements:

• In MySQL 5.7, permitted explainable statements for EXPLAIN are SELECT, DELETE, INSERT,
REPLACE, and UPDATE.

• When EXPLAIN is used with an explainable statement, MySQL displays information from the
optimizer about the statement execution plan. That is, MySQL explains how it would process the
statement, including information about how tables are joined and in which order. For information
about using EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output
Format”.

• When EXPLAIN is used with FOR CONNECTION connection_id rather than an explainable
statement, it displays the execution plan for the statement executing in the named connection. See
Section 8.8.3, “Obtaining Execution Plan Information for a Named Connection”.

• EXPLAIN EXTENDED can be used to obtain additional execution plan information. See Section 8.8.4,
“EXPLAIN EXTENDED Output Format”.

As of MySQL 5.7.3, the EXPLAIN statement is changed so that the effect of the EXTENDED keyword
is always enabled. EXTENDED is still recognized for backward compatibility, but is superfluous and is

HELP Syntax

1588

deprecated; its use results in a warning. It will be removed from EXPLAIN syntax in a future MySQL
release.

• EXPLAIN PARTITIONS is useful for examining queries involving partitioned tables. See
Section 17.3.5, “Obtaining Information About Partitions”.

As of MySQL 5.7.3, the EXPLAIN statement is changed so that the effect of the PARTITIONS
keyword is always enabled. PARTITIONS is still recognized for backward compatibility, but is
superfluous and is deprecated; its use results in a warning. It will be removed from EXPLAIN syntax
in a future MySQL release.

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output
in tabular format. This is the default if no FORMAT option is present. JSON format displays the
information in JSON format. With FORMAT = JSON, the output includes extended and partition
information.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the
optimizer joins the tables in an optimal order. To give a hint to the optimizer to use a join order
corresponding to the order in which the tables are named in a SELECT statement, begin the statement
with SELECT STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Syntax”.)

The optimizer trace may sometimes provide information complementary to that of EXPLAIN. However,
the optimizer trace format and content are subject to change between versions. For details, see
MySQL Internals: Tracing the Optimizer.

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.

13.8.3 HELP Syntax

HELP 'search_string'

The HELP statement returns online information from the MySQL Reference manual. Its proper
operation requires that the help tables in the mysql database be initialized with help topic information
(see Section 5.1.10, “Server-Side Help”).

The HELP statement searches the help tables for the given search string and displays the result of the
search. The search string is not case sensitive.

The search string can contain the the wildcard characters “%” and “_”. These have the same meaning
as for pattern-matching operations performed with the LIKE operator. For example, HELP 'rep%'
returns a list of topics that begin with rep.

The HELP statement understands several types of search strings:

• At the most general level, use contents to retrieve a list of the top-level help categories:

HELP 'contents'

• For a list of topics in a given help category, such as Data Types, use the category name:

HELP 'data types'

• For help on a specific help topic, such as the ASCII() function or the CREATE TABLE statement,
use the associated keyword or keywords:

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

HELP Syntax

1589

HELP 'ascii'
HELP 'create table'

In other words, the search string matches a category, many topics, or a single topic. You cannot
necessarily tell in advance whether a given search string will return a list of items or the help
information for a single help topic. However, you can tell what kind of response HELP returned by
examining the number of rows and columns in the result set.

The following descriptions indicate the forms that the result set can take. Output for the example
statements is shown using the familiar “tabular” or “vertical” format that you see when using the mysql
client, but note that mysql itself reformats HELP result sets in a different way.

• Empty result set

No match could be found for the search string.

• Result set containing a single row with three columns

This means that the search string yielded a hit for the help topic. The result has three columns:

• name: The topic name.

• description: Descriptive help text for the topic.

• example: Usage example or examples. This column might be blank.

Example: HELP 'replace'

Yields:

name: REPLACE
description: Syntax:
REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str
replaced by the string to_str. REPLACE() performs a case-sensitive
match when searching for from_str.
example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

• Result set containing multiple rows with two columns

This means that the search string matched many help topics. The result set indicates the help topic
names:

• name: The help topic name.

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the
name value when specified as the argument to the HELP statement should yield a single-row result
set containing a description for the named item.

Example: HELP 'status'

Yields:

+-----------------------+----------------+
| name | is_it_category |
+-----------------------+----------------+
SHOW	N
SHOW ENGINE	N
SHOW MASTER STATUS	N
SHOW PROCEDURE STATUS	N
SHOW SLAVE STATUS	N
SHOW STATUS	N

USE Syntax

1590

| SHOW TABLE STATUS | N |
+-----------------------+----------------+

• Result set containing multiple rows with three columns

This means the search string matches a category. The result set contains category entries:

• source_category_name: The help category name.

• name: The category or topic name

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the
name value when specified as the argument to the HELP statement should yield a single-row result
set containing a description for the named item.

Example: HELP 'functions'

Yields:

+----------------------+-------------------------+----------------+
| source_category_name | name | is_it_category |
+----------------------+-------------------------+----------------+
Functions	CREATE FUNCTION	N
Functions	DROP FUNCTION	N
Functions	Bit Functions	Y
Functions	Comparison operators	Y
Functions	Control flow functions	Y
Functions	Date and Time Functions	Y
Functions	Encryption Functions	Y
Functions	Information Functions	Y
Functions	Logical operators	Y
Functions	Miscellaneous Functions	Y
Functions	Numeric Functions	Y
Functions	String Functions	Y
+----------------------+-------------------------+----------------+

13.8.4 USE Syntax

USE db_name

The USE db_name statement tells MySQL to use the db_name database as the default (current)
database for subsequent statements. The database remains the default until the end of the session or
another USE statement is issued:

USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable

Making a particular database the default by means of the USE statement does not preclude you from
accessing tables in other databases. The following example accesses the author table from the db1
database and the editor table from the db2 database:

USE db1;
SELECT author_name,editor_name FROM author,db2.editor
 WHERE author.editor_id = db2.editor.editor_id;

1591

Chapter 14 Storage Engines

Table of Contents
14.1 Setting the Storage Engine .. 1594
14.2 The InnoDB Storage Engine .. 1595

14.2.1 Introduction to InnoDB .. 1595
14.2.2 InnoDB Concepts and Architecture ... 1600
14.2.3 InnoDB Configuration ... 1620
14.2.4 InnoDB Administration .. 1626
14.2.5 InnoDB Tablespace Management ... 1626
14.2.6 InnoDB Table Management .. 1641
14.2.7 InnoDB Compressed Tables ... 1659
14.2.8 InnoDB File-Format Management ... 1670
14.2.9 InnoDB Row Storage and Row Formats .. 1676
14.2.10 InnoDB Disk I/O and File Space Management ... 1678
14.2.11 InnoDB and Online DDL ... 1681
14.2.12 InnoDB Performance Tuning ... 1715
14.2.13 InnoDB Startup Options and System Variables .. 1762
14.2.14 InnoDB Backup and Recovery .. 1827
14.2.15 InnoDB and MySQL Replication .. 1829
14.2.16 InnoDB Integration with memcached ... 1831
14.2.17 InnoDB Troubleshooting ... 1860

14.3 The MyISAM Storage Engine .. 1869
14.3.1 MyISAM Startup Options ... 1871
14.3.2 Space Needed for Keys .. 1873
14.3.3 MyISAM Table Storage Formats .. 1873
14.3.4 MyISAM Table Problems ... 1875

14.4 The MEMORY Storage Engine .. 1877
14.5 The CSV Storage Engine ... 1880

14.5.1 Repairing and Checking CSV Tables ... 1881
14.5.2 CSV Limitations .. 1882

14.6 The ARCHIVE Storage Engine .. 1882
14.7 The BLACKHOLE Storage Engine .. 1883
14.8 The MERGE Storage Engine ... 1886

14.8.1 MERGE Table Advantages and Disadvantages .. 1888
14.8.2 MERGE Table Problems ... 1889

14.9 The FEDERATED Storage Engine .. 1890
14.9.1 FEDERATED Storage Engine Overview ... 1891
14.9.2 How to Create FEDERATED Tables .. 1892
14.9.3 FEDERATED Storage Engine Notes and Tips .. 1894
14.9.4 FEDERATED Storage Engine Resources ... 1896

14.10 The EXAMPLE Storage Engine .. 1896
14.11 Other Storage Engines ... 1896
14.12 Overview of MySQL Storage Engine Architecture .. 1896

14.12.1 Pluggable Storage Engine Architecture .. 1897
14.12.2 The Common Database Server Layer .. 1897

Storage engines are MySQL components that handle the SQL operations for different table types.
InnoDB is the most general-purpose storage engine, and Oracle recommends using it for tables
except for specialized use cases. (The CREATE TABLE statement in MySQL 5.7 creates InnoDB
tables by default.)

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

MySQL 5.7 Supported storage Engines

1592

To determine which storage engines your server supports, use the SHOW ENGINES statement. The
value in the Support column indicates whether an engine can be used. A value of YES, NO, or
DEFAULT indicates that an engine is available, not available, or available and currently set as the
default storage engine.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 3. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
...

This chapter primarily describes the features and performance characteristics of InnoDB tables. It
also covers the use cases for the special-purpose MySQL storage engines, except for NDBCLUSTER
which is covered in MySQL Cluster NDB 7.2. For advanced users, it also contains a description of
the pluggable storage engine architecture (see Section 14.12, “Overview of MySQL Storage Engine
Architecture”).

For information about storage engine support offered in commercial MySQL Server binaries, see
MySQL Enterprise Server 5.6, on the MySQL Web site. The storage engines available might depend
on which edition of Enterprise Server you are using.

For answers to some commonly asked questions about MySQL storage engines, see Section B.2,
“MySQL 5.7 FAQ: Storage Engines”.

MySQL 5.7 Supported storage Engines

• InnoDB: A transaction-safe (ACID compliant) storage engine for MySQL that has commit, rollback,
and crash-recovery capabilities to protect user data. InnoDB row-level locking (without escalation
to coarser granularity locks) and Oracle-style consistent nonlocking reads increase multi-user
concurrency and performance. InnoDB stores user data in clustered indexes to reduce I/O for
common queries based on primary keys. To maintain data integrity, InnoDB also supports FOREIGN
KEY referential-integrity constraints. InnoDB is the default storage engine in MySQL 5.7.

http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://www.mysql.com/products/enterprise/server.html

MySQL 5.7 Supported storage Engines

1593

• MyISAM: These tables have a small footprint. Table-level locking limits the performance in read/write
workloads, so it is often used in read-only or read-mostly workloads in Web and data warehousing
configurations.

• Memory: Stores all data in RAM, for fast access in environments that require quick lookups of non-
critical data. This engine was formerly known as the HEAP engine. Its use cases are decreasing;
InnoDB with its buffer pool memory area provides a general-purpose and durable way to keep most
or all data in memory, and NDBCLUSTER provides fast key-value lookups for huge distributed data
sets.

• CSV: Its tables are really text files with comma-separated values. CSV tables let you import or dump
data in CSV format, to exchange data with scripts and applications that read and write that same
format. Because CSV tables are not indexed, you typically keep the data in InnoDB tables during
normal operation, and only use CSV tables during the import or export stage.

• Archive: These compact, unindexed tables are intended for storing and retrieving large amounts of
seldom-referenced historical, archived, or security audit information.

• Blackhole: The Blackhole storage engine accepts but does not store data, similar to the Unix /
dev/null device. Queries always return an empty set. These tables can be used in replication
configurations where DML statements are sent to slave servers, but the master server does not keep
its own copy of the data.

• Merge: Enables a MySQL DBA or developer to logically group a series of identical MyISAM tables
and reference them as one object. Good for VLDB environments such as data warehousing.

• Federated: Offers the ability to link separate MySQL servers to create one logical database from
many physical servers. Very good for distributed or data mart environments.

• Example: This engine serves as an example in the MySQL source code that illustrates how to begin
writing new storage engines. It is primarily of interest to developers. The storage engine is a “stub”
that does nothing. You can create tables with this engine, but no data can be stored in them or
retrieved from them.

You are not restricted to using the same storage engine for an entire server or schema. You can
specify the storage engine for any table. For example, an application might use mostly InnoDB
tables, with one CSV table for exporting data to a spreadsheet and a few MEMORY tables for temporary
workspaces.

Choosing a Storage Engine

The various storage engines provided with MySQL are designed with different use cases in mind. The
following table provides an overview of some storage engines provided with MySQL:

Table 14.1 Storage Engines Feature Summary

Feature MyISAM Memory InnoDB Archive NDB

Storage
limits

256TB RAM 64TB None 384EB

TransactionsNo No Yes No Yes

Locking
granularity

Table Table Row Table Row

MVCC No No Yes No No

Geospatial
data type
support

Yes No Yes Yes Yes

Geospatial
indexing
support

Yes No No No No

Setting the Storage Engine

1594

Feature MyISAM Memory InnoDB Archive NDB

B-tree
indexes

Yes Yes Yes No No

T-tree
indexes

No No No No Yes

Hash
indexes

No Yes Noa No Yes

Full-text
search
indexes

Yes No Yesb No No

Clustered
indexes

No No Yes No No

Data
caches

No N/A Yes No Yes

Index
caches

Yes N/A Yes No Yes

Compressed
data

Yesc No Yesd Yes No

Encrypted
datae

Yes Yes Yes Yes Yes

Cluster
database
support

No No No No Yes

Replication
supportf

Yes Yes Yes Yes Yes

Foreign
key
support

No No Yes No No

Backup /
point-
in-time
recoveryg

Yes Yes Yes Yes Yes

Query
cache
support

Yes Yes Yes Yes Yes

Update
statistics
for data
dictionary

Yes Yes Yes Yes Yes

aInnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.
bInnoDB support for FULLTEXT indexes is available in MySQL 5.6.4 and higher.
cCompressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format
with MyISAM are read only.
dCompressed InnoDB tables require the InnoDB Barracuda file format.
eImplemented in the server (via encryption functions), rather than in the storage engine.
fImplemented in the server, rather than in the storage engine.
gImplemented in the server, rather than in the storage engine.

14.1 Setting the Storage Engine

When you create a new table, you can specify which storage engine to use by adding an ENGINE table
option to the CREATE TABLE statement:

The InnoDB Storage Engine

1595

-- ENGINE=INNODB not needed unless you have set a different
-- default storage engine.
CREATE TABLE t1 (i INT) ENGINE = INNODB;
-- Simple table definitions can be switched from one to another.
CREATE TABLE t2 (i INT) ENGINE = CSV;
CREATE TABLE t3 (i INT) ENGINE = MEMORY;

When you omit the ENGINE option, the default storage engine is used. The default engine is InnoDB
in MySQL 5.7. You can specify the default engine by using the --default-storage-engine server
startup option, or by setting the default-storage-engine option in the my.cnf configuration file.

You can set the default storage engine for the current session by setting the
default_storage_engine variable:

SET default_storage_engine=NDBCLUSTER;

The storage engine for TEMPORARY tables created with CREATE TEMPORARY TABLE can be set
separately from the engine for permanent tables by setting the default_tmp_storage_engine,
either at startup or at runtime.

When MySQL is installed on Windows using the MySQL Configuration Wizard, the InnoDB or MyISAM
storage engine can be selected as the default. See The Database Usage Dialog.

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates
the new engine:

ALTER TABLE t ENGINE = InnoDB;

See Section 13.1.14, “CREATE TABLE Syntax”, and Section 13.1.6, “ALTER TABLE Syntax”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL
instead creates a table using the default storage engine. For example, in a replication setup, perhaps
your master server uses InnoDB tables for maximum safety, but the slave servers use other storage
engines for speed at the expense of durability or concurrency.

By default, a warning is generated whenever CREATE TABLE or ALTER TABLE cannot use the default
storage engine. To prevent confusing, unintended behavior if the desired engine is unavailable, enable
the NO_ENGINE_SUBSTITUTION SQL mode. If the desired engine is unavailable, this setting produces
an error instead of a warning, and the table is not created or altered. See Section 5.1.7, “Server SQL
Modes”.

For new tables, MySQL always creates an .frm file to hold the table and column definitions. The
table's index and data may be stored in one or more other files, depending on the storage engine.
The server creates the .frm file above the storage engine level. Individual storage engines create
any additional files required for the tables that they manage. If a table name contains special
characters, the names for the table files contain encoded versions of those characters as described in
Section 9.2.3, “Mapping of Identifiers to File Names”.

14.2 The InnoDB Storage Engine

14.2.1 Introduction to InnoDB

InnoDB is a general-purpose storage engine that balances high reliability and high performance. As
of MySQL 5.5, it is the default MySQL storage engine. In MySQL 5.7, issuing the CREATE TABLE
statement without an ENGINE= clause creates an InnoDB table.

Key Advantages of InnoDB

Key advantages of InnoDB tables include:

http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard-database-usage.html

Introduction to InnoDB

1596

• Its DML operations follow the ACID model, with transactions featuring commit, rollback, and crash-
recovery capabilities to protect user data.

• Row-level locking and Oracle-style consistent reads increase multi-user concurrency and
performance.

• InnoDB tables arrange your data on disk to optimize queries based on primary keys.

• To maintain data integrity, InnoDB also supports FOREIGN KEY constraints. Inserts, updates, and
deletes are all checked to ensure they do not result in inconsistencies across different tables.

• You can freely mix InnoDB tables with tables from other MySQL storage engines, even within the
same statement. For example, you can use a join operation to combine data from InnoDB and
MEMORY tables in a single query.

• InnoDB has been designed for maximum performance when processing large data volumes. Its
CPU efficiency is probably not matched by any other disk-based relational database engine.

InnoDB Storage Engine Features

The InnoDB storage engine maintains its own buffer pool for caching data and indexes in main
memory. By default, with the innodb_file_per_table setting enabled, each new InnoDB table and
its associated indexes are stored in a separate file. When the innodb_file_per_table option is
disabled, InnoDB stores all its tables and indexes in the single system tablespace, which may consist
of several files (or raw disk partitions). InnoDB tables can handle large quantities of data, even on
operating systems where file size is limited to 2GB.

InnoDB Enhancements and New Features

For information about InnoDB enhancements and new features in MySQL 5.7, refer to:

• The InnoDB enhancements list in Section 1.4, “What Is New in MySQL 5.7”, which provides an
overview of the features added in MySQL 5.7.

• The Release Notes, which provide information about changes in each version.

Additional Resources

• For InnoDB-related terms and definitions, see MySQL Glossary.

• A forum dedicated to the InnoDB storage engine is available at http://forums.mysql.com/list.php?22.

• InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For
more information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.

14.2.1.1 InnoDB as the Default MySQL Storage Engine

MySQL has a well-earned reputation for being easy-to-use and delivering performance and scalability.
Prior to MySQL 5.5, MyISAM was the default storage engine. In our experience, most users never
changed the default settings. In MySQL 5.5 and higher, InnoDB is the default storage engine. Again,
we expect most users will not change the default settings. But, because of InnoDB, the default settings
deliver the benefits users expect from their RDBMS: ACID Transactions, Referential Integrity, and
Crash Recovery. Let's explore how using InnoDB tables improves your life as a MySQL user, DBA, or
developer.

Trends in Storage Engine Usage

In the first years of MySQL growth, early web-based applications didn't push the limits of concurrency
and availability. In recent years, hard drive and memory capacity and the performance/price ratio
have all gone through the roof. Users pushing the performance boundaries of MySQL care a lot about
reliability and crash recovery. MySQL databases are big, busy, robust, distributed, and important.

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://forums.mysql.com/list.php?22

Introduction to InnoDB

1597

InnoDB addresses these top user priorities. The trend of storage engine usage has shifted in favor of
the more scalable InnoDB. Thus MySQL 5.5 was the logical transition release to make InnoDB the
default storage engine.

MySQL continues to work on addressing use cases that formerly required MyISAM tables. In MySQL
5.6 and higher:

• InnoDB can perform full-text search using the FULLTEXT index type. See FULLTEXT Indexes for
details.

• InnoDB now performs better with read-only or read-mostly workloads. Automatic optimizations apply
to InnoDB queries in autocommit mode, and you can explicitly mark transactions as read-only with
the syntax START TRANSACTION READ ONLY. See Optimizations for Read-Only Transactions for
details.

• Applications distributed on read-only media can now use InnoDB tables. See Section 14.2.3.1,
“Configuring InnoDB for Read-Only Operation” for details.

Consequences of InnoDB as Default MySQL Storage Engine

Starting from MySQL 5.5.5, the default storage engine for new tables is InnoDB. This change applies
to newly created tables that don't specify a storage engine with a clause such as ENGINE=MyISAM.
Given this change of default behavior, MySQL 5.5 might be a logical point to evaluate whether your
tables that do use MyISAM could benefit from switching to InnoDB.

The mysql and information_schema databases, that implement some of the MySQL internals, still
use MyISAM. In particular, you cannot switch the grant tables to use InnoDB.

Benefits of InnoDB Tables

If you use MyISAM tables but aren't tied to them for technical reasons, you'll find many things more
convenient when you use InnoDB tables:

• If your server crashes because of a hardware or software issue, regardless of what was happening in
the database at the time, you don't need to do anything special after restarting the database. InnoDB
crash recovery automatically finalizes any changes that were committed before the time of the crash,
and undoes any changes that were in process but not committed. Just restart and continue where
you left off. This process is now much faster than in MySQL 5.1 and earlier.

• The InnoDB buffer pool caches table and index data as the data is accessed. Frequently used data
is processed directly from memory. This cache applies to so many types of information, and speeds
up processing so much, that dedicated database servers assign up to 80% of their physical memory
to the InnoDB buffer pool.

• If you split up related data into different tables, you can set up foreign keys that enforce referential
integrity. Update or delete data, and the related data in other tables is updated or deleted
automatically. Try to insert data into a secondary table without corresponding data in the primary
table, and the bad data gets kicked out automatically.

• If data becomes corrupted on disk or in memory, a checksum mechanism alerts you to the bogus
data before you use it.

• When you design your database with appropriate primary key columns for each table, operations
involving those columns are automatically optimized. It is very fast to reference the primary key
columns in WHERE clauses, ORDER BY clauses, GROUP BY clauses, and join operations.

• Inserts, updates, deletes are optimized by an automatic mechanism called change buffering. InnoDB
not only allows concurrent read and write access to the same table, it caches changed data to
streamline disk I/O.

• Performance benefits are not limited to giant tables with long-running queries. When the same rows
are accessed over and over from a table, a feature called the Adaptive Hash Index takes over to
make these lookups even faster, as if they came out of a hash table.

Introduction to InnoDB

1598

Best Practices for InnoDB Tables

If you have been using InnoDB for a long time, you already know about features like transactions and
foreign keys. If not, read about them throughout this chapter. To make a long story short:

• Specify a primary key for every table using the most frequently queried column or columns, or
anauto-increment value if there is no obvious primary key.

• Embrace the idea of joins, where data is pulled from multiple tables based on identical ID values
from those tables. For fast join performance, define foreign keys on the join columns, and declare
those columns with the same data type in each table. The foreign keys also propagate deletes or
updates to all affected tables, and prevent insertion of data in a child table if the corresponding IDs
are not present in the parent table.

• Turn off autocommit. Committing hundreds of times a second puts a cap on performance (limited by
the write speed of your storage device).

• Group sets of related DML operations into transactions, by bracketing them with START
TRANSACTION and COMMIT statements. While you don't want to commit too often, you also don't
want to issue huge batches of INSERT, UPDATE, or DELETE statements that run for hours without
committing.

• Stop using LOCK TABLE statements. InnoDB can handle multiple sessions all reading and writing
to the same table at once, without sacrificing reliability or high performance. To get exclusive write
access to a set of rows, use the SELECT ... FOR UPDATE syntax to lock just the rows you intend
to update.

• Enable the innodb_file_per_table option to put the data and indexes for individual tables into
separate files, instead of in a single giant system tablespace. This setting is required to use some of
the other features, such as table compression and fast truncation.

• Evaluate whether your data and access patterns benefit from the new InnoDB table compression
feature (ROW_FORMAT=COMPRESSED) on the CREATE TABLE statement. You can compress InnoDB
tables without sacrificing read/write capability.

• Run your server with the option --sql_mode=NO_ENGINE_SUBSTITUTION to prevent tables being
created with a different storage engine if there is an issue with the one specified in the ENGINE=
clause of CREATE TABLE.

Recent Improvements for InnoDB Tables

• You can compress tables and associated indexes.

• You can create and drop indexes with much less performance or availability impact than before.

• Truncating a table is very fast, and can free up disk space for the operating system to reuse, rather
than freeing up space within the system tablespace that only InnoDB could reuse.

• The storage layout for table data is more efficient for BLOBs and long text fields, with the DYNAMIC
row format.

• You can monitor the internal workings of the storage engine by querying INFORMATION_SCHEMA
tables.

• You can monitor the performance details of the storage engine by querying performance_schema
tables.

• There are many performance improvements. In particular, crash recovery, the automatic process that
makes all data consistent when the database is restarted, is fast and reliable (much faster than long-
time InnoDB users are used to). The bigger the database, the more dramatic the speedup.

Most new performance features are automatic, or at most require setting a value for a configuration
option. For details, see Section 14.2.12.2, “InnoDB Performance and Scalability Enhancements”.

Introduction to InnoDB

1599

For InnoDB-specific tuning techniques you can apply in your application code, see Section 8.5,
“Optimizing for InnoDB Tables”. Advanced users can review Section 14.2.13, “InnoDB Startup
Options and System Variables”.

Testing and Benchmarking with InnoDB as Default Storage Engine

Even before completing your upgrade from MySQL 5.1 or earlier to MySQL 5.5 or higher, you can
preview whether your database server or application works correctly with InnoDB as the default
storage engine. To set up InnoDB as the default storage engine with an earlier MySQL release, either
specify on the command line --default-storage-engine=InnoDB, or add to your my.cnf file
default-storage-engine=innodb in the [mysqld] section, then restart the server.

Since changing the default storage engine only affects new tables as they are created, run all your
application installation and setup steps to confirm that everything installs properly. Then exercise all
the application features to make sure all the data loading, editing, and querying features work. If a table
relies on some MyISAM-specific feature, you'll receive an error; add the ENGINE=MyISAM clause to the
CREATE TABLE statement to avoid the error (for example, tables that rely on full-text search must be
MyISAM tables rather than InnoDB ones).

If you did not make a deliberate decision about the storage engine, and you just want to preview
how certain tables work when they're created under InnoDB, issue the command ALTER TABLE
table_name ENGINE=InnoDB; for each table. Or, to run test queries and other statements without
disturbing the original table, make a copy like so:

CREATE TABLE InnoDB_Table (...) ENGINE=InnoDB AS SELECT * FROM MyISAM_Table;

Since there are so many performance enhancements in InnoDB in MySQL 5.5 and higher, to get a
true idea of the performance with a full application under a realistic workload, install the latest MySQL
server and run benchmarks.

Test the full application lifecycle, from installation, through heavy usage, and server restart. Kill the
server process while the database is busy to simulate a power failure, and verify that the data is
recovered successfully when you restart the server.

Test any replication configurations, especially if you use different MySQL versions and options on the
master and the slaves.

Verifying that InnoDB is the Default Storage Engine

To know what the status of InnoDB is, whether you're doing what-if testing with an older MySQL or
comprehensive testing with the latest MySQL:

• Issue the command SHOW ENGINES; to see all the different MySQL storage engines. Look for
DEFAULT in the InnoDB line.

• If InnoDB is not present at all, you have a mysqld binary that was compiled without InnoDB support
and you need to get a different one.

• If InnoDB is present but disabled, go back through your startup options and configuration file and get
rid of any skip-innodb option.

14.2.1.2 Checking InnoDB Availability

To determine whether your server supports InnoDB, use the SHOW ENGINES statement. (Now that
InnoDB is the default MySQL storage engine, only very specialized environments might not support it.)

14.2.1.3 Turning Off InnoDB

Oracle recommends InnoDB as the preferred storage engine for typical database applications, from
single-user wikis and blogs running on a local system, to high-end applications pushing the limits of
performance. In MySQL 5.7, InnoDB is the default storage engine for new tables.

InnoDB Concepts and Architecture

1600

If you do not want to use InnoDB tables:

• Start the server with the --innodb=OFF or --skip-innodb option to disable the InnoDB storage
engine.

• Because the default storage engine is InnoDB, the server will not start unless you also use --
default-storage-engine and --default-tmp-storage-engine to set the default to some
other engine for both permanent and TEMPORARY tables.

• To prevent the server from crashing when the InnoDB-related information_schema tables are
queried, also disable the plugins associated with those tables. Specify in the [mysqld] section of
the MySQL configuration file:

loose-innodb-trx=0
loose-innodb-locks=0
loose-innodb-lock-waits=0
loose-innodb-cmp=0
loose-innodb-cmp-per-index=0
loose-innodb-cmp-per-index-reset=0
loose-innodb-cmp-reset=0
loose-innodb-cmpmem=0
loose-innodb-cmpmem-reset=0
loose-innodb-buffer-page=0
loose-innodb-buffer-page-lru=0
loose-innodb-buffer-pool-stats=0
loose-innodb-metrics=0
loose-innodb-ft-default-stopword=0
loose-innodb-ft-inserted=0
loose-innodb-ft-deleted=0
loose-innodb-ft-being-deleted=0
loose-innodb-ft-config=0
loose-innodb-ft-index-cache=0
loose-innodb-ft-index-table=0
loose-innodb-sys-tables=0
loose-innodb-sys-tablestats=0
loose-innodb-sys-indexes=0
loose-innodb-sys-columns=0
loose-innodb-sys-fields=0
loose-innodb-sys-foreign=0
loose-innodb-sys-foreign-cols=0

14.2.2 InnoDB Concepts and Architecture

The information in this section provides background to help you get the most performance and
functionality from using InnoDB tables. It is intended for:

• Anyone switching to MySQL from another database system, to explain what things might seem
familiar and which might be all-new.

• Anyone moving from MyISAM tables to InnoDB, now that InnoDB is the default MySQL storage
engine.

• Anyone considering their application architecture or software stack, to understand the design
considerations, performance characteristics, and scalability of InnoDB tables at a detailed level.

In this section, you will learn:

• How InnoDB closely adheres to ACID principles.

• How InnoDB implements transactions, and how the inner workings of transactions compare with
other database systems you might be familiar with.

• How InnoDB implements row-level locking to allow queries and DML statements to read and write
the same table simultaneously.

InnoDB Concepts and Architecture

1601

• How multi-version concurrency control (MVCC) keeps transactions from viewing or modifying each
others' data before the appropriate time.

• The physical layout of InnoDB-related objects on disk, such as tables, indexes, tablespaces, undo
logs, and the redo log.

14.2.2.1 MySQL and the ACID Model

The ACID model is a set of database design principles that emphasize aspects of reliability that are
important for business data and mission-critical applications. MySQL includes components such
as the InnoDB storage engine that adhere closely to the ACID model, so that data is not corrupted
and results are not distorted by exceptional conditions such as software crashes and hardware
malfunctions. When you rely on ACID-compliant features, you do not need to reinvent the wheel of
consistency checking and crash recovery mechanisms. In cases where you have additional software
safeguards, ultra-reliable hardware, or an application that can tolerate a small amount of data loss
or inconsistency, you can adjust MySQL settings to trade some of the ACID reliability for greater
performance or throughput.

The following sections discuss how MySQL features, in particular the InnoDB storage engine, interact
with the categories of the ACID model:

• A: atomicity.

• C: consistency.

• I:: isolation.

• D: durability.

Atomicity

The atomicity aspect of the ACID model mainly involves InnoDB transactions. Related MySQL
features include:

• Autocommit setting.

• COMMIT statement.

• ROLLBACK statement.

• Operational data from the INFORMATION_SCHEMA tables.

Consistency

The consistency aspect of the ACID model mainly involves internal InnoDB processing to protect
data from crashes. Related MySQL features include:

• InnoDB doublewrite buffer.

• InnoDB crash recovery.

Isolation

The isolation aspect of the ACID model mainly involves InnoDB transactions, in particular the isolation
level that applies to each transaction. Related MySQL features include:

• Autocommit setting.

• SET ISOLATION LEVEL statement.

• The low-level details of InnoDB locking. During performance tuning, you see these details through
INFORMATION_SCHEMA tables.

InnoDB Concepts and Architecture

1602

Durability

The durability aspect of the ACID model involves MySQL software features interacting with your
particular hardware configuration. Because of the many possibilities depending on the capabilities
of your CPU, network, and storage devices, this aspect is the most complicated to provide concrete
guidelines for. (And those guidelines might take the form of buy “new hardware”.) Related MySQL
features include:

• InnoDB doublewrite buffer, turned on and off by the innodb_doublewrite configuration option.

• Configuration option innodb_flush_log_at_trx_commit.

• Configuration option sync_binlog.

• Configuration option innodb_file_per_table.

• Write buffer in a storage device, such as a disk drive, SSD, or RAID array.

• Battery-backed cache in a storage device.

• The operating system used to run MySQL, in particular its support for the fsync() system call.

• Uninterruptible power supply (UPS) protecting the electrical power to all computer servers and
storage devices that run MySQL servers and store MySQL data.

• Your backup strategy, such as frequency and types of backups, and backup retention periods.

• For distributed or hosted data applications, the particular characteristics of the data centers where
the hardware for the MySQL servers is located, and network connections between the data centers.

14.2.2.2 The InnoDB Transaction Model and Locking

To implement a large-scale, busy, or highly reliable database application, to port substantial code from
a different database system, or to push MySQL performance to the limits of the laws of physics, you
must understand the notions of transactions and locking as they relate to the InnoDB storage engine.

In the InnoDB transaction model, the goal is to combine the best properties of a multi-versioning
database with traditional two-phase locking. InnoDB does locking on the row level and runs queries
as nonlocking consistent reads by default, in the style of Oracle. The lock information in InnoDB is
stored so space-efficiently that lock escalation is not needed: Typically, several users are permitted to
lock every row in InnoDB tables, or any random subset of the rows, without causing InnoDB memory
exhaustion.

In InnoDB, all user activity occurs inside a transaction. If autocommit mode is enabled, each SQL
statement forms a single transaction on its own. By default, MySQL starts the session for each new
connection with autocommit enabled, so MySQL does a commit after each SQL statement if that
statement did not return an error. If a statement returns an error, the commit or rollback behavior
depends on the error. See Section 14.2.17.4, “InnoDB Error Handling”.

A session that has autocommit enabled can perform a multiple-statement transaction by starting it
with an explicit START TRANSACTION or BEGIN statement and ending it with a COMMIT or ROLLBACK
statement. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

If autocommit mode is disabled within a session with SET autocommit = 0, the session always has
a transaction open. A COMMIT or ROLLBACK statement ends the current transaction and a new one
starts.

A COMMIT means that the changes made in the current transaction are made permanent and become
visible to other sessions. A ROLLBACK statement, on the other hand, cancels all modifications made by
the current transaction. Both COMMIT and ROLLBACK release all InnoDB locks that were set during the
current transaction.

InnoDB Concepts and Architecture

1603

In terms of the SQL:1992 transaction isolation levels, the default InnoDB level is REPEATABLE
READ. InnoDB offers all four transaction isolation levels described by the SQL standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE.

A user can change the isolation level for a single session or for all subsequent connections with the
SET TRANSACTION statement. To set the server's default isolation level for all connections, use the --
transaction-isolation option on the command line or in an option file. For detailed information
about isolation levels and level-setting syntax, see Section 13.3.6, “SET TRANSACTION Syntax”.

In row-level locking, InnoDB normally uses next-key locking. That means that besides index records,
InnoDB can also lock the gap preceding an index record to block insertions by other sessions where
the indexed values would be inserted in that gap within the tree data structure. A next-key lock refers
to a lock that locks an index record and the gap before it. A gap lock refers to a lock that locks only the
gap before some index record.

For more information about row-level locking, and the circumstances under which gap locking is
disabled, see Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key Locks”.

14.2.2.3 InnoDB Lock Modes

InnoDB implements standard row-level locking where there are two types of locks, shared (S)
locks and exclusive (X) locks. For information about record, gap, and next-key lock types, see
Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key Locks”.

• A shared (S) lock permits the transaction that holds the lock to read a row.

• An exclusive (X) lock permits the transaction that holds the lock to update or delete a row.

If transaction T1 holds a shared (S) lock on row r, then requests from some distinct transaction T2 for
a lock on row r are handled as follows:

• A request by T2 for an S lock can be granted immediately. As a result, both T1 and T2 hold an S lock
on r.

• A request by T2 for an X lock cannot be granted immediately.

If a transaction T1 holds an exclusive (X) lock on row r, a request from some distinct transaction T2
for a lock of either type on r cannot be granted immediately. Instead, transaction T2 has to wait for
transaction T1 to release its lock on row r.

Intention Locks

Additionally, InnoDB supports multiple granularity locking which permits coexistence of record locks
and locks on entire tables. To make locking at multiple granularity levels practical, additional types of
locks called intention locks are used. Intention locks are table locks in InnoDB that indicate which type
of lock (shared or exclusive) a transaction will require later for a row in that table. There are two types
of intention locks used in InnoDB (assume that transaction T has requested a lock of the indicated type
on table t):

• Intention shared (IS): Transaction T intends to set S locks on individual rows in table t.

• Intention exclusive (IX): Transaction T intends to set X locks on those rows.

For example, SELECT ... LOCK IN SHARE MODE sets an IS lock and SELECT ... FOR UPDATE
sets an IX lock.

The intention locking protocol is as follows:

• Before a transaction can acquire an S lock on a row in table t, it must first acquire an IS or stronger
lock on t.

• Before a transaction can acquire an X lock on a row, it must first acquire an IX lock on t.

These rules can be conveniently summarized by means of the following lock type compatibility matrix.

InnoDB Concepts and Architecture

1604

 X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

S Conflict Conflict Compatible Compatible

IS Conflict Compatible Compatible Compatible

A lock is granted to a requesting transaction if it is compatible with existing locks, but not if it conflicts
with existing locks. A transaction waits until the conflicting existing lock is released. If a lock request
conflicts with an existing lock and cannot be granted because it would cause deadlock, an error occurs.

Thus, intention locks do not block anything except full table requests (for example, LOCK TABLES ...
WRITE). The main purpose of IX and IS locks is to show that someone is locking a row, or going to
lock a row in the table.

Deadlock Example

The following example illustrates how an error can occur when a lock request would cause a deadlock.
The example involves two clients, A and B.

First, client A creates a table containing one row, and then begins a transaction. Within the transaction,
A obtains an S lock on the row by selecting it in share mode:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
Query OK, 0 rows affected (1.07 sec)

mysql> INSERT INTO t (i) VALUES(1);
Query OK, 1 row affected (0.09 sec)

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t WHERE i = 1 LOCK IN SHARE MODE;
+------+
| i |
+------+
| 1 |
+------+
1 row in set (0.10 sec)

Next, client B begins a transaction and attempts to delete the row from the table:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> DELETE FROM t WHERE i = 1;

The delete operation requires an X lock. The lock cannot be granted because it is incompatible with the
S lock that client A holds, so the request goes on the queue of lock requests for the row and client B
blocks.

Finally, client A also attempts to delete the row from the table:

mysql> DELETE FROM t WHERE i = 1;
ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

Deadlock occurs here because client A needs an X lock to delete the row. However, that lock request
cannot be granted because client B already has a request for an X lock and is waiting for client A to
release its S lock. Nor can the S lock held by A be upgraded to an X lock because of the prior request
by B for an X lock. As a result, InnoDB generates an error for one of the clients and releases its locks.
The client returns this error:

InnoDB Concepts and Architecture

1605

ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

At that point, the lock request for the other client can be granted and it deletes the row from the table.

Note

If the LATEST DETECTED DEADLOCK section of InnoDB Monitor
output includes a message stating, “TOO DEEP OR LONG SEARCH
IN THE LOCK TABLE WAITS-FOR GRAPH, WE WILL ROLL BACK
FOLLOWING TRANSACTION,” this indicates that the number of transactions
on the wait-for list has reached a limit of 200, which is defined by
LOCK_MAX_DEPTH_IN_DEADLOCK_CHECK. A wait-for list that exceeds 200
transactions is treated as a deadlock and the transaction attempting to check
the wait-for list is rolled back.

The same error may also occur if the locking thread must look at more than
1,000,000 locks owned by the transactions on the wait-for list. The limit of
1,000,000 locks is defined by LOCK_MAX_N_STEPS_IN_DEADLOCK_CHECK.

14.2.2.4 Consistent Nonlocking Reads

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the
database at a point in time. The query sees the changes made by transactions that committed before
that point of time, and no changes made by later or uncommitted transactions. The exception to this
rule is that the query sees the changes made by earlier statements within the same transaction. This
exception causes the following anomaly: If you update some rows in a table, a SELECT sees the
latest version of the updated rows, but it might also see older versions of any rows. If other sessions
simultaneously update the same table, the anomaly means that you might see the table in a state that
never existed in the database.

If the transaction isolation level is REPEATABLE READ (the default level), all consistent reads within the
same transaction read the snapshot established by the first such read in that transaction. You can get
a fresher snapshot for your queries by committing the current transaction and after that issuing new
queries.

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its
own fresh snapshot.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ
COMMITTED and REPEATABLE READ isolation levels. A consistent read does not set any locks on the
tables it accesses, and therefore other sessions are free to modify those tables at the same time a
consistent read is being performed on the table.

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a
consistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint
according to which your query sees the database. If another transaction deletes a row and commits
after your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates
are treated similarly.

Note

The snapshot of the database state applies to SELECT statements within a
transaction, not necessarily to DML statements. If you insert or modify some
rows and then commit that transaction, a DELETE or UPDATE statement issued
from another concurrent REPEATABLE READ transaction could affect those just-
committed rows, even though the session could not query them. If a transaction
does update or delete rows committed by a different transaction, those changes
do become visible to the current transaction. For example, you might encounter
a situation like the following:

InnoDB Concepts and Architecture

1606

SELECT COUNT(c1) FROM t1 WHERE c1 = 'xyz'; -- Returns 0: no rows match.
DELETE FROM t1 WHERE c1 = 'xyz'; -- Deletes several rows recently committed by other transaction.

SELECT COUNT(c2) FROM t1 WHERE c2 = 'abc'; -- Returns 0: no rows match.
UPDATE t1 SET c2 = 'cba' WHERE c2 = 'abc'; -- Affects 10 rows: another txn just committed 10 rows with 'abc' values.
SELECT COUNT(c2) FROM t1 WHERE c2 = 'cba'; -- Returns 10: this txn can now see the rows it just updated.

You can advance your timepoint by committing your transaction and then doing another SELECT or
START TRANSACTION WITH CONSISTENT SNAPSHOT.

This is called multi-versioned concurrency control.

In the following example, session A sees the row inserted by B only when B has committed the insert
and A has committed as well, so that the timepoint is advanced past the commit of B.

 Session A Session B

 SET autocommit=0; SET autocommit=0;
time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;
 empty set
 COMMIT;

 SELECT * FROM t;
 empty set

 COMMIT;

 SELECT * FROM t;

 | 1 | 2 |

 1 row in set

If you want to see the “freshest” state of the database, use either the READ COMMITTED isolation level
or a locking read:

SELECT * FROM t LOCK IN SHARE MODE;

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads
its own fresh snapshot. With LOCK IN SHARE MODE, a locking read occurs instead: A SELECT
blocks until the transaction containing the freshest rows ends (see Section 14.2.2.5, “Locking Reads
(SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”).

Consistent read does not work over certain DDL statements:

• Consistent read does not work over DROP TABLE, because MySQL cannot use a table that has
been dropped and InnoDB destroys the table.

• Consistent read does not work over ALTER TABLE, because that statement makes a temporary
copy of the original table and deletes the original table when the temporary copy is built. When you
reissue a consistent read within a transaction, rows in the new table are not visible because those
rows did not exist when the transaction's snapshot was taken. In this case, the transaction returns an
error: ER_TABLE_DEF_CHANGED, “Table definition has changed, please retry transaction”.

The type of read varies for selects in clauses like INSERT INTO ... SELECT, UPDATE ...
(SELECT), and CREATE TABLE ... SELECT that do not specify FOR UPDATE or LOCK IN SHARE
MODE:

InnoDB Concepts and Architecture

1607

• By default, InnoDB uses stronger locks and the SELECT part acts like READ COMMITTED, where
each consistent read, even within the same transaction, sets and reads its own fresh snapshot.

• To use a consistent read in such cases, enable the innodb_locks_unsafe_for_binlog
option and set the isolation level of the transaction to READ UNCOMMITTED, READ COMMITTED, or
REPEATABLE READ (that is, anything other than SERIALIZABLE). In this case, no locks are set on
rows read from the selected table.

14.2.2.5 Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE
MODE)

If you query data and then insert or update related data within the same transaction, the regular
SELECT statement does not give enough protection. Other transactions can update or delete the same
rows you just queried. InnoDB supports two types of locking reads that offer extra safety:

• SELECT ... LOCK IN SHARE MODE sets a shared mode lock on any rows that are read. Other
sessions can read the rows, but cannot modify them until your transaction commits. If any of these
rows were changed by another transaction that has not yet committed, your query waits until that
transaction ends and then uses the latest values.

• For index records the search encounters, SELECT ... FOR UPDATE locks the rows and any
associated index entries, the same as if you issued an UPDATE statement for those rows. Other
transactions are blocked from updating those rows, from doing SELECT ... LOCK IN SHARE
MODE, or from reading the data in certain transaction isolation levels. Consistent reads ignore any
locks set on the records that exist in the read view. (Old versions of a record cannot be locked; they
are reconstructed by applying undo logs on an in-memory copy of the record.)

These clauses are primarily useful when dealing with tree-structured or graph-structured data, either
in a single table or split across multiple tables. You traverse edges or tree branches from one place to
another, while reserving the right to come back and change any of these “pointer” values.

All locks set by LOCK IN SHARE MODE and FOR UPDATE queries are released when the transaction
is committed or rolled back.

Note

Locking of rows for update using SELECT FOR UPDATE only applies
when autocommit is disabled (either by beginning transaction with START
TRANSACTION or by setting autocommit to 0. If autocommit is enabled, the
rows matching the specification are not locked.

Usage Examples

Suppose that you want to insert a new row into a table child, and make sure that the child row has
a parent row in table parent. Your application code can ensure referential integrity throughout this
sequence of operations.

First, use a consistent read to query the table PARENT and verify that the parent row exists. Can you
safely insert the child row to table CHILD? No, because some other session could delete the parent
row in the moment between your SELECT and your INSERT, without you being aware of it.

To avoid this potential issue, perform the SELECT using LOCK IN SHARE MODE:

SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

After the LOCK IN SHARE MODE query returns the parent 'Jones', you can safely add the child
record to the CHILD table and commit the transaction. Any transaction that tries to read or write to
the applicable row in the PARENT table waits until you are finished, that is, the data in all tables is in a
consistent state.

InnoDB Concepts and Architecture

1608

For another example, consider an integer counter field in a table CHILD_CODES, used to assign a
unique identifier to each child added to table CHILD. Do not use either consistent read or a shared
mode read to read the present value of the counter, because two users of the database could see the
same value for the counter, and a duplicate-key error occurs if two transactions attempt to add rows
with the same identifier to the CHILD table.

Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the same
time, at least one of them ends up in deadlock when it attempts to update the counter.

To implement reading and incrementing the counter, first perform a locking read of the counter using
FOR UPDATE, and then increment the counter. For example:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it
reads. Thus, it sets the same locks a searched SQL UPDATE would set on the rows.

The preceding description is merely an example of how SELECT ... FOR UPDATE works. In MySQL,
the specific task of generating a unique identifier actually can be accomplished using only a single
access to the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connection). It
does not access any table.

14.2.2.6 InnoDB Record, Gap, and Next-Key Locks

InnoDB has several types of record-level locks including record locks, gap locks, and next-key locks.
For information about shared locks, exclusive locks, and intention locks, see Section 14.2.2.3, “InnoDB
Lock Modes”.

• Record lock: This is a lock on an index record.

• Gap lock: This is a lock on a gap between index records, or a lock on the gap before the first or after
the last index record.

• Next-key lock: This is a combination of a record lock on the index record and a gap lock on the gap
before the index record.

Record Locks

Record locks always lock index records, even if a table is defined with no indexes. For such cases,
InnoDB creates a hidden clustered index and uses this index for record locking. See Clustered and
Secondary Indexes.

Next-key Locks

By default, InnoDB operates in REPEATABLE READ transaction isolation level. In this case,
InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see
Section 14.2.2.7, “Avoiding the Phantom Problem Using Next-Key Locking”).

Next-key locking combines index-row locking with gap locking. InnoDB performs row-level locking in
such a way that when it searches or scans a table index, it sets shared or exclusive locks on the index
records it encounters. Thus, the row-level locks are actually index-record locks. In addition, a next-key
lock on an index record also affects the “gap” before that index record. That is, a next-key lock is an
index-record lock plus a gap lock on the gap preceding the index record. If one session has a shared
or exclusive lock on record R in an index, another session cannot insert a new index record in the gap
immediately before R in the index order.

InnoDB Concepts and Architecture

1609

Suppose that an index contains the values 10, 11, 13, and 20. The possible next-key locks for this
index cover the following intervals, where (or) denote exclusion of the interval endpoint and [or]
denote inclusion of the endpoint:

(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)

For the last interval, the next-key lock locks the gap above the largest value in the index and the
“supremum” pseudo-record having a value higher than any value actually in the index. The supremum
is not a real index record, so, in effect, this next-key lock locks only the gap following the largest index
value.

Gap Locks

The next-key locking example in the previous section shows that a gap might span a single index
value, multiple index values, or even be empty.

Gap locking is not needed for statements that lock rows using a unique index to search for a unique
row. (This does not include the case that the search condition includes only some columns of a
multiple-column unique index; in that case, gap locking does occur.) For example, if the id column has
a unique index, the following statement uses only an index-record lock for the row having id value 100
and it does not matter whether other sessions insert rows in the preceding gap:

SELECT * FROM child WHERE id = 100;

If id is not indexed or has a nonunique index, the statement does lock the preceding gap.

A type of gap lock called an insertion intention gap lock is set by INSERT operations prior to row
insertion. This lock signals the intent to insert in such a way that multiple transactions inserting into
the same index gap need not wait for each other if they are not inserting at the same position within
the gap. Suppose that there are index records with values of 4 and 7. Separate transactions that
attempt to insert values of 5 and 6 each lock the gap between 4 and 7 with insert intention locks prior
to obtaining the exclusive lock on the inserted row, but do not block each other because the rows
are nonconflicting. For more information about intention locks, see Section 14.2.2.3, “InnoDB Lock
Modes”.

It is also worth noting here that conflicting locks can be held on a gap by different transactions. For
example, transaction A can hold a shared gap lock (gap S-lock) on a gap while transaction B holds an
exclusive gap lock (gap X-lock) on the same gap. The reason conflicting gap locks are allowed is that
if a record is purged from an index, the gap locks held on the record by different transactions must be
merged.

Gap locks in InnoDB are “purely inhibitive”, which means they only stop other transactions from
inserting to the gap. Thus, a gap X-lock has the same effect as a gap S-lock.

Disabling Gap Locking

Gap locking can be disabled explicitly. This occurs if you change the transaction isolation level to READ
COMMITTED or enable the innodb_locks_unsafe_for_binlog system variable (which is now
deprecated). Under these circumstances, gap locking is disabled for searches and index scans and is
used only for foreign-key constraint checking and duplicate-key checking.

There are also other effects of using the READ COMMITTED isolation level or enabling
innodb_locks_unsafe_for_binlog: Record locks for nonmatching rows are released after
MySQL has evaluated the WHERE condition. For UPDATE statements, InnoDB does a “semi-consistent”
read, such that it returns the latest committed version to MySQL so that MySQL can determine whether
the row matches the WHERE condition of the UPDATE.

InnoDB Concepts and Architecture

1610

14.2.2.7 Avoiding the Phantom Problem Using Next-Key Locking

The so-called phantom problem occurs within a transaction when the same query produces different
sets of rows at different times. For example, if a SELECT is executed twice, but returns a row the
second time that was not returned the first time, the row is a “phantom” row.

Suppose that there is an index on the id column of the child table and that you want to read and lock
all rows from the table having an identifier value larger than 100, with the intention of updating some
column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is bigger than 100. Let the table
contain rows having id values of 90 and 102. If the locks set on the index records in the scanned
range do not lock out inserts made in the gaps (in this case, the gap between 90 and 102), another
session can insert a new row into the table with an id of 101. If you were to execute the same SELECT
within the same transaction, you would see a new row with an id of 101 (a “phantom”) in the result set
returned by the query. If we regard a set of rows as a data item, the new phantom child would violate
the isolation principle of transactions that a transaction should be able to run so that the data it has
read does not change during the transaction.

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row
locking with gap locking. InnoDB performs row-level locking in such a way that when it searches or
scans a table index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-
level locks are actually index-record locks. In addition, a next-key lock on an index record also affects
the “gap” before that index record. That is, a next-key lock is an index-record lock plus a gap lock on
the gap preceding the index record. If one session has a shared or exclusive lock on record R in an
index, another session cannot insert a new index record in the gap immediately before R in the index
order.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that
happens in the preceding example: To prevent any insert into the table where id would be bigger than
100, the locks set by InnoDB include a lock on the gap following id value 102.

You can use next-key locking to implement a uniqueness check in your application: If you read your
data in share mode and do not see a duplicate for a row you are going to insert, then you can safely
insert your row and know that the next-key lock set on the successor of your row during the read
prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you
to “lock” the nonexistence of something in your table.

Gap locking can be disabled as discussed in Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key
Locks”. This may cause phantom problems because other sessions can insert new rows into the gaps
when gap locking is disabled.

14.2.2.8 Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that
is scanned in the processing of the SQL statement. It does not matter whether there are WHERE
conditions in the statement that would exclude the row. InnoDB does not remember the exact WHERE
condition, but only knows which index ranges were scanned. The locks are normally next-key locks that
also block inserts into the “gap” immediately before the record. However, gap locking can be disabled
explicitly, which causes next-key locking not to be used. For more information, see Section 14.2.2.6,
“InnoDB Record, Gap, and Next-Key Locks”. The transaction isolation level also can affect which locks
are set; see Section 13.3.6, “SET TRANSACTION Syntax”.

If a secondary index is used in a search and index record locks to be set are exclusive, InnoDB also
retrieves the corresponding clustered index records and sets locks on them.

Differences between shared and exclusive locks are described in Section 14.2.2.3, “InnoDB Lock
Modes”.

InnoDB Concepts and Architecture

1611

If you have no indexes suitable for your statement and MySQL must scan the entire table to process
the statement, every row of the table becomes locked, which in turn blocks all inserts by other users to
the table. It is important to create good indexes so that your queries do not unnecessarily scan many
rows.

For SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE, locks are acquired for
scanned rows, and expected to be released for rows that do not qualify for inclusion in the result set
(for example, if they do not meet the criteria given in the WHERE clause). However, in some cases,
rows might not be unlocked immediately because the relationship between a result row and its original
source is lost during query execution. For example, in a UNION, scanned (and locked) rows from a
table might be inserted into a temporary table before evaluation whether they qualify for the result set.
In this circumstance, the relationship of the rows in the temporary table to the rows in the original table
is lost and the latter rows are not unlocked until the end of query execution.

InnoDB sets specific types of locks as follows.

• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks
unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, the search
sets shared next-key locks on the index records it encounters.

• SELECT ... FROM ... LOCK IN SHARE MODE sets shared next-key locks on all index records
the search encounters.

• For index records the search encounters, SELECT ... FROM ... FOR UPDATE blocks other
sessions from doing SELECT ... FROM ... LOCK IN SHARE MODE or from reading in certain
transaction isolation levels. Consistent reads will ignore any locks set on the records that exist in the
read view.

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search
encounters.

• INSERT sets an exclusive lock on the inserted row. This lock is an index-record lock, not a next-key
lock (that is, there is no gap lock) and does not prevent other sessions from inserting into the gap
before the inserted row.

Prior to inserting the row, a type of gap lock called an insertion intention gap lock is set. This lock
signals the intent to insert in such a way that multiple transactions inserting into the same index gap
need not wait for each other if they are not inserting at the same position within the gap. Suppose
that there are index records with values of 4 and 7. Separate transactions that attempt to insert
values of 5 and 6 each lock the gap between 4 and 7 with insert intention locks prior to obtaining the
exclusive lock on the inserted row, but do not block each other because the rows are nonconflicting.

If a duplicate-key error occurs, a shared lock on the duplicate index record is set. This use of a
shared lock can result in deadlock should there be multiple sessions trying to insert the same row
if another session already has an exclusive lock. This can occur if another session deletes the row.
Suppose that an InnoDB table t1 has the following structure:

CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

Now suppose that three sessions perform the following operations in order:

Session 1:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 2:

InnoDB Concepts and Architecture

1612

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

ROLLBACK;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions
2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When
session 1 rolls back, it releases its exclusive lock on the row and the queued shared lock requests
for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an
exclusive lock for the row because of the shared lock held by the other.

A similar situation occurs if the table already contains a row with key value 1 and three sessions
perform the following operations in order:

Session 1:

START TRANSACTION;
DELETE FROM t1 WHERE i = 1;

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

COMMIT;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions
2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When
session 1 commits, it releases its exclusive lock on the row and the queued shared lock requests
for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an
exclusive lock for the row because of the shared lock held by the other.

• INSERT ... ON DUPLICATE KEY UPDATE differs from a simple INSERT in that an exclusive
next-key lock rather than a shared lock is placed on the row to be updated when a duplicate-key
error occurs.

• REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive
next-key lock is placed on the row to be replaced.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive index record without a
gap lock on each row inserted into T. If the transaction isolation level is READ COMMITTED or the
transaction isolation level is not SERIALIZABLE, InnoDB does the search on S as a consistent read
(no locks). Otherwise, InnoDB sets shared next-key locks on rows from S. InnoDB has to set locks
in the latter case: In roll-forward recovery from a backup, every SQL statement must be executed in
exactly the same way it was done originally.

InnoDB Concepts and Architecture

1613

CREATE TABLE ... SELECT ... performs the SELECT with shared next-key locks or as a
consistent read, as for INSERT ... SELECT.

When a SELECT is used in the constructs REPLACE INTO t SELECT ... FROM s WHERE ...
or UPDATE t ... WHERE col IN (SELECT ... FROM s ...), InnoDB sets shared next-key
locks on rows from table s.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an
exclusive lock on the end of the index associated with the AUTO_INCREMENT column. In accessing
the auto-increment counter, InnoDB uses a specific AUTO-INC table lock mode where the lock
lasts only to the end of the current SQL statement, not to the end of the entire transaction. Other
sessions cannot insert into the table while the AUTO-INC table lock is held; see Section 14.2.2.2,
“The InnoDB Transaction Model and Locking”.

InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any
locks.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the
constraint condition to be checked sets shared record-level locks on the records that it looks at to
check the constraint. InnoDB also sets these locks in the case where the constraint fails.

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that
sets these locks. InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and
autocommit = 0, and the MySQL layer above InnoDB knows about row-level locks.

Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks
are involved. Also, because in this case the higher MySQL layer does not know about row-level
locks, it is possible to get a table lock on a table where another session currently has row-level locks.
However, this does not endanger transaction integrity, as discussed in Section 14.2.2.10, “Deadlock
Detection and Rollback”. See also Section 14.2.6.7, “Limits on InnoDB Tables”.

14.2.2.9 Implicit Transaction Commit and Rollback

By default, MySQL starts the session for each new connection with autocommit mode enabled,
so MySQL does a commit after each SQL statement if that statement did not return an error.
If a statement returns an error, the commit or rollback behavior depends on the error. See
Section 14.2.17.4, “InnoDB Error Handling”.

If a session that has autocommit disabled ends without explicitly committing the final transaction,
MySQL rolls back that transaction.

Some statements implicitly end a transaction, as if you had done a COMMIT before executing the
statement. For details, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

14.2.2.10 Deadlock Detection and Rollback

InnoDB automatically detects transaction deadlocks and rolls back a transaction or transactions to
break the deadlock. InnoDB tries to pick small transactions to roll back, where the size of a transaction
is determined by the number of rows inserted, updated, or deleted.

InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit
= 0, and the MySQL layer above it knows about row-level locks. Otherwise, InnoDB cannot
detect deadlocks where a table lock set by a MySQL LOCK TABLES statement or a lock set by a
storage engine other than InnoDB is involved. Resolve these situations by setting the value of the
innodb_lock_wait_timeout system variable.

When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are
released. However, if just a single SQL statement is rolled back as a result of an error, some of the
locks set by the statement may be preserved. This happens because InnoDB stores row locks in a
format such that it cannot know afterward which lock was set by which statement.

InnoDB Concepts and Architecture

1614

If a SELECT calls a stored function in a transaction, and a statement within the function fails, that
statement rolls back. Furthermore, if ROLLBACK is executed after that, the entire transaction rolls back.

For techniques to organize database operations to avoid deadlocks, see Section 14.2.2.11, “How to
Cope with Deadlocks”.

14.2.2.11 How to Cope with Deadlocks

This section builds on the conceptual information about deadlocks in Section 14.2.2.10, “Deadlock
Detection and Rollback”. It explains how to organize database operations to minimize deadlocks and
the subsequent error handling required in applications.

Deadlocks are a classic problem in transactional databases, but they are not dangerous unless
they are so frequent that you cannot run certain transactions at all. Normally, you must write your
applications so that they are always prepared to re-issue a transaction if it gets rolled back because of
a deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions
that just insert or delete a single row. That is because these operations are not really “atomic”; they
automatically set locks on the (possibly several) index records of the row inserted or deleted.

You can cope with deadlocks and reduce the likelihood of their occurrence with the following
techniques:

• At any time, issue the SHOW ENGINE INNODB STATUS command to determine the cause of the
most recent deadlock. That can help you to tune your application to avoid deadlocks.

• If frequent deadlock warnings cause concern, collect more extensive debugging information by
restarting the server with the innodb_print_all_deadlocks configuration option enabled.
Information about each deadlock, not just the latest one, is recorded in the MySQL error log. Remove
this option and restart the server again once the debugging is finished.

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous.
Just try again.

• Commit your transactions immediately after making a set of related changes. Small transactions are
less prone to collision. In particular, do not leave an interactive mysql session open for a long time
with an uncommitted transaction.

• If you use locking reads (SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE), try
using a lower isolation level such as READ COMMITTED.

• When modifying multiple tables within a transaction, or different sets of rows in the same table, do
those operations in a consistent order each time. Then transactions form well-defined queues and do
not deadlock. For example, organize database operations into functions within your application, or
call stored routines, rather than coding multiple similar sequences of INSERT, UPDATE, and DELETE
statements in different places.

• Add well-chosen indexes to your tables. Then your queries need to scan fewer index records and
consequently set fewer locks. Use EXPLAIN SELECT to determine which indexes the MySQL server
regards as the most appropriate for your queries.

• Use less locking. If you can afford to permit a SELECT to return data from an old snapshot, do not
add the clause FOR UPDATE or LOCK IN SHARE MODE to it. Using the READ COMMITTED isolation
level is good here, because each consistent read within the same transaction reads from its own
fresh snapshot.

• If nothing else helps, serialize your transactions with table-level locks. The correct way to use
LOCK TABLES with transactional tables, such as InnoDB tables, is to begin a transaction with SET
autocommit = 0 (not START TRANSACTION) followed by LOCK TABLES, and to not call UNLOCK

InnoDB Concepts and Architecture

1615

TABLES until you commit the transaction explicitly. For example, if you need to write to table t1 and
read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

Table-level locks prevent concurrent updates to the table, avoiding deadlocks at the expense of less
responsiveness for a busy system.

• Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just
a single row. Have each transaction update that row before accessing other tables. In that way, all
transactions happen in a serial fashion. Note that the InnoDB instant deadlock detection algorithm
also works in this case, because the serializing lock is a row-level lock. With MySQL table-level
locks, the timeout method must be used to resolve deadlocks.

14.2.2.12 InnoDB Multi-Versioning

InnoDB is a multi-versioned storage engine: it keeps information about old versions of changed rows,
to support transactional features such as concurrency and rollback. This information is stored in the
tablespace in a data structure called a rollback segment (after an analogous data structure in Oracle).
InnoDB uses the information in the rollback segment to perform the undo operations needed in a
transaction rollback. It also uses the information to build earlier versions of a row for a consistent read.

Internal Details of Multi-Versioning

Internally, InnoDB adds three fields to each row stored in the database. A 6-byte DB_TRX_ID field
indicates the transaction identifier for the last transaction that inserted or updated the row. Also, a
deletion is treated internally as an update where a special bit in the row is set to mark it as deleted.
Each row also contains a 7-byte DB_ROLL_PTR field called the roll pointer. The roll pointer points to an
undo log record written to the rollback segment. If the row was updated, the undo log record contains
the information necessary to rebuild the content of the row before it was updated. A 6-byte DB_ROW_ID
field contains a row ID that increases monotonically as new rows are inserted. If InnoDB generates a
clustered index automatically, the index contains row ID values. Otherwise, the DB_ROW_ID column
does not appear in any index.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs
are needed only in transaction rollback and can be discarded as soon as the transaction commits.
Update undo logs are used also in consistent reads, but they can be discarded only after there is no
transaction present for which InnoDB has assigned a snapshot that in a consistent read could need
the information in the update undo log to build an earlier version of a database row.

Rollback Segments and Concurrent Transaction Limits

In MySQL 5.5, the limit on concurrent data-modifying transactions was significantly increased by
removing a bottleneck that resulted from a single InnoDB rollback segment that supported a maximum
of 1023 concurrent data-modifying transactions. The single rollback segment was divided into 128
segments, each supporting up to 1023 transactions, creating a new limit of approximately 128K
concurrent transactions.

In MySQL 5.7.2, the 128K transaction limit is reduced to 96K in order to support the introduction of a
new type of undo log for normal and compressed temporary tables and related objects. 32 of the 128
rollback segments are now reserved for temporary table transactions.

Each transaction that updates a temporary table, excluding read-only transactions, is assigned
two rollback segments, one redo rollback segment and one non-redo rollback segment. Read-only
transactions are only assigned non-redo rollback segments, as read-only transactions are only
permitted to modify temporary tables.

InnoDB Concepts and Architecture

1616

This change leaves 96 segments, each supporting up to 1023 transactions, for a limit of 96K
concurrent data-modifying transactions. The 96K limit assumes that transactions do not modify
temporary tables. If all data-modifying transactions also modify temporary tables, the limit would be
32K concurrent transactions.

Guidelines for Managing Rollback Segments

Commit your transactions regularly, including those transactions that issue only consistent reads.
Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback segment may
grow too big, filling up your tablespace.

The physical size of an undo log record in the rollback segment is typically smaller than the
corresponding inserted or updated row. You can use this information to calculate the space needed for
your rollback segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database
immediately when you delete it with an SQL statement. InnoDB only physically removes the
corresponding row and its index records when it discards the update undo log record written for the
deletion. This removal operation is called a purge, and it is quite fast, usually taking the same order of
time as the SQL statement that did the deletion.

If you insert and delete rows in smallish batches at about the same rate in the table, the purge thread
can start to lag behind and the table can grow bigger and bigger because of all the “dead” rows,
making everything disk-bound and very slow. In such a case, throttle new row operations, and allocate
more resources to the purge thread by tuning the innodb_max_purge_lag system variable. See
Section 14.2.13, “InnoDB Startup Options and System Variables” for more information.

14.2.2.13 InnoDB Temporary Table Undo Logs

MySQL 5.7.2 introduces a new type of undo log for both normal and compressed temporary
tables and related objects. The new type of undo log is not a redo log, as temporary tables are
not recovered during crash recovery and do not require redo logs. Temporary table undo logs are,
however, required for rollback, MVCC, and purging while the server is running. This special type
of non-redo undo log benefits performance by avoiding redo logging I/O for temporary tables and
related objects. The new undo log resides in the temporary tablespace. The default temporary
tablespace file, ibtmp1, is located in the data directory by default and is always recreated on
server startup. A user defined location for the temporary tablespace file can be specified by setting
innodb_temp_data_file_path.

With this change, 32 rollback segments are now reserved for temporary table undo logs for
transactions that modify temporary tables and related objects. This reduces the maximum number of
rollback segments available for data-modifying transactions that generate undo records from 128 to
96, which reduces the limit on concurrent data-modifying transactions from 128K to 96K. For more
information see Section 14.2.2.12, “InnoDB Multi-Versioning” and Section 14.2.6.7, “Limits on InnoDB
Tables”.

14.2.2.14 InnoDB Table and Index Structures

This section describes how InnoDB tables, indexes, and their associated metadata is represented at
the physical level. This information is primarily useful for performance tuning and troubleshooting.

Role of the .frm File for InnoDB Tables

MySQL stores its data dictionary information for tables in .frm files in database directories. Unlike other
MySQL storage engines, InnoDB also encodes information about the table in its own internal data
dictionary inside the tablespace. When MySQL drops a table or a database, it deletes one or more
.frm files as well as the corresponding entries inside the InnoDB data dictionary. You cannot move
InnoDB tables between databases simply by moving the .frm files.

Clustered and Secondary Indexes

InnoDB Concepts and Architecture

1617

Every InnoDB table has a special index called the clustered index where the data for the rows is
stored. Typically, the clustered index is synonymous with the primary key. To get the best performance
from queries, inserts, and other database operations, you must understand how InnoDB uses the
clustered index to optimize the most common lookup and DML operations for each table.

• When you define a PRIMARY KEY on your table, InnoDB uses it as the clustered index. Define a
primary key for each table that you create. If there is no logical unique and non-null column or set of
columns, add a new auto-increment column, whose values are filled in automatically.

• If you do not define a PRIMARY KEY for your table, MySQL locates the first UNIQUE index where all
the key columns are NOT NULL and InnoDB uses it as the clustered index.

• If the table has no PRIMARY KEY or suitable UNIQUE index, InnoDB internally generates a hidden
clustered index on a synthetic column containing row ID values. The rows are ordered by the ID that
InnoDB assigns to the rows in such a table. The row ID is a 6-byte field that increases monotonically
as new rows are inserted. Thus, the rows ordered by the row ID are physically in insertion order.

How the Clustered Index Speeds Up Queries

Accessing a row through the clustered index is fast because the index search leads directly to the page
with all the row data. If a table is large, the clustered index architecture often saves a disk I/O operation
when compared to storage organizations that store row data using a different page from the index
record. (For example, MyISAM uses one file for data rows and another for index records.)

How Secondary Indexes Relate to the Clustered Index

All indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in
a secondary index contains the primary key columns for the row, as well as the columns specified for
the secondary index. InnoDB uses this primary key value to search for the row in the clustered index.

If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short
primary key.

For coding guidelines to take advantage of InnoDB clustered and secondary indexes, see
Section 8.3.2, “Using Primary Keys” Section 8.3, “Optimization and Indexes” Section 8.5, “Optimizing
for InnoDB Tables” Section 8.3.2, “Using Primary Keys”.

FULLTEXT Indexes

A special kind of index, the FULLTEXT index, helps InnoDB deal with queries and DML operations
involving text-based columns and the words they contain. These indexes are physically represented
as entire InnoDB tables, which are acted upon by SQL keywords such as the FULLTEXT clause of
the CREATE INDEX statement, the MATCH() ... AGAINST [1197] syntax in a SELECT statement,
and the OPTIMIZE TABLE statement. For usage information, see Section 12.9, “Full-Text Search
Functions”.

You can examine FULLTEXT indexes by querying tables in the INFORMATION_SCHEMA database. You
can see basic index information for FULLTEXT indexes by querying INNODB_SYS_INDEXES. Although
InnoDB FULLTEXT indexes are represented by tables, which show up in INNODB_SYS_TABLES
queries, the way to monitor the special text-processing aspects of a FULLTEXT index is to query
the tables INNODB_FT_CONFIG, INNODB_FT_INDEX_TABLE, INNODB_FT_INDEX_CACHE,
INNODB_FT_DEFAULT_STOPWORD, INNODB_FT_DELETED, and INNODB_FT_BEING_DELETED.

InnoDB FULLTEXT indexes are updated by the OPTIMIZE TABLE command, using a
special mode controlled by the configuration options innodb_ft_num_word_optimize and
innodb_optimize_fulltext_only.

Physical Structure of an InnoDB Index

All InnoDB indexes are B-trees where the index records are stored in the leaf pages of the tree. The
default size of an index page is 16KB. When new records are inserted, InnoDB tries to leave 1/16 of
the page free for future insertions and updates of the index records.

InnoDB Concepts and Architecture

1618

If index records are inserted in a sequential order (ascending or descending), the resulting index pages
are about 15/16 full. If records are inserted in a random order, the pages are from 1/2 to 15/16 full. If
the fill factor of an index page drops below 1/2, InnoDB tries to contract the index tree to free the page.

Note

You can specify the page size for all InnoDB tablespaces in a MySQL instance
by setting the innodb_page_size configuration option before creating the
instance. Once the page size for a MySQL instance is set, you cannot change
it. Supported sizes are 16KB, 8KB, and 4KB, corresponding to the option values
16k, 8k, and 4k.

A MySQL instance using a particular InnoDB page size cannot use data files or
log files from an instance that uses a different page size.

Insert Buffering

Database applications often insert new rows in the ascending order of the primary key. In this case,
due to the layout of the clustered index in the same order as the primary key, insertions into an InnoDB
table do not require random reads from a disk.

On the other hand, secondary indexes are usually nonunique, and insertions into secondary indexes
happen in a relatively random order. In the same way, deletes and updates can affect data pages that
are not adjacent in secondary indexes. This would cause a lot of random disk I/O operations without a
special mechanism used in InnoDB.

When an index record is inserted, marked for deletion, or deleted from a nonunique secondary index,
InnoDB checks whether the secondary index page is in the buffer pool. If that is the case, InnoDB
applies the change directly to the index page. If the index page is not found in the buffer pool, InnoDB
records the change in a special structure known as the insert buffer. The insert buffer is kept small so
that it fits entirely in the buffer pool, and changes can be applied very quickly. This process is known
as change buffering. (Formerly, it applied only to inserts and was called insert buffering. The data
structure is still called the insert buffer.)

Disk I/O for Flushing the Insert Buffer

Periodically, the insert buffer is merged into the secondary index trees in the database. Often, it is
possible to merge several changes into the same page of the index tree, saving disk I/O operations. It
has been measured that the insert buffer can speed up insertions into a table up to 15 times.

The insert buffer merging may continue to happen after the transaction has been committed. In fact, it
may continue to happen after a server shutdown and restart (see Section 14.2.17.2, “Starting InnoDB
on a Corrupted Database”).

Insert buffer merging may take many hours when many secondary indexes must be updated and
many rows have been inserted. During this time, disk I/O will be increased, which can cause significant
slowdown on disk-bound queries. Another significant background I/O operation is the purge thread (see
Section 14.2.2.12, “InnoDB Multi-Versioning”).

Adaptive Hash Indexes

The feature known as the adaptive hash index (AHI) lets InnoDB perform more like an in-
memory database on systems with appropriate combinations of workload and ample memory
for the buffer pool, without sacrificing any transactional features or reliability. This feature
is enabled by the innodb_adaptive_hash_index option, or turned off by the --skip-
innodb_adaptive_hash_index at server startup.

Based on the observed pattern of searches, MySQL builds a hash index using a prefix of the index
key. The prefix of the key can be any length, and it may be that only some of the values in the B-tree
appear in the hash index. Hash indexes are built on demand for those pages of the index that are often
accessed.

InnoDB Concepts and Architecture

1619

If a table fits almost entirely in main memory, a hash index can speed up queries by enabling direct
lookup of any element, turning the index value into a sort of pointer. InnoDB has a mechanism that
monitors index searches. If InnoDB notices that queries could benefit from building a hash index, it
does so automatically.

With some workloads, the speedup from hash index lookups greatly outweighs the extra work to
monitor index lookups and maintain the hash index structure. Sometimes, the read/write lock that
guards access to the adaptive hash index can become a source of contention under heavy workloads,
such as multiple concurrent joins. Queries with LIKE operators and % wildcards also tend not to benefit
from the AHI. For workloads where the adaptive hash index is not needed, turning it off reduces
unnecessary performance overhead. Because it is difficult to predict in advance whether this feature
is appropriate for a particular system, consider running benchmarks with it both enabled and disabled,
using a realistic workload. The architectural changes in MySQL 5.6 and higher make more workloads
suitable for disabling the adaptive hash index than in earlier releases, although it is still enabled by
default.

The hash index is always built based on an existingB-tree index on the table. InnoDB can build a hash
index on a prefix of any length of the key defined for the B-tree, depending on the pattern of searches
that InnoDB observes for the B-tree index. A hash index can be partial, covering only those pages of
the index that are often accessed.

You can monitor the use of the adaptive hash index and the contention for its use in the SEMAPHORES
section of the output of the SHOW ENGINE INNODB STATUS command. If you see many threads
waiting on an RW-latch created in btr0sea.c, then it might be useful to disable adaptive hash
indexing.

For more information about the performance characteristics of hash indexes, see Section 8.3.8,
“Comparison of B-Tree and Hash Indexes”.

Physical Row Structure

The physical row structure for an InnoDB table depends on the row format specified when the table
was created. By default, InnoDB uses the Antelope file format and its COMPACT row format. The
REDUNDANT format is available to retain compatibility with older versions of MySQL. When you enable
the innodb_file_per_table setting, you can also make use of the newer Barracuda file format,
with its DYNAMIC and COMPRESSED row formats, as explained in Section 14.2.9, “InnoDB Row Storage
and Row Formats” and Section 14.2.7, “InnoDB Compressed Tables”.

To check the row format of an InnoDB table, use SHOW TABLE STATUS.

The COMPACT row format decreases row storage space by about 20% at the cost of increasing CPU
use for some operations. If your workload is a typical one that is limited by cache hit rates and disk
speed, COMPACT format is likely to be faster. If the workload is a rare case that is limited by CPU
speed, COMPACT format might be slower.

Rows in InnoDB tables that use REDUNDANT row format have the following characteristics:

• Each index record contains a 6-byte header. The header is used to link together consecutive
records, and also in row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-
byte transaction ID field and a 7-byte roll pointer field.

• If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID
field.

• Each secondary index record also contains all the primary key fields defined for the clustered index
key that are not in the secondary index.

• A record contains a pointer to each field of the record. If the total length of the fields in a record is
less than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of these pointers is
called the record directory. The area where these pointers point is called the data part of the record.

InnoDB Configuration

1620

• Internally, InnoDB stores fixed-length character columns such as CHAR(10) in a fixed-length format.
InnoDB does not truncate trailing spaces from VARCHAR columns.

• An SQL NULL value reserves one or two bytes in the record directory. Besides that, an SQL NULL
value reserves zero bytes in the data part of the record if stored in a variable length column. In
a fixed-length column, it reserves the fixed length of the column in the data part of the record.
Reserving the fixed space for NULL values enables an update of the column from NULL to a
non-NULL value to be done in place without causing fragmentation of the index page.

Rows in InnoDB tables that use COMPACT row format have the following characteristics:

• Each index record contains a 5-byte header that may be preceded by a variable-length header. The
header is used to link together consecutive records, and also in row-level locking.

• The variable-length part of the record header contains a bit vector for indicating NULL columns. If the
number of columns in the index that can be NULL is N, the bit vector occupies CEILING(N/8) bytes.
(For example, if there are anywhere from 9 to 15 columns that can be NULL, the bit vector uses two
bytes.) Columns that are NULL do not occupy space other than the bit in this vector. The variable-
length part of the header also contains the lengths of variable-length columns. Each length takes one
or two bytes, depending on the maximum length of the column. If all columns in the index are NOT
NULL and have a fixed length, the record header has no variable-length part.

• For each non-NULL variable-length field, the record header contains the length of the column in
one or two bytes. Two bytes will only be needed if part of the column is stored externally in overflow
pages or the maximum length exceeds 255 bytes and the actual length exceeds 127 bytes. For an
externally stored column, the 2-byte length indicates the length of the internally stored part plus the
20-byte pointer to the externally stored part. The internal part is 768 bytes, so the length is 768+20.
The 20-byte pointer stores the true length of the column.

• The record header is followed by the data contents of the non-NULL columns.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-
byte transaction ID field and a 7-byte roll pointer field.

• If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID
field.

• Each secondary index record also contains all the primary key fields defined for the clustered index
key that are not in the secondary index. If any of these primary key fields are variable length, the
record header for each secondary index will have a variable-length part to record their lengths, even
if the secondary index is defined on fixed-length columns.

• Internally, InnoDB stores fixed-length, fixed-width character columns such as CHAR(10) in a fixed-
length format. InnoDB does not truncate trailing spaces from VARCHAR columns.

• Internally, InnoDB attempts to store UTF-8 CHAR(N) columns in N bytes by trimming trailing spaces.
(With REDUNDANT row format, such columns occupy 3 × N bytes.) Reserving the minimum space N in
many cases enables column updates to be done in place without causing fragmentation of the index
page.

14.2.3 InnoDB Configuration

The first decisions to make about InnoDB configuration involve how to lay out InnoDB data files, and
how much memory to allocate for the InnoDB storage engine. You record these choices either by
recording them in a configuration file that MySQL reads at startup, or by specifying them as command-
line options in a startup script. The full list of options, descriptions, and allowed parameter values is at
Section 14.2.13, “InnoDB Startup Options and System Variables”.

Overview of InnoDB Tablespace and Log Files

Two important disk-based resources managed by the InnoDB storage engine are its tablespace
data files and its log files. If you specify no InnoDB configuration options, MySQL creates an

InnoDB Configuration

1621

auto-extending data file, slightly larger than 12MB, named ibdata1 and two log files named
ib_logfile0 and ib_logfile1 in the MySQL data directory. Their size is given by the size of
the innodb_log_file_size system variable. To get good performance, explicitly provide InnoDB
parameters as discussed in the following examples. Naturally, edit the settings to suit your hardware
and requirements.

The examples shown here are representative. See Section 14.2.13, “InnoDB Startup Options and
System Variables” for additional information about InnoDB-related configuration parameters.

Considerations for Storage Devices

In some cases, database performance improves if the data is not all placed on the same physical disk.
Putting log files on a different disk from data is very often beneficial for performance. The example
illustrates how to do this. It places the two data files on different disks and places the log files on the
third disk. InnoDB fills the tablespace beginning with the first data file. You can also use raw disk
partitions (raw devices) as InnoDB data files, which may speed up I/O. See Section 14.2.5.8, “Using
Raw Disk Partitions for the Shared Tablespace”.

Caution

InnoDB is a transaction-safe (ACID compliant) storage engine for MySQL
that has commit, rollback, and crash-recovery capabilities to protect user data.
However, it cannot do so if the underlying operating system or hardware
does not work as advertised. Many operating systems or disk subsystems may
delay or reorder write operations to improve performance. On some operating
systems, the very fsync() system call that should wait until all unwritten
data for a file has been flushed might actually return before the data has been
flushed to stable storage. Because of this, an operating system crash or a
power outage may destroy recently committed data, or in the worst case, even
corrupt the database because of write operations having been reordered. If data
integrity is important to you, perform some “pull-the-plug” tests before using
anything in production. On Mac OS X 10.3 and up, InnoDB uses a special
fcntl() file flush method. Under Linux, it is advisable to disable the write-
back cache.

On ATA/SATA disk drives, a command such hdparm -W0 /dev/hda may
work to disable the write-back cache. Beware that some drives or disk
controllers may be unable to disable the write-back cache.

Caution

If reliability is a consideration for your data, do not configure InnoDB to use data
files or log files on NFS volumes. Potential problems vary according to OS and
version of NFS, and include such issues as lack of protection from conflicting
writes, and limitations on maximum file sizes.

Specifying the Location and Size for InnoDB Tablespace Files

To set up the InnoDB tablespace files, use the innodb_data_file_path option in the [mysqld]
section of the my.cnf option file. On Windows, you can use my.ini instead. The value of
innodb_data_file_path should be a list of one or more data file specifications. If you name more
than one data file, separate them by semicolon (“;”) characters:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

For example, the following setting explicitly creates a minimally sized system tablespace:

[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend

InnoDB Configuration

1622

This setting configures a single 12MB data file named ibdata1 that is auto-extending. No location for
the file is given, so by default, InnoDB creates it in the MySQL data directory.

Sizes are specified using K, M, or G suffix letters to indicate units of KB, MB, or GB.

A tablespace containing a fixed-size 50MB data file named ibdata1 and a 50MB auto-extending file
named ibdata2 in the data directory can be configured like this:

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The full syntax for a data file specification includes the file name, its size, and several optional
attributes:

file_name:file_size[:autoextend[:max:max_file_size]]

The autoextend and max attributes can be used only for the last data file in the
innodb_data_file_path line.

If you specify the autoextend option for the last data file, InnoDB extends the data file if it runs out
of free space in the tablespace. The increment is 8MB at a time by default. To modify the increment,
change the innodb_autoextend_increment system variable.

If the disk becomes full, you might want to add another data file on another disk. For tablespace
reconfiguration instructions, see Section 14.2.5.7, “Changing the Number or Size of InnoDB Log Files
and Resizing the InnoDB Tablespace”.

InnoDB is not aware of the file system maximum file size, so be cautious on file systems where the
maximum file size is a small value such as 2GB. To specify a maximum size for an auto-extending
data file, use the max attribute following the autoextend attribute. Use the max attribute only in cases
where constraining disk usage is of critical importance, because exceeding the maximum size causes a
fatal error, possibly including a crash. The following configuration permits ibdata1 to grow up to a limit
of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend:max:500M

InnoDB creates tablespace files in the MySQL data directory by default. To specify a location explicitly,
use the innodb_data_home_dir option. For example, to use two files named ibdata1 and
ibdata2 but create them in the /ibdata directory, configure InnoDB like this:

[mysqld]
innodb_data_home_dir = /ibdata
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note

InnoDB does not create directories, so make sure that the /ibdata directory
exists before you start the server. This is also true of any log file directories that
you configure. Use the Unix or DOS mkdir command to create any necessary
directories.

Make sure that the MySQL server has the proper access rights to create files
in the data directory. More generally, the server must have access rights in any
directory where it needs to create data files or log files.

InnoDB forms the directory path for each data file by textually concatenating the value of
innodb_data_home_dir to the data file name, adding a path name separator (slash or backslash)
between values if necessary. If the innodb_data_home_dir option is not specified in my.cnf at all,
the default value is the “dot” directory ./, which means the MySQL data directory. (The MySQL server
changes its current working directory to its data directory when it begins executing.)

InnoDB Configuration

1623

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for the
data files listed in the innodb_data_file_path value. The following example is equivalent to the
preceding one:

[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/ibdata/ibdata1:50M;/ibdata/ibdata2:50M:autoextend

Specifying InnoDB Configuration Options

Sample my.cnf file for small systems. Suppose that you have a computer with 512MB RAM and
one hard disk. The following example shows possible configuration parameters in my.cnf or my.ini
for InnoDB, including the autoextend attribute. The example suits most users, both on Unix and
Windows, who do not want to distribute InnoDB data files and log files onto several disks. It creates an
auto-extending data file ibdata1 and two InnoDB log files ib_logfile0 and ib_logfile1 in the
MySQL data directory.

[mysqld]
You can write your other MySQL server options here
...
Data files must be able to hold your data and indexes.
Make sure that you have enough free disk space.
innodb_data_file_path = ibdata1:12M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory
innodb_buffer_pool_size=256M
#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=64M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1

Note that data files must be less than 2GB in some file systems. The combined size of the log files can
be up to 512GB. The combined size of data files must be slightly larger than 10MB.

Setting Up the InnoDB System Tablespace

When you create an InnoDB system tablespace for the first time, it is best that you start the MySQL
server from the command prompt. InnoDB then prints the information about the database creation to
the screen, so you can see what is happening. For example, on Windows, if mysqld is located in C:
\Program Files\MySQL\MySQL Server 5.7\bin, you can start it like this:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --console

If you do not send server output to the screen, check the server's error log to see what InnoDB prints
during the startup process.

For an example of what the information displayed by InnoDB should look like, see Section 14.2.5.1,
“Creating the InnoDB Tablespace”.

Editing the MySQL Configuration File

You can place InnoDB options in the [mysqld] group of any option file that your server reads when it
starts. The locations for option files are described in Section 4.2.3.3, “Using Option Files”.

If you installed MySQL on Windows using the installation and configuration wizards, the option file will
be the my.ini file located in your MySQL installation directory. See Section 2.3.3, “Installing MySQL
on Microsoft Windows Using MySQL Installer”.

If your PC uses a boot loader where the C: drive is not the boot drive, your only option is to use the
my.ini file in your Windows directory (typically C:\WINDOWS). You can use the SET command at the
command prompt in a console window to print the value of WINDIR:

InnoDB Configuration

1624

C:\> SET WINDIR
windir=C:\WINDOWS

To make sure that mysqld reads options only from a specific file, use the --defaults-file option
as the first option on the command line when starting the server:

mysqld --defaults-file=your_path_to_my_cnf

Sample my.cnf file for large systems. Suppose that you have a Linux computer with 2GB RAM and
three 60GB hard disks at directory paths /, /dr2 and /dr3. The following example shows possible
configuration parameters in my.cnf for InnoDB.

[mysqld]
You can write your other MySQL server options here
...
innodb_data_home_dir =
#
Data files must be able to hold your data and indexes
innodb_data_file_path = /db/ibdata1:2000M;/dr2/db/ibdata2:2000M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory,
but make sure on Linux x86 total memory usage is < 2GB
innodb_buffer_pool_size=1G
innodb_log_group_home_dir = /dr3/iblogs
#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=250M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1
innodb_lock_wait_timeout=50
#
Uncomment the next line if you want to use it
#innodb_thread_concurrency=5

Determining the Maximum Memory Allocation for InnoDB

Warning

On 32-bit GNU/Linux x86, be careful not to set memory usage too high. glibc
may permit the process heap to grow over thread stacks, which crashes your
server. It is a risk if the value of the following expression is close to or exceeds
2GB:

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL binaries
provided by Oracle Corporation.) and in the worst case also uses
sort_buffer_size + read_buffer_size additional memory.

Tuning other mysqld server parameters. The following values are typical and suit most users:

[mysqld]
skip-external-locking
max_connections=200
read_buffer_size=1M
sort_buffer_size=1M
#
Set key_buffer to 5 - 50% of your RAM depending on how much
you use MyISAM tables, but keep key_buffer_size + InnoDB
buffer pool size < 80% of your RAM

InnoDB Configuration

1625

key_buffer_size=value

On Linux, if the kernel is enabled for large page support, InnoDB can use large pages to allocate
memory for its buffer pool and additional memory pool. See Section 8.11.4.2, “Enabling Large Page
Support”.

14.2.3.1 Configuring InnoDB for Read-Only Operation

You can now query InnoDB tables where the MySQL data directory is on read-only media, by enabling
the --innodb-read-only configuration option at server startup.

How to Enable

To prepare an instance for read-only operation, make sure all the necessary information is flushed to
the data files before storing it on the read-only medium. Run the server with change buffering disabled
(innodb_change_buffering=0) and do a slow shutdown.

To enable read-only mode for an entire MySQL instance, specify the following configuration options at
server startup:

• --innodb-read-only=1

• If the instance is on read-only media such as a DVD or CD, or the /var directory is not writeable by
all: --pid-file=path_on_writeable_media and --event-scheduler=disabled

Usage Scenarios

This mode of operation is appropriate in situations such as:

• Distributing a MySQL application, or a set of MySQL data, on a read-only storage medium such as a
DVD or CD.

• Multiple MySQL instances querying the same data directory simultaneously, typically in a data
warehousing configuration. You might use this technique to avoid bottlenecks that can occur with
a heavily loaded MySQL instance, or you might use different configuration options for the various
instances to tune each one for particular kinds of queries.

• Querying data that has been put into a read-only state for security or data integrity reasons, such as
archived backup data.

Note

This feature is mainly intended for flexibility in distribution and deployment,
rather than raw performance based on the read-only aspect. See Optimizations
for Read-Only Transactions for ways to tune the performance of read-only
queries, which do not require making the entire server read-only.

How It Works

When the server is run in read-only mode through the --innodb-read-only option, certain InnoDB
features and components are reduced or turned off entirely:

• No change buffering is done, in particular no merges from the change buffer. To make sure the
change buffer is empty when you prepare the instance for read-only operation, disable change
buffering (innodb_change_buffering=0) and do a slow shutdown first.

• There is no crash recovery phase at startup. The instance must have performed a slow shutdown
before being put into the read-only state.

• Because the redo log is not used in read-only operation, you can set innodb_log_file_size to
the smallest size possible (1 MB) before making the instance read-only.

• All background threads other than I/O read threads are turned off. As a consequence, a read-only
instance cannot encounter any deadlocks.

InnoDB Administration

1626

• Information about deadlocks, monitor output, and so on is not written to temporary files. As a
consequence, SHOW ENGINE INNODB STATUS does not produce any output.

• If the MySQL server is started with --innodb-read-only but the data directory is still on writeable
media, the root user can still perform DCL operations such as GRANT and REVOKE.

• Changes to configuration option settings that would normally change the the behavior of write
operations, have no effect when the server is in read-only mode.

• The MVCC processing to enforce isolation levels is turned off. All queries read the latest version of a
record, because update and deletes are not possible.

• The undo log is not used. Disable any settings for the innodb_undo_tablespaces and
innodb_undo_directory configuration options.

14.2.4 InnoDB Administration

Administration tasks related to InnoDB mainly involve these aspects:

• Managing the data files that represent the system tablespace, InnoDB tables, and their associated
indexes. You can change the way these files are laid out and divided, which affects both
performance and the features available for specific tables.

• Managing the redo log files that are used for crash recovery. You can specify the size of these files.

• Making sure that InnoDB is used for the tables where it is intended, rather than a different storage
engine.

• General administrative tasks related to performance. You might consult with application developers
during the application design phase, monitor performance on an ongoing basis to ensure the system
settings are working well, and diagnose and help fix performance and capacity issues that arise
suddenly.

Since InnoDB tables are now the default for MySQL, much of the associated administration material is
now in the main “Administration” chapter, Chapter 5, MySQL Server Administration.

14.2.5 InnoDB Tablespace Management

14.2.5.1 Creating the InnoDB Tablespace

Suppose that you have installed MySQL and have edited your option file so that it contains the
necessary InnoDB configuration parameters. Before starting MySQL, verify that the directories you
have specified for InnoDB data files and log files exist and that the MySQL server has access rights to
those directories. InnoDB does not create directories, only files. Check also that you have enough disk
space for the data and log files.

It is best to run the MySQL server mysqld from the command prompt when you first start the server
with InnoDB enabled, not from mysqld_safe or as a Windows service. When you run from a
command prompt you see what mysqld prints and what is happening. On Unix, just invoke mysqld.
On Windows, start mysqld with the --console option to direct the output to the console window.

When you start the MySQL server after initially configuring InnoDB in your option file, InnoDB creates
your data files and log files, and prints something like this:

2013-09-24T12:55:18.897250Z 0 [Note] InnoDB: The first specified data file "ibdata1" did not exist : a new database to be created!
2013-09-24T12:55:18.897299Z 0 [Note] InnoDB: Need to create new data file "ibdata2"
2013-09-24T12:55:18.897492Z 0 [Note] InnoDB: Setting file "./ibdata1" size to 128 MB
2013-09-24T12:55:18.897509Z 0 [Note] InnoDB: Database physically writes the file full: wait ...
2013-09-24T12:55:19.013723Z 0 [Note] InnoDB: Setting file "./ibdata2" size to 250 MB
2013-09-24T12:55:19.013766Z 0 [Note] InnoDB: Database physically writes the file full: wait ...
2013-09-24T12:55:19.131808Z 0 [Note] InnoDB: Setting log file ./ib_logfile101 size to 48 MB
2013-09-24T12:55:19.571493Z 0 [Note] InnoDB: Setting log file ./ib_logfile1 size to 48 MB

InnoDB Tablespace Management

1627

2013-09-24T12:55:20.226902Z 0 [Note] InnoDB: Renaming log file ./ib_logfile101 to ./ib_logfile0
2013-09-24T12:55:20.227251Z 0 [Warning] InnoDB: New log files created, LSN=45781
2013-09-24T12:55:21.227716Z 0 [Note] InnoDB: Creating shared tablespace for temporary tables
2013-09-24T12:55:21.228286Z 0 [Note] InnoDB: Setting file "./ibtmp1" size to 12 MB
2013-09-24T12:55:21.228334Z 0 [Note] InnoDB: Database physically writes the file full: wait ...
2013-09-24T12:55:21.329536Z 0 [Note] InnoDB: Doublewrite buffer not found: creating new
2013-09-24T12:55:21.476956Z 0 [Note] InnoDB: Doublewrite buffer created
2013-09-24T12:55:22.077524Z 0 [Note] InnoDB: 96 redo rollback segment(s) found. 96 redo rollback segment(s) are active.
2013-09-24T12:55:22.077564Z 0 [Note] InnoDB: 32 non-redo rollback segment(s) are active.
2013-09-24T12:55:22.182853Z 0 [Warning] InnoDB: Creating foreign key constraint system tables.
2013-09-24T12:55:22.195621Z 0 [Note] InnoDB: Foreign key constraint system tables created
2013-09-24T12:55:22.195791Z 0 [Note] InnoDB: Creating tablespace and datafile system tables.
2013-09-24T12:55:22.202725Z 0 [Note] InnoDB: Tablespace and datafile system tables created.
2013-09-24T12:55:22.202844Z 0 [Note] InnoDB: Waiting for purge to start
2013-09-24T12:55:22.253342Z 0 [Note] InnoDB: 5.7.5 started; log sequence number 0
2013-09-24T12:55:22.630676Z 0 [Note] mysqld: ready for connections.

At this point InnoDB has initialized its tablespace and log files. You can connect to the MySQL server
with the usual MySQL client programs like mysql. When you shut down the MySQL server with
mysqladmin shutdown, the output is like this:

2013-09-24T13:03:08.029127Z 0 [Note] mysqld: Normal shutdown
2013-09-24T13:03:10.057269Z 0 [Note] InnoDB: Starting shutdown...
2013-09-24T13:03:10.857032Z 0 [Note] InnoDB: Shutdown completed; log sequence number 1566036
2013-09-24T13:03:10.863259Z 0 [Note] mysqld: Shutdown complete

You can look at the data file and log directories and you see the files created there. When MySQL is
started again, the data files and log files have been created already, so the output is much briefer:

2013-09-24T13:04:38.639397Z 0 [Note] InnoDB: Creating shared tablespace for temporary tables
2013-09-24T13:04:38.639660Z 0 [Note] InnoDB: Setting file "./ibtmp1" size to 12 MB
2013-09-24T13:04:38.639684Z 0 [Note] InnoDB: Database physically writes the file full: wait ...
2013-09-24T13:04:38.872720Z 0 [Note] InnoDB: 96 redo rollback segment(s) found. 96 redo rollback segment(s) are active.
2013-09-24T13:04:38.872760Z 0 [Note] InnoDB: 32 non-redo rollback segment(s) are active.
2013-09-24T13:04:38.906989Z 0 [Note] InnoDB: Waiting for purge to start
2013-09-24T13:04:38.958353Z 0 [Note] InnoDB: 5.7.5 started; log sequence number 1566036
2013-09-24T13:04:39.281825Z 0 [Note] mysqld: ready for connections.

If you add the innodb_file_per_table option to my.cnf, InnoDB stores each table in its own
.ibd file, in the same MySQL database directory where the .frm file is created. See Section 14.2.5.2,
“InnoDB File-Per-Table Mode”.

14.2.5.2 InnoDB File-Per-Table Mode

Historically, all InnoDB tables and indexes were stored in the system tablespace. This monolithic
approach was targeted at machines dedicated entirely to database processing, with carefully planned
data growth, where any disk storage allocated to MySQL would never be needed for other purposes.
InnoDB's file-per-table mode is a more flexible alternative, where you store each InnoDB table and
its indexes in a separate file. Each such .ibd file represents a separate tablespace. This mode is
controlled by the innodb_file_per_table configuration option, and is the default in MySQL 5.6.6
and higher.

Advantages of File-Per-Table Mode

• You can reclaim operating system disk space when truncating or dropping a table. For tables created
when file-per-table mode is turned off, truncating or dropping the tables creates free space internally
in the ibdata files but the free space can only be used for new InnoDB data.

• The TRUNCATE TABLE operation is faster when run on individual .ibd files.

• You can store specific tables on separate storage devices, for I/O optimization, space management,
or backup purposes. In previous releases, you had to move entire database directories to other
drives and create symbolic links in the MySQL data directory, as described in Section 8.11.3.1,
“Using Symbolic Links”. In MySQL 5.6.6 and higher, you can specify the location of each table using

InnoDB Tablespace Management

1628

the syntax CREATE TABLE ... DATA DIRECTORY = absolute_path_to_directory, as
explained in Section 14.2.5.4, “Specifying the Location of a Tablespace”.

• You can run OPTIMIZE TABLE to compact or recreate a tablespace. When you run an OPTIMIZE
TABLE, InnoDB will create a new .ibd file with a temporary name, using only the space required
to store actual data. When the optimization is complete, InnoDB removes the old .ibd file and
replaces it with the new .ibd file. If the previous .ibd file had grown significantly but actual data
only accounted for a portion of its size, running OPTIMIZE TABLE allows you to reclaim the unused
space.

• You can move individual InnoDB tables rather than entire databases.

• You can copy individual InnoDB tables from one MySQL instance to another (known as the
transportable tablespace feature).

• Tables created when innodb_file_per_table is enabled can use the Barracuda file format.
The Barracuda file format enables features such as compressed and dynamic row formats. Tables
created when innodb_file_per_table is off cannot use these features. To take advantage
of these features for an existing table, you can turn on the file-per-table setting and run ALTER
TABLE t ENGINE=INNODB on the existing table. Before converting tables, refer to Section 14.2.6.4,
“Converting Tables from MyISAM to InnoDB”.

• You can enable more efficient storage for tables with large BLOB or text columns using the dynamic
row format.

• Using innodb_file_per_table may improve chances for a successful recovery and save time if
a corruption occurs, a server cannot be restarted, or backup and binary logs are unavailable.

• You can back up or restore a single table quickly, without interrupting the use of other InnoDB
tables, using the MySQL Enterprise Backup product. See Backing Up and Restoring a Single .ibd
File for the procedure and restrictions.

• File-per-table mode allows you to excluded tables from a backup. This is beneficial if you have tables
that require backup less frequently or on a different schedule.

• File-per-table mode is convenient for per-table status reporting when copying or backing up tables.

• File-per-table mode allows you to monitor table size at a file system level, without accessing MySQL.

• Common Linux file systems do not permit concurrent writes to a single file when
innodb_flush_method is set to O_DIRECT. As a result, there are possible
performance improvements when using innodb_file_per_table in conjunction with
innodb_flush_method.

• If innodb_file_per_table is disabled, there is one shared tablespace (the system tablespace)
for tables, the data dictionary, and undo logs. This single tablespace has a 64TB size limit. If
innodb_file_per_table is enabled, each table has its own tablespace, each with a 64TB size
limit. See Section E.10.3, “Limits on Table Size” for related information.

Potential Disadvantages of File-Per-Table Mode

• With innodb_file_per_table, each table may have unused table space, which can only be
utilized by rows of the same table. This could lead to more rather than less wasted table space if not
properly managed.

• fsync operations must run on each open table rather than on a single file. Because there is a
separate fsync operation for each file, write operations on multiple tables cannot be combined
into a single I/O operation. This may require InnoDB to perform a higher total number of fsync
operations.

• mysqld must keep 1 open file handle per table, which may impact performance if you have
numerous tables.

http://dev.mysql.com/doc/mysql-enterprise-backup/3.9/en/partial.restoring.single.html
http://dev.mysql.com/doc/mysql-enterprise-backup/3.9/en/partial.restoring.single.html

InnoDB Tablespace Management

1629

• More file descriptors are used.

• innodb_file_per_table is on by default in MySQL 5.6.6 and higher. You may want to
consider disabling it if backward compatibility with MySQL 5.5 or 5.1 is a concern. Disabling
innodb_file_per_table prevents ALTER TABLE from moving an InnoDB table from the
system tablespace to an individual .ibd file in cases where ALTER TABLE recreates the table
(ALGORITHM=COPY).

For example, when restructuring the clustered index for an InnoDB table, the table is re-created
using the current settings for innodb_file_per_table. This behavior does not apply when
adding or dropping InnoDB secondary indexes. When a secondary index is created without
rebuilding the table, the index is stored in the same file as the table data, regardless of the current
innodb_file_per_table setting.

• If many tables are growing there is potential for more fragmentation which can impede DROP TABLE
and table scan performance. However, when fragmentation is managed, having files in their own
tablespace can improve performance.

• The buffer pool is scanned when dropping a per-table tablespace, which can take several seconds
for buffer pools that are tens of gigabytes in size. The scan is performed with a broad internal lock,
which may delay other operations. Tables in the shared tablespace are not affected.

• The innodb_autoextend_increment variable, which defines increment size (in MB) for
extending the size of an auto-extending shared tablespace file when it becomes full, does not apply
to file-per-table tablespace files. File-per-table tablespace files are auto-extending regardless of the
value of innodb_autoextend_increment. The initial extensions are by small amounts, after
which extensions occur in increments of 4MB.

14.2.5.3 Enabling and Disabling File-Per-Table Mode

To make file-per-table mode the default for a MySQL server, start the server with the --
innodb_file_per_table command-line option, or add this line to the [mysqld] section of
my.cnf:

[mysqld]
innodb_file_per_table

You can also issue the command while the server is running:

SET GLOBAL innodb_file_per_table=1;

With file-per-table mode enabled, InnoDB stores each newly created table in its own tbl_name.ibd
file in the appropriate database directory. Unlike the MyISAM storage engine, with its separate
tbl_name.MYD and tbl_name.MYI files for indexes and data, InnoDB stores the data and the
indexes together in a single .ibd file. The tbl_name.frm file is still created as usual.

If you remove innodb_file_per_table from your startup options and restart the server, or turn it off
with the SET GLOBAL command, InnoDB creates any new tables inside the system tablespace.

You can always read and write any InnoDB tables, regardless of the file-per-table setting.

To move a table from the system tablespace to its own tablespace, or vice versa, change the
innodb_file_per_table setting and rebuild the table:

-- Move table from system tablespace to its own tablespace.
SET GLOBAL innodb_file_per_table=1;
ALTER TABLE table_name ENGINE=InnoDB;
-- Move table from its own tablespace to system tablespace.
SET GLOBAL innodb_file_per_table=0;
ALTER TABLE table_name ENGINE=InnoDB;

InnoDB Tablespace Management

1630

Note

InnoDB always needs the system tablespace because it puts its internal data
dictionary and undo logs there. The .ibd files are not sufficient for InnoDB to
operate.

When a table is moved out of the system tablespace into its own .ibd file, the
data files that make up the system tablespace remain the same size. The space
formerly occupied by the table can be reused for new InnoDB data, but is not
reclaimed for use by the operating system. When moving large InnoDB tables
out of the system tablespace, where disk space is limited, you might prefer to
turn on innodb_file_per_table and then recreate the entire instance using
the mysqldump command.

14.2.5.4 Specifying the Location of a Tablespace

To create a new InnoDB file-per-table tablespace in a specific location outside the MySQL data
directory, use the DATA DIRECTORY = absolute_path_to_directory clause of the CREATE
TABLE statement.

Plan the location in advance, because you cannot use the DATA DIRECTORY clause with the ALTER
TABLE statement. The directory you specify could be on another storage device with particular
performance or capacity characteristics, such as a fast SSD or a high-capacity HDD.

Within the destination directory, MySQL creates a subdirectory corresponding to the database name,
and within that a .ibd file for the new table. In the database directory underneath the MySQL DATADIR
directory, MySQL creates a table_name.isl file containing the path name for the table. The .isl file
is treated by MySQL like a symbolic link. (Using actual symbolic links has never been supported for
InnoDB tables.)

The following example shows how you might run a small development or test instance of MySQL on a
laptop with a primary hard drive that is 95% full, and place a new table named EXTERNAL on a different
storage device with more free space. The shell commands show the different paths to the LOCAL
table in its default location under the DATADIR directory, and the EXTERNAL table in the location you
specified:

mysql> \! df -k .
Filesystem 1024-blocks Used Available Capacity iused ifree %iused Mounted on
/dev/disk0s2 244277768 231603532 12418236 95% 57964881 3104559 95% /

mysql> use test;
Database changed
mysql> show variables like 'innodb_file_per_table';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| innodb_file_per_table | ON |
+-----------------------+-------+
1 row in set (0.00 sec)

mysql> \! pwd
/usr/local/mysql
mysql> create table local (x int unsigned not null primary key);
Query OK, 0 rows affected (0.03 sec)

mysql> \! ls -l data/test/local.ibd
-rw-rw---- 1 cirrus staff 98304 Nov 13 15:24 data/test/local.ibd

mysql> create table external (x int unsigned not null primary key) data directory = '/volumes/external1/data';
Query OK, 0 rows affected (0.03 sec)

mysql> \! ls -l /volumes/external1/data/test/external.ibd
-rwxrwxrwx 1 cirrus staff 98304 Nov 13 15:34 /volumes/external1/data/test/external.ibd

InnoDB Tablespace Management

1631

mysql> select count(*) from local;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.01 sec)

mysql> select count(*) from external;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.01 sec)

Notes:

• MySQL initially holds the .ibd file open, preventing you from dismounting the
device, but might eventually close the table if the server is busy. Be careful
not to accidentally dismount the external device while MySQL is running, or to
start MySQL while the device is disconnected. Attempting to access a table
when the associated .ibd file is missing causes a serious error that requires
a server restart.

The server restart might fail if the .ibd file is still not at the expected path.
In this case, manually remove the table_name.isl file in the database
directory, and after restarting do a DROP TABLE to delete the .frm file and
remove the information about the table from the data dictionary.

• Do not put MySQL tables on an NFS-mounted volume. NFS uses a message-
passing protocol to write to files, which could cause data inconsistency if
network messages are lost or received out of order.

• If you use an LVM snapshot, file copy, or other file-based mechanism to
back up the .ibd file, always use the FLUSH TABLES ... FOR EXPORT
statement first to make sure all changes that were buffered in memory are
flushed to disk before the backup occurs.

• The DATA DIRECTORY clause is a supported alternative to using symbolic
links, which has always been problematic and was never supported for
individual InnoDB tables.

14.2.5.5 Copying Tablespaces to Another Server (Transportable Tablespaces)

This section describes how to copy file-per-table tablespaces (.idb files) from one database server
to another using the Transportable Tablespace feature. Prior to MySQL 5.7.4, only non-partitioned
InnoDB tables are supported. As of MySQL 5.7.4, partitioned InnoDB tables and individual InnoDB
table partitions and subpartitions are also supported.

For information about other InnoDB table copying methods, see Section 14.2.6.2, “Moving or Copying
InnoDB Tables to Another Machine”.

There are many reasons why you might copy an InnoDB file-per-table tablespace to a different
database server:

• To run reports without putting extra load on a production server.

• To set up identical data for a table on a new slave server.

• To restore a backed-up version of a table or partition after a problem or mistake.

http://dev.mysql.com/doc/mysql-monitor/3.0/en/glossary.html#glos_slave

InnoDB Tablespace Management

1632

• As a faster way of moving data around than importing the results of a mysqldump command. The
data is available immediately, rather than having to be re-inserted and the indexes rebuilt.

• To move a file-per-table tablespace to a server with storage medium that better suits system
requirements. For example, you may want to have busy tables on an SSD device, or large tables on
a high-capacity HDD device.

Tablespace Copying Limitations and Usage Notes (Transportable Tablespaces)

• The tablespace copy procedure is only possible when innodb_file_per_table is set to ON,
which is the default setting as of MySQL 5.6.6. Tables residing in the shared system tablespace
cannot be quiesced.

• When a table is quiesced, only read-only transactions are allowed on the affected table.

• When importing a tablespace, the page size must match the page size of the importing instance.

• Prior to MySQL 5.7.4, DISCARD TABLESPACE is not supported for partitioned tables meaning
that transportable tablespaces is also unsupported. If you run ALTER TABLE ... DISCARD
TABLESPACE on a partitioned table, the following error is returned: ERROR 1031 (HY000): Table
storage engine for 'part' doesn't have this option. As of MySQL 5.7.4, ALTER
TABLE ... DISCARD TABLESPACE is supported for partitioned InnoDB tables, and ALTER
TABLE ... DISCARD PARTITION ... TABLESPACE is supported for InnoDB table partitions.

• DISCARD TABLESPACE is not supported for tablespaces with a parent-child (primary key-foreign
key) relationship when foreign_key_checks is set to 1. Before discarding a tablespace for
parent-child tables, set foreign_key_checks=0. Partitioned InnoDB tables do not support foreign
keys.

• ALTER TABLE ... IMPORT TABLESPACE does not enforce foreign key constraints on imported
data. If there are foreign key constraints between tables, all tables should be exported at the same
(logical) point in time. Partitioned InnoDB tables do not support foreign keys.

• ALTER TABLE ... IMPORT TABLESPACE and ALTER TABLE ... IMPORT PARTITION ...
TABLESPACE do not require a .cfg metadata file to import a tablespace. However, metadata checks
are not performed when importing without a .cfg file, and a warning similar to the following will be
issued:

Message: InnoDB: IO Read error: (2, No such file or directory) Error opening '.\
test\t.cfg', will attempt to import without schema verification
1 row in set (0.00 sec)

The ability to import without a .cfg file may be more convenient when no schema mismatches are
expected. Additionally, the ability to import without a .cfg file could be useful in crash recovery
scenarios in which metadata cannot be collected from an .ibd file.

• Due to a .cfg metadata file limitation, schema mismatches are not reported for partition type
or partition definition differences when importing tablespace files for partitioned tables. Column
differences are reported.

• When running ALTER TABLE ... DISCARD PARTITION ... TABLESPACE and ALTER
TABLE ... IMPORT PARTITION ... TABLESPACE on subpartitioned tables, both partition
and subpartition table names are allowed. When a partition name is specified, subpartitions of that
partition are included in the operation.

• In MySQL 5.6 or later, importing a tablespace file from another server works if both servers have GA
(General Availability) status and their versions are within the same series. Otherwise, the file must
have been created on the server into which it is imported.

• In replication scenarios, innodb_file_per_table must be set to ON on both the master and
slave.

InnoDB Tablespace Management

1633

• On Windows, InnoDB stores database, tablespace, and table names internally in lowercase. To
avoid import problems on case-sensitive operating systems such as Linux and UNIX, create all
databases, tablespaces, and tables using lowercase names. A convenient way to accomplish this
is to add the following line to the [mysqld] section of your my.cnf or my.ini file before creating
databases, tablespaces, or tables:

[mysqld]
lower_case_table_names=1

Transportable Tablespace Examples

Example 1: Copying a Regular InnoDB Table From One Server To Another

This procedure demonstrates how to copy a regular InnoDB table from a running MySQL server
instance to another running instance. The same procedure with minor adjustments can be used to
perform a full table restore on the same instance.

1. On the source server, create a table if one does not exist:

mysql> use test;
mysql> CREATE TABLE t(c1 INT) engine=InnoDB;

2. On the destination server, create a table if one does not exist:

mysql> use test;
mysql> CREATE TABLE t(c1 INT) engine=InnoDB;

3. On the destination server, discard the existing tablespace. (Before a tablespace can be imported,
InnoDB must discard the tablespace that is attached to the receiving table.)

mysql> ALTER TABLE t DISCARD TABLESPACE;

4. On the source server, run FLUSH TABLES ... FOR EXPORT to quiesce the table and create the
.cfg metadata file:

mysql> use test;
mysql> FLUSH TABLES t FOR EXPORT;

The metadata (.cfg) is created in the InnoDB data directory.

Note

FLUSH TABLES ... FOR EXPORT is available as of MySQL 5.6.6. The
statement ensures that changes to the named table have been flushed to
disk so that a binary table copy can be made while the server is running.
When FLUSH TABLES ... FOR EXPORT is run, InnoDB produces a
.cfg file in the same database directory as the table. The .cfg file contains
metadata used for schema verification when importing the tablespace file.

5. Copy the .ibd file and .cfg metadata file from the source server to the destination server. For
example:

shell> scp /path/to/datadir/test/t.{ibd,cfg} destination-server:/path/to/datadir/test

Note

The .ibd file and .cfg file must be copied before releasing the shared
locks, as described in the next step.

InnoDB Tablespace Management

1634

6. On the source server, use UNLOCK TABLES to release the locks acquired by FLUSH TABLES ...
FOR EXPORT:

mysql> use test;
mysql> UNLOCK TABLES;

7. On the destination server, import the tablespace:

mysql> use test;
mysql> ALTER TABLE t IMPORT TABLESPACE;

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data. If there are foreign key constraints
between tables, all tables should be exported at the same (logical)
point in time. In this case you would stop updating the tables, commit all
transactions, acquire shared locks on the tables, and then perform the
export operation.

Example 2: Copying an InnoDB Partitioned Table From One Server To Another

This procedure demonstrates how to copy a partitioned InnoDB table from a running MySQL server
instance to another running instance. The same procedure with minor adjustments can be used to
perform a full restore of a partitioned InnoDB table on the same instance.

1. On the source server, create a partitioned table if one does not exist. In the following example, a
table with three partitions (p0, p1, p2) is created:

mysql> use test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 3;

In the /datadir/test directory, you will see a separate tablespace (.ibd) file for each of the
three partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1.par t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd

2. On the destination server, create the same partitioned table:

mysql> use test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 3;

In the /datadir/test directory, you will see a separate tablespace (.ibd) file for each of the
three partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1.par t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd

3. On the destination server, discard the tablespace for the partitioned table. (Before the tablespace
can be imported on the destination server, the tablespace that is attached to the receiving table
must be discarded.)

mysql> ALTER TABLE t1 DISCARD TABLESPACE;

The three .ibd files that make up the tablespace for the partitioned table are discarded from the
/datadir/test directory, leaving the following files:

InnoDB Tablespace Management

1635

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1.par

4. On the source server, run FLUSH TABLES ... FOR EXPORT to quiesce the partitioned table and
create the .cfg metadata files:

mysql> use test;
mysql> FLUSH TABLES t1 FOR EXPORT;

Metadata (.cfg) files, one for each tablespace (.ibd) file, are created in the /datadir/test
directory on the source server:

mysql> \! ls /path/to/datadir/test/
db.opt t1.par t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd
t1.frm t1#P#p0.cfg t1#P#p1.cfg t1#P#p2.cfg

Note

FLUSH TABLES ... FOR EXPORT statement ensures that changes to
the named table have been flushed to disk so that binary table copy can
be made while the server is running. When FLUSH TABLES ... FOR
EXPORT is run, InnoDB produces a .cfg metadata file for the table's
tablespace files in the same database directory as the table. The .cfg files
contain metadata used for schema verification when importing tablespace
files. FLUSH TABLES ... FOR EXPORT can only be run on the table, not
on individual table partitions.

5. Copy the .ibd and .cfg files from the source server database directory to the destination server
database directory. For example:

shell> scp /path/to/datadir/test/t1*.{ibd,cfg} destination-server:/path/to/datadir/test

Note

The .ibd and .cfg files must be copied before releasing the shared locks,
as described in the next step.

6. On the source server, use UNLOCK TABLES to release the locks acquired by FLUSH TABLES ...
FOR EXPORT:

mysql> use test;
mysql> UNLOCK TABLES;

7. On the destination server, import the tablespace for the partitioned table:

mysql> use test;
mysql> ALTER TABLE t1 IMPORT TABLESPACE;

Example 3: Copying InnoDB Table Partitions From One Server To Another

This procedure demonstrates how to copy InnoDB table partitions from a running MySQL server
instance to another running instance. The same procedure with minor adjustments can be used
to perform a restore of InnoDB table partitions on the same instance. In the following example,
a partitioned table with four partitions (p0, p1, p2, p3) is created on the source server. Two of the
partitions (p2 and p3) are copied to the destination server.

1. On the source server, create a partitioned table if one does not exist. In the following example, a
table with four partitions (p0, p1, p2, p3) is created:

InnoDB Tablespace Management

1636

mysql> use test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 4;

In the /datadir/test directory, you will see a separate tablespace (.ibd) file for each of the four
partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1.par t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd t1#P#p3.ibd

2. On the destination server, create the same partitioned table:

mysql> use test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 4;

In the /datadir/test directory, you will see a separate tablespace (.ibd) file for each of the four
partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1.par t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd t1#P#p3.ibd

3. On the destination server, discard the tablespace partitions that you plan to import from the source
server. (Before tablespace partitions can be imported on the destination server, the corresponding
partitions that are attached to the receiving table must be discarded.)

mysql> ALTER TABLE t1 DISCARD PARTITION p2, p3 TABLESPACE;

The .ibd files for the two discarded partitions are removed from the /datadir/test directory on
the destination server, leaving the following files:

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1.par t1#P#p0.ibd t1#P#p1.ibd

Note

When ALTER TABLE ... DISCARD PARTITION ... TABLESPACE is
run on subpartitioned tables, both partition and subpartition table names are
allowed. When a partition name is specified, subpartitions of that partition
are included in the operation.

4. On the source server, run FLUSH TABLES ... FOR EXPORT to quiesce the partitioned table and
create the .cfg metadata files.

mysql> use test;
mysql> FLUSH TABLES t1 FOR EXPORT;

The metadata files (.cfg files) are created in the /datadir/test directory on the source server.
There is a .cfg file for each tablespace (.ibd) file.

mysql> \! ls /path/to/datadir/test/
db.opt t1.par t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd t1#P#p3.ibd
t1.frm t1#P#p0.cfg t1#P#p1.cfg t1#P#p2.cfg t1#P#p3.cfg

Note

FLUSH TABLES ... FOR EXPORT statement ensures that changes to
the named table have been flushed to disk so that binary table copy can
be made while the server is running. When FLUSH TABLES ... FOR
EXPORT is run, InnoDB produces a .cfg metadata file for the table's

InnoDB Tablespace Management

1637

tablespace files in the same database directory as the table. The .cfg files
contain metadata used for schema verification when importing tablespace
files. FLUSH TABLES ... FOR EXPORT can only be run on the table, not
on individual table partitions.

5. Copy the .ibd and .cfg files from the source server database directory to the destination server
database directory. In this example, only the .ibd and .cfg files for partition 2 (p2) and partition 3
(p3) are copied to the data directory on the destination server. Partition 0 (p0) and partition 1 (p1)
remain on the source server.

shell> scp t1#P#p2.ibd t1#P#p2.cfg t1#P#p3.ibd t1#P#p3.cfg destination-server:/path/to/datadir/test

Note

The .ibd files and .cfg files must be copied before releasing the shared
locks, as described in the next step.

6. On the source server, use UNLOCK TABLES to release the locks acquired by FLUSH TABLES ...
FOR EXPORT:

mysql> use test;
mysql> UNLOCK TABLES;

7. On the destination server, import the tablespace partitions (p2 and p3):

mysql> use test;
mysql> ALTER TABLE t1 IMPORT PARTITION p2, p3 TABLESPACE;

Note

When ALTER TABLE ... IMPORT PARTITION ... TABLESPACE is
run on subpartitioned tables, both partition and subpartition table names are
allowed. When a partition name is specified, subpartitions of that partition
are included in the operation.

Tablespace Copying Internals (Transportable Tablespaces)

The following information describes internals and error log messaging for the transportable tablespaces
copy procedure for a regular InnoDB table.

When ALTER TABLE ... DISCARD TABLESPACE is run on the destination instance:

• The table is locked in X mode.

• The tablespace is detached from the table.

When FLUSH TABLES ... FOR EXPORT is run on the source instance:

• The table being flushed for export is locked in shared mode.

• The purge coordinator thread is stopped.

• Dirty pages are synchronized to disk.

• Table metadata is written to the binary .cfg file.

Expected error log messages for this operation:

2013-09-24T13:10:19.903526Z 2 [Note] InnoDB: Sync to disk of '"test"."t"' started.
2013-09-24T13:10:19.903586Z 2 [Note] InnoDB: Stopping purge

InnoDB Tablespace Management

1638

2013-09-24T13:10:19.903725Z 2 [Note] InnoDB: Writing table metadata to './test/t.cfg'
2013-09-24T13:10:19.904014Z 2 [Note] InnoDB: Table '"test"."t"' flushed to disk

When UNLOCK TABLES is run on the source instance:

• The binary .cfg file is deleted.

• The shared lock on the table or tables being imported is released and the purge coordinator thread is
restarted.

Expected error log messages for this operation:

2013-09-24T13:10:21.181104Z 2 [Note] InnoDB: Deleting the meta-data file './test/t.cfg'
2013-09-24T13:10:21.181180Z 2 [Note] InnoDB: Resuming purge

When ALTER TABLE ... IMPORT TABLESPACE is run on the destination instance, the import
algorithm performs the following operations for each tablespace being imported:

• Each tablespace page is checked for corruption.

• The space ID and log sequence numbers (LSNs) on each page are updated

• Flags are validated and LSN updated for the header page.

• Btree pages are updated.

• The page state is set to dirty so that it will be written to disk.

Expected error log messages for this operation:

2013-07-18 15:15:01 34960 [Note] InnoDB: Importing tablespace for table 'test/t' that was exported from host 'ubuntu'
2013-07-18 15:15:01 34960 [Note] InnoDB: Phase I - Update all pages
2013-07-18 15:15:01 34960 [Note] InnoDB: Sync to disk
2013-07-18 15:15:01 34960 [Note] InnoDB: Sync to disk - done!
2013-07-18 15:15:01 34960 [Note] InnoDB: Phase III - Flush changes to disk
2013-07-18 15:15:01 34960 [Note] InnoDB: Phase IV - Flush complete

Note

You may also receive a warning that a tablespace is discarded (if you discarded
the tablespace for the destination table) and a message stating that statistics
could not be calculated due to a missing .ibd file:

2013-07-18 15:14:38 34960 [Warning] InnoDB: Table "test"."t" tablespace is set as discarded.
2013-07-18 15:14:38 7f34d9a37700 InnoDB: cannot calculate statistics for table "test"."t" because the .ibd file is missing. For help, please refer to
http://dev.mysql.com/doc/refman/5.7/en/innodb-troubleshooting.html

14.2.5.6 Moving the Undo Log out of the System Tablespace

Although tablespace management typically involves files holding tables and indexes, you can also
divide the undo log into separate undo tablespace files. This layout is different from the default
configuration where the undo log is part of the system tablespace. See Separate Tablespaces for
InnoDB Undo Logs for details.

14.2.5.7 Changing the Number or Size of InnoDB Log Files and Resizing the InnoDB
Tablespace

This section describes how to change the number or size of InnoDB redo log files and how to increase
or decrease InnoDB system tablespace size.

InnoDB Tablespace Management

1639

Changing the Number or Size of InnoDB Log Files

To change the number or size of InnoDB redo log files, perform the following steps:

1. Stop the MySQL server and make sure that it shuts down without errors.

2. Edit my.cnf to change the log file configuration. To change the log file size,
configure innodb_log_file_size. To increase the number of log files, configure
innodb_log_files_in_group.

3. Start the MySQL server again.

If InnoDB detects that the innodb_log_file_size differs from the redo log file size, it will write a
log checkpoint, close and remove the old log files, create new log files at the requested size, and open
the new log files.

Increasing the Size of the InnoDB Tablespace

The easiest way to increase the size of the InnoDB system tablespace is to configure it from
the beginning to be auto-extending. Specify the autoextend attribute for the last data file in
the tablespace definition. Then InnoDB increases the size of that file automatically in 8MB
increments when it runs out of space. The increment size can be changed by setting the value of the
innodb_autoextend_increment system variable, which is measured in megabytes.

You can expand the system tablespace by a defined amount by adding another data file:

1. Shut down the MySQL server.

2. If the previous last data file is defined with the keyword autoextend, change its definition to use a
fixed size, based on how large it has actually grown. Check the size of the data file, round it down
to the closest multiple of 1024 × 1024 bytes (= 1MB), and specify this rounded size explicitly in
innodb_data_file_path.

3. Add a new data file to the end of innodb_data_file_path, optionally making that file auto-
extending. Only the last data file in the innodb_data_file_path can be specified as auto-
extending.

4. Start the MySQL server again.

For example, this tablespace has just one auto-extending data file ibdata1:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that this data file, over time, has grown to 988MB. Here is the configuration line after
modifying the original data file to use a fixed size and adding a new auto-extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When you add a new data file to the system tablespace configuration, make sure that the filename
does not refer to an existing file. InnoDB creates and initializes the file when you restart the server.

Decreasing the Size of the InnoDB Tablespace

Currently, you cannot remove a data file from the system tablespace. To decrease the system
tablespace size, use this procedure:

1. Use mysqldump to dump all your InnoDB tables, including InnoDB tables located in the MySQL
database. As of 5.6, there are five InnoDB tables included in the MySQL database:

InnoDB Tablespace Management

1640

mysql> select table_name from information_schema.tables where table_schema='mysql' and engine='InnoDB';
+----------------------+
| table_name |
+----------------------+
| innodb_index_stats |
| innodb_table_stats |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
+----------------------+
5 rows in set (0.00 sec)

2. Stop the server.

3. Remove all the existing tablespace files (*.ibd), including the ibdata and ib_log files. Do not
forget to remove *.ibd files for tables located in the MySQL database.

4. Remove any .frm files for InnoDB tables.

5. Configure a new tablespace.

6. Restart the server.

7. Import the dump files.

Note

If your databases only use the InnoDB engine, it may be simpler to dump all
databases, stop the server, remove all databases and InnoDB log files, restart
the server, and import the dump files.

14.2.5.8 Using Raw Disk Partitions for the Shared Tablespace

You can use raw disk partitions as data files in the InnoDB system tablespace. This technique
enables nonbuffered I/O on Windows and on some Linux and Unix systems without file system
overhead. Perform tests with and without raw partitions to verify whether this change actually improves
performance on your system.

When you use a raw disk partition, ensure that the user ID that runs the MySQL server has read and
write privileges for that partition. For example, if you run the server as the mysql user, the partition
must be readable and writeable by mysql. If you run the server with the --memlock option, the server
must be run as root, so the partition must be readable and writeable by root.

The procedures described below involve option file modification. For additional information, see
Section 4.2.3.3, “Using Option Files”.

Allocating a Raw Disk Partition on Linux and Unix Systems

1. When you create a new data file, specify the keyword newraw immediately after the data file size
for the innodb_data_file_path option. The partition must be at least as large as the size that
you specify. Note that 1MB in InnoDB is 1024 × 1024 bytes, whereas 1MB in disk specifications
usually means 1,000,000 bytes.

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition. However,
do not create or change any InnoDB tables yet. Otherwise, when you next restart the server,
InnoDB reinitializes the partition and your changes are lost. (As a safety measure InnoDB prevents
users from modifying data when any partition with newraw is specified.)

InnoDB Table Management

1641

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Graw;/dev/hdd2:2Graw

4. Restart the server. InnoDB now permits changes to be made.

Allocating a Raw Disk Partition on Windows

On Windows systems, the same steps and accompanying guidelines described for Linux and Unix
systems apply except that the innodb_data_file_path setting differs slightly on Windows.

1. When you create a new data file, specify the keyword newraw immediately after the data file size
for the innodb_data_file_path option:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Gnewraw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives. In the
example above, D: is the drive letter of the partition.

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition.

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Graw

4. Restart the server. InnoDB now permits changes to be made.

14.2.6 InnoDB Table Management

14.2.6.1 Creating InnoDB Tables

To create an InnoDB table, use the CREATE TABLE statement without any special clauses. Formerly,
you needed the ENGINE=InnoDB clause, but not anymore now that InnoDB is the default storage
engine. (You might still use that clause if you plan to use mysqldump or replication to replay the
CREATE TABLE statement on a server running MySQL 5.1 or earlier, where the default storage engine
is MyISAM.)

-- Default storage engine = InnoDB.
CREATE TABLE t1 (a INT, b CHAR (20), PRIMARY KEY (a));
-- Backwards-compatible with older MySQL.
CREATE TABLE t2 (a INT, b CHAR (20), PRIMARY KEY (a)) ENGINE=InnoDB;

Depending on the innodb_file_per_table setting, InnoDB creates each table and associated
primary key index either in the system tablespace, or in a separate tablespace (represented by a .ibd
file) for each table. MySQL creates t1.frm and t2.frm files in the test directory under the MySQL
database directory. Internally, InnoDB adds an entry for the table to its own data dictionary. The entry
includes the database name. For example, if test is the database in which the t1 table is created,
the entry is for 'test/t1'. This means you can create a table of the same name t1 in some other
database, and the table names do not collide inside InnoDB.

To see the properties of these tables, issue a SHOW TABLE STATUS statement:

InnoDB Table Management

1642

SHOW TABLE STATUS FROM test LIKE 't%' \G;

In the status output, you see the row format property of these first tables is Compact. Although that
setting is fine for basic experimentation, to take advantage of the most powerful InnoDB performance
features, you will quickly graduate to using other row formats such as Dynamic and Compressed.
Using those values requires a little bit of setup first:

set global innodb_file_per_table=1;
set global innodb_file_format=barracuda;
CREATE TABLE t3 (a INT, b CHAR (20), PRIMARY KEY (a)) row_format=dynamic;
CREATE TABLE t4 (a INT, b CHAR (20), PRIMARY KEY (a)) row_format=compressed;

Always set up a primary key for each InnoDB table, specifying the column or columns that:

• Are referenced by the most important queries.

• Are never left blank.

• Never have duplicate values.

• Rarely if ever change value once inserted.

For example, in a table containing information about people, you would not create a primary key on
(firstname, lastname) because more than one person can have the same name, some people
have blank last names, and sometimes people change their names. With so many constraints, often
there is not an obvious set of columns to use as a primary key, so you create a new column with a
numeric ID to serve as all or part of the primary key. You can declare an auto-increment column so that
ascending values are filled in automatically as rows are inserted:

-- The value of ID can act like a pointer between related items in different tables.
CREATE TABLE t5 (id INT AUTO_INCREMENT, b CHAR (20), PRIMARY KEY (id));
-- The primary key can consist of more than one column. Any autoinc column must come first.
CREATE TABLE t6 (id INT AUTO_INCREMENT, a INT, b CHAR (20), PRIMARY KEY (id,a));

Although the table works correctly without you defining a primary key, the primary key is involved with
many aspects of performance and is a crucial design aspect for any large or frequently used table.
Make a habit of always specifying one in the CREATE TABLE statement. (If you create the table,
load data, and then do ALTER TABLE to add a primary key later, that operation is much slower than
defining the primary key when creating the table.)

14.2.6.2 Moving or Copying InnoDB Tables to Another Machine

This section describes techniques for moving or copying some or all InnoDB tables to a different
server. For example, you might move an entire MySQL instance to a larger, faster server; you might
clone an entire MySQL instance to a new replication slave server; you might copy individual tables to
another server to develop and test an application, or to a data warehouse server to produce reports.

Techniques for moving or copying InnoDB tables include:

• Transportable Tablespaces

• MySQL Enterprise Backup

• Copying Data Files (Cold Backup Method)

• Export and Import (mysqldump)

Using Lowercase Names for Cross-Platform Moving or Copying

On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and

InnoDB Table Management

1643

tables using lowercase names. A convenient way to accomplish this is to add the following line to the
[mysqld] section of your my.cnf or my.ini file before creating any databases or tables:

[mysqld]
lower_case_table_names=1

Transportable Tablespaces

Introduced in MySQL 5.6.6, the transportable tablespaces feature uses FLUSH TABLES ... FOR
EXPORT to ready InnoDB tables for copying from one server instance to another. To use this feature,
InnoDB tables must be created with innodb_file_per_table set to ON so that each InnoDB table
has its own tablespace. For usage information, see Section 14.2.5.5, “Copying Tablespaces to Another
Server (Transportable Tablespaces)”.

MySQL Enterprise Backup

The MySQL Enterprise Backup product lets you back up a running MySQL database, including
InnoDB and MyISAM tables, with minimal disruption to operations while producing a consistent
snapshot of the database. When MySQL Enterprise Backup is copying InnoDB tables, reads and
writes to both InnoDB and MyISAM tables can continue. During the copying of MyISAM and other non-
InnoDB tables, reads (but not writes) to those tables are permitted. In addition, MySQL Enterprise
Backup can create compressed backup files, and back up subsets of InnoDB tables. In conjunction
with the MySQL binary log, you can perform point-in-time recovery. MySQL Enterprise Backup is
included as part of the MySQL Enterprise subscription.

For more details about MySQL Enterprise Backup, see Section 23.2, “MySQL Enterprise Backup”.

Copying Data Files (Cold Backup Method)

You can move an InnoDB database simply by copying all the relevant files listed under "Cold Backups"
in Section 14.2.14, “InnoDB Backup and Recovery”.

Like MyISAM data files, InnoDB data and log files are binary-compatible on all platforms having the
same floating-point number format. If the floating-point formats differ but you have not used FLOAT or
DOUBLE data types in your tables, then the procedure is the same: simply copy the relevant files.

Portability Considerations for .ibd Files

When you move or copy .ibd files, the database directory name must be the same on the source
and destination systems. The table definition stored in the InnoDB shared tablespace includes the
database name. The transaction IDs and log sequence numbers stored in the tablespace files also
differ between databases.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE
statement:

RENAME TABLE db1.tbl_name TO db2.tbl_name;

If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it
originated as follows:

1. The table must not have been dropped or truncated since you copied the .ibd file, because doing
so changes the table ID stored inside the tablespace.

2. Issue this ALTER TABLE statement to delete the current .ibd file:

ALTER TABLE tbl_name DISCARD TABLESPACE;

InnoDB Table Management

1644

3. Copy the backup .ibd file to the proper database directory.

4. Issue this ALTER TABLE statement to tell InnoDB to use the new .ibd file for the table:

ALTER TABLE tbl_name IMPORT TABLESPACE;

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data.

In this context, a “clean” .ibd file backup is one for which the following requirements are satisfied:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make a clean backup .ibd file using the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2. Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the
database, and the main thread status of InnoDB is Waiting for server activity. Then you
can make a copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use the MySQL Enterprise Backup
product:

1. Use MySQL Enterprise Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

Export and Import (mysqldump)

You can use mysqldump to dump your tables on one machine and then import the dump files on the
other machine. Using this method, it does not matter whether the formats differ or if your tables contain
floating-point data.

One way to increase the performance of this method is to switch off autocommit mode when importing
data, assuming that the tablespace has enough space for the big rollback segment that the import
transactions generate. Do the commit only after importing a whole table or a segment of a table.

14.2.6.3 Grouping DML Operations with Transactions

By default, connection to the MySQL server begins with autocommit mode enabled, which
automatically commits every SQL statement as you execute it. This mode of operation might be
unfamiliar if you have experience with other database systems, where it is standard practice to issue a
sequence of DML statements and commit them or roll them back all together.

To use multiple-statement transactions, switch autocommit off with the SQL statement SET
autocommit = 0 and end each transaction with COMMIT or ROLLBACK as appropriate. To leave
autocommit on, begin each transaction with START TRANSACTION and end it with COMMIT or
ROLLBACK. The following example shows two transactions. The first is committed; the second is rolled
back.

shell> mysql test

InnoDB Table Management

1645

mysql> CREATE TABLE customer (a INT, b CHAR (20), INDEX (a));
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do a transaction with autocommit turned on.
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do another transaction with autocommit turned off.
mysql> SET autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO customer VALUES (20, 'Paul');
Query OK, 1 row affected (0.00 sec)
mysql> DELETE FROM customer WHERE b = 'Heikki';
Query OK, 1 row affected (0.00 sec)
mysql> -- Now we undo those last 2 inserts and the delete.
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM customer;
+------+--------+
| a | b |
+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

Transactions in Client-Side Languages

In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send
transaction control statements such as COMMIT to the MySQL server as strings just like any other SQL
statements such as SELECT or INSERT. Some APIs also offer separate special transaction commit and
rollback functions or methods.

14.2.6.4 Converting Tables from MyISAM to InnoDB

If you have existing tables, and applications that use them, that you want to convert to InnoDB for
better reliability and scalability, use the following guidelines and tips. This section assumes most such
tables were originally MyISAM, which was formerly the default.

Reduce Memory Usage for MyISAM, Increase Memory Usage for InnoDB

As you transition away from MyISAM tables, lower the value of the key_buffer_size
configuration option to free memory no longer needed for caching results. Increase the value of the
innodb_buffer_pool_size configuration option, which performs a similar role of allocating cache
memory for InnoDB tables. The InnoDB buffer pool caches both table data and index data, so it does
double duty in speeding up lookups for queries and keeping query results in memory for reuse.

• Allocate as much memory to this option as you can afford, often up to 80% of physical memory on
the server.

• If the operating system runs short of memory for other processes and begins to swap, reduce the
innodb_buffer_pool_size value. Swapping is such an expensive operation that it drastically
reduces the benefit of the cache memory.

• If the innodb_buffer_pool_size value is several gigabytes or higher, consider increasing
the values of innodb_buffer_pool_instances. Doing so helps on busy servers where many
connections are reading data into the cache at the same time.

• On a busy server, run benchmarks with the Query Cache turned off. The InnoDB buffer pool
provides similar benefits, so the Query Cache might be tying up memory unnecessarily.

InnoDB Table Management

1646

Watch Out for Too-Long Or Too-Short Transactions

Because MyISAM tables do not support transactions, you might not have paid much attention to the
autocommit configuration option and the COMMIT and ROLLBACK statements. These keywords are
important to allow multiple sessions to read and write InnoDB tables concurrently, providing substantial
scalability benefits in write-heavy workloads.

While a transaction is open, the system keeps a snapshot of the data as seen at the beginning of the
transaction, which can cause substantial overhead if the system inserts, updates, and deletes millions
of rows while a stray transaction keeps running. Thus, take care to avoid transactions that run for too
long:

• If you are using a mysql session for interactive experiments, always COMMIT (to finalize the
changes) or ROLLBACK (to undo the changes) when finished. Close down interactive sessions rather
than leaving them open for long periods, to avoid keeping transactions open for long periods by
accident.

• Make sure that any error handlers in your application also ROLLBACK incomplete changes or
COMMIT completed changes.

• ROLLBACK is a relatively expensive operation, because INSERT, UPDATE, and DELETE operations
are written to InnoDB tables prior to the COMMIT, with the expectation that most changes will be
committed successfully and rollbacks will be rare. When experimenting with large volumes of data,
avoid making changes to large numbers of rows and then rolling back those changes.

• When loading large volumes of data with a sequence of INSERT statements, periodically COMMIT
the results to avoid having transactions that last for hours. In typical load operations for data
warehousing, if something goes wrong, you TRUNCATE TABLE and start over from the beginning
rather than doing a ROLLBACK.

The preceding tips save memory and disk space that can be wasted during too-long transactions.
When transactions are shorter than they should be, the problem is excessive I/O. With each COMMIT,
MySQL makes sure each change is safely recorded to disk, which involves some I/O.

• For most operations on InnoDB tables, you should use the setting autocommit=0. From an
efficiency perspective, this avoids unnecessary I/O when you issue large numbers of consecutive
INSERT, UPDATE, or DELETE statements. From a safety perspective, this allows you to issue a
ROLLBACK statement to recover lost or garbled data if you make a mistake on the mysql command
line, or in an exception handler in your application.

• The time when autocommit=1 is suitable for InnoDB tables is when running a sequence of queries
for generating reports or analyzing statistics. In this situation, there is no I/O penalty related to
COMMIT or ROLLBACK, and InnoDB can automatically optimize the read-only workload.

• If you make a series of related changes, finalize all those changes at once with a single COMMIT
at the end. For example, if you insert related pieces of information into several tables, do a single
COMMIT after making all the changes. Or if you run many consecutive INSERT statements, do a
single COMMIT after all the data is loaded; if you are doing millions of INSERT statements, perhaps
split up the huge transaction by issuing a COMMIT every ten thousand or hundred thousand records,
so the transaction does not grow too large.

• Remember that even a SELECT statement opens a transaction, so after running some report or
debugging queries in an interactive mysql session, either issue a COMMIT or close the mysql
session.

Don't Worry Too Much About Deadlocks

You might see warning messages referring to “deadlocks” in the MySQL error log, or the output of
SHOW ENGINE INNODB STATUS. Despite the scary-sounding name, a deadlock is not a serious
issue for InnoDB tables, and often does not require any corrective action. When two transactions start
modifying multiple tables, accessing the tables in a different order, they can reach a state where each

InnoDB Table Management

1647

transaction is waiting for the other and neither can proceed. MySQL immediately detects this condition
and cancels (rolls back) the “smaller” transaction, allowing the other to proceed.

Your applications do need error-handling logic to restart a transaction that is forcibly cancelled like this.
When you re-issue the same SQL statements as before, the original timing issue no longer applies:
either the other transaction has already finished and yours can proceed, or the other transaction is still
in progress and your transaction waits until it finishes.

If deadlock warnings occur constantly, you might review the application code to reorder the
SQL operations in a consistent way, or to shorten the transactions. You can test with the
innodb_print_all_deadlocks option enabled to see all deadlock warnings in the MySQL error
log, rather than only the last warning in the SHOW ENGINE INNODB STATUS output.

Plan the Storage Layout

To get the best performance from InnoDB tables, you can adjust a number of parameters related to
storage layout.

When you convert MyISAM tables that are large, frequently accessed, and hold vital data, investigate
and consider the innodb_file_per_table, innodb_file_format, and innodb_page_size
configuration options, and the ROW_FORMAT and KEY_BLOCK_SIZE clauses of the CREATE TABLE
statement.

During your initial experiments, the most important setting is innodb_file_per_table. Enabling
this option before creating new InnoDB tables ensures that the InnoDB system tablespace files do not
allocate disk space permanently for all the InnoDB data. With innodb_file_per_table enabled,
DROP TABLE and TRUNCATE TABLE free disk space as you would expect.

Converting an Existing Table

To convert a non-InnoDB table to use InnoDB use ALTER TABLE:

ALTER TABLE table_name ENGINE=InnoDB;

Important

Do not convert MySQL system tables in the mysql database (such as user or
host) to the InnoDB type. This is an unsupported operation. The system tables
must always be of the MyISAM type.

Cloning the Structure of a Table

You might make an InnoDB table that is a clone of a MyISAM table, rather than doing the ALTER
TABLE conversion, to test the old and new table side-by-side before switching.

Create an empty InnoDB table with identical column and index definitions. Use show create table
table_name\G to see the full CREATE TABLE statement to use. Change the ENGINE clause to
ENGINE=INNODB.

Transferring Existing Data

To transfer a large volume of data into an empty InnoDB table created as shown in the previous
section, insert the rows with INSERT INTO innodb_table SELECT * FROM myisam_table
ORDER BY primary_key_columns.

You can also create the indexes for the InnoDB table after inserting the data. Historically, creating new
secondary indexes was a slow operation for InnoDB, but now you can create the indexes after the data
is loaded with relatively little overhead from the index creation step.

If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the
uniqueness checks temporarily during the import operation:

InnoDB Table Management

1648

SET unique_checks=0;
... import operation ...
SET unique_checks=1;

For big tables, this saves disk I/O because InnoDB can use its insert buffer to write secondary index
records as a batch. Be certain that the data contains no duplicate keys. unique_checks permits but
does not require storage engines to ignore duplicate keys.

To get better control over the insertion process, you might insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
 WHERE yourkey > something AND yourkey <= somethingelse;

After all records have been inserted, you can rename the tables.

During the conversion of big tables, increase the size of the InnoDB buffer pool to reduce disk I/O, to a
maximum of 80% of physical memory. You can also increase the sizes of the InnoDB log files.

Storage Requirements

By this point, as already mentioned, you should already have the innodb_file_per_table option
enabled, so that if you temporarily make several copies of your data in InnoDB tables, you can recover
all that disk space by dropping unneeded tables afterward.

Whether you convert the MyISAM table directly or create a cloned InnoDB table, make sure that you
have sufficient disk space to hold both the old and new tables during the process. InnoDB tables
require more disk space than MyISAM tables. If an ALTER TABLE operation runs out of space, it starts
a rollback, and that can take hours if it is disk-bound. For inserts, InnoDB uses the insert buffer to
merge secondary index records to indexes in batches. That saves a lot of disk I/O. For rollback, no
such mechanism is used, and the rollback can take 30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be
advisable to kill the database process rather than wait for millions of disk I/O operations to complete.
For the complete procedure, see Section 14.2.17.2, “Starting InnoDB on a Corrupted Database”.

Carefully Choose a PRIMARY KEY for Each Table

The PRIMARY KEY clause is a critical factor affecting the performance of MySQL queries and the
space usage for tables and indexes. Perhaps you have phoned a financial institution where you are
asked for an account number. If you do not have the number, you are asked for a dozen different
pieces of information to “uniquely identify” yourself. The primary key is like that unique account number
that lets you get straight down to business when querying or modifying the information in a table. Every
row in the table must have a primary key value, and no two rows can have the same primary key value.

Here are some guidelines for the primary key, followed by more detailed explanations.

• Declare a PRIMARY KEY for each table. Typically, it is the most important column that you refer to in
WHERE clauses when looking up a single row.

• Declare the PRIMARY KEY clause in the original CREATE TABLE statement, rather than adding it
later through an ALTER TABLE statement.

• Choose the column and its data type carefully. Prefer numeric columns over character or string ones.

• Consider using an auto-increment column if there is not another stable, unique, non-null, numeric
column to use.

• An auto-increment column is also a good choice if there is any doubt whether the value of the
primary key column could ever change. Changing the value of a primary key column is an expensive
operation, possibly involving rearranging data within the table and within each secondary index.

InnoDB Table Management

1649

Consider adding a primary key to any table that does not already have one. Use the smallest practical
numeric type based on the maximum projected size of the table. This can make each row slightly more
compact, which can yield substantial space savings for large tables. The space savings are multiplied
if the table has any secondary indexes, because the primary key value is repeated in each secondary
index entry. In addition to reducing data size on disk, a small primary key also lets more data fit into the
buffer pool, speeding up all kinds of operations and improving concurrency.

If the table already has a primary key on some longer column, such as a VARCHAR, consider adding a
new unsigned AUTO_INCREMENT column and switching the primary key to that, even if that column is
not referenced in queries. This design change can produce substantial space savings in the secondary
indexes. You can designate the former primary key columns as UNIQUE NOT NULL to enforce the
same constraints as the PRIMARY KEY clause, that is, to prevent duplicate or null values across all
those columns.

If you spread related information across multiple tables, typically each table uses the same column for
its primary key. For example, a personnel database might have several tables, each with a primary
key of employee number. A sales database might have some tables with a primary key of customer
number, and other tables with a primary key of order number. Because lookups using the primary key
are very fast, you can construct efficient join queries for such tables.

If you leave the PRIMARY KEY clause out entirely, MySQL creates an invisible one for you. It is a 6-
byte value that might be longer than you need, thus wasting space. Because it is hidden, you cannot
refer to it in queries.

Application Performance Considerations

The extra reliability and scalability features of InnoDB do require more disk storage than equivalent
MyISAM tables. You might change the column and index definitions slightly, for better space utilization,
reduced I/O and memory consumption when processing result sets, and better query optimization
plans making efficient use of index lookups.

If you do set up a numeric ID column for the primary key, use that value to cross-reference with related
values in any other tables, particularly for join queries. For example, rather than accepting a country
name as input and doing queries searching for the same name, do one lookup to determine the country
ID, then do other queries (or a single join query) to look up relevant information across several tables.
Rather than storing a customer or catalog item number as a string of digits, potentially using up several
bytes, convert it to a numeric ID for storing and querying. A 4-byte unsigned INT column can index
over 4 billion items (with the US meaning of billion: 1000 million). For the ranges of the different integer
types, see Section 11.2.1, “Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT”.

Understand Files Associated with InnoDB Tables

InnoDB files require more care and planning than MyISAM files do:

• You must not delete the ibdata files that represent the InnoDB system tablespace.

• Copying InnoDB tables from one server to another requires issuing the FLUSH TABLES ... FOR
EXPORT statement first, and copying the table_name.cfg file along with the table_name.ibd
file.

14.2.6.5 AUTO_INCREMENT Handling in InnoDB

InnoDB provides an optimization that significantly improves scalability and performance of SQL
statements that insert rows into tables with AUTO_INCREMENT columns. To use the AUTO_INCREMENT
mechanism with an InnoDB table, an AUTO_INCREMENT column ai_col must be defined as part
of an index such that it is possible to perform the equivalent of an indexed SELECT MAX(ai_col)
lookup on the table to obtain the maximum column value. Typically, this is achieved by making the
column the first column of some table index.

InnoDB Table Management

1650

This section provides background information on the original (“traditional”) implementation of auto-
increment locking in InnoDB, explains the configurable locking mechanism, documents the parameter
for configuring the mechanism, and describes its behavior and interaction with replication.

Traditional InnoDB Auto-Increment Locking

The original implementation of auto-increment handling in InnoDB uses the following strategy to
prevent problems when using the binary log for statement-based replication or for certain recovery
scenarios.

If you specify an AUTO_INCREMENT column for an InnoDB table, the table handle in the InnoDB data
dictionary contains a special counter called the auto-increment counter that is used in assigning new
values for the column. This counter is stored only in main memory, not on disk.

InnoDB uses the following algorithm to initialize the auto-increment counter for a table t that contains
an AUTO_INCREMENT column named ai_col: After a server startup, for the first insert into a table t,
InnoDB executes the equivalent of this statement:

SELECT MAX(ai_col) FROM t FOR UPDATE;

InnoDB increments the value retrieved by the statement and assigns it to the column and to the
auto-increment counter for the table. By default, the value is incremented by one. This default can be
overridden by the auto_increment_increment configuration setting.

If the table is empty, InnoDB uses the value 1. This default can be overridden by the
auto_increment_offset configuration setting.

If a SHOW TABLE STATUS statement examines the table t before the auto-increment counter is
initialized, InnoDB initializes but does not increment the value and stores it for use by later inserts.
This initialization uses a normal exclusive-locking read on the table and the lock lasts to the end of the
transaction.

InnoDB follows the same procedure for initializing the auto-increment counter for a freshly created
table.

After the auto-increment counter has been initialized, if you do not explicitly specify a value for an
AUTO_INCREMENT column, InnoDB increments the counter and assigns the new value to the column.
If you insert a row that explicitly specifies the column value, and the value is bigger than the current
counter value, the counter is set to the specified column value.

If a user specifies NULL or 0 for the AUTO_INCREMENT column in an INSERT, InnoDB treats the row
as if the value was not specified and generates a new value for it.

The behavior of the auto-increment mechanism is not defined if you assign a negative value to the
column, or if the value becomes bigger than the maximum integer that can be stored in the specified
integer type.

When accessing the auto-increment counter, InnoDB uses a special table-level AUTO-INC lock
that it keeps to the end of the current SQL statement, not to the end of the transaction. The special
lock release strategy was introduced to improve concurrency for inserts into a table containing an
AUTO_INCREMENT column. Nevertheless, two transactions cannot have the AUTO-INC lock on the
same table simultaneously, which can have a performance impact if the AUTO-INC lock is held for
a long time. That might be the case for a statement such as INSERT INTO t1 ... SELECT ...
FROM t2 that inserts all rows from one table into another.

InnoDB uses the in-memory auto-increment counter as long as the server runs. When the server is
stopped and restarted, InnoDB reinitializes the counter for each table for the first INSERT to the table,
as described earlier.

A server restart also cancels the effect of the AUTO_INCREMENT = N table option in CREATE TABLE
and ALTER TABLE statements, which you can use with InnoDB tables to set the initial counter value
or alter the current counter value.

InnoDB Table Management

1651

You may see gaps in the sequence of values assigned to the AUTO_INCREMENT column if you roll
back transactions that have generated numbers using the counter.

Configurable InnoDB Auto-Increment Locking

As described in the previous section, InnoDB uses a special lock called the table-level AUTO-INC
lock for inserts into tables with AUTO_INCREMENT columns. This lock is normally held to the end of the
statement (not to the end of the transaction), to ensure that auto-increment numbers are assigned in a
predictable and repeatable order for a given sequence of INSERT statements.

In the case of statement-based replication, this means that when an SQL statement is replicated on
a slave server, the same values are used for the auto-increment column as on the master server.
The result of execution of multiple INSERT statements is deterministic, and the slave reproduces the
same data as on the master. If auto-increment values generated by multiple INSERT statements were
interleaved, the result of two concurrent INSERT statements would be nondeterministic, and could not
reliably be propagated to a slave server using statement-based replication.

To make this clear, consider an example that uses this table:

CREATE TABLE t1 (
 c1 INT(11) NOT NULL AUTO_INCREMENT,
 c2 VARCHAR(10) DEFAULT NULL,
 PRIMARY KEY (c1)
) ENGINE=InnoDB;

Suppose that there are two transactions running, each inserting rows into a table with an
AUTO_INCREMENT column. One transaction is using an INSERT ... SELECT statement that inserts
1000 rows, and another is using a simple INSERT statement that inserts one row:

Tx1: INSERT INTO t1 (c2) SELECT 1000 rows from another table ...
Tx2: INSERT INTO t1 (c2) VALUES ('xxx');

InnoDB cannot tell in advance how many rows will be retrieved from the SELECT in the INSERT
statement in Tx1, and it assigns the auto-increment values one at a time as the statement proceeds.
With a table-level lock, held to the end of the statement, only one INSERT statement referring to table
t1 can execute at a time, and the generation of auto-increment numbers by different statements is not
interleaved. The auto-increment value generated by the Tx1 INSERT ... SELECT statement will be
consecutive, and the (single) auto-increment value used by the INSERT statement in Tx2 will either be
smaller or larger than all those used for Tx1, depending on which statement executes first.

As long as the SQL statements execute in the same order when replayed from the binary log (when
using statement-based replication, or in recovery scenarios), the results will be the same as they were
when Tx1 and Tx2 first ran. Thus, table-level locks held until the end of a statement make INSERT
statements using auto-increment safe for use with statement-based replication. However, those locks
limit concurrency and scalability when multiple transactions are executing insert statements at the
same time.

In the preceding example, if there were no table-level lock, the value of the auto-increment column
used for the INSERT in Tx2 depends on precisely when the statement executes. If the INSERT of Tx2
executes while the INSERT of Tx1 is running (rather than before it starts or after it completes), the
specific auto-increment values assigned by the two INSERT statements are nondeterministic, and may
vary from run to run.

InnoDB can avoid using the table-level AUTO-INC lock for a class of INSERT statements where
the number of rows is known in advance, and still preserve deterministic execution and safety for
statement-based replication. Further, if you are not using the binary log to replay SQL statements
as part of recovery or replication, you can entirely eliminate use of the table-level AUTO-INC lock for
even greater concurrency and performance, at the cost of permitting gaps in auto-increment numbers

InnoDB Table Management

1652

assigned by a statement and potentially having the numbers assigned by concurrently executing
statements interleaved.

For INSERT statements where the number of rows to be inserted is known at the beginning of
processing the statement, InnoDB quickly allocates the required number of auto-increment values
without taking any lock, but only if there is no concurrent session already holding the table-level AUTO-
INC lock (because that other statement will be allocating auto-increment values one-by-one as it
proceeds). More precisely, such an INSERT statement obtains auto-increment values under the control
of a mutex (a light-weight lock) that is not held until the statement completes, but only for the duration
of the allocation process.

This new locking scheme enables much greater scalability, but it does introduce some subtle
differences in how auto-increment values are assigned compared to the original mechanism. To
describe the way auto-increment works in InnoDB, the following discussion defines some terms,
and explains how InnoDB behaves using different settings of the innodb_autoinc_lock_mode
configuration parameter, which you can set at server startup. Additional considerations are described
following the explanation of auto-increment locking behavior.

First, some definitions:

• “INSERT-like” statements

All statements that generate new rows in a table, including INSERT, INSERT ... SELECT,
REPLACE, REPLACE ... SELECT, and LOAD DATA.

• “Simple inserts”

Statements for which the number of rows to be inserted can be determined in advance (when the
statement is initially processed). This includes single-row and multiple-row INSERT and REPLACE
statements that do not have a nested subquery, but not INSERT ... ON DUPLICATE KEY
UPDATE.

• “Bulk inserts”

Statements for which the number of rows to be inserted (and the number of required auto-increment
values) is not known in advance. This includes INSERT ... SELECT, REPLACE ... SELECT,
and LOAD DATA statements, but not plain INSERT. InnoDB will assign new values for the
AUTO_INCREMENT column one at a time as each row is processed.

• “Mixed-mode inserts”

These are “simple insert” statements that specify the auto-increment value for some (but not all) of
the new rows. An example follows, where c1 is an AUTO_INCREMENT column of table t1:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

Another type of “mixed-mode insert” is INSERT ... ON DUPLICATE KEY UPDATE, which in
the worst case is in effect an INSERT followed by a UPDATE, where the allocated value for the
AUTO_INCREMENT column may or may not be used during the update phase.

There are three possible settings for the innodb_autoinc_lock_mode parameter:

• innodb_autoinc_lock_mode = 0 (“traditional” lock mode)

This lock mode provides the same behavior as before innodb_autoinc_lock_mode existed. For
all “INSERT-like” statements, a special table-level AUTO-INC lock is obtained and held to the end
of the statement. This assures that the auto-increment values assigned by any given statement are
consecutive.

This lock mode is provided for:

• Backward compatibility.

InnoDB Table Management

1653

• Performance testing.

• Working around issues with “mixed-mode inserts”, due to the possible differences in semantics
described later.

• innodb_autoinc_lock_mode = 1 (“consecutive” lock mode)

This is the default lock mode. In this mode, “bulk inserts” use the special AUTO-INC table-level lock
and hold it until the end of the statement. This applies to all INSERT ... SELECT, REPLACE ...
SELECT, and LOAD DATA statements. Only one statement holding the AUTO-INC lock can execute
at a time.

With this lock mode, “simple inserts” (only) use a new locking model where a light-weight mutex
is used during the allocation of auto-increment values, and no table-level AUTO-INC lock is used,
unless an AUTO-INC lock is held by another transaction. If another transaction does hold an AUTO-
INC lock, a “simple insert” waits for the AUTO-INC lock, as if it too were a “bulk insert”.

This lock mode ensures that, in the presence of INSERT statements where the number of rows is not
known in advance (and where auto-increment numbers are assigned as the statement progresses),
all auto-increment values assigned by any “INSERT-like” statement are consecutive, and operations
are safe for statement-based replication.

Simply put, the important impact of this lock mode is significantly better scalability. This mode is safe
for use with statement-based replication. Further, as with “traditional” lock mode, auto-increment
numbers assigned by any given statement are consecutive. In this mode, there is no change in
semantics compared to “traditional” mode for any statement that uses auto-increment, with one
important exception.

The exception is for “mixed-mode inserts”, where the user provides explicit values for an
AUTO_INCREMENT column for some, but not all, rows in a multiple-row “simple insert”. For such
inserts, InnoDB will allocate more auto-increment values than the number of rows to be inserted.
However, all values automatically assigned are consecutively generated (and thus higher than)
the auto-increment value generated by the most recently executed previous statement. “Excess”
numbers are lost.

• innodb_autoinc_lock_mode = 2 (“interleaved” lock mode)

In this lock mode, no “INSERT-like” statements use the table-level AUTO-INC lock, and multiple
statements can execute at the same time. This is the fastest and most scalable lock mode, but it is
not safe when using statement-based replication or recovery scenarios when SQL statements are
replayed from the binary log.

In this lock mode, auto-increment values are guaranteed to be unique and monotonically increasing
across all concurrently executing “INSERT-like” statements. However, because multiple statements
can be generating numbers at the same time (that is, allocation of numbers is interleaved across
statements), the values generated for the rows inserted by any given statement may not be
consecutive.

If the only statements executing are “simple inserts” where the number of rows to be inserted is
known ahead of time, there will be no gaps in the numbers generated for a single statement, except
for “mixed-mode inserts”. However, when “bulk inserts” are executed, there may be gaps in the auto-
increment values assigned by any given statement.

The auto-increment locking modes provided by innodb_autoinc_lock_mode have several usage
implications:

• Using auto-increment with replication

If you are using statement-based replication, set innodb_autoinc_lock_mode to 0 or 1 and use
the same value on the master and its slaves. Auto-increment values are not ensured to be the same

InnoDB Table Management

1654

on the slaves as on the master if you use innodb_autoinc_lock_mode = 2 (“interleaved”) or
configurations where the master and slaves do not use the same lock mode.

If you are using row-based or mixed-format replication, all of the auto-increment lock modes are safe,
since row-based replication is not sensitive to the order of execution of the SQL statements (and the
mixed format uses row-based replication for any statements that are unsafe for statement-based
replication).

• “Lost” auto-increment values and sequence gaps

In all lock modes (0, 1, and 2), if a transaction that generated auto-increment values rolls back, those
auto-increment values are “lost”. Once a value is generated for an auto-increment column, it cannot
be rolled back, whether or not the “INSERT-like” statement is completed, and whether or not the
containing transaction is rolled back. Such lost values are not reused. Thus, there may be gaps in
the values stored in an AUTO_INCREMENT column of a table.

• Gaps in auto-increment values for “bulk inserts”

With innodb_autoinc_lock_mode set to 0 (“traditional”) or 1 (“consecutive”), the auto-increment
values generated by any given statement will be consecutive, without gaps, because the table-level
AUTO-INC lock is held until the end of the statement, and only one such statement can execute at a
time.

With innodb_autoinc_lock_mode set to 2 (“interleaved”), there may be gaps in the auto-
increment values generated by “bulk inserts,” but only if there are concurrently executing “INSERT-
like” statements.

For lock modes 1 or 2, gaps may occur between successive statements because for bulk inserts
the exact number of auto-increment values required by each statement may not be known and
overestimation is possible.

• Auto-increment values assigned by “mixed-mode inserts”

Consider a “mixed-mode insert,” where a “simple insert” specifies the auto-increment value for
some (but not all) resulting rows. Such a statement will behave differently in lock modes 0, 1, and
2. For example, assume c1 is an AUTO_INCREMENT column of table t1, and that the most recent
automatically generated sequence number is 100. Consider the following “mixed-mode insert”
statement:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With innodb_autoinc_lock_mode set to 0 (“traditional”), the four new rows will be:

+-----+------+
| c1 | c2 |
+-----+------+
1	a
101	b
5	c
102	d
+-----+------+

The next available auto-increment value will be 103 because the auto-increment values are allocated
one at a time, not all at once at the beginning of statement execution. This result is true whether or
not there are concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to 1 (“consecutive”), the four new rows will also be:

+-----+------+
| c1 | c2 |
+-----+------+

InnoDB Table Management

1655

1	a
101	b
5	c
102	d
+-----+------+

However, in this case, the next available auto-increment value will be 105, not 103 because four
auto-increment values are allocated at the time the statement is processed, but only two are used.
This result is true whether or not there are concurrently executing “INSERT-like” statements (of any
type).

With innodb_autoinc_lock_mode set to mode 2 (“interleaved”), the four new rows will be:

+-----+------+
| c1 | c2 |
+-----+------+
1	a
x	b
5	c
y	d
+-----+------+

The values of x and y will be unique and larger than any previously generated rows. However,
the specific values of x and y will depend on the number of auto-increment values generated by
concurrently executing statements.

Finally, consider the following statement, issued when the most-recently generated sequence
number was the value 4:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With any innodb_autoinc_lock_mode setting, this statement will generate a duplicate-key error
23000 (Can't write; duplicate key in table) because 5 will be allocated for the row
(NULL, 'b') and insertion of the row (5, 'c') will fail.

14.2.6.6 InnoDB and FOREIGN KEY Constraints

This section describes differences in the InnoDB storage engine's handling of foreign keys as
compared with that of the MySQL Server.

Foreign Key Definitions

Foreign key definitions for InnoDB tables are subject to the following conditions:

• InnoDB permits a foreign key to reference any index column or group of columns. However, in
the referenced table, there must be an index where the referenced columns are listed as the first
columns in the same order.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This means
that no user-partitioned InnoDB table may contain foreign key references or columns referenced by
foreign keys.

• InnoDB allows a foreign key constraint to reference a non-unique key. This is an InnoDB extension
to standard SQL.

Referential Actions

Referential actions for foreign keys of InnoDB tables are subject to the following conditions:

• While SET DEFAULT is allowed by the MySQL Server, it is rejected as invalid by InnoDB. CREATE
TABLE and ALTER TABLE statements using this clause are not allowed for InnoDB tables.

InnoDB Table Management

1656

• If there are several rows in the parent table that have the same referenced key value, InnoDB acts
in foreign key checks as if the other parent rows with the same key value do not exist. For example,
if you have defined a RESTRICT type constraint, and there is a child row with several parent rows,
InnoDB does not permit the deletion of any of those parent rows.

• InnoDB performs cascading operations through a depth-first algorithm, based on records in the
indexes corresponding to the foreign key constraints.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the cascade, it acts like RESTRICT. This means that you cannot use self-
referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent infinite
loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the other hand,
is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not be nested
more than 15 levels deep.

• Like MySQL in general, in an SQL statement that inserts, deletes, or updates many rows, InnoDB
checks UNIQUE and FOREIGN KEY constraints row-by-row. When performing foreign key checks,
InnoDB sets shared row-level locks on child or parent records it has to look at. InnoDB checks
foreign key constraints immediately; the check is not deferred to transaction commit. According to
the SQL standard, the default behavior should be deferred checking. That is, constraints are only
checked after the entire SQL statement has been processed. Until InnoDB implements deferred
constraint checking, some things will be impossible, such as deleting a record that refers to itself
using a foreign key.

Foreign Key Usage and Error Information

You can obtain general information about foreign keys and their usage from querying the
INFORMATION_SCHEMA.KEY_COLUMN_USAGE table, and more information more specific to InnoDB
tables can be found in the INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables, also in
the INFORMATION_SCHEMA database. See also Section 13.1.14.2, “Using FOREIGN KEY Constraints”.

In addition to SHOW ERRORS, in the event of a foreign key error involving InnoDB tables (usually Error
150 in the MySQL Server), you can obtain a detailed explanation of the most recent InnoDB foreign
key error by checking the output of SHOW ENGINE INNODB STATUS.

14.2.6.7 Limits on InnoDB Tables

Warning

Do not convert MySQL system tables in the mysql database from MyISAM to
InnoDB tables! This is an unsupported operation. If you do this, MySQL does
not restart until you restore the old system tables from a backup or re-generate
them with the mysql_install_db script.

Warning

 It is not a good idea to configure InnoDB to use data files or log files on NFS
volumes. Otherwise, the files might be locked by other processes and become
unavailable for use by MySQL.

Maximums and Minimums

• A table can contain a maximum of 1017 columns (raised in MySQL 5.6.9 from the earlier limit of
1000).

• A table can contain a maximum of 64 secondary indexes.

• By default, an index key for a single-column index can be up to 767 bytes. The same length limit
applies to any index key prefix. See Section 13.1.11, “CREATE INDEX Syntax”. For example, you
might hit this limit with a column prefix index of more than 255 characters on a TEXT or VARCHAR
column, assuming a UTF-8 character set and the maximum of 3 bytes for each character. When the

InnoDB Table Management

1657

innodb_large_prefix configuration option is enabled, this length limit is raised to 3072 bytes, for
InnoDB tables that use the DYNAMIC and COMPRESSED row formats.

When you attempt to specify an index prefix length longer than allowed, the length is silently
reduced to the maximum length for a nonunique index. For a unique index, exceeding the index
prefix limit produces an error. To avoid such errors for replication configurations, avoid setting the
innodb_large_prefix option on the master if it cannot also be set on the slaves, and the slaves
have unique indexes that could be affected by this limit.

This configuration option changes the error handling for some combinations of row format and prefix
length longer than the maximum allowed. See innodb_large_prefix for details.

• The InnoDB internal maximum key length is 3500 bytes, but MySQL itself restricts this to 3072
bytes. This limit applies to the length of the combined index key in a multi-column index.

• If you reduce the InnoDB page size to 8KB or 4KB by specifying the innodb_page_size option
when creating the MySQL instance, the maximum length of the index key is lowered proportionally,
based on the limit of 3072 bytes for a 16KB page size. That is, the maximum index key length is
1536 bytes when the page size is 8KB, and 768 bytes when the page size is 4KB.

• The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB
and TEXT), is slightly less than half of a database page. That is, the maximum row length is
about 8000 bytes for the default page size of 16KB; if you reduce the page size by specifying the
innodb_page_size option when creating the MySQL instance, the maximum row length is 4000
bytes for 8KB pages and 2000 bytes for 4KB pages. LONGBLOB and LONGTEXT columns must be
less than 4GB, and the total row length, including BLOB and TEXT columns, must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a
page, variable-length columns are chosen for external off-page storage until the row fits within half a
page, as described in Section 14.2.10.2, “File Space Management”.

• Although InnoDB supports row sizes larger than 65,535 bytes internally, MySQL itself imposes a
row-size limit of 65,535 for the combined size of all columns:

mysql> CREATE TABLE t (a VARCHAR(8000), b VARCHAR(10000),
 -> c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 -> f VARCHAR(10000), g VARCHAR(10000)) ENGINE=InnoDB;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

See Section E.10.4, “Limits on Table Column Count and Row Size”.

• On some older operating systems, files must be less than 2GB. This is not a limitation of InnoDB
itself, but if you require a large tablespace, you will need to configure it using several smaller data
files rather than one or a file large data files.

• The combined size of the InnoDB log files can be up to 512GB.

• The minimum tablespace size is slightly larger than 10MB. The maximum tablespace size is four
billion database pages (64TB). This is also the maximum size for a table.

• The default database page size in InnoDB is 16KB, or you can lower the page size to 8KB or 4KB
by specifying the innodb_page_size option when creating the MySQL instance.

Note

Increasing the page size is not a supported operation: there is no
guarantee that InnoDB will function normally with a page size greater than
16KB. Problems compiling or running InnoDB may occur. In particular,
ROW_FORMAT=COMPRESSED in the Barracuda file format assumes that the
page size is at most 16KB and uses 14-bit pointers.

InnoDB Table Management

1658

A MySQL instance using a particular InnoDB page size cannot use data files
or log files from an instance that uses a different page size. This limitation
could affect restore or downgrade operations using data from MySQL 5.6,
which does support page sizes other than 16KB.

Index Types

• InnoDB tables support FULLTEXT indexes. See FULLTEXT Indexes for details.

• InnoDB tables support spatial data types, but not indexes on them.

Restrictions on InnoDB Tables

• ANALYZE TABLE determines index cardinality (as displayed in the Cardinality column of SHOW
INDEX output) by doing random dives to each of the index trees and updating index cardinality
estimates accordingly. Because these are only estimates, repeated runs of ANALYZE TABLE could
produce different numbers. This makes ANALYZE TABLE fast on InnoDB tables but not 100%
accurate because it does not take all rows into account.

You can make the statistics collected by ANALYZE TABLE more precise and more stable by turning
on the innodb_stats_persistent configuration option, as explained in Persistent Optimizer
Statistics for InnoDB Tables. When that setting is enabled, it is important to run ANALYZE TABLE
after major changes to indexed column data, because the statistics are not recalculated periodically
(such as after a server restart) as they traditionally have been.

You can change the number of random dives by modifying the
innodb_stats_persistent_sample_pages system variable (if the persistent statistics setting is
turned on), or the innodb_stats_transient_sample_pages system variable (if the persistent
statistics setting is turned off).

MySQL uses index cardinality estimates only in join optimization. If some join is not optimized in
the right way, you can try using ANALYZE TABLE. In the few cases that ANALYZE TABLE does not
produce values good enough for your particular tables, you can use FORCE INDEX with your queries
to force the use of a particular index, or set the max_seeks_for_key system variable to ensure that
MySQL prefers index lookups over table scans. See Section 5.1.4, “Server System Variables”, and
Section C.5.6, “Optimizer-Related Issues”.

• If statements or transactions are running on a table and ANALYZE TABLE is run on the same table
followed by a second ANALYZE TABLE operation, the second ANALYZE TABLE operation is blocked
until the statements or transactions are completed. This behaviour occurs because ANALYZE TABLE
marks the currently loaded table definition as obsolete when ANALYZE TABLE is finished running.
New statements or transactions (including a second ANALYZE TABLE statement) must load the
new table definition into the table cache, which cannot occur until currently running statements or
transactions are completed and the old table definition is purged. Loading multiple concurrent table
definitions is not supported.

• SHOW TABLE STATUS does not give accurate statistics on InnoDB tables, except for the physical
size reserved by the table. The row count is only a rough estimate used in SQL optimization.

• InnoDB does not keep an internal count of rows in a table because concurrent transactions might
“see” different numbers of rows at the same time. To process a SELECT COUNT(*) FROM t
statement, InnoDB scans an index of the table, which takes some time if the index is not entirely in
the buffer pool. If your table does not change often, using the MySQL query cache is a good solution.
To get a fast count, you have to use a counter table you create yourself and let your application
update it according to the inserts and deletes it does. If an approximate row count is sufficient, SHOW
TABLE STATUS can be used. See Section 14.2.12.1, “InnoDB Performance Tuning Tips”.

• On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases
and tables using lowercase names.

InnoDB Compressed Tables

1659

• An AUTO_INCREMENT column ai_col must be defined as part of an index such that it is possible
to perform the equivalent of an indexed SELECT MAX(ai_col) lookup on the table to obtain the
maximum column value. Typically, this is achieved by making the column the first column of some
table index.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an
exclusive lock on the end of the index associated with the AUTO_INCREMENT column. While
accessing the auto-increment counter, InnoDB uses a specific AUTO-INC table lock mode where
the lock lasts only to the end of the current SQL statement, not to the end of the entire transaction.
Other clients cannot insert into the table while the AUTO-INC table lock is held. See Section 14.2.6.5,
“AUTO_INCREMENT Handling in InnoDB”.

• When you restart the MySQL server, InnoDB may reuse an old value that was generated for an
AUTO_INCREMENT column but never stored (that is, a value that was generated during an old
transaction that was rolled back).

• When an AUTO_INCREMENT integer column runs out of values, a subsequent INSERT operation
returns a duplicate-key error. This is general MySQL behavior, similar to how MyISAM works.

• DELETE FROM tbl_name does not regenerate the table but instead deletes all rows, one by one.

• Currently, cascaded foreign key actions do not activate triggers.

• You cannot create a table with a column name that matches the name of an internal InnoDB column
(including DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR, and DB_MIX_ID). The server reports error
1005 and refers to error –1 in the error message. This restriction applies only to use of the names in
uppercase.

Locking and Transactions

• LOCK TABLES acquires two locks on each table if innodb_table_locks=1 (the default). In
addition to a table lock on the MySQL layer, it also acquires an InnoDB table lock. Versions of
MySQL before 4.1.2 did not acquire InnoDB table locks; the old behavior can be selected by setting
innodb_table_locks=0. If no InnoDB table lock is acquired, LOCK TABLES completes even if
some records of the tables are being locked by other transactions.

In MySQL 5.7, innodb_table_locks=0 has no effect for tables locked explicitly with LOCK
TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK
TABLES ... WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.

• All InnoDB locks held by a transaction are released when the transaction is committed or aborted.
Thus, it does not make much sense to invoke LOCK TABLES on InnoDB tables in autocommit=1
mode because the acquired InnoDB table locks would be released immediately.

• You cannot lock additional tables in the middle of a transaction because LOCK TABLES performs an
implicit COMMIT and UNLOCK TABLES.

• The limit on data-modifying transactions is now 96 * 1023 concurrent transactions that generate
undo records. As of MySQL 5.7.2, 32 of 128 rollback segments are assigned to non-redo logs for
transactions that modify temporary tables and related objects. This reduces the maximum number of
concurrent data-modifying transactions from 128K to 96K. The 96K limit assumes that transactions
do not modify temporary tables. If all data-modifying transactions also modify temporary tables, the
limit is 32K concurrent transactions.

14.2.7 InnoDB Compressed Tables

By using the SQL syntax and MySQL configuration options for compression, you can create tables
where the data is stored in compressed form. Compression can help to improve both raw performance
and scalability. The compression means less data is transferred between disk and memory, and takes
up less space on disk and in memory. The benefits are amplified for tables with secondary indexes,

InnoDB Compressed Tables

1660

because index data is compressed also. Compression can be especially important for SSD storage
devices, because they tend to have lower capacity than HDD devices.

14.2.7.1 Overview of Table Compression

Because processors and cache memories have increased in speed more than disk storage devices,
many workloads are disk-bound. Data compression enables smaller database size, reduced I/O, and
improved throughput, at the small cost of increased CPU utilization. Compression is especially valuable
for read-intensive applications, on systems with enough RAM to keep frequently used data in memory.

An InnoDB table created with ROW_FORMAT=COMPRESSED can use a smaller page size on disk
than the usual 16KB default. Smaller pages require less I/O to read from and write to disk, which is
especially valuable for SSD devices.

The page size is specified through the KEY_BLOCK_SIZE parameter. The different page size means
the table must be in its own .ibd file rather than in the system tablespace, which requires enabling
the innodb_file_per_table option. The level of compression is the same regardless of the
KEY_BLOCK_SIZE value. As you specify smaller values for KEY_BLOCK_SIZE, you get the I/O
benefits of increasingly smaller pages. But if you specify a value that is too small, there is additional
overhead to reorganize the pages when data values cannot be compressed enough to fit multiple rows
in each page. There is a hard limit on how small KEY_BLOCK_SIZE can be for a table, based on the
lengths of the key columns for each of its indexes. Specify a value that is too small, and the CREATE
TABLE or ALTER TABLE statement fails.

In the buffer pool, the compressed data is held in small pages, with a page size based on the
KEY_BLOCK_SIZE value. For extracting or updating the column values, MySQL also creates a
16KB page in the buffer pool with the uncompressed data. Within the buffer pool, any updates to the
uncompressed page are also re-written back to the equivalent compressed page. You might need
to size your buffer pool to accommodate the additional data of both compressed and uncompressed
pages, although the uncompressed pages are evicted from the buffer pool when space is needed, and
then uncompressed again on the next access.

14.2.7.2 Enabling Compression for a Table

Before creating a compressed table, make sure the innodb_file_per_table configuration option
is enabled, and innodb_file_format is set to Barracuda. You can set these parameters in the
MySQL configuration file my.cnf or my.ini, or with the SET statement without shutting down the
MySQL server.

To enable compression for a table, you use the clauses ROW_FORMAT=COMPRESSED,
KEY_BLOCK_SIZE, or both in a CREATE TABLE or ALTER TABLE statement.

To create a compressed table, you might use statements like these:

SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=Barracuda;
CREATE TABLE t1
 (c1 INT PRIMARY KEY)
 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=8;

• If you specify ROW_FORMAT=COMPRESSED, you can omit KEY_BLOCK_SIZE; the default compressed
page size of 8KB is used.

• If you specify KEY_BLOCK_SIZE, you can omit ROW_FORMAT=COMPRESSED; compression is enabled
automatically.

• To determine the best value for KEY_BLOCK_SIZE, typically you create several copies of the same
table with different values for this clause, then measure the size of the resulting .ibd files and see
how well each performs with a realistic workload.

InnoDB Compressed Tables

1661

• For additional performance-related configuration options, see Section 14.2.7.3, “Tuning Compression
for InnoDB Tables”.

The default uncompressed size of InnoDB data pages is 16KB. Depending on the combination of
option values, MySQL uses a page size of 1KB, 2KB, 4KB, 8KB, or 16KB for the .ibd file of the table.
The actual compression algorithm is not affected by the KEY_BLOCK_SIZE value; the value determines
how large each compressed chunk is, which in turn affects how many rows can be packed into each
compressed page.

Setting KEY_BLOCK_SIZE=16 typically does not result in much compression, since the normal InnoDB
page size is 16KB. This setting may still be useful for tables with many long BLOB, VARCHAR or TEXT
columns, because such values often do compress well, and might therefore require fewer overflow
pages as described in Section 14.2.7.5, “How Compression Works for InnoDB Tables”.

All indexes of a table (including the clustered index) are compressed using the same page size, as
specified in the CREATE TABLE or ALTER TABLE statement. Table attributes such as ROW_FORMAT
and KEY_BLOCK_SIZE are not part of the CREATE INDEX syntax, and are ignored if they are specified
(although you see them in the output of the SHOW CREATE TABLE statement).

Restrictions on Compressed Tables

Because MySQL versions prior to 5.1 cannot process compressed tables, using compression requires
specifying the configuration parameter innodb_file_format=Barracuda, to avoid accidentally
introducing compatibility issues.

Table compression is also not available for the InnoDB system tablespace. The system tablespace
(space 0, the ibdata* files) can contain user data, but it also contains internal system information,
and therefore is never compressed. Thus, compression applies only to tables (and indexes) stored in
their own tablespaces, that is, created with the innodb_file_per_table option enabled.

Compression applies to an entire table and all its associated indexes, not to individual rows, despite the
clause name ROW_FORMAT.

14.2.7.3 Tuning Compression for InnoDB Tables

Most often, the internal optimizations described in InnoDB Data Storage and Compression ensure that
the system runs well with compressed data. However, because the efficiency of compression depends
on the nature of your data, you can make decisions that affect the performance of compressed tables:

• Which tables to compress.

• What compressed page size to use.

• Whether to adjust the size of the buffer pool based on run-time performance characteristics, such as
the amount of time the system spends compressing and uncompressing data. Whether the workload
is more like a data warehouse (primarily queries) or an OLTP system (mix of queries and DML).

• If the system performs DML operations on compressed tables, and the way the data is distributed
leads to expensive compression failures at runtime, you might adjust additional advanced
configuration options.

Use the guidelines in this section to help make those architectural and configuration choices.
When you are ready to conduct long-term testing and put compressed tables into production, see
Section 14.2.7.4, “Monitoring Compression at Runtime” for ways to verify the effectiveness of those
choices under real-world conditions.

When to Use Compression

In general, compression works best on tables that include a reasonable number of character string
columns and where the data is read far more often than it is written. Because there are no guaranteed
ways to predict whether or not compression benefits a particular situation, always test with a specific

InnoDB Compressed Tables

1662

workload and data set running on a representative configuration. Consider the following factors when
deciding which tables to compress.

Data Characteristics and Compression

A key determinant of the efficiency of compression in reducing the size of data files is the nature of
the data itself. Recall that compression works by identifying repeated strings of bytes in a block of
data. Completely randomized data is the worst case. Typical data often has repeated values, and so
compresses effectively. Character strings often compress well, whether defined in CHAR, VARCHAR,
TEXT or BLOB columns. On the other hand, tables containing mostly binary data (integers or floating
point numbers) or data that is previously compressed (for example JPEG or PNG images) may not
generally compress well, significantly or at all.

You choose whether to turn on compression for each InnoDB table. A table and all of its indexes use
the same (compressed) page size. It might be that the primary key (clustered) index, which contains
the data for all columns of a table, compresses more effectively than the secondary indexes. For those
cases where there are long rows, the use of compression might result in long column values being
stored “off-page”, as discussed in Section 14.2.9.3, “DYNAMIC and COMPRESSED Row Formats”. Those
overflow pages may compress well. Given these considerations, for many applications, some tables
compress more effectively than others, and you might find that your workload performs best only with a
subset of tables compressed.

To determine whether or not to compress a particular table, conduct experiments. You can get a
rough estimate of how efficiently your data can be compressed by using a utility that implements LZ77
compression (such as gzip or WinZip) on a copy of the .ibd file for an uncompressed table. You can
expect less compression from a MySQL compressed table than from file-based compression tools,
because MySQL compresses data in chunks based on the page size, 16KB by default. In addition
to user data, the page format includes some internal system data that is not compressed. File-based
compression utilities can examine much larger chunks of data, and so might find more repeated strings
in a huge file than MySQL can find in an individual page.

Another way to test compression on a specific table is to copy some data from your uncompressed
table to a similar, compressed table (having all the same indexes) and look at the size of the resulting
.ibd file. For example:

use test;
set global innodb_file_per_table=1;
set global innodb_file_format=Barracuda;
set global autocommit=0;

-- Create an uncompressed table with a million or two rows.
create table big_table as select * from information_schema.columns;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
commit;
alter table big_table add id int unsigned not null primary key auto_increment;

show create table big_table\G

select count(id) from big_table;

-- Check how much space is needed for the uncompressed table.
\! ls -l data/test/big_table.ibd

create table key_block_size_4 like big_table;
alter table key_block_size_4 key_block_size=4 row_format=compressed;

InnoDB Compressed Tables

1663

insert into key_block_size_4 select * from big_table;
commit;

-- Check how much space is needed for a compressed table
-- with particular compression settings.
\! ls -l data/test/key_block_size_4.ibd

This experiment produced the following numbers, which of course could vary considerably depending
on your table structure and data:

-rw-rw---- 1 cirrus staff 310378496 Jan 9 13:44 data/test/big_table.ibd
-rw-rw---- 1 cirrus staff 83886080 Jan 9 15:10 data/test/key_block_size_4.ibd

To see whether compression is efficient for your particular workload:

• For simple tests, use a MySQL instance with no other compressed tables and run queries against
the INFORMATION_SCHEMA.INNODB_CMP table.

• For more elaborate tests involving workloads with multiple compressed tables, run queries against
the INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table. Because the statistics in the
INNODB_CMP_PER_INDEX table are expensive to collect, you must enable the configuration option
innodb_cmp_per_index_enabled before querying that table, and you might restrict such testing
to a development server or a non-critical slave server.

• Run some typical SQL statements against the compressed table you are testing.

• Examine the ratio of successful compression operations to overall compression
operations by querying the INFORMATION_SCHEMA.INNODB_CMP or
INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table, and comparing COMPRESS_OPS to
COMPRESS_OPS_OK.

• If a high percentage of compression operations complete successfully, the table might be a good
candidate for compression.

• If you get a high proportion of compression failures, you can adjust innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
options as described in Compression Enhancements for OLTP Workloads, and try further tests.

Database Compression versus Application Compression

Decide whether to compress data in your application or in the table; do not use both types of
compression for the same data. When you compress the data in the application and store the results
in a compressed table, extra space savings are extremely unlikely, and the double compression just
wastes CPU cycles.

Compressing in the Database

When enabled, MySQL table compression is automatic and applies to all columns and index values.
The columns can still be tested with operators such as LIKE, and sort operations can still use indexes
even when the index values are compressed. Because indexes are often a significant fraction of the
total size of a database, compression could result in significant savings in storage, I/O or processor
time. The compression and decompression operations happen on the database server, which likely is a
powerful system that is sized to handle the expected load.

Compressing in the Application

If you compress data such as text in your application, before it is inserted into the database, You might
save overhead for data that does not compress well by compressing some columns and not others.
This approach uses CPU cycles for compression and uncompression on the client machine rather
than the database server, which might be appropriate for a distributed application with many clients, or
where the client machine has spare CPU cycles.

InnoDB Compressed Tables

1664

Hybrid Approach

Of course, it is possible to combine these approaches. For some applications, it may be appropriate to
use some compressed tables and some uncompressed tables. It may be best to externally compress
some data (and store it in uncompressed tables) and allow MySQL to compress (some of) the other
tables in the application. As always, up-front design and real-life testing are valuable in reaching the
right decision.

Workload Characteristics and Compression

In addition to choosing which tables to compress (and the page size), the workload is another key
determinant of performance. If the application is dominated by reads, rather than updates, fewer
pages need to be reorganized and recompressed after the index page runs out of room for the per-
page “modification log” that MySQL maintains for compressed data. If the updates predominantly
change non-indexed columns or those containing BLOBs or large strings that happen to be stored “off-
page”, the overhead of compression may be acceptable. If the only changes to a table are INSERTs
that use a monotonically increasing primary key, and there are few secondary indexes, there is little
need to reorganize and recompress index pages. Since MySQL can “delete-mark” and delete rows
on compressed pages “in place” by modifying uncompressed data, DELETE operations on a table are
relatively efficient.

For some environments, the time it takes to load data can be as important as run-time retrieval.
Especially in data warehouse environments, many tables may be read-only or read-mostly. In those
cases, it might or might not be acceptable to pay the price of compression in terms of increased load
time, unless the resulting savings in fewer disk reads or in storage cost is significant.

Fundamentally, compression works best when the CPU time is available for compressing and
uncompressing data. Thus, if your workload is I/O bound, rather than CPU-bound, you might find
that compression can improve overall performance. When you test your application performance with
different compression configurations, test on a platform similar to the planned configuration of the
production system.

Configuration Characteristics and Compression

Reading and writing database pages from and to disk is the slowest aspect of system performance.
Compression attempts to reduce I/O by using CPU time to compress and uncompress data, and is
most effective when I/O is a relatively scarce resource compared to processor cycles.

This is often especially the case when running in a multi-user environment with fast, multi-core CPUs.
When a page of a compressed table is in memory, MySQL often uses additional memory, typically
16KB, in the buffer pool for an uncompressed copy of the page. The adaptive LRU algorithm attempts
to balance the use of memory between compressed and uncompressed pages to take into account
whether the workload is running in an I/O-bound or CPU-bound manner. Still, a configuration with
more memory dedicated to the buffer pool tends to run better when using compressed tables than a
configuration where memory is highly constrained.

Choosing the Compressed Page Size

The optimal setting of the compressed page size depends on the type and distribution of data that the
table and its indexes contain. The compressed page size should always be bigger than the maximum
record size, or operations may fail as noted in Compression of B-Tree Pages.

Setting the compressed page size too large wastes some space, but the pages do not have to be
compressed as often. If the compressed page size is set too small, inserts or updates may require
time-consuming recompression, and the B-tree nodes may have to be split more frequently, leading to
bigger data files and less efficient indexing.

Typically, you set the compressed page size to 8K or 4K bytes. Given that the maximum row size for
an InnoDB table is around 8K, KEY_BLOCK_SIZE=8 is usually a safe choice.

14.2.7.4 Monitoring Compression at Runtime

InnoDB Compressed Tables

1665

Overall application performance, CPU and I/O utilization and the size of disk files are good indicators of
how effective compression is for your application. This section builds on the performance tuning advice
from Section 14.2.7.3, “Tuning Compression for InnoDB Tables”, and shows how to find problems that
might not turn up during initial testing.

To dig deeper into performance considerations for compressed tables, you can monitor compression
performance at runtime using the Information Schema tables described in Example 14.11, “Using the
Compression Information Schema Tables”. These tables reflect the internal use of memory and the
rates of compression used overall.

The INNODB_CMP table reports information about compression activity for each compressed page
size (KEY_BLOCK_SIZE) in use. The information in these tables is system-wide: it summarizes the
compression statistics across all compressed tables in your database. You can use this data to help
decide whether or not to compress a table by examining these tables when no other compressed
tables are being accessed. It involves relatively low overhead on the server, so you might query it
periodically on a production server to check the overall efficiency of the compression feature.

The INNODB_CMP_PER_INDEX table reports information about compression activity for individual
tables and indexes. This information is more targeted and more useful for evaluating compression
efficiency and diagnosing performance issues one table or index at a time. (Because that each InnoDB
table is represented as a clustered index, MySQL does not make a big distinction between tables and
indexes in this context.) The INNODB_CMP_PER_INDEX table does involve substantial overhead, so it
is more suitable for development servers, where you can compare the effects of different workloads,
data, and compression settings in isolation. To guard against imposing this monitoring overhead by
accident, you must enable the innodb_cmp_per_index_enabled configuration option before you
can query the INNODB_CMP_PER_INDEX table.

The key statistics to consider are the number of, and amount of time spent performing, compression
and uncompression operations. Since MySQL splits B-tree nodes when they are too full to contain
the compressed data following a modification, compare the number of “successful” compression
operations with the number of such operations overall. Based on the information in the INNODB_CMP
and INNODB_CMP_PER_INDEX tables and overall application performance and hardware resource
utilization, you might make changes in your hardware configuration, adjust the size of the buffer pool,
choose a different page size, or select a different set of tables to compress.

If the amount of CPU time required for compressing and uncompressing is high, changing to faster
or multi-core CPUs can help improve performance with the same data, application workload and set
of compressed tables. Increasing the size of the buffer pool might also help performance, so that
more uncompressed pages can stay in memory, reducing the need to uncompress pages that exist in
memory only in compressed form.

A large number of compression operations overall (compared to the number of INSERT, UPDATE and
DELETE operations in your application and the size of the database) could indicate that some of your
compressed tables are being updated too heavily for effective compression. If so, choose a larger page
size, or be more selective about which tables you compress.

If the number of “successful” compression operations (COMPRESS_OPS_OK) is a high percentage of
the total number of compression operations (COMPRESS_OPS), then the system is likely performing
well. If the ratio is low, then MySQL is reorganizing, recompressing, and splitting B-tree nodes more
often than is desirable. In this case, avoid compressing some tables, or increase KEY_BLOCK_SIZE
for some of the compressed tables. You might turn off compression for tables that cause the number
of “compression failures” in your application to be more than 1% or 2% of the total. (Such a failure ratio
might be acceptable during a temporary operation such as a data load).

14.2.7.5 How Compression Works for InnoDB Tables

This section describes some internal implementation details about compression for InnoDB tables. The
information presented here may be helpful in tuning for performance, but is not necessary to know for
basic use of compression.

InnoDB Compressed Tables

1666

Compression Algorithms

Some operating systems implement compression at the file system level. Files are typically divided into
fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation.
Every time something inside a block is modified, the whole block is recompressed before it is written
to disk. These properties make this compression technique unsuitable for use in an update-intensive
database system.

MySQL implements compression with the help of the well-known zlib library, which implements the
LZ77 compression algorithm. This compression algorithm is mature, robust, and efficient in both CPU
utilization and in reduction of data size. The algorithm is “lossless”, so that the original uncompressed
data can always be reconstructed from the compressed form. LZ77 compression works by finding
sequences of data that are repeated within the data to be compressed. The patterns of values in your
data determine how well it compresses, but typical user data often compresses by 50% or more.

Unlike compression performed by an application, or compression features of some other database
management systems, InnoDB compression applies both to user data and to indexes. In many cases,
indexes can constitute 40-50% or more of the total database size, so this difference is significant.
When compression is working well for a data set, the size of the InnoDB data files (the .idb files) is
25% to 50% of the uncompressed size or possibly smaller. Depending on the workload, this smaller
database can in turn lead to a reduction in I/O, and an increase in throughput, at a modest cost in
terms of increased CPU utilization. You can adjust the balance between compression level and CPU
overhead by modifying the innodb_compression_level configuration option.

InnoDB Data Storage and Compression

All user data in InnoDB tables is stored in pages comprising a B-tree index (the clustered index). In
some other database systems, this type of index is called an “index-organized table”. Each row in the
index node contains the values of the (user-specified or system-generated) primary key and all the
other columns of the table.

Secondary indexes in InnoDB tables are also B-trees, containing pairs of values: the index key and a
pointer to a row in the clustered index. The pointer is in fact the value of the primary key of the table,
which is used to access the clustered index if columns other than the index key and primary key are
required. Secondary index records must always fit on a single B-tree page.

The compression of B-tree nodes (of both clustered and secondary indexes) is handled differently from
compression of overflow pages used to store long VARCHAR, BLOB, or TEXT columns, as explained in
the following sections.

Compression of B-Tree Pages

Because they are frequently updated, B-tree pages require special treatment. It is important to
minimize the number of times B-tree nodes are split, as well as to minimize the need to uncompress
and recompress their content.

One technique MySQL uses is to maintain some system information in the B-tree node in
uncompressed form, thus facilitating certain in-place updates. For example, this allows rows to be
delete-marked and deleted without any compression operation.

In addition, MySQL attempts to avoid unnecessary uncompression and recompression of index pages
when they are changed. Within each B-tree page, the system keeps an uncompressed “modification
log” to record changes made to the page. Updates and inserts of small records may be written to this
modification log without requiring the entire page to be completely reconstructed.

When the space for the modification log runs out, InnoDB uncompresses the page, applies the
changes and recompresses the page. If recompression fails (a situation known as a compression
failure), the B-tree nodes are split and the process is repeated until the update or insert succeeds.

To avoid frequent compression failures in write-intensive workloads, such as for OLTP applications,
MySQL sometimes reserves some empty space (padding) in the page, so that the modification log

http://www.zlib.net/

InnoDB Compressed Tables

1667

fills up sooner and the page is recompressed while there is still enough room to avoid splitting it.
The amount of padding space left in each page varies as the system keeps track of the frequency
of page splits. On a busy server doing frequent writes to compressed tables, you can adjust the
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
configuration options to fine-tune this mechanism.

Generally, MySQL requires that each B-tree page in an InnoDB table can accommodate at least
two records. For compressed tables, this requirement has been relaxed. Leaf pages of B-tree nodes
(whether of the primary key or secondary indexes) only need to accommodate one record, but that
record must fit, in uncompressed form, in the per-page modification log. If innodb_strict_mode is
ON, MySQL checks the maximum row size during CREATE TABLE or CREATE INDEX. If the row does
not fit, the following error message is issued: ERROR HY000: Too big row.

If you create a table when innodb_strict_mode is OFF, and a subsequent INSERT or UPDATE
statement attempts to create an index entry that does not fit in the size of the compressed page, the
operation fails with ERROR 42000: Row size too large. (This error message does not name
the index for which the record is too large, or mention the length of the index record or the maximum
record size on that particular index page.) To solve this problem, rebuild the table with ALTER TABLE
and select a larger compressed page size (KEY_BLOCK_SIZE), shorten any column prefix indexes, or
disable compression entirely with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPACT.

Compressing BLOB, VARCHAR, and TEXT Columns

In an InnoDB table, BLOB, VARCHAR, and TEXT columns that are not part of the primary key may be
stored on separately allocated overflow pages. We refer to these columns as off-page columns. Their
values are stored on singly-linked lists of overflow pages.

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, the values of BLOB,
TEXT, or VARCHAR columns may be stored fully off-page, depending on their length and the length of
the entire row. For columns that are stored off-page, the clustered index record only contains 20-byte
pointers to the overflow pages, one per column. Whether any columns are stored off-page depends
on the page size and the total size of the row. When the row is too long to fit entirely within the page
of the clustered index, MySQL chooses the longest columns for off-page storage until the row fits on
the clustered index page. As noted above, if a row does not fit by itself on a compressed page, an error
occurs.

Tables created in older versions of MySQL use the Antelope file format, which supports only
ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. In these formats, MySQL stores the first 768
bytes of BLOB, VARCHAR, and TEXT columns in the clustered index record along with the primary key.
The 768-byte prefix is followed by a 20-byte pointer to the overflow pages that contain the rest of the
column value.

When a table is in COMPRESSED format, all data written to overflow pages is compressed “as is”; that is,
MySQL applies the zlib compression algorithm to the entire data item. Other than the data, compressed
overflow pages contain an uncompressed header and trailer comprising a page checksum and a link
to the next overflow page, among other things. Therefore, very significant storage savings can be
obtained for longer BLOB, TEXT, or VARCHAR columns if the data is highly compressible, as is often the
case with text data. Image data, such as JPEG, is typically already compressed and so does not benefit
much from being stored in a compressed table; the double compression can waste CPU cycles for little
or no space savings.

The overflow pages are of the same size as other pages. A row containing ten columns stored off-
page occupies ten overflow pages, even if the total length of the columns is only 8K bytes. In an
uncompressed table, ten uncompressed overflow pages occupy 160K bytes. In a compressed table
with an 8K page size, they occupy only 80K bytes. Thus, it is often more efficient to use compressed
table format for tables with long column values.

Using a 16K compressed page size can reduce storage and I/O costs for BLOB, VARCHAR, or TEXT
columns, because such data often compress well, and might therefore require fewer overflow pages,
even though the B-tree nodes themselves take as many pages as in the uncompressed form.

InnoDB Compressed Tables

1668

Compression and the InnoDB Buffer Pool

In a compressed InnoDB table, every compressed page (whether 1K, 2K, 4K or 8K) corresponds to
an uncompressed page of 16K bytes (or a smaller size if innodb_page_size is set). To access the
data in a page, MySQL reads the compressed page from disk if it is not already in the buffer pool, then
uncompresses the page to its original form. This section describes how InnoDB manages the buffer
pool with respect to pages of compressed tables.

To minimize I/O and to reduce the need to uncompress a page, at times the buffer pool contains
both the compressed and uncompressed form of a database page. To make room for other required
database pages, MySQL can evict from the buffer pool an uncompressed page, while leaving the
compressed page in memory. Or, if a page has not been accessed in a while, the compressed form of
the page might be written to disk, to free space for other data. Thus, at any given time, the buffer pool
might contain both the compressed and uncompressed forms of the page, or only the compressed form
of the page, or neither.

MySQL keeps track of which pages to keep in memory and which to evict using a least-recently-
used (LRU) list, so that hot (frequently accessed) data tends to stay in memory. When compressed
tables are accessed, MySQL uses an adaptive LRU algorithm to achieve an appropriate balance of
compressed and uncompressed pages in memory. This adaptive algorithm is sensitive to whether the
system is running in an I/O-bound or CPU-bound manner. The goal is to avoid spending too much
processing time uncompressing pages when the CPU is busy, and to avoid doing excess I/O when the
CPU has spare cycles that can be used for uncompressing compressed pages (that may already be
in memory). When the system is I/O-bound, the algorithm prefers to evict the uncompressed copy of
a page rather than both copies, to make more room for other disk pages to become memory resident.
When the system is CPU-bound, MySQL prefers to evict both the compressed and uncompressed
page, so that more memory can be used for “hot” pages and reducing the need to uncompress data in
memory only in compressed form.

Compression and the InnoDB Redo Log Files

Before a compressed page is written to a data file, MySQL writes a copy of the page to the redo
log (if it has been recompressed since the last time it was written to the database). This is done to
ensure that redo logs are usable for crash recovery, even in the unlikely case that the zlib library is
upgraded and that change introduces a compatibility problem with the compressed data. Therefore,
some increase in the size of log files, or a need for more frequent checkpoints, can be expected when
using compression. The amount of increase in the log file size or checkpoint frequency depends
on the number of times compressed pages are modified in a way that requires reorganization and
recompression.

Note that compressed tables use a different file format for the redo log and the per-table tablespaces
than in MySQL 5.1 and earlier. The MySQL Enterprise Backup product supports this latest Barracuda
file format for compressed InnoDB tables. The older InnoDB Hot Backup product can only back up
tables using the file format Antelope, and thus does not support compressed InnoDB tables.

14.2.7.6 SQL Compression Syntax Warnings and Errors

Specifying ROW_FORMAT=COMPRESSED or KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE
statements produces the following warnings if the Barracuda file format is not enabled. You can view
them with the SHOW WARNINGS statement.

Level Code Message

Warning 1478 InnoDB: KEY_BLOCK_SIZE requires innodb_file_per_table.

Warning 1478 InnoDB: KEY_BLOCK_SIZE requires innodb_file_format=1

Warning 1478 InnoDB: ignoring KEY_BLOCK_SIZE=4.

Warning 1478 InnoDB: ROW_FORMAT=COMPRESSED requires innodb_file_per_table.

Warning 1478 InnoDB: assuming ROW_FORMAT=COMPACT.

InnoDB Compressed Tables

1669

Notes:

• By default, these messages are only warnings, not errors, and the table is created without
compression, as if the options were not specified.

• When innodb_strict_mode is enabled, MySQL generates an error, not a warning, for these
cases. The table is not created if the current configuration does not permit using compressed tables.

The “non-strict” behavior lets you import a mysqldump file into a database that does not support
compressed tables, even if the source database contained compressed tables. In that case, MySQL
creates the table in ROW_FORMAT=COMPACT instead of preventing the operation.

To import the dump file into a new database, and have the tables re-created as they exist in the
original database, ensure the server has the proper settings for the configuration parameters
innodb_file_format and innodb_file_per_table.

The attribute KEY_BLOCK_SIZE is permitted only when ROW_FORMAT is specified as COMPRESSED
or is omitted. Specifying a KEY_BLOCK_SIZE with any other ROW_FORMAT generates a warning
that you can view with SHOW WARNINGS. However, the table is non-compressed; the specified
KEY_BLOCK_SIZE is ignored).

Level Code Message

Warning 1478 InnoDB: ignoring KEY_BLOCK_SIZE=n unless
ROW_FORMAT=COMPRESSED.

If you are running with innodb_strict_mode enabled, the combination of a KEY_BLOCK_SIZE with
any ROW_FORMAT other than COMPRESSED generates an error, not a warning, and the table is not
created.

Table 14.2, “Meaning of CREATE TABLE and ALTER TABLE options” summarizes how the various
options on CREATE TABLE and ALTER TABLE are handled.

Table 14.2 Meaning of CREATE TABLE and ALTER TABLE options

Option Usage Description

ROW_FORMAT=
REDUNDANT

Storage format used prior to
MySQL 5.0.3

Less efficient than ROW_FORMAT=COMPACT; for
backward compatibility

ROW_FORMAT=
COMPACT

Default storage format since
MySQL 5.0.3

Stores a prefix of 768 bytes of long column values in
the clustered index page, with the remaining bytes
stored in an overflow page

ROW_FORMAT=
DYNAMIC

Available only with
innodb_file
_format=Barracuda

Store values within the clustered index page if they
fit; if not, stores only a 20-byte pointer to an overflow
page (no prefix)

ROW_FORMAT=
COMPRESSED

Available only with
innodb_file
_format=Barracuda

Compresses the table and indexes using zlib to
default compressed page size of 8K bytes; implies
ROW_FORMAT=DYNAMIC

KEY_BLOCK_
SIZE=n

Available only with
innodb_file
_format=Barracuda

Specifies compressed page size of 1, 2, 4, 8 or
16 kilobytes; implies ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPRESSED

Table 14.3, “CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF”
summarizes error conditions that occur with certain combinations of configuration parameters and
options on the CREATE TABLE or ALTER TABLE statements, and how the options appear in the output
of SHOW TABLE STATUS.

When innodb_strict_mode is OFF, MySQL creates or alters the table, but ignores certain
settings as shown below. You can see the warning messages in the MySQL error log. When
innodb_strict_mode is ON, these specified combinations of options generate errors, and the table

InnoDB File-Format Management

1670

is not created or altered. To see the full description of the error condition, issue the SHOW ERRORS
statement: example:

mysql> CREATE TABLE x (id INT PRIMARY KEY, c INT)

-> ENGINE=INNODB KEY_BLOCK_SIZE=33333;

ERROR 1005 (HY000): Can't create table 'test.x' (errno: 1478)

mysql> SHOW ERRORS;
+-------+------+---+
| Level | Code | Message |
+-------+------+---+
| Error | 1478 | InnoDB: invalid KEY_BLOCK_SIZE=33333. |
| Error | 1005 | Can't create table 'test.x' (errno: 1478) |
+-------+------+---+

2 rows in set (0.00 sec)

Table 14.3 CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF

Syntax Warning or Error Condition Resulting ROW_FORMAT,
as shown in SHOW TABLE
STATUS

ROW_FORMAT=REDUNDANT None REDUNDANT

ROW_FORMAT=COMPACT None COMPACT

ROW_FORMAT=COMPRESSED
or
ROW_FORMAT=DYNAMIC
or KEY_BLOCK_SIZE is
specified

Ignored unless both
innodb_file_format=Barracuda and
innodb_file_per_table are enabled

COMPACT

Invalid KEY_BLOCK_SIZE
is specified (not 1, 2, 4, 8
or 16)

KEY_BLOCK_SIZE is ignored the requested one, or
COMPACT by default

ROW_FORMAT=COMPRESSED
and valid
KEY_BLOCK_SIZE are
specified

None; KEY_BLOCK_SIZE specified is used,
not the 8K default

COMPRESSED

KEY_BLOCK_SIZE
is specified with
REDUNDANT, COMPACT or
DYNAMIC row format

KEY_BLOCK_SIZE is ignored REDUNDANT, COMPACT or
DYNAMIC

ROW_FORMAT is not one
of REDUNDANT, COMPACT,
DYNAMIC or COMPRESSED

Ignored if recognized by the MySQL
parser. Otherwise, an error is issued.

COMPACT or N/A

When innodb_strict_mode is ON, MySQL rejects invalid ROW_FORMAT or KEY_BLOCK_SIZE
parameters. For compatibility with earlier versions of MySQL, strict mode is not enabled by default;
instead, MySQL issues warnings (not errors) for ignored invalid parameters.

Note that it is not possible to see the chosen KEY_BLOCK_SIZE using SHOW TABLE STATUS. The
statement SHOW CREATE TABLE displays the KEY_BLOCK_SIZE (even if it was ignored when creating
the table). The real compressed page size of the table cannot be displayed by MySQL.

14.2.8 InnoDB File-Format Management

As InnoDB evolves, new on-disk data structures are sometimes required to support new features.
Features such as compressed tables (see Section 14.2.7, “InnoDB Compressed Tables”), and
long variable-length columns stored off-page (see Section 14.2.9, “InnoDB Row Storage and Row

InnoDB File-Format Management

1671

Formats”) require data file formats that are not compatible with prior versions of InnoDB. These
features both require use of the new Barracuda file format.

Note

All other new features are compatible with the original Antelope file format and
do not require the Barracuda file format.

This section discusses enabling file formats for new InnoDB tables, verifying compatibility of different
file formats between MySQL releases, identifying the file format in use, downgrading the file format,
and file format names that may be used in the future.

Named File Formats. InnoDB uses named file formats to help manage compatibility in upgrade
and downgrade situations, or heterogeneous systems running different levels of MySQL. Currently,
Antelope and Barracuda file formats are supported. Barracuda is the newest file format. It supports
important InnoDB features such as compressed tables and the DYNAMIC row format for more efficient
BLOB storage. The original InnoDB file format, which previously did not have a name, is now known as
Antelope. Future versions of InnoDB may introduce a series of file formats, identified with the names of
animals, in ascending alphabetic order.

14.2.8.1 Enabling File Formats

The innodb_file_format configuration parameter defines the file format to use for new InnoDB
tables. This parameter is only applicable for tables that have their own tablespace, and therefore
requires that innodb_file_per_table be enabled.

The innodb_file_format parameter currently supports Antelope and Barracuda file formats. To
create new tables that take advantage of features supported by the Barracuda file format, such as table
compression or the new DYNAMIC row format, set innodb_file_format to BARRACUDA.

To preclude the use of new features supported by the Barracuda file format that would make
your database inaccessible to the built-in InnoDB in MySQL 5.1 and prior releases, omit
innodb_file_format or set it to Antelope.

You can set the value of innodb_file_format on the command line when you start mysqld, or
in the option file my.cnf (Unix operating systems) or my.ini (Windows). You can also change it
dynamically with the SET GLOBAL statement.

mysql> SET GLOBAL innodb_file_format=BARRACUDA;
Query OK, 0 rows affected (0.00 sec)

Although Oracle recommends using the Barracuda format for new tables where practical, in MySQL
5.5 the default file format is still Antelope, for maximum compatibility with replication configurations
containing different MySQL releases.

14.2.8.2 Verifying File Format Compatibility

InnoDB 1.1 incorporates several checks to guard against the possible crashes and data corruptions
that might occur if you run an older release of the MySQL server on InnoDB data files using a newer
file format. These checks take place when the server is started, and when you first access a table. This
section describes these checks, how you can control them, and error and warning conditions that might
arise.

Backward Compatibility

Considerations of backward compatibility only apply when using a recent version of InnoDB (the
InnoDB Plugin, or MySQL 5.5 and higher with InnoDB 1.1) alongside an older one (MySQL 5.1 or
earlier, with the built-in InnoDB rather than the InnoDB Plugin). To minimize the chance of compatibility
issues, you can standardize on the InnoDB Plugin for all your MySQL 5.1 and earlier database servers.

InnoDB File-Format Management

1672

In general, a newer version of InnoDB may create a table or index that cannot safely be read or written
with a prior version of InnoDB without risk of crashes, hangs, wrong results or corruptions. InnoDB 1.1
includes a mechanism to guard against these conditions, and to help preserve compatibility among
database files and versions of InnoDB. This mechanism lets you take advantage of some new features
of an InnoDB release (such as performance improvements and bug fixes), and still preserve the option
of using your database with a prior version of InnoDB, by preventing accidental use of new features
that create downward-incompatible disk files.

If a version of InnoDB supports a particular file format (whether or not that format is the default), you
can query and update any table that requires that format or an earlier format. Only the creation of
new tables using new features is limited based on the particular file format enabled. Conversely, if
a tablespace contains a table or index that uses a file format that is not supported by the currently
running software, it cannot be accessed at all, even for read access.

The only way to “downgrade” an InnoDB tablespace to an earlier file format is to copy the data to a new
table, in a tablespace that uses the earlier format. This can be done with the ALTER TABLE statement,
as described in Section 14.2.8.4, “Downgrading the File Format”.

The easiest way to determine the file format of an existing InnoDB tablespace is to examine the
properties of the table it contains, using the SHOW TABLE STATUS command or querying the table
INFORMATION_SCHEMA.TABLES. If the Row_format of the table is reported as 'Compressed' or
'Dynamic', the tablespace containing the table uses the Barracuda format. Otherwise, it uses the
prior InnoDB file format, Antelope.

Internal Details

Every InnoDB per-table tablespace (represented by a *.ibd file) file is labeled with a file format
identifier. The system tablespace (represented by the ibdata files) is tagged with the “highest” file
format in use in a group of InnoDB database files, and this tag is checked when the files are opened.

Creating a compressed table, or a table with ROW_FORMAT=DYNAMIC, updates the file header for
the corresponding .ibd file and the table type in the InnoDB data dictionary with the identifier for the
Barracuda file format. From that point forward, the table cannot be used with a version of InnoDB that
does not support this new file format. To protect against anomalous behavior, InnoDB version 5.0.21
and later performs a compatibility check when the table is opened. (In many cases, the ALTER TABLE
statement recreates a table and thus changes its properties. The special case of adding or dropping
indexes without rebuilding the table is described in InnoDB Fast Index Creation.)

Definition of ib-file set

To avoid confusion, for the purposes of this discussion we define the term “ib-file set” to mean the set
of operating system files that InnoDB manages as a unit. The ib-file set includes the following files:

• The system tablespace (one or more ibdata files) that contain internal system information
(including internal catalogs and undo information) and may include user data and indexes.

• Zero or more single-table tablespaces (also called “file per table” files, named *.ibd files).

• InnoDB log files; usually two, ib_logfile0 and ib_logfile1. Used for crash recovery and in
backups.

An “ib-file set” does not include the corresponding .frm files that contain metadata about InnoDB
tables. The .frm files are created and managed by MySQL, and can sometimes get out of sync with
the internal metadata in InnoDB.

Multiple tables, even from more than one database, can be stored in a single “ib-file set”. (In MySQL, a
“database” is a logical collection of tables, what other systems refer to as a “schema” or “catalog”.)

Compatibility Check When InnoDB Is Started

To prevent possible crashes or data corruptions when InnoDB opens an ib-file set, it checks that it can
fully support the file formats in use within the ib-file set. If the system is restarted following a crash, or

http://dev.mysql.com/doc/refman/5.5/en/innodb-create-index.html

InnoDB File-Format Management

1673

a “fast shutdown” (i.e., innodb_fast_shutdown is greater than zero), there may be on-disk data
structures (such as redo or undo entries, or doublewrite pages) that are in a “too-new” format for the
current software. During the recovery process, serious damage can be done to your data files if these
data structures are accessed. The startup check of the file format occurs before any recovery process
begins, thereby preventing consistency issues with the new tables or startup problems for the MySQL
server.

Beginning with version InnoDB 1.0.1, the system tablespace records an identifier or tag for
the “highest” file format used by any table in any of the tablespaces that is part of the ib-
file set. Checks against this file format tag are controlled by the configuration parameter
innodb_file_format_check, which is ON by default.

If the file format tag in the system tablespace is newer or higher than the highest version supported by
the particular currently executing software and if innodb_file_format_check is ON, the following
error is issued when the server is started:

InnoDB: Error: the system tablespace is in a
file format that this version doesn't support

You can also set innodb_file_format to a file format name. Doing so prevents InnoDB from
starting if the current software does not support the file format specified. It also sets the “high water
mark” to the value you specify. The ability to set innodb_file_format_check will be useful (with
future releases of InnoDB) if you manually “downgrade” all of the tables in an ib-file set (as described in
Downgrading the InnoDB Storage Engine). You can then rely on the file format check at startup if you
subsequently use an older version of InnoDB to access the ib-file set.

In some limited circumstances, you might want to start the server and use an ib-file set that is in a
“too new” format (one that is not supported by the software you are using). If you set the configuration
parameter innodb_file_format_check to OFF, InnoDB opens the database, but issues this
warning message in the error log:

InnoDB: Warning: the system tablespace is in a
file format that this version doesn't support

Note

This is a very dangerous setting, as it permits the recovery process to run,
possibly corrupting your database if the previous shutdown was a crash
or “fast shutdown”. You should only set innodb_file_format_check
to OFF if you are sure that the previous shutdown was done with
innodb_fast_shutdown=0, so that essentially no recovery process occurs.
In a future release, this parameter setting may be renamed from OFF to
UNSAFE. (However, until there are newer releases of InnoDB that support
additional file formats, even disabling the startup checking is in fact “safe”.)

The parameter innodb_file_format_check affects only what happens when a database is
opened, not subsequently. Conversely, the parameter innodb_file_format (which enables a
specific format) only determines whether or not a new table can be created in the enabled format and
has no effect on whether or not a database can be opened.

The file format tag is a “high water mark”, and as such it is increased after the server is started, if a
table in a “higher” format is created or an existing table is accessed for read or write (assuming its
format is supported). If you access an existing table in a format higher than the format the running
software supports, the system tablespace tag is not updated, but table-level compatibility checking
applies (and an error is issued), as described in Compatibility Check When a Table Is Opened. Any
time the high water mark is updated, the value of innodb_file_format_check is updated as well,
so the command SELECT @@innodb_file_format_check; displays the name of the newest
file format known to be used by tables in the currently open ib-file set and supported by the currently
executing software.

http://dev.mysql.com/doc/refman/5.5/en/innodb-downgrading.html

InnoDB File-Format Management

1674

To best illustrate this behavior, consider the scenario described in Table 14.4, “InnoDB Data File
Compatibility and Related InnoDB Parameters”. Imagine that some future version of InnoDB supports
the Cheetah format and that an ib-file set has been used with that version.

Table 14.4 InnoDB Data File Compatibility and Related InnoDB Parameters

innodb
file
format
check

innodb file
format

Highest
file format
used in ib-
file set

Highest
file format
supported
by InnoDB

Result

OFF Antelope or
Barracuda

Barracuda Barracuda Database can be opened; tables can be created
which require Antelope or Barracuda file format

OFF Antelope or
Barracuda

Cheetah Barracuda Database can be opened with a warning, since the
database contains files in a “too new” format; tables
can be created in Antelope or Barracuda file format;
tables in Cheetah format cannot be accessed

OFF Cheetah Barracuda Barracuda Database cannot be opened;
innodb_file_format cannot be set to Cheetah

ON Antelope or
Barracuda

Barracuda Barracuda Database can be opened; tables can be created in
Antelope or Barracuda file format

ON Antelope or
Barracuda

Cheetah Barracuda Database cannot be opened, since the database
contains files in a “too new” format (Cheetah)

ON Cheetah Barracuda Barracuda Database cannot be opened;
innodb_file_format cannot be set to Cheetah

Compatibility Check When a Table Is Opened

When a table is first accessed, InnoDB (including some releases prior to InnoDB 1.0) checks that
the file format of the tablespace in which the table is stored is fully supported. This check prevents
crashes or corruptions that would otherwise occur when tables using a “too new” data structure are
encountered.

All tables using any file format supported by a release can be read or written (assuming the user has
sufficient privileges). The setting of the system configuration parameter innodb_file_format can
prevent creating a new table that uses specific file formats, even if they are supported by a given
release. Such a setting might be used to preserve backward compatibility, but it does not prevent
accessing any table that uses any supported format.

As noted in Named File Formats, versions of MySQL older than 5.0.21 cannot reliably use database
files created by newer versions if a new file format was used when a table was created. To prevent
various error conditions or corruptions, InnoDB checks file format compatibility when it opens a file (for
example, upon first access to a table). If the currently running version of InnoDB does not support the
file format identified by the table type in the InnoDB data dictionary, MySQL reports the following error:

ERROR 1146 (42S02): Table 'test.t1' doesn't exist

InnoDB also writes a message to the error log:

InnoDB: table test/t1: unknown table type 33

The table type should be equal to the tablespace flags, which contains the file format version as
discussed in Section 14.2.8.3, “Identifying the File Format in Use”.

Versions of InnoDB prior to MySQL 4.1 did not include table format identifiers in the database files, and
versions prior to MySQL 5.0.21 did not include a table format compatibility check. Therefore, there is no

InnoDB File-Format Management

1675

way to ensure proper operations if a table in a “too new” format is used with versions of InnoDB prior to
5.0.21.

The file format management capability in InnoDB 1.0 and higher (tablespace tagging and run-time
checks) allows InnoDB to verify as soon as possible that the running version of software can properly
process the tables existing in the database.

If you permit InnoDB to open a database containing files in a format it does not support (by setting the
parameter innodb_file_format_check to OFF), the table-level checking described in this section
still applies.

Users are strongly urged not to use database files that contain Barracuda file format tables with
releases of InnoDB older than the MySQL 5.1 with the InnoDB Plugin. It is possible to “downgrade”
such tables to the Antelope format with the procedure described in Section 14.2.8.4, “Downgrading the
File Format”.

14.2.8.3 Identifying the File Format in Use

After you enable a given innodb_file_format, this change applies only to newly created tables
rather than existing ones. If you do create a new table, the tablespace containing the table is tagged
with the “earliest” or “simplest” file format that is required for the table's features. For example, if
you enable file format Barracuda, and create a new table that is not compressed and does not use
ROW_FORMAT=DYNAMIC, the new tablespace that contains the table is tagged as using file format
Antelope.

It is easy to identify the file format used by a given tablespace or table. The table uses the Barracuda
format if the Row_format reported by SHOW CREATE TABLE or INFORMATION_SCHEMA.TABLES is
one of 'Compressed' or 'Dynamic'. (The Row_format is a separate column; ignore the contents of
the Create_options column, which may contain the string ROW_FORMAT.) If the table in a tablespace
uses neither of those features, the file uses the format supported by prior releases of InnoDB, now
called file format Antelope. Then, the Row_format is one of 'Redundant' or 'Compact'.

Internal Details

InnoDB has two different file formats (Antelope and Barracuda) and four different row formats
(Redundant, Compact, Dynamic, and Compressed). The Antelope file format contains Redundant and
Compact row formats. A tablespace that uses the Barracuda file format uses either the Dynamic or
Compressed row format.

File and row format information is written in the tablespace flags (a 32-bit number) in the *.ibd file
in the 4 bytes starting at position 54 of the file, most significant byte first (the first byte of the file is
byte zero). On some systems, you can display these bytes in hexadecimal with the command od -
t x1 -j 54 -N 4 tablename.ibd. If all bytes are zero, the tablespace uses the Antelope file
format, which is the format used by the standard InnoDB storage engine up to version 5.1. The system
tablespace will always have zero in the tablespace flags.

The first 10 bits of the tablespace flags can be described this way:

• Bit 0: Zero for Antelope, and bits 1 to 5 will also be zero. One for Barracuda, and bits 1 to 5 may be
set.

• Bits 1 to 4: A 4 bit number representing the compressed page size. 0 = not compressed, 1 = 1k, 2 =
2k, 3 = 4k, 4 = 8k.

• Bit 5: Same value as Bit 0, zero for Antelope, one for Barracuda. If bits 0 and 5 are set and bits 1 to 4
are not, the row format is Dynamic.

• Bits 6 to 9: A 4-bit number indicating the physical page size of the tablespace. 0=16k (original
default), 3=4k, 4=8k, 5=16k. These are the only valid values for My SQL 5.6 and later.

• Bit 10: Tablespace location. 0 = default, 1 = used DATA DIRECTORY in CREATE TABLE to choose
the tablespace location.

InnoDB Row Storage and Row Formats

1676

Note

Tablespace flags are similar to table flags found in the InnoDB dictionary table,
“SYS_TABLES”. They differ in the meaning of bit 0 and bits 6 to 10. Table
flags will set bit 0 to one if the row format of a particular table is “Compact”.
Tablespace flags cannot do that since the system tablespace can contain both
Redundant and Compact row formats. So, for tablespace flags, bit 0 and bit 5
are always the same value.

Table flags can be viewed by issuing the command:

SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES;

The first 7 bits of the table flags can be described this way:

• Bit 0: Zero for Redundant row format, and bits 1 to 5 will be zero. One for Compact row format, and
bits 1 to 5 may be set.

• Bits 1 to 4: A 4 bit number representing the compressed page size. 0 = not compressed, 1 = 1k, 2 =
2k, 3 = 4k, 4 = 8k.

• Bit 5: Zero for Antelope file format, and one for Barracuda file format. If bit 5 is set and bits 1 to 4 are
not, the row format is Dynamic. Also, if bit 5 is set, bit 0 must also be set.

• Bit 6: Tablespace location. 0 = default, 1 = DATA DIRECTORY was used in CREATE TABLE to
choose a tablespace location.

If bits 7 to 31 are not zero, the table is corrupt or the SYS_TABLES record is corrupt, and the table
cannot be used.

14.2.8.4 Downgrading the File Format

Each InnoDB tablespace file (with a name matching *.ibd) is tagged with the file format used to
create its table and indexes. The way to downgrade the tablespace is to re-create the table and its
indexes. The easiest way to recreate a table and its indexes is to use the command:

ALTER TABLE t ROW_FORMAT=COMPACT;

on each table that you want to downgrade. The COMPACT row format uses the file format Antelope. It
was introduced in MySQL 5.0.3.

14.2.8.5 Future InnoDB File Formats

The file format used by the standard built-in InnoDB in MySQL 5.1 is the Antelope format. The file
format introduced with InnoDB Plugin 1.0 is the Barracuda format. Although no new features have been
announced that would require additional new file formats, the InnoDB file format mechanism allows for
future enhancements.

For the sake of completeness, these are the file format names that might be used for future file formats:
Antelope, Barracuda, Cheetah, Dragon, Elk, Fox, Gazelle, Hornet, Impala, Jaguar, Kangaroo, Leopard,
Moose, Nautilus, Ocelot, Porpoise, Quail, Rabbit, Shark, Tiger, Urchin, Viper, Whale, Xenops, Yak and
Zebra. These file formats correspond to the internal identifiers 0..25.

14.2.9 InnoDB Row Storage and Row Formats

This section discusses how certain InnoDB features, such as table compression and off-page storage
of long columns, are controlled by the ROW_FORMAT clause of the CREATE TABLE statement. It
discusses considerations for choosing the right row format and compatibility of row formats between
MySQL releases.

InnoDB Row Storage and Row Formats

1677

14.2.9.1 Overview of InnoDB Row Storage

The storage for rows and associated columns affects performance for queries and DML operations. As
more rows fit into a single disk page, queries and index lookups can work faster, less cache memory is
required in the InnoDB buffer pool, and less I/O is required to write out updated values for the numeric
and short string columns.

The data in each InnoDB table is divided into pages. The pages that make up each table are arranged
in a tree data structure called a B-tree index. Table data and secondary indexes both use this type of
structure. The B-tree index that represents an entire table is known as the clustered index, which is
organized according to the primary key columns. The nodes of the index data structure contain the
values of all the columns in that row (for the clustered index) or the index columns and the primary key
columns (for secondary indexes).

Variable-length columns are an exception to this rule. Columns such as BLOB and VARCHAR that are
too long to fit on a B-tree page are stored on separately allocated disk pages called overflow pages.
We call such columns off-page columns. The values of these columns are stored in singly-linked lists of
overflow pages, and each such column has its own list of one or more overflow pages. In some cases,
all or a prefix of the long column value is stored in the B-tree, to avoid wasting storage and eliminating
the need to read a separate page.

The next section describes the clauses you can use with the CREATE TABLE and ALTER TABLE
statements to control how these variable-length columns are represented: ROW_FORMAT and
KEY_BLOCK_SIZE. To use these clauses, you might also need to change the settings for the
innodb_file_per_table and innodb_file_format configuration options.

14.2.9.2 Specifying the Row Format for a Table

You specify the row format for a table with the ROW_FORMAT clause of the CREATE TABLE and ALTER
TABLE statements. For example:

CREATE TABLE t1 (f1 int unsigned) ROW_FORMAT=DYNAMIC ENGINE=INNODB;

InnoDB ROW_FORMAT options include COMPACT, REDUNDANT, DYNAMIC, and COMPRESSED.
For InnoDB tables, rows are stored in COMPACT format (ROW_FORMAT=COMPACT) by default. Refer to
the CREATE TABLE documentation for additional information about the ROW_FORMAT table option.

The physical row structure for InnoDB tables is dependant on the ROW_FORMAT that you specify. See
Physical Row Structure for more information.

 CREATE TABLE t1 (f1 int unsigned) ROW_FORMAT=DYNAMIC ENGINE=INNODB;

InnoDB ROW_FORMAT options include COMPACT, REDUNDANT, DYNAMIC, and COMPRESSED.
For InnoDB tables, rows are stored in COMPACT format (ROW_FORMAT=COMPACT) by default. Refer to
the CREATE TABLE documentation for additional information about the ROW_FORMAT table option.

The physical row structure for InnoDB tables is dependant on the ROW_FORMAT that you specify. See
Physical Row Structure for more information.

14.2.9.3 DYNAMIC and COMPRESSED Row Formats

This section discusses the DYNAMIC and COMPRESSED row formats for InnoDB tables. You can
only create these kinds of tables when the innodb_file_format configuration option is set to
Barracuda. (The Barracuda file format also allows the COMPACT and REDUNDANT row formats.)

When a table is created with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, long column
values are stored fully off-page, and the clustered index record contains only a 20-byte pointer to the
overflow page.

InnoDB Disk I/O and File Space Management

1678

Whether any columns are stored off-page depends on the page size and the total size of the row.
When the row is too long, InnoDB chooses the longest columns for off-page storage until the clustered
index record fits on the B-tree page.

The DYNAMIC row format maintains the efficiency of storing the entire row in the index node if it fits
(as do the COMPACT and REDUNDANT formats), but this new format avoids the problem of filling B-tree
nodes with a large number of data bytes of long columns. The DYNAMIC format is based on the idea
that if a portion of a long data value is stored off-page, it is usually most efficient to store all of the value
off-page. With DYNAMIC format, shorter columns are likely to remain in the B-tree node, minimizing the
number of overflow pages needed for any given row.

The COMPRESSED row format uses similar internal details for off-page storage as the DYNAMIC
row format, with additional storage and performance considerations from the table and index data
being compressed and using smaller page sizes. With the COMPRESSED row format, the option
KEY_BLOCK_SIZE controls how much column data is stored in the clustered index, and how much
is placed on overflow pages. For full details about the COMPRESSED row format, see Section 14.2.7,
“InnoDB Compressed Tables”.

14.2.9.4 COMPACT and REDUNDANT Row Formats

Early versions of InnoDB used an unnamed file format (now called Antelope) for database files. With
that file format, tables are defined with ROW_FORMAT=COMPACT or ROW_FORMAT=REDUNDANT. InnoDB
stores up to the first 768 bytes of variable-length columns (such as BLOB and VARCHAR) in the index
record within the B-tree node, with the remainder stored on the overflow pages.

To preserve compatibility with those prior versions, tables created with the newest InnoDB default
to the COMPACT row format. See Section 14.2.9.3, “DYNAMIC and COMPRESSED Row Formats” for
information about the newer DYNAMIC and COMPRESSED row formats.

With the Antelope file format, if the value of a column is 768 bytes or less, no overflow page is needed,
and some savings in I/O may result, since the value is in the B-tree node. This works well for relatively
short BLOBs, but may cause B-tree nodes to fill with data rather than key values, reducing their
efficiency. Tables with many BLOB columns could cause B-tree nodes to become too full of data,
and contain too few rows, making the entire index less efficient than if the rows were shorter or if the
column values were stored off-page.

14.2.10 InnoDB Disk I/O and File Space Management

As a DBA, you must manage disk I/O to keep the I/O subsystem from becoming saturated, and
manage disk space to avoid filling up storage devices. The ACID design model requires a certain
amount of I/O that might seem redundant, but helps to ensure data reliability. Within these constraints,
InnoDB tries to optimize the database work and the organization of disk files to minimize the amount
of disk I/O. Sometimes, I/O is postponed until the database is not busy, or until everything needs to be
brought to a consistent state, such as during a database restart after a fast shutdown.

This section discusses the main considerations for I/O and disk space with the default kind of MySQL
tables (also known as InnoDB tables):

• Controlling the amount of background I/O used to improve query performance.

• Enabling or disabling features that provide extra durability at the expense of additional I/O.

• Organizing tables into many small files, a few larger files, or a combination of both.

• Balancing the size of redo log files against the I/O activity that occurs when the log files become full.

• How to reorganize a table for optimal query performance.

14.2.10.1 InnoDB Disk I/O

InnoDB Disk I/O and File Space Management

1679

InnoDB uses asynchronous disk I/O where possible, by creating a number of threads to handle I/O
operations, while permitting other database operations to proceed while the I/O is still in progress. On
Linux and Windows platforms, InnoDB uses the available OS and library functions to perform “native”
asynchronous I/O. On other platforms, InnoDB still uses I/O threads, but the threads may actually wait
for I/O requests to complete; this technique is known as “simulated” asynchronous I/O.

Read-Ahead

If InnoDB can determine there is a high probability that data might be needed soon, it performs read-
ahead operations to bring that data into the buffer pool so that it is available in memory. Making a few
large read requests for contiguous data can be more efficient than making several small, spread-out
requests. There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace
is sequential, it posts in advance a batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process
of being fully read into the buffer pool, it posts the remaining reads to the I/O system.

Doublewrite Buffer

InnoDB uses a novel file flush technique involving a structure called the doublewrite buffer. It adds
safety to recovery following an operating system crash or a power outage, and improves performance
on most varieties of Unix by reducing the need for fsync() operations.

Before writing pages to a data file, InnoDB first writes them to a contiguous tablespace area called
the doublewrite buffer. Only after the write and the flush to the doublewrite buffer has completed does
InnoDB write the pages to their proper positions in the data file. If the operating system crashes in the
middle of a page write (causing a torn page condition), InnoDB can later find a good copy of the page
from the doublewrite buffer during recovery.

14.2.10.2 File Space Management

The data files that you define in the configuration file form the InnoDB system tablespace. The files are
logically concatenated to form the tablespace. There is no striping in use. Currently, you cannot define
where within the tablespace your tables are allocated. In a newly created tablespace, InnoDB allocates
space starting from the first data file.

To avoid the issues that come with storing all tables and indexes inside the system tablespace, you can
turn on the innodb_file_per_table configuration option, which stores each newly created table in
a separate tablespace file (with extension .ibd). For tables stored this way, there is less fragmentation
within the disk file, and when the table is truncated, the space is returned to the operating system
rather than still being reserved by InnoDB within the system tablespace.

Pages, Extents, Segments, and Tablespaces

Each tablespace consists of database pages. Every tablespace in a MySQL instance has the same
page size. By default, all tablespaces have a page size of 16KB; you can reduce the page size to 8KB
or 4KB by specifying the innodb_page_size option when you create the MySQL instance.

The pages are grouped into extents of size 1MB (64 consecutive 16KB pages, or 128 8KB pages, or
256 4KB pages). The “files” inside a tablespace are called segments in InnoDB. (These segments are
different from the rollback segment, which actually contains many tablespace segments.)

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it one at a time.
After that, InnoDB starts to allocate whole extents to the segment. InnoDB can add up to 4 extents at
a time to a large segment to ensure good sequentiality of data.

Two segments are allocated for each index in InnoDB. One is for nonleaf nodes of the B-tree, the
other is for the leaf nodes. Keeping the leaf nodes contiguous on disk enables better sequential I/O
operations, because these leaf nodes contain the actual table data.

InnoDB Disk I/O and File Space Management

1680

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an
InnoDB tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS
statement, InnoDB reports the extents that are definitely free in the tablespace. InnoDB always
reserves some extents for cleanup and other internal purposes; these reserved extents are not
included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether
the freed space becomes available for other users depends on whether the pattern of deletes frees
individual pages or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed
to release the space to other users, but remember that deleted rows are physically removed only
by the purge operation, which happens automatically some time after they are no longer needed for
transaction rollbacks or consistent reads. (See Section 14.2.2.12, “InnoDB Multi-Versioning”.)

To see information about the tablespace, use the Tablespace Monitor. See Section 14.2.12.4, “InnoDB
Monitors”.

How Pages Relate to Table Rows

The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB and
TEXT), is slightly less than half of a database page. That is, the maximum row length is about 8000
bytes. LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including
BLOB and TEXT columns, must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page,
variable-length columns are chosen for external off-page storage until the row fits within half a page.
For a column chosen for off-page storage, InnoDB stores the first 768 bytes locally in the row, and the
rest externally into overflow pages. Each such column has its own list of overflow pages. The 768-byte
prefix is accompanied by a 20-byte value that stores the true length of the column and points into the
overflow list where the rest of the value is stored.

14.2.10.3 InnoDB Checkpoints

Making your log files very large may reduce disk I/O during checkpointing. It often makes sense to
set the total size of the log files as large as the buffer pool or even larger. Although in the past large
log files could make crash recovery take excessive time, starting with MySQL 5.5, performance
enhancements to crash recovery make it possible to use large log files with fast startup after a crash.
(Strictly speaking, this performance improvement is available for MySQL 5.1 with the InnoDB Plugin
1.0.7 and higher. It is with MySQL 5.5 that this improvement is available in the default InnoDB storage
engine.)

How Checkpoint Processing Works

InnoDB implements a checkpoint mechanism known as fuzzy checkpointing. InnoDB flushes modified
database pages from the buffer pool in small batches. There is no need to flush the buffer pool in one
single batch, which would disrupt processing of user SQL statements during the checkpointing process.

During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all
modifications to the database before the label are present in the disk image of the database. Then
InnoDB scans the log files forward from the checkpoint, applying the logged modifications to the
database.

14.2.10.4 Defragmenting a Table

Random insertions into or deletions from a secondary index can cause the index to become
fragmented. Fragmentation means that the physical ordering of the index pages on the disk is not close
to the index ordering of the records on the pages, or that there are many unused pages in the 64-page
blocks that were allocated to the index.

InnoDB and Online DDL

1681

One symptom of fragmentation is that a table takes more space than it “should” take. How much that is
exactly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor
may vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes
more time than it “should” take:

SELECT COUNT(*) FROM t WHERE non_indexed_column <> 12345;

The preceding query requires MySQL to perform a full table scan, the slowest type of query for a large
table.

To speed up index scans, you can periodically perform a “null” ALTER TABLE operation, which causes
MySQL to rebuild the table:

ALTER TABLE tbl_name ENGINE=INNODB

You can also use ALTER TABLE tbl_name FORCE to perform a “null” alter operation that rebuilds
the table.

As of MySQL 5.7.4, both ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE
tbl_name FORCE use online DDL (ALGORITHM=COPY). For more information, see Section 14.2.11.1,
“Overview of Online DDL”.

Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text
file, drop the table, and reload it from the dump file.

Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text
file, drop the table, and reload it from the dump file.

If the insertions into an index are always ascending and records are deleted only from the end, the
InnoDB filespace management algorithm guarantees that fragmentation in the index does not occur.

14.2.10.5 Reclaiming Disk Space with TRUNCATE TABLE

To reclaim operating system disk space when truncating an InnoDB table, the table must be stored in
its own .ibd file. For a table to be stored in its own .ibd file, innodb_file_per_table must enabled
when the table is created. Additionally, there cannot be a foreign key constraint between the table
being truncated and other tables, otherwise the TRUNCATE TABLE operation fails. A foreign key
constraint between two columns in the same table, however, is permitted.

When a table is truncated, it is dropped and re-created in a new .ibd file, and the freed space is
returned to the operating system. This is in contrast to truncating InnoDB tables that are stored within
the InnoDB system tablespace (tables created when innodb_file_per_table=OFF), where only
InnoDB can use the freed space after the table is truncated.

The ability to truncate tables and return disk space to the operating system also means that physical
backups can be smaller. Truncating tables that are stored in the system tablespace (tables created
when innodb_file_per_table=OFF) leaves blocks of unused space in the system tablespace.

14.2.11 InnoDB and Online DDL

You can perform several kinds of online DDL operations on InnoDB tables: that is, allowing DML
operations and queries on the table while the DDL is in progress, performing the operation “in-place”
without rebuilding the entire table, or both. This enhancement has the following benefits:

• It improves responsiveness and availability in busy production environments, where making a
table unavailable for minutes or hours whenever you modify its indexes or column definitions is not
practical.

• It lets you adjust the balance between performance and concurrency during the DDL operation, by
choosing whether to block access to the table entirely (LOCK=EXCLUSIVE clause), allow queries
but not DML (LOCK=SHARED clause), or allow full query and DML access to the table (LOCK=NONE

InnoDB and Online DDL

1682

clause). When you omit the LOCK clause or specify LOCK=DEFAULT, MySQL allows as much
concurrency as possible depending on the type of operation.

• By doing the changes in-place where possible, rather than creating a new copy of the table, it
avoids temporary increases in disk space usage and the I/O overhead of copying the table and
reconstructing all the secondary indexes.

14.2.11.1 Overview of Online DDL

Historically, many DDL operations on InnoDB tables were expensive. Many ALTER TABLE operations
worked by creating a new, empty table defined with the requested table options and indexes, then
copying the existing rows to the new table one-by-one, updating the indexes as the rows were inserted.
After all rows from the original table were copied, the old table was dropped and the copy was renamed
with the name of the original table.

MySQL 5.5, and MySQL 5.1 with the InnoDB Plugin, optimized CREATE INDEX and DROP INDEX
to avoid the table-copying behavior. That feature was known as Fast Index Creation. MySQL
5.6 enhances many other types of ALTER TABLE operations to avoid copying the table. Another
enhancement allows SELECT queries and INSERT, UPDATE, and DELETE (DML) statements to
proceed while the table is being altered. In MySQL 5.7, ALTER TABLE RENAME INDEX was also
enhanced to avoid table copying. This combination of features is now known as online DDL.

This new mechanism also means that you can generally speed the overall process of creating and
loading a table and associated indexes by creating the table without any secondary indexes, then
adding the secondary indexes after the data is loaded.

Although no syntax changes are required in the CREATE INDEX or DROP INDEX commands, some
factors affect the performance, space usage, and semantics of this operation (see Section 14.2.11.9,
“Limitations of Online DDL”).

The online DDL enhancements in MySQL 5.6 improve many DDL operations that formerly required a
table copy, blocked DML operations on the table, or both. Table 14.5, “Summary of Online Status for
DDL Operations” shows the variations of the ALTER TABLE statement and shows how the online DDL
feature applies to each one.

With the exception of ALTER TABLE partitioning clauses, online DDL operations for partitioned
InnoDB tables follow the same rules that apply to regular InnoDB tables. For more information, see
Section 14.2.11.8, “Online DDL for Partitioned InnoDB Tables”.

• The “In-Place?” column shows which operations allow the ALGORITHM=INPLACE clause; the
preferred value is “Yes”.

• The “Copies Table?” column shows which operations are able to avoid the expensive table-copying
operation; the preferred value is “No”. This column is mostly the reverse of the “In-Place?” column,
except that a few operations allow ALGORITHM=INPLACE but still involve some amount of table
copying.

• The “Allows Concurrent DML?” column shows which operations can be performed fully online; the
preferred value is “Yes”. You can specify LOCK=NONE to assert that full concurrency is allowed
during the DDL, but MySQL automatically allows this level of concurrency when possible. When
concurrent DML is allowed, concurrent queries are also always allowed.

• The “Allows Concurrent Queries?” column shows which DDL operations allow queries on the table
while the operation is in progress; the preferred value is “Yes”. Concurrent query is allowed during
all online DDL operations. It is shown with “Yes” listed for all cells, for reference purposes. You can
specify LOCK=SHARED to assert that concurrent queries are allowed during the DDL, but MySQL
automatically allows this level of concurrency when possible.

• The “Notes” column explains any exceptions to the “yes/no” values of the other columns, such as
when the answer depends on the setting of a configuration option or some other clause in the DDL
statement. The values “Yes*” and “No*” indicate that an answer depends on these additional notes.

InnoDB and Online DDL

1683

Table 14.5 Summary of Online Status for DDL Operations

Operation In-
Place?

Copies
Table?

Allows
Concurrent

DML?

Allows
Concurrent

Query?

Notes

CREATE INDEX, ADD INDEX Yes* No* Yes Yes Some restrictions for FULLTEXT
index; see next row. Currently,
the operation is not in-place (that
is, it copies the table) if the same
index being created was also
dropped by an earlier clause
in the same ALTER TABLE
statement.

ADD FULLTEXT INDEX Yes No* No Yes Creating the first FULLTEXT
index for a table involves a table
copy, unless there is a user-
supplied FTS_DOC_ID column.
Subsequent FULLTEXT indexes
on the same table can be created
in-place.

RENAME INDEX Yes No No No

DROP INDEX Yes No Yes Yes

OPTIMIZE TABLE Yes Yes Yes Yes Uses ALGORITHM=INPLACE
as of MySQL 5.7.4.
ALGORITHM=COPY is used
if old_alter_table=1
or mysqld --skip-new
option is enabled. OPTIMIZE
TABLE using online DDL
(ALGORITHM=INPLACE) is
not supported for tables with
FULLTEXT indexes.

Set default value for a column Yes No Yes Yes Modifies .frm file only, not the
data file.

Change auto-increment value
for a column

Yes No Yes Yes Modifies a value stored in
memory, not the data file.

Add a foreign key constraint Yes* No* Yes Yes To avoid copying the table,
disable foreign_key_checks
during constraint creation.

Drop a foreign key constraint Yes No Yes Yes The foreign_key_checks
option can be enabled or
disabled.

Rename a column Yes* No* Yes* Yes To allow concurrent DML, keep
the same data type and only
change the column name.

Add a column Yes Yes Yes* Yes Concurrent DML is not
allowed when adding an auto-
increment column. Although
ALGORITHM=INPLACE is
allowed, the data is reorganized
substantially, so it is still an
expensive operation.

Drop a column Yes Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is

InnoDB and Online DDL

1684

Operation In-
Place?

Copies
Table?

Allows
Concurrent

DML?

Allows
Concurrent

Query?

Notes

reorganized substantially, so it is
still an expensive operation.

Reorder columns Yes Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it is
still an expensive operation.

Change ROW_FORMAT
property

Yes Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it is
still an expensive operation.

Change KEY_BLOCK_SIZE
property

Yes Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it is
still an expensive operation.

Make column NULL Yes Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it is
still an expensive operation.

Make column NOT NULL Yes* Yes Yes Yes When SQL_MODE includes
strict_all_tables or
strict_all_tables, the
operation fails if the column
contains any nulls. Although
ALGORITHM=INPLACE is
allowed, the data is reorganized
substantially, so it is still an
expensive operation.

Change data type of column No* Yes* No Yes Exception: VARCHAR size may
be increased using online ALTER
TABLE. See InnoDB Online DDL
Column Properties for more
information.

Add primary key Yes* Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it
is still an expensive operation.
ALGORITHM=INPLACE is not
allowed under certain conditions
if columns have to be converted
to NOT NULL. See Example 14.9,
“Creating and Dropping the
Primary Key”.

Drop primary key and add
another

Yes Yes Yes Yes ALGORITHM=INPLACE is only
allowed when you add a new
primary key in the same ALTER
TABLE; the data is reorganized
substantially, so it is still an
expensive operation.

Drop primary key No Yes No Yes Restrictions apply when you drop
a primary key primary key without

InnoDB and Online DDL

1685

Operation In-
Place?

Copies
Table?

Allows
Concurrent

DML?

Allows
Concurrent

Query?

Notes

adding a new one in the same
ALTER TABLE statement.

Convert character set No Yes No Yes Rebuilds the table if the new
character encoding is different.

Specify character set No Yes No Yes Rebuilds the table if the new
character encoding is different.

Rebuild with FORCE option Yes Yes Yes Yes Uses ALGORITHM=INPLACE
as of MySQL 5.6.17.
ALGORITHM=COPY is used
if old_alter_table=1
or mysqld --skip-new
option is enabled. Table
rebuild using online DDL
(ALGORITHM=INPLACE) is
not supported for tables with
FULLTEXT indexes.

Rebuild with “null”
ALTER TABLE ...
ENGINE=INNODB

Yes Yes Yes Yes Uses ALGORITHM=INPLACE
as of MySQL 5.7.4.
ALGORITHM=COPY is used
if old_alter_table=1
or mysqld --skip-new
option is enabled. Table
rebuild using online DDL
(ALGORITHM=INPLACE) is
not supported for tables with
FULLTEXT indexes.

The following sections shows the basic syntax, and usage notes related to online DDL, for each of the
major operations that can be performed with concurrent DML, in-place, or both:

Secondary Indexes

• Create secondary indexes: CREATE INDEX name ON table (col_list) or ALTER TABLE
table ADD INDEX name (col_list). (Creating a a FULLTEXT index still requires locking the
table.)

• Drop secondary indexes: DROP INDEX name ON table; or ALTER TABLE table DROP INDEX
name

Creating and dropping secondary indexes on InnoDB tables skips the table-copying behavior, the
same as in MySQL 5.5 and MySQL 5.1 with the InnoDB Plugin.

In MySQL 5.6 and higher, the table remains available for read and write operations while the index
is being created or dropped. The CREATE INDEX or DROP INDEX statement only finishes after all
transactions that are accessing the table are completed, so that the initial state of the index reflects the
most recent contents of the table. Previously, modifying the table while an index was being created or
dropped typically resulted in a deadlock that cancelled the INSERT, UPDATE, or DELETE statement on
the table.

Column Properties

• Set a default value for a column: ALTER TABLE tbl ALTER COLUMN col SET DEFAULT
literal or ALTER TABLE tbl ALTER COLUMN col DROP DEFAULT

InnoDB and Online DDL

1686

The default values for columns are stored in the .frm file for the table, not the InnoDB data
dictionary.

• Changing the auto-increment value for a column: ALTER TABLE table
AUTO_INCREMENT=next_value;

Especially in a distributed system using replication or sharding, you sometimes reset the auto-
increment counter for a table to a specific value. The next row inserted into the table uses
the specified value for its auto-increment column. You might also use this technique in a data
warehousing environment where you periodically empty all the tables and reload them, and you can
restart the auto-increment sequence from 1.

• Renaming a column: ALTER TABLE tbl CHANGE old_col_name new_col_name datatype

When you keep the same data type and [NOT] NULL attribute, only changing the column name, this
operation can always be performed online.

As part of this enhancement, you can now rename a column that is part of a foreign key constraint,
which was not allowed before. The foreign key definition is automatically updated to use the new
column name. Renaming a column participating in a foreign key only works with the in-place mode
of ALTER TABLE. If you use the ALGORITHM=COPY clause, or some other condition causes the
command to use ALGORITHM=COPY behind the scenes, the ALTER TABLE statement will fail.

• Extending VARCHAR size using an in-place ALTER TABLE statement, as in this example:

ALTER TABLE t1 ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(255);

The number of length bytes required by a VARCHAR column must remain the same. For VARCHAR
values of 0 to 255, one length byte is required to encode the value. For VARCHAR values of 256 bytes
or more, two length bytes are required. As a result, in-place ALTER TABLE only supports increasing
VARCHAR size from 0 to 255 bytes or increasing VARCHAR size from a value equal to or greater
than 256 bytes. In-place ALTER TABLE does not support increasing VARCHAR size from less than
256 bytes to a value equal to or greater than 256 bytes. In this case, the number of required length
bytes would change from 1 to 2, which is only supported by a table copy (ALGORITHM=COPY). For
example, attempting to change VARCHAR column size from 255 to 256 using in-place ALTER TABLE
would return an error:

ALTER TABLE t1 ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(256);
ERROR 0A000: ALGORITHM=INPLACE is not supported. Reason: Cannot change
column type INPLACE. Try ALGORITHM=COPY.

Decreasing VARCHAR size using in-place ALTER TABLE is not supported. Decreasing VARCHAR size
requires a table copy (ALGORITHM=COPY).

Foreign Keys

• Adding or dropping a foreign key constraint:

ALTER TABLE tbl1 ADD CONSTRAINT fk_name FOREIGN KEY index (col1) REFERENCES tbl2(col2) referential_actions;
ALTER TABLE tbl DROP FOREIGN KEY fk_name;

Dropping a foreign key can be performed online with the foreign_key_checks option enabled or
disabled. Creating a foreign key online requires foreign_key_checks to be disabled.

If you do not know the names of the foreign key constraints on a particular table, issue the following
statement and find the constraint name in the CONSTRAINT clause for each foreign key:

show create table table\G

InnoDB and Online DDL

1687

Or, query the information_schema.table_constraints table and use the
constraint_name and constraint_type columns to identify the foreign key names.

As a consequence of this enhancement, you can now also drop a foreign key and its associated
index in a single statement, which previously required separate statements in a strict order:

ALTER TABLE table DROP FOREIGN KEY constraint, DROP INDEX index;

If foreign keys are already present in the table being altered (that is, it is a child table containing any
FOREIGN KEY ... REFERENCE clauses), additional restrictions apply to online DDL operations, even
those not directly involving the foreign key columns:

• Concurrent DML is disallowed during online DDL operations on such child tables. (This restriction is
being evaluated as a bug and might be lifted.)

• An ALTER TABLE on the child table could also wait for another transaction to commit, if a change to
the parent table caused associated changes in the child table through an ON UPDATE or ON DELETE
clause using the CASCADE or SET NULL parameters.

In the same way, if a table is the parent table in a foreign key relationship, even though it does not
contain any FOREIGN KEY clauses, it could wait for the ALTER TABLE to complete if an INSERT,
UPDATE, or DELETE statement caused an ON UPDATE or ON DELETE action in the child table.

Notes on ALGORITHM=COPY

Any ALTER TABLE operation run with the ALGORITHM=COPY clause prevents concurrent DML
operations. Concurrent queries are still allowed. That is, a table-copying operation always includes
at least the concurrency restrictions of LOCK=SHARED (allow queries but not DML). You can further
restrict concurrency for such operations by specifying LOCK=EXCLUSIVE (prevent DML and queries).

Concurrent DML but Table Copy Still Required

Some other ALTER TABLE operations allow concurrent DML but still require a table copy. However,
the table copy for these operations is faster than it was in MySQL 5.5 and prior.

• Adding, dropping, or reordering columns.

• Adding or dropping a primary key.

• Changing the ROW_FORMAT or KEY_BLOCK_SIZE properties for a table.

• Changing the nullable status for a column.

• OPTIMIZE TABLE

• Rebuilding a table with the FORCE option

• Rebuilding a table using a “null” ALTER TABLE ... ENGINE=INNODB statement

Note

As your database schema evolves with new columns, data types, constraints,
indexes, and so on, keep your CREATE TABLE statements up to date with the
latest table definitions. Even with the performance improvements of online DDL,
it is more efficient to create stable database structures at the beginning, rather
than creating part of the schema and then issuing ALTER TABLE statements
afterward.

The main exception to this guideline is for secondary indexes on tables with
large numbers of rows. It is typically most efficient to create the table with all
details specified except the secondary indexes, load the data, then create the

InnoDB and Online DDL

1688

secondary indexes. You can use the same technique with foreign keys (load the
data first, then set up the foreign keys) if you know the initial data is clean and
do not need consistency checks during the loading process.

Whatever sequence of CREATE TABLE, CREATE INDEX, ALTER TABLE,
and similar statements went into putting a table together, you can capture
the SQL needed to reconstruct the current form of the table by issuing the
statement SHOW CREATE TABLE table\G (uppercase \G required for tidy
formatting). This output shows clauses such as numeric precision, NOT NULL,
and CHARACTER SET that are sometimes added behind the scenes, and you
might otherwise leave out when cloning the table on a new system or setting up
foreign key columns with identical type.

14.2.11.2 Performance and Concurrency Considerations for Online DDL

Online DDL improves several aspects of MySQL operation, such as performance, concurrency,
availability, and scalability:

• Because queries and DML operations on the table can proceed while the DDL is in progress,
applications that access the table are more responsive. Reduced locking and waiting for other
resources all throughout the MySQL server leads to greater scalability, even for operations not
involving the table being altered.

• For in-place operations, by avoiding the disk I/O and CPU cycles to rebuild the table, you minimize
the overall load on the database and maintain good performance and high throughput during the
DDL operation.

• For in-place operations, because less data is read into the buffer pool than if all the data was copied,
you avoid purging frequently accessed data from memory, which formerly could cause a temporary
performance dip after a DDL operation.

If an online operation requires temporary files, InnoDB creates them in the temporary file directory,
not the directory containing the original table. If this directory is not large enough to hold such files,
you may need to set the tmpdir system variable to a different directory. (See Section C.5.4.4, “Where
MySQL Stores Temporary Files”.)

Locking Options for Online DDL

While an InnoDB table is being changed by a DDL operation, the table may or may not be locked,
depending on the internal workings of that operation and the LOCK clause of the ALTER TABLE
statement. By default, MySQL uses as little locking as possible during a DDL operation; you specify
the clause either to make the locking more restrictive than it normally would be (thus limiting concurrent
DML, or DML and queries), or to ensure that some expected degree of locking is allowed for an
operation. If the LOCK clause specifies a level of locking that is not available for that specific kind of
DDL operation, such as LOCK=SHARED or LOCK=NONE while creating or dropping a primary key, the
clause works like an assertion, causing the statement to fail with an error. The following list shows the
different possibilities for the LOCK clause, from the most permissive to the most restrictive:

• For DDL operations with LOCK=NONE, both queries and concurrent DML are allowed. This clause
makes the ALTER TABLE fail if the kind of DDL operation cannot be performed with the requested
type of locking, so specify LOCK=NONE if keeping the table fully available is vital and it is OK to
cancel the DDL if that is not possible. For example, you might use this clause in DDLs for tables
involving customer signups or purchases, to avoid making those tables unavailable by mistakenly
issuing an expensive ALTER TABLE statement.

• For DDL operations with LOCK=SHARED, any writes to the table (that is, DML operations) are
blocked, but the data in the table can be read. This clause makes the ALTER TABLE fail if the kind
of DDL operation cannot be performed with the requested type of locking, so specify LOCK=SHARED
if keeping the table available for queries is vital and it is OK to cancel the DDL if that is not possible.
For example, you might use this clause in DDLs for tables in a data warehouse, where it is OK to
delay data load operations until the DDL is finished, but queries cannot be delayed for long periods.

InnoDB and Online DDL

1689

• For DDL operations with LOCK=DEFAULT, or with the LOCK clause omitted, MySQL uses the lowest
level of locking that is available for that kind of operation, allowing concurrent queries, DML, or both
wherever possible. This is the setting to use when making pre-planned, pre-tested changes that you
know will not cause any availability problems based on the workload for that table.

• For DDL operations with LOCK=EXCLUSIVE, both queries and DML operations are blocked. This
clause makes the ALTER TABLE fail if the kind of DDL operation cannot be performed with the
requested type of locking, so specify LOCK=EXCLUSIVE if the primary concern is finishing the DDL in
the shortest time possible, and it is OK to make applications wait when they try to access the table.
You might also use LOCK=EXCLUSIVE if the server is supposed to be idle, to avoid unexpected
accesses to the table.

An online DDL statement for an InnoDB table always waits for currently executing transactions that
are accessing the table to commit or roll back, because it requires exclusive access to the table for a
brief period while the DDL statement is being prepared. Likewise, it requires exclusive access to the
table for a brief time before finishing. Thus, an online DDL statement waits for any transactions that are
started while the DDL is in progress, and query or modify the table, to commit or roll back before the
DDL completes.

Because there is some processing work involved with recording the changes made by concurrent
DML operations, then applying those changes at the end, an online DDL operation could take longer
overall than the old-style mechanism that blocks table access from other sessions. The reduction
in raw performance is balanced against better responsiveness for applications that use the table.
When evaluating the ideal techniques for changing table structure, consider end-user perception of
performance, based on factors such as load times for web pages.

A newly created InnoDB secondary index contains only the committed data in the table at the time the
CREATE INDEX or ALTER TABLE statement finishes executing. It does not contain any uncommitted
values, old versions of values, or values marked for deletion but not yet removed from the old index.

Performance of In-Place versus Table-Copying DDL Operations

The raw performance of an online DDL operation is largely determined by whether the operation is
performed in-place, or requires copying and rebuilding the entire table. See Table 14.5, “Summary of
Online Status for DDL Operations” to see what kinds of operations can be performed in-place, and any
requirements for avoiding table-copy operations.

The performance speedup from in-place DDL applies to operations on secondary indexes, not to the
primary key index. The rows of an InnoDB table are stored in a clustered index organized based on the
primary key, forming what some database systems call an “index-organized table”. Because the table
structure is so closely tied to the primary key, redefining the primary key still requires copying the data.

When an operation on the primary key uses ALGORITHM=INPLACE, even though the data is still
copied, it is more efficient than using ALGORITHM=COPY because:

• No undo logging or associated redo logging is required for ALGORITHM=INPLACE. These operations
add overhead to DDL statements that use ALGORITHM=COPY.

• The secondary index entries are pre-sorted, and so can be loaded in order.

• The change buffer is not used, because there are no random-access inserts into the secondary
indexes.

To judge the relative performance of online DDL operations, you can run such operations
on a big InnoDB table using current and earlier versions of MySQL. You can also run all the
performance tests under the latest MySQL version, simulating the previous DDL behavior for the
“before” results, by setting the old_alter_table system variable. Issue the statement set
old_alter_table=1 in the session, and measure DDL performance to record the “before” figures.
Then set old_alter_table=0 to re-enable the newer, faster behavior, and run the DDL operations
again to record the “after” figures.

InnoDB and Online DDL

1690

For a basic idea of whether a DDL operation does its changes in-place or performs a table copy, look
at the “rows affected” value displayed after the command finishes. For example, here are lines you
might see after doing different types of DDL operations:

• Changing the default value of a column (super-fast, does not affect the table data at all):

Query OK, 0 rows affected (0.07 sec)

• Adding an index (takes time, but 0 rows affected shows that the table is not copied):

Query OK, 0 rows affected (21.42 sec)

• Changing the data type of a column (takes substantial time and does require rebuilding all the rows
of the table):

Query OK, 1671168 rows affected (1 min 35.54 sec)

Note

Changing the data type of a column requires rebuilding all the rows of the
table with the exception of changing VARCHAR size, which may be performed
using online ALTER TABLE. See InnoDB Online DDL Column Properties for
more information.

For example, before running a DDL operation on a big table, you might check whether the operation
will be fast or slow as follows:

1. Clone the table structure.

2. Populate the cloned table with a tiny amount of data.

3. Run the DDL operation on the cloned table.

4. Check whether the “rows affected” value is zero or not. A non-zero value means the operation will
require rebuilding the entire table, which might require special planning. For example, you might do
the DDL operation during a period of scheduled downtime, or on each replication slave server one
at a time.

For a deeper understanding of the reduction in MySQL processing, examine the
performance_schema and INFORMATION_SCHEMA tables related to InnoDB before and after DDL
operations, to see the number of physical reads, writes, memory allocations, and so on.

14.2.11.3 SQL Syntax for Online DDL

Typically, you do not need to do anything special to enable online DDL when using the ALTER TABLE
statement for InnoDB tables. See Table 14.5, “Summary of Online Status for DDL Operations” for
the kinds of DDL operations that can be performed in-place, allowing concurrent DML, or both. Some
variations require particular combinations of configuration settings or ALTER TABLE clauses.

You can control the various aspects of a particular online DDL operation by using the LOCK and
ALGORITHM clauses of the ALTER TABLE statement. These clauses come at the end of the statement,
separated from the table and column specifications by commas. The LOCK clause is useful for fine-
tuning the degree of concurrent access to the table. The ALGORITHM clause is primarily intended for
performance comparisons and as a fallback to the older table-copying behavior in case you encounter
any issues with existing DDL code. For example:

• To avoid accidentally making the table unavailable for reads, writes, or both, you could specify
a clause on the ALTER TABLE statement such as LOCK=NONE (allow both reads and writes) or
LOCK=SHARED (allow reads). The operation halts immediately if the requested level of concurrency is
not available.

InnoDB and Online DDL

1691

• To compare performance, you could run one statement with ALGORITHM=INPLACE and another with
ALGORITHM=COPY, as an alternative to setting the old_alter_table configuration option.

• To avoid the chance of tying up the server by running an ALTER TABLE that copied the table, you
could include ALGORITHM=INPLACE so the statement halts immediately if it cannot use the in-place
mechanism. See Table 14.5, “Summary of Online Status for DDL Operations” for a list of the DDL
operations that can or cannot be performed in-place.

See Section 14.2.11.2, “Performance and Concurrency Considerations for Online DDL” for more details
about the LOCK clause. For full examples of using online DDL, see Section 14.2.11.5, “Examples of
Online DDL”.

14.2.11.4 Combining or Separating DDL Statements

Before the introduction of online DDL, it was common practice to combine many DDL operations into
a single ALTER TABLE statement. Because each ALTER TABLE statement involved copying and
rebuilding the table, it was more efficient to make several changes to the same table at once, since
those changes could all be done with a single rebuild operation for the table. The downside was that
SQL code involving DDL operations was harder to maintain and to reuse in different scripts. If the
specific changes were different each time, you might have to construct a new complex ALTER TABLE
for each slightly different scenario.

For DDL operations that can be done in-place, as shown in Table 14.5, “Summary of Online Status
for DDL Operations”, now you can separate them into individual ALTER TABLE statements for easier
scripting and maintenance, without sacrificing efficiency. For example, you might take a complicated
statement such as:

alter table t1 add index i1(c1), add unique index i2(c2), change c4_old_name c4_new_name integer unsigned;

and break it down into simpler parts that can be tested and performed independently, such as:

alter table t1 add index i1(c1);
alter table t1 add unique index i2(c2);
alter table t1 change c4_old_name c4_new_name integer unsigned not null;

You might still use multi-part ALTER TABLE statements for:

• Operations that must be performed in a specific sequence, such as creating an index followed by a
foreign key constraint that uses that index.

• Operations all using the same specific LOCK clause, that you want to either succeed or fail as a
group.

• Operations that cannot be performed in-place, that is, that still copy and rebuild the table.

• Operations for which you specify ALGORITHM=COPY or old_alter_table=1, to force the table-
copying behavior if needed for precise backward-compatibility in specialized scenarios.

14.2.11.5 Examples of Online DDL

Here are code examples showing some operations whose performance, concurrency, and scalability
are improved by the latest online DDL enhancements.

• Example 14.1, “Schema Setup Code for Online DDL Experiments” sets up tables named
BIG_TABLE and SMALL_TABLE used in the subsequent examples.

• Example 14.2, “Speed and Efficiency of CREATE INDEX and DROP INDEX” illustrates the
performance aspects of creating and dropping indexes.

• Example 14.3, “Concurrent DML During CREATE INDEX and DROP INDEX” shows queries and
DML statements running during a DROP INDEX operation.

InnoDB and Online DDL

1692

• Example 14.4, “Renaming a Column” demonstrates the speed improvement for renaming a column,
and shows the care needed to keep the data type precisely the same when doing the rename
operation.

• Example 14.5, “Dropping Foreign Keys” demonstrates how foreign keys work with online DDL.
Because two tables are involved in foreign key operations, there are extra locking considerations.
Thus, tables with foreign keys sometimes have restrictions for online DDL operations.

• Example 14.6, “Changing Auto-Increment Value” demonstrates how auto-increment columns work
with online DDL. Tables with auto-increment columns sometimes have restrictions for online DDL
operations.

• Example 14.7, “Controlling Concurrency with the LOCK Clause” demonstrates the options to permit
or restrict concurrent queries and DML operations while an online DDL operation is in progress. It
shows the situations when the DDL statement might wait, or the concurrent transaction might wait, or
the concurrent transaction might cancel a DML statement due to a deadlock error.

• Example 14.8, “Schema Setup Code for Online DDL Experiments” demonstrates creating and
dropping multiple indexes in a single statement, which can be more efficient than using a separate
statement for each index operation.

• Example 14.9, “Creating and Dropping the Primary Key” demonstrates how it is more efficient to
define a primary key when creating the table, and relatively expensive to add one later.

Example 14.1 Schema Setup Code for Online DDL Experiments

Here is the code that sets up the initial tables used in these demonstrations:

/*
Setup code for the online DDL demonstration:
- Set up some config variables.
- Create 2 tables that are clones of one of the INFORMATION_SCHEMA tables
 that always has some data. The "small" table has a couple of thousand rows.
 For the "big" table, keep doubling the data until it reaches over a million rows.
- Set up a primary key for the sample tables, since we are demonstrating InnoDB aspects.
*/

set autocommit = 0;
set foreign_key_checks = 1;
set global innodb_file_per_table = 1;
set old_alter_table=0;
prompt mysql:

use test;

\! echo "Setting up 'small' table:"
drop table if exists small_table;
create table small_table as select * from information_schema.columns;
alter table small_table add id int unsigned not null primary key auto_increment;
select count(id) from small_table;

\! echo "Setting up 'big' table:"
drop table if exists big_table;
create table big_table as select * from information_schema.columns;
show create table big_table\G

insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
commit;

InnoDB and Online DDL

1693

alter table big_table add id int unsigned not null primary key auto_increment;
select count(id) from big_table;

Running this code gives this output, condensed for brevity and with the most important points bolded:

Setting up 'small' table:
Query OK, 0 rows affected (0.01 sec)

Query OK, 1678 rows affected (0.13 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Query OK, 1678 rows affected (0.07 sec)
Records: 1678 Duplicates: 0 Warnings: 0

+-----------+
| count(id) |
+-----------+
| 1678 |
+-----------+
1 row in set (0.00 sec)

Setting up 'big' table:
Query OK, 0 rows affected (0.16 sec)

Query OK, 1678 rows affected (0.17 sec)
Records: 1678 Duplicates: 0 Warnings: 0

*************************** 1. row ***************************
 Table: big_table
Create Table: CREATE TABLE `big_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT ''
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Query OK, 1678 rows affected (0.09 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Query OK, 3356 rows affected (0.07 sec)
Records: 3356 Duplicates: 0 Warnings: 0

Query OK, 6712 rows affected (0.17 sec)
Records: 6712 Duplicates: 0 Warnings: 0

Query OK, 13424 rows affected (0.44 sec)
Records: 13424 Duplicates: 0 Warnings: 0

Query OK, 26848 rows affected (0.63 sec)
Records: 26848 Duplicates: 0 Warnings: 0

Query OK, 53696 rows affected (1.72 sec)
Records: 53696 Duplicates: 0 Warnings: 0

InnoDB and Online DDL

1694

Query OK, 107392 rows affected (3.02 sec)
Records: 107392 Duplicates: 0 Warnings: 0

Query OK, 214784 rows affected (6.28 sec)
Records: 214784 Duplicates: 0 Warnings: 0

Query OK, 429568 rows affected (13.25 sec)
Records: 429568 Duplicates: 0 Warnings: 0

Query OK, 859136 rows affected (28.16 sec)
Records: 859136 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.03 sec)

Query OK, 1718272 rows affected (1 min 9.22 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

+-----------+
| count(id) |
+-----------+
| 1718272 |
+-----------+
1 row in set (1.75 sec)

Example 14.2 Speed and Efficiency of CREATE INDEX and DROP INDEX

Here is a sequence of statements demonstrating the relative speed of CREATE INDEX and DROP
INDEX statements. For a small table, the elapsed time is less than a second whether we use the fast
or slow technique, so we look at the “rows affected” output to verify which operations can avoid the
table rebuild. For a large table, the difference in efficiency is obvious because skipping the table rebuild
saves substantial time.

\! clear

\! echo "=== Create and drop index (small table, new/fast technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/small_table.ibd
create index i_dtyp_small on small_table (data_type), algorithm=inplace;
\! echo "Data size after index created: "
\! du -k data/test/small_table.ibd
drop index i_dtyp_small on small_table, algorithm=inplace;

-- Compare against the older slower DDL.

\! echo "=== Create and drop index (small table, old/slow technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/small_table.ibd
create index i_dtyp_small on small_table (data_type), algorithm=copy;
\! echo "Data size after index created: "
\! du -k data/test/small_table.ibd
drop index i_dtyp_small on small_table, algorithm=copy;

-- In the above example, we examined the "rows affected" number,
-- ideally looking for a zero figure. Let's try again with a larger
-- sample size, where we'll see that the actual time taken can
-- vary significantly.

\! echo "=== Create and drop index (big table, new/fast technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/big_table.ibd
create index i_dtyp_big on big_table (data_type), algorithm=inplace;
\! echo "Data size after index created: "
\! du -k data/test/big_table.ibd
drop index i_dtyp_big on big_table, algorithm=inplace;

\! echo "=== Create and drop index (big table, old/slow technique) ==="

InnoDB and Online DDL

1695

\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/big_table.ibd
create index i_dtyp_big on big_table (data_type), algorithm=copy;
\! echo "Data size after index created: "
\! du -k data/test/big_table.ibd
drop index i_dtyp_big on big_table, algorithm=copy;

Running this code gives this output, condensed for brevity and with the most important points bolded:

Query OK, 0 rows affected (0.00 sec)

=== Create and drop index (small table, new/fast technique) ===

Data size (kilobytes) before index created:
384 data/test/small_table.ibd
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0

Data size after index created:
432 data/test/small_table.ibd
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

=== Create and drop index (small table, old/slow technique) ===

Data size (kilobytes) before index created:
432 data/test/small_table.ibd
Query OK, 1678 rows affected (0.12 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Data size after index created:
448 data/test/small_table.ibd
Query OK, 1678 rows affected (0.10 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

=== Create and drop index (big table, new/fast technique) ===

Data size (kilobytes) before index created:
315392 data/test/big_table.ibd
Query OK, 0 rows affected (33.32 sec)
Records: 0 Duplicates: 0 Warnings: 0

Data size after index created:
335872 data/test/big_table.ibd
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

=== Create and drop index (big table, old/slow technique) ===

Data size (kilobytes) before index created:
335872 data/test/big_table.ibd
Query OK, 1718272 rows affected (1 min 5.01 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

Data size after index created:
348160 data/test/big_table.ibd
Query OK, 1718272 rows affected (46.59 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

Example 14.3 Concurrent DML During CREATE INDEX and DROP INDEX

Here are some snippets of code that I ran in separate mysql sessions connected to the same
database, to illustrate DML statements (insert, update, or delete) running at the same time as CREATE
INDEX and DROP INDEX.

InnoDB and Online DDL

1696

/*
CREATE INDEX statement to run against a table while
insert/update/delete statements are modifying the
column being indexed.
*/

-- We'll run this script in one session, while simultaneously creating and dropping
-- an index on test/big_table.table_name in another session.

use test;
create index i_concurrent on big_table(table_name);

/*
DROP INDEX statement to run against a table while
insert/update/delete statements are modifying the
column being indexed.
*/

-- We'll run this script in one session, while simultaneously creating and dropping
-- an index on test/big_table.table_name in another session.

use test;
drop index i_concurrent on big_table;

/*
Some queries and insert/update/delete statements to run against a table
while an index is being created or dropped. Previously, these operations
would have stalled during the index create/drop period and possibly
timed out or deadlocked.
*/

-- We'll run this script in one session, while simultaneously creating and dropping
-- an index on test/big_table.table_name in another session.

-- In our test instance, that column has about 1.7M rows, with 136 different values.
-- Sample values: COLUMNS (20480), ENGINES (6144), EVENTS (24576), FILES (38912), TABLES (21504), VIEWS (10240).

set autocommit = 0;
use test;

select distinct character_set_name from big_table where table_name = 'FILES';
delete from big_table where table_name = 'FILES';
select distinct character_set_name from big_table where table_name = 'FILES';

-- I'll issue the final rollback interactively, not via script,
-- the better to control the timing.
-- rollback;

Running this code gives this output, condensed for brevity and with the most important points bolded:

mysql: source concurrent_ddl_create.sql
Database changed
Query OK, 0 rows affected (1 min 25.15 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql: source concurrent_ddl_drop.sql
Database changed
Query OK, 0 rows affected (24.98 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql: source concurrent_dml.sql
Query OK, 0 rows affected (0.00 sec)

Database changed
+--------------------+
| character_set_name |
+--------------------+
| NULL |

InnoDB and Online DDL

1697

| utf8 |
+--------------------+
2 rows in set (0.32 sec)

Query OK, 38912 rows affected (1.84 sec)

Empty set (0.01 sec)

mysql: rollback;
Query OK, 0 rows affected (1.05 sec)

Example 14.4 Renaming a Column

Here is a demonstration of using ALTER TABLE to rename a column. We use the new, fast DDL
mechanism to change the name, then the old, slow DDL mechanism (with old_alter_table=1) to
restore the original column name.

Notes:

• Because the syntax for renaming a column also involves re-specifying the data type, be very careful
to specify exactly the same data type to avoid a costly table rebuild. In this case, we checked the
output of show create table table\G and copied any clauses such as CHARACTER SET and
NOT NULL from the original column definition.

• Again, renaming a column for a small table is fast enough that we need to examine the “rows
affected” number to verify that the new DDL mechanism is more efficient than the old one. With a big
table, the difference in elapsed time makes the improvement obvious.

/*
Run through a sequence of 'rename column' statements.
Because this operation involves only metadata, not table data,
it is fast for big and small tables, with new or old DDL mechanisms.
*/

\! clear

\! echo "Rename column (fast technique, small table):"
alter table small_table change `IS_NULLABLE` `NULLABLE` varchar(3) character set utf8 not null, algorithm=inplace;
\! echo "Rename back to original name (slow technique):"
alter table small_table change `NULLABLE` `IS_NULLABLE` varchar(3) character set utf8 not null, algorithm=copy;

\! echo "Rename column (fast technique, big table):"
alter table big_table change `IS_NULLABLE` `NULLABLE` varchar(3) character set utf8 not null, algorithm=inplace;
\! echo "Rename back to original name (slow technique):"
alter table big_table change `NULLABLE` `IS_NULLABLE` varchar(3) character set utf8 not null, algorithm=copy;

Running this code gives this output, condensed for brevity and with the most important points bolded:

Rename column (fast technique, small table):
Query OK, 0 rows affected (0.05 sec)

Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0

Rename back to original name (slow technique):
Query OK, 0 rows affected (0.00 sec)

Query OK, 1678 rows affected (0.35 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Rename column (fast technique, big table):
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

Rename back to original name (slow technique):

InnoDB and Online DDL

1698

Query OK, 0 rows affected (0.00 sec)

Query OK, 1718272 rows affected (1 min 0.00 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

Example 14.5 Dropping Foreign Keys

Here is a demonstration of foreign keys, including improvement to the speed of dropping a foreign key
constraint.

/*
Demonstrate aspects of foreign keys that are or aren't affected by the DDL improvements.
- Create a new table with only a few values to serve as the parent table.
- Set up the 'small' and 'big' tables as child tables using a foreign key.
- Verify that the ON DELETE CASCADE clause makes changes ripple from parent to child tables.
- Drop the foreign key constraints, and optionally associated indexes. (This is the operation that is sped up.)
*/

\! clear

-- Make sure foreign keys are being enforced, and allow
-- rollback after doing some DELETEs that affect both
-- parent and child tables.
set foreign_key_checks = 1;
set autocommit = 0;

-- Create a parent table, containing values that we know are already present
-- in the child tables.
drop table if exists schema_names;
create table schema_names (id int unsigned not null primary key auto_increment, schema_name varchar(64) character set utf8 not null, index i_schema (schema_name)) as select distinct table_schema schema_name from small_table;

show create table schema_names\G
show create table small_table\G
show create table big_table\G

-- Creating the foreign key constraint still involves a table rebuild when foreign_key_checks=1,
-- as illustrated by the "rows affected" figure.
alter table small_table add constraint small_fk foreign key i_table_schema (table_schema) references schema_names(schema_name) on delete cascade;
alter table big_table add constraint big_fk foreign key i_table_schema (table_schema) references schema_names(schema_name) on delete cascade;

show create table small_table\G
show create table big_table\G

select schema_name from schema_names order by schema_name;
select count(table_schema) howmany, table_schema from small_table group by table_schema;
select count(table_schema) howmany, table_schema from big_table group by table_schema;

-- big_table is the parent table.
-- schema_names is the parent table.
-- big_table is the child table.
-- (One row in the parent table can have many "children" in the child table.)
-- Changes to the parent table can ripple through to the child table.
-- For example, removing the value 'test' from schema_names.schema_name will
-- result in the removal of 20K or so rows from big_table.

delete from schema_names where schema_name = 'test';

select schema_name from schema_names order by schema_name;
select count(table_schema) howmany, table_schema from small_table group by table_schema;
select count(table_schema) howmany, table_schema from big_table group by table_schema;

-- Because we've turned off autocommit, we can still get back those deleted rows
-- if the DELETE was issued by mistake.
rollback;

select schema_name from schema_names order by schema_name;
select count(table_schema) howmany, table_schema from small_table group by table_schema;
select count(table_schema) howmany, table_schema from big_table group by table_schema;

InnoDB and Online DDL

1699

-- All of the cross-checking between parent and child tables would be
-- deadly slow if there wasn't the requirement for the corresponding
-- columns to be indexed!

-- But we can get rid of the foreign key using a fast operation
-- that doesn't rebuild the table.
-- If we didn't specify a constraint name when setting up the foreign key, we would
-- have to find the auto-generated name such as 'big_table_ibfk_1' in the
-- output from 'show create table'.

-- For the small table, we'll drop the foreign key and the associated index.
-- Having an index on a small table is less critical.

\! echo "DROP FOREIGN KEY and INDEX from small_table:"
alter table small_table drop foreign key small_fk, drop index small_fk;

-- For the big table, we'll drop the foreign key and leave the associated index.
-- If we are still doing queries that reference the indexed column, the index is
-- very important to avoid a full table scan of the big table.
\! echo "DROP FOREIGN KEY from big_table:"
alter table big_table drop foreign key big_fk;

show create table small_table\G
show create table big_table\G

Running this code gives this output, condensed for brevity and with the most important points bolded:

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Query OK, 4 rows affected (0.03 sec)
Records: 4 Duplicates: 0 Warnings: 0

*************************** 1. row ***************************
 Table: schema_names
Create Table: CREATE TABLE `schema_names` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `schema_name` varchar(64) CHARACTER SET utf8 NOT NULL,
 PRIMARY KEY (`id`),
 KEY `i_schema` (`schema_name`)
) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

*************************** 1. row ***************************
 Table: small_table
Create Table: CREATE TABLE `small_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

InnoDB and Online DDL

1700

 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1679 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

*************************** 1. row ***************************
 Table: big_table
Create Table: CREATE TABLE `big_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`),
 KEY `big_fk` (`TABLE_SCHEMA`)
) ENGINE=InnoDB AUTO_INCREMENT=1718273 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Query OK, 1678 rows affected (0.10 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Query OK, 1718272 rows affected (1 min 14.54 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

*************************** 1. row ***************************
 Table: small_table
Create Table: CREATE TABLE `small_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`),
 KEY `small_fk` (`TABLE_SCHEMA`),
 CONSTRAINT `small_fk` FOREIGN KEY (`TABLE_SCHEMA`) REFERENCES `schema_names` (`schema_name`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=1679 DEFAULT CHARSET=latin1
1 row in set (0.12 sec)

*************************** 1. row ***************************
 Table: big_table
Create Table: CREATE TABLE `big_table` (

InnoDB and Online DDL

1701

 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`),
 KEY `big_fk` (`TABLE_SCHEMA`),
 CONSTRAINT `big_fk` FOREIGN KEY (`TABLE_SCHEMA`) REFERENCES `schema_names` (`schema_name`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=1718273 DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

+--------------------+
| schema_name |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |
+--------------------+
4 rows in set (0.00 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
563	information_schema
286	mysql
786	performance_schema
43	test
+---------+--------------------+
4 rows in set (0.01 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
576512	information_schema
292864	mysql
804864	performance_schema
44032	test
+---------+--------------------+
4 rows in set (2.10 sec)

Query OK, 1 row affected (1.52 sec)

+--------------------+
| schema_name |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.00 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
| 563 | information_schema |

InnoDB and Online DDL

1702

| 286 | mysql |
| 786 | performance_schema |
+---------+--------------------+
3 rows in set (0.00 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
576512	information_schema
292864	mysql
804864	performance_schema
+---------+--------------------+
3 rows in set (1.74 sec)

Query OK, 0 rows affected (0.60 sec)

+--------------------+
| schema_name |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |
+--------------------+
4 rows in set (0.00 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
563	information_schema
286	mysql
786	performance_schema
43	test
+---------+--------------------+
4 rows in set (0.01 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
576512	information_schema
292864	mysql
804864	performance_schema
44032	test
+---------+--------------------+
4 rows in set (1.59 sec)

DROP FOREIGN KEY and INDEX from small_table:
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

DROP FOREIGN KEY from big_table:
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

*************************** 1. row ***************************
 Table: small_table
Create Table: CREATE TABLE `small_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,

InnoDB and Online DDL

1703

 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1679 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

*************************** 1. row ***************************
 Table: big_table
Create Table: CREATE TABLE `big_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`),
 KEY `big_fk` (`TABLE_SCHEMA`)
) ENGINE=InnoDB AUTO_INCREMENT=1718273 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Example 14.6 Changing Auto-Increment Value

Here is an illustration of increasing the auto-increment lower limit for a table column, demonstrating
how this operation now avoids a table rebuild, plus some other fun facts about InnoDB auto-increment
columns.

/*
If this script is run after foreign_key.sql, the schema_names table is
already set up. But to allow this script to run multiple times without
running into duplicate ID errors, we set up the schema_names table
all over again.
*/

\! clear

\! echo "=== Adjusting the Auto-Increment Limit for a Table ==="
\! echo

drop table if exists schema_names;
create table schema_names (id int unsigned not null primary key auto_increment,
 schema_name varchar(64) character set utf8 not null, index i_schema (schema_name))
 as select distinct table_schema schema_name from small_table;

\! echo "Initial state of schema_names table. AUTO_INCREMENT is included in SHOW CREATE TABLE output."
\! echo "Note how MySQL reserved a block of IDs, but only needed 4 of them in this transaction, so the next inserted values would get IDs 8 and 9."
show create table schema_names\G
select * from schema_names order by id;

\! echo "Inserting even a tiny amount of data can produce gaps in the ID sequence."
insert into schema_names (schema_name) values ('eight'), ('nine');

InnoDB and Online DDL

1704

\! echo "Bumping auto-increment lower limit to 20 (fast mechanism):"
alter table schema_names auto_increment=20, algorithm=inplace;

\! echo "Inserting 2 rows that should get IDs 20 and 21:"
insert into schema_names (schema_name) values ('foo'), ('bar');
commit;

\! echo "Bumping auto-increment lower limit to 30 (slow mechanism):"
alter table schema_names auto_increment=30, algorithm=copy;

\! echo "Inserting 2 rows that should get IDs 30 and 31:"
insert into schema_names (schema_name) values ('bletch'),('baz');
commit;

select * from schema_names order by id;

\! echo "Final state of schema_names table. AUTO_INCREMENT value shows the next inserted row would get ID=32."
show create table schema_names\G

Running this code gives this output, condensed for brevity and with the most important points bolded:

=== Adjusting the Auto-Increment Limit for a Table ===

Query OK, 0 rows affected (0.01 sec)

Query OK, 4 rows affected (0.02 sec)
Records: 4 Duplicates: 0 Warnings: 0

Initial state of schema_names table. AUTO_INCREMENT is included in SHOW CREATE TABLE output.
Note how MySQL reserved a block of IDs, but only needed 4 of them in this transaction, so the next inserted values would get IDs 8 and 9.
*************************** 1. row ***************************
 Table: schema_names
Create Table: CREATE TABLE `schema_names` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `schema_name` varchar(64) CHARACTER SET utf8 NOT NULL,
 PRIMARY KEY (`id`),
 KEY `i_schema` (`schema_name`)
) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

+----+--------------------+
| id | schema_name |
+----+--------------------+
1	information_schema
2	mysql
3	performance_schema
4	test
+----+--------------------+
4 rows in set (0.00 sec)

Inserting even a tiny amount of data can produce gaps in the ID sequence.
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

Bumping auto-increment lower limit to 20 (fast mechanism):
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

Inserting 2 rows that should get IDs 20 and 21:
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Bumping auto-increment lower limit to 30 (slow mechanism):
Query OK, 8 rows affected (0.02 sec)
Records: 8 Duplicates: 0 Warnings: 0

InnoDB and Online DDL

1705

Inserting 2 rows that should get IDs 30 and 31:
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.01 sec)

+----+--------------------+
| id | schema_name |
+----+--------------------+
1	information_schema
2	mysql
3	performance_schema
4	test
8	eight
9	nine
20	foo
21	bar
30	bletch
31	baz
+----+--------------------+
10 rows in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Final state of schema_names table. AUTO_INCREMENT value shows the next inserted row would get ID=32.
*************************** 1. row ***************************
 Table: schema_names
Create Table: CREATE TABLE `schema_names` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `schema_name` varchar(64) CHARACTER SET utf8 NOT NULL,
 PRIMARY KEY (`id`),
 KEY `i_schema` (`schema_name`)
) ENGINE=InnoDB AUTO_INCREMENT=32 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Example 14.7 Controlling Concurrency with the LOCK Clause

This example shows how to use the LOCK clause of the ALTER TABLE statement to allow or deny
concurrent access to the table while an online DDL operation is in progress. The clause has settings
that allow queries and DML statements (LOCK=NONE), just queries (LOCK=SHARED), or no concurrent
access at all (LOCK=EXCLUSIVE).

In one session, we run a succession of ALTER TABLE statements to create and drop an index, using
different values for the LOCK clause to see what happens with waiting or deadlocking in either session.
We are using the same BIG_TABLE table as in previous examples, starting with approximately 1.7
million rows. For illustration purposes, we will index and query the IS_NULLABLE column. (Although in
real life it would be silly to make an index for a tiny column with only 2 distinct values.)

mysql: desc big_table;
+--------------------------+---------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------------------+---------------------+------+-----+---------+----------------+
TABLE_CATALOG	varchar(512)	NO			
TABLE_SCHEMA	varchar(64)	NO			
TABLE_NAME	varchar(64)	NO			
COLUMN_NAME	varchar(64)	NO			
ORDINAL_POSITION	bigint(21) unsigned	NO		0	
COLUMN_DEFAULT	longtext	YES		NULL	

| IS_NULLABLE | varchar(3) | NO | | | |
...
+--------------------------+---------------------+------+-----+---------+----------------+
21 rows in set (0.14 sec)

mysql: alter table big_table add index i1(is_nullable);
Query OK, 0 rows affected (20.71 sec)

mysql: alter table big_table drop index i1;

InnoDB and Online DDL

1706

Query OK, 0 rows affected (0.02 sec)

mysql: alter table big_table add index i1(is_nullable), lock=exclusive;
Query OK, 0 rows affected (19.44 sec)

mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.03 sec)

mysql: alter table big_table add index i1(is_nullable), lock=shared;
Query OK, 0 rows affected (16.71 sec)

mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.05 sec)

mysql: alter table big_table add index i1(is_nullable), lock=none;
Query OK, 0 rows affected (12.26 sec)

mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.01 sec)

... repeat statements like the above while running queries ...

... and DML statements at the same time in another session ...

Nothing dramatic happens in the session running the DDL statements. Sometimes, an ALTER TABLE
takes unusually long because it is waiting for another transaction to finish, when that transaction
modified the table during the DDL or queried the table before the DDL:

mysql: alter table big_table add index i1(is_nullable), lock=none;

Query OK, 0 rows affected (59.27 sec)

mysql: -- The previous ALTER took so long because it was waiting for all the concurrent
mysql: -- transactions to commit or roll back.

mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (41.05 sec)

mysql: -- Even doing a SELECT on the table in the other session first causes
mysql: -- the ALTER TABLE above to stall until the transaction
mysql: -- surrounding the SELECT is committed or rolled back.

Here is the log from another session running concurrently, where we issue queries and DML
statements against the table before, during, and after the DDL operations shown in the previous
listings. This first listing shows queries only. We expect the queries to be allowed during DDL
operations using LOCK=NONE or LOCK=SHARED, and for the query to wait until the DDL is finished if the
ALTER TABLE statement includes LOCK=EXCLUSIVE.

mysql: show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.01 sec)

mysql: -- A trial query before any ADD INDEX in the other session:
mysql: -- Note: because autocommit is enabled, each
mysql: -- transaction finishes immediately after the query.
mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (4.49 sec)

mysql: -- Index is being created with LOCK=EXCLUSIVE on the ALTER statement.
mysql: -- The query waits until the DDL is finished before proceeding.

InnoDB and Online DDL

1707

mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+

2 rows in set (17.26 sec)

mysql: -- Index is being created with LOCK=SHARED on the ALTER statement.
mysql: -- The query returns its results while the DDL is in progress.
mysql: -- The same thing happens with LOCK=NONE on the ALTER statement.
mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (3.11 sec)

mysql: -- Once the index is created, and with no DDL in progress,
mysql: -- queries referencing the indexed column are very fast:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.20 sec)

mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (0.00 sec)

Now in this concurrent session, we run some transactions including DML statements, or a combination
of DML statements and queries. We use DELETE statements to illustrate predictable, verifiable
changes to the table. Because the transactions in this part can span multiple statements, we run these
tests with autocommit turned off.

mysql: set global autocommit = off;
Query OK, 0 rows affected (0.00 sec)

mysql: -- Count the rows that will be involved in our DELETE statements:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.95 sec)

mysql: -- After this point, any DDL statements back in the other session
mysql: -- stall until we commit or roll back.

mysql: delete from big_table where is_nullable = 'YES' limit 11648;
Query OK, 11648 rows affected (0.14 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+

InnoDB and Online DDL

1708

1 row in set (1.04 sec)

mysql: rollback;
Query OK, 0 rows affected (0.09 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.93 sec)

mysql: -- OK, now we're going to try that during index creation with LOCK=NONE.
mysql: delete from big_table where is_nullable = 'YES' limit 11648;
Query OK, 11648 rows affected (0.21 sec)

mysql: -- We expect that now there will be 400000 'YES' rows left:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (1.25 sec)

mysql: -- In the other session, the ALTER TABLE is waiting before finishing,
mysql: -- because _this_ transaction hasn't committed or rolled back yet.
mysql: rollback;
Query OK, 0 rows affected (0.11 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.19 sec)

mysql: -- The ROLLBACK left the table in the same state we originally found it.
mysql: -- Now let's make a permanent change while the index is being created,
mysql: -- again with ALTER TABLE ... , LOCK=NONE.
mysql: -- First, commit so the DROP INDEX in the other shell can finish;
mysql: -- the previous SELECT started a transaction that accessed the table.
mysql: commit;
Query OK, 0 rows affected (0.00 sec)

mysql: -- Now we add the index back in the other shell, then issue DML in this one
mysql: -- while the DDL is running.
mysql: delete from big_table where is_nullable = 'YES' limit 11648;
Query OK, 11648 rows affected (0.23 sec)

mysql: commit;
Query OK, 0 rows affected (0.01 sec)

mysql: -- In the other shell, the ADD INDEX has finished.
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (0.19 sec)

mysql: -- At the point the new index is finished being created, it contains entries
mysql: -- only for the 400000 'YES' rows left when all concurrent transactions are finished.
mysql:
mysql: -- Now we will run a similar test, while ALTER TABLE ... , LOCK=SHARED is running.
mysql: -- We expect a query to complete during the ALTER TABLE, but for the DELETE
mysql: -- to run into some kind of issue.
mysql: commit;
Query OK, 0 rows affected (0.00 sec)

InnoDB and Online DDL

1709

mysql: -- As expected, the query returns results while the LOCK=SHARED DDL is running:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (2.07 sec)

mysql: -- The DDL in the other session is not going to finish until this transaction
mysql: -- is committed or rolled back. If we tried a DELETE now and it waited because
mysql: -- of LOCK=SHARED on the DDL, both transactions would wait forever (deadlock).
mysql: -- MySQL detects this condition and cancels the attempted DML statement.
mysql: delete from big_table where is_nullable = 'YES' limit 100000;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
mysql: -- The transaction here is still going, so in the other shell, the ADD INDEX operation
mysql: -- is waiting for this transaction to commit or roll back.
mysql: rollback;
Query OK, 0 rows affected (0.00 sec)

mysql: -- Now let's try issuing a query and some DML, on one line, while running
mysql: -- ALTER TABLE ... , LOCK=EXCLUSIVE in the other shell.
mysql: -- Notice how even the query is held up until the DDL is finished.
mysql: -- By the time the DELETE is issued, there is no conflicting access
mysql: -- to the table and we avoid the deadlock error.
mysql: select count(*) from big_table where is_nullable = 'YES'; delete from big_table where is_nullable = 'YES' limit 100000;
+----------+
| count(*) |
+----------+
| 400000 |
+----------+

1 row in set (15.98 sec)

Query OK, 100000 rows affected (2.81 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 300000 |
+----------+
1 row in set (0.17 sec)

mysql: rollback;
Query OK, 0 rows affected (1.36 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (0.19 sec)

mysql: commit;
Query OK, 0 rows affected (0.00 sec)

mysql: -- Next, we try ALTER TABLE ... , LOCK=EXCLUSIVE in the other session
mysql: -- and only issue DML, not any query, in the concurrent transaction here.
mysql: delete from big_table where is_nullable = 'YES' limit 100000;
Query OK, 100000 rows affected (16.37 sec)

mysql: -- That was OK because the ALTER TABLE did not have to wait for the transaction
mysql: -- here to complete. The DELETE in this session waited until the index was ready.
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 300000 |
+----------+

InnoDB and Online DDL

1710

1 row in set (0.16 sec)

mysql: commit;
Query OK, 0 rows affected (0.00 sec)

In the preceding example listings, we learned that:

• The LOCK clause for ALTER TABLE is set off from the rest of the statement by a comma.

• Online DDL operations might wait before starting, until any prior transactions that access the table
are committed or rolled back.

• Online DDL operations might wait before completing, until any concurrent transactions that access
the table are committed or rolled back.

• While an online DDL operation is running, concurrent queries are relatively straightforward, as long
as the ALTER TABLE statement uses LOCK=NONE or LOCK=SHARED.

• Pay attention to whether autocommit is turned on or off. If it is turned off, be careful to end
transactions in other sessions (even just queries) before performing DDL operations on the table.

• With LOCK=SHARED, concurrent transactions that mix queries and DML could encounter deadlock
errors and have to be restarted after the DDL is finished.

• With LOCK=NONE, concurrent transactions can freely mix queries and DML. The DDL operation waits
until the concurrent transactions are committed or rolled back.

• With LOCK=NONE, concurrent transactions can freely mix queries and DML, but those transactions
wait until the DDL operation is finished before they can access the table.

Example 14.8 Schema Setup Code for Online DDL Experiments

You can create multiple indexes on a table with one ALTER TABLE statement. This is relatively
efficient, because the clustered index of the table needs to be scanned only once (although the data is
sorted separately for each new index). For example:

CREATE TABLE T1(A INT PRIMARY KEY, B INT, C CHAR(1)) ENGINE=InnoDB;
INSERT INTO T1 VALUES (1,2,'a'), (2,3,'b'), (3,2,'c'), (4,3,'d'), (5,2,'e');
COMMIT;
ALTER TABLE T1 ADD INDEX (B), ADD UNIQUE INDEX (C);

The above statements create table T1 with the primary key on column A, insert several rows, then
build two new indexes on columns B and C. If there were many rows inserted into T1 before the ALTER
TABLE statement, this approach is much more efficient than creating all the secondary indexes before
loading the data.

Because dropping InnoDB secondary indexes also does not require any copying of table data, it is
equally efficient to drop multiple indexes with a single ALTER TABLE statement or multiple DROP
INDEX statements:

ALTER TABLE T1 DROP INDEX B, DROP INDEX C;

or:

DROP INDEX B ON T1;
DROP INDEX C ON T1;

Example 14.9 Creating and Dropping the Primary Key

Restructuring the clustered index for an InnoDB table always requires copying the table data. Thus, it
is best to define the primary key when you create a table, rather than issuing ALTER TABLE ... ADD
PRIMARY KEY later, to avoid rebuilding the table.

InnoDB and Online DDL

1711

Defining a PRIMARY KEY later causes the data to be copied, as in the following example:

CREATE TABLE T2 (A INT, B INT);
INSERT INTO T2 VALUES (NULL, 1);
ALTER TABLE T2 ADD PRIMARY KEY (B);

When you create a UNIQUE or PRIMARY KEY index, MySQL must do some extra work. For UNIQUE
indexes, MySQL checks that the table contains no duplicate values for the key. For a PRIMARY KEY
index, MySQL also checks that none of the PRIMARY KEY columns contains a NULL.

When you add a primary key using the ALGORITHM=COPY clause, MySQL actually converts NULL
values in the associated columns to default values: 0 for numbers, the empty string for character-
based columns and BLOBs, and January 1, 1975 for dates. This is a non-standard behavior that Oracle
recommends you not rely on. Adding a primary key using ALGORITHM=INPLACE is only allowed
when the SQL_MODE setting includes the strict_trans_tables or strict_all_tables flags;
when the SQL_MODEsetting is strict, ADD PRIMARY KEY ... , ALGORITHM=INPLACE is allowed,
but the statement can still fail if the requested primary key columns contain any NULL values. The
ALGORITHM=INPLACE behavior is more standard-compliant.

The following example shows the different possibilities for the ADD PRIMARY KEY clause. With
the ALGORITHM=COPY clause, the operation succeeds despite the presence of NULL values in
the primary key columns; the data is silently changed, which could cause problems. With the
ALGORITHM=INPLACE clause, the operation could fail for different reasons, because this setting
considers data integrity a high priority: the statement gives an error if the SQL_MODE setting is not
“strict” enough, or if the primary key columns contain any NULL values. Once we address both of those
requirements, the ALTER TABLE operation succeeds.

CREATE TABLE add_pk_via_copy (c1 INT, c2 VARCHAR(10), c3 DATETIME);
INSERT INTO add_pk_via_copy VALUES (1,'a','...'),(NULL,NULL,NULL);
ALTER TABLE add_pk_via_copy ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=COPY;
SELECT * FROM add_pk_via_copy;

CREATE TABLE add_pk_via_inplace (c1 INT, c2 VARCHAR(10), c3 DATETIME);
INSERT INTO add_pk_via_inplace VALUES (1,'a','...'),(NULL,NULL,NULL);
SET sql_mode = 'strict_trans_tables';
ALTER TABLE add_pk_via_inplace ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=COPY;
SET sql_mode = '';
ALTER TABLE add_pk_via_inplace ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=COPY;
DELETE FROM add_pk_via_inplace WHERE c1 IS NULL OR c2 IS NULL OR c3 IS NULL;
ALTER TABLE add_pk_via_inplace ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=COPY;
SELECT * FROM add_pk_via_inplace;

If you create a table without a primary key, InnoDB chooses one for you, which can be the first UNIQUE
key defined on NOT NULL columns, or a system-generated key. To avoid any uncertainty and the
potential space requirement for an extra hidden column, specify the PRIMARY KEY clause as part of
the CREATE TABLE statement.

14.2.11.6 Implementation Details of Online DDL

Each ALTER TABLE operation for an InnoDB table is governed by several aspects:

• Whether there is any change to the physical representation of the table, or whether it purely a
change to metadata that can be done without touching the table itself.

• Whether the volume of data in the table stays the same, increases, or decreases.

• Whether a change in table data involves the clustered index, secondary indexes, or both.

• Whether there are any foreign key relationships between the table being altered and some other
table. The mechanics differ depending on whether the foreign_key_checks configuration option
is enabled or disabled.

InnoDB and Online DDL

1712

• Whether the table is partitioned. Partitioning clauses of ALTER TABLE are turned into low-level
operations involving one or more tables, and those operations follow the regular rules for online DDL.

• Whether the table data must be copied, whether the table can be reorganized “in-place”, or a
combination of both.

• Whether the table contains any auto-increment columns.

• What degree of locking is required, either by the nature of the underlying database operations, or a
LOCK clause that you specify in the ALTER TABLE statement.

This section explains how these factors affect the different kinds of ALTER TABLE operations on
InnoDB tables.

Error Conditions for Online DDL

Here are the primary reasons why an online DDL operation could fail:

• If a LOCK clause specifies a low degree of locking (SHARED or NONE) that is not compatible with the
particular type of DDL operation.

• If a timeout occurs while waiting to get an exclusive lock on the table, which is needed briefly during
the initial and final phases of the DDL operation.

• If the tmpdir file system runs out of disk space, while MySQL writes temporary sort files on disk
during index creation.

• If the ALTER TABLE takes so long, and concurrent DML modifies the table so much, that the size
of the temporary online log exceeds the value of the innodb_online_alter_log_max_size
configuration option. This condition causes a DB_ONLINE_LOG_TOO_BIG error.

• If concurrent DML makes changes to the table that are allowed with the original table definition,
but not with the new one. The operation only fails at the very end, when MySQL tries to apply all
the changes from concurrent DML statements. For example, you might insert duplicate values into
a column while a unique index is being created, or you might insert NULL values into a column
while creating a primary key index on that column. The changes made by the concurrent DML take
precedence, and the ALTER TABLE operation is effectively rolled back.

Although the configuration option innodb_file_per_table has a dramatic effect on the
representation for an InnoDB table, all online DDL operations work equally well whether that option is
enabled or disabled, and whether the table is physically located in its own .ibd file or inside the system
tablespace.

InnoDB has two types of indexes: the clustered index representing all the data in the table, and optional
secondary indexes to speed up queries. Since the clustered index contains the data values in its B-tree
nodes, adding or dropping a clustered index does involve copying the data, and creating a new copy
of the table. A secondary index, however, contains only the index key and the value of the primary key.
This type of index can be created or dropped without copying the data in the clustered index. Because
each secondary index contains copies of the primary key values (used to access the clustered index
when needed), when you change the definition of the primary key, all secondary indexes are recreated
as well.

Dropping a secondary index is simple. Only the internal InnoDB system tables and the MySQL data
dictionary tables are updated to reflect the fact that the index no longer exists. InnoDB returns the
storage used for the index to the tablespace that contained it, so that new indexes or additional table
rows can use the space.

To add a secondary index to an existing table, InnoDB scans the table, and sorts the rows using
memory buffers and temporary files in order by the values of the secondary index key columns. The B-
tree is then built in key-value order, which is more efficient than inserting rows into an index in random

InnoDB and Online DDL

1713

order. Because the B-tree nodes are split when they fill, building the index in this way results in a
higher fill-factor for the index, making it more efficient for subsequent access.

Primary Key and Secondary Key Indexes

Historically, the MySQL server and InnoDB have each kept their own metadata about table and
index structures. The MySQL server stores this information in .frm files that are not protected by a
transactional mechanism, while InnoDB has its own data dictionary as part of the system tablespace. If
a DDL operation was interrupted by a crash or other unexpected event partway through, the metadata
could be left inconsistent between these two locations, causing problems such as startup errors or
inability to access the table that was being altered. Now that InnoDB is the default storage engine,
addressing such issues is a high priority. These enhancements to DDL operations reduce the window
of opportunity for such issues to occur.

14.2.11.7 How Crash Recovery Works with Online DDL

Although no data is lost if the server crashes while an ALTER TABLE statement is executing, the crash
recovery process is different for clustered indexes and secondary indexes.

If the server crashes while creating an InnoDB secondary index, upon recovery, MySQL drops any
partially created indexes. You must re-run the ALTER TABLE or CREATE INDEX statement.

When a crash occurs during the creation of an InnoDB clustered index, recovery is more complicated,
because the data in the table must be copied to an entirely new clustered index. Remember that all
InnoDB tables are stored as clustered indexes. In the following discussion, we use the word table and
clustered index interchangeably.

MySQL creates the new clustered index by copying the existing data from the original InnoDB table
to a temporary table that has the desired index structure. Once the data is completely copied to this
temporary table, the original table is renamed with a different temporary table name. The temporary
table comprising the new clustered index is renamed with the name of the original table, and the
original table is dropped from the database.

If a system crash occurs while creating a new clustered index, no data is lost, but you must complete
the recovery process using the temporary tables that exist during the process. Since it is rare to re-
create a clustered index or re-define primary keys on large tables, or to encounter a system crash
during this operation, this manual does not provide information on recovering from this scenario.

14.2.11.8 Online DDL for Partitioned InnoDB Tables

With the exception of ALTER TABLE partitioning clauses, online DDL operations for partitioned
InnoDB tables follow the same rules that apply to regular InnoDB tables. Online DDL rules are
outlined in Table 14.5, “Summary of Online Status for DDL Operations”.

ALTER TABLE partitioning clauses do not go through the same internal online DDL API as regular
non-partitioned InnoDB tables, and are only allowed in conjunction with ALGORITHM=DEFAULT and
LOCK=DEFAULT.

If you use an ALTER TABLE partitioning clause in an ALTER TABLE statement, the partitioned table
will be “re-partitioned” using the ALTER TABLE COPY algorithm. In other words, a new partitioned table
is created with the new partitioning scheme. The newly created table will include any changes applied
by the ALTER TABLE statement and the table data will be copied into the new table structure.

If you do not change the table's partitioning using ALTER TABLE partitioning clauses or perform
any other partition management in your ALTER TABLE statement, ALTER TABLE will use the
INPLACE algorithm on each table partition. Be aware, however, that when INPLACE ALTER TABLE
operations are performed on each partition, there will be increased demand on system resources due
to operations being performed on multiple partitions.

InnoDB and Online DDL

1714

Even though partitioning clauses of the ALTER TABLE statement do not go through the same internal
online DDL API as regular non-partitioned InnoDB tables, MySQL still attempts to minimize data
copying and locking where possible:

• ADD PARTITION and DROP PARTITION for tables partitioned by RANGE or LIST do not copy any
existing data.

• TRUNCATE PARTITION does not copy any existing data, for all types of partitioned tables.

• Concurrent queries are allowed during ADD PARTITION and COALESCE PARTITION for tables
partitioned by HASH or LIST. MySQL copies the data while holding a shared lock.

• For REORGANIZE PARTITION, REBUILD PARTITION, or ADD PARTITION or COALESCE
PARTITION for a table partitioned by LINEAR HASH or LIST, concurrent queries are allowed. Data
from the affected partitions is copied while holding a shared metadata (read) lock at the table level.

Note

Full-text search (FTS) and foreign keys are not supported by InnoDB
partitioned tables. For more information, see Section 12.9.5, “Full-Text
Restrictions” and Section 17.6.2, “Partitioning Limitations Relating to Storage
Engines”.

14.2.11.9 Limitations of Online DDL

Take the following limitations into account when running online DDL operations:

• During an online DDL operation that copies the table, files are written to the temporary directory
($TMPDIR on Unix, %TEMP% on Windows, or the directory specified by the --tmpdir configuration
variable). Each temporary file is large enough to hold one column in the new table or index, and each
one is removed as soon as it is merged into the final table or index.

• An ALTER TABLE statement that contains DROP INDEX and ADD INDEX clauses that both name
the same index uses a table copy, not Fast Index Creation.

• The table is copied, rather than using Fast Index Creation when you create an index on a
TEMPORARY TABLE. This has been reported as MySQL Bug #39833.

• InnoDB handles error cases when users attempt to drop indexes needed for foreign keys. See
Section 14.2.17.5, “InnoDB Error Codes” for information related to error 1553.

• The ALTER TABLE clause LOCK=NONE is not allowed if there are ON...CASCADE or ON...SET
NULL constraints on the table.

• During each online DDL ALTER TABLE statement, regardless of the LOCK clause, there are brief
periods at the beginning and end requiring an exclusive lock on the table (the same kind of lock
specified by the LOCK=EXCLUSIVE clause). Thus, an online DDL operation might wait before starting
if there is a long-running transaction performing inserts, updates, deletes, or SELECT ... FOR
UPDATE on that table; and an online DDL operation might wait before finishing if a similar long-
running transaction was started while the ALTER TABLE was in progress.

• When running an online ALTER TABLE operation, the thread that runs the ALTER TABLE operation
will apply an “online log” of DML operations that were run concurrently on the same table from other
connection threads. When the DML operations are applied, it is possible to encounter a duplicate
key entry error (ERROR 1062 (23000): Duplicate entry), even if the duplicate entry is only
temporary and would be reverted by a later entry in the “online log”. This is similar to the idea of a
foreign key constraint check in InnoDB in which constraints must hold during a transaction.

• OPTIMIZE TABLE for an InnoDB table is mapped to an ALTER TABLE operation to rebuild the
table and update index statistics and free unused space in the clustered index. Prior to 5.7.4, there is
no online DDL support for this operation. Secondary indexes are not created as efficiently because

InnoDB Performance Tuning

1715

keys are inserted in the order they appeared in the primary key. As of 5.7.4, OPTIMIZE TABLE is
supported with the addition of online DDL support for rebuilding regular and partitioned InnoDB
tables. For additional information, see Section 14.2.11.1, “Overview of Online DDL”.

• InnoDB tables created before MySQL 5.6 do not support ALTER TABLE ...
ALGORITHM=INPLACE for tables that include temporal columns (DATE, DATETIME or TIMESTAMP)
and have not been rebuilt using ALTER TABLE ... ALGORITHM=COPY. In this case, an ALTER
TABLE ... ALGORITHM=INPLACE operation returns the following error:

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported.
Reason: Cannot change column type INPLACE. Try ALGORITHM=COPY.

14.2.12 InnoDB Performance Tuning

14.2.12.1 InnoDB Performance Tuning Tips

With InnoDB becoming the default storage engine in MySQL 5.5 and higher, the tips and guidelines for
InnoDB tables are now part of the main optimization chapter. See Section 8.5, “Optimizing for InnoDB
Tables”.

14.2.12.2 InnoDB Performance and Scalability Enhancements

This section summarizes the major InnoDB features and enhancements for performance and
scalability. This information is useful to any DBA or developer who is concerned with performance and
scalability. Although some of the enhancements do not require any action on your part, knowing this
information can still help you diagnose performance issues more quickly and modernize systems and
applications that rely on older, inefficient behavior.

Overview of InnoDB Performance

InnoDB has always been highly efficient, and includes several unique architectural elements to assure
high performance and scalability. The latest InnoDB storage engine includes new features that take
advantage of advances in operating systems and hardware platforms, such as multi-core processors
and improved memory allocation systems. In addition, new configuration options let you better control
some InnoDB internal subsystems to achieve the best performance with your workload.

Starting with MySQL 5.5 and InnoDB 1.1, the built-in InnoDB storage engine within MySQL is
upgraded to the full feature set and performance of the former InnoDB Plugin. This change makes
these performance and scalability enhancements available to a much wider audience than before,
and eliminates the separate installation step of the InnoDB Plugin. After learning about the InnoDB
performance features in this section, continue with Chapter 8, Optimization to learn the best practices
for overall MySQL performance, and Section 8.5, “Optimizing for InnoDB Tables” in particular for
InnoDB tips and guidelines.

Compression Enhancements for OLTP Workloads

Traditionally, the InnoDB compression feature was recommended primarily for read-only or read-
mostly workloads, such as in a data warehouse configuration. The rise of SSD storage devices, which
are fast but relatively small and expensive, makes compression attractive also for OLTP workloads:
high-traffic, interactive web sites can reduce their storage requirements and their I/O operations per
second (IOPS) by using compressed tables with applications that do frequent INSERT, UPDATE, and
DELETE operations.

New configuration options in MySQL 5.6 let you adjust the way compression works for a particular
MySQL instance, with an emphasis on performance and scalability for write-intensive operations:

• innodb_compression_level lets you turn the degree of compression up or down. A higher
value lets you fit more data onto a storage device, at the expense of more CPU overhead during
compression. A lower value lets you reduce CPU overhead when storage space is not critical, or you
expect the data is not especially compressible.

InnoDB Performance Tuning

1716

• innodb_compression_failure_threshold_pct specifies a cutoff point for compression
failures during updates to a compressed table. When this threshold is passed, MySQL begins to
leave additional free space within each new compressed page, dynamically adjusting the amount of
free space up to the percentage of page size specified by innodb_compression_pad_pct_max

• innodb_compression_pad_pct_max lets you adjust the maximum amount of space reserved
within each page to record changes to compressed rows, without needing to compress the entire
page again. The higher the value, the more changes can be recorded without recompressing
the page. MySQL uses a variable amount of free space for the pages within each compressed
table, only when a designated percentage of compression operations “fail” at runtime, requiring an
expensive operation to split the compressed page.

Because working with compressed data sometimes involves keeping both compressed and
uncompressed versions of a page in memory at the same time, when using compression with an
OLTP-style workload, be prepared to increase the value of the innodb_buffer_pool_size
configuration option.

For more information on MySQL data compression, see Section 14.2.7, “InnoDB Compressed Tables”.
For the performance aspects, especially see the section Section 14.2.7.3, “Tuning Compression for
InnoDB Tables”.

Optimizations for Read-Only Transactions

When a transaction is known to be read-only, InnoDB can avoid the overhead associated with setting
up the transaction ID (TRX_ID field). The transaction ID is only needed for a transaction that might
perform write operations or locking reads such as SELECT ... FOR UPDATE. Eliminating these
unnecessary transaction IDs reduces the size of internal data structures that are consulted each time a
query or DML statement constructs a read view.

Currently, InnoDB detects the read-only nature of the transaction and applies this optimization when
any of the following conditions are met:

• The transaction is started with the START TRANSACTION READ ONLY statement. In this case,
attempting to make any changes to the database (for InnoDB, MyISAM, or other types of tables)
causes an error, and the transaction continues in read-only state:

ERROR 1792 (25006): Cannot execute statement in a READ ONLY transaction.

You can still make changes to session-specific temporary tables in a read-only transaction, or issue
locking queries for them, because those changes and locks are not visible to any other transaction.

• The autocommit setting is turned on, so that the transaction is guaranteed to be a single statement,
and the single statement making up the transaction is a “non-locking” SELECT statement. That is, a
SELECT that does not use a FOR UPDATE or LOCK IN SHARED MODE clause.

• The transaction is started without the READ ONLY option, but no updates or statements that explicitly
lock rows have been executed yet. Until updates or explicit locks are required, a transaction stays in
read-only mode.

Thus, for a read-intensive application such as a report generator, you can tune a sequence of InnoDB
queries by grouping them inside START TRANSACTION READ ONLY and COMMIT, or by turning
on the autocommit setting before running the SELECT statements, or simply by avoiding any DML
statements interspersed with the queries.

Note

Transactions that qualify as auto-commit, non-locking, and read-only (AC-NL-
RO) are kept out of certain internal InnoDB data structures and are therefore
not listed in SHOW ENGINE INNODB STATUS output. These transactions are
only visible in the Information Schema.

InnoDB Performance Tuning

1717

Separate Tablespaces for InnoDB Undo Logs

This feature allows you to store the InnoDB undo log in one or more separate tablespaces outside of
the system tablespace. The I/O patterns for the undo log make these tablespaces good candidates to
move to SSD storage, while keeping the system tablespace on hard disk storage. Users cannot drop
the separate tablespaces created to hold InnoDB undo logs, or the individual segments inside those
tablespaces.

Because these files handle I/O operations formerly done inside the system tablespace, we broaden the
definition of system tablespace to include these new files.

The undo logs are also known as the rollback segments.

This feature involves the following new or renamed configuration options:

• innodb_undo_tablespaces.

• innodb_undo_directory.

• innodb_rollback_segments becomes innodb_undo_logs. The old name is still available for
compatibility.

Because the InnoDB undo log feature involves setting two non-dynamic startup variables
(innodb_undo_tablespaces and innodb_undo_directory), this feature can only be enabled
when initializing a MySQL instance.

Usage Notes

To use this feature, follow these steps:

1. Decide on a path on a fast storage device to hold the undo logs. You will specify that path as the
argument to the innodb_undo_directory option in your MySQL configuration file or startup
script.

2. Decide on a non-zero starting value for the innodb_undo_logs option. You can start with a
relatively low value and increase it over time to examine the effect on performance.

3. Decide on a non-zero value for the innodb_undo_tablespaces option. The multiple undo
logs specified by the innodb_undo_logs value are divided between this number of separate
tablespaces (represented by .ibd files). This value is fixed for the life of the MySQL instance, so if
you are uncertain about the optimal value, estimate on the high side.

4. Create a new MySQL instance, using the values you chose in the configuration file or in your
MySQL startup script. Use a realistic workload with data volume similar to your production servers.
Alternatively, use the transportable tablespaces feature to copy existing database tables to your
newly configured MySQL instance. See Section 14.2.5.5, “Copying Tablespaces to Another Server
(Transportable Tablespaces)” for more information.

5. Benchmark the performance of I/O intensive workloads.

6. Periodically increase the value of innodb_undo_logs and re-do the performance tests. Find the
value where you stop experiencing gains in I/O performance.

7. Deploy a new production instance using the ideal settings for these options. Set it up as a slave
server in a replication configuration, or transfer data from an earlier production instance.

Performance and Scalability Considerations

Keeping the undo logs in separate files allows the MySQL team to implement I/O and memory
optimizations related to this transactional data. For example, because the undo data is written to disk
and then rarely used (only in case of crash recovery), it does not need to be kept in the filesystem

InnoDB Performance Tuning

1718

memory cache, in turn allowing a higher percentage of system memory to be devoted to the InnoDB
buffer pool.

The typical SSD best practice of keeping the InnoDB system tablespace on a hard drive and moving
the per-table tablespaces to SSD, is assisted by moving the undo information into separate tablespace
files.

Internals

The physical tablespace files are named undoN, where N is the space ID, including leading zeros.

Currently, MySQL instances containing separate undo tablespaces cannot be downgraded to earlier
releases such as MySQL 5.5 or 5.1.

Faster Extension for InnoDB Data Files

The benefits of the InnoDB file-per-table setting come with the tradeoff that each .ibd file is extended
as the data inside the table grows. This I/O operation can be a bottleneck for busy systems with many
InnoDB tables. When all InnoDB tables are stored inside the system tablespace, this extension
operation happens less frequently, as space freed by DELETE or TRUNCATE operations within one
table can be reused by another table.

MySQL 5.6 improves the concurrency of the extension operation, so that multiple .ibd files can be
extended simultaneously, and this operation does not block read or write operations performed by
other threads.

Non-Recursive Deadlock Detection

The code that detects deadlocks in InnoDB transactions has been modified to use a fixed-size work
area rather than a recursive algorithm. The resulting detection operation is faster as a result. You do
not need to do anything to take advantage of this enhancement.

Under both the old and new detection mechanisms, you might encounter a search too deep error
that is not a true deadlock, but requires you to re-try the transaction the same way as with a deadlock.

Fast CRC32 Checksum Algorithm

You can enable the configuration option innodb_checksum_algorithm=crc32 configuration setting
to change the checksum algorithm to a faster one that scans the block 32 bits at a time rather than 8
bits at a time. When the CRC32 algorithm is enabled, data blocks that are written to disk by InnoDB
contain different values in their checksum fields than before. This process could be gradual, with a mix
of old and new checksum values within the same table or database.

For maximum downward compatibility, this setting is off by default:

• Current versions of MySQL Enterprise Backup (up to 3.8.0) do not support backing up tablespaces
that use crc32 checksums.

• .ibd files containing crc32 checksums could cause problems downgrading to MySQL versions prior
to 5.6.3. MySQL 5.6.3 and up recognizes either the new or old checksum values for the block as
correct when reading the block from disk, ensuring that data blocks are compatible during upgrade
and downgrade regardless of the algorithm setting. If data written with new checksum values is
processed by an level of MySQL earlier than 5.6.3, it could be reported as corrupted.

When you set up a new MySQL instance, and can be sure that all the InnoDB
data is created using the CRC32 checksum algorithm, you can use the setting
innodb_checksum_algorithm=strict_crc32, which can be faster than the crc32 setting
because it does not do the extra checksum calculations to support both old and new values.

The innodb_checksum_algorithm option has other values that allow it to replace the
innodb_checksums option. innodb_checksum_algorithm=none is the same as

InnoDB Performance Tuning

1719

innodb_checksums=OFF. innodb_checksum_algorithm=innodb is the same as
innodb_checksums=ON. To avoid conflicts, remove references to innodb_checksums from your
configuration file and MySQL startup scripts. The new option also accepts values strict_none and
strict_innodb, again offering better performance in situations where all InnoDB data in an instance
is created with the same checksum algorithm.

The following table illustrates the difference between the none, innodb, and crc32 option values, and
their strict_ counterparts. none, innodb, and crc32 write the specified type checksum value into
each data block, but for compatibility accept any of the other checksum values when verifying a block
during a read operation. The strict_ form of each parameter only recognizes one kind of checksum,
which makes verification faster but requires that all InnoDB data files in an instance be created under
the identical innodb_checksum_algorithm value.

Table 14.6 Allowed Settings for innodb_checksum_algorithm

Value Generated checksum (when writing) Allowed checksums (when reading)

none A constant number. Any of the checksums generated by
none, innodb, or crc32.

innodb A checksum calculated in software,
using the original algorithm from
InnoDB.

Any of the checksums generated by
none, innodb, or crc32.

crc32 A checksum calculated using the
crc32 algorithm, possibly done with a
hardware assist.

Any of the checksums generated by
none, innodb, or crc32.

strict_none A constant number Only the checksum generated by none.

strict_innodb A checksum calculated in software,
using the original algorithm from
InnoDB.

Only the checksum generated by
innodb.

strict_crc32 A checksum calculated using the
crc32 algorithm, possibly done with a
hardware assist.

Only the checksum generated by
crc32.

Faster Restart by Preloading the InnoDB Buffer Pool

After you restart a busy server, there is typically a warmup period with steadily increasing throughput,
as disk pages that were in the InnoDB buffer pool are brought back into memory as the same data is
queried, updated, and so on. Once the buffer pool holds a similar set of pages as before the restart,
many operations are performed in memory rather than involving disk I/O, and throughput stabilizes at a
high level.

This feature shortens the warmup period by immediately reloading disk pages that were in the buffer
pool before the restart, rather than waiting for DML operations to access the corresponding rows.
The I/O requests can be performed in large batches, making the overall I/O faster. The page loading
happens in the background, and does not delay the database startup.

In addition to saving the buffer pool state at shutdown and restoring it at startup, you can also save or
restore the state at any time. For example, you might save the state of the buffer pool after reaching
a stable throughput under a steady workload. You might restore the previous buffer pool state after
running reports or maintenance jobs that bring data pages into the buffer pool that are only needed
during the time period for those operations, or after some other period with a non-typical workload.

Although the buffer pool itself could be many gigabytes in size, the data that InnoDB saves on disk
to restore the buffer pool is tiny by comparison: just the tablespace and page IDs necessary to locate
the appropriate pages on disk. This information is derived from the information_schema table
innodb_buffer_page_lru.

Because the data is cached in and aged out of the buffer pool the same as with regular database
operations, there is no problem if the disk pages were updated recently, or if a DML operation involves

InnoDB Performance Tuning

1720

data that has not yet been loaded. The loading mechanism skips any requested pages that no longer
exist.

This feature involves the configuration variables:

• innodb_buffer_pool_dump_now

• innodb_buffer_pool_load_now

• innodb_buffer_pool_dump_at_shutdown

• innodb_buffer_pool_load_at_startup

• innodb_buffer_pool_filename

• innodb_buffer_pool_load_abort

and the status variables:

• Innodb_buffer_pool_dump_status

• Innodb_buffer_pool_load_status

To save the current state of the InnoDB buffer pool, issue the statement:

SET GLOBAL innodb_buffer_pool_dump_now=ON;

The underlying mechanism involves a background thread that is dispatched to perform the dump and
load operations.

By default, the buffer pool state is saved in a file ib_buffer_pool in the InnoDB data directory.

Disk pages from compressed tables are loaded into the buffer pool in their compressed form.
Uncompression happens as usual when the page contents are accessed in the course of DML
operations. Because decompression is a CPU-intensive process, it is more efficient for concurrency to
perform that operation in one of the connection threads rather than the single thread that performs the
buffer pool restore operation.

Example 14.10 Examples of Dumping and Restoring the InnoDB Buffer Pool

Trigger a dump of the buffer pool manually:

SET GLOBAL innodb_buffer_pool_dump_now=ON;

Specify that a dump should be taken at shutdown:

SET GLOBAL innodb_buffer_pool_dump_at_shutdown=ON;

Specify that a dump should be loaded at startup. This variable is set at server startup.

mysqld --innodb_buffer_pool_load_at_startup=ON;

Trigger a load of the buffer pool manually:

SET GLOBAL innodb_buffer_pool_load_now=ON;

Specify which filename to use for storing the dump to and loading the dump from:

InnoDB Performance Tuning

1721

SET GLOBAL innodb_buffer_pool_filename='filename';

Display progress of dump:

SHOW STATUS LIKE 'innodb_buffer_pool_dump_status';

or:

SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_DUMP_STATUS';

Outputs any of: not started, Dumping buffer pool 5/7, page 237/2873, Finished at 110505 12:18:02

Display progress of load:

SHOW STATUS LIKE 'innodb_buffer_pool_load_status';

or:

SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_LOAD_STATUS';

Outputs any of: not started, Loaded 123/22301 pages, Finished at 110505 12:23:24

Abort a buffer pool load:

SET innodb_buffer_pool_load_abort=ON;

Improvements to Buffer Pool Flushing

The new configuration options innodb_flush_neighbors and innodb_lru_scan_depth let you
fine-tune certain aspects of the flushing process for the InnoDB buffer pool. These options primarily
help write-intensive workloads. With heavy DML activity, flushing can fall behind if it is not aggressive
enough, resulting in excessive memory use in the buffer pool; or, disk writes due to flushing can
saturate your I/O capacity if that mechanism is too aggressive. The ideal settings depend on your
workload, data access patterns, and storage configuration (for example, whether data is stored on HDD
or SSD devices).

For systems with constant heavy workloads, or workloads that fluctuate widely, several
new configuration options let you fine-tune the flushing behavior for InnoDB tables:
innodb_adaptive_flushing_lwm, innodb_max_dirty_pages_pct_lwm,
innodb_io_capacity_max, and innodb_flushing_avg_loops. These options feed into an
improved formula used by the innodb_adaptive_flushing option.

The existing innodb_adaptive_flushing, innodb_io_capacity and
innodb_max_dirty_pages_pct options work as before, except that they are limited or extended
by other options: innodb_adaptive_flushing_lwm, innodb_io_capacity_max and
innodb_max_dirty_pages_pct_lwm:

• The InnoDB adaptive flushing mechanism is not appropriate in all cases. It gives the most benefit
when the redo log is in danger of filling up. The innodb_adaptive_flushing_lwm option
specifies a “low water mark” percentage of redo log capacity; when that threshold is crossed,
InnoDB turns on adaptive flushing even if not specified by the innodb_adaptive_flushing
option.

• If flushing activity falls far behind, InnoDB can flush more aggressively than specified by
innodb_io_capacity. innodb_io_capacity_max represents an upper limit on the I/O capacity

InnoDB Performance Tuning

1722

used in such emergency situations, so that the spike in I/O does not consume all the capacity of the
server.

• InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages
does not exceed the value of innodb_max_dirty_pages_pct. The default value for
innodb_max_dirty_pages_pct is 75.

Note

The innodb_max_dirty_pages_pct setting establishes a target for
flushing activity. It does not affect the rate of flushing. For information about
managing the rate of flushing, see Controlling the Flushing Rate of Dirty
Pages from the InnoDB Buffer Pool.

The innodb_max_dirty_pages_pct_lwm option specifies a “low water mark” value that
represents the percentage of dirty pages where pre-flushing is enabled to control the dirty page ratio
and ideally prevent the percentage of dirty pages from reaching innodb_max_dirty_pages_pct.
A value of innodb_max_dirty_pages_pct_lwm=0 disables the “pre-flushing” behavior.

Most of the options referenced above are most applicable to servers that run write-heavy workloads for
long periods of time and have little reduced load time to catch up with changes waiting to be written to
disk.

innodb_flushing_avg_loops defines the number of iterations for which InnoDB keeps the
previously calculated snapshot of the flushing state, which controls how quickly adaptive flushing
responds to foreground load changes. Setting a high value for innodb_flushing_avg_loops
means that InnoDB keeps the previously calculated snapshot longer, so adaptive flushing
responds more slowly. A high value also reduces positive feedback between foreground and
background work, but when setting a high value it is important to ensure that InnoDB redo log
utilization does not reach 75% (the hardcoded limit at which async flushing starts) and that the
innodb_max_dirty_pages_pct setting keeps the number of dirty pages to a level that is
appropriate for the workload.

Systems with consistent workloads, a large innodb_log_file_size, and small spikes that do not
reach 75% redo log space utilization should use a high innodb_flushing_avg_loops value to keep
flushing as smooth as possible. For systems with extreme load spikes or log files that do not provide a
lot of space, consider a smaller innodb_flushing_avg_loops value. The smaller value will allow
flushing to closely track the load and help avoid reaching 75% redo log space utilization.

Persistent Optimizer Statistics for InnoDB Tables

Plan stability is a desirable goal for your biggest and most important queries. InnoDB has always
computed statistics for each InnoDB table to help the optimizer find the most efficient query execution
plan. Now you can make these statistics persistent, so that the index usage and join order for a
particular query is less likely to change.

This feature is on by default, enabled by the configuration option innodb_stats_persistent.

You control how much sampling is done to collect the statistics by setting the
innodb_stats_persistent_sample_pages configuration option.

The configuration option innodb_stats_auto_recalc determines whether the statistics are
calculated automatically whenever a table undergoes substantial changes (to more than 10% of the
rows).

Note

Because of the asynchronous nature of automatic statistics recalculation
(which occurs in the background), statistics may not be recalculated instantly
after running a DML operation that affects more than 10% of a table, even

InnoDB Performance Tuning

1723

when innodb_stats_auto_recalc is enabled. In some cases, statistics
recalculation may be delayed by a few seconds. If up-to-date statistics are
required immediately after changing significant portions of a table, run ANALYZE
TABLE to initiate a synchronous (foreground) recalculation of statistics.

If innodb_stats_auto_recalc is disabled, ensure the accuracy of optimizer statistics by issuing
the ANALYZE TABLE statement for each applicable table after making substantial changes to indexed
columns. You might run this statement in your setup scripts after representative data has been loaded
into the table, and run it periodically after DML operations significantly change the contents of indexed
columns, or on a schedule at times of low activity. When a new index is added to an existing table,
index statistics are calculated and added to the innodb_index_stats table regardless of the value
of innodb_stats_auto_recalc.

Caution

To ensure statistics are gathered when a new index is created, either enable the
innodb_stats_auto_recalc option, or run ANALYZE TABLE after creating
each new index when the persistent statistics mode is enabled.

You can set innodb_stats_persistent, innodb_stats_auto_recalc options at the
global level before creating a table, or use the STATS_PERSISTENT, STATS_AUTO_RECALC, and
STATS_SAMPLE_PAGES clauses on the CREATE TABLE and ALTER TABLE statements, to override
the system-wide setting and configure persistent statistics for individual tables.

Formerly, these statistics were cleared on each server restart and after some other operations, and
recomputed when the table was next accessed. The statistics are computed using a random sampling
technique that could produce different estimates the next time, leading to different choices in the
execution plan and thus variations in query performance.

To revert to the previous method of collecting statistics that are periodically erased, run the command
ALTER TABLE tbl_name STATS_PERSISTENT=0.

InnoDB Persistent Statistics Tables

The persistent statistics feature relies on the internally managed tables in the mysql database, named
innodb_table_stats and innodb_index_stats. These tables are set up automatically in all
install, upgrade, and build-from-source procedures.

Table 14.7 Columns of innodb_table_stats

Column name Description

database_name Database name

table_name Table name, partition name, or subpartition name

last_update A timestamp indicating the last time that InnoDB updated this row

n_rows The number of rows in the table

clustered_index_size The size of the primary index, in pages

sum_of_other_index_sizesThe total size of other (non-primary) indexes, in pages

Table 14.8 Columns of innodb_index_stats

Column name Description

database_name Database name

table_name Table name, partition name, or subpartition name

index_name Index name

last_update A timestamp indicating the last time that InnoDB updated this row

InnoDB Performance Tuning

1724

Column name Description

stat_name The name of the statistic, whose value is reported in the stat_value
column

stat_value The value of the statistic that is named in stat_name column

sample_size The number of pages sampled for the estimate provided in the
stat_value column

stat_description Description of the statistic that is named in the stat_name column

Both the innodb_table_stats and innodb_index_stats tables include a last_update column
showing when InnoDB last updated index statistics, as shown in the following example:

mysql> select * from innodb_table_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 last_update: 2014-05-28 16:16:44
 n_rows: 200
 clustered_index_size: 1
sum_of_other_index_sizes: 1
...

mysql> select * from innodb_index_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 index_name: PRIMARY
 last_update: 2014-05-28 16:16:44
 stat_name: n_diff_pfx01
 stat_value: 200
 sample_size: 1
 ...

The innodb_table_stats and innodb_index_stats tables are ordinary tables and can be
updated manually. The ability to manually update statistics make it possible to force a specific query
optimization plan or test alternative plans without modifying the database. If you manually update
statistics, issue the FLUSH TABLE tbl_name command to make MySQL reload the updated
statistics.

InnoDB Persistent Statistics Tables Example

The innodb_table_stats table contains one row per table. The data collected is demonstrated in
the following example.

Table t1 contains a primary index (columns a, b) secondary index (columns c, d), and unique index
(columns e, f):

CREATE TABLE t (
a INT, b INT, c INT, d INT, e INT, f INT,
PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

After inserting five rows of sample data, the table appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+

InnoDB Performance Tuning

1725

5 rows in set (0.00 sec)

To immediately update statistics, run ANALYZE TABLE: (if innodb_stats_auto_recalc is enabled,
statistics are updated automatically within a few seconds assuming that the 10% threshold for change
table rows is reached).

mysql> ANALYZE TABLE t1;
+---------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+---------+----------+----------+
| test.t1 | analyze | status | OK |
+---------+---------+----------+----------+
1 row in set (0.02 sec)

Table statistics for table t1 show the last time InnoDB updated the table statistics (2014-03-14
14:36:34), the number of rows in the table (5), the clustered index size (1 page), and the combined
size of the other indexes (2 pages).

mysql> SELECT * FROM mysql.innodb_table_stats WHERE table_name like 't1'\G
*************************** 1. row ***************************
 database_name: test
 table_name: t1
 last_update: 2014-03-14 14:36:34
 n_rows: 5
 clustered_index_size: 1
sum_of_other_index_sizes: 2
1 row in set (0.00 sec)

The innodb_index_stats table contains multiple rows for each index. Each row in the
innodb_index_stats table provides data related to a particular index statistic which is named in the
stat_name column and described in the stat_description column. For example:

mysql> SELECT index_name, stat_name, stat_value, stat_description
 -> FROM mysql.innodb_index_stats WHERE table_name like 't1';
+------------+--------------+------------+-----------------------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+-----------------------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
PRIMARY	n_leaf_pages	1	Number of leaf pages in the index
PRIMARY	size	1	Number of pages in the index
i1	n_diff_pfx01	1	c
i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b
i1	n_leaf_pages	1	Number of leaf pages in the index
i1	size	1	Number of pages in the index
i2uniq	n_diff_pfx01	2	e
i2uniq	n_diff_pfx02	5	e,f
i2uniq	n_leaf_pages	1	Number of leaf pages in the index
i2uniq	size	1	Number of pages in the index
+------------+--------------+------------+-----------------------------------+
14 rows in set (0.00 sec)

The stat_name column shows the following types of statistics:

• size: Where stat_name=size, the stat_value column displays the total number of pages in the
index.

• n_leaf_pages: Where stat_name=n_leaf_pages, the stat_value column displays the
number of leaf pages in the index.

• n_diff_pfxNN: Where stat_name=n_diff_pfx01, the stat_value column displays the
number of distinct values in the first column of the index. Where stat_name=n_diff_pfx02, the
stat_value column displays the number of distinct values in the first two columns of the index, and
so on. Additionally, where stat_name=n_diff_pfxNN, the stat_description column shows a
comma separated list of the index columns that are counted.

InnoDB Performance Tuning

1726

To further illustrate the n_diff_pfxNN statistic, which provides cardinality data, consider the t1 table
example. As shown below, the t1 table is created with a primary index (columns a, b), a secondary
index (columns c, d), and a unique index (columns e, f):

CREATE TABLE t (
 a INT, b INT, c INT, d INT, e INT, f INT,
 PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

After inserting five rows of sample data, the table appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+
5 rows in set (0.00 sec)

When you query the index_name, stat_name, stat_value, and stat_description where
stat_name LIKE 'n_diff%', the following result set is returned:

mysql> SELECT index_name, stat_name, stat_value, stat_description
 -> FROM mysql.innodb_index_stats
 -> WHERE table_name like 't1' AND stat_name LIKE 'n_diff%';
+------------+--------------+------------+------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
i1	n_diff_pfx01	1	c
i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b
i2uniq	n_diff_pfx01	2	e
i2uniq	n_diff_pfx02	5	e,f
+------------+--------------+------------+------------------+
8 rows in set (0.00 sec)

For the PRIMARY index, there are two n_diff% rows. The number of rows is equal to the number of
columns in the index.

Note

For non-unique indexes, InnoDB appends the columns of the primary key.

• Where index_name=PRIMARY and stat_name=n_diff_pfx01, the stat_value is 1, which
indicates that there is a single distinct value in the first column of the index (column a). The number
of distinct values in column a is confirmed by viewing the data in column a in table t1, in which there
is a single distinct value (1). The counted column (a) is shown in the stat_description column of
the result set.

• Where index_name=PRIMARY and stat_name=n_diff_pfx02, the stat_value is 5, which
indicates that there are five distinct values in the two columns of the index (a,b). The number of
distinct values in columns a and b is confirmed by viewing the data in columns a and b in table t1,
in which there are five distinct values: (1,1), (1,2), (1,3), (1,4) and (1,5). The counted columns
(a,b) are shown in the stat_description column of the result set.

For the secondary index (i1), there are four n_diff% rows. Only two columns are defined for the
secondary index (c,d) but there are four n_diff% rows for the secondary index because InnoDB
suffixes all non-unique indexes with the primary key. As a result, there are four n_diff% rows instead
of two to account for the both the secondary index columns (c,d) and the primary key columns (a,b).

InnoDB Performance Tuning

1727

• Where index_name=i1 and stat_name=n_diff_pfx01, the stat_value is 1, which indicates
that there is a single distinct value in the first column of the index (column c). The number of distinct
values in column c is confirmed by viewing the data in column c in table t1, in which there is a single
distinct value: (10). The counted column (c) is shown in the stat_description column of the
result set.

• Where index_name=i1 and stat_name=n_diff_pfx02, the stat_value is 2, which indicates
that there are two distinct values in the first two columns of the index (c,d). The number of distinct
values in columns c an d is confirmed by viewing the data in columns c and d in table t1, in which
there are two distinct values: (10,11) and (10,12). The counted columns (c,d) are shown in the
stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx03, the stat_value is 2, which indicates
that there are two distinct values in the first three columns of the index (c,d,a). The number of
distinct values in columns c, d, and a is confirmed by viewing the data in column c, d, and a in table
t1, in which there are two distinct values: (10,11,1) and (10,12,1). The counted columns (c,d,a)
are shown in the stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx04, the stat_value is 5, which indicates
that there are five distinct values in the four columns of the index (c,d,a,b). The number of distinct
values in columns c, d, a and b is confirmed by viewing the data in columns c, d, a, and b in table
t1, in which there are five distinct values: (10,11,1,1), (10,11,1,2), (10,11,1,3), (10,12,1,4)
and (10,12,1,5). The counted columns (c,d,a,b) are shown in the stat_description column
of the result set.

For the unique index (i2uniq), there are two n_diff% rows.

• Where index_name=i2uniq and stat_name=n_diff_pfx01, the stat_value is 2, which
indicates that there are two distinct values in the first column of the index (column e). The
number of distinct values in column e is confirmed by viewing the data in column e in table t1,
in which there are two distinct values: (100) and (200). The counted column (e) is shown in the
stat_description column of the result set.

• Where index_name=i2uniq and stat_name=n_diff_pfx02, the stat_value is 5, which
indicates that there are five distinct values in the two columns of the index (e,f). The number of
distinct values in columns e and f is confirmed by viewing the data in columns e and f in table t1, in
which there are five distinct values: (100,101), (200,102), (100,103), (200,104) and (100,105).
The counted columns (e,f) are shown in the stat_description column of the result set.

Retrieving Index Size Using the innodb_index_stats Table

The size of indexes for tables, partitions, or subpartitions can be retrieved using the
innodb_index_stats table. In the following example, index sizes are retrieved for table t1:

mysql> SELECT SUM(stat_value) pages, index_name,
 -> SUM(stat_value)*@@innodb_page_size size
 -> FROM mysql.innodb_index_stats WHERE table_name='t1'
 -> AND stat_name = 'size' GROUP BY index_name;
+-------+------------+-------+
| pages | index_name | size |
+-------+------------+-------+
1	PRIMARY	16384
1	i1	16384
1	i2uniq	16384
+-------+------------+-------+
3 rows in set (0.00 sec)

For partitions or subpartitions, the same query with a modified WHERE clause can be used to retrieve
index sizes. For example, the following query retrieves index sizes for partitions of table t1:

mysql> SELECT SUM(stat_value) pages, index_name,

InnoDB Performance Tuning

1728

 -> SUM(stat_value)*@@innodb_page_size size
 -> FROM mysql.innodb_index_stats WHERE table_name like 't1#P%'
 -> AND AND stat_name = 'size' GROUP BY index_name;

Faster Locking for Improved Scalability

In MySQL and InnoDB, multiple threads of execution access shared data structures. InnoDB
synchronizes these accesses with its own implementation of mutexes and read/write locks. InnoDB
has historically protected the internal state of a read/write lock with an InnoDB mutex. On Unix and
Linux platforms, the internal state of an InnoDB mutex is protected by a Pthreads mutex, as in IEEE
Std 1003.1c (POSIX.1c).

On many platforms, there is a more efficient way to implement mutexes and read/write locks. Atomic
operations can often be used to synchronize the actions of multiple threads more efficiently than
Pthreads. Each operation to acquire or release a lock can be done in fewer CPU instructions, and thus
result in less wasted time when threads are contending for access to shared data structures. This in
turn means greater scalability on multi-core platforms.

InnoDB implements mutexes and read/write locks with the built-in functions provided by the GNU
Compiler Collection (GCC) for atomic memory access instead of using the Pthreads approach
previously used. More specifically, an InnoDB that is compiled with GCC version 4.1.2 or later uses the
atomic builtins instead of a pthread_mutex_t to implement InnoDB mutexes and read/write locks.

On 32-bit Microsoft Windows, InnoDB has implemented mutexes (but not read/write locks) with hand-
written assembler instructions. Beginning with Microsoft Windows 2000, functions for Interlocked
Variable Access are available that are similar to the built-in functions provided by GCC. On Windows
2000 and higher, InnoDB makes use of the Interlocked functions. Unlike the old hand-written
assembler code, the new implementation supports read/write locks and 64-bit platforms.

Solaris 10 introduced library functions for atomic operations, and InnoDB uses these functions by
default. When MySQL is compiled on Solaris 10 with a compiler that does not support the built-in
functions provided by the GNU Compiler Collection (GCC) for atomic memory access, InnoDB uses the
library functions.

This change improves the scalability of InnoDB on multi-core systems. This feature is enabled out-
of-the-box on the platforms where it is supported. You do not have to set any parameter or option
to take advantage of the improved performance. On platforms where the GCC, Windows, or Solaris
functions for atomic memory access are not available, InnoDB uses the traditional Pthreads method of
implementing mutexes and read/write locks.

When MySQL starts, InnoDB writes a message to the log file indicating whether atomic memory
access is used for mutexes, for mutexes and read/write locks, or neither. If suitable tools are used
to build InnoDB and the target CPU supports the atomic operations required, InnoDB uses the built-
in functions for mutexing. If, in addition, the compare-and-swap operation can be used on thread
identifiers (pthread_t), then InnoDB uses the instructions for read-write locks as well.

Note: If you are building from source, ensure that the build process properly takes advantage of your
platform capabilities.

For more information about the performance implications of locking, see Section 8.10, “Optimizing
Locking Operations”.

Using Operating System Memory Allocators

When InnoDB was developed, the memory allocators supplied with operating systems and run-time
libraries were often lacking in performance and scalability. At that time, there were no memory allocator
libraries tuned for multi-core CPUs. Therefore, InnoDB implemented its own memory allocator in the
mem subsystem. This allocator is guarded by a single mutex, which may become a bottleneck. InnoDB
also implements a wrapper interface around the system allocator (malloc and free) that is likewise
guarded by a single mutex.

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
http://msdn.microsoft.com/en-us/library/ms684122(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684122(VS.85).aspx
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html

InnoDB Performance Tuning

1729

Today, as multi-core systems have become more widely available, and as operating systems have
matured, significant improvements have been made in the memory allocators provided with operating
systems. New memory allocators perform better and are more scalable than they were in the past.
The leading high-performance memory allocators include Hoard, libumem, mtmalloc, ptmalloc,
tbbmalloc, and TCMalloc. Most workloads, especially those where memory is frequently allocated
and released (such as multi-table joins), benefit from using a more highly tuned memory allocator as
opposed to the internal, InnoDB-specific memory allocator.

You can control whether InnoDB uses its own memory allocator or an allocator of the operating system,
by setting the value of the system configuration parameter innodb_use_sys_malloc in the MySQL
option file (my.cnf or my.ini). If set to ON or 1 (the default), InnoDB uses the malloc and free
functions of the underlying system rather than manage memory pools itself. This parameter is not
dynamic, and takes effect only when the system is started. To continue to use the InnoDB memory
allocator, set innodb_use_sys_malloc to 0.

When the InnoDB memory allocator is disabled, InnoDB ignores the value of the parameter
innodb_additional_mem_pool_size. The InnoDB memory allocator uses an additional memory
pool for satisfying allocation requests without having to fall back to the system memory allocator.
When the InnoDB memory allocator is disabled, all such allocation requests are fulfilled by the system
memory allocator.

On Unix-like systems that use dynamic linking, replacing the memory allocator may be as easy as
making the environment variable LD_PRELOAD or LD_LIBRARY_PATH point to the dynamic library
that implements the allocator. On other systems, some relinking may be necessary. Please refer to the
documentation of the memory allocator library of your choice.

Since InnoDB cannot track all memory use when the system memory allocator is used
(innodb_use_sys_malloc is ON), the section “BUFFER POOL AND MEMORY” in the output of
the SHOW ENGINE INNODB STATUS command only includes the buffer pool statistics in the “Total
memory allocated”. Any memory allocated using the mem subsystem or using ut_malloc is excluded.

Note

innodb_use_sys_malloc and innodb_additional_mem_pool_size
were deprecated in MySQL 5.6.3 and are removed in MySQL 5.7.4.

For more information about the performance implications of InnoDB memory usage, see Section 8.9,
“Buffering and Caching”.

Controlling InnoDB Change Buffering

When INSERT, UPDATE, and DELETE operations are done to a table, often the values of indexed
columns (particularly the values of secondary keys) are not in sorted order, requiring substantial I/O
to bring secondary indexes up to date. InnoDB has an insert buffer that caches changes to secondary
index entries when the relevant page is not in the buffer pool, thus avoiding I/O operations by not
reading in the page from the disk. The buffered changes are merged when the page is loaded to the
buffer pool, and the updated page is later flushed to disk using the normal mechanism. The InnoDB
main thread merges buffered changes when the server is nearly idle, and during a slow shutdown.

Because it can result in fewer disk reads and writes, this feature is most valuable for workloads that are
I/O-bound, for example applications with a high volume of DML operations such as bulk inserts.

However, the insert buffer occupies a part of the buffer pool, reducing the memory available to
cache data pages. If the working set almost fits in the buffer pool, or if your tables have relatively few
secondary indexes, it may be useful to disable insert buffering. If the working set entirely fits in the
buffer pool, insert buffering does not impose any extra overhead, because it only applies to pages that
are not in the buffer pool.

You can control the extent to which InnoDB performs insert buffering with the system configuration
parameter innodb_change_buffering. You can turn on and off buffering for inserts, delete

InnoDB Performance Tuning

1730

operations (when index records are initially marked for deletion) and purge operations (when index
records are physically deleted). An update operation is represented as a combination of an insert and a
delete. In MySQL 5.5 and higher, the default value is changed from inserts to all.

The allowed values of innodb_change_buffering are:

• all

The default value: buffer inserts, delete-marking operations, and purges.

• none

Do not buffer any operations.

• inserts

Buffer insert operations.

• deletes

Buffer delete-marking operations.

• changes

Buffer both inserts and delete-marking.

• purges

Buffer the physical deletion operations that happen in the background.

You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it
dynamically with the SET GLOBAL command, which requires the SUPER privilege. Changing the setting
affects the buffering of new operations; the merging of already buffered entries is not affected.

For more information about speeding up INSERT, UPDATE, and DELETE statements, see Section 8.2.2,
“Optimizing DML Statements”.

Controlling Adaptive Hash Indexing

If a table fits almost entirely in main memory, the fastest way to perform queries on it is to use hash
indexes rather than B-tree lookups. MySQL monitors searches on each index defined for an InnoDB
table. If it notices that certain index values are being accessed frequently, it automatically builds an in-
memory hash table for that index. See Adaptive Hash Indexes for background information and usage
guidelines for the adaptive hash index feature and the innodb_adaptive_hash_index configuration
option.

Changes Regarding Thread Concurrency

InnoDB uses operating system threads to process requests from user transactions. (Transactions
may issue many requests to InnoDB before they commit or roll back.) On modern operating systems
and servers with multi-core processors, where context switching is efficient, most workloads run well
without any limit on the number of concurrent threads. Scalability improvements in MySQL 5.5 and up
reduce the need to limit the number of concurrently executing threads inside InnoDB.

In situations where it is helpful to minimize context switching between threads, InnoDB can use a
number of techniques to limit the number of concurrently executing operating system threads (and thus
the number of requests that are processed at any one time). When InnoDB receives a new request
from a user session, if the number of threads concurrently executing is at a pre-defined limit, the new
request sleeps for a short time before it tries again. A request that cannot be rescheduled after the
sleep is put in a first-in/first-out queue and eventually is processed. Threads waiting for locks are not
counted in the number of concurrently executing threads.

InnoDB Performance Tuning

1731

You can limit the number of concurrent threads by setting the configuration parameter
innodb_thread_concurrency. Once the number of executing threads reaches this limit,
additional threads sleep for a number of microseconds, set by the configuration parameter
innodb_thread_sleep_delay, before being placed into the queue.

Previously, it required experimentation to find the optimal value for innodb_thread_sleep_delay,
and the optimal value could change depending on the workload. In MySQL 5.6.3 and higher,
you can set the configuration option innodb_adaptive_max_sleep_delay to the highest
value you would allow for innodb_thread_sleep_delay, and InnoDB automatically adjusts
innodb_thread_sleep_delay up or down depending on the current thread-scheduling activity. This
dynamic adjustment helps the thread scheduling mechanism to work smoothly during times when the
system is lightly loaded and when it is operating near full capacity.

The default value for innodb_thread_concurrency and the implied default limit on the
number of concurrent threads has been changed in various releases of MySQL and InnoDB.
Currently, the default value of innodb_thread_concurrency is 0, so that by default there is
no limit on the number of concurrently executing threads, as shown in Table 14.9, “Changes to
innodb_thread_concurrency”.

Table 14.9 Changes to innodb_thread_concurrency

InnoDB Version MySQL Version Default
value

Default limit
of concurrent
threads

Value to allow
unlimited
threads

Built-in Earlier than 5.1.11 20 No limit 20 or higher

Built-in 5.1.11 and newer 8 8 0

InnoDB before 1.0.3 (corresponding to
Plugin)

8 8 0

InnoDB 1.0.3 and newer (corresponding to
Plugin)

0 No limit 0

Note that InnoDB causes threads to sleep only when the number of concurrent threads is limited.
When there is no limit on the number of threads, all contend equally to be scheduled. That is, if
innodb_thread_concurrency is 0, the value of innodb_thread_sleep_delay is ignored.

When there is a limit on the number of threads, InnoDB reduces context switching overhead by
permitting multiple requests made during the execution of a single SQL statement to enter InnoDB
without observing the limit set by innodb_thread_concurrency. Since an SQL statement (such
as a join) may comprise multiple row operations within InnoDB, InnoDB assigns “tickets” that allow a
thread to be scheduled repeatedly with minimal overhead.

When a new SQL statement starts, a thread has no tickets, and it must observe
innodb_thread_concurrency. Once the thread is entitled to enter InnoDB, it is assigned
a number of tickets that it can use for subsequently entering InnoDB. If the tickets run out,
innodb_thread_concurrency is observed again and further tickets are assigned. The number of
tickets to assign is specified by the global option innodb_concurrency_tickets, which is 500 by
default. A thread that is waiting for a lock is given one ticket once the lock becomes available.

The correct values of these variables depend on your environment and workload. Try a range of
different values to determine what value works for your applications. Before limiting the number of
concurrently executing threads, review configuration options that may improve the performance
of InnoDB on multi-core and multi-processor computers, such as innodb_use_sys_malloc and
innodb_adaptive_hash_index.

For general performance information about MySQL thread handling, see Section 8.11.5.1, “How
MySQL Uses Threads for Client Connections”.

Changes in the Read-Ahead Algorithm

InnoDB Performance Tuning

1732

A read-ahead request is an I/O request to prefetch multiple pages in the buffer pool asynchronously,
in anticipation that these pages will be needed soon. The requests bring in all the pages in one extent.
InnoDB uses two read-ahead algorithms to improve I/O performance:

Linear read-ahead is a technique that predicts what pages might be needed soon based on pages
in the buffer pool being accessed sequentially. You control when InnoDB performs a read-ahead
operation by adjusting the number of sequential page accesses required to trigger an asynchronous
read request, using the configuration parameter innodb_read_ahead_threshold. Before this
parameter was added, InnoDB would only calculate whether to issue an asynchronous prefetch
request for the entire next extent when it read in the last page of the current extent.

The new configuration parameter innodb_read_ahead_threshold controls how sensitive
InnoDB is in detecting patterns of sequential page access. If the number of pages read sequentially
from an extent is greater than or equal to innodb_read_ahead_threshold, InnoDB initiates an
asynchronous read-ahead operation of the entire following extent. It can be set to any value from 0-64.
The default value is 56. The higher the value, the more strict the access pattern check. For example, if
you set the value to 48, InnoDB triggers a linear read-ahead request only when 48 pages in the current
extent have been accessed sequentially. If the value is 8, InnoDB would trigger an asynchronous read-
ahead even if as few as 8 pages in the extent were accessed sequentially. You can set the value of this
parameter in the MySQL configuration file, or change it dynamically with the SET GLOBAL command,
which requires the SUPER privilege.

Random read-ahead is a technique that predicts when pages might be needed soon based on pages
already in the buffer pool, regardless of the order in which those pages were read. If 13 consecutive
pages from the same extent are found in the buffer pool, InnoDB asynchronously issues a request
to prefetch the remaining pages of the extent. This feature was initially turned off in MySQL 5.5. It is
available once again starting in MySQL 5.1.59 and 5.5.16 and higher, turned off by default. To enable
this feature, set the configuration variable innodb_random_read_ahead.

The SHOW ENGINE INNODB STATUS command displays statistics to help you evaluate
the effectiveness of the read-ahead algorithm. Statistics include counter information for the
Innodb_buffer_pool_read_ahead, Innodb_buffer_pool_read_ahead_evicted, and
Innodb_buffer_pool_read_ahead_rnd global status variables. This information can be useful
when fine-tuning the innodb_random_read_ahead setting.

For more information about I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O” and
Section 8.11.3, “Optimizing Disk I/O”.

Multiple Background InnoDB I/O Threads

InnoDB uses background threads to service various types of I/O requests. You can configure the
number of background threads that service read and write I/O on data pages, using the configuration
parameters innodb_read_io_threads and innodb_write_io_threads. These parameters
signify the number of background threads used for read and write requests respectively. They are
effective on all supported platforms. You can set the value of these parameters in the MySQL option
file (my.cnf or my.ini); you cannot change them dynamically. The default value for these parameters
is 4 and the permissible values range from 1-64.

The purpose of this change is to make InnoDB more scalable on high end systems. Each background
thread can handle up to 256 pending I/O requests. A major source of background I/O is the read-
ahead requests. InnoDB tries to balance the load of incoming requests in such way that most of
the background threads share work equally. InnoDB also attempts to allocate read requests from
the same extent to the same thread to increase the chances of coalescing the requests together.
If you have a high end I/O subsystem and you see more than 64 × innodb_read_io_threads
pending read requests in SHOW ENGINE INNODB STATUS, you might gain by increasing the value of
innodb_read_io_threads.

For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

InnoDB Performance Tuning

1733

Asynchronous I/O on Linux

Starting in InnoDB 1.1 with MySQL 5.5, the asynchronous I/O capability that InnoDB has had on
Windows systems is now available on Linux systems. (Other Unix-like systems continue to use
synchronous I/O calls.) This feature improves the scalability of heavily I/O-bound systems, which
typically show many pending reads/writes in the output of the command SHOW ENGINE INNODB
STATUS\G.

Running with a large number of InnoDB I/O threads, and especially running multiple such instances
on the same server machine, can exceed capacity limits on Linux systems. In this case, you can fix the
error:

EAGAIN: The specified maxevents exceeds the user's limit of available events.

by writing a higher limit to /proc/sys/fs/aio-max-nr.

In general, if a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting,
set the option innodb_use_native_aio=0 in the configuration file. This new configuration option
applies to Linux systems only, and cannot be changed once the server is running.

For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

Group Commit

InnoDB, like any other ACID-compliant database engine, flushes the redo log of a transaction before
it is committed. Historically, InnoDB used group commit functionality to group multiple such flush
requests together to avoid one flush for each commit. With group commit, InnoDB issues a single write
to the log file to perform the commit action for multiple user transactions that commit at about the same
time, significantly improving throughput.

Group commit in InnoDB worked until MySQL 4.x, and works once again with MySQL 5.1 with the
InnoDB Plugin, and MySQL 5.5 and higher. The introduction of support for the distributed transactions
and Two Phase Commit (2PC) in MySQL 5.0 interfered with the InnoDB group commit functionality.
This issue is now resolved.

The group commit functionality inside InnoDB works with the Two Phase Commit protocol in MySQL.
Re-enabling of the group commit functionality fully ensures that the ordering of commit in the
MySQL binlog and the InnoDB logfile is the same as it was before. It means it is totally safe to
use the MySQL Enterprise Backup product with InnoDB 1.0.4 (that is, the InnoDB Plugin with
MySQL 5.1) and above. When the binlog is enabled, you typically also set the configuration option
sync_binlog=0, because group commit for the binary log is only supported if it is set to 0.

Group commit is transparent; you do not need to do anything to take advantage of this significant
performance improvement.

For more information about performance of COMMIT and other transactional operations, see
Section 8.5.2, “Optimizing InnoDB Transaction Management”.

Controlling the InnoDB Master Thread I/O Rate

The master thread in InnoDB is a thread that performs various tasks in the background. Most of these
tasks are I/O related, such as flushing dirty pages from the buffer pool or writing changes from the
insert buffer to the appropriate secondary indexes. The master thread attempts to perform these tasks
in a way that does not adversely affect the normal working of the server. It tries to estimate the free I/O
bandwidth available and tune its activities to take advantage of this free capacity. Historically, InnoDB
has used a hard coded value of 100 IOPs (input/output operations per second) as the total I/O capacity
of the server.

The parameter innodb_io_capacity indicates the overall I/O capacity available to InnoDB. This
parameter should be set to approximately the number of I/O operations that the system can perform

InnoDB Performance Tuning

1734

per second. The value depends on your system configuration. When innodb_io_capacity is set,
the master threads estimates the I/O bandwidth available for background tasks based on the set value.
Setting the value to 100 reverts to the old behavior.

You can set the value of innodb_io_capacity to any number 100 or greater. The default value
is 200, reflecting that the performance of typical modern I/O devices is higher than in the early days
of MySQL. Typically, values around the previous default of 100 are appropriate for consumer-level
storage devices, such as hard drives up to 7200 RPMs. Faster hard drives, RAID configurations, and
SSDs benefit from higher values.

The innodb_io_capacity setting is a total limit for all buffer pool instances. When dirty pages are
flushed, the innodb_io_capacity limit is divided equally among buffer pool instances. For more
information, see the innodb_io_capacity system variable description.

You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it
dynamically with the SET GLOBAL command, which requires the SUPER privilege.

Formerly, the InnoDB master thread also performed any needed purge operations. In MySQL 5.6.5
and higher, those I/O operations are moved to other background threads, whose number is controlled
by the innodb_purge_threads configuration option.

For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool

InnoDB performs certain tasks in the background, including flushing of dirty pages (those
pages that have been changed but are not yet written to the database files) from the buffer
pool. InnoDB flushes buffer pool pages if the percentage of dirty pages in the buffer pool
exceeds innodb_max_dirty_pages_pct. As of MySQL 5.7.5, InnoDB flushes buffer
pool pages if the percentage of dirty pages in the buffer pool is greater than or equal to
innodb_max_dirty_pages_pct (Bug#13029450).

InnoDB uses a new algorithm to estimate the required rate of flushing, based on the speed of redo log
generation and the current rate of flushing. The intent is to smooth overall performance by ensuring
that buffer flush activity keeps up with the need to keep the buffer pool “clean”. Automatically adjusting
the rate of flushing can help to avoid sudden dips in throughput, when excessive buffer pool flushing
limits the I/O capacity available for ordinary read and write activity.

InnoDB uses its log files in a circular fashion. Before reusing a portion of a log file, InnoDB flushes
to disk all dirty buffer pool pages whose redo entries are contained in that portion of the log file,
a process known as a sharp checkpoint. If a workload is write-intensive, it generates a lot of redo
information, all written to the log file. If all available space in the log files is used up, a sharp checkpoint
occurs, causing a temporary reduction in throughput. This situation can happen even though
innodb_max_dirty_pages_pct is not reached.

InnoDB uses a heuristic-based algorithm to avoid such a scenario, by measuring the number of dirty
pages in the buffer pool and the rate at which redo is being generated. Based on these numbers,
InnoDB decides how many dirty pages to flush from the buffer pool each second. This self-adapting
algorithm is able to deal with sudden changes in the workload.

Internal benchmarking has also shown that this algorithm not only maintains throughput over time, but
can also improve overall throughput significantly.

Because adaptive flushing is a new feature that can significantly affect the I/O pattern of a workload, a
new configuration parameter lets you turn off this feature. The default value of the boolean parameter
innodb_adaptive_flushing is TRUE, enabling the new algorithm. You can set the value of
this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET
GLOBAL command, which requires the SUPER privilege.

For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

InnoDB Performance Tuning

1735

Using the PAUSE Instruction in InnoDB Spin Loops

Synchronization inside InnoDB frequently involves the use of spin loops: while waiting, InnoDB
executes a tight loop of instructions repeatedly to avoid having the InnoDB process and threads be
rescheduled by the operating system. If the spin loops are executed too quickly, system resources
are wasted, imposing a performance penalty on transaction throughput. Most modern processors
implement the PAUSE instruction for use in spin loops, so the processor can be more efficient.

InnoDB uses a PAUSE instruction in its spin loops on all platforms where such an instruction is
available. This technique increases overall performance with CPU-bound workloads, and has the
added benefit of minimizing power consumption during the execution of the spin loops.

You do not have to do anything to take advantage of this performance improvement.

For performance considerations for InnoDB locking operations, see Section 8.10, “Optimizing Locking
Operations”.

Control of Spin Lock Polling

Many InnoDB mutexes and rw-locks are reserved for a short time. On a multi-core system, it can
be more efficient for a thread to continuously check if it can acquire a mutex or rw-lock for a while
before sleeping. If the mutex or rw-lock becomes available during this polling period, the thread can
continue immediately, in the same time slice. However, too-frequent polling by multiple threads of a
shared object can cause “cache ping pong”, different processors invalidating portions of each others'
cache. InnoDB minimizes this issue by waiting a random time between subsequent polls. The delay is
implemented as a busy loop.

You can control the maximum delay between testing a mutex or rw-lock using the parameter
innodb_spin_wait_delay. The duration of the delay loop depends on the C compiler and the target
processor. (In the 100MHz Pentium era, the unit of delay was one microsecond.) On a system where
all processor cores share a fast cache memory, you might reduce the maximum delay or disable the
busy loop altogether by setting innodb_spin_wait_delay=0. On a system with multiple processor
chips, the effect of cache invalidation can be more significant and you might increase the maximum
delay.

The default value of innodb_spin_wait_delay is 6. The spin wait delay is a dynamic global
parameter that you can specify in the MySQL option file (my.cnf or my.ini) or change at runtime
with the command SET GLOBAL innodb_spin_wait_delay=delay, where delay is the desired
maximum delay. Changing the setting requires the SUPER privilege.

For performance considerations for InnoDB locking operations, see Section 8.10, “Optimizing Locking
Operations”.

Making the Buffer Pool Scan Resistant

Rather than using a strictly LRU algorithm, InnoDB uses a technique to minimize the amount of data
that is brought into the buffer pool and never accessed again. The goal is to make sure that frequently
accessed (“hot”) pages remain in the buffer pool, even as read-ahead and full table scans bring in new
blocks that might or might not be accessed afterward.

Newly read blocks are inserted into the middle of the LRU list. All newly read pages are inserted at a
location that by default is 3/8 from the tail of the LRU list. The pages are moved to the front of the list
(the most-recently used end) when they are accessed in the buffer pool for the first time. Thus pages
that are never accessed never make it to the front portion of the LRU list, and “age out” sooner than
with a strict LRU approach. This arrangement divides the LRU list into two segments, where the pages
downstream of the insertion point are considered “old” and are desirable victims for LRU eviction.

For an explanation of the inner workings of the InnoDB buffer pool and the specifics of its LRU
replacement algorithm, see Section 8.9.1, “The InnoDB Buffer Pool”.

InnoDB Performance Tuning

1736

You can control the insertion point in the LRU list, and choose whether InnoDB applies the same
optimization to blocks brought into the buffer pool by table or index scans. The configuration parameter
innodb_old_blocks_pct controls the percentage of “old” blocks in the LRU list. The default value of
innodb_old_blocks_pct is 37, corresponding to the original fixed ratio of 3/8. The value range is 5
(new pages in the buffer pool age out very quickly) to 95 (only 5% of the buffer pool is reserved for hot
pages, making the algorithm close to the familiar LRU strategy).

The optimization that keeps the buffer pool from being churned by read-ahead can avoid
similar problems due to table or index scans. In these scans, a data page is typically accessed
a few times in quick succession and is never touched again. The configuration parameter
innodb_old_blocks_time specifies the time window (in milliseconds) after the first access to a
page during which it can be accessed without being moved to the front (most-recently used end) of the
LRU list. The default value of innodb_old_blocks_time is 1000. Increasing this value makes more
and more blocks likely to age out faster from the buffer pool.

Both innodb_old_blocks_pct and innodb_old_blocks_time are dynamic, global and can be
specified in the MySQL option file (my.cnf or my.ini) or changed at runtime with the SET GLOBAL
command. Changing the setting requires the SUPER privilege.

To help you gauge the effect of setting these parameters, the SHOW ENGINE INNODB STATUS
command reports additional statistics. The BUFFER POOL AND MEMORY section looks like:

Total memory allocated 1107296256; in additional pool allocated 0
Dictionary memory allocated 80360
Buffer pool size 65535
Free buffers 0
Database pages 63920
Old database pages 23600
Modified db pages 34969
Pending reads 32
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 414946, not young 2930673
1274.75 youngs/s, 16521.90 non-youngs/s
Pages read 486005, created 3178, written 160585
2132.37 reads/s, 3.40 creates/s, 323.74 writes/s
Buffer pool hit rate 950 / 1000, young-making rate 30 / 1000 not 392 / 1000
Pages read ahead 1510.10/s, evicted without access 0.00/s
LRU len: 63920, unzip_LRU len: 0
I/O sum[43690]:cur[221], unzip sum[0]:cur[0]

• Old database pages is the number of pages in the “old” segment of the LRU list.

• Pages made young and not young is the total number of “old” pages that have been made
young or not respectively.

• youngs/s and non-young/s is the rate at which page accesses to the “old” pages have resulted in
making such pages young or otherwise respectively since the last invocation of the command.

• young-making rate and not provides the same rate but in terms of overall buffer pool accesses
instead of accesses just to the “old” pages.

Note

Per second averages provided in InnoDB Monitor output are based on the
elapsed time between the current time and the last time InnoDB Monitor output
was printed.

Because the effects of these parameters can vary widely based on your hardware configuration, your
data, and the details of your workload, always benchmark to verify the effectiveness before changing
these settings in any performance-critical or production environment.

In mixed workloads where most of the activity is OLTP type with periodic batch reporting queries which
result in large scans, setting the value of innodb_old_blocks_time during the batch runs can help
keep the working set of the normal workload in the buffer pool.

InnoDB Performance Tuning

1737

When scanning large tables that cannot fit entirely in the buffer pool, setting
innodb_old_blocks_pct to a small value keeps the data that is only read once from consuming a
significant portion of the buffer pool. For example, setting innodb_old_blocks_pct=5 restricts this
data that is only read once to 5% of the buffer pool.

When scanning small tables that do fit into memory, there is less overhead for moving pages around
within the buffer pool, so you can leave innodb_old_blocks_pct at its default value, or even
higher, such as innodb_old_blocks_pct=50.

The effect of the innodb_old_blocks_time parameter is harder to predict than the
innodb_old_blocks_pct parameter, is relatively small, and varies more with the workload. To
arrive at an optimal value, conduct your own benchmarks if the performance improvement from
adjusting innodb_old_blocks_pct is not sufficient.

For more information about the InnoDB buffer pool, see Section 8.9.1, “The InnoDB Buffer Pool”.

Improvements to Crash Recovery Performance

A number of optimizations speed up certain steps of the recovery that happens on the next startup after
a crash. In particular, scanning the redo log and applying the redo log are faster than in MySQL 5.1 and
earlier, due to improved algorithms for memory management. You do not need to take any actions to
take advantage of this performance enhancement. If you kept the size of your redo log files artificially
low because recovery took a long time, you can consider increasing the file size.

For more information about InnoDB recovery, see Section 14.2.14.1, “The InnoDB Recovery Process”.

Integration with the MySQL Performance Schema

Starting with InnoDB 1.1 with MySQL 5.5, you can profile certain internal InnoDB operations using the
MySQL Performance Schema feature. This type of tuning is primarily for expert users, those who push
the limits of MySQL performance, read the MySQL source code, and evaluate optimization strategies
to overcome performance bottlenecks. DBAs can also use this feature for capacity planning, to see
whether their typical workload encounters any performance bottlenecks with a particular combination of
CPU, RAM, and disk storage; and if so, to judge whether performance can be improved by increasing
the capacity of some part of the system.

To use this feature to examine InnoDB performance:

• You must be running MySQL 5.5 or higher with the Performance Schema feature available and
enabled, as described in Section 20.2, “Performance Schema Configuration”. Since the Performance
Schema feature introduces some performance overhead, you should use it on a test or development
system rather than on a production system.

• You must be running InnoDB 1.1 or higher.

• You must be generally familiar with how to use the Performance Schema feature, for example to
query tables in the performance_schema database.

• Examine the following kinds of InnoDB objects by querying the appropriate performance_schema
tables. The items associated with InnoDB all contain the substring innodb in the EVENT_NAME
column.

For the definitions of the *_instances tables, see Section 20.9.3, “Performance Schema Instance
Tables”. For the definitions of the *_summary_* tables, see Section 20.9.12, “Performance Schema
Summary Tables”. For the definition of the thread table, see Section 20.9.13, “Performance
Schema Miscellaneous Tables”. For the definition of the *_current_* and *_history_* tables,
see Section 20.9.4, “Performance Schema Wait Event Tables”.

• Mutexes in the mutex_instances table. (Mutexes and RW-locks related to the InnoDB buffer
pool are not included in this coverage; the same applies to the output of the SHOW ENGINE
INNODB MUTEX command.)

InnoDB Performance Tuning

1738

• RW-locks in the rwlock_instances table.

• File I/O operations in the file_instances, file_summary_by_event_name, and
file_summary_by_instance tables.

• Threads in the PROCESSLIST table.

• During performance testing, examine the performance data in the events_waits_current and
events_waits_history_long tables. If you are interested especially in InnoDB-related objects,
use the clause WHERE EVENT_NAME LIKE '%innodb%' to see just those entries; otherwise,
examine the performance statistics for the overall MySQL server.

For more information about the MySQL Performance Schema, see Chapter 20, MySQL Performance
Schema.

Improvements to Performance from Multiple Buffer Pools

This performance enhancement is primarily useful for people with a large buffer pool size,
typically in the multi-gigabyte range. To take advantage of this speedup, you must set the
new innodb_buffer_pool_instances configuration option, and you might also adjust the
innodb_buffer_pool_size value.

When the InnoDB buffer pool is large, many data requests can be satisfied by retrieving from memory.
You might encounter bottlenecks from multiple threads trying to access the buffer pool at once. Starting
in InnoDB 1.1 and MySQL 5.5, you can enable multiple buffer pools to minimize this contention. Each
page that is stored in or read from the buffer pool is assigned to one of the buffer pools randomly, using
a hashing function. Each buffer pool manages its own free lists, flush lists, LRUs, and all other data
structures connected to a buffer pool, and is protected by its own buffer pool mutex.

To enable this feature, set the innodb_buffer_pool_instances configuration option to a
value greater than 1 (the default) up to 64 (the maximum). This option takes effect only when
you set the innodb_buffer_pool_size to a size of 1 gigabyte or more. The total size you
specify is divided among all the buffer pools. For best efficiency, specify a combination of
innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool
instance is at least 1 gigabyte.

For more information about the InnoDB buffer pool, see Section 8.9.1, “The InnoDB Buffer Pool”.

Better Scalability with Multiple Rollback Segments

Starting in InnoDB 1.1 with MySQL 5.5, the limit on concurrent transactions is greatly expanded,
removing a bottleneck with the InnoDB rollback segment that affected high-capacity systems. The limit
applies to concurrent transactions that change any data; read-only transactions do not count against
that maximum.

The single rollback segment was divided into 128 segments. As of MySQL 5.7.2, 32 of the 128
segments are reserved for temporary table transactions. This leaves 96 segments, each of which
can support up to 1023 transactions that perform writes, for a total of approximately 96K concurrent
transactions. The original transaction limit prior to InnoDB 1.1 with MySQL 5.5 was 1023.

Each transaction is assigned to one of the rollback segments, and remains tied to that rollback
segment for the duration. This enhancement improves both scalability (higher number of concurrent
transactions) and performance (less contention when different transactions access the rollback
segments).

To take advantage of this feature, you do not need to create any new database or tables, or
reconfigure anything. You must do a slow shutdown before upgrading from MySQL 5.1 or earlier, or
some time afterward. InnoDB makes the required changes inside the system tablespace automatically,
the first time you restart after performing a slow shutdown.

InnoDB Performance Tuning

1739

If your workload was not constrained by the original limit of 1023 concurrent transactions, you can
reduce the number of rollback segments used within a MySQL instance or within a session by setting
the configuration option innodb_rollback_segments.

For more information about performance of InnoDB under high transactional load, see Section 8.5.2,
“Optimizing InnoDB Transaction Management”.

Better Scalability with Improved Purge Scheduling

The purge operations (a type of garbage collection) that InnoDB performs automatically is now done
in one or more separate threads, rather than as part of the master thread. This change improves
scalability, because the main database operations run independently from maintenance work
happening in the background.

To control this feature, increase the value of the configuration option innodb_purge_threads. If
DML action is concentrated on a single table or a few tables, keep the setting low so that the threads
do not contend with each other for access to the busy tables. If DML operations are spread across
many tables, increase the setting. Its maximum is 32.

There is another related configuration option, innodb_purge_batch_size with a default of 20 and
maximum of 5000. This option is mainly intended for experimentation and tuning of purge operations,
and should not be interesting to typical users.

For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

Improved Log Sys Mutex

This is another performance improvement that comes for free, with no user action or configuration
needed. The details here are intended for performance experts who delve into the InnoDB source
code, or interpret reports with keywords such as “mutex” and “log_sys”.

The mutex known as the log sys mutex has historically done double duty, controlling access to internal
data structures related to log records and the LSN, as well as pages in the buffer pool that are changed
when a mini-transaction is committed. Starting in InnoDB 1.1 with MySQL 5.5, these two kinds of
operations are protected by separate mutexes, with a new log_buf mutex controlling writes to buffer
pool pages due to mini-transactions.

For performance considerations for InnoDB locking operations, see Section 8.10, “Optimizing Locking
Operations”.

Separate Flush List Mutex

Starting with InnoDB 1.1 with MySQL 5.5, concurrent access to the buffer pool is faster. Operations
involving the flush list, a data structure related to the buffer pool, are now controlled by a separate
mutex and do not block access to the buffer pool. You do not need to configure anything to take
advantage of this speedup; it is fully automatic.

For more information about the InnoDB buffer pool, see Section 8.9.1, “The InnoDB Buffer Pool”.

memcached Plugin for InnoDB

The memcached daemon is frequently used as an in-memory caching layer in front of a MySQL
database server. Now MySQL allows direct access to InnoDB tables using the familiar memcached
protocol and client libraries. Instead of formulating queries in SQL, you can perform simple get, set,
and increment operations that avoid the performance overhead of SQL parsing and constructing a
query optimization plan. You can also access the underlying InnoDB tables through SQL to load data,
generate reports, or perform multi-step transactional computations.

This technique allows the data to be stored in MySQL for reliability and consistency, while coding
application logic that uses the database as a fast key-value store.

This feature combines the best of both worlds:

InnoDB Performance Tuning

1740

• Data that is written using the memcached protocol is transparently written to an InnoDB table, without
going through the MySQL SQL layer. You can control the frequency of writes to achieve higher raw
performance when updating non-critical data.

• Data that is requested data through the memcached protocol is transparently queried from an
InnoDB table, without going through the MySQL SQL layer.

• Subsequent requests for the same data will be served from the InnoDB buffer pool. The buffer pool
handles the in-memory caching. You can tune the performance of data-intensive operations using
the familiar InnoDB configuration options.

• InnoDB can handle composing and decomposing multiple column values into a single memcached
item value, reducing the amount of string parsing and concatenation required in your application. For
example, you might store a string value 2|4|6|8 in the memcached cache, and InnoDB splits that
value based on a separator character, then stores the result into four numeric columns.

For details on using this NoSQL-style interface to MySQL, see Section 14.2.16, “InnoDB Integration
with memcached”. For additional background on memcached and considerations for writing
applications for its API, see Section 15.6, “Using MySQL with memcached”.

Online DDL

This feature is a continuation of the “Fast Index Creation” feature introduced in InnoDB Fast Index
Creation. Now you can perform other kinds of DDL operations on InnoDB tables online: that is,
with minimal delay for operations on that table, without rebuilding the entire table, or both. This
enhancement improves responsiveness and availability in busy production environments, where
making a table unavailable for minutes or hours whenever its column definitions change is not practical.

For full details, see Section 14.2.11, “InnoDB and Online DDL”.

The DDL operations enhanced by this feature are these variations on the ALTER TABLE statement:

• Create secondary indexes: CREATE INDEX name ON table (col_list) or ALTER TABLE
table ADD INDEX name (col_list). (Creating a primary key or a FULLTEXT index still
requires locking the table.)

Drop secondary indexes: DROP INDEX name ON table; or ALTER TABLE table DROP INDEX
name

Creating and dropping secondary indexes on InnoDB tables has avoided the table-copying behavior
since the days of MySQL 5.1 with the InnoDB Plugin. Now, the table remains available for read and
write operations while the index is being created or dropped. The CREATE TABLE or DROP TABLE
statement only finishes after all transactions that are modifying the table are completed, so that the
initial state of the index reflects the most recent contents of the table.

Previously, modifying the table while an index was being created or dropped typically resulted in a
deadlock that cancelled the insert, update, or delete statement on the table.

• Changing the auto-increment value for a column: ALTER TABLE table
AUTO_INCREMENT=next_value;

Especially in a distributed system using replication or sharding, you sometimes reset the auto-
increment counter for a table to a specific value. The next row inserted into the table uses
the specified value for its auto-increment column. You might also use this technique in a data
warehousing environment where you periodically empty all the tables and reload them, and you can
restart the auto-increment sequence from 1.

• Adding or dropping a foreign key constraint:

ALTER TABLE tbl1 ADD CONSTRAINT fk_name FOREIGN KEY index (col1) REFERENCES tbl2(col2) referential_actions;

http://dev.mysql.com/doc/refman/5.5/en/innodb-create-index.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-create-index.html

InnoDB Performance Tuning

1741

ALTER TABLE tbl DROP FOREIGN KEY fk_name;

Dropping a foreign key can be performed online with the foreign_key_checks option enabled or
disabled. Creating a foreign key online requires foreign_key_checks to be disabled.

If you do not know the names of the foreign key constraints on a particular table, issue the following
statement and find the constraint name in the CONSTRAINT clause for each foreign key:

show create table table\G

Or, query the information_schema.table_constraints table and use the
constraint_name and constraint_type columns to identify the foreign key names.

As a consequence of this enhancement, you can now also drop a foreign key and its associated
index in a single statement, which previously required separate statements in a strict order:

ALTER TABLE table DROP FOREIGN KEY constraint, DROP INDEX index;

• Renaming a column: ALTER TABLE tbl CHANGE old_col_name new_col_name datatype

When you keep the same data type and only change the column name, this operation can always
be performed online. As part of this enhancement, you can now rename a column that is part of a
foreign key constraint, which was not allowed before.

• Some other ALTER TABLE operations are non-blocking, and are faster than before because the
table-copying operation is optimized, even though a table copy is still required:

• Changing the ROW_FORMAT or KEY_BLOCK_SIZE properties for a table.

• Changing the nullable status for a column.

• Adding, dropping, or reordering columns.

Note

As your database schema evolves with new columns, data types, constraints,
indexes, and so on, keep your CREATE TABLE statements up to date with the
latest table definitions. Even with the performance improvements of online DDL,
it is more efficient to create stable database structures at the beginning, rather
than creating part of the schema and then issuing ALTER TABLE statements
afterward.

The main exception to this guideline is for secondary indexes on tables with
large numbers of rows. It is typically most efficient to create the table with all
details specified except the secondary indexes, load the data, then create the
secondary indexes.

Whatever sequence of CREATE TABLE, CREATE INDEX, ALTER TABLE,
and similar statements went into putting a table together, you can capture
the SQL needed to reconstruct the current form of the table by issuing the
statement SHOW CREATE TABLE table\G (uppercase \G required for tidy
formatting). This output shows clauses such as numeric precision, NOT NULL,
and CHARACTER SET that are sometimes added behind the scenes, and you
might otherwise leave out when cloning the table on a new system or setting up
foreign key columns with identical type.

14.2.12.3 InnoDB INFORMATION_SCHEMA tables

The INFORMATION_SCHEMA is a MySQL feature that helps you monitor server activity to diagnose
capacity and performance issues. Several InnoDB-related INFORMATION_SCHEMA tables

InnoDB Performance Tuning

1742

(INNODB_CMP, INNODB_CMP_RESET, INNODB_CMPMEM, INNODB_CMPMEM_RESET, INNODB_TRX,
INNODB_LOCKS and INNODB_LOCK_WAITS) contain live information about compressed InnoDB
tables, the compressed InnoDB buffer pool, all transactions currently executing inside InnoDB, the
locks that transactions hold and those that are blocking transactions waiting for access to a resource (a
table or row).

This section describes the InnoDB-related Information Schema tables and shows some examples of
their use.

Information Schema Tables about Compression

Two new pairs of Information Schema tables can give you some insight into how well compression is
working overall. One pair of tables contains information about the number of compression operations
and the amount of time spent performing compression. Another pair of tables contains information on
the way memory is allocated for compression.

INNODB_CMP and INNODB_CMP_RESET

The INNODB_CMP and INNODB_CMP_RESET tables contain status information on the operations
related to compressed tables, which are covered in Section 14.2.7, “InnoDB Compressed Tables”. The
compressed page size is in the column PAGE_SIZE.

These two tables have identical contents, but reading from INNODB_CMP_RESET resets the
statistics on compression and uncompression operations. For example, if you archive the output of
INNODB_CMP_RESET every 60 minutes, you see the statistics for each hourly period. If you monitor
the output of INNODB_CMP (making sure never to read INNODB_CMP_RESET), you see the cumulated
statistics since InnoDB was started.

For the table definition, see Table 19.1, “Columns of INNODB_CMP and INNODB_CMP_RESET”.

INNODB_CMPMEM and INNODB_CMPMEM_RESET

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables contain status information on the
compressed pages that reside in the buffer pool. Please consult Section 14.2.7, “InnoDB Compressed
Tables” for further information on compressed tables and the use of the buffer pool. The INNODB_CMP
and INNODB_CMP_RESET tables should provide more useful statistics on compression.

Internal Details

InnoDB uses a buddy allocator system to manage memory allocated to pages of various sizes, from
1KB to 16KB. Each row of the two tables described here corresponds to a single page size.

These two tables have identical contents, but reading from INNODB_CMPMEM_RESET resets
the statistics on relocation operations. For example, if every 60 minutes you archived the
output of INNODB_CMPMEM_RESET, it would show the hourly statistics. If you never read
INNODB_CMPMEM_RESET and monitored the output of INNODB_CMPMEM instead, it would show the
cumulated statistics since InnoDB was started.

For the table definition, see Table 19.3, “Columns of INNODB_CMPMEM and
INNODB_CMPMEM_RESET”.

Using the Compression Information Schema Tables

Example 14.11 Using the Compression Information Schema Tables

The following is sample output from a database that contains compressed tables (see Section 14.2.7,
“InnoDB Compressed Tables”, INNODB_CMP, INNODB_CMP_PER_INDEX, and INNODB_CMPMEM).

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMP under a light
workload. The only compressed page size that the buffer pool contains is 8K. Compressing or
uncompressing pages has consumed less than a second since the time the statistics were reset,
because the columns COMPRESS_TIME and UNCOMPRESS_TIME are zero.

InnoDB Performance Tuning

1743

page size compress
ops

compress ops ok compress time uncompress
ops

uncompress time

1024 0 0 0 0 0

2048 0 0 0 0 0

4096 0 0 0 0 0

8192 1048 921 0 61 0

16384 0 0 0 0 0

According to INNODB_CMPMEM, there are 6169 compressed 8KB pages in the buffer pool. The only
other allocated block size is 64 bytes. The smallest PAGE_SIZE in INNODB_CMPMEM is used for block
descriptors of those compressed pages for which no uncompressed page exists in the buffer pool. We
see that there are 5910 such pages. Indirectly, we see that 259 (6169-5910) compressed pages also
exist in the buffer pool in uncompressed form.

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMPMEM under
a light workload. Some memory is unusable due to fragmentation of the memory allocator for
compressed pages: SUM(PAGE_SIZE*PAGES_FREE)=6784. This is because small memory
allocation requests are fulfilled by splitting bigger blocks, starting from the 16K blocks that are
allocated from the main buffer pool, using the buddy allocation system. The fragmentation is this low
because some allocated blocks have been relocated (copied) to form bigger adjacent free blocks.
This copying of SUM(PAGE_SIZE*RELOCATION_OPS) bytes has consumed less than a second
(SUM(RELOCATION_TIME)=0).

page size pages used pages free relocation ops relocation time

64 5910 0 2436 0

128 0 1 0 0

256 0 0 0 0

512 0 1 0 0

1024 0 0 0 0

2048 0 1 0 0

4096 0 1 0 0

8192 6169 0 5 0

16384 0 0 0 0

Information Schema Tables about Transactions

Three InnoDB-related Information Schema tables make it easy to monitor transactions and
diagnose possible locking problems. The three tables are INNODB_TRX, INNODB_LOCKS, and
INNODB_LOCK_WAITS.

• INNODB_TRX

Contains information about every transaction currently executing inside InnoDB, including whether
the transaction is waiting for a lock, when the transaction started, and the particular SQL statement
the transaction is executing.

For the table definition, see Table 19.4, “INNODB_TRX Columns”.

• INNODB_LOCKS

Each transaction in InnoDB that is waiting for another transaction to release a lock
(INNODB_TRX.TRX_STATE='LOCK WAIT') is blocked by exactly one “blocking lock request”.
That blocking lock request is for a row or table lock held by another transaction in an incompatible

InnoDB Performance Tuning

1744

mode. The waiting or blocked transaction cannot proceed until the other transaction commits or
rolls back, thereby releasing the requested lock. For every blocked transaction, INNODB_LOCKS
contains one row that describes each lock the transaction has requested, and for which it is waiting.
INNODB_LOCKS also contains one row for each lock that is blocking another transaction, whatever
the state of the transaction that holds the lock ('RUNNING', 'LOCK WAIT', 'ROLLING BACK' or
'COMMITTING'). The lock that is blocking a transaction is always held in a mode (read vs. write,
shared vs. exclusive) incompatible with the mode of requested lock.

For the table definition, see Table 19.5, “INNODB_LOCKS Columns”.

• INNODB_LOCK_WAITS

Using this table, you can tell which transactions are waiting for a given lock, or for which lock a given
transaction is waiting. This table contains one or more rows for each blocked transaction, indicating
the lock it has requested and any locks that are blocking that request. The REQUESTED_LOCK_ID
refers to the lock that a transaction is requesting, and the BLOCKING_LOCK_ID refers to the
lock (held by another transaction) that is preventing the first transaction from proceeding. For
any given blocked transaction, all rows in INNODB_LOCK_WAITS have the same value for
REQUESTED_LOCK_ID and different values for BLOCKING_LOCK_ID.

For the table definition, see Table 19.6, “INNODB_LOCK_WAITS Columns”.

Using the Transaction Information Schema Tables

Example 14.12 Identifying Blocking Transactions

It is sometimes helpful to be able to identify which transaction is blocking another. You can use the
Information Schema tables to find out which transaction is waiting for another, and which resource is
being requested.

Suppose you have the following scenario, with three users running concurrently. Each user (or session)
corresponds to a MySQL thread, and executes one transaction after another. Consider the state of
the system when these users have issued the following commands, but none has yet committed its
transaction:

• User A:

BEGIN;
SELECT a FROM t FOR UPDATE;
SELECT SLEEP(100);

• User B:

SELECT b FROM t FOR UPDATE;

• User C:

SELECT c FROM t FOR UPDATE;

In this scenario, you can use this query to see who is waiting for whom:

SELECT r.trx_id waiting_trx_id,
 r.trx_mysql_thread_id waiting_thread,
 r.trx_query waiting_query,
 b.trx_id blocking_trx_id,
 b.trx_mysql_thread_id blocking_thread,
 b.trx_query blocking_query
 FROM information_schema.innodb_lock_waits w
 INNER JOIN information_schema.innodb_trx b ON
 b.trx_id = w.blocking_trx_id

InnoDB Performance Tuning

1745

 INNER JOIN information_schema.innodb_trx r ON
 r.trx_id = w.requesting_trx_id;

waiting
trx id

waiting
thread

waiting query blocking
trx id

blocking
thread

blocking query

A4 6 SELECT b FROM t FOR
UPDATE

A3 5 SELECT SLEEP(100)

A5 7 SELECT c FROM t FOR
UPDATE

A3 5 SELECT SLEEP(100)

A5 7 SELECT c FROM t FOR
UPDATE

A4 6 SELECT b FROM t FOR
UPDATE

In the above result, you can identify users by the “waiting query” or “blocking query”. As you can see:

• User B (trx id 'A4', thread 6) and User C (trx id 'A5', thread 7) are both waiting for User A (trx id
'A3', thread 5).

• User C is waiting for User B as well as User A.

You can see the underlying data in the tables INNODB_TRX, INNODB_LOCKS, and
INNODB_LOCK_WAITS.

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_TRX.

trx
id

trx
state

trx started trx
requested
lock id

trx wait started trx
weight

trx mysql
thread id

trx query

A3 RUN-
NING

2008-01-15
16:44:54

NULL NULL 2 5 SELECT
SLEEP(100)

A4 LOCK
WAIT

2008-01-15
16:45:09

A4:1:3:2 2008-01-15
16:45:09

2 6 SELECT b FROM t
FOR UPDATE

A5 LOCK
WAIT

2008-01-15
16:45:14

A5:1:3:2 2008-01-15
16:45:14

2 7 SELECT c FROM t
FOR UPDATE

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCKS.

lock id lock
trx id

lock
mode

lock type lock table lock index lock
space

lock
page

lock
rec

lock data

A3:1:3:2 A3 X RECORD `test`.`t` `PRIMARY` 1 3 2 0x0200

A4:1:3:2 A4 X RECORD `test`.`t` `PRIMARY` 1 3 2 0x0200

A5:1:3:2 A5 X RECORD `test`.`t` `PRIMARY` 1 3 2 0x0200

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS.

requesting trx id requested lock id blocking trx id blocking lock id

A4 A4:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A4 A4:1:3:2

Example 14.13 More Complex Example of Transaction Data in Information Schema Tables

Sometimes you would like to correlate the internal InnoDB locking information with session-level
information maintained by MySQL. For example, you might like to know, for a given InnoDB transaction

InnoDB Performance Tuning

1746

ID, the corresponding MySQL session ID and name of the user that may be holding a lock, and thus
blocking another transaction.

The following output from the INFORMATION_SCHEMA tables is taken from a somewhat loaded system.

As can be seen in the following tables, there are several transactions running.

The following INNODB_LOCKS and INNODB_LOCK_WAITS tables shows that:

• Transaction 77F (executing an INSERT) is waiting for transactions 77E, 77D and 77B to commit.

• Transaction 77E (executing an INSERT) is waiting for transactions 77D and 77B to commit.

• Transaction 77D (executing an INSERT) is waiting for transaction 77B to commit.

• Transaction 77B (executing an INSERT) is waiting for transaction 77A to commit.

• Transaction 77A is running, currently executing SELECT.

• Transaction E56 (executing an INSERT) is waiting for transaction E55 to commit.

• Transaction E55 (executing an INSERT) is waiting for transaction 19C to commit.

• Transaction 19C is running, currently executing an INSERT.

Note that there may be an inconsistency between queries shown in the two tables
INNODB_TRX.TRX_QUERY and PROCESSLIST.INFO. The current transaction ID for a thread, and the
query being executed in that transaction, may be different in these two tables for any given thread. See
Possible Inconsistency with PROCESSLIST for an explanation.

The following table shows the contents of INFORMATION_SCHEMA.PROCESSLIST in a system running
a heavy workload.

ID USER HOST DB COMMAND TIME STATE INFO

384 root localhost test Query 10 update insert into t2
values …

257 root localhost test Query 3 update insert into t2
values …

130 root localhost test Query 0 update insert into t2
values …

61 root localhost test Query 1 update insert into t2
values …

8 root localhost test Query 1 update insert into t2
values …

4 root localhost test Query 0 preparing SELECT * FROM
processlist

2 root localhost test Sleep 566 NULL

The following table shows the contents of INFORMATION_SCHEMA.INNODB_TRX in a system running
a heavy workload.

trx
id

trx
state

trx started trx
requested
lock id

trx wait
started

trx
weight

trx
mysql
thread
id

trx query

77F LOCK
WAIT

2008-01-15
13:10:16

77F:806 2008-01-15
13:10:16

1 876 insert into t09
(D, B, C) values
…

InnoDB Performance Tuning

1747

trx
id

trx
state

trx started trx
requested
lock id

trx wait
started

trx
weight

trx
mysql
thread
id

trx query

77E LOCK
WAIT

2008-01-15
13:10:16

77E:806 2008-01-15
13:10:16

1 875 insert into t09
(D, B, C) values
…

77D LOCK
WAIT

2008-01-15
13:10:16

77D:806 2008-01-15
13:10:16

1 874 insert into t09
(D, B, C) values
…

77B LOCK
WAIT

2008-01-15
13:10:16

77B:733:12:1 2008-01-15
13:10:16

4 873 insert into t09
(D, B, C) values
…

77A RUN-
NING

2008-01-15
13:10:16

NULL NULL 4 872 select b, c from
t09 where …

E56 LOCK
WAIT

2008-01-15
13:10:06

E56:743:6:2 2008-01-15
13:10:06

5 384 insert into t2
values …

E55 LOCK
WAIT

2008-01-15
13:10:06

E55:743:38:2 2008-01-15
13:10:13

965 257 insert into t2
values …

19C RUN-
NING

2008-01-15
13:09:10

NULL NULL 2900 130 insert into t2
values …

E15 RUN-
NING

2008-01-15
13:08:59

NULL NULL 5395 61 insert into t2
values …

51D RUN-
NING

2008-01-15
13:08:47

NULL NULL 9807 8 insert into t2
values …

The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS in a system
running a heavy workload.

requesting trx
id

requested lock id blocking trx id blocking lock id

77F 77F:806 77E 77E:806

77F 77F:806 77D 77D:806

77F 77F:806 77B 77B:806

77E 77E:806 77D 77D:806

77E 77E:806 77B 77B:806

77D 77D:806 77B 77B:806

77B 77B:733:12:1 77A 77A:733:12:1

E56 E56:743:6:2 E55 E55:743:6:2

E55 E55:743:38:2 19C 19C:743:38:2

The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCKS in a system
running a heavy workload.

lock id lock
trx id

lock
mode

lock type lock table lock index lock
space

lock
page

lock
rec

lock data

77F:806 77F AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77E:806 77E AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

InnoDB Performance Tuning

1748

lock id lock
trx id

lock
mode

lock type lock table lock index lock
space

lock
page

lock
rec

lock data

77D:806 77D AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77B:806 77B AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77B:733
:12:1

77B X RECORD `test`
.`t09`

`PRIMARY` 733 12 1 supremum
pseudo-
record

77A:733
:12:1

77A X RECORD `test`
.`t09`

`PRIMARY` 733 12 1 supremum
pseudo-
record

E56:743
:6:2

E56 S RECORD `test`
.`t2`

`PRIMARY` 743 6 2 0, 0

E55:743
:6:2

E55 X RECORD `test`
.`t2`

`PRIMARY` 743 6 2 0, 0

E55:743
:38:2

E55 S RECORD `test`
.`t2`

`PRIMARY` 743 38 2 1922,
1922

19C:743
:38:2

19C X RECORD `test`
.`t2`

`PRIMARY` 743 38 2 1922,
1922

Information Schema Tables about Full-Text Search

A set of related INFORMATION_SCHEMA tables contains information about FULLTEXT search indexes
on InnoDB tables:

• INNODB_FT_CONFIG

• INNODB_FT_INDEX_TABLE

• INNODB_FT_INDEX_CACHE

• INNODB_FT_DEFAULT_STOPWORD

• INNODB_FT_DELETED

• INNODB_FT_BEING_DELETED

Special Locking Considerations for InnoDB INFORMATION_SCHEMA Tables

Understanding InnoDB Locking

When a transaction updates a row in a table, or locks it with SELECT FOR UPDATE, InnoDB
establishes a list or queue of locks on that row. Similarly, InnoDB maintains a list of locks on a table
for table-level locks transactions hold. If a second transaction wants to update a row or lock a table
already locked by a prior transaction in an incompatible mode, InnoDB adds a lock request for the row
to the corresponding queue. For a lock to be acquired by a transaction, all incompatible lock requests
previously entered into the lock queue for that row or table must be removed (the transactions holding
or requesting those locks either commit or roll back).

A transaction may have any number of lock requests for different rows or tables. At any given time, a
transaction may be requesting a lock that is held by another transaction, in which case it is blocked by
that other transaction. The requesting transaction must wait for the transaction that holds the blocking
lock to commit or rollback. If a transaction is not waiting for a a lock, it is in the 'RUNNING' state. If a
transaction is waiting for a lock, it is in the 'LOCK WAIT' state.

The INNODB_LOCKS table holds one or more row for each 'LOCK WAIT' transaction, indicating any
lock requests that are preventing its progress. This table also contains one row describing each lock in

InnoDB Performance Tuning

1749

a queue of locks pending for a given row or table. The INNODB_LOCK_WAITS table shows which locks
already held by a transaction are blocking locks requested by other transactions.

Granularity of INFORMATION_SCHEMA Data

The data exposed by the transaction and locking tables represent a glimpse into fast-changing data.
This is not like other (user) tables, where the data changes only when application-initiated updates
occur. The underlying data is internal system-managed data, and can change very quickly.

For performance reasons, and to minimize the chance of misleading JOINs between the
INFORMATION_SCHEMA tables, InnoDB collects the required transaction and locking information into
an intermediate buffer whenever a SELECT on any of the tables is issued. This buffer is refreshed only
if more than 0.1 seconds has elapsed since the last time the buffer was read. The data needed to fill
the three tables is fetched atomically and consistently and is saved in this global internal buffer, forming
a point-in-time “snapshot”. If multiple table accesses occur within 0.1 seconds (as they almost certainly
do when MySQL processes a join among these tables), then the same snapshot is used to satisfy the
query.

A correct result is returned when you JOIN any of these tables together in a single query, because
the data for the three tables comes from the same snapshot. Because the buffer is not refreshed with
every query of any of these tables, if you issue separate queries against these tables within a tenth of
a second, the results are the same from query to query. On the other hand, two separate queries of the
same or different tables issued more than a tenth of a second apart may see different results, since the
data come from different snapshots.

Because InnoDB must temporarily stall while the transaction and locking data is collected, too frequent
queries of these tables can negatively impact performance as seen by other users.

As these tables contain sensitive information (at least INNODB_LOCKS.LOCK_DATA and
INNODB_TRX.TRX_QUERY), for security reasons, only the users with the PROCESS privilege are
allowed to SELECT from them.

Possible Inconsistency with PROCESSLIST

As just described, while the transaction and locking data is correct and consistent when these
INFORMATION_SCHEMA tables are populated. For example, the query in INNODB_TRX is always
consistent with the rest of INNODB_TRX, INNODB_LOCKS and INNODB_LOCK_WAITS when the data
comes from the same snapshot. However, the underlying data changes so fast that similar glimpses at
other, similarly fast-changing data, may not be in synchrony. Thus, you should be careful in comparing
the data in the InnoDB transaction and locking tables with that in the PROCESSLIST table. The data
from the PROCESSLIST table does not come from the same snapshot as the data about locking
and transactions. Even if you issue a single SELECT (joining INNODB_TRX and PROCESSLIST, for
example), the content of those tables is generally not consistent. INNODB_TRX may reference rows
that are not present in PROCESSLIST or the currently executing SQL query of a transaction, shown in
INNODB_TRX.TRX_QUERY may differ from the one in PROCESSLIST.INFO.

14.2.12.4 InnoDB Monitors

InnoDB monitors provide information about the InnoDB internal state. This information is useful for
performance tuning.

InnoDB Monitor Types

There are four types of InnoDB monitors:

• The standard InnoDB Monitor displays the following types of information:

• Table and record locks held by each active transaction.

• Lock waits of a transaction.

InnoDB Performance Tuning

1750

• Semaphore waits of threads.

• Pending file I/O requests.

• Buffer pool statistics.

• Purge and insert buffer merge activity of the main InnoDB thread.

• The InnoDB Lock Monitor is like the standard InnoDB Monitor but also provides extensive lock
information.

• The InnoDB Tablespace Monitor prints a list of file segments in the shared tablespace and validates
the tablespace allocation data structures.

• The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.

Note

The Tablespace Monitor and Table Monitor were deprecated in MySQL
5.6.3 and have been removed in MySQL 5.7.4. For the Tablespace Monitor,
equivalent functionality will be introduced before the GA release of MySQL
5.7. For the Table Monitor, equivalent information can be obtained from
InnoDB INFORMATION_SCHEMA tables.

For additional information about InnoDB monitors, see:

• Mark Leith: InnoDB Table and Tablespace Monitors

Enabling InnoDB Monitors

When you enable InnoDB monitors for periodic output, InnoDB writes their output to the mysqld
server standard error output (stderr). In this case, no output is sent to clients. When switched on,
InnoDB monitors print data about every 15 seconds. Server output usually is directed to the error log
(see Section 5.2.2, “The Error Log”). This data is useful in performance tuning. On Windows, start the
server from a command prompt in a console window with the --console option if you want to direct
the output to the window rather than to the error log.

InnoDB sends diagnostic output to stderr or to files rather than to stdout or fixed-size memory
buffers, to avoid potential buffer overflows. As a side effect, the output of SHOW ENGINE INNODB
STATUS is written to a status file in the MySQL data directory every fifteen seconds. The name of
the file is innodb_status.pid, where pid is the server process ID. InnoDB removes the file
for a normal shutdown. If abnormal shutdowns have occurred, instances of these status files may
be present and must be removed manually. Before removing them, you might want to examine
them to see whether they contain useful information about the cause of abnormal shutdowns. The
innodb_status.pid file is created only if the configuration option innodb-status-file=1 is set.

InnoDB monitors should be enabled only when you actually want to see monitor information because
output generation does result in some performance decrement. Also, if you enable monitor output by
creating the associated table, your error log may become quite large if you forget to remove the table
later.

Note

To assist with troubleshooting, InnoDB temporarily enables standard
InnoDB Monitor output under certain conditions. For more information, see
Section 14.2.17, “InnoDB Troubleshooting”.

Each monitor begins with a header containing a timestamp and the monitor name. For example:

==

http://www.markleith.co.uk/?p=25

InnoDB Performance Tuning

1751

090407 12:06:19 INNODB TABLESPACE MONITOR OUTPUT
==

The header for the standard InnoDB Monitor (INNODB MONITOR OUTPUT) is also used for the Lock
Monitor because the latter produces the same output with the addition of extra lock information.

Enabling an InnoDB monitor for periodic output involves using a CREATE TABLE statement to create a
specially named InnoDB table that is associated with the monitor. For example, to enable the standard
InnoDB Monitor, you would create an InnoDB table named innodb_monitor.

Using CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through
MySQL's SQL parser. The only things that matter are the table name and that it be an InnoDB table.
The structure of the table is not relevant. If you shut down the server, the monitor does not restart
automatically when you restart the server. Drop the monitor table and issue a new CREATE TABLE
statement to start the monitor.

Note

The CREATE TABLE method of enabling InnoDB monitors is removed in
MySQL 5.7.4. As of MySQL 5.7.4, use the innodb_status_output and
innodb_status_output_locks system variables to enable the standard
InnoDB Monitor and InnoDB Lock Monitor.

The PROCESS privilege is required to enable and disable InnoDB Monitors.

Enabling the Standard InnoDB Monitor

Prior to MySQL 5.7.4, enable the standard InnoDB Monitor for periodic output by creating the
innodb_monitor table:

CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB Monitor, drop the table:

DROP TABLE innodb_monitor;

As of MySQL 5.7.4, enable the standard InnoDB Monitor by setting the innodb_status_output
system variable to ON.

set GLOBAL innodb_status_output=ON;

To disable the standard InnoDB Monitor, set innodb_status_output to OFF.

When you shut down the server, the innodb_status_output variable is set to the default OFF
value.

Obtaining Standard InnoDB Monitor Output On Demand

As an alternative to enabling the standard InnoDB Monitor for periodic output, you can obtain standard
InnoDB Monitor output on demand using the SHOW ENGINE INNODB STATUS SQL statement, which
fetches the output to your client program. If you are using the mysql interactive client, the output is
more readable if you replace the usual semicolon statement terminator with \G:

mysql> SHOW ENGINE INNODB STATUS\G

Enabling the InnoDB Lock Monitor

Prior to MySQL 5.7.4, enable the InnoDB Lock Monitor for periodic output by creating the
innodb_lock_monitor table:

InnoDB Performance Tuning

1752

CREATE TABLE innodb_lock_monitor (a INT) ENGINE=INNODB;

To disable the InnoDB Lock Monitor, drop the table:

DROP TABLE innodb_lock_monitor;

As of MySQL 5.7.4, enable the InnoDB Lock Monitor by setting both the innodb_status_output
and innodb_status_output_locks system variables to ON. Because Lock Monitor output is printed
with the standard InnoDB Monitor output, both monitors must be enabled to enable Lock Monitor
output.

set GLOBAL innodb_status_output=ON;
set GLOBAL innodb_status_output_locks=ON;

When you shut down the server, the innodb_status_output and
innodb_status_output_locks variables are set to the default OFF value.

To disable the InnoDB Lock Monitor, set innodb_status_output_locks to OFF. Set set
innodb_status_output to OFF to also disable the standard InnoDB Monitor.

Enabling the InnoDB Tablespace Monitor

To enable the InnoDB Tablespace Monitor for periodic output, create the
innodb_tablespace_monitor table:

CREATE TABLE innodb_tablespace_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB Tablespace Monitor, drop the table:

DROP TABLE innodb_tablespace_monitor;

Note

The Tablespace Monitor is removed in MySQL 5.7.4. Equivalent functionality
will be introduced before the GA release of MySQL 5.7.

Enabling the InnoDB Table Monitor

To enable the InnoDB Table Monitor for periodic output, create the innodb_table_monitor table:

CREATE TABLE innodb_table_monitor (a INT) ENGINE=INNODB;

To disable the InnoDB Table Monitor, drop the table:

DROP TABLE innodb_table_monitor;

Note

The Tablespace Monitor is removed in MySQL 5.7.4. Equivalent functionality
will be introduced before the GA release of MySQL 5.7.

InnoDB Standard Monitor and Lock Monitor Output

The Lock Monitor is the same as the standard Monitor except that it includes additional lock
information. Enabling either monitor for periodic output turns on the same output stream, but the stream
includes extra information if the Lock Monitor is enabled. For example, if you enable the standard
InnoDB Monitor and InnoDB Lock Monitor, that turns on a single output stream. The stream includes
extra lock information until you disable the Lock Monitor.

InnoDB Performance Tuning

1753

Example standard InnoDB Monitor output:

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
Status:
=====================================
030709 13:00:59 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 18 seconds

BACKGROUND THREAD

srv_master_thread loops: 53 1_second, 44 sleeps, 5 10_second, 7 background,
 7 flush
srv_master_thread log flush and writes: 48

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 413452, signal count 378357
--Thread 32782 has waited at btr0sea.c line 1477 for 0.00 seconds the
semaphore: X-lock on RW-latch at 41a28668 created in file btr0sea.c line 135
a writer (thread id 32782) has reserved it in mode wait exclusive
number of readers 1, waiters flag 1
Last time read locked in file btr0sea.c line 731
Last time write locked in file btr0sea.c line 1347
Mutex spin waits 0, rounds 0, OS waits 0
RW-shared spins 2, rounds 60, OS waits 2
RW-excl spins 0, rounds 0, OS waits 0
Spin rounds per wait: 0.00 mutex, 20.00 RW-shared, 0.00 RW-excl

LATEST FOREIGN KEY ERROR

030709 13:00:59 Transaction:
TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195
inserting
15 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
Foreign key constraint fails for table test/ibtest11a:
,
 CONSTRAINT `0_219242` FOREIGN KEY (`A`, `D`) REFERENCES `ibtest11b` (`A`,
 `D`) ON DELETE CASCADE ON UPDATE CASCADE
Trying to add in child table, in index PRIMARY tuple:
 0: len 4; hex 80000101; asc;; 1: len 4; hex 80000005; asc;; 2:
 len 4; hex 6b68446b; asc khDk;; 3: len 6; hex 0000114e0edc; asc ...N..;; 4:
 len 7; hex 00000000c3e0a7; asc;; 5: len 4; hex 6b68446b; asc khDk;;
But in parent table test/ibtest11b, in index PRIMARY,
the closest match we can find is record:
RECORD: info bits 0 0: len 4; hex 8000015b; asc ...[;; 1: len 4; hex
80000005; asc;; 2: len 3; hex 6b6864; asc khd;; 3: len 6; hex
0000111ef3eb; asc;; 4: len 7; hex 800001001e0084; asc;; 5:
len 3; hex 6b6864; asc khd;;

LATEST DETECTED DEADLOCK

030709 12:59:58
*** (1) TRANSACTION:
TRANSACTION 0 290252780, ACTIVE 1 sec, process no 3185
inserting
LOCK WAIT 3 lock struct(s), heap size 320, undo log entries 146
MySQL thread id 21, query id 4553379 localhost heikki update
INSERT INTO alex1 VALUES(86, 86, 794,'aA35818','bb','c79166','d4766t',
'e187358f','g84586','h794',date_format('2001-04-03 12:54:22','%Y-%m-%d
%H:%i'),7
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290252780 lock mode S waiting
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138;
asc aa35818;; 1:
*** (2) TRANSACTION:
TRANSACTION 0 290251546, ACTIVE 2 sec, process no 3190

InnoDB Performance Tuning

1754

inserting
130 lock struct(s), heap size 11584, undo log entries 437
MySQL thread id 23, query id 4554396 localhost heikki update
REPLACE INTO alex1 VALUES(NULL, 32, NULL,'aa3572','','c3572','d6012t','',
NULL,'h396', NULL, NULL, 7.31,7.31,7.31,200)
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290251546 lock_mode X locks rec but not gap
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138;
asc aa35818;; 1:
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290251546 lock_mode X locks gap before rec insert intention
waiting
Record lock, heap no 82 RECORD: info bits 0 0: len 7; hex 61613335373230;
asc aa35720;; 1:
*** WE ROLL BACK TRANSACTION (1)

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20
Total number of lock structs in row lock hash table 70
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0 0, not started, process no 3491
MySQL thread id 32, query id 4668737 localhost heikki
show innodb status
---TRANSACTION 0 290328384, ACTIVE 0 sec, process no 3205
38929 inserting
1 lock struct(s), heap size 320
MySQL thread id 29, query id 4668736 localhost heikki update
insert into speedc values (1519229,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgjg
jlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjfh
---TRANSACTION 0 290328383, ACTIVE 0 sec, process no 3180
28684 committing
1 lock struct(s), heap size 320, undo log entries 1
MySQL thread id 19, query id 4668734 localhost heikki update
insert into speedcm values (1603393,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgj
gjlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjf
---TRANSACTION 0 290328327, ACTIVE 0 sec, process no 3200
36880 starting index read
LOCK WAIT 2 lock struct(s), heap size 320
MySQL thread id 27, query id 4668644 localhost heikki Searching rows for
update
update ibtest11a set B = 'kHdkkkk' where A = 89572
------- TRX HAS BEEN WAITING 0 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 65556 n bits 232 table test/ibtest11a index
PRIMARY trx id 0 290328327 lock_mode X waiting
Record lock, heap no 1 RECORD: info bits 0 0: len 9; hex 73757072656d756d00;
asc supremum.;;

---TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195
34831 rollback of SQL statement
ROLLING BACK 14 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
---TRANSACTION 0 290327208, ACTIVE 1 sec, process no 3190
32782
58 lock struct(s), heap size 5504, undo log entries 159
MySQL thread id 23, query id 4668732 localhost heikki update
REPLACE INTO alex1 VALUES(86, 46, 538,'aa95666','bb','c95666','d9486t',
'e200498f','g86814','h538',date_format('2001-04-03 12:54:22','%Y-%m-%d
%H:%i'),
---TRANSACTION 0 290323325, ACTIVE 3 sec, process no 3185
30733 inserting
4 lock struct(s), heap size 1024, undo log entries 165
MySQL thread id 21, query id 4668735 localhost heikki update
INSERT INTO alex1 VALUES(NULL, 49, NULL,'aa42837','','c56319','d1719t','',
NULL,'h321', NULL, NULL, 7.31,7.31,7.31,200)

FILE I/O

InnoDB Performance Tuning

1755

I/O thread 0 state: waiting for i/o request (insert buffer thread)
I/O thread 1 state: waiting for i/o request (log thread)
I/O thread 2 state: waiting for i/o request (read thread)
I/O thread 3 state: waiting for i/o request (write thread)
Pending normal aio reads: 0, aio writes: 0,
 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
151671 OS file reads, 94747 OS file writes, 8750 OS fsyncs
25.44 reads/s, 18494 avg bytes/read, 17.55 writes/s, 2.33 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf for space 0: size 1, free list len 19, seg size 21,
85004 inserts, 85004 merged recs, 26669 merges
Hash table size 207619, used cells 14461, node heap has 16 buffer(s)
1877.67 hash searches/s, 5121.10 non-hash searches/s

LOG

Log sequence number 18 1212842764
Log flushed up to 18 1212665295
Last checkpoint at 18 1135877290
0 pending log writes, 0 pending chkp writes
4341 log i/o's done, 1.22 log i/o's/second

BUFFER POOL AND MEMORY

Total memory allocated 84966343; in additional pool allocated 1402624
Buffer pool size 3200
Free buffers 110
Database pages 3074
Modified db pages 2674
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages read 171380, created 51968, written 194688
28.72 reads/s, 20.72 creates/s, 47.55 writes/s
Buffer pool hit rate 999 / 1000

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
Main thread process no. 3004, id 7176, state: purging
Number of rows inserted 3738558, updated 127415, deleted 33707, read 755779
1586.13 inserts/s, 50.89 updates/s, 28.44 deletes/s, 107.88 reads/s

END OF INNODB MONITOR OUTPUT
============================

Standard InnoDB Monitor output is limited to 1MB when produced using the SHOW ENGINE INNODB
STATUS statement. This limit does not apply to output written to the server's error output.

Some notes on the output sections:

Status

This section shows the timestamp, the monitor name, and the number of seconds that per-second
averages are based on. The number of seconds is the elapsed time between the current time and the
last time InnoDB Monitor output was printed.

BACKGROUND THREAD

The srv_master_thread lines shows work done by the main background thread.

SEMAPHORES

This section reports threads waiting for a semaphore and statistics on how many times threads have
needed a spin or a wait on a mutex or a rw-lock semaphore. A large number of threads waiting for
semaphores may be a result of disk I/O, or contention problems inside InnoDB. Contention can be

InnoDB Performance Tuning

1756

due to heavy parallelism of queries or problems in operating system thread scheduling. Setting the
innodb_thread_concurrency system variable smaller than the default value might help in such
situations. The Spin rounds per wait line shows the number of spinlock rounds per OS wait for a
mutex.

LATEST FOREIGN KEY ERROR

This section provides information about the most recent foreign key constraint error. It is not present if
no such error has occurred. The contents include the statement that failed as well as information about
the constraint that failed and the referenced and referencing tables.

LATEST DETECTED DEADLOCK

This section provides information about the most recent deadlock. It is not present if no deadlock has
occurred. The contents show which transactions are involved, the statement each was attempting to
execute, the locks they have and need, and which transaction InnoDB decided to roll back to break
the deadlock. The lock modes reported in this section are explained in Section 14.2.2.3, “InnoDB Lock
Modes”.

TRANSACTIONS

If this section reports lock waits, your applications might have lock contention. The output can also help
to trace the reasons for transaction deadlocks.

FILE I/O

This section provides information about threads that InnoDB uses to perform various types of I/O. The
first few of these are dedicated to general InnoDB processing. The contents also display information
for pending I/O operations and statistics for I/O performance.

The number of these threads are controlled by the innodb_read_io_threads and
innodb_write_io_threads parameters. See Section 14.2.13, “InnoDB Startup Options and
System Variables”.

INSERT BUFFER AND ADAPTIVE HASH INDEX

This section shows the status of the InnoDB insert buffer and adaptive hash index. (See Insert
Buffering, and Adaptive Hash Indexes.) The contents include the number of operations performed for
each, plus statistics for hash index performance.

LOG

This section displays information about the InnoDB log. The contents include the current log sequence
number, how far the log has been flushed to disk, and the position at which InnoDB last took a
checkpoint. (See Section 14.2.10.3, “InnoDB Checkpoints”.) The section also displays information
about pending writes and write performance statistics.

BUFFER POOL AND MEMORY

This section gives you statistics on pages read and written. You can calculate from these numbers how
many data file I/O operations your queries currently are doing.

For additional information about the operation of the buffer pool, see Section 8.9.1, “The InnoDB Buffer
Pool”.

ROW OPERATIONS

This section shows what the main thread is doing, including the number and performance rate for each
type of row operation.

InnoDB Performance Tuning

1757

InnoDB Tablespace Monitor Output

Note

The InnoDB Tablespace Monitor is removed in MySQL 5.7.4. Equivalent
functionality will be introduced before the GA release of MySQL 5.7.

The InnoDB Tablespace Monitor prints information about the file segments in the shared tablespace
and validates the tablespace allocation data structures. The Tablespace Monitor does not describe file-
per-table tablespaces created with the innodb_file_per_table option.

Example InnoDB Tablespace Monitor output:

==
090408 21:28:09 INNODB TABLESPACE MONITOR OUTPUT
==
FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845
SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14
SEGMENT id 0 2 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 3 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0
SEGMENT id 0 488 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 17 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 171 space 0; page 2; res 592 used 481; full ext 7
fragm pages 16; free extents 0; not full extents 2: pages 17
SEGMENT id 0 172 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 173 space 0; page 2; res 96 used 44; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 12
...
SEGMENT id 0 601 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
NUMBER of file segments: 73
Validating tablespace
Validation ok

END OF INNODB TABLESPACE MONITOR OUTPUT
=======================================

The Tablespace Monitor output includes information about the shared tablespace as a whole, followed
by a list containing a breakdown for each segment within the tablespace.

In this example using the default page size, the tablespace consists of database pages that are 16KB
each. The pages are grouped into extents of size 1MB (64 consecutive pages).

The initial part of the output that displays overall tablespace information has this format:

FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845

Overall tablespace information includes these values:

• id: The tablespace ID. A value of 0 refers to the shared tablespace.

InnoDB Performance Tuning

1758

• size: The current tablespace size in pages.

• free limit: The minimum page number for which the free list has not been initialized. Pages at or
above this limit are free.

• free extents: The number of free extents.

• not full frag extents, used pages: The number of fragment extents that are not completely
filled, and the number of pages in those extents that have been allocated.

• full frag extents: The number of completely full fragment extents.

• first seg id not used: The first unused segment ID.

Individual segment information has this format:

SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0

Segment information includes these values:

id: The segment ID.

space, page: The tablespace number and page within the tablespace where the segment “inode” is
located. A tablespace number of 0 indicates the shared tablespace. InnoDB uses inodes to keep track
of segments in the tablespace. The other fields displayed for a segment (id, res, and so forth) are
derived from information in the inode.

res: The number of pages allocated (reserved) for the segment.

used: The number of allocated pages in use by the segment.

full ext: The number of extents allocated for the segment that are completely used.

fragm pages: The number of initial pages that have been allocated to the segment.

free extents: The number of extents allocated for the segment that are completely unused.

not full extents: The number of extents allocated for the segment that are partially used.

pages: The number of pages used within the not-full extents.

When a segment grows, it starts as a single page, and InnoDB allocates the first pages for it one at a
time, up to 32 pages (this is the fragm pages value). After that, InnoDB allocates complete extents.
InnoDB can add up to 4 extents at a time to a large segment to ensure good sequentiality of data.

For the example segment shown earlier, it has 32 fragment pages, plus 2 full extents (64 pages each),
for a total of 160 pages used out of 160 pages allocated. The following segment has 32 fragment
pages and one partially full extent using 14 pages for a total of 46 pages used out of 96 pages
allocated:

SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14

It is possible for a segment that has extents allocated to it to have a fragm pages value less than 32
if some of the individual pages have been deallocated subsequent to extent allocation.

InnoDB Table Monitor Output

Note

The InnoDB Table Monitor is removed in MySQL 5.7.4. Equivalent information
can be obtained from InnoDB INFORMATION_SCHEMA tables. See
Section 19.30, “INFORMATION_SCHEMA Tables for InnoDB”.

InnoDB Performance Tuning

1759

The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.

The output contains one section per table. The SYS_FOREIGN and SYS_FOREIGN_COLS sections are
for internal data dictionary tables that maintain information about foreign keys. There are also sections
for the Table Monitor table and each user-created InnoDB table. Suppose that the following two tables
have been created in the test database:

CREATE TABLE parent
(
 par_id INT NOT NULL,
 fname CHAR(20),
 lname CHAR(20),
 PRIMARY KEY (par_id),
 UNIQUE INDEX (lname, fname)
) ENGINE = INNODB;

CREATE TABLE child
(
 par_id INT NOT NULL,
 child_id INT NOT NULL,
 name VARCHAR(40),
 birth DATE,
 weight DECIMAL(10,2),
 misc_info VARCHAR(255),
 last_update TIMESTAMP,
 PRIMARY KEY (par_id, child_id),
 INDEX (name),
 FOREIGN KEY (par_id) REFERENCES parent (par_id)
 ON DELETE CASCADE
 ON UPDATE CASCADE
) ENGINE = INNODB;

Then the Table Monitor output will look something like this (reformatted slightly):

===
090420 12:09:32 INNODB TABLE MONITOR OUTPUT
===

TABLE: name SYS_FOREIGN, id 0 11, columns 7, indexes 3, appr.rows 1
 COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
 FOR_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 REF_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 N_COLS: DATA_INT len 4;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name ID_IND, id 0 11, fields 1/6, uniq 1, type 3
 root page 46, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: ID DB_TRX_ID DB_ROLL_PTR FOR_NAME REF_NAME N_COLS
 INDEX: name FOR_IND, id 0 12, fields 1/2, uniq 2, type 0
 root page 47, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: FOR_NAME ID
 INDEX: name REF_IND, id 0 13, fields 1/2, uniq 2, type 0
 root page 48, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: REF_NAME ID

TABLE: name SYS_FOREIGN_COLS, id 0 12, columns 7, indexes 1, appr.rows 1
 COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
 POS: DATA_INT len 4;
 FOR_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 REF_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name ID_IND, id 0 14, fields 2/6, uniq 2, type 3
 root page 49, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: ID POS DB_TRX_ID DB_ROLL_PTR FOR_COL_NAME REF_COL_NAME

TABLE: name test/child, id 0 14, columns 10, indexes 2, appr.rows 201
 COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 child_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;

InnoDB Performance Tuning

1760

 name: DATA_VARCHAR prtype 524303 len 40;
 birth: DATA_INT DATA_BINARY_TYPE len 3;
 weight: DATA_FIXBINARY DATA_BINARY_TYPE len 5;
 misc_info: DATA_VARCHAR prtype 524303 len 255;
 last_update: DATA_INT DATA_UNSIGNED DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name PRIMARY, id 0 17, fields 2/9, uniq 2, type 3
 root page 52, appr.key vals 201, leaf pages 5, size pages 6
 FIELDS: par_id child_id DB_TRX_ID DB_ROLL_PTR name birth weight misc_info last_update
 INDEX: name name, id 0 18, fields 1/3, uniq 3, type 0
 root page 53, appr.key vals 210, leaf pages 1, size pages 1
 FIELDS: name par_id child_id
 FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
 REFERENCES test/parent (par_id)

TABLE: name test/innodb_table_monitor, id 0 15, columns 4, indexes 1, appr.rows 0
 COLUMNS: i: DATA_INT DATA_BINARY_TYPE len 4;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name GEN_CLUST_INDEX, id 0 19, fields 0/4, uniq 1, type 1
 root page 193, appr.key vals 0, leaf pages 1, size pages 1
 FIELDS: DB_ROW_ID DB_TRX_ID DB_ROLL_PTR i

TABLE: name test/parent, id 0 13, columns 6, indexes 2, appr.rows 299
 COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 fname: DATA_CHAR prtype 524542 len 20;
 lname: DATA_CHAR prtype 524542 len 20;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name PRIMARY, id 0 15, fields 1/5, uniq 1, type 3
 root page 50, appr.key vals 299, leaf pages 2, size pages 3
 FIELDS: par_id DB_TRX_ID DB_ROLL_PTR fname lname
 INDEX: name lname, id 0 16, fields 2/3, uniq 2, type 2
 root page 51, appr.key vals 300, leaf pages 1, size pages 1
 FIELDS: lname fname par_id
 FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
 REFERENCES test/parent (par_id)

END OF INNODB TABLE MONITOR OUTPUT
==================================

For each table, Table Monitor output contains a section that displays general information about the
table and specific information about its columns, indexes, and foreign keys.

The general information for each table includes the table name (in db_name/tbl_name format except
for internal tables), its ID, the number of columns and indexes, and an approximate row count.

The COLUMNS part of a table section lists each column in the table. Information for each column
indicates its name and data type characteristics. Some internal columns are added by InnoDB, such
as DB_ROW_ID (row ID), DB_TRX_ID (transaction ID), and DB_ROLL_PTR (a pointer to the rollback/
undo data).

• DATA_xxx: These symbols indicate the data type. There may be multiple DATA_xxx symbols for a
given column.

• prtype: The column's “precise” type. This field includes information such as the column data type,
character set code, nullability, signedness, and whether it is a binary string. This field is described in
the innobase/include/data0type.h source file.

• len: The column length in bytes.

Each INDEX part of the table section provides the name and characteristics of one table index:

• name: The index name. If the name is PRIMARY, the index is a primary key. If the name is
GEN_CLUST_INDEX, the index is the clustered index that is created automatically if the table
definition doesn't include a primary key or non-NULL unique index. See Clustered and Secondary
Indexes.

InnoDB Performance Tuning

1761

• id: The index ID.

• fields: The number of fields in the index, as a value in m/n format:

• m is the number of user-defined columns; that is, the number of columns you would see in the
index definition in a CREATE TABLE statement.

• n is the total number of index columns, including those added internally. For the clustered index,
the total includes the other columns in the table definition, plus any columns added internally. For
a secondary index, the total includes the columns from the primary key that are not part of the
secondary index.

• uniq: The number of leading fields that are enough to determine index values uniquely.

• type: The index type. This is a bit field. For example, 1 indicates a clustered index and 2 indicates a
unique index, so a clustered index (which always contains unique values), will have a type value of
3. An index with a type value of 0 is neither clustered nor unique. The flag values are defined in the
innobase/include/dict0mem.h source file.

• root page: The index root page number.

• appr. key vals: The approximate index cardinality.

• leaf pages: The approximate number of leaf pages in the index.

• size pages: The approximate total number of pages in the index.

• FIELDS: The names of the fields in the index. For a clustered index that was generated
automatically, the field list begins with the internal DB_ROW_ID (row ID) field. DB_TRX_ID and
DB_ROLL_PTR are always added internally to the clustered index, following the fields that comprise
the primary key. For a secondary index, the final fields are those from the primary key that are not
part of the secondary index.

The end of the table section lists the FOREIGN KEY definitions that apply to the table. This information
appears whether the table is a referencing or referenced table.

14.2.12.5 Controlling Optimizer Statistics Estimation

The MySQL query optimizer uses estimated statistics about key distributions to choose the indexes
for an execution plan, based on the relative selectivity of the index. Certain operations cause InnoDB
to sample random pages from each index on a table to estimate the cardinality of the index. (This
technique is known as random dives.) These operations include the ANALYZE TABLE statement, the
SHOW TABLE STATUS statement, and accessing the table for the first time after a restart.

To give you control over the quality of the statistics estimate (and thus better information for
the query optimizer), you can now change the number of sampled pages using the parameter
innodb_stats_transient_sample_pages. Previously, the number of sampled pages was
always 8, which could be insufficient to produce an accurate estimate, leading to poor index choices
by the query optimizer. This technique is especially important for large tables and tables used in
joins. Unnecessary full table scans for such tables can be a substantial performance issue. See
Section 8.2.1.20, “How to Avoid Full Table Scans” for tips on tuning such queries.

You can set the global parameter innodb_stats_transient_sample_pages, at runtime. The
default value for this parameter is 8, preserving the same behavior as in past releases.

Note

The value of innodb_stats_transient_sample_pages affects the index
sampling for all InnoDB tables and indexes. There are the following potentially
significant impacts when you change the index sample size:

InnoDB Startup Options and System Variables

1762

• Small values like 1 or 2 can result in very inaccurate estimates of cardinality.

• Increasing the innodb_stats_transient_sample_pages value might
require more disk reads. Values much larger than 8 (say, 100), can cause
a big slowdown in the time it takes to open a table or execute SHOW TABLE
STATUS.

• The optimizer might choose very different query plans based on different
estimates of index selectivity.

To disable the cardinality estimation for metadata statements such as SHOW TABLE STATUS, execute
the statement SET GLOBAL innodb_stats_on_metadata=OFF (or 0). The ability to set this option
dynamically is also relatively new.

All InnoDB tables are opened, and the statistics are re-estimated for all associated indexes, when
the mysql client starts if the auto-rehash setting is set on (the default). To improve the start up time
of the mysql client, you can turn auto-rehash off. The auto-rehash feature enables automatic name
completion of database, table, and column names for interactive users.

Whatever value of innodb_stats_transient_sample_pages works best for a system,
set the option and leave it at that value. Choose a value that results in reasonably accurate
estimates for all tables in your database without requiring excessive I/O. Because the statistics
are automatically recalculated at various times other than on execution of ANALYZE TABLE, it
does not make sense to increase the index sample size, run ANALYZE TABLE, then decrease
sample size again. The more accurate statistics calculated by ANALYZE running with a high value of
innodb_stats_transient_sample_pages can be wiped away later.

Although it is not possible to specify the sample size on a per-table basis, smaller tables generally
require fewer index samples than larger tables do. If your database has many large tables, consider
using a higher value for innodb_stats_transient_sample_pages than if you have mostly smaller
tables.

14.2.13 InnoDB Startup Options and System Variables

• System variables that are true or false can be enabled at server startup by naming them,
or disabled by using a --skip- prefix. For example, to enable or disable the InnoDB
adaptive hash index, you can use --innodb_adaptive_hash_index or --skip-
innodb_adaptive_hash_index on the command line, or innodb_adaptive_hash_index or
skip-innodb_adaptive_hash_index in an option file.

• System variables that take a numeric value can be specified as --var_name=value on the
command line or as var_name=value in option files.

• Many system variables can be changed at runtime (see Section 5.1.5.2, “Dynamic System
Variables”).

• For information about GLOBAL and SESSION variable scope modifiers, refer to the SET statement
documentation.

• Certain options control the locations and layout of the InnoDB data files. Section 14.2.3, “InnoDB
Configuration” explains how to use these options.

• Some options, which you might not use initially, help tune InnoDB performance characteristics
based on machine capacity and your database workload. The performance-related options are
explained in Section 14.2.12, “InnoDB Performance Tuning” and Section 14.2.12.2, “InnoDB
Performance and Scalability Enhancements”.

• For more information on specifying options and system variables, see Section 4.2.3, “Specifying
Program Options”.

InnoDB Startup Options and System Variables

1763

Table 14.10 InnoDB Option/Variable Reference

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

foreign_key_checks Yes Both Yes

ignore-builtin-
innodb

Yes Yes Global No

- Variable:
ignore_builtin_innodb

 Yes Global No

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

Innodb_available_undo_logs Yes Global No

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

InnoDB Startup Options and System Variables

1764

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global No

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_flush_log_at_timeout Yes Global Yes

InnoDB Startup Options and System Variables

1765

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_tableYes Yes Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Global Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

Innodb_have_atomic_builtins Yes Global No

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefixYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

InnoDB Startup Options and System Variables

1766

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_files Yes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

innodb_page_cleanersYes Yes Yes Global No

innodb_page_size Yes Yes Yes Global No

Innodb_page_size Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_only Yes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

InnoDB Startup Options and System Variables

1767

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb-status-file Yes Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

Innodb_truncated_status_writes Yes Global No

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_logs Yes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

timed_mutexes Yes Yes Yes Global Yes

unique_checks Yes Both Yes

InnoDB Command Options

• --ignore-builtin-innodb

Deprecated 5.5.22

Command-Line Format --ignore-builtin-innodb

Option-File Format ignore-builtin-innodb

System Variable Name ignore_builtin_innodb

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

In MySQL 5.1, this option caused the server to behave as if the built-in InnoDB were not present,
which enabled InnoDB Plugin to be used instead. In MySQL 5.7, InnoDB is the default storage
engine and InnoDB Plugin is not used, so this option is ignored.

• --innodb[=value]

InnoDB Startup Options and System Variables

1768

Controls loading of the InnoDB storage engine, if the server was compiled with InnoDB support.
This option has a tristate format, with possible values of OFF, ON, or FORCE. See Section 5.1.8.1,
“Installing and Uninstalling Plugins”.

To disable InnoDB, use --innodb=OFF or --skip-innodb. In this case, because the default
storage engine is InnoDB, the server will not start unless you also use --default-storage-
engine and --default-tmp-storage-engine to set the default to some other engine for both
permanent and TEMPORARY tables.

• --innodb-status-file

Command-Line Format --innodb-status-file

Option-File Format innodb-status-file

Permitted Values

Type boolean

Default OFF

Controls whether InnoDB creates a file named innodb_status.pid in the MySQL data directory.
If enabled, InnoDB periodically writes the output of SHOW ENGINE INNODB STATUS to this file.

By default, the file is not created. To create it, start mysqld with the --innodb-status-file=1
option. The file is deleted during normal shutdown.

• --skip-innodb

Disable the InnoDB storage engine. See the description of --innodb.

InnoDB System Variables

• daemon_memcached_enable_binlog

Command-Line Format --daemon_memcached_enable_binlog=#

Option-File Format daemon_memcached_enable_binlog

System Variable Name daemon_memcached_enable_binlog

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default false

See Section 14.2.16, “InnoDB Integration with memcached” for usage details for this option.

• daemon_memcached_engine_lib_name

Command-Line Format --daemon_memcached_engine_lib_name=library

Option-File Format daemon_memcached_engine_lib_name

System Variable Name daemon_memcached_engine_lib_name

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

InnoDB Startup Options and System Variables

1769

Default innodb_engine.so

Specifies the shared library that implements the InnoDB memcached plugin.

See Section 14.2.16, “InnoDB Integration with memcached” for usage details for this option.

• daemon_memcached_engine_lib_path

Command-Line Format --daemon_memcached_engine_lib_path=directory

Option-File Format daemon_memcached_engine_lib_path

System Variable Name daemon_memcached_engine_lib_path

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

Default NULL

The path of the directory containing the shared library that implements the InnoDB memcached
plugin. The default value is NULL, representing the MySQL plugin directory. You should not need to
modify this parameter unless specifying a different storage engine memcached plugin that is located
outside of the MySQL plugin directory.

See Section 14.2.16, “InnoDB Integration with memcached” for usage details for this option.

• daemon_memcached_option

Command-Line Format --daemon_memcached_option=options

Option-File Format daemon_memcached_option

System Variable Name daemon_memcached_option

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

Default

Used to pass space-separated memcached options to the underlying memcached memory object
caching daemon on startup. For example, you might change the port that memcached listens on,
reduce the maximum number of simultaneous connections, change the maximum memory size for a
key/value pair, or enable debugging messages for the error log.

See Section 14.2.16, “InnoDB Integration with memcached” for usage details for this option. For
information about memcached options, refer to the memcached man page.

• daemon_memcached_r_batch_size

Command-Line Format --daemon_memcached_r_batch_size=#

Option-File Format daemon_memcached_r_batch_size

System Variable Name daemon_memcached_r_batch_size

Variable Scope Global

Dynamic Variable No

 Permitted Values

InnoDB Startup Options and System Variables

1770

Type numeric

Default 1

Specifies how many memcached read operations (get) to perform before doing a COMMIT to start a
new transaction. Counterpart of daemon_memcached_w_batch_size.

This value is set to 1 by default, so that any changes made to the table through SQL statements
are immediately visible to the memcached operations. You might increase it to reduce the overhead
from frequent commits on a system where the underlying table is only being accessed through the
memcached interface. If you set the value too large, the amount of undo or redo data could impose
some storage overhead, as with any long-running transaction.

See Section 14.2.16, “InnoDB Integration with memcached” for usage details for this option.

• daemon_memcached_w_batch_size

Command-Line Format --daemon_memcached_w_batch_size=#

Option-File Format daemon_memcached_w_batch_size

System Variable Name daemon_memcached_w_batch_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 1

Specifies how many memcached write operations, such as add, set, or incr, to perform before
doing a COMMIT to start a new transaction. Counterpart of daemon_memcached_r_batch_size.

This value is set to 1 by default, on the assumption that any data being stored is important to
preserve in case of an outage and should immediately be committed. When storing non-critical data,
you might increase this value to reduce the overhead from frequent commits; but then the last N-1
uncommitted write operations could be lost in case of a crash.

See Section 14.2.16, “InnoDB Integration with memcached” for usage details for this option.

• ignore_builtin_innodb

Deprecated 5.5.22

Command-Line Format --ignore-builtin-innodb

Option-File Format ignore-builtin-innodb

System Variable Name ignore_builtin_innodb

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

See the description of --ignore-builtin-innodb under “InnoDB Command Options” earlier in
this section.

• innodb_adaptive_flushing

Command-Line Format --innodb_adaptive_flushing=#

Option-File Format innodb_adaptive_flushing

InnoDB Startup Options and System Variables

1771

System Variable Name innodb_adaptive_flushing

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

Specifies whether to dynamically adjust the rate of flushing dirty pages in the InnoDB buffer pool
based on the workload. Adjusting the flush rate dynamically is intended to avoid bursts of I/O activity.
This setting is enabled by default. See Controlling the Flushing Rate of Dirty Pages from the InnoDB
Buffer Pool for more information. For general I/O tuning advice, see Section 8.5.7, “Optimizing
InnoDB Disk I/O”.

• innodb_adaptive_flushing_lwm

Command-Line Format --innodb_adaptive_flushing_lwm=#

Option-File Format innodb_adaptive_flushing_lwm

System Variable Name innodb_adaptive_flushing_lwm

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 10

Range 0 .. 70

Low water mark representing percentage of redo log capacity at which adaptive flushing is enabled.

• innodb_adaptive_hash_index

Command-Line Format --innodb_adaptive_hash_index=#

Option-File Format innodb_adaptive_hash_index

System Variable Name innodb_adaptive_hash_index

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

Whether the InnoDB adaptive hash index is enabled or disabled. As described in Controlling
Adaptive Hash Indexing, it may be desirable, depending on your workload, to dynamically enable
or disable adaptive hash indexing to improve query performance. Because the adaptive hash index
may not be useful for all workloads, conduct benchmarks with it both enabled and disabled, using
realistic workloads. See Adaptive Hash Indexes for details.

This variable is enabled by default. You can modify this parameter using the SET GLOBAL
statement, without restarting the server. Changing the setting requires the SUPER privilege. You can
also use --skip-innodb_adaptive_hash_index at server startup to disable it.

Disabling the adaptive hash index empties the hash table immediately. Normal operations can
continue while the hash table is emptied, and executing queries that were using the hash table

InnoDB Startup Options and System Variables

1772

access the index B-trees directly instead. When the adaptive hash index is re-enabled, the hash
table is populated again during normal operation.

• innodb_adaptive_max_sleep_delay

Command-Line Format --innodb_adaptive_max_sleep_delay=#

Option-File Format innodb_adaptive_max_sleep_delay

System Variable Name innodb_adaptive_max_sleep_delay

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 150000

Range 0 .. 1000000

Allows InnoDB to automatically adjust the value of innodb_thread_sleep_delay up or
down according to the current workload. Any non-zero value enables automated, dynamic
adjustment of the innodb_thread_sleep_delay value, up to the maximum value specified in the
innodb_adaptive_max_sleep_delay option. The value represents the number of microseconds.
This option can be useful in busy systems, with greater than 16 InnoDB threads. (In practice, it is
most valuable for MySQL systems with hundreds or thousands of simultaneous connections.)

• innodb_additional_mem_pool_size

Deprecated 5.6.3

Removed 5.7.4

Command-Line Format --innodb_additional_mem_pool_size=#

Option-File Format innodb_additional_mem_pool_size

System Variable Name innodb_additional_mem_pool_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 8388608

Range 2097152 .. 4294967295

The size in bytes of a memory pool InnoDB uses to store data dictionary information and other
internal data structures. The more tables you have in your application, the more memory you allocate
here. If InnoDB runs out of memory in this pool, it starts to allocate memory from the operating
system and writes warning messages to the MySQL error log. The default value is 8MB.

This variable relates to the InnoDB internal memory allocator, which is unused if
innodb_use_sys_malloc is enabled.

innodb_additional_mem_pool_size was deprecated in MySQL 5.6.3 and removed MySQL
5.7.4.

• innodb_api_bk_commit_interval

Command-Line Format --innodb_api_bk_commit_interval=#

Option-File Format innodb_api_bk_commit_interval

InnoDB Startup Options and System Variables

1773

System Variable Name innodb_api_bk_commit_interval

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 5

Range 1 .. 1073741824

How often to auto-commit idle connections that use the InnoDB memcached interface, in seconds.
See Section 14.2.16, “InnoDB Integration with memcached” for usage details for this option.

• innodb_api_disable_rowlock

Command-Line Format --innodb_api_disable_rowlock=#

Option-File Format innodb_api_disable_rowlock

System Variable Name innodb_api_disable_rowlock

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

Use this variable to disable row locks when InnoDB memcached performs DML operations. By
default, innodb_api_disable_rowlock is set to OFF which means that memcached requests row
locks for get and set operations. When innodb_api_disable_rowlock is set to ON, memcached
requests a table lock instead of row locks.

The innodb_api_disable_rowlock option is not dynamic. It must be specified on the mysqld
command line or entered in the MySQL configuration file. Configuration takes effect when the plugin
is installed, which you do each time the MySQL server is started.

• innodb_api_enable_binlog

Command-Line Format --innodb_api_enable_binlog=#

Option-File Format innodb_api_enable_binlog

System Variable Name innodb_api_enable_binlog

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

Lets you use the InnoDB memcached plugin with the MySQL binary log. See Section 14.2.16,
“InnoDB Integration with memcached” for usage details for this option.

• innodb_api_enable_mdl

Command-Line Format --innodb_api_enable_mdl=#

Option-File Format innodb_api_enable_mdl

System Variable Name innodb_api_enable_mdl

InnoDB Startup Options and System Variables

1774

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

Locks the table used by the InnoDB memcached plugin, so that it cannot be dropped or altered by
DDL through the SQL interface. See Section 14.2.16, “InnoDB Integration with memcached” for
usage details for this option.

• innodb_api_trx_level

Command-Line Format --innodb_api_trx_level=#

Option-File Format innodb_api_trx_level

System Variable Name innodb_api_trx_level

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Lets you control the transaction isolation level on queries processed by the memcached interface.
See Section 14.2.16, “InnoDB Integration with memcached” for usage details for this option. The
constants corresponding to the familiar names are:

• 0 = READ UNCOMMITTED

• 1 = READ COMMITTED

• 2 = REPEATABLE READ

• 3 = SERIALIZABLE

• innodb_autoextend_increment

Command-Line Format --innodb_autoextend_increment=#

Option-File Format innodb_autoextend_increment

System Variable Name innodb_autoextend_increment

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 64

Range 1 .. 1000

The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file
when it becomes full. The default value is 64. This variable does not affect the per-table tablespace
files that are created if you use innodb_file_per_table=1. Those files are auto-extending
regardless of the value of innodb_autoextend_increment. The initial extensions are by small
amounts, after which extensions occur in increments of 4MB.

• innodb_autoinc_lock_mode

InnoDB Startup Options and System Variables

1775

Command-Line Format --innodb_autoinc_lock_mode=#

Option-File Format innodb_autoinc_lock_mode

System Variable Name innodb_autoinc_lock_mode

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 1

0

1

Valid
Values

2

The lock mode to use for generating auto-increment values. The permissible values are 0, 1,
or 2, for “traditional”, “consecutive”, or “interleaved” lock mode, respectively. Section 14.2.6.5,
“AUTO_INCREMENT Handling in InnoDB”, describes the characteristics of these modes.

This variable has a default of 1 (“consecutive” lock mode).

• innodb_buffer_pool_dump_at_shutdown

Command-Line Format --innodb_buffer_pool_dump_at_shutdown=#

Option-File Format innodb_buffer_pool_dump_at_shutdown

System Variable Name innodb_buffer_pool_dump_at_shutdown

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Specifies whether to record the pages cached in the InnoDB buffer pool when the MySQL server
is shut down, to shorten the warmup process at the next restart. Typically used in combination with
innodb_buffer_pool_load_at_startup.

• innodb_buffer_pool_dump_now

Command-Line Format --innodb_buffer_pool_dump_now=#

Option-File Format innodb_buffer_pool_dump_now

System Variable Name innodb_buffer_pool_dump_now

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Immediately records the pages cached in the InnoDB buffer pool. Typically used in combination with
innodb_buffer_pool_load_now.

• innodb_buffer_pool_dump_pct

InnoDB Startup Options and System Variables

1776

Introduced 5.7.2

Command-Line Format --innodb_buffer_pool_dump_pct=#

Option-File Format innodb_buffer_pool_dump_pct

System Variable Name innodb_buffer_pool_dump_pct

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 100

Range 1 .. 100

Specifies the percentage of the most recently used pages for each buffer pool to read out and dump.
The range is 1 to 100 with a default value of 100 (dump all pages). For example, if there are 4 buffer
pools with 100 pages each, and innodb_buffer_pool_dump_pct is set to 40, the 40 most
recently used pages from each buffer pool will be dumped.

• innodb_buffer_pool_filename

Command-Line Format --innodb_buffer_pool_filename=file

Option-File Format innodb_buffer_pool_filename

System Variable Name innodb_buffer_pool_filename

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type file name

Default ib_buffer_pool

Specifies the file that holds the list of page numbers produced by
innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now.

• innodb_buffer_pool_instances

Command-Line Format --innodb_buffer_pool_instances=#

Option-File Format innodb_buffer_pool_instances

System Variable Name innodb_buffer_pool_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

Range 1 .. 64

The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in
the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency,
by reducing contention as different threads read and write to cached pages. Each page that is stored
in or read from the buffer pool is assigned to one of the buffer pool instances randomly, using a
hashing function. Each buffer pool manages its own free lists, flush lists, LRUs, and all other data
structures connected to a buffer pool, and is protected by its own buffer pool mutex.

InnoDB Startup Options and System Variables

1777

This option takes effect only when you set the innodb_buffer_pool_size to a size of 1 gigabyte
or more. The total size you specify is divided among all the buffer pools. For best efficiency, specify
a combination of innodb_buffer_pool_instances and innodb_buffer_pool_size so that
each buffer pool instance is at least 1 gigabyte.

The default is 8, except on 32-bit Windows systems, where the default depends on the value of
innodb_buffer_pool_size:

• If innodb_buffer_pool_size is greater than 1.3GB, the default for
innodb_buffer_pool_instances is innodb_buffer_pool_size/128MB, with individual
memory allocation requests for each chunk. 1.3GB was chosen as the boundary at which there is
significant risk for 32-bit Windows to be unable to allocate the contiguous address space needed
for a single buffer pool.

• Otherwise, the default is 1.

• innodb_buffer_pool_load_abort

Command-Line Format --innodb_buffer_pool_load_abort=#

Option-File Format innodb_buffer_pool_load_abort

System Variable Name innodb_buffer_pool_load_abort

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Interrupts the process of restoring InnoDB buffer pool contents triggered by
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now.

• innodb_buffer_pool_load_at_startup

Command-Line Format --innodb_buffer_pool_load_at_startup=#

Option-File Format innodb_buffer_pool_load_at_startup

System Variable Name innodb_buffer_pool_load_at_startup

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

Specifies that, on MySQL server startup, the InnoDB buffer pool is automatically warmed
up by loading the same pages it held at an earlier time. Typically used in combination with
innodb_buffer_pool_dump_at_shutdown.

• innodb_buffer_pool_load_now

Command-Line Format --innodb_buffer_pool_load_now=#

Option-File Format innodb_buffer_pool_load_now

System Variable Name innodb_buffer_pool_load_now

Variable Scope Global

InnoDB Startup Options and System Variables

1778

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Immediately warms up the InnoDB buffer pool by loading a set of data pages, without waiting for a
server restart. Can be useful to bring cache memory back to a known state during benchmarking,
or to ready the MySQL server to resume its normal workload after running queries for reports or
maintenance.

• innodb_buffer_pool_size

Command-Line Format --innodb_buffer_pool_size=#

Option-File Format innodb_buffer_pool_size

System Variable Name innodb_buffer_pool_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Platform
Bit Size

32

Type numeric

Default 134217728

Range 5242880 .. 2**32-1

Permitted Values

Platform
Bit Size

64

Type numeric

Default 134217728

Range 5242880 .. 2**64-1

The size in bytes of the buffer pool, the memory area where InnoDB caches table and index data.
The default value is 128MB. The maximum value depends on the CPU architecture; the maximum
is 4294967295 (232-1) on 32-bit systems and 18446744073709551615 (264-1) on 64-bit systems.
On 32-bit systems, the CPU architecture and operating system may impose a lower practical
maximum size than the stated maximum. When the size of the buffer pool is greater than 1GB,
setting innodb_buffer_pool_instances to a value greater than 1 can improve the scalability on
a busy server.

The larger you set this value, the less disk I/O is needed to access the same data in tables more
than once. On a dedicated database server, you might set this to up to 80% of the machine physical
memory size. Be prepared to scale back this value if these other issues occur:

• Competition for physical memory might cause paging in the operating system.

• InnoDB reserves additional memory for buffers and control structures, so that the total allocated
space is approximately 10% greater than the specified size.

• The address space must be contiguous, which can be an issue on Windows systems with DLLs
that load at specific addresses.

• The time to initialize the buffer pool is roughly proportional to its size. On large installations, this
initialization time might be significant. For example, on a modern Linux x86_64 server, initialization

InnoDB Startup Options and System Variables

1779

of a 10GB buffer pool takes approximately 6 seconds. See Section 8.9.1, “The InnoDB Buffer
Pool”.

• innodb_change_buffer_max_size

Command-Line Format --innodb_change_buffer_max_size=#

Option-File Format innodb_change_buffer_max_size

System Variable Name innodb_change_buffer_max_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 25

Range 0 .. 50

Maximum size for the InnoDB change buffer, as a percentage of the total size of the buffer pool.
You might increase this value for a MySQL server with heavy insert, update, and delete activity,
or decrease it for a MySQL server with unchanging data used for reporting. For general I/O tuning
advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_change_buffering

Command-Line Format --innodb_change_buffering=#

Option-File Format innodb_change_buffering

System Variable Name innodb_change_buffering

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default all

inserts

deletes

purges

changes

all

Valid
Values

none

Whether InnoDB performs change buffering, an optimization that delays write operations to
secondary indexes so that the I/O operations can be performed sequentially. The permitted values
are inserts (buffer insert operations), deletes (buffer delete operations; strictly speaking, the
writes that mark index records for later deletion during a purge operation), changes (buffer insert
and delete-marking operations), purges (buffer purge operations, the writes when deleted index
entries are finally garbage-collected), all (buffer insert, delete-marking, and purge operations) and
none (do not buffer any operations). The default is all. For details, see Controlling InnoDB Change
Buffering. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_checksum_algorithm

Command-Line Format --innodb_checksum_algorithm=#

Option-File Format innodb_checksum_algorithm

InnoDB Startup Options and System Variables

1780

System Variable Name innodb_checksum_algorithm

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default innodb

innodb

crc32

none

strict_innodb

strict_crc32

Valid
Values

strict_none

Specifies how to generate and verify the checksum stored in each disk block of each InnoDB
tablespace. Replaces the innodb_checksums option.

The value innodb is backward-compatible with all versions of MySQL. The value crc32 uses
an algorithm that is faster to compute the checksum for every modified block, and to check the
checksums for each disk read. The value none writes a constant value in the checksum field rather
than computing a value based on the block data. The blocks in a tablespace can use a mix of old,
new, and no checksum values, being updated gradually as the data is modified; once any blocks in a
tablespace are modified to use the crc32 algorithm, the associated tables cannot be read by earlier
versions of MySQL.

The strict_* forms work the same as innodb, crc32, and none, except that InnoDB halts if
it encounters a mix of checksum values in the same tablespace. You can only use these options
in a completely new instance, to set up all tablespaces for the first time. The strict_* settings
are somewhat faster, because they do not need to compute both new and old checksum values to
accept both during disk reads.

For usage information, including a matrix of valid combinations of checksum values during read and
write operations, see Fast CRC32 Checksum Algorithm.

• innodb_checksums

Deprecated 5.6.3

Command-Line Format --innodb_checksums

Option-File Format innodb_checksums

System Variable Name innodb_checksums

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default ON

InnoDB can use checksum validation on all tablespace pages read from the disk to ensure extra
fault tolerance against hardware faults or corrupted data files. This validation is enabled by default.
Under specialized circumstances (such as when running benchmarks) this extra safety feature can
be disabled with --skip-innodb-checksums. You can specify the method of calculating the
checksum with innodb_checksum_algorithm.

InnoDB Startup Options and System Variables

1781

In MySQL 5.6.3 and higher, this option is deprecated, replaced by innodb_checksum_algorithm.
innodb_checksum_algorithm=innodb is the same as innodb_checksums=ON (the default).
innodb_checksum_algorithm=none is the same as innodb_checksums=OFF. Remove
any innodb_checksums options from your configuration files and startup scripts, to avoid
conflicts with innodb_checksum_algorithm: innodb_checksums=OFF would automatically
set innodb_checksum_algorithm=none; innodb_checksums=ON would be ignored and
overridden by any other setting for innodb_checksum_algorithm.

• innodb_cmp_per_index_enabled

Command-Line Format --innodb_cmp_per_index_enabled=#

Option-File Format innodb_cmp_per_index_enabled

System Variable Name innodb_cmp_per_index_enabled

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

OFF

Valid
Values ON

Enables per-index compression-related statistics in the
INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table. Because these statistics can be
expensive to gather, only enable this option on development, test, or slave instances during
performance tuning related to InnoDB compressed tables.

• innodb_commit_concurrency

Command-Line Format --innodb_commit_concurrency=#

Option-File Format innodb_commit_concurrency

System Variable Name innodb_commit_concurrency

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 1000

The number of threads that can commit at the same time. A value of 0 (the default) permits any
number of transactions to commit simultaneously.

The value of innodb_commit_concurrency cannot be changed at runtime from zero to nonzero
or vice versa. The value can be changed from one nonzero value to another.

• innodb_compression_failure_threshold_pct

Command-Line Format --innodb_compression_failure_threshold_pct=#

Option-File Format innodb_compression_failure_threshold_pct

System Variable Name innodb_compression_failure_threshold_pct

Variable Scope Global

InnoDB Startup Options and System Variables

1782

Dynamic Variable Yes

Permitted Values

Type numeric

Default 5

Range 0 .. 100

Sets the cutoff point at which MySQL begins adding padding within compressed pages to avoid
expensive compression failures. A value of zero disables the mechanism that monitors compression
efficiency and dynamically adjusts the padding amount.

• innodb_compression_level

Command-Line Format --innodb_compression_level=#

Option-File Format innodb_compression_level

System Variable Name innodb_compression_level

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 6

Range 0 .. 9

Specifies the level of zlib compression to use for InnoDB compressed tables and indexes.

• innodb_compression_pad_pct_max

Command-Line Format --innodb_compression_pad_pct_max=#

Option-File Format innodb_compression_pad_pct_max

System Variable Name innodb_compression_pad_pct_max

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 50

Range 0 .. 75

Specifies the maximum percentage that can be reserved as free space within each compressed
page, allowing room to reorganize the data and modification log within the page when a
compressed table or index is updated and the data might be recompressed. Only applies when
innodb_compression_failure_threshold_pct is set to a non-zero value, and the rate of
compression failures passes the cutoff point.

• innodb_concurrency_tickets

Command-Line Format --innodb_concurrency_tickets=#

Option-File Format innodb_concurrency_tickets

System Variable Name innodb_concurrency_tickets

Variable Scope Global

Dynamic Variable Yes

InnoDB Startup Options and System Variables

1783

Permitted Values

Type numeric

Default 5000

Range 1 .. 4294967295

Determines the number of threads that can enter InnoDB concurrently. A thread is placed in a queue
when it tries to enter InnoDB if the number of threads has already reached the concurrency limit.
When a thread is permitted to enter InnoDB, it is given a number of “free tickets” equal to the value
of innodb_concurrency_tickets, and the thread can enter and leave InnoDB freely until it has
used up its tickets. After that point, the thread again becomes subject to the concurrency check (and
possible queuing) the next time it tries to enter InnoDB. The default value is 5000.

• innodb_data_file_path

Command-Line Format --innodb_data_file_path=name

Option-File Format innodb_data_file_path

System Variable Name innodb_data_file_path

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

Default ibdata1:12M:autoextend

The paths to individual InnoDB data files and their sizes. The full directory path to each data file
is formed by concatenating innodb_data_home_dir to each path specified here. The file sizes
are specified KB, MB or GB (1024MB) by appending K, M or G to the size value. If specifying data
file size in kilobytes (KB), do so in multiples of 1024. Otherwise, KB values are rounded off to
nearest megabyte (MB) boundary. The sum of the sizes of the files must be at least slightly larger
than 10MB. If you do not specify innodb_data_file_path, the default behavior is to create
a single auto-extending data file, slightly larger than 12MB, named ibdata1. The size limit of
individual files is determined by your operating system. You can set the file size to more than 4GB
on those operating systems that support big files. You can also use raw disk partitions as data
files. For detailed information on configuring InnoDB tablespace files, see Section 14.2.3, “InnoDB
Configuration”.

• innodb_data_home_dir

Command-Line Format --innodb_data_home_dir=path

Option-File Format innodb_data_home_dir

System Variable Name innodb_data_home_dir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

The common part of the directory path for all InnoDB data files in the system tablespace. This
setting does not affect the location of file-per-table tablespaces when innodb_file_per_table is
enabled. The default value is the MySQL data directory. If you specify the value as an empty string,
you can use absolute file paths in innodb_data_file_path.

• innodb_disable_sort_file_cache

InnoDB Startup Options and System Variables

1784

Command-Line Format --innodb_disable_sort_file_cache=#

Option-File Format innodb_disable_sort_file_cache

System Variable Name innodb_disable_sort_file_cache

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

If enabled, this variable disables the operating system file system cache for merge-sort temporary
files. The effect is to open such files with the equivalent of O_DIRECT.

• innodb_doublewrite

Command-Line Format --innodb-doublewrite

Option-File Format innodb_doublewrite

System Variable Name innodb_doublewrite

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

If this variable is enabled (the default), InnoDB stores all data twice, first to the doublewrite buffer,
then to the actual data files. This variable can be turned off with --skip-innodb_doublewrite
for benchmarks or cases when top performance is needed rather than concern for data integrity or
possible failures.

• innodb_fast_shutdown

Command-Line Format --innodb_fast_shutdown[=#]

Option-File Format innodb_fast_shutdown

System Variable Name innodb_fast_shutdown

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1

0

1

Valid
Values

2

The InnoDB shutdown mode. If the value is 0, InnoDB does a slow shutdown, a full purge and
an insert buffer merge before shutting down. If the value is 1 (the default), InnoDB skips these
operations at shutdown, a process known as a fast shutdown. If the value is 2, InnoDB flushes its
logs and shuts down cold, as if MySQL had crashed; no committed transactions are lost, but the
crash recovery operation makes the next startup take longer.

The slow shutdown can take minutes, or even hours in extreme cases where substantial amounts of
data are still buffered. Use the slow shutdown technique before upgrading or downgrading between

InnoDB Startup Options and System Variables

1785

MySQL major releases, so that all data files are fully prepared in case the upgrade process updates
the file format.

Use innodb_fast_shutdown=2 in emergency or troubleshooting situations, to get the absolute
fastest shutdown if data is at risk of corruption.

• innodb_file_format

Command-Line Format --innodb_file_format=#

Option-File Format innodb_file_format

System Variable Name innodb_file_format

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Default Antelope

Antelope

Valid
Values Barracuda

The file format to use for new InnoDB tables. Currently, Antelope and Barracuda are
supported. This applies only for tables that have their own tablespace, so for it to have an effect,
innodb_file_per_table must be enabled. The Barracuda file format is required for certain
InnoDB features such as table compression.

Be aware that ALTER TABLE operations that recreate InnoDB tables (ALGORITHM=COPY) will use
the current innodb_file_format setting (the conditions outlined above still apply).

• innodb_file_format_check

Command-Line Format --innodb_file_format_check=#

Option-File Format innodb_file_format_check

System Variable Name innodb_file_format_check

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default ON

This variable can be set to 1 or 0 at server startup to enable or disable whether InnoDB
checks the file format tag in the system tablespace (for example, Antelope or Barracuda).
If the tag is checked and is higher than that supported by the current version of InnoDB, an
error occurs and InnoDB does not start. If the tag is not higher, InnoDB sets the value of
innodb_file_format_max to the file format tag.

Note

Despite the default value sometimes being displayed as ON or OFF, always
use the numeric values 1 or 0 to turn this option on or off in your configuration
file or command line.

• innodb_file_format_max

Command-Line Format --innodb_file_format_max=#

InnoDB Startup Options and System Variables

1786

Option-File Format innodb_file_format_max

System Variable Name innodb_file_format_max

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Default Antelope

Antelope

Valid
Values Barracuda

At server startup, InnoDB sets the value of this variable to the file format tag in the system
tablespace (for example, Antelope or Barracuda). If the server creates or opens a table with a
“higher” file format, it sets the value of innodb_file_format_max to that format.

• innodb_file_per_table

Command-Line Format --innodb_file_per_table

Option-File Format innodb_file_per_table

System Variable Name innodb_file_per_table

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores
the data and indexes for each newly created table in a separate .ibd file, rather than in the
system tablespace. The storage for these InnoDB tables is reclaimed when the tables are dropped
or truncated. This setting enables several other InnoDB features, such as table compression.
See Section 14.2.5.2, “InnoDB File-Per-Table Mode” for details about such features as well as
advantages and disadvantages of using per-table tablespaces.

Be aware that enabling innodb_file_per_table also means that an ALTER TABLE operation
will move InnoDB table from the system tablespace to an individual .ibd file in cases where ALTER
TABLE recreates the table (ALGORITHM=COPY).

When innodb_file_per_table is disabled, InnoDB stores the data for all tables and indexes
in the ibdata files that make up the system tablespace. This setting reduces the performance
overhead of filesystem operations for operations such as DROP TABLE or TRUNCATE TABLE. It
is most appropriate for a server environment where entire storage devices are devoted to MySQL
data. Because the system tablespace never shrinks, and is shared across all databases in an
instance, avoid loading huge amounts of temporary data on a space-constrained system when
innodb_file_per_table=OFF. Set up a separate instance in such cases, so that you can drop
the entire instance to reclaim the space.

By default, innodb_file_per_table is enabled as of MySQL 5.6.6, disabled before that.
Consider disabling it if backward compatibility with MySQL 5.5 or 5.1 is a concern. This will prevent
ALTER TABLE from moving InnoDB tables from the system tablespace to individual .ibd files.

innodb_file_per_table is dynamic and can be set ON or OFF using SET GLOBAL. You can also
set this parameter in the MySQL configuration file (my.cnf or my.ini) but this requires shutting
down and restarting the server.

InnoDB Startup Options and System Variables

1787

Dynamically changing the value of this parameter requires the SUPER privilege and immediately
affects the operation of all connections.

• innodb_flush_log_at_timeout

System Variable Name innodb_flush_log_at_timeout

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1

Range 0 .. 2700

Write and flush the logs every N seconds. innodb_flush_log_at_timeout was introduced
in MySQL 5.6.6. It allows the timeout period between flushes to be increased in order to reduce
flushing and avoid impacting performance of binary log group commit. Prior to MySQL 5.6.6, flushing
frequency was once per second. The default setting for innodb_flush_log_at_timeout is also
once per second.

• innodb_flush_log_at_trx_commit

Command-Line Format --innodb_flush_log_at_trx_commit[=#]

Option-File Format innodb_flush_log_at_trx_commit

System Variable Name innodb_flush_log_at_trx_commit

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default 1

0

1

Valid
Values

2

Controls the balance between strict ACID compliance for commit operations, and higher performance
that is possible when commit-related I/O operations are rearranged and done in batches. You can
achieve better performance by changing the default value, but then you can lose up to one second
worth of transactions in a crash.

• The default value of 1 is required for full ACID compliance. With this value, the log buffer is written
out to the log file at each transaction commit and the flush to disk operation is performed on the log
file.

• With a value of 0, any mysqld process crash can erase up to a second of transactions. The log
buffer is written out to the log file once per second and the flush to disk operation is performed on
the log file. No writes from the log buffer to the log file are performed at transaction commit. Once-
per-second flushing is not 100% guaranteed to happen every second, due to process scheduling
issues.

• With a value of 2, any mysqld process crash can erase up to a second of transactions. The log
buffer is written out to the log file at each commit. The flush to disk operation is performed on
the log file once per second. Once-per-second flushing is not 100% guaranteed to happen every
second, due to process scheduling issues.

InnoDB Startup Options and System Variables

1788

• As of MySQL 5.6.6, InnoDB log flushing frequency is controlled by
innodb_flush_log_at_timeout, which allows you to set log flushing frequency to N seconds
(where N is 1 ... 2700, with a default value of 1). However, any mysqld process crash can
erase up to N seconds of transactions.

• DDL changes and other internal InnoDB activities flush the InnoDB log independent of the
innodb_flush_log_at_trx_commit setting.

• InnoDB's crash recovery works regardless of the innodb_flush_log_at_trx_commit setting.
Transactions are either applied entirely or erased entirely.

For durability and consistency in a replication setup that uses InnoDB with transactions:

• If binary logging is enabled, set sync_binlog=1.

• Always set innodb_flush_log_at_trx_commit=1.

Caution

Many operating systems and some disk hardware fool the flush-to-disk
operation. They may tell mysqld that the flush has taken place, even though
it has not. Then the durability of transactions is not guaranteed even with the
setting 1, and in the worst case a power outage can even corrupt InnoDB
data. Using a battery-backed disk cache in the SCSI disk controller or in the
disk itself speeds up file flushes, and makes the operation safer. You can
also try using the Unix command hdparm to disable the caching of disk writes
in hardware caches, or use some other command specific to the hardware
vendor.

• innodb_flush_method

Command-Line Format --innodb_flush_method=name

Option-File Format innodb_flush_method

System Variable Name innodb_flush_method

Variable Scope Global

Dynamic Variable No

Permitted Values

Type
(Linux)

string

Default fdatasync

fdatasync

O_DSYNC

O_DIRECT

Valid
Values

O_DIRECT_NO_FSYNC

Permitted Values

Type
(Solaris)

string

Default fdatasync

fdatasync

O_DSYNC

Valid
Values

O_DIRECT

InnoDB Startup Options and System Variables

1789

O_DIRECT_NO_FSYNC

Permitted Values

Type
(HP-
UX)

string

Default fdatasync

fdatasync

O_DSYNC

O_DIRECT

Valid
Values

O_DIRECT_NO_FSYNC

Controls the system calls used to flush data to the InnoDB data files and log files, which can
influence I/O throughput. This variable is relevant only for Unix and Linux systems. On Windows
systems, the flush method is always async_unbuffered and cannot be changed.

By default, InnoDB uses the fsync() system call to flush both the data and log files. If
innodb_flush_method option is set to O_DSYNC, InnoDB uses O_SYNC to open and flush the
log files, and fsync() to flush the data files. If O_DIRECT is specified (available on some GNU/
Linux versions, FreeBSD, and Solaris), InnoDB uses O_DIRECT (or directio() on Solaris) to
open the data files, and uses fsync() to flush both the data and log files. Note that InnoDB uses
fsync() instead of fdatasync(), and it does not use O_DSYNC by default because there have
been problems with it on many varieties of Unix.

An alternative setting is O_DIRECT_NO_FSYNC: it uses the O_DIRECT flag during flushing I/O, but
skips the fsync() system call afterwards. This setting is suitable for some types of filesystems but
not others. For example, it is not suitable for XFS. If you are not sure whether the filesystem you use
requires an fsync(), for example to preserve all file metadata, use O_DIRECT instead.

Depending on hardware configuration, setting innodb_flush_method to O_DIRECT or
O_DIRECT_NO_FSYNC can have either a positive or negative effect on performance. Benchmark
your particular configuration to decide which setting to use, or whether to keep the default. Examine
the Innodb_data_fsyncs status variable to see the overall number of fsync() calls done with
each setting. The mix of read and write operations in your workload can also affect which setting
performs better for you. For example, on a system with a hardware RAID controller and battery-
backed write cache, O_DIRECT can help to avoid double buffering between the InnoDB buffer pool
and the operating system's filesystem cache. On some systems where InnoDB data and log files
are located on a SAN, the default value or O_DSYNC might be faster for a read-heavy workload
with mostly SELECT statements. Always test this parameter with the same type of hardware and
workload that reflects your production environment. For general I/O tuning advice, see Section 8.5.7,
“Optimizing InnoDB Disk I/O”.

Formerly, a value of fdatasync also specified the default behavior. This value was removed, due
to confusion that a value of fdatasync caused fsync() system calls rather than fdatasync()
for flushing. To obtain the default value now, do not set any value for innodb_flush_method at
startup.

• innodb_flush_neighbors

Command-Line Format --innodb_flush_neighbors

Option-File Format innodb_flush_neighbors

System Variable Name innodb_flush_neighbors

Variable Scope Global

Dynamic Variable Yes

 Permitted Values

InnoDB Startup Options and System Variables

1790

Type enumeration

Default 1

0

1

Valid
Values

2

Specifies whether flushing a page from the InnoDB buffer pool also flushes other dirty pages in the
same extent.

• The default value of 1 flushes contiguous dirty pages in the same extent from the buffer pool.

• A setting of 0 turns innodb_flush_neighbors off and no other dirty pages are flushed from the
buffer pool.

• A setting of 2 flushes dirty pages in the same extent from the buffer pool.

When the table data is stored on a traditional HDD storage device, flushing such neighbor pages
in one operation reduces I/O overhead (primarily for disk seek operations) compared to flushing
individual pages at different times. For table data stored on SSD, seek time is not a significant factor
and you can turn this setting off to spread out the write operations. For general I/O tuning advice, see
Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_flushing_avg_loops

Command-Line Format --innodb_flushing_avg_loops=#

Option-File Format innodb_flushing_avg_loops

System Variable Name innodb_flushing_avg_loops

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 30

Range 1 .. 1000

Number of iterations for which InnoDB keeps the previously calculated snapshot of the flushing
state, controlling how quickly adaptive flushing responds to changing workloads. Increasing the
value makes the rate of flush operations change smoothly and gradually as the workload changes.
Decreasing the value makes adaptive flushing adjust quickly to workload changes, which can cause
spikes in flushing activity if the workload increases and decreases suddenly.

• innodb_force_load_corrupted

Command-Line Format --innodb_force_load_corrupted

Option-File Format innodb_force_load_corrupted

System Variable Name innodb_force_load_corrupted

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

InnoDB Startup Options and System Variables

1791

Lets InnoDB load tables at startup that are marked as corrupted. Use only during troubleshooting, to
recover data that is otherwise inaccessible. When troubleshooting is complete, turn this setting back
off and restart the server.

• innodb_force_recovery

Command-Line Format --innodb_force_recovery=#

Option-File Format innodb_force_recovery

System Variable Name innodb_force_recovery

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 0

Range 0 .. 6

The crash recovery mode, typically only changed in serious troubleshooting situations. Possible
values are from 0 to 6. The meanings of these values are described in Section 14.2.17.2, “Starting
InnoDB on a Corrupted Database”.

Warning

Only set this variable greater than 0 in an emergency situation, to dump your
tables from a corrupt database. As a safety measure, InnoDB prevents any
changes to its data when this variable is greater than 0.

This restriction prohibits some queries that use WHERE or ORDER BY clauses,
because high values can prevent queries from using indexes, to guard
against possible corrupt index data.

The restriction may also cause replication administration commands to
fail with an error, as replication options such as --relay-log-info-
repository=TABLE and --master-info-repository=TABLE store
information in tables in InnoDB.

• innodb_ft_aux_table

Command-Line Format --
innodb_ft_aux_table=#

from 5.7.2

Option-File Format innodb_ft_aux_tablefrom 5.7.2

System Variable Name innodb_ft_aux_table

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Specifies the qualified name of an InnoDB table containing a FULLTEXT index. This variable is
intended for diagnostic purposes.

After you set this variable to a name in the format db_name/table_name, the
INFORMATION_SCHEMA tables INNODB_FT_INDEX_TABLE, INNODB_FT_INDEX_CACHE,
INNODB_FT_CONFIG, INNODB_FT_DELETED, and INNODB_FT_BEING_DELETED will show
information about the search index for the specified table.

InnoDB Startup Options and System Variables

1792

• innodb_ft_cache_size

Command-Line Format --innodb_ft_cache_size=#

Option-File Format innodb_ft_cache_size

System Variable Name innodb_ft_cache_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 8000000

Range 1600000 .. 80000000

The memory allocated for the InnoDB FULLTEXT search index cache, which holds a
parsed document in memory while creating an InnoDB FULLTEXT index. Index inserts and
updates are only committed to disk when the innodb_ft_cache_size size limit is reached.
innodb_ft_cache_size defines the cache size on a per table basis. To set a global limit for all
tables, see innodb_ft_total_cache_size.

• innodb_ft_enable_diag_print

Command-Line Format --innodb_ft_enable_diag_print=#

Option-File Format innodb_ft_enable_diag_print

System Variable Name innodb_ft_enable_diag_print

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Whether to enable additional full-text search (FTS) diagnostic output. This option is primarily
intended for advanced FTS debugging and will not be of interest to most users. Output is printed to
the error log and includes information such as:

• FTS index sync progress (when the FTS cache limit is reached). For example:

FTS SYNC for table test, deleted count: 100 size: 10000 bytes
SYNC words: 100

• FTS optimize progress. For example:

FTS start optimize test
FTS_OPTIMIZE: optimize "mysql"
FTS_OPTIMIZE: processed "mysql"

• FTS index build progress. For example:

Number of doc processed: 1000

• For FTS queries, the query parsing tree, word weight, query processing time, and memory usage
are printed. For example:

FTS Search Processing time: 1 secs: 100 millisec: row(s) 10000

InnoDB Startup Options and System Variables

1793

Full Search Memory: 245666 (bytes), Row: 10000

• innodb_ft_enable_stopword

Command-Line Format --innodb_ft_enable_stopword=#

Option-File Format innodb_ft_enable_stopword

System Variable Name innodb_ft_enable_stopword

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

Specifies that a set of stopwords is associated with an InnoDB FULLTEXT index at the time the
index is created. If the innodb_ft_user_stopword_table option is set, the stopwords are taken
from that table. Else, if the innodb_ft_server_stopword_table option is set, the stopwords are
taken from that table. Otherwise, a built-in set of default stopwords is used.

• innodb_ft_max_token_size

Command-Line Format --innodb_ft_max_token_size=#

Option-File Format innodb_ft_max_token_size

System Variable Name innodb_ft_max_token_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 84

Range 10 .. 252

Maximum length of words that are stored in an InnoDB FULLTEXT index. Setting a limit on this
value reduces the size of the index, thus speeding up queries, by omitting long keywords or arbitrary
collections of letters that are not real words and are not likely to be search terms.

• innodb_ft_min_token_size

Command-Line Format --innodb_ft_min_token_size=#

Option-File Format innodb_ft_min_token_size

System Variable Name innodb_ft_min_token_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 3

Range 0 .. 16

Minimum length of words that are stored in an InnoDB FULLTEXT index. Increasing this value
reduces the size of the index, thus speeding up queries, by omitting common word that are unlikely
to be significant in a search context, such as the English words “a” and “to”. For content using a CJK
(Chinese, Japanese, Korean) character set, specify a value of 1.

InnoDB Startup Options and System Variables

1794

• innodb_ft_num_word_optimize

Command-Line Format --innodb_ft_num_word_optimize=#

Option-File Format innodb_ft_num_word_optimize

System Variable Name innodb_ft_num_word_optimize

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 2000

Number of words to process during each OPTIMIZE TABLE operation on an InnoDB FULLTEXT
index. Because a bulk insert or update operation to a table containing a full-text search index
could require substantial index maintenance to incorporate all changes, you might do a series of
OPTIMIZE TABLE statements, each picking up where the last left off.

• innodb_ft_result_cache_limit

Introduced 5.7.2

Command-Line Format --innodb_ft_result_cache_limit=#

Option-File Format innodb_ft_result_cache_limit

System Variable Name innodb_ft_result_cache_limit

Variable Scope Global

Dynamic Variable Yes

Permitted Values (>= 5.7.2)

Type
(Windows)

numeric

Default 2000000000

Range 1000000 .. 2**32-1

Permitted Values (>= 5.7.2)

Platform
Bit Size

32

Type
(Unix)

numeric

Default 2000000000

Range 1000000 .. 2**32-1

Permitted Values (>= 5.7.2, <= 5.7.3)

Platform
Bit Size

64

Type
(Unix)

numeric

Default 2000000000

Range 1000000 .. 2**64-1

Permitted Values (>= 5.7.4)

Type numeric

Default 2000000000

InnoDB Startup Options and System Variables

1795

Range 1000000 .. 2**32-1

The InnoDB FULLTEXT search (FTS) query result cache limit (defined in bytes) per FTS query
or per thread. Intermediate and final InnoDB FTS query results are handled in memory. Use
innodb_ft_result_cache_limit to place a size limit on the InnoDB FTS query result cache
to avoid excessive memory consumption in case of very large InnoDB FTS query results (millions
or hundreds of millions of rows, for example). Memory is allocated as required when an FTS query
is processed. If the result cache size limit is reached, an error is returned indicating that the query
exceeds the maximum allowed memory.

As of MySQL 5.7.4, the maximum value of innodb_ft_result_cache_limit for all platform
types and platform bit sizes is 2**32-1. Bug #71554.

• innodb_ft_server_stopword_table

Command-Line Format --innodb_ft_server_stopword_table=db_name/table_name

Option-File Format innodb_ft_server_stopword_table

System Variable Name innodb_ft_server_stopword_table

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Default NULL

Name of the table containing a list of words to ignore when creating an InnoDB FULLTEXT index, in
the format db_name/table_name.

Note

The stopword table must be an InnoDB table, containing a single VARCHAR
column named VALUE. The stopword table must exist before you specify its
name in the configuration option value.

• innodb_ft_sort_pll_degree

Command-Line Format --innodb_ft_sort_pll_degree=#

Option-File Format innodb_ft_sort_pll_degree

System Variable Name innodb_ft_sort_pll_degree

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 2

Range 1 .. 32

Number of threads used in parallel to index and tokenize text in an InnoDB FULLTEXT index, when
building a search index for a large table. See innodb_sort_buffer_size for additional usage
information.

• innodb_ft_total_cache_size

Introduced 5.7.2

Command-Line Format --innodb_ft_total_cache_size=#

InnoDB Startup Options and System Variables

1796

Option-File Format innodb_ft_total_cache_size

System Variable Name innodb_ft_total_cache_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 640000000

Range 32000000 .. 1600000000

The total memory allocated for the InnoDB FULLTEXT search index cache for all tables. Creating
numerous tables, each with a full-text search index, could consume a significant portion of available
memory. innodb_ft_total_cache_size, defines a global memory limit for all full-text search
indexes to help avoid excessive memory consumption. If the global limit is reached by an index
operation, a force sync is triggered.

• innodb_ft_user_stopword_table

Command-Line Format --innodb_ft_user_stopword_table=db_name/table_name

Option-File Format innodb_ft_user_stopword_table

System Variable Name innodb_ft_user_stopword_table

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type string

Default NULL

Name of the table containing a list of words to ignore when creating an InnoDB FULLTEXT index, in
the format db_name/table_name.

Note

The stopword table must be an InnoDB table, containing a single VARCHAR
column named VALUE. The stopword table must exist before you specify its
name in the configuration option value.

• innodb_io_capacity

Command-Line Format --innodb_io_capacity=#

Option-File Format innodb_io_capacity

System Variable Name innodb_io_capacity

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 200

Range 100 .. 2**32-1

 Permitted Values

InnoDB Startup Options and System Variables

1797

Platform
Bit Size

64

Type numeric

Default 200

Range 100 .. 2**64-1

The innodb_io_capacity parameter sets an upper limit on the I/O activity performed by the
InnoDB background tasks, such as flushing pages from the buffer pool and merging data from
the insert buffer. The default value is 200. For busy systems capable of higher I/O rates, you can
set a higher value at server startup, to help the server handle the background maintenance work
associated with a high rate of row changes.

The innodb_io_capacity limit is a total limit for all buffer pool instances. When dirty pages are
flushed, the innodb_io_capacity limit is divided equally among buffer pool instances.

As of MySQL 5.7.2, the innodb_io_capacity setting is also used to limit the number of buffer
pool load operations per second when there is other I/O activity being performed by InnoDB
background tasks.

For systems with individual 5400 RPM or 7200 RPM drives, you might lower the value to the former
default of 100.

This parameter should be set to approximately the number of I/O operations that the system
can perform per second. Ideally, keep this setting as low as practical, but not so low that these
background activities fall behind. If the value is too high, data is removed from the buffer pool and
insert buffer too quickly to provide significant benefit from the caching.

The value represents an estimated proportion of the I/O operations per second (IOPS) available to
older-generation disk drives that could perform about 100 IOPS. The current default of 200 reflects
that modern storage devices are capable of much higher I/O rates.

In general, you can increase the value as a function of the number of drives used for InnoDB I/O,
particularly fast drives capable of high numbers of IOPS. For example, systems that use multiple
disks or solid-state disks for InnoDB are likely to benefit from the ability to control this parameter.

Although you can specify a very high number, in practice such large values have little if any benefit;
for example, a value of one million would be considered very high.

You can set the innodb_io_capacity value to any number 100 or greater to a maximum defined
by innodb_io_capacity_max. The default value is 200. You can set the value of this parameter
in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET GLOBAL
command, which requires the SUPER privilege.

See Controlling the InnoDB Master Thread I/O Rate for more guidelines about this option. For
general information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_io_capacity_max

Command-Line Format --innodb_io_capacity_max=#

Option-File Format innodb_io_capacity_max

System Variable Name innodb_io_capacity_max

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

InnoDB Startup Options and System Variables

1798

Type numeric

Default see description

Range 2000 .. 2**32-1

Permitted Values

Platform
Bit Size

64

Type
(Windows)

numeric

Default 2000

Range 2000 .. 2**32-1

Permitted Values

Platform
Bit Size

64

Type
(Unix)

numeric

Default see description

Range 2000 .. 2**64-1

The limit up to which InnoDB is allowed to extend the innodb_io_capacity setting in case
of emergency. If you specify an innodb_io_capacity setting at startup and do not specify a
value for innodb_io_capacity_max, the innodb_io_capacity_max value defaults to twice
the value of innodb_io_capacity, with a lower limit of 2000. 2000 is also the initial default
innodb_io_capacity_max configuration value.

The innodb_io_capacity_max setting is a total limit for all buffer pool instances.

For a brief period during MySQL 5.6 development, this variable was known as
innodb_max_io_capacity.

• innodb_large_prefix

Command-Line Format --innodb_large_prefix

Option-File Format innodb_large_prefix

System Variable Name innodb_large_prefix

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Enable this option to allow index key prefixes longer than 767 bytes (up to 3072 bytes), for InnoDB
tables that use the DYNAMIC and COMPRESSED row formats. (Creating such tables also requires the
option values innodb_file_format=barracuda and innodb_file_per_table=true.) See
Section 14.2.6.7, “Limits on InnoDB Tables” for the relevant maximums associated with index key
prefixes under various settings.

For tables using the REDUNDANT and COMPACT row formats, this option does not affect the allowed
key prefix length. It does introduce a new error possibility. When this setting is enabled, attempting
to create an index prefix with a key length greater than 3072 for a REDUNDANT or COMPACT table
causes an ER_INDEX_COLUMN_TOO_LONG error.

InnoDB Startup Options and System Variables

1799

• innodb_lock_wait_timeout

Command-Line Format --innodb_lock_wait_timeout=#

Option-File Format innodb_lock_wait_timeout

System Variable Name innodb_lock_wait_timeout

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 50

Range 1 .. 1073741824

The length of time in seconds an InnoDB transaction waits for a row lock before giving up. The
default value is 50 seconds. A transaction that tries to access a row that is locked by another
InnoDB transaction waits at most this many seconds for write access to the row before issuing the
following error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

When a lock wait timeout occurs, the current statement is rolled back (not the entire transaction). To
have the entire transaction roll back, start the server with the --innodb_rollback_on_timeout
option. See also Section 14.2.17.4, “InnoDB Error Handling”.

You might decrease this value for highly interactive applications or OLTP systems, to display user
feedback quickly or put the update into a queue for processing later. You might increase this value
for long-running back-end operations, such as a transform step in a data warehouse that waits for
other large insert or update operations to finish.

innodb_lock_wait_timeout applies to InnoDB row locks only. A MySQL table lock does not
happen inside InnoDB and this timeout does not apply to waits for table locks.

The lock wait timeout value does not apply to deadlocks, because InnoDB detects them immediately
and rolls back one of the deadlocked transactions.

innodb_lock_wait_timeout can be set at runtime with the SET GLOBAL or SET SESSION
statement. Changing the GLOBAL setting requires the SUPER privilege and affects the operation
of all clients that subsequently connect. Any client can change the SESSION setting for
innodb_lock_wait_timeout, which affects only that client.

• innodb_locks_unsafe_for_binlog

Deprecated 5.6.3

Command-Line Format --innodb_locks_unsafe_for_binlog

Option-File Format innodb_locks_unsafe_for_binlog

System Variable Name innodb_locks_unsafe_for_binlog

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

InnoDB Startup Options and System Variables

1800

This variable affects how InnoDB uses gap locking for searches and index scans. As of MySQL
5.6.3, innodb_locks_unsafe_for_binlog is deprecated and will be removed in a future MySQL
release.

Normally, InnoDB uses an algorithm called next-key locking that combines index-row locking with
gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table
index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-level locks
are actually index-record locks. In addition, a next-key lock on an index record also affects the “gap”
before that index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap
preceding the index record. If one session has a shared or exclusive lock on record R in an index,
another session cannot insert a new index record in the gap immediately before R in the index order.
See Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key Locks”.

By default, the value of innodb_locks_unsafe_for_binlog is 0 (disabled), which means that
gap locking is enabled: InnoDB uses next-key locks for searches and index scans. To enable the
variable, set it to 1. This causes gap locking to be disabled: InnoDB uses only index-record locks for
searches and index scans.

Enabling innodb_locks_unsafe_for_binlog does not disable the use of gap locking for
foreign-key constraint checking or duplicate-key checking.

The effect of enabling innodb_locks_unsafe_for_binlog is similar to but not identical to
setting the transaction isolation level to READ COMMITTED:

• Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions,
whereas the isolation level can be set globally for all sessions, or individually per session.

• innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation
level can be set at startup or changed at runtime.

READ COMMITTED therefore offers finer and more flexible control than
innodb_locks_unsafe_for_binlog. For additional details about the effect of isolation level on
gap locking, see Section 13.3.6, “SET TRANSACTION Syntax”.

Enabling innodb_locks_unsafe_for_binlog may cause phantom problems because other
sessions can insert new rows into the gaps when gap locking is disabled. Suppose that there is an
index on the id column of the child table and that you want to read and lock all rows from the table
having an identifier value larger than 100, with the intention of updating some column in the selected
rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is greater than 100. If the locks
set on the index records in that range do not lock out inserts made in the gaps, another session
can insert a new row into the table. Consequently, if you were to execute the same SELECT again
within the same transaction, you would see a new row in the result set returned by the query. This
also means that if new items are added to the database, InnoDB does not guarantee serializability.
Therefore, if innodb_locks_unsafe_for_binlog is enabled, InnoDB guarantees at most
an isolation level of READ COMMITTED. (Conflict serializability is still guaranteed.) For additional
information about phantoms, see Section 14.2.2.7, “Avoiding the Phantom Problem Using Next-Key
Locking”.

Enabling innodb_locks_unsafe_for_binlog has additional effects:

• For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes.
Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
This greatly reduces the probability of deadlocks, but they can still happen.

InnoDB Startup Options and System Variables

1801

• For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read,
returning the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads
the row again and this time InnoDB either locks it or waits for a lock on it.

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

In this case, table has no indexes, so searches and index scans use the hidden clustered index for
record locking (see Clustered and Secondary Indexes).

Suppose that one client performs an UPDATE using these statements:

SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second client performs an UPDATE by executing these statements following
those of the first client:

SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row,
and then determines whether to modify it. If InnoDB does not modify the row and
innodb_locks_unsafe_for_binlog is enabled, it releases the lock. Otherwise, InnoDB retains
the lock until the end of the transaction. This affects transaction processing as follows.

If innodb_locks_unsafe_for_binlog is disabled, the first UPDATE acquires x-locks and does
not release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because first update has
retained locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If innodb_locks_unsafe_for_binlog is enabled, the first UPDATE acquires x-locks and
releases those for rows that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed
version of each row to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock

InnoDB Startup Options and System Variables

1802

x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock

• innodb_log_buffer_size

Command-Line Format --innodb_log_buffer_size=#

Option-File Format innodb_log_buffer_size

System Variable Name innodb_log_buffer_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 8388608

Range 262144 .. 4294967295

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. The default value
is 8MB. A large log buffer enables large transactions to run without a need to write the log to disk
before the transactions commit. Thus, if you have transactions that update, insert, or delete many
rows, making the log buffer larger saves disk I/O. For general I/O tuning advice, see Section 8.5.7,
“Optimizing InnoDB Disk I/O”.

• innodb_log_compressed_pages

Command-Line Format --innodb_log_compressed_pages=#

Option-File Format innodb_log_compressed_pages

System Variable Name innodb_log_compressed_pages

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

Specifies whether images of re-compressed pages are stored in InnoDB redo logs.

• innodb_log_file_size

Command-Line Format --innodb_log_file_size=#

Option-File Format innodb_log_file_size

System Variable Name innodb_log_file_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 50331648

Range 1048576 .. 512GB / innodb_log_files_in_group

The size in bytes of each log file in a log group. The combined size of log files
(innodb_log_file_size * innodb_log_files_in_group) cannot exceed a maximum value
that is slightly less than 512GB. A pair of 255 GB log files, for example, would allow you to approach

InnoDB Startup Options and System Variables

1803

the limit but not exceed it. The default value is 48MB. Sensible values range from 1MB to 1/N-th
of the size of the buffer pool, where N is the number of log files in the group. The larger the value,
the less checkpoint flush activity is needed in the buffer pool, saving disk I/O. Larger log files also
make crash recovery slower, although improvements to recovery performance in MySQL 5.5 and
higher make the log file size less of a consideration. For general I/O tuning advice, see Section 8.5.7,
“Optimizing InnoDB Disk I/O”.

• innodb_log_files_in_group

Command-Line Format --innodb_log_files_in_group=#

Option-File Format innodb_log_files_in_group

System Variable Name innodb_log_files_in_group

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 2

Range 2 .. 100

The number of log files in the log group. InnoDB writes to the files in a circular fashion.
The default (and recommended) value is 2. The location of these files is specified by
innodb_log_group_home_dir. The combined size of log files (innodb_log_file_size *
innodb_log_files_in_group) can be up to 512GB.

• innodb_log_group_home_dir

Command-Line Format --innodb_log_group_home_dir=path

Option-File Format innodb_log_group_home_dir

System Variable Name innodb_log_group_home_dir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

The directory path to the InnoDB redo log files, whose number is specified by
innodb_log_files_in_group. If you do not specify any InnoDB log variables, the default is to
create two files named ib_logfile0 and ib_logfile1 in the MySQL data directory. Their size is
given by the size of the innodb_log_file_size system variable.

• innodb_log_write_ahead_size

Introduced 5.7.4

Command-Line Format --innodb_log_write_ahead_size=#

Option-File Format innodb_log_write_ahead_size

System Variable Name innodb_log_write_ahead_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 8192

InnoDB Startup Options and System Variables

1804

Range 512 (log file block size) .. Equal to
innodb_page_size

The write-ahead block size for the redo log, in bytes. To avoid “read-on-write”, set
innodb_log_write_ahead_size to match the operating system or file system cache block size.
Read-on-write occurs when redo log blocks are not entirely cached to the operating system or file
system due to a mismatch between write-ahead block size for redo logs and operating system or file
system cache block size.

Valid values for innodb_log_write_ahead_size are multiples of the InnoDB log file block size
(2^n). The minimum value is the InnoDB log file block size (512). Write-ahead does not occur when
the minimum value is specified. The maximum value is equal to innodb_page_size. If you specify
a value for innodb_log_write_ahead_size that is larger than the innodb_page_size value,
the innodb_log_write_ahead_size value is truncated to the innodb_page_size value.

Setting the innodb_log_write_ahead_size value too low in relation to the operating system or
file system cache block size will result in “read-on-write”. Setting the value too high may have a slight
impact on fsync performance for log file writes due to several blocks being written at once.

• innodb_lru_scan_depth

Command-Line Format --innodb_lru_scan_depth=#

Option-File Format innodb_lru_scan_depth

System Variable Name innodb_lru_scan_depth

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 1024

Range 100 .. 2**32-1

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1024

Range 100 .. 2**64-1

A parameter that influences the algorithms and heuristics for the flush operation for the InnoDB
buffer pool. Primarily of interest to performance experts tuning I/O-intensive workloads. It specifies,
per buffer pool instance, how far down the buffer pool LRU list the page_cleaner thread scans
looking for dirty pages to flush. This is a background operation performed once a second. If you
have spare I/O capacity under a typical workload, increase the value. If a write-intensive workload
saturates your I/O capacity, decrease the value, especially if you have a large buffer pool. For
general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct

Command-Line Format --innodb_max_dirty_pages_pct=#

Option-File Format innodb_max_dirty_pages_pct

System Variable Name innodb_max_dirty_pages_pct

InnoDB Startup Options and System Variables

1805

Variable Scope Global

Dynamic Variable Yes

Permitted Values (<= 5.7.4)

Type numeric

Default 75

Range 0 .. 99

Permitted Values (>= 5.7.5)

Type numeric

Default 75

Range 0 .. 99.99

InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages does not exceed
this value. The default value is 75.

The innodb_max_dirty_pages_pct setting establishes a target for flushing activity. It does not
affect the rate of flushing. For information about managing the rate of flushing, see Controlling the
Flushing Rate of Dirty Pages from the InnoDB Buffer Pool.

For additional information about this variable, see Improvements to Buffer Pool Flushing. For general
I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct_lwm

Command-Line Format --innodb_max_dirty_pages_pct_lwm=#

Option-File Format innodb_max_dirty_pages_pct_lwm

System Variable Name innodb_max_dirty_pages_pct_lwm

Variable Scope Global

Dynamic Variable Yes

Permitted Values (<= 5.7.4)

Type numeric

Default 0

Range 0 .. 99

Permitted Values (>= 5.7.5)

Type numeric

Default 0

Range 0 .. 99.99

Low water mark representing percentage of dirty pages where preflushing is enabled to control the
dirty page ratio. The default of 0 disables the pre-flushing behavior entirely. For additional information
about this variable, see Improvements to Buffer Pool Flushing.

• innodb_max_purge_lag

Command-Line Format --innodb_max_purge_lag=#

Option-File Format innodb_max_purge_lag

System Variable Name innodb_max_purge_lag

Variable Scope Global

Dynamic Variable Yes

InnoDB Startup Options and System Variables

1806

Permitted Values

Type numeric

Default 0

Range 0 .. 4294967295

This variable controls how to delay INSERT, UPDATE, and DELETE operations when purge
operations are lagging (see Section 14.2.2.12, “InnoDB Multi-Versioning”). The default value is 0 (no
delays).

The InnoDB transaction system maintains a list of transactions that have index records delete-
marked by UPDATE or DELETE operations. The length of this list represents the purge_lag value.
When purge_lag exceeds innodb_max_purge_lag, each INSERT, UPDATE, and DELETE
operation is delayed.

To prevent excessive delays in extreme situations where purge_lag becomes huge, you can put a
cap on the amount of delay by setting the innodb_max_purge_lag_delay configuration option.
The delay is computed at the beginning of a purge batch.

A typical setting for a problematic workload might be 1 million, assuming that transactions are small,
only 100 bytes in size, and it is permissible to have 100MB of unpurged InnoDB table rows.

The lag value is displayed as the history list length in the TRANSACTIONS section of InnoDB Monitor
output. For example, if the output includes the following lines, the lag value is 20:

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20

For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_max_purge_lag_delay

Command-Line Format --innodb_max_purge_lag_delay=#

Option-File Format innodb_max_purge_lag_delay

System Variable Name innodb_max_purge_lag_delay

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Min
Value

0

Specifies the maximum delay in milliseconds for the delay imposed by the
innodb_max_purge_lag configuration option. Any non-zero value represents an upper limit on
the delay period computed from the formula based on the value of innodb_max_purge_lag. The
default of zero means that there is no upper limit imposed on the delay interval.

For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_monitor_disable

InnoDB Startup Options and System Variables

1807

Command-Line Format --innodb_monitor_disable=[counter|module|pattern|all]

Option-File Format innodb_monitor_disable

System Variable Name innodb_monitor_disable

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Turns off one or more counters in the INFORMATION_SCHEMA.INNODB_METRICS table. For usage
information, see Section 19.30.19, “The INFORMATION_SCHEMA INNODB_METRICS Table”.

• innodb_monitor_enable

Command-Line Format --innodb_monitor_enable=[counter|module|pattern|all]

Option-File Format innodb_monitor_enable

System Variable Name innodb_monitor_enable

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Turns on one or more counters in the INFORMATION_SCHEMA.INNODB_METRICS table. For usage
information, see Section 19.30.19, “The INFORMATION_SCHEMA INNODB_METRICS Table”.

• innodb_monitor_reset

Command-Line Format --innodb_monitor_reset=[counter|module|pattern|all]

Option-File Format innodb_monitor_reset

System Variable Name innodb_monitor_reset

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Resets to zero the count value for one or more counters in the
INFORMATION_SCHEMA.INNODB_METRICS table. For usage information, see Section 19.30.19,
“The INFORMATION_SCHEMA INNODB_METRICS Table”.

• innodb_monitor_reset_all

Command-Line Format --innodb_monitor_reset_all=[counter|module|pattern|
all]

Option-File Format innodb_monitor_reset_all

System Variable Name innodb_monitor_reset_all

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

InnoDB Startup Options and System Variables

1808

Resets all values (minimum, maximum, and so on) for one or more counters in the
INFORMATION_SCHEMA.INNODB_METRICS table. For usage information, see Section 19.30.19,
“The INFORMATION_SCHEMA INNODB_METRICS Table”.

• innodb_old_blocks_pct

Command-Line Format --innodb_old_blocks_pct=#

Option-File Format innodb_old_blocks_pct

System Variable Name innodb_old_blocks_pct

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 37

Range 5 .. 95

Specifies the approximate percentage of the InnoDB buffer pool used for the old block sublist. The
range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool). Often used in combination
with innodb_old_blocks_time. See Making the Buffer Pool Scan Resistant for more information.
See Section 8.9.1, “The InnoDB Buffer Pool” for information about buffer pool management, such as
the LRU algorithm and eviction policies.

• innodb_old_blocks_time

Command-Line Format --innodb_old_blocks_time=#

Option-File Format innodb_old_blocks_time

System Variable Name innodb_old_blocks_time

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1000

Range 0 .. 2**32-1

Non-zero values protect against the buffer pool being filled up by data that is referenced only for a
brief period, such as during a full table scan. Increasing this value offers more protection against full
table scans interfering with data cached in the buffer pool.

Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after
its first access before it can be moved to the new sublist. If the value is 0, a block inserted into the
old sublist moves immediately to the new sublist the first time it is accessed, no matter how soon
after insertion the access occurs. If the value is greater than 0, blocks remain in the old sublist until
an access occurs at least that many ms after the first access. For example, a value of 1000 causes
blocks to stay in the old sublist for 1 second after the first access before they become eligible to
move to the new sublist.

The default value is 1000.

This variable is often used in combination with innodb_old_blocks_pct. See Making the
Buffer Pool Scan Resistant for more information. See Section 8.9.1, “The InnoDB Buffer Pool” for
information about buffer pool management, such as the LRU algorithm and eviction policies.

InnoDB Startup Options and System Variables

1809

• innodb_online_alter_log_max_size

Command-Line Format --innodb_online_alter_log_max_size=#

Option-File Format innodb_online_alter_log_max_size

System Variable Name innodb_online_alter_log_max_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 134217728

Range 65536 .. 2**64-1

Specifies an upper limit on the size of the temporary log files used during online DDL operations
for InnoDB tables. There is one such log file for each index being created or table being altered.
This log file stores data inserted, updated, or deleted in the table during the DDL operation. The
temporary log file is extended when needed by the value of innodb_sort_buffer_size, up to
the maximum specified by innodb_online_alter_log_max_size. If any temporary log file
exceeds the upper size limit, the ALTER TABLE operation fails and all uncommitted concurrent DML
operations are rolled back. Thus, a large value for this option allows more DML to happen during
an online DDL operation, but also causes a longer period at the end of the DDL operation when the
table is locked to apply the data from the log.

• innodb_open_files

Command-Line Format --innodb_open_files=#

Option-File Format innodb_open_files

System Variable Name innodb_open_files

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

Range 10 .. 4294967295

This variable is relevant only if you use multiple InnoDB tablespaces. It specifies the maximum
number of .ibd files that MySQL can keep open at one time. The minimum value is 10. The
default value is 300 if innodb_file_per_table is not enabled, and the higher of 300 and
table_open_cache otherwise.

The file descriptors used for .ibd files are for InnoDB tables only. They are independent of those
specified by the --open-files-limit server option, and do not affect the operation of the table
cache. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_optimize_fulltext_only

Command-Line Format --innodb_optimize_fulltext_only=#

Option-File Format innodb_optimize_fulltext_only

System Variable Name innodb_optimize_fulltext_only

Variable Scope Global

Dynamic Variable Yes

InnoDB Startup Options and System Variables

1810

Permitted Values

Type boolean

Default OFF

Changes the way the OPTIMIZE TABLE statement operates on InnoDB tables. Intended to be
enabled temporarily, during maintenance operations for InnoDB tables with FULLTEXT indexes.

By default, OPTIMIZE TABLE reorganizes the data in the clustered index of the table. When
this option is enabled, OPTIMIZE TABLE skips this reorganization of the table data, and instead
processes the newly added, deleted, and updated token data for a FULLTEXT index, See FULLTEXT
Indexes for more information about FULLTEXT indexes for InnoDB tables.

• innodb_page_cleaners

Introduced 5.7.4

Command-Line Format --innodb_page_cleaners=#

Option-File Format innodb_page_cleaners

System Variable Name innodb_page_cleaners

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 1

Range 1 .. 64

The number of page_cleaner threads that flush dirty pages from buffer pool instances. The
page_cleaner threads perform flush list and LRU flushing. A single page_cleaner thread was
introduced in MySQL 5.6.2 to offload buffer pool flushing work from the InnoDB master thread. As
of MySQL 5.7.4, InnoDB provides support for multiple page_cleaner threads. The default value of 1
maintains the pre-MySQL 5.7.4 configuration in which there is a single page_cleaner thread. When
there are multiple page_cleaner threads, buffer pool flushing tasks for each buffer pool instance are
dispatched to idle page_cleaner threads.

If your workload is write-IO bound (when flushing dirty pages from buffer pool instances to data files)
and if your system hardware has available capacity, increasing the number of page_cleaner threads
may help improve write-IO throughput.

• innodb_page_size

Command-Line Format --innodb_page_size=#k

Option-File Format innodb_page_size

System Variable Name innodb_page_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type enumeration

Default 16384

4k

8k

Valid
Values

16k

InnoDB Startup Options and System Variables

1811

4096

8192

16384

Specifies the page size for all InnoDB tablespaces in a MySQL instance. This value is set when the
instance is created and remains constant afterwards. You can specify page size using the values
16k (the default), 8k, or 4k.

The default, with the largest page size, is appropriate for a wide range of workloads, particularly for
queries involving table scans and DML operations involving bulk updates. Smaller page sizes might
be more efficient for OLTP workloads involving many small writes, where contention can be an issue
when a single page contains many rows. Smaller pages might also be efficient with SSD storage
devices, which typically use small block sizes. Keeping the InnoDB page size close to the storage
device block size minimizes the amount of unchanged data that is rewritten to disk. For general I/O
tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_print_all_deadlocks

Command-Line Format --innodb_print_all_deadlocks=#

Option-File Format innodb_print_all_deadlocks

System Variable Name innodb_print_all_deadlocks

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

When this option is enabled, information about all deadlocks in InnoDB user transactions is
recorded in the mysqld error log. Otherwise, you see information about only the last deadlock,
using the SHOW ENGINE INNODB STATUS command. An occasional InnoDB deadlock is not
necessarily an issue, because InnoDB detects the condition immediately, and rolls back one of the
transactions automatically. You might use this option to troubleshoot why deadlocks are happening
if an application does not have appropriate error-handling logic to detect the rollback and retry its
operation. A large number of deadlocks might indicate the need to restructure transactions that
issue DML or SELECT ... FOR UPDATE statements for multiple tables, so that each transaction
accesses the tables in the same order, thus avoiding the deadlock condition.

• innodb_purge_batch_size

Command-Line Format --innodb_purge_batch_size=#

Option-File Format innodb_purge_batch_size

System Variable Name innodb_purge_batch_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 300

Range 1 .. 5000

The granularity of changes, expressed in units of redo log records, that trigger a purge operation,
flushing the changed buffer pool blocks to disk. This option is intended for tuning performance in

InnoDB Startup Options and System Variables

1812

combination with the setting innodb_purge_threads=n, and typical users do not need to modify
it.

• innodb_purge_threads

Command-Line Format --innodb_purge_threads=#

Option-File Format innodb_purge_threads

System Variable Name innodb_purge_threads

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 1

Range 1 .. 32

The number of background threads devoted to the InnoDB purge operation. The default and
minimum value of 1 signifies that the purge operation is always performed by background threads,
never as part of the master thread. Non-zero values runs the purge operation in one or more
background threads, which can reduce internal contention within InnoDB, improving scalability.
Increasing the value to greater than 1 creates that many separate purge threads, which can improve
efficiency on systems where DML operations are performed on multiple tables. The maximum is 32.

• innodb_random_read_ahead

Command-Line Format --innodb_random_read_ahead=#

Option-File Format innodb_random_read_ahead

System Variable Name innodb_random_read_ahead

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Enables the random read-ahead technique for optimizing InnoDB I/O. This is a setting that was
originally on by default, then was removed in MySQL 5.5, and now is available but turned off by
default. See Changes in the Read-Ahead Algorithm for details about the performance considerations
for the different types of read-ahead requests. For general I/O tuning advice, see Section 8.5.7,
“Optimizing InnoDB Disk I/O”.

• innodb_read_ahead_threshold

Command-Line Format --innodb_read_ahead_threshold=#

Option-File Format innodb_read_ahead_threshold

System Variable Name innodb_read_ahead_threshold

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 56

Range 0 .. 64

InnoDB Startup Options and System Variables

1813

Controls the sensitivity of linear read-ahead that InnoDB uses to prefetch pages into the buffer pool.
If InnoDB reads at least innodb_read_ahead_threshold pages sequentially from an extent (64
pages), it initiates an asynchronous read for the entire following extent. The permissible range of
values is 0 to 64. A value of 0 disables read-ahead. For the default of 56, InnoDB must read at least
56 pages sequentially from an extent to initiate an asynchronous read for the following extent.

Knowing how many pages are read through this read-ahead mechanism, and how many of them
are evicted from the buffer pool without ever being accessed, can be useful to help fine-tune
the innodb_read_ahead_threshold parameter. As of MySQL 5.5, SHOW ENGINE INNODB
STATUS output displays counter information from the Innodb_buffer_pool_read_ahead and
Innodb_buffer_pool_read_ahead_evicted global status variables. These variables indicate
the number of pages brought into the buffer pool by read-ahead requests, and the number of such
pages evicted from the buffer pool without ever being accessed respectively. These counters provide
global values since the last server restart.

SHOW ENGINE INNODB STATUS also shows the rate at which the read-ahead pages are read in
and the rate at which such pages are evicted without being accessed. The per-second averages are
based on the statistics collected since the last invocation of SHOW ENGINE INNODB STATUS and
are displayed in the BUFFER POOL AND MEMORY section of the output.

See Changes in the Read-Ahead Algorithm for more information. For general I/O tuning advice, see
Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• innodb_read_io_threads

Command-Line Format --innodb_read_io_threads=#

Option-File Format innodb_read_io_threads

System Variable Name innodb_read_io_threads

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 4

Range 1 .. 64

The number of I/O threads for read operations in InnoDB. The default value is 4. Its counterpart for
write threads is innodb_write_io_threads. See Multiple Background InnoDB I/O Threads for
more information. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can
exceed system limits. Ideally, increase the aio-max-nr setting; as a
workaround, you might reduce the settings for one or both of the MySQL
configuration options.

• innodb_read_only

Command-Line Format --innodb_read_only=#

Option-File Format innodb_read_only

System Variable Name innodb_read_only

Variable Scope Global

InnoDB Startup Options and System Variables

1814

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

Starts the server in read-only mode. For distributing database applications or data sets on read-
only media. Can also be used in data warehouses to share the same data directory between
multiple instances. See Section 14.2.3.1, “Configuring InnoDB for Read-Only Operation” for usage
instructions.

• innodb_replication_delay

Command-Line Format --innodb_replication_delay=#

Option-File Format innodb_replication_delay

System Variable Name innodb_replication_delay

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 4294967295

The replication thread delay (in ms) on a slave server if innodb_thread_concurrency is
reached.

• innodb_rollback_on_timeout

Command-Line Format --innodb_rollback_on_timeout

Option-File Format innodb_rollback_on_timeout

System Variable Name innodb_rollback_on_timeout

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default OFF

In MySQL 5.7, InnoDB rolls back only the last statement on a transaction timeout by default. If --
innodb_rollback_on_timeout is specified, a transaction timeout causes InnoDB to abort and
roll back the entire transaction (the same behavior as in MySQL 4.1).

• innodb_rollback_segments

Command-Line Format --innodb_rollback_segments=#

Option-File Format innodb_rollback_segments

System Variable Name innodb_rollback_segments

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

InnoDB Startup Options and System Variables

1815

Default 128

Range 1 .. 128

Defines how many of the rollback segments in the system tablespace that InnoDB uses within a
transaction. This setting, while still valid, is replaced by innodb_undo_logs.

• innodb_sort_buffer_size

Command-Line Format --innodb_sort_buffer_size=#

Option-File Format innodb_sort_buffer_size

System Variable Name innodb_sort_buffer_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 1048576

Range 65536 .. 67108864

Specifies the size of sort buffers used for sorting data during creation of an InnoDB index. The size
specified defines the amount of data filled in memory for an internal sort and written out to disk,
which can be referred to as a “run”. During the merge phase, pairs of buffers of the specified size
are “read in” and merged. The larger the setting, the fewer “runs” and merges there are, which is
important to understand from a tuning perspective.

This sort area is only used for merge sorts during index creation, not during later index maintenance
operations. Buffers are deallocated when index creation completes.

The value of this option also controls the amount by which the temporary log file is extended, to
record concurrent DML during online DDL operations.

Before this setting was made configurable, the size was hardcoded to 1048576 bytes (1MB), and
that value remains the default.

During an ALTER TABLE or CREATE TABLE statement that creates an index, 3 buffers are
allocated, each with a size defined by this option. Additionally, auxiliary pointers are allocated to rows
in the sort buffer so that the sort can run on pointers (as opposed to moving rows during the sort
operation).

For a typical sort operation, a formula such as this can be used to estimate memory consumption:

(6 /*FTS_NUM_AUX_INDEX*/ *
(3*@@global.innodb_sort_buffer_size) + 2 * (
@@global.innodb_sort_buffer_size/dict_index_get_min_size(index)*/)
* 8 /*64-bit sizeof *buf->tuples*/")

“@@global.innodb_sort_buffer_size/dict_index_get_min_size(index)”
indicates the maximum tuples held. “2 * (@@global.innodb_sort_buffer_size/
dict_index_get_min_size(index)/) * 8 /*64-bit size of *buf->tuples*/
indicates auxiliary pointers allocated.”.

Note

For 32-bit, multiply by 4 instead of 8.

For parallel sorts on an index, multiply by the innodb_ft_sort_pll_degree setting:

InnoDB Startup Options and System Variables

1816

(6 /*FTS_NUM_AUX_INDEX*/ @@global.innodb_ft_sort_pll_degree)

• innodb_spin_wait_delay

Command-Line Format --innodb_spin_wait_delay=#

Option-File Format innodb_spin_wait_delay

System Variable Name innodb_spin_wait_delay

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 6

Range 0 .. 4294967295

The maximum delay between polls for a spin lock. The low-level implementation of this mechanism
varies depending on the combination of hardware and operating system, so the delay does not
correspond to a fixed time interval. The default value is 6. See Control of Spin Lock Polling for more
information.

• innodb_stats_auto_recalc

Command-Line Format --innodb_stats_auto_recalc=#

Option-File Format innodb_stats_auto_recalc

System Variable Name innodb_stats_auto_recalc

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

Causes InnoDB to automatically recalculate persistent statistics after the data in a table is
changed substantially. The threshold value is currently 10% of the rows in the table. This
setting applies to tables created when the innodb_stats_persistent option is enabled,
or where the clause STATS_PERSISTENT=1 is enabled by a CREATE TABLE or ALTER
TABLE statement. The amount of data sampled to produce the statistics is controlled by the
innodb_stats_persistent_sample_pages configuration option.

For additional information about innodb_stats_auto_recalc, see Persistent Optimizer Statistics
for InnoDB Tables.

• innodb_stats_method

Command-Line Format --innodb_stats_method=name

Option-File Format innodb_stats_method

System Variable Name innodb_stats_method

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

InnoDB Startup Options and System Variables

1817

Default nulls_equal

nulls_equal

nulls_unequal

Valid
Values

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for InnoDB tables. This variable has three possible values, nulls_equal, nulls_unequal, and
nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single
value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values
are considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored,
NULL values are ignored.

The method that is used for generating table statistics influences how the optimizer chooses indexes
for query execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

• innodb_stats_on_metadata

Command-Line Format --innodb_stats_on_metadata

Option-File Format innodb_stats_on_metadata

System Variable Name innodb_stats_on_metadata

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

When this variable is enabled, InnoDB updates statistics when metadata statements such as SHOW
TABLE STATUS or SHOW INDEX are run, or when accessing the INFORMATION_SCHEMA tables
TABLES or STATISTICS. (These updates are similar to what happens for ANALYZE TABLE.) When
disabled, InnoDB does not update statistics during these operations. Leaving this setting disabled
can improve access speed for schemas that have a large number of tables or indexes. It can also
improve the stability of execution plans for queries that involve InnoDB tables.

To change the setting, issue the statement SET GLOBAL innodb_stats_on_metadata=mode,
where mode is either ON or OFF (or 1 or 0). Changing this setting requires the SUPER privilege and
immediately affects the operation of all connections.

This variable is disabled by default.

• innodb_stats_persistent

Command-Line Format --innodb_stats_persistent=setting

Option-File Format innodb_stats_persistent

System Variable Name innodb_stats_persistent

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

OFF

Valid
Values ON

InnoDB Startup Options and System Variables

1818

0

1

Specifies whether the InnoDB index statistics produced by the ANALYZE TABLE command are
stored on disk, remaining consistent until a subsequent ANALYZE TABLE. Otherwise, the statistics
are recalculated more frequently, such as at each server restart, which can lead to variations in
query execution plans. This setting is stored with each table when the table is created. You can
specify or change it through SQL with the STATS_PERSISTENT clause of the CREATE TABLE and
ALTER TABLE commands.

• innodb_stats_persistent_sample_pages

Command-Line Format --innodb_stats_persistent_sample_pages=#

Option-File Format innodb_stats_persistent_sample_pages

System Variable Name innodb_stats_persistent_sample_pages

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 20

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. Increasing the value improves the accuracy
of index statistics, which can improve the query execution plan, at the expense of increased I/O
during the execution of ANALYZE TABLE for an InnoDB table.

This option only applies when the innodb_stats_persistent setting is turned on for a table;
when that option is turned off for a table, the innodb_stats_transient_sample_pages setting
applies instead.

• innodb_stats_sample_pages

Deprecated 5.6.3

Command-Line Format --innodb_stats_sample_pages=#

Option-File Format innodb_stats_sample_pages

System Variable Name innodb_stats_sample_pages

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 8

Range 1 .. 2**64-1

Deprecated, use innodb_stats_transient_sample_pages instead.

• innodb_stats_transient_sample_pages

Command-Line Format --innodb_stats_transient_sample_pages=#

Option-File Format innodb_stats_transient_sample_pages

System Variable Name innodb_stats_transient_sample_pages

Variable Scope Global

InnoDB Startup Options and System Variables

1819

Dynamic Variable Yes

Permitted Values

Type numeric

Default 8

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. The default value is 8. Increasing the
value improves the accuracy of index statistics, which can improve the query execution plan, at the
expense of increased I/O when opening an InnoDB table or recalculating statistics.

This option only applies when the innodb_stats_persistent setting is turned off for a table;
when this option is turned on for a table, the innodb_stats_persistent_sample_pages
setting applies instead. Takes the place of the innodb_stats_sample_pages option. See
Section 14.2.12.5, “Controlling Optimizer Statistics Estimation” for more information.

• innodb_status_output

Introduced 5.7.4

Command-Line Format --innodb_status_output

Option-File Format innodb_status_output

System Variable Name innodb_status_output

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Used to enable or disable periodic output for the standard InnoDB Monitor. Also used in combination
with innodb_status_output_locks to enable or disable periodic output for the InnoDB Lock
Monitor. See Section 14.2.12.4, “InnoDB Monitors” for additional information.

• innodb_status_output_locks

Introduced 5.7.4

Command-Line Format --innodb_status_output_locks

Option-File Format innodb_status_output_locks

System Variable Name innodb_status_output_locks

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Used to enable or disable periodic output for the InnoDB Lock Monitor. Must be used in combination
with innodb_status_output. See Section 14.2.12.4, “InnoDB Monitors” for additional
information.

• innodb_strict_mode

Command-Line Format --innodb_strict_mode=#

Option-File Format innodb_strict_mode

InnoDB Startup Options and System Variables

1820

System Variable Name innodb_strict_mode

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

When innodb_strict_mode is ON, InnoDB returns errors rather than warnings for certain
conditions. The default value is OFF.

Strict mode helps guard against ignored typos and syntax errors in SQL, or other unintended
consequences of various combinations of operational modes and SQL statements. When
innodb_strict_mode is ON, InnoDB raises error conditions in certain cases, rather than
issuing a warning and processing the specified statement (perhaps with unintended behavior).
This is analogous to sql_mode in MySQL, which controls what SQL syntax MySQL accepts, and
determines whether it silently ignores errors, or validates input syntax and data values.

The innodb_strict_mode setting affects the handling of syntax errors for CREATE TABLE, ALTER
TABLE and CREATE INDEX statements. innodb_strict_mode also enables a record size check,
so that an INSERT or UPDATE never fails due to the record being too large for the selected page
size.

Oracle recommends enabling innodb_strict_mode when using ROW_FORMAT and
KEY_BLOCK_SIZE clauses on CREATE TABLE, ALTER TABLE, and CREATE INDEX statements.
When innodb_strict_mode is OFF, InnoDB ignores conflicting clauses and creates the table or
index, with only a warning in the message log. The resulting table might have different behavior than
you intended, such as having no compression when you tried to create a compressed table. When
innodb_strict_mode is ON, such problems generate an immediate error and the table or index is
not created, avoiding a troubleshooting session later.

You can turn innodb_strict_mode ON or OFF on the command line when you start mysqld, or in
the configuration file my.cnf or my.ini. You can also enable or disable innodb_strict_mode
at runtime with the statement SET [GLOBAL|SESSION] innodb_strict_mode=mode, where
mode is either ON or OFF. Changing the GLOBAL setting requires the SUPER privilege and affects the
operation of all clients that subsequently connect. Any client can change the SESSION setting for
innodb_strict_mode, and the setting affects only that client.

• innodb_support_xa

Command-Line Format --innodb_support_xa

Option-File Format innodb_support_xa

System Variable Name innodb_support_xa

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default TRUE

Enables InnoDB support for two-phase commit in XA transactions, causing an extra disk flush for
transaction preparation. This setting is the default. The XA mechanism is used internally and is
essential for any server that has its binary log turned on and is accepting changes to its data from
more than one thread. If you turn it off, transactions can be written to the binary log in a different
order from the one in which the live database is committing them. This can produce different data
when the binary log is replayed in disaster recovery or on a replication slave. Do not turn it off on a

InnoDB Startup Options and System Variables

1821

replication master server unless you have an unusual setup where only one thread is able to change
data.

For a server that is accepting data changes from only one thread, it is safe and recommended to
turn off this option to improve performance for InnoDB tables. For example, you can turn it off on
replication slaves where only the replication SQL thread is changing data.

You can also turn off this option if you do not need it for safe binary logging or replication, and you
also do not use an external XA transaction manager.

• innodb_sync_array_size

Command-Line Format --innodb_sync_array_size=#

Option-File Format innodb_sync_array_size

System Variable Name innodb_sync_array_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 1

Range 1 .. 1024

Splits an internal data structure used to coordinate threads, for higher concurrency in workloads
with large numbers of waiting threads. This setting must be configured when the MySQL instance
is starting up, and cannot be changed afterward. Increasing this option value is recommended for
workloads that frequently produce a large number of waiting threads, typically greater than 768.

• innodb_sync_spin_loops

Command-Line Format --innodb_sync_spin_loops=#

Option-File Format innodb_sync_spin_loops

System Variable Name innodb_sync_spin_loops

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 30

Range 0 .. 4294967295

The number of times a thread waits for an InnoDB mutex to be freed before the thread is
suspended. The default value is 30.

• innodb_table_locks

Command-Line Format --innodb_table_locks

Option-File Format innodb_table_locks

System Variable Name innodb_table_locks

Variable Scope Global, Session

Dynamic Variable Yes

 Permitted Values

InnoDB Startup Options and System Variables

1822

Type boolean

Default TRUE

If autocommit = 0, InnoDB honors LOCK TABLES; MySQL does not return from LOCK
TABLES ... WRITE until all other threads have released all their locks to the table. The default
value of innodb_table_locks is 1, which means that LOCK TABLES causes InnoDB to lock a
table internally if autocommit = 0.

In MySQL 5.7, innodb_table_locks = 0 has no effect for tables locked explicitly with
LOCK TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK
TABLES ... WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.

• innodb_temp_data_file_path

Introduced 5.7.1

Command-Line Format --innodb_temp_data_file_path=file

Option-File Format innodb_temp_data_file_path

System Variable Name innodb_temp_data_file_path

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

Default ibtmp1:12M:autoextend

The paths to individual InnoDB temporary tablespace data files and their sizes. The full directory
path to each data file is formed by concatenating innodb_data_home_dir to each path specified
here. The file sizes are specified in KB, MB, or GB (1024MB) by appending K, M, or G to the size
value. The sum of the sizes of the files must be at least slightly larger than 12MB. If you do not
specify innodb_temp_data_file_path, the default behavior is to create a single auto-extending
temporary tablespace data file, slightly larger than 12MB, named ibtmp1. The size limit of individual
files is determined by your operating system. You can set the file size to more than 4GB on those
operating systems that support big files. Use of raw disk partitions as temporary data files is not
supported.

The name of a InnoDB temporary tablespace data file cannot be the same as the name of a InnoDB
data file. Any inability or error creating a temporary tablespace data file is treated as fatal and server
startup will be refused. The temporary tablespace has a dynamically generated space-id, which can
change on each server restart.

• innodb_thread_concurrency

Command-Line Format --innodb_thread_concurrency=#

Option-File Format innodb_thread_concurrency

System Variable Name innodb_thread_concurrency

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 1000

InnoDB Startup Options and System Variables

1823

InnoDB tries to keep the number of operating system threads concurrently inside InnoDB less than
or equal to the limit given by this variable. Once the number of threads reaches this limit, additional
threads are placed into a wait state within a FIFO queue for execution. Threads waiting for locks are
not counted in the number of concurrently executing threads.

The correct value for this variable is dependent on environment and workload. Try a range of
different values to determine what value works for your applications. A recommended value is 2
times the number of CPUs plus the number of disks.

The range of this variable is 0 to 1000. A value of 0 (the default) is interpreted as infinite concurrency
(no concurrency checking). Disabling thread concurrency checking enables InnoDB to create as
many threads as it needs. A value of 0 also disables the queries inside InnoDB and queries
in queue counters in the ROW OPERATIONS section of SHOW ENGINE INNODB STATUS
output.

• innodb_thread_sleep_delay

Command-Line Format --innodb_thread_sleep_delay=#

Option-File Format innodb_thread_sleep_delay

System Variable Name innodb_thread_sleep_delay

Variable Scope Global

Dynamic Variable Yes

Permitted Values (<= 5.7.3)

Platform
Bit Size

32

Type numeric

Default 10000

Range 0 .. 4294967295

Permitted Values (<= 5.7.3)

Platform
Bit Size

64

Type numeric

Default 10000

Range 0 .. 18446744073709551615

Permitted Values (>= 5.7.4)

Type numeric

Default 10000

Range 0 .. 1000000

How long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The
default value is 10,000. A value of 0 disables sleep. In MySQL 5.6.3 and higher, you can
set the configuration option innodb_adaptive_max_sleep_delay to the highest value
you would allow for innodb_thread_sleep_delay, and InnoDB automatically adjusts
innodb_thread_sleep_delay up or down depending on the current thread-scheduling activity.
This dynamic adjustment helps the thread scheduling mechanism to work smoothly during times
when the system is lightly loaded and when it is operating near full capacity.

• innodb_undo_directory

Command-Line Format --innodb_undo_directory=name

InnoDB Startup Options and System Variables

1824

Option-File Format innodb_undo_directory

System Variable Name innodb_undo_directory

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

Default .

The relative or absolute directory path where InnoDB creates separate tablespaces for the undo
logs. Typically used to place those logs on a different storage device. Used in conjunction with
innodb_undo_logs and innodb_undo_tablespaces, which determine the disk layout of the
undo logs outside the system tablespace. Its default value of . represents the same directory where
InnoDB creates its other log files by default.

• innodb_undo_logs

Command-Line Format --innodb_undo_logs=#

Option-File Format innodb_undo_logs

System Variable Name innodb_undo_logs

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 128

Range 0 .. 128

Defines how many of the rollback segments in the system tablespace that InnoDB uses
within a transaction. This setting is appropriate for tuning performance if you observe mutex
contention related to the undo logs. Replaces the innodb_rollback_segments setting.
For the total number of available undo logs, rather than the number of active ones, see the
Innodb_available_undo_logs status variable.

Although you can increase or decrease how many rollback segments are used within a transaction,
the number of rollback segments physically present in the system never decreases. Thus you
might start with a low value for this parameter and gradually increase it, to avoid allocating rollback
segments that are not needed later. If innodb_undo_logs is not set, it defaults to the maximum
value of 128. For information about managing rollback segments, see Section 14.2.2.12, “InnoDB
Multi-Versioning”.

• innodb_undo_tablespaces

Command-Line Format --innodb_undo_tablespaces=#

Option-File Format innodb_undo_tablespaces

System Variable Name innodb_undo_tablespaces

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 0

Range 0 .. 126

InnoDB Startup Options and System Variables

1825

The number of tablespace files that the undo logs are divided between, when you use a non-
zero innodb_undo_logs setting. By default, all the undo logs are part of the system tablespace
and the system tablespace will always contain one undo tablespace in addition to those
configured by innodb_undo_tablespaces. Because the undo logs can become large during
long-running transactions, splitting the undo logs between multiple tablespaces reduces the
maximum size of any one tablespace. The tablespace files are created in the location defined by
innodb_undo_directory, with names of the form undoN, where N is a sequential series of
integers, including leading zeros. The default size of undo tablespaces files is 10M. The number of
innodb_undo_tablespaces must be set prior to initializing InnoDB. Attempting to restart InnoDB
after changing the number of innodb_undo_tablespaces will result in a failed start with an error
stating that InnoDB did not find the expected number of undo tablespaces.

• innodb_use_native_aio

Command-Line Format --innodb_use_native_aio=#

Option-File Format innodb_use_native_aio

System Variable Name innodb_use_native_aio

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default ON

Specifies whether to use the Linux asynchronous I/O subsystem. This variable applies to Linux
systems only, and cannot be changed while the server is running.

Normally, you do not need to touch this option, because it is enabled by default. If a problem with
the asynchronous I/O subsystem in the OS prevents InnoDB from starting, start the server with this
variable disabled (use innodb_use_native_aio=0 in the option file). This option could also be
turned off automatically during startup, if InnoDB detects a potential problem such as a combination
of tmpdir location, tmpfs filesystem, and Linux kernel that that does not support AIO on tmpfs.

• innodb_use_sys_malloc

Deprecated 5.6.3

Removed 5.7.4

Command-Line Format --innodb_use_sys_malloc=#

Option-File Format innodb_use_sys_malloc

System Variable Name innodb_use_sys_malloc

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default ON

Whether InnoDB uses the operating system memory allocator (ON) or its own (OFF). The default
value is ON. See Using Operating System Memory Allocators for more information.

innodb_use_sys_malloc was deprecated in MySQL 5.6.3 and removed in MySQL 5.7.4.

• innodb_version

InnoDB Startup Options and System Variables

1826

The InnoDB version number. In 5.7, the separate numbering for InnoDB does not apply and this
value is the same as for the version variable.

• innodb_write_io_threads

Command-Line Format --innodb_write_io_threads=#

Option-File Format innodb_write_io_threads

System Variable Name innodb_write_io_threads

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 4

Range 1 .. 64

The number of I/O threads for write operations in InnoDB. The default value is 4. Its counterpart
for read threads is innodb_read_io_threads. See Multiple Background InnoDB I/O Threads for
more information. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can
exceed system limits. Ideally, increase the aio-max-nr setting; as a
workaround, you might reduce the settings for one or both of the MySQL
configuration options.

You should also take into consideration the value of sync_binlog, which controls synchronization of
the binary log to disk.

For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

14.2.13.1 Changes to InnoDB Startup Options and System Variables

New Parameters

The following InnoDB configuration parameters were added in 5.7. See Section 14.2.13, “InnoDB
Startup Options and System Variables” for parameter descriptions and the specific release in which
parameters were added.

• innodb_buffer_pool_dump_pct

• innodb_ft_result_cache_limit

• innodb_ft_total_cache_size

• innodb_log_write_ahead_size

• innodb_page_cleaners

• innodb_status_output

• innodb_status_output_locks

• innodb_temp_data_file_path

Removed Parameters

InnoDB Backup and Recovery

1827

The following InnoDB configuration parameters were removed in 5.7. See Section 14.2.13, “InnoDB
Startup Options and System Variables” for parameter descriptions and the specific release in which
parameters were removed.

• innodb_additional_mem_pool_size

• innodb_use_sys_malloc

14.2.14 InnoDB Backup and Recovery

The key to safe database management is making regular backups. Depending on your data volume,
number of MySQL servers, and database workload, you can use these techniques, alone or in
combination: hot backup with MySQL Enterprise Backup; cold backup by copying files while the
MySQL server is shut down; physical backup for fast operation (especially for restore); logical backup
with mysqldump for smaller data volumes or to record the structure of schema objects.

Hot Backups

The mysqlbackup command, part of the MySQL Enterprise Backup component, lets you back up a
running MySQL instance, including InnoDB and MyISAM tables, with minimal disruption to operations
while producing a consistent snapshot of the database. When mysqlbackup is copying InnoDB
tables, reads and writes to both InnoDB and MyISAM tables can continue. During the copying of
MyISAM tables, reads (but not writes) to those tables are permitted. MySQL Enterprise Backup can
also create compressed backup files, and back up subsets of tables and databases. In conjunction with
MySQL’s binary log, users can perform point-in-time recovery. MySQL Enterprise Backup is part of the
MySQL Enterprise subscription. For more details, see Section 23.2, “MySQL Enterprise Backup”.

Cold Backups

If you can shut down your MySQL server, you can make a binary backup that consists of all files used
by InnoDB to manage its tables. Use the following procedure:

1. Do a slow shutdown of the MySQL server and make sure that it stops without errors.

2. Copy all InnoDB data files (ibdata files and .ibd files) into a safe place.

3. Copy all the .frm files for InnoDB tables to a safe place.

4. Copy all InnoDB log files (ib_logfile files) to a safe place.

5. Copy your my.cnf configuration file or files to a safe place.

Alternative Backup Types

In addition to making binary backups as just described, regularly make dumps of your tables with
mysqldump. A binary file might be corrupted without you noticing it. Dumped tables are stored
into text files that are human-readable, so spotting table corruption becomes easier. Also, because
the format is simpler, the chance for serious data corruption is smaller. mysqldump also has a --
single-transaction option for making a consistent snapshot without locking out other clients. See
Section 7.3.1, “Establishing a Backup Policy”.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy of
your database at database sites requiring high availability.

Performing Recovery

To recover your InnoDB database to the present from the time at which the binary backup was made,
you must run your MySQL server with binary logging turned on, even before taking the backup. To
achieve point-in-time recovery after restoring a backup, you can apply changes from the binary log that
occurred after the backup was made. See Section 7.5, “Point-in-Time (Incremental) Recovery Using
the Binary Log”.

InnoDB Backup and Recovery

1828

To recover from a crash of your MySQL server, the only requirement is to restart it. InnoDB
automatically checks the logs and performs a roll-forward of the database to the present. InnoDB
automatically rolls back uncommitted transactions that were present at the time of the crash. During
recovery, mysqld displays output something like this:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

If your database becomes corrupted or disk failure occurs, you must perform the recovery using a
backup. In the case of corruption, first find a backup that is not corrupted. After restoring the base
backup, do a point-in-time recovery from the binary log files using mysqlbinlog and mysql to restore
the changes that occurred after the backup was made.

In some cases of database corruption, it is enough just to dump, drop, and re-create one or a few
corrupt tables. You can use the CHECK TABLE SQL statement to check whether a table is corrupt,
although CHECK TABLE naturally cannot detect every possible kind of corruption. You can use the
Tablespace Monitor to check the integrity of the file space management inside the tablespace files.

In some cases, apparent database page corruption is actually due to the operating system corrupting
its own file cache, and the data on disk may be okay. It is best first to try restarting your computer.
Doing so may eliminate errors that appeared to be database page corruption. If MySQL still has trouble
starting because of InnoDB consistency problems, see Section 14.2.17.2, “Starting InnoDB on a
Corrupted Database” for steps to start the instance in a diagnostic mode where you can dump the data.

14.2.14.1 The InnoDB Recovery Process

InnoDB crash recovery consists of several steps:

The first step, applying the redo log, is performed during initialization, before accepting any
connections. If all changes were flushed from the buffer pool to the tablespaces (ibdata* and *.ibd
files) at the time of the shutdown or crash, the redo log application can be skipped. If the redo log files
are missing at startup, InnoDB skips the redo log application.

Removing redo logs to speed up the recovery process is not recommended, even if some data loss is
acceptable. Removing redo logs should only ever be considered an option after a clean shutdown is
performed, with innodb_fast_shutdown set to 0 or 1.

The remaining steps after redo log application do not depend on the redo log (other than for logging the
writes) and are performed in parallel with normal processing. These include:

• Rolling back incomplete transactions: Any transactions that were active at the time of crash or fast
shutdown. The time it takes to roll back an incomplete transaction can be three or four times the
amount of time a transaction is active before it is interrupted, depending on server load.

InnoDB and MySQL Replication

1829

You cannot cancel transactions that are in the process of being rolled back. In extreme cases, when
rolling back transactions is expected to take a long time, it may be faster to start InnoDB with an
innodb_force_recovery setting of 3 or greater.

• Insert buffer merge: Applying changes from the insert buffer (part of the system tablespace) to leaf
pages of secondary indexes, as the index pages are read to the buffer pool.

• Purge: Deleting delete-marked records that are no longer visible for any active transaction.

Of these, only rollback of incomplete transactions is special to crash recovery. The insert buffer merge
and the purge are performed during normal processing.

In most situations, even if the MySQL server was killed unexpectedly in the middle of heavy activity,
the recovery process happens automatically and no action is needed from the DBA. If a hardware
failure or severe system error corrupted InnoDB data, MySQL might refuse to start. In that case, see
Section 14.2.17.2, “Starting InnoDB on a Corrupted Database” for the steps to troubleshoot such an
issue.

14.2.15 InnoDB and MySQL Replication

MySQL replication works for InnoDB tables as it does for MyISAM tables. It is also possible to use
replication in a way where the storage engine on the slave is not the same as the original storage
engine on the master. For example, you can replicate modifications to an InnoDB table on the master
to a MyISAM table on the slave.

To set up a new slave for a master, make a copy of the InnoDB tablespace and the log
files, as well as the .frm files of the InnoDB tables, and move the copies to the slave. If the
innodb_file_per_table option is enabled, copy the .ibd files as well. For the proper procedure to
do this, see Section 14.2.14, “InnoDB Backup and Recovery”.

To make a new slave without taking down the master or an existing slave, use the MySQL Enterprise
Backup product. If you can shut down the master or an existing slave, take a cold backup of the
InnoDB tablespaces and log files and use that to set up a slave.

Transactions that fail on the master do not affect replication at all. MySQL replication is based on the
binary log where MySQL writes SQL statements that modify data. A transaction that fails (for example,
because of a foreign key violation, or because it is rolled back) is not written to the binary log, so it is
not sent to slaves. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

Replication and CASCADE. Cascading actions for InnoDB tables on the master are replicated
on the slave only if the tables sharing the foreign key relation use InnoDB on both the master and
slave. This is true whether you are using statement-based or row-based replication. Suppose that you
have started replication, and then create two tables on the master using the following CREATE TABLE
statements:

CREATE TABLE fc1 (
 i INT PRIMARY KEY,
 j INT
) ENGINE = InnoDB;

CREATE TABLE fc2 (
 m INT PRIMARY KEY,
 n INT,
 FOREIGN KEY ni (n) REFERENCES fc1 (i)
 ON DELETE CASCADE
) ENGINE = InnoDB;

Suppose that the slave does not have InnoDB support enabled. If this is the case, then the tables
on the slave are created, but they use the MyISAM storage engine, and the FOREIGN KEY option is
ignored. Now we insert some rows into the tables on the master:

master> INSERT INTO fc1 VALUES (1, 1), (2, 2);

InnoDB and MySQL Replication

1830

Query OK, 2 rows affected (0.09 sec)
Records: 2 Duplicates: 0 Warnings: 0

master> INSERT INTO fc2 VALUES (1, 1), (2, 2), (3, 1);
Query OK, 3 rows affected (0.19 sec)
Records: 3 Duplicates: 0 Warnings: 0

At this point, on both the master and the slave, table fc1 contains 2 rows, and table fc2 contains 3
rows, as shown here:

master> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

master> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

slave> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

slave> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

Now suppose that you perform the following DELETE statement on the master:

master> DELETE FROM fc1 WHERE i=1;
Query OK, 1 row affected (0.09 sec)

Due to the cascade, table fc2 on the master now contains only 1 row:

master> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 2 | 2 |
+---+---+
1 row in set (0.00 sec)

However, the cascade does not propagate on the slave because on the slave the DELETE for fc1
deletes no rows from fc2. The slave's copy of fc2 still contains all of the rows that were originally
inserted:

slave> SELECT * FROM fc2;

InnoDB Integration with memcached

1831

+---+---+
| m | n |
+---+---+
1	1
3	1
2	2
+---+---+
3 rows in set (0.00 sec)

This difference is due to the fact that the cascading deletes are handled internally by the InnoDB
storage engine, which means that none of the changes are logged.

14.2.16 InnoDB Integration with memcached

The InnoDB memcached plugin delivers an integrated memcached daemon that automatically stores
and retrieves data from InnoDB tables, turning the MySQL server into a fast “key-value store” for
single-row insert, update, or delete operations. You can access the same InnoDB tables through SQL
for convenience, complex queries, bulk operations, application compatibility, and other strengths of
traditional database software.

This “NoSQL-style” interface uses the familiar memcached API to speed up database operations,
letting InnoDB handle memory caching using its buffer pool mechanism. Data modified through
memcached operations such as ADD, SET, INCR are stored to disk, using the familiar InnoDB
mechanisms such as change buffering, the doublewrite buffer, and crash recovery. The combination
of memcached simplicity and InnoDB durability provides users with the best of both worlds, as
explained in Section 14.2.16.1, “Benefits of the InnoDB / memcached Combination”. For architectural
details about how the components fit together, see Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”.

14.2.16.1 Benefits of the InnoDB / memcached Combination

This section outlines advantages and usage scenarios for the memcached interface to InnoDB tables
introduced in Section 14.2.16, “InnoDB Integration with memcached”. The combination of InnoDB
tables and memcached offers advantages over using either by themselves:

• Raw performance for simple lookups. Direct access to the InnoDB storage engine avoids the
parsing and planning overhead of SQL. Running memcached in the same process space as the
MySQL server avoids the network overhead of passing requests back and forth.

• Data is stored in a MySQL database to protect against crashes, outages, and corruption.

• The transfer between memory and disk is handled automatically, simplifying application logic.

• Data can be unstructured or structured, depending on the type of application. You can make an all-
new table for the data, or map the NoSQL-style processing to one or more existing tables.

• You can still access the underlying table through SQL, for reporting, analysis, ad hoc queries, bulk
loading, set operations such as union and intersection, and other operations well suited to the
expressiveness and flexibility of SQL.

• You can ensure high availability of the NoSQL data by using this feature on a master server in
combination with MySQL replication.

• The integration of memcached with MySQL provides a painless way to make the in-memory data
persistent, so you can use it for more significant kinds of data. You can put more add, incr, and
similar write operations into your application, without worrying that the data could disappear at any
moment. You can stop and start the memcached server without losing updates made to the cached
data. To guard against unexpected outages, you can take advantage of InnoDB crash recovery,
replication, and backup procedures.

• The way InnoDB does fast primary key lookups is a natural fit for memcached single-item queries.
The direct, low-level database access path used by the memcached plugin is much more efficient for
key-value lookups than equivalent SQL queries.

InnoDB Integration with memcached

1832

• The serialization features of memcached, which can turn complex data structures, binary files, or
even code blocks into storeable strings, offer a simple way to get such objects into a database.

• Because you can access the underlying data through SQL, you can produce reports, search or
update across multiple keys, and call functions such as AVG() and MAX() on the memcached data.
All of these operations are expensive or complicated with the standalone memcached.

• You do not need to manually load data into memcached at startup. As particular keys are requested
by an application, the values are retrieved from the database automatically, and cached in memory
using the InnoDB buffer pool.

• Because memcached consumes relatively little CPU, and its memory footprint is easy to control, it
can run comfortably alongside a MySQL instance on the same system.

• Because data consistency is enforced through the usual mechanism as with regular InnoDB tables,
you do not have to worry about stale memcached data or fallback logic to query the database in the
case of a missing key.

14.2.16.2 Architecture of InnoDB and memcached Integration

This section describes how the memcached daemon is integrated into the MySQL Server, to help
understand how this approach compares with other techniques that combine NoSQL components or
interfaces with a MySQL back-end.

When integrated with MySQL Server, memcached is implemented as a MySQL plugin daemon,
accessing the InnoDB storage engine directly and bypassing the SQL layer:

Features provided in the current release:

• memcached as a daemon plugin of mysqld: both mysqld and memcached run in the same process
space, with very low latency access to data.

InnoDB Integration with memcached

1833

• Direct access to InnoDB tables, bypassing the SQL parser, the optimizer, and even the Handler API
layer.

• Standard memcached protocols, both the text-based protocol and the binary protocol. The InnoDB +
memcached combination passes all 55 compatibility tests from the memcapable command.

• Multi-column support: you can map multiple columns into the “value” part of the key/value store, with
column values delimited by a user-specified separator character.

• By default, you use the memcached protocol to read and write data directly to InnoDB, and let
MySQL manage the in-memory caching through the InnoDB buffer pool. The default settings
represent the combination of high reliability with the fewest surprises for database applications. For
example, the default settings avoid uncommitted data on the database side, or stale data returned for
memcached get requests.

• Advanced users can configure the system as a traditional memcached server, with all data cached
only in the memcached default engine (memory), or use a combination of the “memcached default
engine” (memory caching) and the InnoDB memcached engine (InnoDB as backend persistent
storage).

• You can control how often data is passed back and forth between InnoDB and
memcached operations through the innodb_api_bk_commit_interval,
daemon_memcached_r_batch_size, and daemon_memcached_w_batch_size configuration
options. Both the batch size options default to a value of 1 for maximum reliability.

• You can specify any memcached configuration options through the MySQL configuration variable
daemon_memcached_option. For example, you might change the port that memcached listens on,
reduce the maximum number of simultaneous connections, change the maximum memory size for a
key/value pair, or enable debugging messages for the error log.

• A configuration option innodb_api_trx_level lets you control the transaction isolation level
on queries processed by the memcached interface. Although memcached has no concept of
transactions, you might use this property to control how soon memcached sees changes caused by
SQL statements, if you issue DML statements on the same table that memcached interfaces with. By
default, it is set to READ UNCOMMITTED.

• Another configuration option is innodb_api_enable_mdl. “MDL” stands for “metadata locking”.
This basically locks the table from the MySQL level, so that the mapped table cannot be dropped or
altered by DDL through the SQL interface. Without the lock, the table can be dropped from MySQL
layer, but will be kept in the InnoDB storage until memcached or any other user stops using it.

Differences Between Using memcached Standalone or with InnoDB

MySQL users might already be familiar with using memcached along with MySQL, as described in
Section 15.6, “Using MySQL with memcached”. This section describes the similarities and differences
between the information in that section, and when using the InnoDB integration features of the
memcached that is built into MySQL. The link at the start of each item goes to the associated
information about the traditional memcached server.

• Installation: Because the memcached library comes with the MySQL server, installation and setup
are straightforward. You run a SQL script to set up a table for memcached to use, issue a one-time
install plugin statement to enable memcached, and add to the MySQL configuration file or
startup script any desired memcached options, for example to use a different port. You might still
install the regular memcached distribution to get the additional utilities such as memcp, memcat, and
memcapable.

• Deployment: It is typical to run large numbers of low-capacity memcached servers. Because the
InnoDB + memcached combination has a 1:1 ratio between database and memcached servers,
the typical deployment involves a smaller number of moderate or high-powered servers, machines
that were already running MySQL. The benefit of this server configuration is more for improving the

InnoDB Integration with memcached

1834

efficiency of each individual database server than in tapping into unused memory or distributing
lookups across large numbers of servers. In the default configuration, very little memory is used
for memcached, and the in-memory lookups are served from the InnoDB buffer pool, which
automatically caches the most recently used and most frequently used data. As in a traditional
MySQL server instance, keep the value of the innodb_buffer_pool_size configuration option
as high as practical (without causing paging at the OS level), so that as much of the workload as
possible is done in memory.

• Expiry: By default (that is, with the caching policy innodb_only), the latest data from the InnoDB
table is always returned, so the expiry options have no practical effect. If you change the caching
policy to caching or cache-only, the expiry options work as usual, but requested data might be
stale if it was updated in the underlying table before it expires from the memory cache.

• Namespaces: memcached is like a single giant directory, where to keep files from conflicting with
each other you might give them elaborate names with prefixes and suffixes. The integrated InnoDB
/ memcached server lets you use these same naming conventions for keys, with one addition. Key
names of the format @@table_id.key.table_id are decoded to reference a specific a table,
using mapping data from the innodb_memcache.containers table. The key is looked up in or
written to the specified table.

The @@ notation only works for individual calls to the get, add, and set functions, not the others
such as incr or delete. To designate the default table for all subsequent memcached operations
within a session, perform a get request using the @@ notation and a table ID, but without the key
portion. For example:

get @@table_x

Subsequent get, set, incr, delete and other operations use the table designated by table_x in
the innodb_memcache.containers.name column.

• Hashing and distribution: The default configuration, with the caching policy innodb_only, is
suitable for the traditional deployment configuration where all data is available on all servers, such as
a set of replication slave servers.

If you physically divide the data, as in a sharded configuration, you can split the data across
several machines running the InnoDB and memcached combined server, and use the traditional
memcached hashing mechanism to route requests to a particular machine. On the MySQL side,
typically you would let all the data be inserted by add requests to memcached so the appropriate
values were stored in the database on the appropriate server.

These types of deployment best practices are still being codified.

• Memory usage: By default (with the caching policy innodb_only), the memcached protocol passes
information back and forth with InnoDB tables, and the fixed-size InnoDB buffer pool handles the
in-memory lookups rather than memcached memory usage growing and shrinking. Relatively little
memory is used on the memcached side.

If you switch the caching policy to caching or cache-only, the normal rules of memcached
memory usage apply. Memory for the memcached data values is allocated in terms of “slabs”. You
can control the slab size and maximum memory used for memcached.

Either way, you can monitor and troubleshoot the integrated memcached daemon using the familiar
statistics system, accessed through the standard protocol, for example over a telnet session.
Because extra utilities are not included with the integrated daemon, to use the memcached-tool
script, install a full memcached distribution.

• Thread usage: MySQL threads and memcached threads must co-exist on the same server, so any
limits imposed on threads by the operating system apply to this total number.

InnoDB Integration with memcached

1835

• Log usage: Because the memcached daemon is run alongside the MySQL server and writes to
stderr, the -v, -vv, and -vvv options for logging write their output to the MySQL error log.

• memcached operations: All the familiar operations such as get, set, add, and delete are
available. Serialization (that is, the exact string format to represent complex data structures) depends
on the language interface.

• Using memcached as a MySQL front end: That is what the InnoDB integration with memcached is
all about. Putting these components together improves the performance of your application. Making
InnoDB handle data transfers between memory and disk simplifies the logic of your application.

• Utilities: The MySQL server includes the libmemcached library but not the additional command-line
utilities. To get the commands such as memcp, memcat, and memcapable commands, install a full
memcached distribution. When memrm and memflush remove items from the cache, they are also
removed from the underlying InnoDB table.

• Programming interfaces: You can access the MySQL server through the InnoDB and memcached
combination using the same language as always: C and C++, Java, Perl, Python, PHP, and
Ruby. Specify the server hostname and port as with any other memcached server. By default, the
integrated memcached server listens on the same port as usual, 11211. You can use both the
text and binary protocols. You can customize the behavior of the memcached functions at runtime.
Serialization (that is, the exact string format to represent complex data structures) depends on the
language interface.

• Frequently asked questions: MySQL has had an extensive memcached FAQ for several releases.
In MySQL 5.7, the answers are largely the same, except that using InnoDB tables as a storage
medium for memcached data means that you can use this combination for more write-intensive
applications than before, rather than as a read-only cache.

For a more detailed look at the workings of this feature, see Section 14.2.16.7, “Internals of the InnoDB
memcached Plugin”.

14.2.16.3 Getting Started with InnoDB Memcached Plugin

This section describes the steps to activate the InnoDB / memcached integration on a MySQL Server.
Because the memcached daemon is tightly integrated with the MySQL Server to avoid network traffic
and minimize latency, you perform this process on each MySQL instance that uses this feature.

Note

Before setting up the memcached interface for any data, consult
Section 14.2.16.4, “Security Considerations for the InnoDB memcached Plugin”
to understand the security procedures needed to prevent unauthorized access.

Prerequisites for the InnoDB memcached Plugin

Before you set up the plugin and the internal tables, verify that your server has the required
prerequisite software.

Platform Support

Currently, the memcached Daemon Plugin is only supported on Linux, Solaris, and OS X platforms.

Software Prerequisites

You must have libevent installed, since it is required by memcached. The way to get this library is
different if you use the MySQL installer or build from source, as described in the following sections.

Using a MySQL Installation Package

When you use a MySQL installer, the libevent library is not included. Use the particular method for
your operating system to download and install libevent 1.4.3 or later: for example, depending on the

InnoDB Integration with memcached

1836

operating system, you might use the command apt-get, yum, or port install. For example, on
Ubuntu Linux:

sudo apt-get install libevent-dev

The libraries for memcached and the InnoDB plugin for memcached are put into the right place by the
MySQL installer. For typical operation, the files lib/plugin/libmemcached.so and lib/plugin/
innodb_engine.so are used.

Building from Source

For a brief introduction on the setup steps, see the file README-innodb_memcached in the source
distribution in plugin/innodb_memcached. This is a more detailed explanation of that procedure.

If you have the source code release, libevent 1.4.3 is bundled with the package and is located at the
top level of the MySQL source code directory. The bundled version of libevent is used unless you
direct the build to use a local system version of libevent by setting -DWITH_LIBEVENT to system
or yes.

When you build MySQL server, build with -DWITH_INNODB_MEMCACHED=ON. This will generate two
shared libraries in the MySQL plugin directory that are required to run InnoDB memcached:

• libmemcached.so: the memcached daemon plugin to MySQL.

• innodb_engine.so: an InnoDB API plugin to memcached.

Setting Operating System Limits

The memcached daemon can sometimes cause the MySQL server to exceed the OS limit on the
number of open files. You might need to run the ulimit command to increase the limit, and then
start the MySQL server from that same shell. See Section 14.2.16.8, “Troubleshooting the InnoDB
memcached Plugin” for the steps to resolve this issue.

Installing and Configuring the InnoDB memcached Plugin

Setting Up Required Tables

To configure the memcached plugin so it can interact with InnoDB tables, run the configuration script
scripts/innodb_memcached_config.sql to install the necessary tables used behind the scenes:

mysql: source MYSQL_HOME/share/innodb_memcached_config.sql

This is a one-time operation. The tables remain in place if you later disable and re-enable
the memcached support. For information about the layout and purpose of these tables, see
Section 14.2.16.7, “Internals of the InnoDB memcached Plugin”.

Installing the Daemon Plugin

To activate the daemon plugin, use the install plugin statement, just as when installing any other
MySQL plugin:

mysql> install plugin daemon_memcached soname "libmemcached.so";

Once the plugin is installed this way, it is automatically activated each time the MySQL server is booted
or restarted.

InnoDB Integration with memcached

1837

Disabling the Daemon Plugin

When making major changes to the plugin configuration, you might need to turn off the plugin. To do
so, issue the following statement:

mysql> uninstall plugin daemon_memcached;

To re-enable it, issue the preceding install plugin statement again. All the previous configuration
settings, internal tables, and data are preserved when the plugin is restarted this way.

For additional information about enabling and disabling plugins, see Section 5.1.8.1, “Installing and
Uninstalling Plugins”.

Specifying memcached Configuration Options

If you have any memcached specific configuration parameters, specify them on the mysqld
command line or enter them in the MySQL configuration file, encoded in the argument to the
daemon_memcached_option MySQL configuration option. The memcached configuration options
take effect when the plugin is installed, which you do each time the MySQL server is started.

For example, to make memcached listen on port 11222 instead of the default port 11211, add -
p11222 to the MySQL configuration option daemon_memcached_option:

mysqld --daemon_memcached_option="-p11222"

You can add other memcached command line options to the daemon_memcached_option string.
The other configuration options are:

• daemon_memcached_engine_lib_name (default innodb_engine.so)

• daemon_memcached_engine_lib_path (default NULL, representing the plugin directory).

• daemon_memcached_r_batch_size, batch commit size for read operations (get). It specifies
after how many memcached read operations the system automatically does a commit. By default,
this is set to 1 so that every get request can access the very latest committed data in the InnoDB
table, whether the data was updated through memcached or by SQL. When its value is greater
than 1, the counter for read operations is incremented once for every get call. The flush_all call
resets both the read and write counters.

• daemon_memcached_w_batch_size, batch commit for any write operations (set, replace,
append, prepend, incr, decr, and so on) By default, this is set as 1, so that no uncommitted
data is lost in case of an outage, and any SQL queries on the underlying table can access the very
latest data. When its value is greater than 1, the counter for write operations is incremented once for
every add, set, incr, decr, and delete call. The flush_all call resets both the read and write
counters.

By default, you do not need to change anything with the first two configuration options. Those options
allow you to load any other storage engine for memcached (such as the NDB memcached engine).

Again, please note that you will have these configuration parameters in your MySQL configuration file
or MySQL boot command line. They take effect when you load the memcached plugin.

Summary

Now you have everything set up. You can directly interact with InnoDB tables through the memcached
interface. To verify that the feature is working properly, see Verifying the InnoDB and memcached
Setup.

InnoDB Integration with memcached

1838

Verifying the InnoDB and memcached Setup

Now that everything is set up, you can experiment with the InnoDB and memcached combination:

Here is an example using the Unix, Linux, or OS X command shell:

Point memcached-related commands at the memcached attached to the mysqld process.
export MEMCACHED_SERVERS=127.0.0.1:11211
Store the contents of a modestly sized text file in memcached, with the data passed
to MySQL and stored in a table. The key is the basename of the file, 'mime.types'.
memcp /etc/apache2/mime.types
Retrieve the data we just stored, from the memory cache.
memcat mime.types

Here is an example using telnet to send memcached commands and receive results through the
ASCII protocol:

telnet 127.0.0.1 11211
set a11 10 0 9
123456789
STORED
get a11
VALUE a11 0 9
123456789
END
quit

To prove that all the same data has been stored in MySQL, connect to the MySQL server and issue:

mysql> select * from test.demo_test;

Now, shut down the MySQL server, which also shuts off the integrated memcached server. Further
attempts to access the memcached data now fail with a connection error. Normally, the memcached
data would disappear at this point, and you would write application logic to load the data back into
memory when memcached was restarted. But the MySQL / memcached integration automates this
process:

• Restart the MySQL server.

• Run the install plugin statement to start the daemon_memcached plugin again.

• Now any memcat commands or get operations once again return the key/value pairs you stored in
the earlier memcached session. When a key is requested and the associated value is not already in
the memory cache, it is automatically queried from the MySQL table, by default test.demo_test.

14.2.16.4 Security Considerations for the InnoDB memcached Plugin

Caution

Consult this section before deploying the InnoDB memcached plugin on any
production servers, or even test servers if the MySQL instance contains any
sensitive information.

Because memcached does not use an authentication mechanism by default, and the optional SASL
authentication is not as strong as traditional DBMS security measures, make sure to keep only non-
sensitive data in the MySQL instance using the InnoDB memcached plugin, and wall off any servers
using this configuration from potential intruders. Do not allow memcached access to such servers from
the Internet, only from within a firewalled intranet, ideally from a subnet whose membership you can
restrict.

Password-Protecting the memcached Interface through SASL

InnoDB Integration with memcached

1839

SASL support gives you the capability to protect your MySQL database from unauthenticated access
through memcached clients. This section explains the steps to enable this option. The steps to enable
such support are almost identical to those you would do to enable SASL for a traditional memcached
server.

Background Info:

SASL stands for “Simple Authentication and Security Layer”, a standard for adding authentication
support to connection-based protocols. memcached added SASL support starting in its 1.4.3 release.

SASL authentication is only supported with the binary protocol.

For the InnoDB + memcached combination, the table that stores the memcached data must be
registered in the container system table. And memcached clients can only access such a registered
table. Even though the DBA can add access restrictions on a table that is registered with the
memcached plugin, they have no control over who can access it through memcached applications. This
is why we provide a means (through SASL) to control who can access InnoDB tables associated with
the memcached plugin.

The following section shows how to build, enable, and test an SASL-enabled InnoDB memcached
plugin.

Steps to Build and Enable SASL in InnoDB Memcached Plugin:

By default, SASL-enabled InnoDB memcached is not included in the release package, since it relies
on building memcached with SASL libraries. To enable this feature, download the MySQL source and
rebuild the InnoDB memcached plugin after downloading the SASL libraries:

1. First, get the SASL development and utility libraries. For example, on Ubuntu, you can get these
libraries through:

sudo apt-get -f install libsasl2-2 sasl2-bin libsasl2-2 libsasl2-dev libsasl2-modules

2. Then build the InnoDB memcached plugin (shared libraries) with SASL capability, by adding
ENABLE_MEMCACHED_SASL=1 to the cmake options. In addition, memcached provides a simple
plaintext password support, which is easier to use for testing. To enable this, set the option
ENABLE_MEMCACHED_SASL_PWDB=1.

Overall, you will add following three options to the cmake:

cmake ... -DWITH_INNODB_MEMCACHED=1
 -DENABLE_MEMCACHED_SASL=1 -DENABLE_MEMCACHED_SASL_PWDB=1

3. The third step is to install the InnoDB memcached plugin as before, as explained in
Section 14.2.16.3, “Getting Started with InnoDB Memcached Plugin”.

4. As previously mentioned, memcached provides a simple plaintext password support through SASL,
which will be used for this demo.

a. Create a user named testname and its password as testpasswd in a file:

echo "testname:testpasswd:::::::" >/home/jy/memcached-sasl-db

b. Let memcached know about it by setting the environment variable MEMCACHED_SASL_PWDB:

export MEMCACHED_SASL_PWDB=/home/jy/memcached-sasl-db

c. Also tell memcached that it is a plaintext password:

InnoDB Integration with memcached

1840

echo "mech_list: plain" > /home/jy/work2/msasl/clients/memcached.conf
export SASL_CONF_PATH=/home/jy/work2/msasl/clients/memcached.conf

5. Then reboot the server, and add a daemon_memcached_option option -S to enable SASL:

mysqld ... --daemon_memcached_option="-S"

6. Now the setup is complete. To test it, you might need an SASL-enabled client, such as this SASL-
enabled libmemcached.

memcp --servers=localhost:11211 --binary --username=testname
 --password=testpasswd myfile.txt

memcat --servers=localhost:11211 --binary --username=testname
 --password=testpasswd myfile.txt

Without appropriate user name or password, the above operation is rejected with the error
message memcache error AUTHENTICATION FAILURE. Otherwise, the operation succeed.
You can also examine the plaintext password set in the memcached-sasl-db file to verify it.

There are other methods to test SASL authentication with memcached. But the one described above is
the most straightforward.

14.2.16.5 Writing Applications for the InnoDB memcached Interface

Typically, writing an application for the InnoDB memcached interface involves some degree of
rewriting or adapting existing code that uses MySQL or the memcached API:

• Instead of many memcached servers running on low-powered machines, you have the same
number of memcached servers as MySQL servers, running on relatively high-powered machines
with substantial disk storage and memory. You might reuse some existing code that works with the
memcached API, but some adaptation is likely needed due to the different server configuration.

• The data stored through this interface all goes into VARCHAR, TEXT, or BLOB columns, and must be
converted to do numeric operations. You can do the conversion on the application side, or by using
the CAST() function in queries.

• Coming from a database background, you might be used to general-purpose SQL tables with many
columns. The tables accessed by the memcached code likely have only a few or even just a single
column holding data values.

• You might adapt parts of your application that do single-row queries, inserts, updates, or deletes,
to squeeze more performance out of critical sections of code. Both queries (read) and DML (write)
operations can be substantially faster when performed through the memcached interface. The
speedup for writes is typically greater than the speedup for reads, so you might focus on adapting
the code that performs logging or records interactive choices on a web site.

The following sections explore these aspects in more detail.

Adapting an Existing MySQL Schema for a memcached Application

Consider these aspects of memcached applications when adapting an existing MySQL schema or
application to use the memcached interface:

• memcached keys cannot contain spaces or newlines, because those characters are used as
separators in the ASCII protocol. If you are using lookup values that contain spaces, transform or
hash them into values without spaces before using them as keys in calls to add(), set(), get()

https://code.launchpad.net/~trond-norbye/libmemcached/sasl
https://code.launchpad.net/~trond-norbye/libmemcached/sasl

InnoDB Integration with memcached

1841

and so on. Although theoretically those characters are allowed in keys in programs that use the
binary protocol, you should always restrict the characters used in keys to ensure compatibility with a
broad range of clients.

• If you have a short numeric primary key column in an InnoDB table, you can use that as the unique
lookup key for memcached by converting the integer to a string value. If the memcached server is
being used for more than one application, or with more than one InnoDB table, consider modifying
the name to make sure it is unique. For example, you might prepend the table name, or the database
name and the table name, before the numeric value.

Note

As of MySQL 5.7.3, the InnoDB memcached plugin supports inserts and
reads on mapped InnoDB tables that have an INTEGER defined as the
primary key.

• You cannot use a partitioned table for data queried or stored through the memcached interface.

• The memcached protocol passes numeric values around as strings. To store numeric values in the
underlying InnoDB table, for example to implement counters that can be used in SQL functions such
as SUM() or AVG():

• Use VARCHAR columns with enough characters to hold all the digits of the largest expected
number (and additional characters if appropriate for the negative sign, decimal point, or both).

• In any query that performs arithmetic using the column values, use the CAST() function to convert
from string to integer or other numeric type. For example:

-- Alphabetic entries are returned as zero.
select cast(c2 as unsigned integer) from demo_test;
-- Since there could be numeric values of 0, can't disqualify them.
-- Test the string values to find the ones that are integers, and average only those.
select avg(cast(c2 as unsigned integer)) from demo_test
 where c2 between '0' and '9999999999';
-- Views let you hide the complexity of queries. The results are already converted;
-- no need to repeat conversion functions and WHERE clauses each time.
create view numbers as select c1 key, cast(c2 as unsigned integer) val
 from demo_test where c2 between '0' and '9999999999';
select sum(val) from numbers;

Note that any alphabetic values in the result set are turned into 0 by the call to CAST(). When
using functions such as AVG() that depend on the number of rows in the result set, include WHERE
clauses to filter out any non-numeric values.

• If the InnoDB column you use as a key can be longer than 250 bytes, hash it to a value that is less
than 250 bytes.

• To use an existing table with the memcached interface, define an entry for it in the
innodb_memcache.containers table. To make that the table the default for all requests relayed
through memcached, specify the value default in the name column, then restart the MySQL server
to make that change take effect. If you are using multiple tables for different classes of memcached
data, set up multiple entries in the innodb_memcache.containers table with name values of your
choosing, then issue a memcached request of the form get @@name or set @@name within the
application to switch the table used for subsequent requests through the memcached API.

For an example of using a table other than the predefined test.demo_test table, see
Example 14.14, “Specifying the Table and Column Mapping for an InnoDB + memcached
Application”. For the required layout and meaning of the columns in such a table, see
Section 14.2.16.7, “Internals of the InnoDB memcached Plugin”.

• To use multiple MySQL column values with memcached key/value pairs, in the
innodb_memcache.containers entry associated with the MySQL table, specify in the

InnoDB Integration with memcached

1842

value_columns field several column names separated by comma, semicolon, space, or pipe
characters; for example, col1,col2,col3 or col1|col2|col3.

Concatenate the column values into a single string using the pipe character as a separator, before
passing that string to memcached add or set calls. The string is unpacked automatically into the
various columns. Each get call returns a single string with the column values, also delimited by the
pipe separator character. you unpack those values using the appropriate syntax depending on your
application language.

Example 14.14 Specifying the Table and Column Mapping for an InnoDB + memcached
Application

Here is an example showing how to use your own table for a MySQL application going through the
InnoDB memcached plugin for data manipulation.

First, we set up a table to hold some country data: the population, area in metric units, and 'R' or 'L'
indicating if people drive on the right or on the left.

use test;

CREATE TABLE `multicol` (
 `country` varchar(128) NOT NULL DEFAULT '',
 `population` varchar(10) DEFAULT NULL,
 `area_sq_km` varchar(9) DEFAULT NULL,
 `drive_side` varchar(1) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 `c4` bigint(20) unsigned DEFAULT NULL,
 `c5` int(11) DEFAULT NULL,
 PRIMARY KEY (`country`),
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Now we make a descriptor for this table so that the InnoDB memcached plugin knows how to access
it:

• The sample entry in the CONTAINERS table has a name column 'aaa'; we set up another identifier
'bbb'. If we made a single master table for all memcached applications to use, we would make the
ID 'default' and skip the @@ requests to switch tables.

• We specify the test.multicol table. The schema name is stored in one column and the table
name is stored in another column.

• The key column will be our unique country value. That column was specified as the primary key
when we created the table above, so we also specify the index name 'PRIMARY' here.

• Rather than a single column to hold a composite data value, we will divide the data among three
table columns, so we specify a comma-separated list of those columns that will be used when storing
or retrieving values.

• And for the flags, expire, and CAS values, we specify corresponding columns based on the settings
from the sample table demo.test. These values are typically not significant in applications using the
InnoDB memcached plugin, because MySQL keeps the data synchronized and there is no need to
worry about data expiring or being stale.

insert into innodb_memcache.containers
 (name,db_schema,db_table,key_columns,value_columns,flags,cas_column,
 expire_time_column,unique_idx_name_on_key)
values
 ('bbb','test','multicol','country','population,area_sq_km,drive_side',
 'c3','c4','c5','PRIMARY');

commit;

Here is a sample Python program showing how we would access this table from a program:

InnoDB Integration with memcached

1843

• No database authorization is needed, since all data manipulation is done through the memcached
interface. All we need to know is the port number the memcached daemon is listening to on the local
system.

• We load sample values for a few arbitrary countries. (Area and population figures from Wikipedia.)

• To make the program use the multicol table, we call the switch_table() function that does a
dummy GET or SET request using @@ notation. The name in the request is bbb, which is the value
we stored in innodb_memcache.containers.name. (In a real application, we would use a more
descriptive name. This example just illustrates that you specify a table identifier, not the table name,
with the GET @@... request.

• The utility functions to insert and query the data demonstrate how we might turn a Python data
structure into pipe-separated values for sending to MySQL with ADD or SET requests, and unpack
the pipe-separated values returned by GET requests. This extra processing is only required when
mapping the single memcached value to multiple MySQL table columns.

import sys, os
import memcache

def connect_to_memcached():
 memc = memcache.Client(['127.0.0.1:11211'], debug=0);
 print "Connected to memcached."
 return memc

def banner(message):
 print
 print "=" * len(message)
 print message
 print "=" * len(message)

country_data = [
("Canada","34820000","9984670","R"),
("USA","314242000","9826675","R"),
("Ireland","6399152","84421","L"),
("UK","62262000","243610","L"),
("Mexico","113910608","1972550","R"),
("Denmark","5543453","43094","R"),
("Norway","5002942","385252","R"),
("UAE","8264070","83600","R"),
("India","1210193422","3287263","L"),
("China","1347350000","9640821","R"),
]

def switch_table(memc,table):
 key = "@@" + table
 print "Switching default table to '" + table + "' by issuing GET for '" + key + "'."
 result = memc.get(key)

def insert_country_data(memc):
 banner("Inserting initial data via memcached interface")
 for item in country_data:
 country = item[0]
 population = item[1]
 area = item[2]
 drive_side = item[3]

 key = country
 value = "|".join([population,area,drive_side])
 print "Key = " + key
 print "Value = " + value

 if memc.add(key,value):
 print "Added new key, value pair."
 else:
 print "Updating value for existing key."
 memc.set(key,value)

InnoDB Integration with memcached

1844

def query_country_data(memc):
 banner("Retrieving data for all keys (country names)")
 for item in country_data:
 key = item[0]
 result = memc.get(key)
 print "Here is the result retrieved from the database for key " + key + ":"
 print result
 (m_population, m_area, m_drive_side) = result.split("|")
 print "Unpacked population value: " + m_population
 print "Unpacked area value : " + m_area
 print "Unpacked drive side value: " + m_drive_side

if __name__ == '__main__':

 memc = connect_to_memcached()
 switch_table(memc,"bbb")
 insert_country_data(memc)
 query_country_data(memc)

 sys.exit(0)

Here are some SQL queries to illustrate the state of the MySQL data after the script is run, and show
how you could access the same data directly through SQL, or from an application written in any
language using the appropriate MySQL Connector or API.

The table descriptor 'bbb' is in place, allowing us to switch to the multicol table by issuing a
memcached request GET @bbb:

mysql: use innodb_memcache;
Database changed

mysql: select * from containers;
+------+-----------+-----------+-------------+----------------------------------+-------+------------+--------------------+------------------------+
| name | db_schema | db_table | key_columns | value_columns | flags | cas_column | expire_time_column | unique_idx_name_on_key |
+------+-----------+-----------+-------------+----------------------------------+-------+------------+--------------------+------------------------+
| aaa | test | demo_test | c1 | c2 | c3 | c4 | c5 | PRIMARY |
| bbb | test | multicol | country | population,area_sq_km,drive_side | c3 | c4 | c5 | PRIMARY |
+------+-----------+-----------+-------------+----------------------------------+-------+------------+--------------------+------------------------+
2 rows in set (0.01 sec)

After running the script, the data is in the multicol table, available for traditional MySQL queries or
DML statements:

mysql: use test;
Database changed

mysql: select * from multicol;
+---------+------------+------------+------------+------+------+------+
| country | population | area_sq_km | drive_side | c3 | c4 | c5 |
+---------+------------+------------+------------+------+------+------+
Canada	34820000	9984670	R	0	11	0
China	1347350000	9640821	R	0	20	0
Denmark	5543453	43094	R	0	16	0
India	1210193422	3287263	L	0	19	0
Ireland	6399152	84421	L	0	13	0
Mexico	113910608	1972550	R	0	15	0
Norway	5002942	385252	R	0	17	0
UAE	8264070	83600	R	0	18	0
UK	62262000	243610	L	0	14	0
USA	314242000	9826675	R	0	12	0
+---------+------------+------------+------------+------+------+------+
10 rows in set (0.00 sec)

mysql: desc multicol;
+------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------------+------+-----+---------+-------+
| country | varchar(128) | NO | PRI | | |
| population | varchar(10) | YES | | NULL | |

InnoDB Integration with memcached

1845

area_sq_km	varchar(9)	YES		NULL	
drive_side	varchar(1)	YES		NULL	
c3	int(11)	YES		NULL	
c4	bigint(20) unsigned	YES		NULL	
c5	int(11)	YES		NULL	
+------------+---------------------+------+-----+---------+-------+
7 rows in set (0.01 sec)

Allow sufficient size to hold all necessary digits, decimal points, sign characters, leading zeros, and
so on when defining the length for columns that will be treated as numbers. Too-long values in a
string column such as a VARCHAR are truncated by removing some characters, which might produce a
nonsensical numeric value.

We can produce reports through SQL queries, doing calculations and tests across any columns, not
just the country key column. (Because these examples use data from only a few countries, the
numbers are for illustration purposes only.) Here, we find the average population of countries where
people drive on the right, and the average size of countries whose names start with “U”:

mysql: select avg(population) from multicol where drive_side = 'R';
+-------------------+
| avg(population) |
+-------------------+
| 261304724.7142857 |
+-------------------+
1 row in set (0.00 sec)

mysql: select sum(area_sq_km) from multicol where country like 'U%';
+-----------------+
| sum(area_sq_km) |
+-----------------+
| 10153885 |
+-----------------+
1 row in set (0.00 sec)

Because the population and area_sq_km columns store character data rather than strongly typed
numeric data, functions such as avg() and sum() work by converting each value to a number first.
This approach does not work for operators such as < or >: for example, when comparing character-
based values, 9 > 1000, which is not you expect from a clause such as ORDER BY population
DESC. For the most accurate type treatment, perform queries against views that cast numeric columns
to the appropriate types. This technique lets you issue very simple SELECT * queries from your
database applications, while ensuring that all casting, filtering, and ordering is correct. Here, we make
a view that can be queried to find the top 3 countries in descending order of population, with the results
always reflecting the latest data from the multicol table, and with the population and area figures
always treated as numbers:

mysql: create view populous_countries as
 select
 country,
 cast(population as unsigned integer) population,
 cast(area_sq_km as unsigned integer) area_sq_km,
 drive_side from multicol
 order by cast(population as unsigned integer) desc
 limit 3;
Query OK, 0 rows affected (0.01 sec)

mysql: select * from populous_countries;
+---------+------------+------------+------------+
| country | population | area_sq_km | drive_side |
+---------+------------+------------+------------+
China	1347350000	9640821	R
India	1210193422	3287263	L
USA	314242000	9826675	R
+---------+------------+------------+------------+
3 rows in set (0.00 sec)

mysql: desc populous_countries;

InnoDB Integration with memcached

1846

+------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------------+------+-----+---------+-------+
country	varchar(128)	NO			
population	bigint(10) unsigned	YES		NULL	
area_sq_km	int(9) unsigned	YES		NULL	
drive_side	varchar(1)	YES		NULL	
+------------+---------------------+------+-----+---------+-------+
4 rows in set (0.02 sec)

Adapting an Existing memcached Application for the Integrated memcached Daemon

Consider these aspects of MySQL and InnoDB tables when adapting an existing memcached
application to use the MySQL integration:

• If you have key values longer than a few bytes, you might find it more efficient to use a numeric auto-
increment column for the primary key in the InnoDB table, and create a unique secondary index on
the column holding the memcached key values. This is because InnoDB performs best for large-
scale insertions if the primary key values are added in sorted order (as they are with auto-increment
values), and the primary key values are duplicated in each secondary index, which can take up
unnecessary space when the primary key is a long string value.

• If you store several different classes of information in memcached, you might set up a
separate InnoDB table for each kind of data. Define additional table identifiers in the
innodb_memcache.containers table, and use the notation @@table_id.key to store or
retrieve items from different tables. Physically dividing the items lets you tune the characteristics of
each table for best space utilization, performance, and reliability. For example, you might enable
compression for a table that holds blog posts, but not for one that holds thumbnail images. You might
back up one table more frequently than another because it holds critical data. You might create
additional secondary indexes on tables that are frequently used to generate reports through SQL.

• Preferably, set up a stable set of table definitions for use with the memcached interface and leave
them in place permanently. Changes to the containers table take effect the next time that table
is queried. The entries in that table are processed at startup, and are consulted whenever an
unrecognized table ID is requested by the @@ notation. Thus, new entries are visible as soon as you
try to use the associated table ID, but changes to existing entries require a server restart before they
take effect.

• When you use the default caching policy innodb_only, your calls to add(), set(), incr(), and
so on can succeed but still trigger debugging messages such as while expecting 'STORED',
got unexpected response 'NOT_STORED. This is because in the innodb_only configuration,
new and updated values are sent directly to the InnoDB table without being saved in the memory
cache.

Tuning Performance of the InnoDB memcached Plugin

Because using InnoDB in combination with memcached involves writing all data to disk, whether
immediately or sometime later, understand that raw performance is expected to be somewhat lower
than using memcached by itself. Focus your tuning goals for the InnoDB memcached plugin on
achieving higher performance than equivalent SQL operations.

Benchmarks suggest that both queries and DML operations (inserts, updates, and deletes) are faster
going through the memcached interface than with traditional SQL. DML operations typically see a
larger speedup. Thus, the types of applications you might adapt to use the memcached interface
first are those that are write-intensive. You might also use MySQL as a data store for types of write-
intensive applications that formerly used some fast, lightweight mechanism where reliability was not a
priority.

Adapting SQL Queries

The types of queries that are most suited to the simple GET request style are those with a single
clause, or a set of AND conditions, in the WHERE clause:

InnoDB Integration with memcached

1847

SQL:
select col from tbl where key = 'key_value';

memcached:
GET key_value

SQL:
select col from tbl where col1 = val1 and col2 = val2 and col3 = val3;

memcached:
Since you must always know these 3 values to look up the key,
combine them into a unique string and use that as the key
for all ADD, SET, and GET operations.
key_value = val1 + ":" + val2 + ":" + val3
GET key_value

SQL:
select 'key exists!' from tbl
 where exists (select col1 from tbl where key = 'key_value') limit 1;

memcached:
Test for existence of key by asking for its value and checking if the call succeeds,
ignoring the value itself. For existence checking, you typically only store a very
short value such as "1".
GET key_value

Taking Advantage of System Memory

For best performance, deploy the InnoDB memcached plugin on machines that are configured like
typical database servers: in particular, with the majority of system RAM devoted to the InnoDB buffer
pool through the innodb_buffer_pool_size configuration option. For systems with multi-gigabyte
buffer pools, consider raising the value of the innodb_buffer_pool_instances configuration
option for maximum throughput when most operations involve data already cached in memory.

Reducing Redundant I/O

InnoDB has a number of settings that let you choose the balance between high reliability in case of
a crash, and the amount of I/O overhead during high write workloads. For example, consider setting
the configuration options innodb_doublewrite=0 and innodb_flush_log_at_trx_commit=2.
Measure the performance with different settings for the innodb_flush_method option. If the binary
log is not turned on for the server, use the setting innodb_support_xa=0.

For other ways to reduce or tune I/O for table operations, see Section 8.5.7, “Optimizing InnoDB Disk
I/O”.

Reducing Transactional Overhead

The default value of 1 for the configuration options daemon_memcached_r_batch_size and
daemon_memcached_w_batch_size is intended for maximum reliability of results and safety of
stored or updated data.

Depending on the type of application, you might increase one or both of these settings to
reduce the overhead of frequent commit operations. On a busy system, you might increase
daemon_memcached_r_batch_size, knowing that changes to the data made through SQL
might not become visible to memcached immediately (that is, until N more get operations were
processed). When processing data where every write operation must be reliably stored, you would
leave daemon_memcached_w_batch_size set to 1. You might increase it when processing large
numbers of updates intended to only be used for statistical analysis, where it is not critical if the last N
updates are lost in case of a crash.

For example, imagine a system that monitors traffic crossing a busy bridge, recording approximately
100,000 vehicles each day. If the application simply counts different types of vehicles to analyze traffic
patterns, it might change daemon_memcached_w_batch_size from 1 to 100, reducing the I/O

InnoDB Integration with memcached

1848

overhead for commit operations by 99%. In case of an unexpected outage, only a maximum of 100
records could be lost, which might be an acceptable margin of error. If instead the application was
doing automated toll collection for each car, it would keep daemon_memcached_w_batch_size set
to 1 to ensure that every toll record was immediately saved to disk.

Because of the way InnoDB organizes the memcached key values on disk, if you have a large number
of keys to create, it can be faster to sort all the data items by the key value in your application and add
them in sorted order, rather than creating them in arbitrary order.

The memslap command, which is part of the regular memcached distribution but not included with the
MySQL server, can be useful for benchmarking different configurations. It can also be used to generate
sample key/value pairs that you can use in your own benchmarking. See libmemcached Command-
Line Utilities for details.

Controlling Transactional Behavior of the InnoDB memcached Plugin

Unlike with the traditional memcached, with the InnoDB + memcached combination you can control
how “durable” are the data values produced through calls to add, set, incr, and so on. Because
MySQL places a high priority on durability and consistency of data, by default all data written through
the memcached interface is always stored to disk, and calls to get always return the most recent value
from disk. Although this default setting does not give the highest possible raw performance, it is still
very fast compared to the traditional SQL interface for InnoDB tables.

As you gain experience with this feature, you can make the decision to relax the durability settings for
non-critical classes of data, at the risk of possibly losing some updated values in case of an outage, or
returning data that is slightly out-of-date.

Frequency of Commits

One tradeoff between durability and raw performance is how frequently new and changed data is
committed. If the data is critical, you want it to be committed immediately so that it is safe in case of
any crash or outage. If the data is less critical, such as counters that would be reset after a crash, or
debugging or logging data where you could afford to lose a few seconds worth, you might prefer the
higher raw throughput that comes with less frequent commits.

When a memcached operation causes an insert, update, or delete in the underlying
InnoDB table, that change might be committed to the underlying table instantly (if
daemon_memcached_w_batch_size=1) or some time later (if that configuration option value
is greater than 1). In either case, the change cannot be rolled back. If you increase the value of
daemon_memcached_w_batch_size=1 to avoid high I/O overhead during busy times, commits could
become very infrequent when the workload decreases. As a safety measure, a background thread
automatically commits changes made through the memcached API at regular intervals. The interval
is controlled by the innodb_api_bk_commit_interval configuration option, and by default is 5
seconds.

When a memcached operation causes an insert or update in the underlying InnoDB table, the changed
data is immediately visible to other memcached requests because the new value remains in the
memory cache, even if it is not committed yet on the MySQL side.

Transaction Isolation

When a memcached operation such as get or incr causes a query or DML operation in the
underlying InnoDB table, you can control whether it sees the very latest data written to the table,
only data that has been committed, or other variations of transaction isolation level. You control this
feature through the innodb_api_trx_level configuration option. The numeric values specified
with this option correspond to the familiar isolation level names such as REPEATABLE READ. See the
description of the innodb_api_trx_level option for the full list.

The stricter the isolation level, the more certain you can be that the data you retrieve will not be rolled
back or changed suddenly so that a subsequent query sees a different value. But that strictness comes
with greater locking overhead that can cause waits. For a NoSQL-style application that does not use

InnoDB Integration with memcached

1849

long-running transactions, you can typically stay with the default isolation level or switch to a less strict
one.

Disabling Row Locks for memcached DML Operations

The innodb_api_disable_rowlock option can be used to disable row locks when InnoDB
memcached performs DML operations. By default, innodb_api_disable_rowlock is set
to OFF which means that memcached requests row locks for get and set operations. When
innodb_api_disable_rowlock is set to ON, memcached requests a table lock instead of row locks.

The innodb_api_disable_rowlock option is not dynamic. It must be specified at startup on the
mysqld command line or entered in the MySQL configuration file.

Allowing or Disallowing DDL

By default, you can perform DDL operations such as ALTER TABLE on the tables being used by
the InnoDB memcached plugin. To avoid potential slowdowns when these tables are being used
for high-throughput applications, you can disable DDL operations on these tables by turning on the
innodb_api_enable_mdl configuration option at startup. This option is less appropriate when you
are accessing the same underlying tables through both the memcached interface and SQL, because it
blocks CREATE INDEX statements on the tables, which could be important for configuring the system
to run reporting queries.

Data Stored on Disk, in Memory, or Both

Table innodb_memcache.cache_policies specifies whether to store data written through the
memcached on disk (innodb_only, the default); to store the data in memory only, as in the traditional
memcached (cache-only); or both (caching).

With the caching setting, if memcached cannot find a key in memory, it searches for the value in an
InnoDB table. Values returned from get calls under the caching setting could be out-of-date, if they
were updated on disk in the InnoDB table but not yet expired from the memory cache.

The caching policy can be set independently for get, set (including incr and decr), delete, and
flush operations. For example:

• You might allow get and set operations to query or update a table and the memcached memory
cache at the same time (through the caching setting), while making delete, flush, or both
operate only on the in-memory copy (through the cache_only setting). That way, deleting or
flushing an item just expires it from the cache, and the latest value is returned from the InnoDB table
the next time the item is requested.

mysql> desc innodb_memcache.cache_policies;
+---------------+---+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+---+------+-----+---------+-------+
policy_name	varchar(40)	NO	PRI	NULL	
get_policy	enum('innodb_only','cache_only','caching','disabled')	NO		NULL	
set_policy	enum('innodb_only','cache_only','caching','disabled')	NO		NULL	
delete_policy	enum('innodb_only','cache_only','caching','disabled')	NO		NULL	
flush_policy	enum('innodb_only','cache_only','caching','disabled')	NO		NULL	
+---------------+---+------+-----+---------+-------+

mysql> select * from innodb_memcache.cache_policies;
+--------------+-------------+-------------+---------------+--------------+
| policy_name | get_policy | set_policy | delete_policy | flush_policy |
+--------------+-------------+-------------+---------------+--------------+
| cache_policy | innodb_only | innodb_only | innodb_only | innodb_only |
+--------------+-------------+-------------+---------------+--------------+

mysql> update innodb_memcache.cache_policies set set_policy = 'caching'
 -> where policy_name = 'cache_policy';

InnoDB Integration with memcached

1850

The cache_policies values are only read at startup, and are tightly integrated with the operation of
the memcached plugin. After changing any of the values in this table, uninstall the plugin and reinstall
it:

mysql> uninstall plugin daemon_memcached;
Query OK, 0 rows affected (2.00 sec)
mysql> install plugin daemon_memcached soname "libmemcached.so";
Query OK, 0 rows affected (0.00 sec)

Adapting DML Statements to memcached Operations

Benchmarks suggest that the InnoDB memcached plugin speeds up DML operations (inserts, updates,
and deletes) more than it speeds up queries. You might focus your initial development efforts on write-
intensive applications that are I/O-bound, and look for opportunities to use MySQL for new kinds of
write-intensive applications.

•
INSERT INTO t1 (key,val) VALUES (some_key,some_value);
SELECT val FROM t1 WHERE key = some_key;
UPDATE t1 SET val = new_value WHERE key = some_key;
UPDATE t1 SET val = val + x WHERE key = some_key;
DELETE FROM t1 WHERE key = some_key;

Single-row DML statements are the most straightforward kinds of statements to turn into memcached
operations: INSERT becomes add, UPDATE becomes set, incr or decr, and DELETE becomes
delete. When issued through the memcached interface, these operations are guaranteed to affect
only 1 row because key is unique within the table.

In the preceding SQL examples, t1 refers to the table currently being used by the InnoDB
memcached plugin based on the configuration settings in the innodb_memcache.containers
table, key refers to the column listed under key_columns, and val refers to the column listed
under value_columns.

•
TRUNCATE TABLE t1;
DELETE FROM t1;

Corresponds to the flush_all operation, when t1 is configured as the table for memcached
operations as in the previous step. Removes all the rows in the table.

Performing DML and DDL Statements on the Underlying InnoDB Table

You can access the InnoDB table (by default, test.demo_test) through the standard SQL interfaces.
However, there are some restrictions:

• When query a table through SQL that is also being accessed through the memcached interface,
remember that memcached operations can be configured to be committed periodically rather than
after every write operation. This behavior is controlled by the daemon_memcached_w_batch_size
option. If this option is set to a value greater than 1, use READ UNCOMMITTED queries to find the
just-inserted rows:

mysql> set session TRANSACTION ISOLATION LEVEL read uncommitted;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from demo_test;
+------+------+------+------+-----------+------+------+------+------+------+------+
| cx | cy | c1 | cz | c2 | ca | CB | c3 | cu | c4 | C5 |
+------+------+------+------+-----------+------+------+------+------+------+------+
| NULL | NULL | a11 | NULL | 123456789 | NULL | NULL | 10 | NULL | 3 | NULL |
+------+------+------+------+-----------+------+------+------+------+------+------+
1 row in set (0.00 sec)

InnoDB Integration with memcached

1851

• To modify a table through SQL that is also being accessed through the memcached
interface, remember that memcached operations can be configured to be start a new
transaction periodically rather than for every read operation. This behavior is controlled by the
daemon_memcached_r_batch_size option. If this option is set to a value greater than 1, ...

• The InnoDB table is locked IS (shared intention) or IX (exclusive intentional) for all
operations in a transaction. If you increase daemon_memcached_r_batch_size and
daemon_memcached_w_batch_size substantially from their default value of 1, the table is most
likely intentionally locked between each operation, preventing you from running DDL statements on
the table.

14.2.16.6 Using the InnoDB memcached Plugin with Replication

Because the InnoDB memcached daemon plugin supports the MySQL binary log, any updates made
on a master server through the memcached interface can be replicated for backup, balancing intensive
read workloads, and high availability. All memcached commands are supported for binlogging.

You do not need to set up the InnoDB memcached plugin on the slave servers. In this configuration,
the primary advantage is increased write throughput on the master. The speed of the replication
mechanism is not affected.

The following sections show how to use the binlog capability, to use the InnoDB memcached plugin
along with MySQL replication. It assumes you have already done the basic setup described in
Section 14.2.16.3, “Getting Started with InnoDB Memcached Plugin”.

Enable InnoDB Memcached Binary Log with innodb_api_enable_binlog:

• To use the InnoDB memcached plugin with the MySQL binary log, enable the
innodb_api_enable_binlog configuration option on the master server. This option can only be
set at server boot time. You must also enable the MySQL binary log on the master server with the --
log-bin option. You can add these options to your server configuration file such as my.cnf, or on
the mysqld command line.

mysqld ... --log-bin -–innodb_api_enable_binlog=1

• Then configure your master and slave server, as described in Section 16.1.1, “How to Set Up
Replication”.

• Use mysqldump to create a master data snapshot, and sync it to the slave server.

master shell: mysqldump --all-databases --lock-all-tables > dbdump.db
slave shell: mysql < dbdump.db

• On the master server, issue show master status to obtain the Master Binary Log Coordinates:

mysql> show master status;

• On the slave server, use a change master to statement to set up a slave server with the above
coordinates:

mysql> CHANGE MASTER TO
 MASTER_HOST='localhost',
 MASTER_USER='root',
 MASTER_PASSWORD='',
 MASTER_PORT = 13000,
 MASTER_LOG_FILE='0.000001,
 MASTER_LOG_POS=114;

InnoDB Integration with memcached

1852

• Then start the slave:

mysql> start slave;

If the error log prints output similar to the following, the slave is ready for replication:

2013-09-24T13:04:38.639684Z 49 [Note] Slave I/O thread: connected to
master 'root@localhost:13000', replication started in log '0.000001'
at position 114

Test with the memcached telnet interface:

To test the server with the above replication setup, we use the memcached telnet interface, and also
query the master and slave servers using SQL to verify the results.

In our configuration setup SQL, one example table demo_test is created in the test database for use
by memcached. We will use this default table for the demonstrations:

• Use set to insert a record, key test1, value t1, and flag 10:

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 2
t1
STORED

In the master server, you can see that the row is inserted. c1 maps to the key, c2 maps to the value,
c3 is the flag, c4 is the cas value, and c5 is the expiration.

mysql> select * from test.demo_test;

c1 c2 c3 c4 c5

test1 t1 10 2 0

1 row in set (0.00 sec)

In the slave server, you will see the same record is inserted by replication:

mysql> select * from test.demo_test;

c1 c2 c3 c4 c5

test1 t1 10 2 0

1 row in set (0.00 sec)

• Use set command to update the key test1 to a new value new:

Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 3

InnoDB Integration with memcached

1853

new
STORED

From the slave server, the update is replicated (notice the cas value also updated):

mysql> select * from test.demo_test;

c1 c2 c3 c4 c5

test1 new 10 3 0

1 row in set (0.00 sec)

• Delete the record with a delete command:

Connected to 127.0.0.1.
Escape character is '^]'.
delete test1
DELETED

When the delete is replicated to the slave, the record on the slave is also deleted:

mysql> select * from test.demo_test;
Empty set (0.00 sec)

• Truncate the table with the flush_all command.

First, insert two records by telnetting to the master server:

Connected to 127.0.0.1.
Escape character is '^]'
set test2 10 0 5
again
STORED
set test3 10 0 6
again1
STORED

In the slave server, confirm these two records are replicated:

mysql> select * from test.demo_test;

c1 c2 c3 c4 c5

test2 again 10 5 0

test3 again1 10 6 0

2 rows in set (0.00 sec)

Call flush_all in the telnet interface to truncate the table:

Connected to 127.0.0.1.
Escape character is '^]'.
flush_all
OK

Then check that the truncation operation is replicated on the slave server:

InnoDB Integration with memcached

1854

mysql> select * from test.demo_test;
Empty set (0.00 sec)

All memcached commands are supported in terms of replication.

Notes for the InnoDB Memcached Binlog:

Binlog Format:

• Most memcached operations are mapped to DML statements (analogous to insert, delete, update).
Since there is no actual SQL statement being processed by the MySQL server, all memcached
commands (except for flush_all) use Row-Based Replication (RBR) logging. This is independent
of any server binlog_format setting.

• The memcached flush_all command is mapped to the TRUNCATE TABLE command. Since
DDL commands can only use statement-based logging, this flush_all command is replicated by
sending a TRUNCATE TABLE statement.

Transactions:

• The concept of transactions has not typically been part of memcached applications. We use
daemon_memcached_r_batch_size and daemon_memcached_w_batch_size to control
the read and write transaction batch size for performance considerations. These settings do not
affect replication: each SQL operation on the underlying table is replicated right after successful
completion.

• The default value of daemon_memcached_w_batch_size is 1, so each memcached write
operation is committed immediately. This default setting incurs a certain amount of performance
overhead, to avoid any inconsistency in the data visible on the master and slave servers.
The replicated records will always be available immediately on the slave server. If you set
daemon_memcached_w_batch_size greater than 1, records inserted or updated through the
memcached interface are not immediately visible on the master server; to view these records on the
master server before they are committed, issue set transaction isolation level read
uncommitted.

14.2.16.7 Internals of the InnoDB memcached Plugin

InnoDB API for the InnoDB memcached Plugin

The InnoDB memcached engine accesses InnoDB through InnoDB APIs. Most of the APIs are
directly adopted from embedded InnoDB. InnoDB API functions are passed to InnoDB memcached
as “callback functions”. InnoDB API functions access the InnoDB table directly, and are mostly DML
operations except for the TRUNCATE TABLE operation.

All memcached commands, listed below, are implemented through the InnoDB memcached API. The
following table outlines how each memcached command is mapped to a DML operation.

Table 14.11 memcached Commands and Associated DML Operation

memcached
Command

DML Operation

get a read/fetch command

set a search followed by an insertion or update (depending on whether or not a key
exists)

add a search followed by an insertion or update

replace a search followed by an update

append a search followed by an update (appends data to the result before update)

prepend a search followed by an update (prepends data to the result before update)

InnoDB Integration with memcached

1855

memcached
Command

DML Operation

incr a search followed by an update

decr a search followed by an update

delete a search followed by a deletion

flush_all truncate table

Underlying Tables Used by the InnoDB memcached Plugin

This section explains the details of the underlying tables used by the InnoDB / memcached plugin.

The configuration script, scripts/innodb_memcached_config.sql, installs 3 tables needed by
the InnoDB memcached. These tables are created in a dedicated database innodb_memcache:

mysql> use innodb_memcache;
Database changed
mysql> show tables;
+---------------------------+
| Tables_in_innodb_memcache |
+---------------------------+
| cache_policies |
| config_options |
| containers |
+---------------------------+
3 rows in set (0.01 sec)

containers Table

containers - This table is the most important table for the memcached daemon. It describes the table
or tables used to store the memcached values. You must make changes to this table to start using
the memcached interface with one or more of your own tables, rather than just experimenting with the
test.demo_test table.

The mapping is done through specifying corresponding column values in the table:

mysql> desc containers;
+------------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------------+--------------+------+-----+---------+-------+
name	varchar(50)	NO	PRI	NULL	
db_schema	varchar(250)	NO		NULL	
db_table	varchar(250)	NO		NULL	
key_columns	varchar(250)	NO		NULL	
value_columns	varchar(250)	YES		NULL	
flags	varchar(250)	NO		0	
cas_column	varchar(250)	YES		NULL	
expire_time_column	varchar(250)	YES		NULL	
unique_idx_name_on_key	varchar(250)	NO		NULL	
+------------------------+--------------+------+-----+---------+-------+
9 rows in set (0.02 sec)

• db_schema and db_table columns specify the database and table name for storing the
memcached value.

• key_columns specifies the single column name used as the lookup key for memcached operations.

• value_columns describes the columns (one or more) used as values for memcached operations.
To specify multiple columns, separate them with pipe characters (such as col1|col2|col3 and so
on).

InnoDB Integration with memcached

1856

• unique_idx_name_on_key is the name of the index on the key column. It must be a unique index.
It can be the primary key or a secondary index. Preferably, make the key column the primary key of
the InnoDB table. Doing so saves a lookup step over using a secondary index for this column. You
cannot make a covering index for memcached lookups; InnoDB returns an error if you try to define a
composite secondary index over both the key and value columns.

The above 5 column values (table name, key column, value column and index) must be supplied.
Otherwise, the setup will fail.

Although the following values are optional, they are required for full compliance with the memcached
protocol. If you do not use flags, cas_column, or expiration_time_column, set their value to
0 to indicate that they are unused. Failing to do so will result in an error when you attempt to load the
plugin.

• flags specifies the columns used as flags (a user-defined numeric value that is stored and
retrieved along with the main value) for memcached. It is also used as the column specifier for some
operations (such as incr, prepend) if memcached value is mapped to multiple columns. So the
operation would be done on the specified column. For example, if you have mapped a value to
3 columns, and only want the increment operation performed on one of these columns, you can
use flags to specify which column will be used for these operations. If you do not use the flags
column, set its value to 0 to indicate that it is unused.

• cas_column and expiration_time_column are used specifically to store the cas (compare-
and-swap) and exp (expiry) value of memcached. Those values are related to the way memcached
hashes requests to different servers and caches data in memory. Because the InnoDB memcached
plugin is so tightly integrated with a single memcached daemon, and the in-memory caching
mechanism is handled by MySQL and the buffer pool, these columns are rarely needed in this type
of deployment. If you do not use these columns, set their value to 0 to indicate that the columns are
unused.

containers Table Column Constraints

• key_columns: The maximum limit for a memcached key is 250 characters, which is enforced by
memcached. If a mapped key longer than the maximum limit is used, the operation will fail. The
mapped key must be a non-Null CHAR or VARCHAR type.

• value_columns: Must be mapped to a CHAR, VARCHAR, or BLOB column. There is no length
restriction and the value can be NULL.

• cas_column: The cas value is a 64 bit integer. It must be mapped to a BIGINT of at least 8 bytes.
If you do not use this column, set its value to 0 to indicate that it is unused.

• expiration_time_column: Must mapped to an INTEGER of at least 4 bytes. Expiration time is
defined as a 32-bit integer for Unix time (the number of seconds since January 1, 1970, as a 32-bit
value), or the number of seconds starting from the current time. For the latter, the number of seconds
may not exceed 60*60*24*30 (the number of seconds in 30 days). If the number sent by a client is
larger, the server will consider it to be a real Unix time value rather than an offset from the current
time. If you do not use this column, set its value to 0 to indicate that it is unused.

• flags: Must be mapped to an INTEGER of at least 32-bits and can be NULL. If you do not use this
column, set its value to 0 to indicate that it is unused.

A pre-check is performed at plugin load time to enforce column constraints. If any mismatches are
found, the plugin will not load.

cache_policies Table

Table cache_policies specifies whether to use InnoDB as the data store of memcached
(innodb_only), or to use the traditional memcached engine as the backstore (cache-only), or both
(caching). In the last case, if memcached cannot find a key in memory, it searches for the value in an
InnoDB table.

InnoDB Integration with memcached

1857

config_options Table

Table config_options stores memcached-related settings that are appropriate to change at runtime,
through SQL. Currently, MySQL supports the following configuration options through this table:

separator: The separator used to separate values of a long string into smaller values for multiple
columns values. By default, this is the | character. For example, if you defined col1, col2 as value
columns, And you define | as separator, you could issue the following command in memcached to
insert values into col1 and col2 respectively:

set keyx 10 0 19
valuecolx|valuecoly

So valuecol1x is stored in col1 and valuecoly is stored in col2.

table_map_delimiter: The character separating the schema name and the table name when you
use the @@ notation in a key name to access a key in a specific table. For example, @@t1.some_key
and @@t2.some_key have the same key value, but are stored in different tables and so do not conflict.

Multiple-column Mapping

• During plugin initialization, when InnoDB memcached is configured with information defined in the
containers table, each mapped column that is parsed from value_columns is verified against
the mapped table. If multiple columns are mapped, there is a check to ensure that each column
exists and is the right type.

• At run-time, for memcached insert operations, if there are more delimiters in the value than the
number of mapped columns, only the number of mapped values are taken. For example, if there are
6 mapped columns and 7 delimited values are provided, only the first 6 delimited values are taken.
The 7th delimited value is ignored.

• If there are fewer delimited values than mapped columns, unfilled columns are set to NULL. If an
unfilled column cannot be NULL, the insert will fail.

• If a table has more columns than mapped values, the extra columns do not affect output results.

Example Tables

The configuration script, scripts/innodb_memcached_config.sql, creates a table demo_test
in the test database as an example. It also allows the Daemon Memcached to work immediately,
without creating any additional tables.

The entries in the container table define which column is used for what purpose as described above:

mysql> select * from innodb_memcache.containers;
+------+-----------+-----------+-------------+---------------+-------+------------+--------------------+------------------------+
| name | db_schema | db_table | key_columns | value_columns | flags | cas_column | expire_time_column | unique_idx_name_on_key |
+------+-----------+-----------+-------------+---------------+-------+------------+--------------------+------------------------+
| aaa | test | demo_test | c1 | c2 | c3 | c4 | c5 | PRIMARY |
+------+-----------+-----------+-------------+---------------+-------+------------+--------------------+------------------------+
1 row in set (0.00 sec)

mysql> desc test.demo_test;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
c1	varchar(32)	NO	PRI		
c2	varchar(1024)	YES		NULL	
c3	int(11)	YES		NULL	
c4	bigint(20) unsigned	YES		NULL	
c5	int(11)	YES		NULL	
+-------+---------------------+------+-----+---------+-------+
5 rows in set (0.01 sec)

InnoDB Integration with memcached

1858

When no table ID is requested through the @@ notation in the key name:

• If a row has a name value of default, the corresponding table is used by the memcached plugin.
Thus, when you make your first entry in innodb_memcache.containers to move beyond the
demo_test table, use a name value of default.

• If there is no innodb_memcache.containers.name value of default, the row with the first
name value in alphabetical order is used.

14.2.16.8 Troubleshooting the InnoDB memcached Plugin

The following list shows some potential issues you might encounter using the InnoDB memcached
daemon, and solutions or workarounds where available:

• If you see this error in your MySQL error log, the server might fail to start:

failed to set rlimit for open files. Try running as root or requesting
smaller maxconns value.

The error message is actually from the memcached daemon. One solution is to raise the OS limit for
the number of open files. The command varies depending on the operating system. For example,
here are the commands to check and increase the limit on several operating systems:

Linux
$ ulimit -n
1024
ulimit -n 4096
$ ulimit -n
4096

OS X Lion (10.6)
$ ulimit -n
256
ulimit -n 4096
$ ulimit -n
4096

The other solution is to reduce the number of concurrent connections available for the memcached
daemon, using the -c option which defaults to 1024. Encode that memcached option using the
MySQL option daemon_memcached_option inside the MySQL configuration file:

[mysqld]
...
loose-daemon_memcached_option='-c 64'

• To troubleshoot problems where the memcached daemon is unable to store data in or retrieve data
from the InnoDB table, specify the memcached option -vvv through the MySQL configuration
option daemon_memcached_option. Examine the MySQL error log for debug output related to
memcached operations.

• If the column specified to hold the memcached item values is the wrong data type, such as a numeric
type instead of a string type, attempts to store key/value pairs will fail with no specific error code or
message.

• If the daemon_memcached plugin causes any issues with starting the MySQL server, disable it
during troubleshooting by adding this line under the [mysqld] group in your MySQL configuration
file:

InnoDB Integration with memcached

1859

daemon_memcached=OFF

For example, if you run the install plugin command before running the scripts/
innodb_memcached_config.sql script to set up the necessary database and tables,
the server might crash and be unable to start. Or, if you set up an incorrect entry in the
innodb_memcache.containers table, the server might be unable to start.

To permanently turn off the memcached plugin for a MySQL instance, issue the following command:

mysql> uninstall plugin daemon_memcached;

• If you run more than one instance of MySQL on the same machine, with the memcached daemon
plugin enabled in each, make sure to specify a unique memcached port for each one using the
daemon_memcached_option configuration option.

• You might find that a SQL statement cannot find an expected table, or there is no data in the table,
but memcached API calls still work and retrieve the expected data. This can happen if you do not
set up the entry in the innodb_memcache.containers table, or do not switch to that table by
issuing a GET or SET request with the key @@table_id, or make a change to an existing entry in
innodb_memcache.containers without restarting the MySQL server afterward. The free-form
storage mechanism is flexible enough that your requests to store or retrieve a multi-column value like
col1|col2|col3 will usually still work, even if the daemon is using the test.demo_test table
which stores all the data within a single column.

• When defining your own InnoDB table for use with InnoDB memcached, and columns in
your table are defined as NOT NULL, ensure that values are supplied for the NOT NULL
columns when inserting a descriptor for the InnoDB table into the memcached containers table
(innodb_memcached.containers). If your descriptor INSERT statement contains fewer delimited
values than there are mapped columns, unfilled columns are set to NULL. Attempting to insert a
NULL value into a NOT NULL column causes the INSERT to fail, which may only become evident
after you reinitialize the InnoDB memcached plugin to apply changes to the containers table.

• If cas_column and expire_time_column of the innodb_memcached.containers table are
set to NULL, the following error will be returned when attempting to load the memcached plugin:

InnoDB_Memcached: column 6 in the entry for config table 'containers' in
database 'innodb_memcache' has an invalid NULL value.

The memcached plugin rejects usage of NULL in the cas_column and expire_time_column
columns. Set the value of these columns to 0 if the columns are unused.

• As the length of the memcached key and values increase, you encounter size and length limits at
different points:

• When the key exceeds 250 bytes in size, memcached operations return an error. This is currently
a fixed limit within memcached.

• You might encounter InnoDB-related limits when the value exceeds 768 bytes in size, or 3072
bytes in size, or 1/2 of the size specified by innodb_page_size. These limits primarily apply if
you intend to create an index on the value column to run report-generating queries on that column
from SQL. See Section 14.2.6.7, “Limits on InnoDB Tables” for details.

• The maximum size for the combination of the key and the value is 1 MB.

• If you share configuration files across MySQL servers with different versions, using the latest
configuration options for the memcached plugin could cause startup errors for older MySQL versions.
To avoid compatibility problems, use the loose forms of these option names, for example loose-
daemon_memcached_option='-c 64' instead of daemon_memcached_option='-c 64'.

InnoDB Troubleshooting

1860

• There is no restriction or check in place to validate character set settings. memcached stores and
retrieves keys and values in bytes and is therefore not character set sensitive. However, you must
ensure that the memcached client and the MySQL table use the same character set.

14.2.17 InnoDB Troubleshooting

The following general guidelines apply to troubleshooting InnoDB problems:

• When an operation fails or you suspect a bug, look at the MySQL server error log (see Section 5.2.2,
“The Error Log”).

• If the failure is related to a deadlock, run with the innodb_print_all_deadlocks option enabled
so that details about each InnoDB deadlock are printed to the MySQL server error log.

• Issues relating to the InnoDB data dictionary include failed CREATE TABLE statements (orphaned
table files), inability to open .InnoDB files, and system cannot find the path specified
errors. For information about these sorts of problems and errors, see Section 14.2.17.3,
“Troubleshooting InnoDB Data Dictionary Operations”.

• When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather
than through mysqld_safe or as a Windows service. You can then see what mysqld prints to the
console, and so have a better grasp of what is going on. On Windows, start mysqld with the --
console option to direct the output to the console window.

• Enable the InnoDB Monitors to obtain information about a problem (see Section 14.2.12.4,
“InnoDB Monitors”). If the problem is performance-related, or your server appears to be hung, you
should enable the standard Monitor to print information about the internal state of InnoDB. If the
problem is with locks, enable the Lock Monitor. If the problem is in creation of tables or other data
dictionary operations, enable the Table Monitor to print the contents of the InnoDB internal data
dictionary. To see tablespace information enable the Tablespace Monitor.

InnoDB temporarily enables standard InnoDB Monitor output under the following conditions:

• A long semaphore wait

• InnoDB cannot find free blocks in the buffer pool

• Over 67% of the buffer pool is occupied by lock heaps or the adaptive hash index

• If you suspect that a table is corrupt, run CHECK TABLE on that table.

14.2.17.1 Troubleshooting InnoDB I/O Problems

The troubleshooting steps for InnoDB I/O problems depend on when the problem occurs: during
startup of the MySQL server, or during normal operations when a DML or DDL statement fails due to
problems at the file system level.

Initialization Problems

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, delete all files
created by InnoDB: all ibdata files and all ib_logfile files. If you already created some InnoDB
tables, also delete the corresponding .frm files for these tables, and any .ibd files if you are using
multiple tablespaces, from the MySQL database directories. Then try the InnoDB database creation
again. For easiest troubleshooting, start the MySQL server from a command prompt so that you see
what is happening.

Runtime Problems

If InnoDB prints an operating system error during a file operation, usually the problem has one of the
following solutions:

InnoDB Troubleshooting

1861

• Make sure the InnoDB data file directory and the InnoDB log directory exist.

• Make sure mysqld has access rights to create files in those directories.

• Make sure mysqld can read the proper my.cnf or my.ini option file, so that it starts with the
options that you specified.

• Make sure the disk is not full and you are not exceeding any disk quota.

• Make sure that the names you specify for subdirectories and data files do not clash.

• Doublecheck the syntax of the innodb_data_home_dir and innodb_data_file_path values.
In particular, any MAX value in the innodb_data_file_path option is a hard limit, and exceeding
that limit causes a fatal error.

14.2.17.2 Starting InnoDB on a Corrupted Database

To investigate database page corruption, you might dump your tables from the database with
SELECT ... INTO OUTFILE. Usually, most of the data obtained in this way is intact. Serious
corruption might cause SELECT * FROM tbl_name statements or InnoDB background operations
to crash or assert, or even cause InnoDB roll-forward recovery to crash. In such cases, use the
innodb_force_recovery option to force the InnoDB storage engine to start up while preventing
background operations from running, so that you can dump your tables. For example, you can add the
following line to the [mysqld] section of your option file before restarting the server:

[mysqld]
innodb_force_recovery = 1

Warning

Before using innodb_force_recovery ensure that you have a backup copy
of your database in case you need to start over. You should always begin by
setting innodb_force_recovery to a lower value. Incrementally increase
the setting as required. Only use an innodb_force_recovery setting
of 3 or greater on a production server instance after you have successfully
tested the setting on separate physical copy of your database. As of 5.7.3, an
innodb_force_recovery setting of 4 or greater places InnoDB in read-only
mode.

innodb_force_recovery is 0 by default (normal startup without forced recovery). The permissible
nonzero values for innodb_force_recovery are 1 to 6. A larger value includes the functionality
of lesser values. For example, a value of 3 includes all of the functionality 1 and 2. If you are able to
dump your tables with an option value of at most 3, then you are relatively safe that only some data
on corrupt individual pages is lost. A value of 6 is considered drastic because database pages are
left in an obsolete state, which in turn may introduce more corruption into B-trees and other database
structures.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Lets the server run even if it detects a corrupt page. Tries to make SELECT * FROM tbl_name
jump over corrupt index records and pages, which helps in dumping tables.

• 2 (SRV_FORCE_NO_BACKGROUND)

Prevents the master thread and any purge threads from running. If a crash would occur during the
purge operation, this recovery value prevents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Does not run transaction rollbacks after crash recovery.

InnoDB Troubleshooting

1862

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevents insert buffer merge operations. If they would cause a crash, does not do them. Does not
calculate table statistics. As of MySQL 5.7.3, sets InnoDB to read-only.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Does not look at undo logs when starting the database: InnoDB treats even incomplete transactions
as committed. As of MySQL 5.7.3, sets InnoDB to read-only.

• 6 (SRV_FORCE_NO_LOG_REDO)

Does not do the redo log roll-forward in connection with recovery. As of MySQL 5.7.3, sets InnoDB
to read-only.

With this value, you might not be able to do queries other than a basic SELECT * FROM t, with
no WHERE, ORDER BY, or other clauses. More complex queries could encounter corrupted data
structures and fail.

If corruption within the table data prevents you from dumping the entire table contents, a query with
an ORDER BY primary_key DESC clause might be able to dump the portion of the table after the
corrupted part.

The database must not otherwise be used with any nonzero value of innodb_force_recovery.
As a safety measure, InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0. Also, as of 5.7.3, an innodb_force_recovery setting
of 4 or greater places InnoDB in read-only mode.

You can SELECT from tables to dump them, or DROP or CREATE tables even if forced recovery is used.
If you know that a given table is causing a crash on rollback, you can drop it. You can also use this to
stop a runaway rollback caused by a failing mass import or ALTER TABLE: kill the mysqld process
and set innodb_force_recovery to 3 to bring the database up without the rollback, then DROP the
table that is causing the runaway rollback.

Note

As of MySQL 5.7.3, an innodb_force_recovery setting of 4 or greater
places InnoDB into read-only mode, which means that you can only DROP or
CREATE tables when using forced recovery if the innodb_force_recovery
setting is less 4.

14.2.17.3 Troubleshooting InnoDB Data Dictionary Operations

Information about table definitions is stored both in the .frm files, and in the InnoDB data dictionary. If
you move .frm files around, or if the server crashes in the middle of a data dictionary operation, these
sources of information can become inconsistent.

Problem with CREATE TABLE

A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this occurs,
look in the server's error log. If the log says that the table already exists inside the InnoDB internal data
dictionary, you have an orphaned table inside the InnoDB tablespace files that has no corresponding
.frm file. The error message looks like this:

InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file
InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.

InnoDB Troubleshooting

1863

InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.

You can drop the orphaned table by following the instructions given in the error message. If you are still
unable to use DROP TABLE successfully, the problem may be due to name completion in the mysql
client. To work around this problem, start the mysql client with the --skip-auto-rehash option
and try DROP TABLE again. (With name completion on, mysql tries to construct a list of table names,
which fails when a problem such as just described exists.)

Problem Opening Table

Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot open a
.InnoDB file:

ERROR 1016: Can't open file: 'child2.InnoDB'. (errno: 1)

In the error log you can find a message like this:

InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?

This means that there is an orphaned .frm file without a corresponding table inside InnoDB. You can
drop the orphaned .frm file by deleting it manually.

Orphaned Intermediate Tables

If MySQL crashes in the middle of an ALTER TABLE operation, you may end up with an orphaned
intermediate table inside the InnoDB tablespace. Orphaned intermediate table names begin with an
#sql- prefix. You can view a list of tables that are present in the InnoDB tablespace, including tables
named with an #sql- prefix, using the Table Monitor.

ALTER TABLE creates intermediate table files in the same directory as the original table.

The following example uses the salaries table of the employees sample database.

mysql> SHOW CREATE TABLE salaries\G
*************************** 1. row ***************************
 Table: salaries
Create Table: CREATE TABLE `salaries` (
 `emp_no` int(11) NOT NULL,
 `salary` int(11) NOT NULL,
 `from_date` date NOT NULL,
 `to_date` date NOT NULL,
 PRIMARY KEY (`emp_no`,`from_date`),
 KEY `emp_no` (`emp_no`),
 CONSTRAINT `salaries_ibfk_1` FOREIGN KEY (`emp_no`) REFERENCES `employees` (`emp_no`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

The MySQL server connection is lost while performing an ALTER TABLE operation to remove the
to_date column from the employees.salaries table:

mysql> ALTER TABLE salaries DROP COLUMN to_date;
ERROR 2013 (HY000): Lost connection to MySQL server during query
mysql> use employees;
No connection. Trying to reconnect...
Connection id: 1
Current database: *** NONE ***

The ALTER TABLE operation leaves an orphaned intermediate table (#sql-ib87.ibd) and an
accompanying table format file (#sql-22d0_1.frm):

mysql> \! ls /path/to/datadir/employees/

InnoDB Troubleshooting

1864

db.opt dept_emp.ibd employees.ibd #sql-ib87.ibd
departments.frm dept_manager.frm salaries.frm titles.frm
departments.ibd dept_manager.ibd salaries.ibd titles.ibd
dept_emp.frm employees.frm #sql-22d0_1.frm

To remove the orphaned intermediate table, perform the following steps:

1. In the directory where the intermediate table resides, rename the #sql-*.frm file to match the
name of the #sql-*.ibd file.

shell> mv "#sql-247a_2.frm" "#sql-ib87.frm"

Note

To rename or copy a file in the Unix shell, you must enclose the file name in
double quotation marks if the file name contains “#”.

2. Drop the intermediate table by issuing a DROP TABLE statement, prefixing the name of the table
with #mysql50# and enclosing table name in backticks. (The #mysql50# prefix prevents MySQL
from escaping the hash mark and hyphen.)

mysql> DROP TABLE `#mysql50##sql-ib87`;
Query OK, 0 rows affected (0.01 sec)

Note

You can perform SQL statements on tables whose name contains the character
“#” if you enclose the name within backticks.

If you have number of orphaned intermediate tables that have accumulated over time, you may need to
look at the date modified for each file to match temporary table files (.ibd files) with intermediate table
format files (.frm files), as the file names may not match. If the intermediate table format file (.frm
file) is not available, create one using the following steps:

1. In some other database directory, create a table with the structure that the table would have if the
ALTER TABLE operation completed successfully:

mysql> CREATE TABLE tmp LIKE salaries; ALTER TABLE tmp DROP COLUMN to_date;
Query OK, 0 rows affected (0.02 sec)

Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

2. Shut down MySQL server.

3. Copy the tmp.frm file that you created and rename it so that it matches the #sql-*.ibd file
name.

shell> cp tmp.frm employees/#sql-ib87.frm

4. Once the .frm file is in place, issue DROP TABLE for the intermediate table, as described above.

Problem with Missing Tablespace

With innodb_file_per_table enabled, the following message might occur if the .frm or .ibd files
(or both) are missing:

InnoDB: in InnoDB data dictionary has tablespace id N,
InnoDB: but tablespace with that id or name does not exist. Have
InnoDB: you deleted or moved .ibd files?
InnoDB: This may also be a table created with CREATE TEMPORARY TABLE
InnoDB: whose .ibd and .frm files MySQL automatically removed, but the
InnoDB: table still exists in the InnoDB internal data dictionary.

If this occurs, try the following procedure to resolve the problem:

InnoDB Troubleshooting

1865

1. Create a matching .frm file in some other database directory and copy it to the database directory
where the orphan table is located.

2. Issue DROP TABLE for the original table. That should successfully drop the table and InnoDB
should print a warning to the error log that the .ibd file was missing.

14.2.17.4 InnoDB Error Handling

Error handling in InnoDB is not always the same as specified in the SQL standard. According to
the standard, any error during an SQL statement should cause rollback of that statement. InnoDB
sometimes rolls back only part of the statement, or the whole transaction. The following items describe
how InnoDB performs error handling:

• If you run out of file space in a tablespace, a MySQL Table is full error occurs and InnoDB
rolls back the SQL statement.

• A transaction deadlock causes InnoDB to roll back the entire transaction. Retry the whole
transaction when this happens.

A lock wait timeout causes InnoDB to roll back only the single statement that was waiting for the lock
and encountered the timeout. (To have the entire transaction roll back, start the server with the --
innodb_rollback_on_timeout option.) Retry the statement if using the current behavior, or the
entire transaction if using --innodb_rollback_on_timeout.

Both deadlocks and lock wait timeouts are normal on busy servers and it is necessary for
applications to be aware that they may happen and handle them by retrying. You can make them
less likely by doing as little work as possible between the first change to data during a transaction
and the commit, so the locks are held for the shortest possible time and for the smallest possible
number of rows. Sometimes splitting work between different transactions may be practical and
helpful.

When a transaction rollback occurs due to a deadlock or lock wait timeout, it cancels the effect of the
statements within the transaction. But if the start-transaction statement was START TRANSACTION
or BEGIN statement, rollback does not cancel that statement. Further SQL statements become part
of the transaction until the occurrence of COMMIT, ROLLBACK, or some SQL statement that causes
an implicit commit.

• A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in
your statement.

• A row too long error rolls back the SQL statement.

• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine
level), and they roll back the corresponding SQL statement. Locks are not released in a rollback of a
single SQL statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW
PROCESSLIST displays Rolling back in the State column for the relevant connection.

14.2.17.5 InnoDB Error Codes

The following is a nonexhaustive list of common InnoDB-specific errors that you may encounter, with
information about why each occurs and how to resolve the problem.

• 1005 (ER_CANT_CREATE_TABLE)

Cannot create table. If the error message refers to error 150, table creation failed because a foreign
key constraint was not correctly formed. If the error message refers to error –1, table creation
probably failed because the table includes a column name that matched the name of an internal
InnoDB table.

• 1016 (ER_CANT_OPEN_FILE)

InnoDB Troubleshooting

1866

Cannot find the InnoDB table from the InnoDB data files, although the .frm file for the table exists.
See Section 14.2.17.3, “Troubleshooting InnoDB Data Dictionary Operations”.

• 1114 (ER_RECORD_FILE_FULL)

InnoDB has run out of free space in the tablespace. Reconfigure the tablespace to add a new data
file.

• 1205 (ER_LOCK_WAIT_TIMEOUT)

Lock wait timeout expired. The statement that waited too long was rolled back (not the entire
transaction). You can increase the value of the innodb_lock_wait_timeout configuration option
if SQL statements should wait longer for other transactions to complete, or decrease it if too many
long-running transactions are causing locking problems and reducing concurrency on a busy system.

• 1206 (ER_LOCK_TABLE_FULL)

The total number of locks exceeds the amount of memory InnoDB devotes to managing locks.
To avoid this error, increase the value of innodb_buffer_pool_size. Within an individual
application, a workaround may be to break a large operation into smaller pieces. For example, if the
error occurs for a large INSERT, perform several smaller INSERT operations.

• 1213 (ER_LOCK_DEADLOCK)

The transaction encountered a deadlock and was automatically rolled back so that your application
could take corrective action. To recover from this error, run all the operations in this transaction
again. A deadlock occurs when requests for locks arrive in inconsistent order between transactions.
The transaction that was rolled back released all its locks, and the other transaction can now get all
the locks it requested. Thus when you re-run the transaction that was rolled back, it might have to
wait for other transactions to complete, but typically the deadlock does not recur. If you encounter
frequent deadlocks, make the sequence of locking operations (LOCK TABLES, SELECT ... FOR
UPDATE, and so on) consistent between the different transactions or applications that experience the
issue. See Section 14.2.2.11, “How to Cope with Deadlocks” for details.

• 1216 (ER_NO_REFERENCED_ROW)

You are trying to add a row but there is no parent row, and a foreign key constraint fails. Add the
parent row first.

• 1217 (ER_ROW_IS_REFERENCED)

You are trying to delete a parent row that has children, and a foreign key constraint fails. Delete the
children first.

• ERROR 1553 (HY000): Cannot drop index 'fooIdx': needed in a foreign key
constraint

This error message is reported when you attempt to drop the last index that can enforce a particular
referential constraint.

For optimal performance with DML statements, InnoDB requires an index to exist on foreign key
columns, so that UPDATE and DELETE operations on a parent table can easily check whether
corresponding rows exist in the child table. MySQL creates or drops such indexes automatically
when needed, as a side-effect of CREATE TABLE, CREATE INDEX, and ALTER TABLE statements.

When you drop an index, InnoDB checks whether the index is not used for checking a foreign key
constraint. It is still OK to drop the index if there is another index that can be used to enforce the
same constraint. InnoDB prevents you from dropping the last index that can enforce a particular
referential constraint.

14.2.17.6 Operating System Error Codes

InnoDB Troubleshooting

1867

To print the error message for an operating system error number, you can use one of the following
options. The perror program is provided with the MySQL distribution.

$ perror 123
$ perl -MPOSIX -le 'print strerror 123'
$ python -c 'import os; print os.strerror(123)'

• Linux System Error Codes

The following table provides a partial list of Linux system error codes.

Number Macro Description

1 EPERM Operation not permitted

2 ENOENT No such file or directory

3 ESRCH No such process

4 EINTR Interrupted system call

5 EIO I/O error

6 ENXIO No such device or address

7 E2BIG Arg list too long

8 ENOEXEC Exec format error

9 EBADF Bad file number

10 ECHILD No child processes

11 EAGAIN Try again

12 ENOMEM Out of memory

13 EACCES Permission denied

14 EFAULT Bad address

15 ENOTBLK Block device required

16 EBUSY Device or resource busy

17 EEXIST File exists

18 EXDEV Cross-device link

19 ENODEV No such device

20 ENOTDIR Not a directory

21 EISDIR Is a directory

22 EINVAL Invalid argument

23 ENFILE File table overflow

24 EMFILE Too many open files

25 ENOTTY Inappropriate ioctl for device

26 ETXTBSY Text file busy

27 EFBIG File too large

28 ENOSPC No space left on device

29 ESPIPE File descriptor does not allow seeking

30 EROFS Read-only file system

31 EMLINK Too many links

• Windows System Error Codes

InnoDB Troubleshooting

1868

The following table provides a list of some common Windows system error codes. For a complete
list, see the Microsoft Web site.

Number Macro Description

1 ERROR_INVALID_FUNCTIONIncorrect function.

2 ERROR_FILE_NOT_FOUNDThe system cannot find the file specified.

3 ERROR_PATH_NOT_FOUNDThe system cannot find the path specified.

4 ERROR_TOO_MANY_OPEN_FILESThe system cannot open the file.

5 ERROR_ACCESS_DENIEDAccess is denied.

6 ERROR_INVALID_HANDLEThe handle is invalid.

7 ERROR_ARENA_TRASHEDThe storage control blocks were destroyed.

8 ERROR_NOT_ENOUGH_MEMORYNot enough storage is available to process this command.

9 ERROR_INVALID_BLOCKThe storage control block address is invalid.

10 ERROR_BAD_ENVIRONMENTThe environment is incorrect.

11 ERROR_BAD_FORMATAn attempt was made to load a program with an incorrect format.

12 ERROR_INVALID_ACCESSThe access code is invalid.

13 ERROR_INVALID_DATAThe data is invalid.

14 ERROR_OUTOFMEMORYNot enough storage is available to complete this operation.

15 ERROR_INVALID_DRIVEThe system cannot find the drive specified.

16 ERROR_CURRENT_DIRECTORYThe directory cannot be removed.

17 ERROR_NOT_SAME_DEVICEThe system cannot move the file to a different disk drive.

18 ERROR_NO_MORE_FILESThere are no more files.

19 ERROR_WRITE_PROTECTThe media is write protected.

20 ERROR_BAD_UNIT The system cannot find the device specified.

21 ERROR_NOT_READYThe device is not ready.

22 ERROR_BAD_COMMANDThe device does not recognize the command.

23 ERROR_CRC Data error (cyclic redundancy check).

24 ERROR_BAD_LENGTHThe program issued a command but the command length is incorrect.

25 ERROR_SEEK The drive cannot locate a specific area or track on the disk.

26 ERROR_NOT_DOS_DISKThe specified disk or diskette cannot be accessed.

27 ERROR_SECTOR_NOT_FOUNDThe drive cannot find the sector requested.

28 ERROR_OUT_OF_PAPERThe printer is out of paper.

29 ERROR_WRITE_FAULTThe system cannot write to the specified device.

30 ERROR_READ_FAULTThe system cannot read from the specified device.

31 ERROR_GEN_FAILUREA device attached to the system is not functioning.

32 ERROR_SHARING_VIOLATIONThe process cannot access the file because it is being used by
another process.

33 ERROR_LOCK_VIOLATIONThe process cannot access the file because another process has
locked a portion of the file.

34 ERROR_WRONG_DISKThe wrong diskette is in the drive. Insert %2 (Volume Serial Number:
%3) into drive %1.

36 ERROR_SHARING_BUFFER_EXCEEDEDToo many files opened for sharing.

38 ERROR_HANDLE_EOFReached the end of the file.

http://msdn.microsoft.com/en-us/library/ms681381.aspx

The MyISAM Storage Engine

1869

Number Macro Description

39 ERROR_HANDLE_DISK_FULLThe disk is full.

87 ERROR_INVALID_PARAMETERThe parameter is incorrect.

112 ERROR_DISK_FULLThe disk is full.

123 ERROR_INVALID_NAMEThe file name, directory name, or volume label syntax is incorrect.

1450 ERROR_NO_SYSTEM_RESOURCESInsufficient system resources exist to complete the requested service.

14.3 The MyISAM Storage Engine
MyISAM is based on the older (and no longer available) ISAM storage engine but has many useful
extensions.

Table 14.12 MyISAM Storage Engine Features

Storage limits 256TB Transactions No Locking granularity Table

MVCC No Geospatial data
type support

Yes Geospatial indexing
support

Yes

B-tree indexes Yes T-tree indexes No Hash indexes No

Full-text search
indexes

Yes Clustered indexes No Data caches No

Index caches Yes Compressed data Yesa Encrypted datab Yes

Cluster database
support

No Replication
supportc

Yes Foreign key support No

Backup / point-in-
time recoveryd

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aCompressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format
with MyISAM are read only.
bImplemented in the server (via encryption functions), rather than in the storage engine.
cImplemented in the server, rather than in the storage engine.
dImplemented in the server, rather than in the storage engine.

Each MyISAM table is stored on disk in three files. The files have names that begin with the table name
and have an extension to indicate the file type. An .frm file stores the table format. The data file has
an .MYD (MYData) extension. The index file has an .MYI (MYIndex) extension.

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MYISAM;

In MySQL 5.7, it is normally necessary to use ENGINE to specify the MyISAM storage engine because
InnoDB is the default engine.

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can
also compress MyISAM tables with myisampack to take up much less space. See Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”, Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”, and Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM
Tables”.

MyISAM tables have the following characteristics:

• All data values are stored with the low byte first. This makes the data machine and operating
system independent. The only requirements for binary portability are that the machine uses two's-
complement signed integers and IEEE floating-point format. These requirements are widely used
among mainstream machines. Binary compatibility might not be applicable to embedded systems,
which sometimes have peculiar processors.

The MyISAM Storage Engine

1870

There is no significant speed penalty for storing data low byte first; the bytes in a table row normally
are unaligned and it takes little more processing to read an unaligned byte in order than in reverse
order. Also, the code in the server that fetches column values is not time critical compared to other
code.

• All numeric key values are stored with the high byte first to permit better index compression.

• Large files (up to 63-bit file length) are supported on file systems and operating systems that support
large files.

• There is a limit of (232)2 (1.844E+19) rows in a MyISAM table.

• The maximum number of indexes per MyISAM table is 64.

The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes. This can also be changed by changing the source and
recompiling. For the case of a key longer than 250 bytes, a larger key block size than the default of
1024 bytes is used.

• When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the
index tree is split so that the high node only contains one key. This improves space utilization in the
index tree.

• Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically
updates this column for INSERT and UPDATE operations. This makes AUTO_INCREMENT columns
faster (at least 10%). Values at the top of the sequence are not reused after being deleted. (When an
AUTO_INCREMENT column is defined as the last column of a multiple-column index, reuse of values
deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be reset with
ALTER TABLE or myisamchk.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is
done by automatically combining adjacent deleted blocks and by extending blocks if the next block is
deleted.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file,
you can INSERT new rows into it at the same time that other threads are reading from the table. A
free block can occur as a result of deleting rows or an update of a dynamic length row with more
data than its current contents. When all free blocks are used up (filled in), future inserts become
concurrent again. See Section 8.10.3, “Concurrent Inserts”.

• You can put the data file and index file in different directories on different physical devices to get
more speed with the DATA DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE.
See Section 13.1.14, “CREATE TABLE Syntax”.

• BLOB and TEXT columns can be indexed.

• NULL values are permitted in indexed columns. This takes 0 to 1 bytes per key.

• Each character column can have a different character set. See Section 10.1, “Character Set
Support”.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If
mysqld is started with the --myisam-recover-options option, MyISAM tables are automatically
checked when opened, and are repaired if the table wasn't closed properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myisamchk
--fast checks only those tables that don't have this mark.

• myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.

• myisampack can pack BLOB and VARCHAR columns.

Additional Resources

1871

MyISAM also supports the following features:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two bytes.

• Tables with VARCHAR columns may have fixed or dynamic row length.

• The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.

• Arbitrary length UNIQUE constraints.

Additional Resources

• A forum dedicated to the MyISAM storage engine is available at http://forums.mysql.com/list.php?21.

14.3.1 MyISAM Startup Options

The following options to mysqld can be used to change the behavior of MyISAM tables. For additional
information, see Section 5.1.3, “Server Command Options”.

Table 14.13 MyISAM Option/Variable Reference

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

bulk_insert_buffer_sizeYes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

delay-key-write Yes Yes Global Yes

- Variable:
delay_key_write

 Yes Global Yes

have_rtree_keys Yes Global No

key_buffer_size Yes Yes Yes Global Yes

log-isam Yes Yes

myisam-block-
size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam-recover-
options

Yes Yes

- Variable:
myisam_recover_options

myisam_recover_options Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

skip-concurrent-
insert

Yes Yes

- Variable:
concurrent_insert

tmp_table_size Yes Yes Yes Both Yes

• --myisam-recover-options=mode

http://forums.mysql.com/list.php?21

MyISAM Startup Options

1872

Set the mode for automatic recovery of crashed MyISAM tables.

• --delay-key-write=ALL

Don't flush key buffers between writes for any MyISAM table.

Note

If you do this, you should not access MyISAM tables from another program
(such as from another MySQL server or with myisamchk) when the tables
are in use. Doing so risks index corruption. Using --external-locking
does not eliminate this risk.

The following system variables affect the behavior of MyISAM tables. For additional information, see
Section 5.1.4, “Server System Variables”.

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization.

Note

This is a limit per thread!

• myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be
larger than this value, the index is created using the key cache instead, which is slower. The value is
given in bytes.

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

Automatic recovery is activated if you start mysqld with the --myisam-recover-options option.
In this case, when the server opens a MyISAM table, it checks whether the table is marked as crashed
or whether the open count variable for the table is not 0 and you are running the server with external
locking disabled. If either of these conditions is true, the following happens:

• The server checks the table for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the
data file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the server
tries again, this time re-creating the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by row
without sorting). This method should be able to repair any type of error and has low disk space
requirements.

If the recovery wouldn't be able to recover all rows from previously completed statements and you
didn't specify FORCE in the value of the --myisam-recover-options option, automatic repair aborts
with an error message in the error log:

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Space Needed for Keys

1873

Warning: Found 344 of 354 rows when repairing ./test/g00pages

Note that if the automatic recovery value includes BACKUP, the recovery process creates files with
names of the form tbl_name-datetime.BAK. You should have a cron script that automatically
moves these files from the database directories to backup media.

14.3.2 Space Needed for Keys

MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as
(key_length+4)/0.67, summed over all keys. This is for the worst case when all keys are inserted
in sorted order and the table doesn't have any compressed keys.

String indexes are space compressed. If the first index part is a string, it is also prefix compressed.
Space compression makes the index file smaller than the worst-case figure if a string column has a lot
of trailing space or is a VARCHAR column that is not always used to the full length. Prefix compression
is used on keys that start with a string. Prefix compression helps if there are many strings with an
identical prefix.

In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table option
when you create the table. Numbers are stored with the high byte first, so this helps when you have
many integer keys that have an identical prefix.

14.3.3 MyISAM Table Storage Formats

MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen
automatically depending on the type of columns you are using. The third, compressed format, can be
created only with the myisampack utility (see Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”).

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you
can force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option.

See Section 13.1.14, “CREATE TABLE Syntax”, for information about ROW_FORMAT.

You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack; see
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, for more information.

14.3.3.1 Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length
columns (VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to
corruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file
can be found on disk: To look up a row based on a row number in the index, multiply the row number
by the row length to calculate the row position. Also, when scanning a table, it is very easy to read a
constant number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format
MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it can
usually reclaim all rows except the partially written one. Note that MyISAM table indexes can always be
reconstructed based on the data rows.

Note

Fixed-length row format is only available for tables without BLOB or TEXT
columns. Creating a table with these columns with an explicit ROW_FORMAT
clause will not raise an error or warning; the format specification will be ignored.

Static-format tables have these characteristics:

MyISAM Table Storage Formats

1874

• CHAR and VARCHAR columns are space-padded to the specified column width, although the column
type is not altered. BINARY and VARBINARY columns are padded with 0x00 bytes to the column
width.

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because rows are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk
space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than dynamic-format tables.

14.3.3.2 Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR,
VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table option.

Dynamic format is a little more complex than static format because each row has a header that
indicates how long it is. A row can become fragmented (stored in noncontiguous pieces) when it is
made longer as a result of an update.

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length
columns that you access or change frequently in a table that also contains some variable-length
columns, it might be a good idea to move the variable-length columns to other tables just to avoid
fragmentation.

Dynamic-format tables have these characteristics:

• All string columns are dynamic except those with a length less than four.

• Each row is preceded by a bitmap that indicates which columns contain the empty string (for string
columns) or zero (for numeric columns). Note that this does not include columns that contain NULL
values. If a string column has a length of zero after trailing space removal, or a numeric column has
a value of zero, it is marked in the bitmap and not saved to disk. Nonempty strings are saved as a
length byte plus the string contents.

• Much less disk space usually is required than for fixed-length tables.

• Each row uses only as much space as is required. However, if a row becomes larger, it is split into
as many pieces as are required, resulting in row fragmentation. For example, if you update a row
with information that extends the row length, the row becomes fragmented. In this case, you may
have to run OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use
myisamchk -ei to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented
into many pieces and links (fragments) may be missing.

• The expected row length for dynamic-sized rows is calculated using the following expression:

3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an
enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in
the same link. If not, another link is created. You can find the number of links using myisamchk -
ed. All links may be removed with OPTIMIZE TABLE or myisamchk -r.

MyISAM Table Problems

1875

14.3.3.3 Compressed Table Characteristics

Compressed storage format is a read-only format that is generated with the myisampack tool.
Compressed tables can be uncompressed with myisamchk.

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is helpful when
using slow disks (such as CD-ROMs).

• Each row is compressed separately, so there is very little access overhead. The header for a row
takes up one to three bytes depending on the biggest row in the table. Each column is compressed
differently. There is usually a different Huffman tree for each column. Some of the compression types
are:

• Suffix space compression.

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

• If values in an integer column have a small range, the column is stored using the smallest possible
type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte)
if all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the data type is converted to ENUM.

• A column may use any combination of the preceding compression types.

• Can be used for fixed-length or dynamic-length rows.

Note

While a compressed table is read only, and you cannot therefore update or add
rows in the table, DDL (Data Definition Language) operations are still valid. For
example, you may still use DROP to drop the table, and TRUNCATE TABLE to
empty the table.

14.3.4 MyISAM Table Problems

The file format that MySQL uses to store data has been extensively tested, but there are always
circumstances that may cause database tables to become corrupted. The following discussion
describes how this can happen and how to handle it.

14.3.4.1 Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL
statement are written before the statement returns), you can still get corrupted tables if any of the
following events occur:

• The mysqld process is killed in the middle of a write.

• An unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware failures.

• You are using an external program (such as myisamchk) to modify a table that is being modified by
the server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

MyISAM Table Problems

1876

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a
corrupted MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check
or repair a table with the myisamchk command. See Section 13.7.2.2, “CHECK TABLE Syntax”,
Section 13.7.2.5, “REPAIR TABLE Syntax”, and Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

If your tables become corrupted frequently, you should try to determine why this is happening. The
most important thing to know is whether the table became corrupted as a result of a server crash. You
can verify this easily by looking for a recent restarted mysqld message in the error log. If there is
such a message, it is likely that table corruption is a result of the server dying. Otherwise, corruption
may have occurred during normal operation. This is a bug. You should try to create a reproducible test
case that demonstrates the problem. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”, and
Section 22.4, “Debugging and Porting MySQL”.

14.3.4.2 Problems from Tables Not Being Closed Properly

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a
table has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it
means that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the
table.

The counter works as follows:

• The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because a FLUSH TABLES operation was performed
or because there is no room in the table cache), the counter is decremented if the table has been
updated at any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

• To avoid problems with interaction with other processes that might check the table, the counter is not
decremented on close if it was zero.

In other words, the counter can become incorrect only under these conditions:

• A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (Note that the table may still be okay,
because MySQL always issues writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the same
time that it was in use by mysqld.

• Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK
TABLE on the table while it was in use by another server. In this setup, it is safe to use CHECK
TABLE, although you might get the warning from other servers. However, REPAIR TABLE should
be avoided because when one server replaces the data file with a new one, this is not known to the
other servers.

The MEMORY Storage Engine

1877

In general, it is a bad idea to share a data directory among multiple servers. See Section 5.3,
“Running Multiple MySQL Instances on One Machine”, for additional discussion.

14.4 The MEMORY Storage Engine
The MEMORY storage engine (formerly known as HEAP) creates special-purpose tables with contents
that are stored in memory. Because the data is vulnerable to crashes, hardware issues, or power
outages, only use these tables as temporary work areas or read-only caches for data pulled from other
tables.

Table 14.14 MEMORY Storage Engine Features

Storage limits RAM Transactions No Locking granularity Table

MVCC No Geospatial data
type support

No Geospatial indexing
support

No

B-tree indexes Yes T-tree indexes No Hash indexes Yes

Full-text search
indexes

No Clustered indexes No Data caches N/A

Index caches N/A Compressed data No Encrypted dataa Yes

Cluster database
support

No Replication
supportb

Yes Foreign key support No

Backup / point-in-
time recoveryc

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aImplemented in the server (via encryption functions), rather than in the storage engine.
bImplemented in the server, rather than in the storage engine.
cImplemented in the server, rather than in the storage engine.

When to Use MEMORY or MySQL Cluster. Developers looking to deploy applications that use the
MEMORY storage engine for important, highly available, or frequently updated data should consider
whether MySQL Cluster is a better choice. A typical use case for the MEMORY engine involves these
characteristics:

• Operations involving transient, non-critical data such as session management or caching. When the
MySQL server halts or restarts, the data in MEMORY tables is lost.

• In-memory storage for fast access and low latency. Data volume can fit entirely in memory without
causing the operating system to swap out virtual memory pages.

• A read-only or read-mostly data access pattern (limited updates).

MySQL Cluster offers the same features as the MEMORY engine with higher performance levels, and
provides additional features not available with MEMORY:

• Row-level locking and multiple-thread operation for low contention between clients.

• Scalability even with statement mixes that include writes.

• Optional disk-backed operation for data durability.

• Shared-nothing architecture and multiple-host operation with no single point of failure, enabling
99.999% availability.

• Automatic data distribution across nodes; application developers need not craft custom sharding or
partitioning solutions.

• Support for variable-length data types (including BLOB and TEXT) not supported by MEMORY.

For a white paper with more detailed comparison of the MEMORY storage engine and MySQL Cluster,
see Scaling Web Services with MySQL Cluster: An Alternative to the MySQL Memory Storage Engine.

http://www.mysql.com/why-mysql/white-papers/mysql-wp_cluster-7.0_Cluster_MEMORY.php

Performance Characteristics

1878

This white paper includes a performance study of the two technologies and a step-by-step guide
describing how existing MEMORY users can migrate to MySQL Cluster.

Performance Characteristics

MEMORY performance is constrained by contention resulting from single-thread execution and table
lock overhead when processing updates. This limits scalability when load increases, particularly for
statement mixes that include writes.

Despite the in-memory processing for MEMORY tables, they are not necessarily faster than InnoDB
tables on a busy server, for general-purpose queries, or under a read/write workload. In particular, the
table locking involved with performing updates can slow down concurrent usage of MEMORY tables from
multiple sessions.

Depending on the kinds of queries performed on a MEMORY table, you might create indexes as either
the default hash data structure (for looking up single values based on a unique key), or a general-
purpose B-tree data structure (for all kinds of queries involving equality, inequality, or range operators
such as less than or greater than). The following sections illustrate the syntax for creating both kinds
of indexes. A common performance issue is using the default hash indexes in workloads where B-tree
indexes are more efficient.

Physical Characteristics of MEMORY Tables

The MEMORY storage engine associates each table with one disk file, which stores the table definition
(not the data). The file name begins with the table name and has an extension of .frm.

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts.
No overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows
are put in a linked list and are reused when you insert new data into the table. MEMORY tables also
have none of the problems commonly associated with deletes plus inserts in hashed tables.

• MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are
stored using a fixed length.

• MEMORY tables cannot contain BLOB or TEXT columns.

• MEMORY includes support for AUTO_INCREMENT columns.

• Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY
table.

DDL Operations for MEMORY Tables

To create a MEMORY table, specify the clause ENGINE=MEMORY on the CREATE TABLE statement.

CREATE TABLE t (i INT) ENGINE = MEMORY;

As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by
default, which makes them very fast for single-value lookups, and very useful for creating temporary
tables. However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables
themselves continue to exist because their definitions are stored in .frm files on disk, but they are
empty when the server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
 -> SELECT ip,SUM(downloads) AS down
 -> FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;

Indexes

1879

mysql> DROP TABLE test;

The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which
has a default value of 16MB. To enforce different size limits for MEMORY tables, change the value of
this variable. The value in effect for CREATE TABLE, or a subsequent ALTER TABLE or TRUNCATE
TABLE, is the value used for the life of the table. A server restart also sets the maximum size of existing
MEMORY tables to the global max_heap_table_size value. You can set the size for individual tables
as described later in this section.

Indexes

The MEMORY storage engine supports both HASH and BTREE indexes. You can specify one or the other
for a given index by adding a USING clause as shown here:

CREATE TABLE lookup
 (id INT, INDEX USING HASH (id))
 ENGINE = MEMORY;
CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

For general characteristics of B-tree and hash indexes, see Section 8.3.1, “How MySQL Uses
Indexes”.

MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length
of 3072 bytes.

If a MEMORY table hash index has a high degree of key duplication (many index entries containing the
same value), updates to the table that affect key values and all deletes are significantly slower. The
degree of this slowdown is proportional to the degree of duplication (or, inversely proportional to the
index cardinality). You can use a BTREE index to avoid this problem.

MEMORY tables can have nonunique keys. (This is an uncommon feature for implementations of hash
indexes.)

Columns that are indexed can contain NULL values.

User-Created and Temporary Tables

MEMORY table contents are stored in memory, which is a property that MEMORY tables share with
internal temporary tables that the server creates on the fly while processing queries. However, the two
types of tables differ in that MEMORY tables are not subject to storage conversion, whereas internal
temporary tables are:

• If an internal temporary table becomes too large, the server automatically converts it to on-disk
storage, as described in Section 8.4.4, “How MySQL Uses Internal Temporary Tables”.

• User-created MEMORY tables are never converted to disk tables.

Loading Data

To populate a MEMORY table when the MySQL server starts, you can use the --init-file option. For
example, you can put statements such as INSERT INTO ... SELECT or LOAD DATA INFILE into
this file to load the table from a persistent data source. See Section 5.1.3, “Server Command Options”,
and Section 13.2.6, “LOAD DATA INFILE Syntax”.

MEMORY Tables and Replication

A server's MEMORY tables become empty when it is shut down and restarted. If the server is a
replication master, its slaves are not aware that these tables have become empty, so you see out-of-
date content if you select data from the tables on the slaves. To synchronize master and slave MEMORY

Managing Memory Use

1880

tables, when a MEMORY table is used on a master for the first time since it was started, a DELETE
statement is written to the master's binary log, to empty the table on the slaves also. The slave still has
outdated data in the table during the interval between the master's restart and its first use of the table.
To avoid this interval when a direct query to the slave could return stale data, use the --init-file
option to populate the MEMORY table on the master at startup.

Managing Memory Use

The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only
when the entire table is deleted. Memory that was previously used for deleted rows is re-used for
new rows within the same table. To free all the memory used by a MEMORY table when you no longer
require its contents, execute DELETE or TRUNCATE TABLE to remove all rows, or remove the table
altogether using DROP TABLE. To free up the memory used by deleted rows, use ALTER TABLE
ENGINE=MEMORY to force a table rebuild.

The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char
pointer size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum
size of MEMORY tables. To control the maximum size for individual tables, set the session value of
this variable before creating each table. (Do not change the global max_heap_table_size value
unless you intend the value to be used for MEMORY tables created by all clients.) The following example
creates two MEMORY tables, with a maximum size of 1MB and 2MB, respectively:

mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)

mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)

Both tables revert to the server's global max_heap_table_size value if the server restarts.

You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to
provide a hint about the number of rows you plan to store in them. This does not enable the table to
grow beyond the max_heap_table_size value, which still acts as a constraint on maximum table
size. For maximum flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as
high as the value to which you want each MEMORY table to be able to grow.

Additional Resources

A forum dedicated to the MEMORY storage engine is available at http://forums.mysql.com/list.php?92.

14.5 The CSV Storage Engine
The CSV storage engine stores data in text files using comma-separated values format.

The CSV storage engine is always compiled into the MySQL server.

http://forums.mysql.com/list.php?92

Repairing and Checking CSV Tables

1881

To examine the source for the CSV engine, look in the storage/csv directory of a MySQL source
distribution.

When you create a CSV table, the server creates a table format file in the database directory. The file
begins with the table name and has an .frm extension. The storage engine also creates a data file.
Its name begins with the table name and has a .CSV extension. The data file is a plain text file. When
you store data into the table, the storage engine saves it into the data file in comma-separated values
format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
 -> ENGINE = CSV;
Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
+------+------------+
| i | c |
+------+------------+
| 1 | record one |
| 2 | record two |
+------+------------+
2 rows in set (0.00 sec)

Creating a CSV table also creates a corresponding Metafile that stores the state of the table and the
number of rows that exist in the table. The name of this file is the same as the name of the table with
the extension CSM.

If you examine the test.CSV file in the database directory created by executing the preceding
statements, its contents should look like this:

"1","record one"
"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel or
StarOffice Calc.

14.5.1 Repairing and Checking CSV Tables

The CSV storage engines supports the CHECK and REPAIR statements to verify and if possible repair a
damaged CSV table.

When running the CHECK statement, the CSV file will be checked for validity by looking for the correct
field separators, escaped fields (matching or missing quotation marks), the correct number of fields
compared to the table definition and the existence of a corresponding CSV metafile. The first invalid
row discovered will report an error. Checking a valid table produces output like that shown below:

mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------+
1 row in set (0.00 sec)

A check on a corrupted table returns a fault:

mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | error | Corrupt |
+--------------+-------+----------+----------+
1 row in set (0.01 sec)

CSV Limitations

1882

If the check fails, the table is marked as crashed (corrupt). Once a table has been marked as
corrupt, it is automatically repaired when you next run CHECK or execute a SELECT statement. The
corresponding corrupt status and new status will be displayed when running CHECK:

mysql> check table csvtest;
+--------------+-------+----------+----------------------------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------------------------+
| test.csvtest | check | warning | Table is marked as crashed |
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------------------------+
2 rows in set (0.08 sec)

To repair a table you can use REPAIR, this copies as many valid rows from the existing CSV data
as possible, and then replaces the existing CSV file with the recovered rows. Any rows beyond the
corrupted data are lost.

mysql> repair table csvtest;
+--------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+--------+----------+----------+
| test.csvtest | repair | status | OK |
+--------------+--------+----------+----------+
1 row in set (0.02 sec)

Warning

Note that during repair, only the rows from the CSV file up to the first damaged
row are copied to the new table. All other rows from the first damaged row to the
end of the table are removed, even valid rows.

14.5.2 CSV Limitations

The CSV storage engine does not support indexing.

Partitioning is not supported for tables using the CSV storage engine.

All tables that you create using the CSV storage engine must have the NOT NULL attribute on all
columns. However, for backward compatibility, you can continue to use tables with nullable columns
that were created in previous MySQL releases. (Bug #32050)

14.6 The ARCHIVE Storage Engine
The ARCHIVE storage engine produces special-purpose tables that store large amounts of unindexed
data in a very small footprint.

Table 14.15 ARCHIVE Storage Engine Features

Storage limits None Transactions No Locking granularity Table

MVCC No Geospatial data
type support

Yes Geospatial indexing
support

No

B-tree indexes No T-tree indexes No Hash indexes No

Full-text search
indexes

No Clustered indexes No Data caches No

Index caches No Compressed data Yes Encrypted dataa Yes

Cluster database
support

No Replication
supportb

Yes Foreign key support No

Backup / point-in-
time recoveryc

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aImplemented in the server (via encryption functions), rather than in the storage engine.
bImplemented in the server, rather than in the storage engine.
cImplemented in the server, rather than in the storage engine.

Additional Resources

1883

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine
if you build MySQL from source, invoke CMake with the -DWITH_ARCHIVE_STORAGE_ENGINE option.

To examine the source for the ARCHIVE engine, look in the storage/archive directory of a MySQL
source distribution.

You can check whether the ARCHIVE storage engine is available with the SHOW ENGINES statement.

When you create an ARCHIVE table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. The storage engine creates other files,
all having names beginning with the table name. The data file has an extension of .ARZ. An .ARN file
may appear during optimization operations.

The ARCHIVE engine supports INSERT and SELECT, but not DELETE, REPLACE, or UPDATE. It
does support ORDER BY operations, BLOB columns, and basically all but spatial data types (see
Section 12.18.4.1, “MySQL Spatial Data Types”). The ARCHIVE engine uses row-level locking.

The ARCHIVE engine supports the AUTO_INCREMENT column attribute. The AUTO_INCREMENT
column can have either a unique or nonunique index. Attempting to create an index on any other
column results in an error. The ARCHIVE engine also supports the AUTO_INCREMENT table option in
CREATE TABLE statements to specify the initial sequence value for a new table or reset the sequence
value for an existing table, respectively.

ARCHIVE does not support inserting a value into an AUTO_INCREMENT column less than the current
maximum column value. Attempts to do so result in an ER_DUP_KEY error.

The ARCHIVE engine ignores BLOB columns if they are not requested and scans past them while
reading.

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data
compression (see http://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack
it into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). The engine
also supports CHECK TABLE. There are several types of insertions that are used:

• An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as
necessary. The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur.

• A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which
case it can be seen partially. A SELECT never causes a flush of a bulk insert unless a normal insert
occurs while it is loading.

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT
operation performs a complete table scan: When a SELECT occurs, it finds out how many rows are
currently available and reads that number of rows. SELECT is performed as a consistent read. Note
that lots of SELECT statements during insertion can deteriorate the compression, unless only bulk or
delayed inserts are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR
TABLE. The number of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate.
See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”, Section 13.7.2.5, “REPAIR TABLE Syntax”, and
Section 13.7.5.35, “SHOW TABLE STATUS Syntax”.

Additional Resources

• A forum dedicated to the ARCHIVE storage engine is available at http://forums.mysql.com/list.php?
112.

14.7 The BLACKHOLE Storage Engine
The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does
not store it. Retrievals always return an empty result:

http://www.zlib.net/
http://forums.mysql.com/list.php?112
http://forums.mysql.com/list.php?112

The BLACKHOLE Storage Engine

1884

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
Empty set (0.00 sec)

To enable the BLACKHOLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_BLACKHOLE_STORAGE_ENGINE option.

To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source
distribution.

When you create a BLACKHOLE table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. There are no other files associated
with the table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index
declarations in the table definition.

You can check whether the BLACKHOLE storage engine is available with the SHOW ENGINES
statement.

Inserts into a BLACKHOLE table do not store any data, but if statement based binary logging is enabled,
the SQL statements are logged and replicated to slave servers. This can be useful as a repeater or
filter mechanism.

Note

When using the row based format for the binary log, updates and deletes
are skipped, and neither logged nor applied. For this reason, you should use
STATEMENT for the binary logging format, and not ROW or MIXED.

Suppose that your application requires slave-side filtering rules, but transferring all binary log data to
the slave first results in too much traffic. In such a case, it is possible to set up on the master host a
“dummy” slave process whose default storage engine is BLACKHOLE, depicted as follows:

The master writes to its binary log. The “dummy” mysqld process acts as a slave, applying the desired
combination of replicate-do-* and replicate-ignore-* rules, and writes a new, filtered binary
log of its own. (See Section 16.1.4, “Replication and Binary Logging Options and Variables”.) This
filtered log is provided to the slave.

The BLACKHOLE Storage Engine

1885

The dummy process does not actually store any data, so there is little processing overhead incurred
by running the additional mysqld process on the replication master host. This type of setup can be
repeated with additional replication slaves.

INSERT triggers for BLACKHOLE tables work as expected. However, because the BLACKHOLE table
does not actually store any data, UPDATE and DELETE triggers are not activated: The FOR EACH ROW
clause in the trigger definition does not apply because there are no rows.

Other possible uses for the BLACKHOLE storage engine include:

• Verification of dump file syntax.

• Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE
with and without binary logging enabled.

• BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance
bottlenecks not related to the storage engine itself.

The BLACKHOLE engine is transaction-aware, in the sense that committed transactions are written to
the binary log and rolled-back transactions are not.

Blackhole Engine and Auto Increment Columns

The Blackhole engine is a no-op engine. Any operations performed on a table using Blackhole will have
no effect. This should be born in mind when considering the behavior of primary key columns that auto
increment. The engine will not automatically increment field values, and does not retain auto increment
field state. This has important implications in replication.

Consider the following replication scenario where all three of the following conditions apply:

1. On a master server there is a blackhole table with an auto increment field that is a primary key.

2. On a slave the same table exists but using the MyISAM engine.

3. Inserts are performed into the master's table without explicitly setting the auto increment value in
the INSERT statement itself or through using a SET INSERT_ID statement.

In this scenario replication will fail with a duplicate entry error on the primary key column.

In statement based replication, the value of INSERT_ID in the context event will always be the same.
Replication will therefore fail due to trying insert a row with a duplicate value for a primary key column.

In row based replication, the value that the engine returns for the row always be the same for each
insert. This will result in the slave attempting to replay two insert log entries using the same value for
the primary key column, and so replication will fail.

Column Filtering

When using row-based replication, (binlog_format=ROW), a slave where the last columns are
missing from a table is supported, as described in the section Section 16.4.1.9, “Replication with
Differing Table Definitions on Master and Slave”.

This filtering works on the slave side, that is, the columns are copied to the slave before they are
filtered out. There are at least two cases where it is not desirable to copy the columns to the slave:

1. If the data is confidential, so the slave server should not have access to it.

2. If the master has many slaves, filtering before sending to the slaves may reduce network traffic.

Master column filtering can be achieved using the BLACKHOLE engine. This is carried out in a
way similar to how master table filtering is achieved - by using the BLACKHOLE engine and the --
replicate-do-table or --replicate-ignore-table option.

The MERGE Storage Engine

1886

The setup for the master is:

CREATE TABLE t1 (public_col_1, ..., public_col_N,
 secret_col_1, ..., secret_col_M) ENGINE=MyISAM;

The setup for the trusted slave is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=BLACKHOLE;

The setup for the untrusted slave is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=MyISAM;

14.8 The MERGE Storage Engine
The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM
tables that can be used as one. “Identical” means that all tables have identical column and index
information. You cannot merge MyISAM tables in which the columns are listed in a different order, do
not have exactly the same columns, or have the indexes in different order. However, any or all of the
MyISAM tables can be compressed with myisampack. See Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”. Differences in table options such as AVG_ROW_LENGTH,
MAX_ROWS, or PACK_KEYS do not matter.

An alternative to a MERGE table is a partitioned table, which stores partitions of a single table in
separate files. Partitioning enables some operations to be performed more efficiently and is not limited
to the MyISAM storage engine. For more information, see Chapter 17, Partitioning.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with
the table name and have an extension to indicate the file type. An .frm file stores the table format,
and an .MRG file contains the names of the underlying MyISAM tables that should be used as one. The
tables do not have to be in the same database as the MERGE table.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT,
DELETE, and UPDATE privileges on the MyISAM tables that you map to a MERGE table.

Note

The use of MERGE tables entails the following security issue: If a user has
access to MyISAM table t, that user can create a MERGE table m that accesses
t. However, if the user's privileges on t are subsequently revoked, the user can
continue to access t by doing so through m.

Use of DROP TABLE with a MERGE table drops only the MERGE specification. The underlying tables are
not affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) option that indicates which
MyISAM tables to use. You can optionally specify an INSERT_METHOD option to control how inserts
into the MERGE table take place. Use a value of FIRST or LAST to cause inserts to be made in the first
or last underlying table, respectively. If you specify no INSERT_METHOD option or if you specify it with a
value of NO, inserts into the MERGE table are not permitted and attempts to do so result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> CREATE TABLE t2 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');

The MERGE Storage Engine

1887

mysql> CREATE TABLE total (
 -> a INT NOT NULL AUTO_INCREMENT,
 -> message CHAR(20), INDEX(a))
 -> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

Note that column a is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in
the MERGE table. There it is indexed but not as a PRIMARY KEY because a MERGE table cannot
enforce uniqueness over the set of underlying tables. (Similarly, a column with a UNIQUE index in the
underlying tables should be indexed in the MERGE table but not as a UNIQUE index.)

After creating the MERGE table, you can use it to issue queries that operate on the group of tables as a
whole:

mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
1	Testing
2	table
3	t1
1	Testing
2	table
3	t2
+---+---------+

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following
methods:

• DROP the MERGE table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

It is also possible to use ALTER TABLE ... UNION=() (that is, with an empty UNION clause)
to remove all of the underlying tables. However, in this case, the table is effectively empty and
inserts fail because there is no underlying table to take new rows. Such a table might be useful as a
template for creating new MERGE tables with CREATE TABLE ... LIKE.

The underlying table definitions and indexes must conform closely to the definition of the MERGE table.
Conformance is checked when a table that is part of a MERGE table is opened, not when the MERGE
table is created. If any table fails the conformance checks, the operation that triggered the opening of
the table fails. This means that changes to the definitions of tables within a MERGE may cause a failure
when the MERGE table is accessed. The conformance checks applied to each table are:

• The underlying table and the MERGE table must have the same number of columns.

• The column order in the underlying table and the MERGE table must match.

• Additionally, the specification for each corresponding column in the parent MERGE table and the
underlying tables are compared and must satisfy these checks:

• The column type in the underlying table and the MERGE table must be equal.

• The column length in the underlying table and the MERGE table must be equal.

• The column of the underlying table and the MERGE table can be NULL.

• The underlying table must have at least as many indexes as the MERGE table. The underlying table
may have more indexes than the MERGE table, but cannot have fewer.

Note

A known issue exists where indexes on the same columns must be in
identical order, in both the MERGE table and the underlying MyISAM table. See
Bug #33653.

Additional Resources

1888

Each index must satisfy these checks:

• The index type of the underlying table and the MERGE table must be the same.

• The number of index parts (that is, multiple columns within a compound index) in the index
definition for the underlying table and the MERGE table must be the same.

• For each index part:

• Index part lengths must be equal.

• Index part types must be equal.

• Index part languages must be equal.

• Check whether index parts can be NULL.

If a MERGE table cannot be opened or used because of a problem with an underlying table, CHECK
TABLE displays information about which table caused the problem.

Additional Resources

• A forum dedicated to the MERGE storage engine is available at http://forums.mysql.com/list.php?93.

14.8.1 MERGE Table Advantages and Disadvantages

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into separate
tables, compress some of them with myisampack, and then create a MERGE table to use them as
one.

• Obtain more speed. You can split a large read-only table based on some criteria, and then put
individual tables on different disks. A MERGE table structured this way could be much faster than
using a single large table.

• Perform more efficient searches. If you know exactly what you are looking for, you can search in just
one of the underlying tables for some queries and use a MERGE table for others. You can even have
many different MERGE tables that use overlapping sets of tables.

• Perform more efficient repairs. It is easier to repair individual smaller tables that are mapped to a
MERGE table than to repair a single large table.

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because it
uses the indexes of the individual tables. As a result, MERGE table collections are very fast to create
or remap. (You must still specify the index definitions when you create a MERGE table, even though
no indexes are created.)

• If you have a set of tables from which you create a large table on demand, you can instead create a
MERGE table from them on demand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a
collection of MyISAM tables is not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that
single table. There should be no really notable performance impact from doing this (only a couple of
indirect calls and memcpy() calls for each read).

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

http://forums.mysql.com/list.php?93

MERGE Table Problems

1889

• Some MyISAM features are unavailable in MERGE tables. For example, you cannot create FULLTEXT
indexes on MERGE tables. (You can create FULLTEXT indexes on the underlying MyISAM tables, but
you cannot search the MERGE table with a full-text search.)

• If the MERGE table is nontemporary, all underlying MyISAM tables must be nontemporary. If the
MERGE table is temporary, the MyISAM tables can be any mix of temporary and nontemporary.

• MERGE tables use more file descriptors than MyISAM tables. If 10 clients are using a MERGE table that
maps to 10 tables, the server uses (10 × 10) + 10 file descriptors. (10 data file descriptors for each of
the 10 clients, and 10 index file descriptors shared among the clients.)

• Index reads are slower. When you read an index, the MERGE storage engine needs to issue a read
on all underlying tables to check which one most closely matches a given index value. To read
the next index value, the MERGE storage engine needs to search the read buffers to find the next
value. Only when one index buffer is used up does the storage engine need to read the next index
block. This makes MERGE indexes much slower on eq_ref searches, but not much slower on ref
searches. For more information about eq_ref and ref, see Section 13.8.2, “EXPLAIN Syntax”.

14.8.2 MERGE Table Problems

The following are known problems with MERGE tables:

• In versions of MySQL Server prior to 5.1.23, it was possible to create temporary merge tables with
nontemporary child MyISAM tables.

From versions 5.1.23, MERGE children were locked through the parent table. If the parent was
temporary, it was not locked and so the children were not locked either. Parallel use of the MyISAM
tables corrupted them.

• If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the
underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the
altered table, which then uses the specified storage engine.

• The INSERT_METHOD table option for a MERGE table indicates which underlying MyISAM table to use
for inserts into the MERGE table. However, use of the AUTO_INCREMENT table option for that MyISAM
table has no effect for inserts into the MERGE table until at least one row has been inserted directly
into the MyISAM table.

• A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an
INSERT, the data goes into the first or last MyISAM table (as determined by the INSERT_METHOD
option). MySQL ensures that unique key values remain unique within that MyISAM table, but not over
all the underlying tables in the collection.

• Because the MERGE engine cannot enforce uniqueness over the set of underlying tables, REPLACE
does not work as expected. The two key facts are:

• REPLACE can detect unique key violations only in the underlying table to which it is going to write
(which is determined by the INSERT_METHOD option). This differs from violations in the MERGE
table itself.

• If REPLACE detects a unique key violation, it will change only the corresponding row in the
underlying table it is writing to; that is, the first or last table, as determined by the INSERT_METHOD
option.

Similar considerations apply for INSERT ... ON DUPLICATE KEY UPDATE.

• MERGE tables do not support partitioning. That is, you cannot partition a MERGE table, nor can any of
a MERGE table's underlying MyISAM tables be partitioned.

• You should not use ANALYZE TABLE, REPAIR TABLE, OPTIMIZE TABLE, ALTER TABLE, DROP
TABLE, DELETE without a WHERE clause, or TRUNCATE TABLE on any of the tables that are mapped
into an open MERGE table. If you do so, the MERGE table may still refer to the original table and yield

The FEDERATED Storage Engine

1890

unexpected results. To work around this problem, ensure that no MERGE tables remain open by
issuing a FLUSH TABLES statement prior to performing any of the named operations.

The unexpected results include the possibility that the operation on the MERGE table will report table
corruption. If this occurs after one of the named operations on the underlying MyISAM tables, the
corruption message is spurious. To deal with this, issue a FLUSH TABLES statement after modifying
the MyISAM tables.

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the
MERGE storage engine's table mapping is hidden from the upper layer of MySQL. Windows does not
permit open files to be deleted, so you first must flush all MERGE tables (with FLUSH TABLES) or
drop the MERGE table before dropping the table.

• The definition of the MyISAM tables and the MERGE table are checked when the tables are accessed
(for example, as part of a SELECT or INSERT statement). The checks ensure that the definitions of
the tables and the parent MERGE table definition match by comparing column order, types, sizes and
associated indexes. If there is a difference between the tables, an error is returned and the statement
fails. Because these checks take place when the tables are opened, any changes to the definition
of a single table, including column changes, column ordering, and engine alterations will cause the
statement to fail.

• The order of indexes in the MERGE table and its underlying tables should be the same. If you use
ALTER TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER TABLE
to add a nonunique index on the MERGE table, the index ordering is different for the tables if there
was already a nonunique index in the underlying table. (This happens because ALTER TABLE
puts UNIQUE indexes before nonunique indexes to facilitate rapid detection of duplicate keys.)
Consequently, queries on tables with such indexes may return unexpected results.

• If you encounter an error message similar to ERROR 1017 (HY000): Can't find file:
'tbl_name.MRG' (errno: 2), it generally indicates that some of the underlying tables do not
use the MyISAM storage engine. Confirm that all of these tables are MyISAM.

• The maximum number of rows in a MERGE table is 264 (~1.844E+19; the same as for a MyISAM
table). It is not possible to merge multiple MyISAM tables into a single MERGE table that would have
more than this number of rows.

• Use of underlying MyISAM tables of differing row formats with a parent MERGE table is currently
known to fail. See Bug #32364.

• You cannot change the union list of a nontemporary MERGE table when LOCK TABLES is in effect.
The following does not work:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;

However, you can do this with a temporary MERGE table.

• You cannot create a MERGE table with CREATE ... SELECT, neither as a temporary MERGE table,
nor as a nontemporary MERGE table. For example:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;

Attempts to do this result in an error: tbl_name is not BASE TABLE.

• In some cases, differing PACK_KEYS table option values among the MERGE and underlying
tables cause unexpected results if the underlying tables contain CHAR or BINARY columns. As a
workaround, use ALTER TABLE to ensure that all involved tables have the same PACK_KEYS value.
(Bug #50646)

14.9 The FEDERATED Storage Engine

FEDERATED Storage Engine Overview

1891

The FEDERATED storage engine lets you access data from a remote MySQL database without using
replication or cluster technology. Querying a local FEDERATED table automatically pulls the data from
the remote (federated) tables. No data is stored on the local tables.

To include the FEDERATED storage engine if you build MySQL from source, invoke CMake with the -
DWITH_FEDERATED_STORAGE_ENGINE option.

The FEDERATED storage engine is not enabled by default in the running server; to enable FEDERATED,
you must start the MySQL server binary using the --federated option.

To examine the source for the FEDERATED engine, look in the storage/federated directory of a
MySQL source distribution.

14.9.1 FEDERATED Storage Engine Overview

When you create a table using one of the standard storage engines (such as MyISAM, CSV or
InnoDB), the table consists of the table definition and the associated data. When you create a
FEDERATED table, the table definition is the same, but the physical storage of the data is handled on a
remote server.

A FEDERATED table consists of two elements:

• A remote server with a database table, which in turn consists of the table definition (stored in the
.frm file) and the associated table. The table type of the remote table may be any type supported by
the remote mysqld server, including MyISAM or InnoDB.

• A local server with a database table, where the table definition matches that of the corresponding
table on the remote server. The table definition is stored within the .frm file. However, there is no
data file on the local server. Instead, the table definition includes a connection string that points to
the remote table.

When executing queries and statements on a FEDERATED table on the local server, the operations that
would normally insert, update or delete information from a local data file are instead sent to the remote
server for execution, where they update the data file on the remote server or return matching rows from
the remote server.

The basic structure of a FEDERATED table setup is shown in Figure 14.1, “FEDERATED Table
Structure”.

Figure 14.1 FEDERATED Table Structure

When a client issues an SQL statement that refers to a FEDERATED table, the flow of information
between the local server (where the SQL statement is executed) and the remote server (where the
data is physically stored) is as follows:

1. The storage engine looks through each column that the FEDERATED table has and constructs an
appropriate SQL statement that refers to the remote table.

How to Create FEDERATED Tables

1892

2. The statement is sent to the remote server using the MySQL client API.

3. The remote server processes the statement and the local server retrieves any result that the
statement produces (an affected-rows count or a result set).

4. If the statement produces a result set, each column is converted to internal storage engine format
that the FEDERATED engine expects and can use to display the result to the client that issued the
original statement.

The local server communicates with the remote server using MySQL client C API functions. It invokes
mysql_real_query() to send the statement. To read a result set, it uses mysql_store_result()
and fetches rows one at a time using mysql_fetch_row().

14.9.2 How to Create FEDERATED Tables

To create a FEDERATED table you should follow these steps:

1. Create the table on the remote server. Alternatively, make a note of the table definition of an
existing table, perhaps using the SHOW CREATE TABLE statement.

2. Create the table on the local server with an identical table definition, but adding the connection
information that links the local table to the remote table.

For example, you could create the following table on the remote server:

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=MyISAM
DEFAULT CHARSET=latin1;

To create the local table that will be federated to the remote table, there are two options available.
You can either create the local table and specify the connection string (containing the server name,
login, password) to be used to connect to the remote table using the CONNECTION, or you can use an
existing connection that you have previously created using the CREATE SERVER statement.

Important

When you create the local table it must have an identical field definition to the
remote table.

Note

You can improve the performance of a FEDERATED table by adding indexes to
the table on the host. The optimization will occur because the query sent to the
remote server will include the contents of the WHERE clause and will be sent to
the remote server and subsequently executed locally. This reduces the network
traffic that would otherwise request the entire table from the server for local
processing.

14.9.2.1 Creating a FEDERATED Table Using CONNECTION

To use the first method, you must specify the CONNECTION string after the engine type in a CREATE
TABLE statement. For example:

CREATE TABLE federated_table (
 id INT(20) NOT NULL AUTO_INCREMENT,

How to Create FEDERATED Tables

1893

 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

Note

CONNECTION replaces the COMMENT used in some previous versions of MySQL.

The CONNECTION string contains the information required to connect to the remote server containing
the table that will be used to physically store the data. The connection string specifies the server name,
login credentials, port number and database/table information. In the example, the remote table is on
the server remote_host, using port 9306. The name and port number should match the host name
(or IP address) and port number of the remote MySQL server instance you want to use as your remote
table.

The format of the connection string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Where:

• scheme: A recognized connection protocol. Only mysql is supported as the scheme value at this
point.

• user_name: The user name for the connection. This user must have been created on the remote
server, and must have suitable privileges to perform the required actions (SELECT, INSERT,
UPDATE, and so forth) on the remote table.

• password: (Optional) The corresponding password for user_name.

• host_name: The host name or IP address of the remote server.

• port_num: (Optional) The port number for the remote server. The default is 3306.

• db_name: The name of the database holding the remote table.

• tbl_name: The name of the remote table. The name of the local and the remote table do not have to
match.

Sample connection strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'

14.9.2.2 Creating a FEDERATED Table Using CREATE SERVER

If you are creating a number of FEDERATED tables on the same server, or if you want to simplify the
process of creating FEDERATED tables, you can use the CREATE SERVER statement to define the
server connection parameters, just as you would with the CONNECTION string.

The format of the CREATE SERVER statement is:

CREATE SERVER
server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

FEDERATED Storage Engine Notes and Tips

1894

The server_name is used in the connection string when creating a new FEDERATED table.

For example, to create a server connection identical to the CONNECTION string:

CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

You would use the following statement:

CREATE SERVER fedlink
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'fed_user', HOST 'remote_host', PORT 9306, DATABASE 'federated');

To create a FEDERATED table that uses this connection, you still use the CONNECTION keyword, but
specify the name you used in the CREATE SERVER statement.

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='fedlink/test_table';

The connection name in this example contains the name of the connection (fedlink) and the name
of the table (test_table) to link to, separated by a slash. If you specify only the connection name
without a table name, the table name of the local table is used instead.

For more information on CREATE SERVER, see Section 13.1.13, “CREATE SERVER Syntax”.

The CREATE SERVER statement accepts the same arguments as the CONNECTION string. The
CREATE SERVER statement updates the rows in the mysql.servers table. See the following table for
information on the correspondence between parameters in a connection string, options in the CREATE
SERVER statement, and the columns in the mysql.servers table. For reference, the format of the
CONNECTION string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Description CONNECTION string CREATE SERVER
option

mysql.servers
column

Connection scheme scheme wrapper_name Wrapper

Remote user user_name USER Username

Remote password password PASSWORD Password

Remote host host_name HOST Host

Remote port port_num PORT Port

Remote database db_name DATABASE Db

14.9.3 FEDERATED Storage Engine Notes and Tips

You should be aware of the following points when using the FEDERATED storage engine:

• FEDERATED tables may be replicated to other slaves, but you must ensure that the slave servers are
able to use the user/password combination that is defined in the CONNECTION string (or the row in
the mysql.servers table) to connect to the remote server.

The following items indicate features that the FEDERATED storage engine does and does not support:

• The remote server must be a MySQL server.

FEDERATED Storage Engine Notes and Tips

1895

• The remote table that a FEDERATED table points to must exist before you try to access the table
through the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create a
loop.

• A FEDERATED table does not support indexes per se. Because access to the table is handled
remotely, it is the remote table that supports the indexes. Care should be taken when creating a
FEDERATED table since the index definition from an equivalent MyISAM or other table may not be
supported. For example, creating a FEDERATED table with an index prefix on VARCHAR, TEXT or
BLOB columns will fail. The following definition in MyISAM is valid:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;

The key prefix in this example is incompatible with the FEDERATED engine, and the equivalent
statement will fail:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED
 CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';

If possible, you should try to separate the column and index definition when creating tables on both
the remote server and the local server to avoid these index issues.

• Internally, the implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, TRUNCATE TABLE,
and indexes. It does not support ALTER TABLE, or any Data Definition Language statements that
directly affect the structure of the table, other than DROP TABLE. The current implementation does
not use prepared statements.

• FEDERATED accepts INSERT ... ON DUPLICATE KEY UPDATE statements, but if a duplicate-key
violation occurs, the statement fails with an error.

• Performance on a FEDERATED table when performing bulk inserts (for example, on a INSERT
INTO ... SELECT ... statement) is slower than with other table types because each selected
row is treated as an individual INSERT statement on the FEDERATED table.

• Transactions are not supported.

• FEDERATED performs bulk-insert handling such that multiple rows are sent to the remote table
in a batch. This provides a performance improvement and enables the remote table to perform
improvement. Also, if the remote table is transactional, it enables the remote storage engine
to perform statement rollback properly should an error occur. This capability has the following
limitations:

• The size of the insert cannot exceed the maximum packet size between servers. If the insert
exceeds this size, it is broken into multiple packets and the rollback problem can occur.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reason for
this is that this table must work like a data file that would never be written to by anything other than
the database system. The integrity of the data in the local table could be breached if there was any
change to the remote database.

• When using a CONNECTION string, you cannot use an '@' character in the password. You can get
round this limitation by using the CREATE SERVER statement to create a server connection.

• The insert_id and timestamp options are not propagated to the data provider.

• Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the
remote table.

FEDERATED Storage Engine Resources

1896

• FEDERATED tables do not work with the query cache.

• User-defined partitioning is not supported for FEDERATED tables.

14.9.4 FEDERATED Storage Engine Resources

The following additional resources are available for the FEDERATED storage engine:

• A forum dedicated to the FEDERATED storage engine is available at http://forums.mysql.com/list.php?
105.

14.10 The EXAMPLE Storage Engine

The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example
in the MySQL source code that illustrates how to begin writing new storage engines. As such, it is
primarily of interest to developers.

To enable the EXAMPLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_EXAMPLE_STORAGE_ENGINE option.

To examine the source for the EXAMPLE engine, look in the storage/example directory of a MySQL
source distribution.

When you create an EXAMPLE table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. No other files are created. No data can
be stored into the table. Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)

mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't »
 have this option

mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

14.11 Other Storage Engines

Other storage engines may be available from third parties and community members that have used the
Custom Storage Engine interface.

Third party engines are not supported by MySQL. For further information, documentation, installation
guides, bug reporting or for any help or assistance with these engines, please contact the developer of
the engine directly.

For more information on developing a customer storage engine that can be used with the Pluggable
Storage Engine Architecture, see MySQL Internals: Writing a Custom Storage Engine.

14.12 Overview of MySQL Storage Engine Architecture

The MySQL pluggable storage engine architecture enables a database professional to select a
specialized storage engine for a particular application need while being completely shielded from the
need to manage any specific application coding requirements. The MySQL server architecture isolates
the application programmer and DBA from all of the low-level implementation details at the storage
level, providing a consistent and easy application model and API. Thus, although there are different
capabilities across different storage engines, the application is shielded from these differences.

http://forums.mysql.com/list.php?105
http://forums.mysql.com/list.php?105
http://dev.mysql.com/doc/internals/en/custom-engine.html

Pluggable Storage Engine Architecture

1897

The pluggable storage engine architecture provides a standard set of management and support
services that are common among all underlying storage engines. The storage engines themselves
are the components of the database server that actually perform actions on the underlying data that is
maintained at the physical server level.

This efficient and modular architecture provides huge benefits for those wishing to specifically
target a particular application need—such as data warehousing, transaction processing, or high
availability situations—while enjoying the advantage of utilizing a set of interfaces and services that are
independent of any one storage engine.

The application programmer and DBA interact with the MySQL database through Connector APIs and
service layers that are above the storage engines. If application changes bring about requirements
that demand the underlying storage engine change, or that one or more storage engines be added to
support new needs, no significant coding or process changes are required to make things work. The
MySQL server architecture shields the application from the underlying complexity of the storage engine
by presenting a consistent and easy-to-use API that applies across storage engines.

14.12.1 Pluggable Storage Engine Architecture

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

Plugging in a Storage Engine

Before a storage engine can be used, the storage engine plugin shared library must be loaded into
MySQL using the INSTALL PLUGIN statement. For example, if the EXAMPLE engine plugin is named
example and the shared library is named ha_example.so, you load it with the following statement:

mysql> INSTALL PLUGIN example SONAME 'ha_example.so';

To install a pluggable storage engine, the plugin file must be located in the MySQL plugin directory,
and the user issuing the INSTALL PLUGIN statement must have INSERT privilege for the
mysql.plugin table.

The shared library must be located in the MySQL server plugin directory, the location of which is given
by the plugin_dir system variable.

Unplugging a Storage Engine

To unplug a storage engine, use the UNINSTALL PLUGIN statement:

mysql> UNINSTALL PLUGIN example;

If you unplug a storage engine that is needed by existing tables, those tables become inaccessible, but
will still be present on disk (where applicable). Ensure that there are no tables using a storage engine
before you unplug the storage engine.

14.12.2 The Common Database Server Layer

A MySQL pluggable storage engine is the component in the MySQL database server that is
responsible for performing the actual data I/O operations for a database as well as enabling and
enforcing certain feature sets that target a specific application need. A major benefit of using specific
storage engines is that you are only delivered the features needed for a particular application, and
therefore you have less system overhead in the database, with the end result being more efficient and
higher database performance. This is one of the reasons that MySQL has always been known to have
such high performance, matching or beating proprietary monolithic databases in industry standard
benchmarks.

From a technical perspective, what are some of the unique supporting infrastructure components that
are in a storage engine? Some of the key feature differentiations include:

The Common Database Server Layer

1898

• Concurrency: Some applications have more granular lock requirements (such as row-level locks)
than others. Choosing the right locking strategy can reduce overhead and therefore improve overall
performance. This area also includes support for capabilities such as multi-version concurrency
control or “snapshot” read.

• Transaction Support: Not every application needs transactions, but for those that do, there are very
well defined requirements such as ACID compliance and more.

• Referential Integrity: The need to have the server enforce relational database referential integrity
through DDL defined foreign keys.

• Physical Storage: This involves everything from the overall page size for tables and indexes as well
as the format used for storing data to physical disk.

• Index Support: Different application scenarios tend to benefit from different index strategies. Each
storage engine generally has its own indexing methods, although some (such as B-tree indexes) are
common to nearly all engines.

• Memory Caches: Different applications respond better to some memory caching strategies than
others, so although some memory caches are common to all storage engines (such as those used
for user connections or MySQL's high-speed Query Cache), others are uniquely defined only when a
particular storage engine is put in play.

• Performance Aids: This includes multiple I/O threads for parallel operations, thread concurrency,
database checkpointing, bulk insert handling, and more.

• Miscellaneous Target Features: This may include support for geospatial operations, security
restrictions for certain data manipulation operations, and other similar features.

Each set of the pluggable storage engine infrastructure components are designed to offer a selective
set of benefits for a particular application. Conversely, avoiding a set of component features helps
reduce unnecessary overhead. It stands to reason that understanding a particular application's set of
requirements and selecting the proper MySQL storage engine can have a dramatic impact on overall
system efficiency and performance.

1899

Chapter 15 High Availability and Scalability

Table of Contents
15.1 Oracle VM Template for MySQL Enterprise Edition ... 1902
15.2 Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux 1902
15.3 Overview of MySQL with Windows Failover Clustering .. 1905
15.4 Using MySQL within an Amazon EC2 Instance ... 1907

15.4.1 Setting Up MySQL on an EC2 AMI .. 1907
15.4.2 EC2 Instance Limitations ... 1909
15.4.3 Deploying a MySQL Database Using EC2 .. 1909

15.5 Using ZFS Replication ... 1912
15.5.1 Using ZFS for File System Replication ... 1914
15.5.2 Configuring MySQL for ZFS Replication ... 1914
15.5.3 Handling MySQL Recovery with ZFS ... 1915

15.6 Using MySQL with memcached .. 1915
15.6.1 Installing memcached .. 1916
15.6.2 Using memcached .. 1918
15.6.3 Developing a memcached Application .. 1936
15.6.4 Getting memcached Statistics .. 1961
15.6.5 memcached FAQ .. 1969

15.7 MySQL Proxy .. 1972
15.7.1 MySQL Proxy Supported Platforms .. 1973
15.7.2 Installing MySQL Proxy ... 1973
15.7.3 MySQL Proxy Command Options .. 1977
15.7.4 MySQL Proxy Scripting ... 1986
15.7.5 Using MySQL Proxy .. 2000
15.7.6 MySQL Proxy FAQ ... 2006

Data is the currency of today's web, mobile, social, enterprise and cloud applications. Ensuring data is
always available is a top priority for any organization. Minutes of downtime can result in significant loss
of revenue and reputation.

There is no “one size fits all” approach to delivering High Availability (HA). Unique application
attributes, business requirements, operational capabilities and legacy infrastructure can all influence
HA technology selection. And technology is only one element in delivering HA: people and processes
are just as critical as the technology itself.

MySQL is deployed into many applications demanding availability and scalability. Availability refers to
the ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL,
the operating system, or the hardware and maintenance activity that may otherwise cause downtime.
Scalability refers to the ability to spread both the database and the load of your application queries
across multiple MySQL servers.

Because each application has different operational and availability requirements, MySQL offers a
range of certified and supported solutions, delivering the appropriate levels of High Availability (HA)
and scalability to meet service level requirements. Such solutions extend from replication, through
virtualization and geographically redundant, multi-data center solutions delivering 99.999% uptime.

Selecting the right high availability solution for an application largely depends on:

• The level of availability required.

• The type of application being deployed.

• Accepted best practices within your own environment.

1900

The primary solutions supported by MySQL include:

• MySQL Replication. Learn more: Chapter 16, Replication

• MySQL Cluster. Learn more: MySQL Cluster NDB 7.3

• Oracle VM Template for MySQL. Learn more: Section 15.1, “Oracle VM Template for MySQL
Enterprise Edition”.

• MySQL with DRBD with Corosync and Pacemaker. Learn more: Section 15.2, “Overview of MySQL
with DRBD/Pacemaker/Corosync/Oracle Linux”.

• MySQL with Windows Failover Clustering. Learn more: Section 15.3, “Overview of MySQL with
Windows Failover Clustering”.

• MySQL with Solaris Cluster. Learn more about Solaris Cluster.

Further options are available using third-party solutions.

Each architecture used to achieve highly available database services is differentiated by the levels of
uptime it offers. These architectures can be grouped into three main categories:

• Data Replication.

• Clustered & Virtualized Systems.

• Shared-Nothing, Geographically-Replicated Clusters.

As illustrated in the following figure, each of these architectures offers progressively higher levels of
uptime, which must be balanced against potentially greater levels of cost and complexity that each can
incur. Simply deploying a high availability architecture is not a guarantee of actually delivering HA. In
fact, a poorly implemented and maintained shared-nothing cluster could easily deliver lower levels of
availability than a simple data replication solution.

Figure 15.1 Tradeoffs: Cost and Complexity versus Availability

The following table compares the HA and Scalability capabilities of the various MySQL solutions:

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://www.oracle.com/technetwork/server-storage/solaris-cluster/overview/index.html

1901

Table 15.1 Feature Comparison of MySQL HA Solutions

Requirement MySQL
Replication

DRBD Oracle VM
Template

MySQL Cluster

Availability

Platform Support All Supported
by MySQL
Server (http://
www.mysql.com/
support/
supportedplatforms/
database.html)

Linux Oracle Linux All Supported
by MySQL
Cluster (http://
www.mysql.com/
support/
supportedplatforms/
cluster.html)

Automated IP
Failover

No Yes Yes Depends on
Connector and
Configuration

Automated
Database Failover

No Yes Yes Yes

Automatic Data
Resynchronization

No Yes N/A - Shared
Storage

Yes

Typical Failover
Time

User / Script
Dependent

Configuration
Dependent, 60
seconds and
Above

Configuration
Dependent, 60
seconds and
Above

1 Second and Less

Synchronous
Replication

No, Asynchronous
and
Semisynchronous

Yes N/A - Shared
Storage

Yes

Shared Storage No, Distributed No, Distributed Yes No, Distributed

Geographic
redundancy
support

Yes Yes, via MySQL
Replication

Yes, via MySQL
Replication

Yes, via MySQL
Replication

Update Schema
On-Line

No No No Yes

Scalability

Number of Nodes One Master,
Multiple Slaves

One Active
(primary),
one Passive
(secondary) Node

One Active
(primary),
one Passive
(secondary) Node

255

Built-in Load
Balancing

Reads, via MySQL
Replication

Reads, via MySQL
Replication

Reads, via MySQL
Replication &
During Failover

Yes, Reads and
Writes

Supports Read-
Intensive
Workloads

Yes Yes Yes Yes

Supports Write-
Intensive
Workloads

Yes, via
Application-Level
Sharding

Yes, via
Application-
Level Sharding to
Multiple Active/
Passive Pairs

Yes, via
Application-
Level Sharding to
Multiple Active/
Passive Pairs

Yes, via Auto-
Sharding

Scale On-Line (add
nodes, repartition,
etc.)

No No No Yes

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/support/supportedplatforms/cluster.html

Oracle VM Template for MySQL Enterprise Edition

1902

15.1 Oracle VM Template for MySQL Enterprise Edition

Virtualization is a key technology to enable data center efficiency and high availability while providing
the foundation for cloud computing. Integrating MySQL Enterprise Edition with Oracle Linux, the Oracle
VM Template is the fastest, easiest, and most reliable way to provision virtualized MySQL instances,
enabling users to meet the explosive demand for highly available services.

The Oracle VM Template enables rapid deployment and eliminates manual configuration efforts. It
provides a preinstalled and pre-configured virtualized MySQL 5.5 Enterprise Edition software image
running on Oracle Linux and Oracle VM, certified for production use. The MySQL software image has
undergone extensive integration and quality assurance testing as part of the development process.

In addition to rapid provisioning, MySQL users also benefit from the integrated high availability features
of Oracle VM which are designed to enable organizations to meet stringent SLA (Service Level
Agreement) demands through a combination of:

• Automatic recovery from failures, with Oracle VM automatically restarting failed instances on
available servers in the server pool after outages of the physical server, VM or MySQL database.

• Live Migration, enabling operations staff to move running instances of MySQL to alternative hosts
within a server pool during maintenance operations.

Instructions for the creation, deployment and use of the Oracle VM Template for MySQL Enterprise
Edition are available from:

• The Oracle VM Template for MySQL Enterprise Edition whitepaper: http://www.mysql.com/why-
mysql/white-papers/mysql_wp_oracle-vm-template-for-mee.php.

• The README file accompanying the download of the Template.

To download the Oracle VM Template for MySQL Enterprise, go to http://edelivery.oracle.com/
oraclevm and follow these instructions:

• Complete your registration information (Name, Company Name, Email Address and Country) and
click on the download agreement.

• Select "Oracle VM Templates" from the "Select a Product Pack" pull-down menu and click "Go".

• Select MySQL Enterprise from the list of Oracle VM Templates.

• Download and unzip the files and refer to the README for further instructions.

15.2 Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle
Linux

DRBD (Distributed Replication Block Device) is one of the leading solutions for MySQL HA (High
Availability). When combined with Pacemaker and Corosync, users have:

• An end-to-end, integrated stack of mature and proven open source technologies, fully supported by
Oracle (as part of MySQL Enterprise Edition).

• Automatic failover and recovery for service continuity.

• Mirroring, via synchronous replication, to ensure failover between nodes without the risk of losing
committed transactions.

• Building of HA clusters from commodity hardware, without the requirement for shared-storage.

The following figure illustrates the stack that can be used to deliver a level of High Availability for the
MySQL service.

http://www.mysql.com/why-mysql/white-papers/mysql_wp_oracle-vm-template-for-mee.php
http://www.mysql.com/why-mysql/white-papers/mysql_wp_oracle-vm-template-for-mee.php
http://edelivery.oracle.com/oraclevm
http://edelivery.oracle.com/oraclevm

Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux

1903

At the lowest level, 2 hosts are required in order to provide physical redundancy; if using a virtual
environment, those 2 hosts should be on different physical machines. It is an important feature that no
shared storage is required. At any point in time, the services will be active on one host and in standby
mode on the other.

Pacemaker and Corosync combine to provide the clustering layer that sits between the services and
the underlying hosts and operating systems. Pacemaker is responsible for starting and stopping
services, ensuring that they are running on exactly one host, thus delivering high availability and
avoiding data corruption. Corosync provides the underlying messaging infrastructure between the
nodes that enables Pacemaker to do its job; it also handles the nodes membership within the cluster
and informs Pacemaker of any changes.

Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux

1904

Figure 15.2 MySQL, DRBD, Pacemaker, and Corosync Stack

The core Pacemaker process does not have built-in knowledge of the specific services to be managed;
instead, it uses agents that provide a wrapper for the service-specific actions. For example, in this
solution we use agents for Virtual IP Addresses, MySQL and DRBD: these are all existing agents and
come packaged with Pacemaker.

Support for DRBD

1905

The essential services managed by Pacemaker in this configuration are DRBD, MySQL and the Virtual
IP Address that applications use to connect to the active MySQL service.

DRBD synchronizes data at the block device (typically a spinning or solid state disk) – transparent
to the application, database and even the file system. DRBD requires the use of a journaling file
system such as ext3 or ext4. For this solution, it acts in an active-standby mode: at any point in time,
the directories being managed by DRBD are accessible for reads and writes on exactly one of the
two hosts and inaccessible (even for reads) on the other. Any changes made on the active host are
synchronously replicated to the standby host by DRBD.

Download the following guide for detailed instructions on installing, configuring, provisioning and testing
the complete MySQL and DRBD stack, including:

• MySQL Database.

• DRBD kernel module and userland utilities.

• Pacemaker and Corosync cluster messaging and management processes.

• Oracle Linux operating system.

Download the guide at: http://www.mysql.com/why-mysql/white-papers/mysql-high-availability-drbd-
configuration-deployment-guide/.

Support for DRBD

The complete DRBD stack for MySQL has been certified by Oracle. Commercial support, which
provides a single point of contact for the entire stack, whether issues relate to the operating system,
DRBD, clustering software or MySQL, is available to those who have both MySQL Enterprise Edition
and Oracle Linux Premier Support contracts.

15.3 Overview of MySQL with Windows Failover Clustering

Microsoft Windows is consistently ranked as the top development platform for MySQL, based on
surveys of the MySQL user community.

MySQL Enterprise Edition is certified and supported with Windows Server 2008 R2 Failover Clustering
(WSFC), enabling organizations to safely deploy business-critical applications demanding high levels of
availability using Microsoft's native Windows clustering services.

The following figure illustrates the integration of MySQL with Windows Server Failover Clustering to
provide a highly available service:

http://www.mysql.com/why-mysql/white-papers/mysql-high-availability-drbd-configuration-deployment-guide/
http://www.mysql.com/why-mysql/white-papers/mysql-high-availability-drbd-configuration-deployment-guide/
http://www.mysql.com/products/enterprise/
http://www.oracle.com/us/technologies/linux/support/overview/index.html

Overview of MySQL with Windows Failover Clustering

1906

Figure 15.3 Typical MySQL HA Configuration with Windows Server Failover Clustering

In this architecture, MySQL is deployed in an Active / Passive configuration. Failures of either MySQL
or the underlying server are automatically detected and the MySQL instance is restarted on the
Passive node. Applications accessing the database, as well as any MySQL replication slaves, can
automatically reconnect to the new MySQL process using the same Virtual IP address once MySQL
recovery has completed and it starts accepting connections.

MySQL with Windows Failover Clustering requires at least 2 servers within the cluster together with
shared storage (for example, FC-AL SAN or iSCSI disks).

The MySQL binaries and data files are stored in the shared storage and Windows Failover Clustering
ensures that only one of the cluster nodes will access those files at any point in time.

Clients connect to the MySQL service through a Virtual IP Address (VIP). In the event of failover
they experience a brief loss of connection, but otherwise do not need to be aware that the failover
has happened, other than to handle the failure of any transactions that were active when the failover
occurred.

You can learn more about configuring MySQL with Windows Server Failover Clustering
from the whitepaper posted here: http://www.mysql.com/why-mysql/white-papers/
mysql_wp_windows_failover_clustering.php

http://www.mysql.com/why-mysql/white-papers/mysql_wp_windows_failover_clustering.php
http://www.mysql.com/why-mysql/white-papers/mysql_wp_windows_failover_clustering.php

Using MySQL within an Amazon EC2 Instance

1907

For background and usage information about Windows Server Failover Clustering, see these pages on
the Microsoft Technet site:

• Failover Clustering

• Failover Clusters in Windows Server 2008 R2

15.4 Using MySQL within an Amazon EC2 Instance
The Amazon Elastic Compute Cloud (EC2) service provides virtual servers that you can build and
deploy to run a variety of different applications and services, including MySQL. The EC2 service is
based around the Xen framework, supporting x86, Linux based, platforms with individual instances of
a virtual machine referred to as an Amazon Machine Image (AMI). You have complete (root) access
to the AMI instance that you create, enabling you to configure and install your AMI in any way you
choose.

To use EC2, you create an AMI based on the configuration and applications that you intend to use,
and upload the AMI to the Amazon Simple Storage Service (S3). From the S3 resource, you can
deploy one or more copies of the AMI to run as an instance within the EC2 environment. The EC2
environment provides management and control of the instance and contextual information about the
instance while it is running.

Because you can create and control the AMI, the configuration, and the applications, you can deploy
and create any environment you choose. This includes a basic MySQL server in addition to more
extensive replication, HA and scalability scenarios that enable you to take advantage of the EC2
environment, and the ability to deploy additional instances as the demand for your MySQL services and
applications grow.

To aid the deployment and distribution of work, three different Amazon EC2 instances are available,
small (identified as m1.small), large (m1.large) and extra large (m1.xlarge). The different types
provide different levels of computing power measured in EC2 computer units (ECU). A summary of the
different instance configurations is shown in the following table.

EC2 Attribute Small Large Extra Large

Platform 32-bit 64-bit 64-bit

CPU cores 1 2 4

ECUs 1 4 8

RAM 1.7GB 7.5GB 15GB

Storage 150GB 840GB 1680GB

I/O Performance Medium High High

The typical model for deploying and using MySQL within the EC2 environment is to create a basic
AMI that you can use to hold your database data and application. Once the basic environment for
your database and application has been created you can then choose to deploy the AMI to a suitable
instance. Here the flexibility of having an AMI that can be re-deployed from the small to the large or
extra large EC2 instance makes it easy to upgrade the hardware environment without rebuilding your
application or database stack.

To get started with MySQL on EC2, including information on how to set up and install MySQL within
an EC2 installation and how to port and migrate your data to the running instance, see Section 15.4.1,
“Setting Up MySQL on an EC2 AMI”.

For tips and advice on how to create a scalable EC2 environment using MySQL, including guides on
setting up replication, see Section 15.4.3, “Deploying a MySQL Database Using EC2”.

15.4.1 Setting Up MySQL on an EC2 AMI

There are many different ways of setting up an EC2 AMI with MySQL, including using any of the pre-
configured AMIs supplied by Amazon.

http://technet.microsoft.com/en-us/library/cc725923(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/ff182338(v=ws.10).aspx

Setting Up MySQL on an EC2 AMI

1908

The default Getting Started AMI provided by Amazon uses Fedora Core 4, and you can install MySQL
by using yum:

shell> yum install mysql

This installs both the MySQL server and the Perl DBD::mysql driver for the Perl DBI API.

Alternatively, you can use one of the AMIs that include MySQL within the standard installation.

Finally, you can also install a standard version of MySQL downloaded from the MySQL Web site. The
installation process and instructions are identical to any other installation of MySQL on Linux. See
Chapter 2, Installing and Upgrading MySQL.

The standard configuration for MySQL places the data files in the default location, /var/lib/mysql.
The default data directory on an EC2 instance is /mnt (although on the large and extra large instance
you can alter this configuration). You must edit /etc/my.cnf to set the datadir option to point to the
larger storage area.

Important

The first time you use the main storage location within an EC2 instance it needs
to be initialized. The initialization process starts automatically the first time you
write to the device. You can start using the device right away, but the write
performance of the new device is significantly lower on the initial writes until the
initialization process has finished.

To avoid this problem when setting up a new instance, you should start the
initialization process before populating your MySQL database. One way to do
this is to use dd to write to the file system:

root-shell> dd if=/dev/zero of=initialize bs=1024M count=50

The preceding creates a 50GB on the file system and starts the initialization
process. Delete the file once the process has finished.

The initialization process can be time-consuming. On the small instance,
initialization takes between two and three hours. For the large and extra large
drives, the initialization can be 10 or 20 hours, respectively.

In addition to configuring the correct storage location for your MySQL data files, also consider setting
the following other settings in your instance before you save the instance configuration for deployment:

• Set the MySQL server ID, so that when you use it for replication, the ID information is set correctly.

• Enabling binary logging, so that replication can be initialized without starting and stopping the server.

• Set the caching and memory parameters for your storage engines. There are no limitations or
restrictions on what storage engines you use in your EC2 environment. Choose a configuration,
possibly using one of the standard configurations provided with MySQL appropriate for the instance
on which you expect to deploy. The large and extra large instances have RAM that can be dedicated
to caching. Be aware that if you choose to install memcached on the servers as part of your
application stack you must ensure there is enough memory for both MySQL and memcached.

Once you have configured your AMI with MySQL and the rest of your application stack, save the AMI
so that you can deploy and reuse the instance.

Once you have your application stack configured in an AMI, populating your MySQL database with
data should be performed by creating a dump of your database using mysqldump, transferring the
dump to the EC2 instance, and then reloading the information into the EC2 instance database.

EC2 Instance Limitations

1909

Before using your instance with your application in a production situation, be aware of the limitations
of the EC2 instance environment. See Section 15.4.2, “EC2 Instance Limitations”. To begin using your
MySQL AMI, consult the notes on deployment. See Section 15.4.3, “Deploying a MySQL Database
Using EC2”.

15.4.2 EC2 Instance Limitations

Be aware of the following limitations of the EC2 instances before deploying your applications. Although
these shouldn't affect your ability to deploy within the Amazon EC2 environment, they may alter the
way you setup and configure your environment to support your application.

• Data stored within instances is not persistent. If you create an instance and populate the instance
with data, then the data only remains in place while the machine is running, and does not survive a
reboot. If you shut down the instance, any data it contained is lost.

To ensure that you do not lose information, take regular backups using mysqldump. If the data
being stored is critical, consider using replication to keep a “live” backup of your data in the event
of a failure. When creating a backup, write the data to the Amazon S3 service to avoid the transfer
charges applied when copying data offsite.

• EC2 instances are not persistent. If the hardware on which an instance is running fails, the instance
is shut down. This can lead to loss of data or service.

However, if you use EBS, you can attach an EBS storage volume to an EC2 instance, and that EBS
volume is persistent. Like a disk, an EBS volume can fail, but it is possible to create point-in-time
snapshots of the volume. Snapshots are persisted to Amazon S3 and can be used to restore data in
the event of volume failure.

• To replicate your EC2 instances to a non-EC2 environment, be aware of the transfer costs to and
from the EC2 service. Data transfer between different EC2 instances is free, so using replication
within the EC2 environment does not incur additional charges.

• Certain HA features are either not directly supported, or have limiting factors or problems that could
reduce their utility. For example, using DRBD or MySQL Cluster might not work. The default storage
configuration is also not redundant. You can use software-based RAID to improve redundancy, but
this implies a further performance hit.

15.4.3 Deploying a MySQL Database Using EC2

Because you cannot guarantee the uptime and availability of your EC2 instances, when deploying
MySQL within the EC2 environment, use an approach that enables you to easily distribute work among
your EC2 instances. There are a number of ways of doing this. Using sharding techniques, where you
split the application across multiple servers dedicating specific blocks of your dataset and users to
different servers is an effective way of doing this. As a general rule, it is easier to create more EC2
instances to support more users than to upgrade the instance to a larger machine.

The EC2 architecture works best when you treat the EC2 instances as temporary, cache-based
solutions, rather than as a long-term, high availability solution. In addition to using multiple machines,
take advantage of other services, such as memcached to provide additional caching for your
application to help reduce the load on the MySQL server so that it can concentrate on writes. On the
large and extra large instances within EC2, the RAM available can provide a large memory cache for
data.

Most types of scale-out topology that you would use with your own hardware can be used and applied
within the EC2 environment. However, use the limitations and advice already given to ensure that any
potential failures do not lose you any data. Also, because the relative power of each EC2 instance is so
low, be prepared to alter your application to use sharding and add further EC2 instances to improve the
performance of your application.

For example, take the typical scale-out environment shown following, where a single master replicates
to one or more slaves (three in this example), with a web server running on each replication slave.

Deploying a MySQL Database Using EC2

1910

You can reproduce this structure completely within the EC2 environment, using an EC2 instance for the
master, and one instance for each of the web and MySQL slave servers.

Note

Within the EC2 environment, internal (private) IP addresses used by the EC2
instances are constant. Always use these internal addresses and names
when communicating between instances. Only use public IP addresses when
communicating with the outside world - for example, when publicizing your
application.

To ensure reliability of your database, add at least one replication slave dedicated to providing an
active backup and storage to the Amazon S3 facility. You can see an example of this in the following
topology.

Deploying a MySQL Database Using EC2

1911

Using memcached within your EC2 instances should provide better performance. The large and extra
large instances have a significant amount of RAM. To use memcached in your application, when
loading information from the database, first check whether the item exists in the cache. If the data you
are looking for exists in the cache, use it. If not, reload the data from the database and populate the
cache.

Sharding divides up data in your entire database by allocating individual machines or machine groups
to provide a unique set of data according to an appropriate group. For example, you might put all users
with a surname ending in the letters A-D onto a single server. When a user connects to the application
and their surname is known, queries can be redirected to the appropriate MySQL server.

When using sharding with EC2, separate the web server and MySQL server into separate EC2
instances, and then apply the sharding decision logic into your application. Once you know which
MySQL server you should be using for accessing the data you then distribute queries to the
appropriate server. You can see a sample of this in the following illustration.

Using ZFS Replication

1912

Warning

With sharding and EC2, be careful that the potential for failure of an instance
does not affect your application. If the EC2 instance that provides the MySQL
server for a particular shard fails, then all of the data on that shard becomes
unavailable.

15.5 Using ZFS Replication

To support high availability environments, providing an instant copy of the information on both the
currently active machine and the hot backup is a critical part of the HA solution. There are many
solutions to this problem, including Chapter 16, Replication and Section 15.2, “Overview of MySQL with
DRBD/Pacemaker/Corosync/Oracle Linux”.

The ZFS file system provides functionality to create a snapshot of the file system contents, transfer
the snapshot to another machine, and extract the snapshot to recreate the file system. You can create
a snapshot at any time, and you can create as many snapshots as you like. By continually creating,
transferring, and restoring snapshots, you can provide synchronization between one or more machines
in a fashion similar to DRBD.

The following example shows a simple Solaris system running with a single ZFS pool, mounted at /
scratchpool:

Filesystem size used avail capacity Mounted on
/dev/dsk/c0d0s0 4.6G 3.7G 886M 82% /
/devices 0K 0K 0K 0% /devices
ctfs 0K 0K 0K 0% /system/contract
proc 0K 0K 0K 0% /proc
mnttab 0K 0K 0K 0% /etc/mnttab
swap 1.4G 892K 1.4G 1% /etc/svc/volatile

Using ZFS Replication

1913

objfs 0K 0K 0K 0% /system/object
/usr/lib/libc/libc_hwcap1.so.1
 4.6G 3.7G 886M 82% /lib/libc.so.1
fd 0K 0K 0K 0% /dev/fd
swap 1.4G 40K 1.4G 1% /tmp
swap 1.4G 28K 1.4G 1% /var/run
/dev/dsk/c0d0s7 26G 913M 25G 4% /export/home
scratchpool 16G 24K 16G 1% /scratchpool

The MySQL data is stored in a directory on /scratchpool. To help demonstrate some of the basic
replication functionality, there are also other items stored in /scratchpool as well:

total 17
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/
drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/

To create a snapshot of the file system, you use zfs snapshot, specifying the pool and the snapshot
name:

root-shell> zfs snapshot scratchpool@snap1

To list the snapshots already taken:

root-shell> zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
scratchpool@snap1 0 - 24.5K -
scratchpool@snap2 0 - 24.5K -

The snapshots themselves are stored within the file system metadata, and the space required to keep
them varies as time goes on because of the way the snapshots are created. The initial creation of a
snapshot is very quick, because instead of taking an entire copy of the data and metadata required to
hold the entire snapshot, ZFS records only the point in time and metadata of when the snapshot was
created.

As more changes to the original file system are made, the size of the snapshot increases because
more space is required to keep the record of the old blocks. If you create lots of snapshots, say one
per day, and then delete the snapshots from earlier in the week, the size of the newer snapshots might
also increase, as the changes that make up the newer state have to be included in the more recent
snapshots, rather than being spread over the seven snapshots that make up the week.

You cannot directly back up the snapshots because they exist within the file system metadata rather
than as regular files. To get the snapshot into a format that you can copy to another file system, tape,
and so on, you use the zfs send command to create a stream version of the snapshot.

For example, to write the snapshot out to a file:

root-shell> zfs send scratchpool@snap1 >/backup/scratchpool-snap1

Or tape:

root-shell> zfs send scratchpool@snap1 >/dev/rmt/0

You can also write out the incremental changes between two snapshots using zfs send:

root-shell> zfs send scratchpool@snap1 scratchpool@snap2 >/backup/scratchpool-changes

To recover a snapshot, you use zfs recv, which applies the snapshot information either to a new file
system, or to an existing one.

Using ZFS for File System Replication

1914

15.5.1 Using ZFS for File System Replication

Because zfs send and zfs recv use streams to exchange data, you can use them to replicate
information from one system to another by combining zfs send, ssh, and zfs recv.

For example, to copy a snapshot of the scratchpool file system to a new file system called
slavepool on a new server, you would use the following command. This sequence combines the
snapshot of scratchpool, the transmission to the slave machine (using ssh with login credentials),
and the recovery of the snapshot on the slave using zfs recv:

root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

The first part of the pipeline, zfs send scratchpool@snap1, streams the snapshot. The
ssh command, and the command that it executes on the other server, pfexec zfs recv -F
slavepool, receives the streamed snapshot data and writes it to slavepool. In this instance, I've
specified the -F option which forces the snapshot data to be applied, and is therefore destructive. This
is fine, as I'm creating the first version of my replicated file system.

On the slave machine, the replicated file system contains the exact same content:

root-shell> ls -al /slavepool/
total 23
drwxr-xr-x 6 root root 7 Nov 8 09:13 ./
drwxr-xr-x 29 root root 34 Nov 9 07:06 ../
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/
drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/

Once a snapshot has been created, to synchronize the file system again, you create a new snapshot
and then use the incremental snapshot feature of zfs send to send the changes between the two
snapshots to the slave machine again:

root-shell> zfs send -i scratchpool@snapshot1 scratchpool@snapshot2 |ssh id@host pfexec zfs recv slavepool

This operation only succeeds if the file system on the slave machine has not been modified at all. You
cannot apply the incremental changes to a destination file system that has changed. In the example
above, the ls command would cause problems by changing the metadata, such as the last access
time for files or directories.

To prevent changes on the slave file system, set the file system on the slave to be read-only:

root-shell> zfs set readonly=on slavepool

Setting readonly means that you cannot change the file system on the slave by normal means,
including the file system metadata. Operations that would normally update metadata (like our ls)
silently perform their function without attempting to update the file system state.

In essence, the slave file system is nothing but a static copy of the original file system. However, even
when configured to to be read-only, a file system can have snapshots applied to it. With the file system
set to read only, re-run the initial copy:

root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

Now you can make changes to the original file system and replicate them to the slave.

15.5.2 Configuring MySQL for ZFS Replication

Configuring MySQL on the source file system is a case of creating the data on the file system that
you intend to replicate. The configuration file in the example below has been updated to use /
scratchpool/mysql-data as the data directory, and now you can initialize the tables:

Handling MySQL Recovery with ZFS

1915

root-shell> mysql_install_db --defaults-file=/etc/mysql/5.5/my.cnf --user=mysql

To synchronize the initial information, perform a new snapshot and then send an incremental snapshot
to the slave using zfs send:

root-shell> zfs snapshot scratchpool@snap2
root-shell> zfs send -i scratchpool@snap1 scratchpool@snap2|ssh id@host pfexec zfs recv slavepool

Doublecheck that the slave has the data by looking at the MySQL data directory on the slavepool:

root-shell> ls -al /slavepool/mysql-data/

Now you can start up MySQL, create some data, and then replicate the changes using zfs send/
zfs recv to the slave to synchronize the changes.

The rate at which you perform the synchronization depends on your application and environment.
The limitation is the speed required to perform the snapshot and then to send the changes over the
network.

To automate the process, create a script that performs the snapshot, send, and receive operation, and
use cron to synchronize the changes at set times or intervals.

15.5.3 Handling MySQL Recovery with ZFS

When using ZFS replication to provide a constant copy of your data, ensure that you can recover your
tables, either manually or automatically, in the event of a failure of the original system.

In the event of a failure, follow this sequence:

1. Stop the script on the master, if it is still up and running.

2. Set the slave file system to be read/write:

root-shell> zfs set readonly=off slavepool

3. Start up mysqld on the slave. If you are using InnoDB, you get auto-recovery, if it is needed,
to make sure the table data is correct, as shown here when I started up from our mid-INSERT
snapshot:

InnoDB: The log sequence number in ibdata files does not match
InnoDB: the log sequence number in the ib_logfiles!
081109 15:59:59 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
081109 16:00:03 InnoDB: Started; log sequence number 0 1142807951
081109 16:00:03 [Note] /slavepool/mysql-5.0.67-solaris10-i386/bin/mysqld: ready for connections.
Version: '5.0.67' socket: '/tmp/mysql.sock' port: 3306 MySQL Community Server (GPL)

Use InnoDB tables and a regular synchronization schedule to reduce the risk for significant data
loss. On MyISAM tables, you might need to run REPAIR TABLE, and you might even have lost some
information.

15.6 Using MySQL with memcached
memcached is a simple, highly scalable key-based cache that stores data and objects wherever
dedicated or spare RAM is available for quick access by applications, without going through layers of
parsing or disk I/O. To use, you run the memcached command on one or more hosts and then use the
shared cache to store objects. For more usage instructions, see Section 15.6.2, “Using memcached”

Installing memcached

1916

Benefits of using memcached include:

• Because all information is stored in RAM, the access speed is faster than loading the information
each time from disk.

• Because the “value” portion of the key-value pair does not have any data type restrictions, you can
cache data such as complex structures, documents, images, or a mixture of such things.

• If you use the in-memory cache to hold transient information, or as a read-only cache for information
also stored in a database, the failure of any memcached server is not critical. For persistent data, you
can fall back to an alternative lookup method using database queries, and reload the data into RAM
on a different server.

The typical usage environment is to modify your application so that information is read from the cache
provided by memcached. If the information is not in memcached, then the data is loaded from the
MySQL database and written into the cache so that future requests for the same object benefit from the
cached data.

For a typical deployment layout, see Figure 15.4, “memcached Architecture Overview”.

Figure 15.4 memcached Architecture Overview

In the example structure, any of the clients can contact one of the memcached servers to request a
given key. Each client is configured to talk to all of the servers shown in the illustration. Within the
client, when the request is made to store the information, the key used to reference the data is hashed
and this hash is then used to select one of the memcached servers. The selection of the memcached
server takes place on the client before the server is contacted, keeping the process lightweight.

The same algorithm is used again when a client requests the same key. The same key generates
the same hash, and the same memcached server is selected as the source for the data. Using this
method, the cached data is spread among all of the memcached servers, and the cached information
is accessible from any client. The result is a distributed, memory-based, cache that can return
information, particularly complex data and structures, much faster than natively reading the information
from the database.

The data held within a traditional memcached server is never stored on disk (only in RAM, which
means there is no persistence of data), and the RAM cache is always populated from the backing store
(a MySQL database). If a memcached server fails, the data can always be recovered from the MySQL
database.

15.6.1 Installing memcached

You can build and install memcached from the source code directly, or you can use an existing
operating system package or installation.

Installing memcached from a Binary Distribution

Installing memcached

1917

To install memcached on a Red Hat, or Fedora host, use yum:

root-shell> yum install memcached

Note

On CentOS, you may be able to obtain a suitable RPM from another source, or
use the source tarball.

To install memcached on a Debian or Ubuntu host, use apt-get:

root-shell> apt-get install memcached

To install memcached on a Gentoo host, use emerge:

root-shell> emerge install memcached

Building memcached from Source

On other Unix-based platforms, including Solaris, AIX, HP-UX and Mac OS X, and Linux distributions
not mentioned already, you must install from source. For Linux, make sure you have a 2.6-based
kernel, which includes the improved epoll interface. For all platforms, ensure that you have
libevent 1.1 or higher installed. You can obtain libevent from libevent web page.

You can obtain the source for memcached from memcached Web site.

To build memcached, follow these steps:

1. Extract the memcached source package:

shell> gunzip -c memcached-1.2.5.tar.gz | tar xf -

2. Change to the memcached-1.2.5 directory:

shell> cd memcached-1.2.5

3. Run configure

shell> ./configure

Some additional options you might specify to the configure:

• --prefix

To specify a different installation directory, use the --prefix option:

shell> ./configure --prefix=/opt

The default is to use the /usr/local directory.

• --with-libevent

If you have installed libevent and configure cannot find the library, use the --with-
libevent option to specify the location of the installed library.

• --enable-64bit

To build a 64-bit version of memcached (which enables you to use a single instance with a large
RAM allocation), use --enable-64bit.

http://www.monkey.org/~provos/libevent/
http://www.danga.com/memcached

Using memcached

1918

• --enable-threads

To enable multi-threading support in memcached, which improves the response times on servers
with a heavy load, use --enable-threads. You must have support for the POSIX threads
within your operating system to enable thread support. For more information on the threading
support, see Section 15.6.2.7, “memcached Thread Support”.

• --enable-dtrace

memcached includes a range of DTrace threads that can be used to monitor and benchmark
a memcached instance. For more information, see Section 15.6.2.5, “Using memcached and
DTrace”.

4. Run make to build memcached:

shell> make

5. Run make install to install memcached:

shell> make install

15.6.2 Using memcached

To start using memcached, start the memcached service on one or more servers. Running memcached
sets up the server, allocates the memory and starts listening for connections from clients.

Note

You do not need to be a privileged user (root) to run memcached except to
listen on one of the privileged TCP/IP ports (below 1024). You must, however,
use a user that has not had their memory limits restricted using setrlimit or
similar.

To start the server, run memcached as a nonprivileged (that is, non-root) user:

shell> memcached

By default, memcached uses the following settings:

• Memory allocation of 64MB

• Listens for connections on all network interfaces, using port 11211

• Supports a maximum of 1024 simultaneous connections

Typically, you would specify the full combination of options that you want when starting memcached,
and normally provide a startup script to handle the initialization of memcached. For example, the
following line starts memcached with a maximum of 1024MB RAM for the cache, listening on port
11211 on the IP address 192.168.0.110, running as a background daemon:

shell> memcached -d -m 1024 -p 11211 -l 192.168.0.110

To ensure that memcached is started up on boot, check the init script and configuration parameters.

memcached supports the following options:

• -u user

If you start memcached as root, use the -u option to specify the user for executing memcached:

Using memcached

1919

shell> memcached -u memcache

• -m memory

Set the amount of memory allocated to memcached for object storage. Default is 64MB.

To increase the amount of memory allocated for the cache, use the -m option to specify the amount
of RAM to be allocated (in megabytes). The more RAM you allocate, the more data you can store
and therefore the more effective your cache is.

Warning

Do not specify a memory allocation larger than your available RAM. If you
specify too large a value, then some RAM allocated for memcached uses
swap space, and not physical RAM. This may lead to delays when storing
and retrieving values, because data is swapped to disk, instead of storing the
data directly in RAM.

You can use the output of the vmstat command to get the free memory, as
shown in free column:

shell> vmstat
kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr s1 s2 -- -- in sy cs us sy id
0 0 0 5170504 3450392 2 7 2 0 0 0 4 0 0 0 0 296 54 199 0 0 100

For example, to allocate 3GB of RAM:

shell> memcached -m 3072

On 32-bit x86 systems where you are using PAE to access memory above the 4GB limit, you cannot
allocate RAM beyond the maximum process size. You can get around this by running multiple
instances of memcached, each listening on a different port:

shell> memcached -m 1024 -p11211
shell> memcached -m 1024 -p11212
shell> memcached -m 1024 -p11213

Note

On all systems, particularly 32-bit, ensure that you leave enough room for
both memcached application in addition to the memory setting. For example,
if you have a dedicated memcached host with 4GB of RAM, do not set the
memory size above 3500MB. Failure to do this may cause either a crash or
severe performance issues.

• -l interface

Specify a network interface/address to listen for connections. The default is to listen on all available
address (INADDR_ANY).

shell> memcached -l 192.168.0.110

Support for IPv6 address support was added in memcached 1.2.5.

• -p port

Specify the TCP port to use for connections. Default is 18080.

shell> memcached -p 18080

Using memcached

1920

• -U port

Specify the UDP port to use for connections. Default is 11211, 0 switches UDP off.

shell> memcached -U 18080

• -s socket

Specify a Unix socket to listen on.

If you are running memcached on the same server as the clients, you can disable the network
interface and use a local Unix socket using the -s option:

shell> memcached -s /tmp/memcached

Using a Unix socket automatically disables network support, and saves network ports (allowing more
ports to be used by your web server or other process).

• -a mask

Specify the access mask to be used for the Unix socket, in octal. Default is 0700.

• -c connections

Specify the maximum number of simultaneous connections to the memcached service. The default is
1024.

shell> memcached -c 2048

Use this option, either to reduce the number of connections (to prevent overloading memcached
service) or to increase the number to make more effective use of the server running memcached
server.

• -t threads

Specify the number of threads to use when processing incoming requests.

By default, memcached is configured to use 4 concurrent threads. The threading improves the
performance of storing and retrieving data in the cache, using a locking system to prevent different
threads overwriting or updating the same values. To increase or decrease the number of threads,
use the -t option:

shell> memcached -t 8

• -d

Run memcached as a daemon (background) process:

shell> memcached -d

• -r

Maximize the size of the core file limit. In the event of a failure, this attempts to dump the entire
memory space to disk as a core file, up to any limits imposed by setrlimit.

• -M

Return an error to the client when the memory has been exhausted. This replaces the normal
behavior of removing older items from the cache to make way for new items.

Using memcached

1921

• -k

Lock down all paged memory. This reserves the memory before use, instead of allocating new slabs
of memory as new items are stored in the cache.

Note

There is a user-level limit on how much memory you can lock. Trying to
allocate more than the available memory fails. You can set the limit for the
user you started the daemon with (not for the -u user user) within the shell
by using ulimit -S -l NUM_KB

• -v

Verbose mode. Prints errors and warnings while executing the main event loop.

• -vv

Very verbose mode. In addition to information printed by -v, also prints each client command and
the response.

• -vvv

Extremely verbose mode. In addition to information printed by -vv, also show the internal state
transitions.

• -h

Print the help message and exit.

• -i

Print the memcached and libevent license.

• -I mem

Specify the maximum size permitted for storing an object within the memcached instance. The size
supports a unit postfix (k for kilobytes, m for megabytes). For example, to increase the maximum
supported object size to 32MB:

shell> memcached -I 32m

The maximum object size you can specify is 128MB, the default remains at 1MB.

This option was added in 1.4.2.

• -b

Set the backlog queue limit. The backlog queue configures how many network connections can be
waiting to be processed by memcached. Increasing this limit may reduce errors received by the client
that it is not able to connect to the memcached instance, but does not improve the performance of
the server. The default is 1024.

• -P pidfile

Save the process ID of the memcached instance into file.

• -f

Set the chunk size growth factor. When allocating new memory chunks, the allocated size of new
chunks is determined by multiplying the default slab size by this factor.

Using memcached

1922

To see the effects of this option without extensive testing, use the -vv command-line option to show
the calculated slab sizes. For more information, see Section 15.6.2.8, “memcached Logs”.

• -n bytes

The minimum space allocated for the key+value+flags information. The default is 48 bytes.

• -L

On systems that support large memory pages, enables large memory page use. Using large memory
pages enables memcached to allocate the item cache in one large chunk, which can improve the
performance by reducing the number misses when accessing memory.

• -C

Disable the use of compare and swap (CAS) operations.

This option was added in memcached 1.3.x.

• -D char

Set the default character to be used as a delimiter between the key prefixes and IDs. This is used for
the per-prefix statistics reporting (see Section 15.6.4, “Getting memcached Statistics”). The default
is the colon (:). If this option is used, statistics collection is turned on automatically. If not used, you
can enable stats collection by sending the stats detail on command to the server.

This option was added in memcached 1.3.x.

• -R num

Sets the maximum number of requests per event process. The default is 20.

• -B protocol

Set the binding protocol, that is, the default memcached protocol support for client connections.
Options are ascii, binary or auto. Automatic (auto) is the default.

This option was added in memcached 1.4.0.

15.6.2.1 memcached Deployment

When using memcached you can use a number of different potential deployment strategies and
topologies. The exact strategy to use depends on your application and environment. When developing
a system for deploying memcached within your system, keep in mind the following points:

• memcached is only a caching mechanism. It shouldn't be used to store information that you cannot
otherwise afford to lose and then load from a different location.

• There is no security built into the memcached protocol. At a minimum, make sure that the servers
running memcached are only accessible from inside your network, and that the network ports being
used are blocked (using a firewall or similar). If the information on the memcached servers that is
being stored is any sensitive, then encrypt the information before storing it in memcached.

• memcached does not provide any sort of failover. Because there is no communication between
different memcached instances. If an instance fails, your application must capable of removing it from
the list, reloading the data and then writing data to another memcached instance.

• Latency between the clients and the memcached can be a problem if you are using different physical
machines for these tasks. If you find that the latency is a problem, move the memcached instances to
be on the clients.

• Key length is determined by the memcached server. The default maximum key size is 250 bytes.

Using memcached

1923

• Try to use at least two memcached instances, especially for multiple clients, to avoid having a single
point of failure. Ideally, create as many memcached nodes as possible. When adding and removing
memcached instances from a pool, the hashing and distribution of key/value pairs may be affected.
For information on how to avoid problems, see Section 15.6.2.4, “memcached Hashing/Distribution
Types”.

15.6.2.2 Using Namespaces

The memcached cache is a very simple massive key/value storage system, and as such there is no
way of compartmentalizing data automatically into different sections. For example, if you are storing
information by the unique ID returned from a MySQL database, then storing the data from two different
tables could run into issues because the same ID might be valid in both tables.

Some interfaces provide an automated mechanism for creating namespaces when storing information
into the cache. In practice, these namespaces are merely a prefix before a given ID that is applied
every time a value is stored or retrieve from the cache.

You can implement the same basic principle by using keys that describe the object and the unique
identifier within the key that you supply when the object is stored. For example, when storing user data,
prefix the ID of the user with user: or user-.

Note

Using namespaces or prefixes only controls the keys stored/retrieved. There is
no security within memcached, and therefore no way to enforce that a particular
client only accesses keys with a particular namespace. Namespaces are only
useful as a method of identifying data and preventing corruption of key/value
pairs.

15.6.2.3 Data Expiry

There are two types of data expiry within a memcached instance. The first type is applied at the point
when you store a new key/value pair into the memcached instance. If there is not enough space within
a suitable slab to store the value, then an existing least recently used (LRU) object is removed (evicted)
from the cache to make room for the new item.

The LRU algorithm ensures that the object that is removed is one that is either no longer in active
use or that was used so long ago that its data is potentially out of date or of little value. However, in
a system where the memory allocated to memcached is smaller than the number of regularly used
objects required in the cache, a lot of expired items could be removed from the cache even though they
are in active use. You use the statistics mechanism to get a better idea of the level of evictions (expired
objects). For more information, see Section 15.6.4, “Getting memcached Statistics”.

You can change this eviction behavior by setting the -M command-line option when starting
memcached. This option forces an error to be returned when the memory has been exhausted, instead
of automatically evicting older data.

The second type of expiry system is an explicit mechanism that you can set when a key/value pair is
inserted into the cache, or when deleting an item from the cache. Using an expiration time can be a
useful way of ensuring that the data in the cache is up to date and in line with your application needs
and requirements.

A typical scenario for explicitly setting the expiry time might include caching session data for a user
when accessing a Web site. memcached uses a lazy expiry mechanism where the explicit expiry time
that has been set is compared with the current time when the object is requested. Only objects that
have not expired are returned.

You can also set the expiry time when explicitly deleting an object from the cache. In this case, the
expiry time is really a timeout and indicates the period when any attempts to set the value for a given
key are rejected.

Using memcached

1924

15.6.2.4 memcached Hashing/Distribution Types

The memcached client interface supports a number of different distribution algorithms that are used in
multi-server configurations to determine which host should be used when setting or getting data from
a given memcached instance. When you get or set a value, a hash is constructed from the supplied
key and then used to select a host from the list of configured servers. Because the hashing mechanism
uses the supplied key as the basis for the hash, the same server is selected during both set and get
operations.

You can think of this process as follows. Given an array of servers (a, b, and c), the client uses a
hashing algorithm that returns an integer based on the key being stored or retrieved. The resulting
value is then used to select a server from the list of servers configured in the client. Most standard
client hashing within memcache clients uses a simple modulus calculation on the value against the
number of configured memcached servers. You can summarize the process in pseudocode as:

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash($key);
$chosen = $value % length(@memcservers);

Replacing the above with values:

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash('myid');
$chosen = 7009 % 3;

In the above example, the client hashing algorithm chooses the server at index 1 (7009 % 3 = 1),
and store or retrieve the key and value with that server.

Note

This selection and hashing process is handled automatically by the memcached
client you are using; you need only provide the list of memcached servers to
use.

You can see a graphical representation of this below in Figure 15.5, “memcached Hash Selection”.

Figure 15.5 memcached Hash Selection

The same hashing and selection process takes place during any operation on the specified key within
the memcached client.

Using this method provides a number of advantages:

• The hashing and selection of the server to contact is handled entirely within the client. This
eliminates the need to perform network communication to determine the right machine to contact.

• Because the determination of the memcached server occurs entirely within the client, the server can
be selected automatically regardless of the operation being executed (set, get, increment, etc.).

Using memcached

1925

• Because the determination is handled within the client, the hashing algorithm returns the same value
for a given key; values are not affected or reset by differences in the server environment.

• Selection is very fast. The hashing algorithm on the key value is quick and the resulting selection of
the server is from a simple array of available machines.

• Using client-side hashing simplifies the distribution of data over each memcached server. Natural
distribution of the values returned by the hashing algorithm means that keys are automatically spread
over the available servers.

Providing that the list of servers configured within the client remains the same, the same stored key
returns the same value, and therefore selects the same server.

However, if you do not use the same hashing mechanism then the same data may be recorded
on different servers by different interfaces, both wasting space on your memcached and leading to
potential differences in the information.

Note

One way to use a multi-interface compatible hashing mechanism is to use the
libmemcached library and the associated interfaces. Because the interfaces
for the different languages (including C, Ruby, Perl and Python) use the same
client library interface, they always generate the same hash code from the ID.

The problem with client-side selection of the server is that the list of the servers (including their
sequential order) must remain consistent on each client using the memcached servers, and the servers
must be available. If you try to perform an operation on a key when:

• A new memcached instance has been added to the list of available instances

• A memcached instance has been removed from the list of available instances

• The order of the memcached instances has changed

When the hashing algorithm is used on the given key, but with a different list of servers, the hash
calculation may choose a different server from the list.

If a new memcached instance is added into the list of servers, as new.memc is in the example below,
then a GET operation using the same key, myid, can result in a cache-miss. This is because the same
value is computed from the key, which selects the same index from the array of servers, but index 2
now points to the new server, not the server c.memc where the data was originally stored. This would
result in a cache miss, even though the key exists within the cache on another memcached instance.

Figure 15.6 memcached Hash Selection with New memcached instance

This means that servers c.memc and new.memc both contain the information for key myid, but the
information stored against the key in eachs server may be different in each instance. A more significant
problem is a much higher number of cache-misses when retrieving data, as the addition of a new

Using memcached

1926

server changes the distribution of keys, and this in turn requires rebuilding the cached data on the
memcached instances, causing an increase in database reads.

The same effect can occur if you actively manage the list of servers configured in your clients, adding
and removing the configured memcached instances as each instance is identified as being available.
For example, removing a memcached instance when the client notices that the instance can no longer
be contacted can cause the server selection to fail as described here.

To prevent this causing significant problems and invalidating your cache, you can select the hashing
algorithm used to select the server. There are two common types of hashing algorithm, consistent and
modula.

With consistent hashing algorithms, the same key when applied to a list of servers always uses the
same server to store or retrieve the keys, even if the list of configured servers changes. This means
that you can add and remove servers from the configure list and always use the same server for a
given key. There are two types of consistent hashing algorithms available, Ketama and Wheel. Both
types are supported by libmemcached, and implementations are available for PHP and Java.

Any consistent hashing algorithm has some limitations. When you add servers to an existing list of
configured servers, keys are distributed to the new servers as part of the normal distribution. When you
remove servers from the list, the keys are re-allocated to another server within the list, meaning that
the cache needs to be re-populated with the information. Also, a consistent hashing algorithm does not
resolve the issue where you want consistent selection of a server across multiple clients, but where
each client contains a different list of servers. The consistency is enforced only within a single client.

With a modula hashing algorithm, the client selects a server by first computing the hash and then
choosing a server from the list of configured servers. As the list of servers changes, so the server
selected when using a modula hashing algorithm also changes. The result is the behavior described
above; changes to the list of servers mean that different servers are selected when retrieving data,
leading to cache misses and increase in database load as the cache is re-seeded with information.

If you use only a single memcached instance for each client, or your list of memcached servers
configured for a client never changes, then the selection of a hashing algorithm is irrelevant, as it has
no noticeable effect.

If you change your servers regularly, or you use a common set of servers that are shared among a
large number of clients, then using a consistent hashing algorithm should help to ensure that your
cache data is not duplicated and the data is evenly distributed.

15.6.2.5 Using memcached and DTrace

memcached includes a number of different DTrace probes that can be used to monitor the operation of
the server. The probes included can monitor individual connections, slab allocations, and modifications
to the hash table when a key/value pair is added, updated, or removed.

For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

Support for DTrace probes was added to memcached 1.2.6 includes a number of DTrace probes that
can be used to help monitor your application. DTrace is supported on Solaris 10, OpenSolaris, Mac OS
X 10.5 and FreeBSD. To enable the DTrace probes in memcached, build from source and use the --
enable-dtrace option. For more information, see Section 15.6.1, “Installing memcached”.

The probes supported by memcached are:

• conn-allocate(connid)

Fired when a connection object is allocated from the connection pool.

• connid: The connection ID.

• conn-release(connid)

http://docs.oracle.com/cd/E19253-01/819-5488/

Using memcached

1927

Fired when a connection object is released back to the connection pool.

Arguments:

• connid: The connection ID.

• conn-create(ptr)

Fired when a new connection object is being created (that is, there are no free connection objects in
the connection pool).

Arguments:

• ptr: A pointer to the connection. object

• conn-destroy(ptr)

Fired when a connection object is being destroyed.

Arguments:

• ptr: A pointer to the connection object.

• conn-dispatch(connid, threadid)

Fired when a connection is dispatched from the main or connection-management thread to a worker
thread.

Arguments:

• connid: The connection ID.

• threadid: The thread ID.

• slabs-allocate(size, slabclass, slabsize, ptr)

Allocate memory from the slab allocator.

Arguments:

• size: The requested size.

• slabclass: The allocation is fulfilled in this class.

• slabsize: The size of each item in this class.

• ptr: A pointer to allocated memory.

• slabs-allocate-failed(size, slabclass)

Failed to allocate memory (out of memory).

Arguments:

• size: The requested size.

• slabclass: The class that failed to fulfill the request.

• slabs-slabclass-allocate(slabclass)

Fired when a slab class needs more space.

Arguments:

Using memcached

1928

• slabclass: The class that needs more memory.

• slabs-slabclass-allocate-failed(slabclass)

Failed to allocate memory (out of memory).

Arguments:

• slabclass: The class that failed to grab more memory.

• slabs-free(size, slabclass, ptr)

Release memory.

Arguments:

• size: The amount of memory to release, in bytes.

• slabclass: The class the memory belongs to.

• ptr: A pointer to the memory to release.

• assoc-find(key, depth)

Fired when we have searched the hash table for a named key. These two elements provide an
insight into how well the hash function operates. Traversals are a sign of a less optimal function,
wasting CPU capacity.

Arguments:

• key: The key searched for.

• depth: The depth in the list of hash table.

• assoc-insert(key, nokeys)

Fired when a new item has been inserted.

Arguments:

• key: The key just inserted.

• nokeys: The total number of keys currently being stored, including the key for which insert was
called.

• assoc-delete(key, nokeys)

Fired when a new item has been removed.

Arguments:

• key: The key just deleted.

• nokeys: The total number of keys currently being stored, excluding the key for which delete was
called.

• item-link(key, size)

Fired when an item is being linked in the cache.

Arguments:

• key: The items key.

Using memcached

1929

• size: The size of the data.

• item-unlink(key, size)

Fired when an item is being deleted.

Arguments:

• key: The items key.

• size: The size of the data.

• item-remove(key, size)

Fired when the refcount for an item is reduced.

Arguments:

• key: The item's key.

• size: The size of the data.

• item-update(key, size)

Fired when the "last referenced" time is updated.

Arguments:

• key: The item's key.

• size: The size of the data.

• item-replace(oldkey, oldsize, newkey, newsize)

Fired when an item is being replaced with another item.

Arguments:

• oldkey: The key of the item to replace.

• oldsize: The size of the old item.

• newkey: The key of the new item.

• newsize: The size of the new item.

• process-command-start(connid, request, size)

Fired when the processing of a command starts.

Arguments:

• connid: The connection ID.

• request: The incoming request.

• size: The size of the request.

• process-command-end(connid, response, size)

Fired when the processing of a command is done.

Arguments:

Using memcached

1930

• connid: The connection ID.

• response: The response to send back to the client.

• size: The size of the response.

• command-get(connid, key, size)

Fired for a get command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• command-gets(connid, key, size, casid)

Fired for a gets command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• casid: The casid for the item.

• command-add(connid, key, size)

Fired for a add command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-set(connid, key, size)

Fired for a set command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-replace(connid, key, size)

Fired for a replace command.

Arguments:

• connid: The connection ID.

Using memcached

1931

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-prepend(connid, key, size)

Fired for a prepend command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-append(connid, key, size)

Fired for a append command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-cas(connid, key, size, casid)

Fired for a cas command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• casid: The cas ID requested.

• command-incr(connid, key, val)

Fired for incr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• val: The new value.

• command-decr(connid, key, val)

Fired for decr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

Using memcached

1932

• val: The new value.

• command-delete(connid, key, exptime)

Fired for a delete command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• exptime: The expiry time.

15.6.2.6 Memory Allocation within memcached

When you first start memcached, the memory that you have configured is not automatically allocated.
Instead, memcached only starts allocating and reserving physical memory once you start saving
information into the cache.

When you start to store data into the cache, memcached does not allocate the memory for the data
on an item by item basis. Instead, a slab allocation is used to optimize memory usage and prevent
memory fragmentation when information expires from the cache.

With slab allocation, memory is reserved in blocks of 1MB. The slab is divided up into a number of
blocks of equal size. When you try to store a value into the cache, memcached checks the size of the
value that you are adding to the cache and determines which slab contains the right size allocation for
the item. If a slab with the item size already exists, the item is written to the block within the slab.

If the new item is bigger than the size of any existing blocks, then a new slab is created, divided up into
blocks of a suitable size. If an existing slab with the right block size already exists, but there are no free
blocks, a new slab is created. If you update an existing item with data that is larger than the existing
block allocation for that key, then the key is re-allocated into a suitable slab.

For example, the default size for the smallest block is 88 bytes (40 bytes of value, and the default 48
bytes for the key and flag data). If the size of the first item you store into the cache is less than 40
bytes, then a slab with a block size of 88 bytes is created and the value stored.

If the size of the data that you intend to store is larger than this value, then the block size is increased
by the chunk size factor until a block size large enough to hold the value is determined. The block size
is always a function of the scale factor, rounded up to a block size which is exactly divisible into the
chunk size.

For a sample of the structure, see Figure 15.7, “Memory Allocation in memcached”.

Figure 15.7 Memory Allocation in memcached

The result is that you have multiple pages allocated within the range of memory allocated to
memcached. Each page is 1MB in size (by default), and is split into a different number of chunks,
according to the chunk size required to store the key/value pairs. Each instance has multiple pages

Using memcached

1933

allocated, and a page is always created when a new item needs to be created requiring a chunk of a
particular size. A slab may consist of multiple pages, and each page within a slab contains an equal
number of chunks.

The chunk size of a new slab is determined by the base chunk size combined with the chunk size
growth factor. For example, if the initial chunks are 104 bytes in size, and the default chunk size growth
factor is used (1.25), then the next chunk size allocated would be the best power of 2 fit for 104*1.25,
or 136 bytes.

Allocating the pages in this way ensures that memory does not get fragmented. However, depending
on the distribution of the objects that you store, it may lead to an inefficient distribution of the slabs and
chunks if you have significantly different sized items. For example, having a relatively small number of
items within each chunk size may waste a lot of memory with just few chunks in each allocated page.

You can tune the growth factor to reduce this effect by using the -f command line option, which adapts
the growth factor applied to make more effective use of the chunks and slabs allocated. For information
on how to determine the current slab allocation statistics, see Section 15.6.4.2, “memcached Slabs
Statistics”.

If your operating system supports it, you can also start memcached with the -L command line option.
This option preallocates all the memory during startup using large memory pages. This can improve
performance by reducing the number of misses in the CPU memory cache.

15.6.2.7 memcached Thread Support

If you enable the thread implementation within when building memcached from source, then
memcached uses multiple threads in addition to the libevent system to handle requests.

When enabled, the threading implementation operates as follows:

• Threading is handled by wrapping functions within the code to provide basic protection from updating
the same global structures at the same time.

• Each thread uses its own instance of the libevent to help improve performance.

• TCP/IP connections are handled with a single thread listening on the TCP/IP socket. Each
connection is then distributed to one of the active threads on a simple round-robin basis. Each
connection then operates solely within this thread while the connection remains open.

• For UDP connections, all the threads listen to a single UDP socket for incoming requests. Threads
that are not currently dealing with another request ignore the incoming packet. One of the remaining,
nonbusy, threads reads the request and sends the response. This implementation can lead to
increased CPU load as threads wake from sleep to potentially process the request.

Using threads can increase the performance on servers that have multiple CPU cores available, as the
requests to update the hash table can be spread between the individual threads. To minimize overhead
from the locking mechanism employed, experiment with different thread values to achieve the best
performance based on the number and type of requests within your given workload.

15.6.2.8 memcached Logs

If you enable verbose mode, using the -v, -vv, or -vvv options, then the information output by
memcached includes details of the operations being performed.

Without the verbose options, memcached normally produces no output during normal operating.

• Output when using -v

The lowest verbosity level shows you:

• Errors and warnings

• Transient errors

Using memcached

1934

• Protocol and socket errors, including exhausting available connections

• Each registered client connection, including the socket descriptor number and the protocol used.

For example:

32: Client using the ascii protocol
33: Client using the ascii protocol

Note that the socket descriptor is only valid while the client remains connected. Non-persistent
connections may not be effectively represented.

Examples of the error messages output at this level include:

<%d send buffer was %d, now %d
Can't listen for events on fd %d
Can't read from libevent pipe
Catastrophic: event fd doesn't match conn fd!
Couldn't build response
Couldn't realloc input buffer
Couldn't update event
Failed to build UDP headers
Failed to read, and not due to blocking
Too many open connections
Unexpected state %d

• Output when using -vv

When using the second level of verbosity, you get more detailed information about protocol
operations, keys updated, chunk and network operatings and details.

During the initial start-up of memcached with this level of verbosity, you are shown the sizes of the
individual slab classes, the chunk sizes, and the number of entries per slab. These do not show the
allocation of the slabs, just the slabs that would be created when data is added. You are also given
information about the listen queues and buffers used to send information. A sample of the output
generated for a TCP/IP based system with the default memory and growth factors is given below:

shell> memcached -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 104 perslab 10082
slab class 3: chunk size 136 perslab 7710
slab class 4: chunk size 176 perslab 5957
slab class 5: chunk size 224 perslab 4681
slab class 6: chunk size 280 perslab 3744
slab class 7: chunk size 352 perslab 2978
slab class 8: chunk size 440 perslab 2383
slab class 9: chunk size 552 perslab 1899
slab class 10: chunk size 696 perslab 1506
slab class 11: chunk size 872 perslab 1202
slab class 12: chunk size 1096 perslab 956
slab class 13: chunk size 1376 perslab 762
slab class 14: chunk size 1720 perslab 609
slab class 15: chunk size 2152 perslab 487
slab class 16: chunk size 2696 perslab 388
slab class 17: chunk size 3376 perslab 310
slab class 18: chunk size 4224 perslab 248
slab class 19: chunk size 5280 perslab 198
slab class 20: chunk size 6600 perslab 158
slab class 21: chunk size 8256 perslab 127
slab class 22: chunk size 10320 perslab 101
slab class 23: chunk size 12904 perslab 81
slab class 24: chunk size 16136 perslab 64
slab class 25: chunk size 20176 perslab 51
slab class 26: chunk size 25224 perslab 41
slab class 27: chunk size 31536 perslab 33

Using memcached

1935

slab class 28: chunk size 39424 perslab 26
slab class 29: chunk size 49280 perslab 21
slab class 30: chunk size 61600 perslab 17
slab class 31: chunk size 77000 perslab 13
slab class 32: chunk size 96256 perslab 10
slab class 33: chunk size 120320 perslab 8
slab class 34: chunk size 150400 perslab 6
slab class 35: chunk size 188000 perslab 5
slab class 36: chunk size 235000 perslab 4
slab class 37: chunk size 293752 perslab 3
slab class 38: chunk size 367192 perslab 2
slab class 39: chunk size 458992 perslab 2
<26 server listening (auto-negotiate)
<29 server listening (auto-negotiate)
<30 send buffer was 57344, now 2097152
<31 send buffer was 57344, now 2097152
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)

Using this verbosity level can be a useful way to check the effects of the growth factor used on slabs
with different memory allocations, which in turn can be used to better tune the growth factor to suit
the data you are storing in the cache. For example, if you set the growth factor to 4 (quadrupling the
size of each slab):

shell> memcached -f 4 -m 1g -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 320 perslab 3276
slab class 3: chunk size 1280 perslab 819
slab class 4: chunk size 5120 perslab 204
slab class 5: chunk size 20480 perslab 51
slab class 6: chunk size 81920 perslab 12
slab class 7: chunk size 327680 perslab 3
...

During use of the cache, this verbosity level also prints out detailed information on the storage
and recovery of keys and other information. An example of the output during a typical set/get and
increment/decrement operation is shown below.

32: Client using the ascii protocol
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key
>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key

Developing a memcached Application

1936

>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key1 1 36

>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545

During client communication, for each line, the initial character shows the direction of flow of
the information. The < for communication from the client to the memcached server and > for
communication back to the client. The number is the numeric socket descriptor for the connection.

• Output when using -vvv

This level of verbosity includes the transitions of connections between different states in the event
library while reading and writing content to/from the clients. It should be used to diagnose and
identify issues in client communication. For example, you can use this information to determine
if memcached is taking a long time to return information to the client, during the read of the client
operation or before returning and completing the operation. An example of the typical sequence for a
set operation is provided below:

<32 new auto-negotiating client connection
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_parse_cmd
32: Client using the ascii protocol
<32 set my_key 0 0 10
32: going from conn_parse_cmd to conn_nread
> NOT FOUND my_key
>32 STORED
32: going from conn_nread to conn_write
32: going from conn_write to conn_new_cmd
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_closing
<32 connection closed.

All of the verbosity levels in memcached are designed to be used during debugging or examination of
issues. The quantity of information generated, particularly when using -vvv, is significant, particularly
on a busy server. Also be aware that writing the error information out, especially to disk, may negate
some of the performance gains you achieve by using memcached. Therefore, use in production or
deployment environments is not recommended.

15.6.3 Developing a memcached Application

A number of language interfaces let applications store and retrieve information with memcached
servers. You can write memcached applications in popular languages such as Perl, PHP, Python,
Ruby, C, and Java.

Data stored into a memcached server is referred to by a single string (the key), with storage into the
cache and retrieval from the cache using the key as the reference. The cache therefore operates
like a large associative array or hash table. It is not possible to structure or otherwise organize the
information stored in the cache. To emulate database notions such as multiple tables or composite
key values, you must encode the extra information into the strings used as keys. For example, to store
or look up the address corresponding to a specific latitude and longitude, you might turn those two
numeric values into a single comma-separated string to use as a key.

Developing a memcached Application

1937

15.6.3.1 Basic memcached Operations

The interface to memcached supports the following methods for storing and retrieving information in the
cache, and these are consistent across all the different APIs, although the language specific mechanics
might be different:

• get(key): Retrieves information from the cache. Returns the value associated with the key if the
specified key exists. Returns NULL, nil, undefined, or the closest equivalent in the corresponding
language, if the specified key does not exist.

• set(key, value [, expiry]): Sets the item associated with a key in the cache to the specified
value. Note that this either updates an existing item if the key already exists, or adds a new key/value
pair if the key doesn't exist. If the expiry time is specified, then the item expires (and is deleted) when
the expiry time is reached. The time is specified in seconds, and is taken as a relative time if the
value is less than 30 days (30*24*60*60), or an absolute time (epoch) if larger than this value.

• add(key, value [, expiry]): Adds the key and associated value to the cache, if the specified
key does not already exist.

• replace(key, value [, expiry]): Replaces the item associated with the specified key, only
if the key already exists. The new value is given by the value parameter.

• delete(key [, time]): Deletes the key and its associated item from the cache. If you supply a
time, then adding another item with the specified key is blocked for the specified period.

• incr(key [, value]): Increments the item associated with the key by one or the optional
value.

• decr(key [, value]): Decrements the item associated with the key by one or the optional
value.

• flush_all: Invalidates (or expires) all the current items in the cache. Technically they still exist
(they are not deleted), but they are silently destroyed the next time you try to access them.

In all implementations, most or all of these functions are duplicated through the corresponding native
language interface.

When practical, use memcached to store full items, rather than caching a single column value from the
database. For example, when displaying a record about an object (invoice, user history, or blog post),
load all the data for the associated entry from the database, and compile it into the internal structure
that would normally be required by the application. Save the complete object in the cache.

Complex data structures cannot be stored directly. Most interfaces serialize the data for you, that is,
put it in a textual form that can reconstruct the original pointers and nesting. Perl uses Storable, PHP
uses serialize, Python uses cPickle (or Pickle) and Java uses the Serializable interface.
In most cases, the serialization interface used is customizable. To share data stored in memcached
instances between different language interfaces, consider using a common serialization solution such
as JSON (Javascript Object Notation).

15.6.3.2 Using memcached as a MySQL Caching Layer

When using memcached to cache MySQL data, your application must retrieve data from the database
and load the appropriate key-value pairs into the cache. Then, subsequent lookups can be done
directly from the cache.

Because MySQL has its own in-memory caching mechanisms for queried data, such as the InnoDB
buffer pool and the MySQL query cache, look for opportunities beyond loading individual column values
or rows into the cache. Prefer to cache composite values, such as those retrieved from multiple tables
through a join query, or result sets assembled from multiple rows.

Developing a memcached Application

1938

Caution

Limit the information in the cache to non-sensitive data, because there is no
security required to access or update the information within a memcached
instance. Anybody with access to the machine has the ability to read, view
and potentially update the information. To keep the data secure, encrypt the
information before caching it. To restrict the users capable of connecting to the
server, either disable network access, or use IPTables or similar techniques to
restrict access to the memcached ports to a select set of hosts.

You can introduce memcached to an existing application, even if caching was not part of the original
design. In many languages and environments the changes to the application will be just a few lines,
first to attempt to read from the cache when loading data, fall back to the old method if the information
is not cached, and to update the cache with information once the data has been read.

The general sequence for using memcached in any language as a caching solution for MySQL is as
follows:

1. Request the item from the cache.

2. If the item exists, use the item data.

3. If the item does not exist, load the data from MySQL, and store the value into the cache. This
means the value is available to the next client that requests it from the cache.

For a flow diagram of this sequence, see Figure 15.8, “Typical memcached Application Flowchart”.

Figure 15.8 Typical memcached Application Flowchart

Adapting Database Best Practices to memcached Applications

The most direct way to cache MySQL data is to use a 2-column table, where the first column is a
primary key. Because of the uniqueness requirements for memcached keys, make sure your database
schema makes appropriate use of primary keys and unique constraints.

If you combine multiple column values into a single memcached item value, choose data types to
make it easy to parse the value back into its components, for example by using a separator character
between numeric values.

Developing a memcached Application

1939

The queries that map most easily to memcached lookups are those with a single WHERE clause, using
an = or IN operator. For complicated WHERE clauses, or those using operators such as <, >, BETWEEN,
or LIKE, memcached does not provide a simple or efficient way to scan through or filter the keys
or associated values, so typically you perform those operations as SQL queries on the underlying
database.

15.6.3.3 Using libmemcached with C and C++

The libmemcached library provides both C and C++ interfaces to memcached and is also the
basis for a number of different additional API implementations, including Perl, Python and Ruby.
Understanding the core libmemcached functions can help when using these other interfaces.

The C library is the most comprehensive interface library for memcached and provides functions and
operational systems not always exposed in interfaces not based on the libmemcached library.

The different functions can be divided up according to their basic operation. In addition to functions
that interface to the core API, a number of utility functions provide extended functionality, such as
appending and prepending data.

To build and install libmemcached, download the libmemcached package, run configure, and
then build and install:

shell> tar xjf libmemcached-0.21.tar.gz
shell> cd libmemcached-0.21
shell> ./configure
shell> make
shell> make install

On many Linux operating systems, you can install the corresponding libmemcached package through
the usual yum, apt-get, or similar commands.

To build an application that uses the library, first set the list of servers. Either directly manipulate the
servers configured within the main memcached_st structure, or separately populate a list of servers,
and then add this list to the memcached_st structure. The latter method is used in the following
example. Once the server list has been set, you can call the functions to store or retrieve data. A
simple application for setting a preset value to localhost is provided here:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
 memcached_server_st *servers = NULL;
 memcached_st *memc;
 memcached_return rc;
 char *key= "keystring";
 char *value= "keyvalue";

 memcached_server_st *memcached_servers_parse (char *server_strings);
 memc= memcached_create(NULL);

 servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
 rc= memcached_server_push(memc, servers);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Added server successfully\n");
 else
 fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

 rc= memcached_set(memc, key, strlen(key), value, strlen(value), (time_t)0, (uint32_t)0);

 if (rc == MEMCACHED_SUCCESS)

Developing a memcached Application

1940

 fprintf(stderr,"Key stored successfully\n");
 else
 fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));

 return 0;
}

To test the success of an operation, use the return value, or populated result code, for a given function.
The value is always set to MEMCACHED_SUCCESS if the operation succeeded. In the event of a failure,
use the memcached_strerror() function to translate the result code into a printable string.

To build the application, specify the memcached library:

shell> gcc -o memc_basic memc_basic.c -lmemcached

Running the above sample application, after starting a memcached server, should return a success
message:

shell> memc_basic
Added server successfully
Key stored successfully

libmemcached Base Functions

The base libmemcached functions let you create, destroy and clone the main memcached_st
structure that is used to interface with the memcached servers. The main functions are defined below:

memcached_st *memcached_create (memcached_st *ptr);

Creates a new memcached_st structure for use with the other libmemcached API functions. You
can supply an existing, static, memcached_st structure, or NULL to have a new structured allocated.
Returns a pointer to the created structure, or NULL on failure.

void memcached_free (memcached_st *ptr);

Frees the structure and memory allocated to a previously created memcached_st structure.

memcached_st *memcached_clone(memcached_st *clone, memcached_st *source);

Clones an existing memcached structure from the specified source, copying the defaults and list of
servers defined in the structure.

libmemcached Server Functions

The libmemcached API uses a list of servers, stored within the memcached_server_st structure,
to act as the list of servers used by the rest of the functions. To use memcached, you first create the
server list, and then apply the list of servers to a valid libmemcached object.

Because the list of servers, and the list of servers within an active libmemcached object can be
manipulated separately, you can update and manage server lists while an active libmemcached
interface is running.

The functions for manipulating the list of servers within a memcached_st structure are:

memcached_return
 memcached_server_add (memcached_st *ptr,
 char *hostname,
 unsigned int port);

Developing a memcached Application

1941

Adds a server, using the given hostname and port into the memcached_st structure given in ptr.

memcached_return
 memcached_server_add_unix_socket (memcached_st *ptr,
 char *socket);

Adds a Unix socket to the list of servers configured in the memcached_st structure.

unsigned int memcached_server_count (memcached_st *ptr);

Returns a count of the number of configured servers within the memcached_st structure.

memcached_server_st *
 memcached_server_list (memcached_st *ptr);

Returns an array of all the defined hosts within a memcached_st structure.

memcached_return
 memcached_server_push (memcached_st *ptr,
 memcached_server_st *list);

Pushes an existing list of servers onto list of servers configured for a current memcached_st structure.
This adds servers to the end of the existing list, and duplicates are not checked.

The memcached_server_st structure can be used to create a list of memcached servers which can
then be applied individually to memcached_st structures.

memcached_server_st *
 memcached_server_list_append (memcached_server_st *ptr,
 char *hostname,
 unsigned int port,
 memcached_return *error);

Adds a server, with hostname and port, to the server list in ptr. The result code is handled by the
error argument, which should point to an existing memcached_return variable. The function returns
a pointer to the returned list.

unsigned int memcached_server_list_count (memcached_server_st *ptr);

Returns the number of the servers in the server list.

void memcached_server_list_free (memcached_server_st *ptr);

Frees the memory associated with a server list.

memcached_server_st *memcached_servers_parse (char *server_strings);

Parses a string containing a list of servers, where individual servers are separated by a comma, space,
or both, and where individual servers are of the form server[:port]. The return value is a server list
structure.

libmemcached Set Functions

The set-related functions within libmemcached provide the same functionality as the core functions
supported by the memcached protocol. The full definition for the different functions is the same for
all the base functions (add, replace, prepend, append). For example, the function definition for
memcached_set() is:

Developing a memcached Application

1942

memcached_return
 memcached_set (memcached_st *ptr,
 const char *key,
 size_t key_length,
 const char *value,
 size_t value_length,
 time_t expiration,
 uint32_t flags);

The ptr is the memcached_st structure. The key and key_length define the key name and length,
and value and value_length the corresponding value and length. You can also set the expiration
and optional flags. For more information, see Controlling libmemcached Behaviors.

This table outlines the remainder of the set-related libmemcached functions and the equivalent core
functions supported by the memcached protocol.

libmemcached Function Equivalent Core Function

memcached_set(memc, key, key_length,
value, value_length, expiration,
flags)

Generic set() operation.

memcached_add(memc, key, key_length,
value, value_length, expiration,
flags)

Generic add() function.

memcached_replace(memc, key,
key_length, value, value_length,
expiration, flags)

Generic replace().

memcached_prepend(memc, key,
key_length, value, value_length,
expiration, flags)

Prepends the specified value before the current
value of the specified key.

memcached_append(memc, key,
key_length, value, value_length,
expiration, flags)

Appends the specified value after the current
value of the specified key.

memcached_cas(memc, key, key_length,
value, value_length, expiration,
flags, cas)

Overwrites the data for a given key as long as the
corresponding cas value is still the same within
the server.

memcached_set_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the generic set(), but has the option
of an additional master key that can be used to
identify an individual server.

memcached_add_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the generic add(), but has the option
of an additional master key that can be used to
identify an individual server.

memcached_replace_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the generic replace(), but has the
option of an additional master key that can be
used to identify an individual server.

memcached_prepend_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_prepend(), but has
the option of an additional master key that can be
used to identify an individual server.

memcached_append_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_append(), but has
the option of an additional master key that can be
used to identify an individual server.

Developing a memcached Application

1943

libmemcached Function Equivalent Core Function

memcached_cas_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_cas(), but has the
option of an additional master key that can be
used to identify an individual server.

The by_key methods add two further arguments that define the master key, to be used and applied
during the hashing stage for selecting the servers. You can see this in the following definition:

memcached_return
 memcached_set_by_key(memcached_st *ptr,
 const char *master_key,
 size_t master_key_length,
 const char *key,
 size_t key_length,
 const char *value,
 size_t value_length,
 time_t expiration,
 uint32_t flags);

All the functions return a value of type memcached_return, which you can compare against the
MEMCACHED_SUCCESS constant.

libmemcached Get Functions

The libmemcached functions provide both direct access to a single item, and a multiple-key request
mechanism that provides much faster responses when fetching a large number of keys simultaneously.

The main get-style function, which is equivalent to the generic get() is memcached_get(). This
function returns a string pointer, pointing to the value associated with the specified key.

char *memcached_get (memcached_st *ptr,
 const char *key, size_t key_length,
 size_t *value_length,
 uint32_t *flags,
 memcached_return *error);

A multi-key get, memcached_mget(), is also available. Using a multiple key get operation is much
quicker to do in one block than retrieving the key values with individual calls to memcached_get(). To
start the multi-key get, call memcached_mget():

memcached_return
 memcached_mget (memcached_st *ptr,
 char **keys, size_t *key_length,
 unsigned int number_of_keys);

The return value is the success of the operation. The keys parameter should be an array of strings
containing the keys, and key_length an array containing the length of each corresponding key.
number_of_keys is the number of keys supplied in the array.

To fetch the individual values, use memcached_fetch() to get each corresponding value.

char *memcached_fetch (memcached_st *ptr,
 const char *key, size_t *key_length,
 size_t *value_length,
 uint32_t *flags,
 memcached_return *error);

The function returns the key value, with the key, key_length and value_length parameters being
populated with the corresponding key and length information. The function returns NULL when there
are no more values to be returned. A full example, including the populating of the key data and the
return of the information is provided here.

Developing a memcached Application

1944

#include <stdio.h>
#include <sstring.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
 memcached_server_st *servers = NULL;
 memcached_st *memc;
 memcached_return rc;
 char *keys[]= {"huey", "dewey", "louie"};
 size_t key_length[3];
 char *values[]= {"red", "blue", "green"};
 size_t value_length[3];
 unsigned int x;
 uint32_t flags;

 char return_key[MEMCACHED_MAX_KEY];
 size_t return_key_length;
 char *return_value;
 size_t return_value_length;

 memc= memcached_create(NULL);

 servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
 rc= memcached_server_push(memc, servers);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Added server successfully\n");
 else
 fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

 for(x= 0; x < 3; x++)
 {
 key_length[x] = strlen(keys[x]);
 value_length[x] = strlen(values[x]);

 rc= memcached_set(memc, keys[x], key_length[x], values[x],
 value_length[x], (time_t)0, (uint32_t)0);
 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Key %s stored successfully\n",keys[x]);
 else
 fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));
 }

 rc= memcached_mget(memc, keys, key_length, 3);

 if (rc == MEMCACHED_SUCCESS)
 {
 while ((return_value= memcached_fetch(memc, return_key, &return_key_length,
 &return_value_length, &flags, &rc)) != NULL)
 {
 if (rc == MEMCACHED_SUCCESS)
 {
 fprintf(stderr,"Key %s returned %s\n",return_key, return_value);
 }
 }
 }

 return 0;
}

Running the above application produces the following output:

shell> memc_multi_fetch
Added server successfully
Key huey stored successfully
Key dewey stored successfully
Key louie stored successfully
Key huey returned red

Developing a memcached Application

1945

Key dewey returned blue
Key louie returned green

Controlling libmemcached Behaviors

The behavior of libmemcached can be modified by setting one or more behavior flags. These can
either be set globally, or they can be applied during the call to individual functions. Some behaviors
also accept an additional setting, such as the hashing mechanism used when selecting servers.

To set global behaviors:

memcached_return
 memcached_behavior_set (memcached_st *ptr,
 memcached_behavior flag,
 uint64_t data);

To get the current behavior setting:

uint64_t
 memcached_behavior_get (memcached_st *ptr,
 memcached_behavior flag);

The following table describes libmemcached behavior flags.

Behavior Description

MEMCACHED_BEHAVIOR_NO_BLOCK Caused libmemcached to use asynchronous I/O.

MEMCACHED_BEHAVIOR_TCP_NODELAY Turns on no-delay for network sockets.

MEMCACHED_BEHAVIOR_HASH Without a value, sets the default hashing algorithm
for keys to use MD5. Other valid values include
MEMCACHED_HASH_DEFAULT, MEMCACHED_HASH_MD5,
MEMCACHED_HASH_CRC, MEMCACHED_HASH_FNV1_64,
MEMCACHED_HASH_FNV1A_64,
MEMCACHED_HASH_FNV1_32, and
MEMCACHED_HASH_FNV1A_32.

MEMCACHED_BEHAVIOR_DISTRIBUTIONChanges the method of selecting the server
used to store a given value. The default method
is MEMCACHED_DISTRIBUTION_MODULA.
You can enable consistent hashing by setting
MEMCACHED_DISTRIBUTION_CONSISTENT.
MEMCACHED_DISTRIBUTION_CONSISTENT
is an alias for the value
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA.

MEMCACHED_BEHAVIOR_CACHE_LOOKUPSCache the lookups made to the DNS service. This can
improve the performance if you are using names instead of
IP addresses for individual hosts.

MEMCACHED_BEHAVIOR_SUPPORT_CAS Support CAS operations. By default, this is disabled because
it imposes a performance penalty.

MEMCACHED_BEHAVIOR_KETAMA Sets the default distribution to
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA and
the hash to MEMCACHED_HASH_MD5.

MEMCACHED_BEHAVIOR_POLL_TIMEOUTModify the timeout value used by poll(). Supply a signed
int pointer for the timeout value.

MEMCACHED_BEHAVIOR_BUFFER_REQUESTSBuffers IO requests instead of them being sent. A get
operation, or closing the connection causes the data to be
flushed.

MEMCACHED_BEHAVIOR_VERIFY_KEY Forces libmemcached to verify that a specified key is valid.

Developing a memcached Application

1946

Behavior Description

MEMCACHED_BEHAVIOR_SORT_HOSTS If set, hosts added to the list of configured hosts for a
memcached_st structure are placed into the host list in
sorted order. This breaks consistent hashing if that behavior
has been enabled.

MEMCACHED_BEHAVIOR_CONNECT_TIMEOUTIn nonblocking mode this changes the value of the timeout
during socket connection.

libmemcached Command-Line Utilities

In addition to the main C library interface, libmemcached also includes a number of command-line
utilities that can be useful when working with and debugging memcached applications.

All of the command-line tools accept a number of arguments, the most critical of which is servers,
which specifies the list of servers to connect to when returning information.

The main tools are:

• memcat: Display the value for each ID given on the command line:

shell> memcat --servers=localhost hwkey
Hello world

• memcp: Copy the contents of a file into the cache, using the file name as the key:

shell> echo "Hello World" > hwkey
shell> memcp --servers=localhost hwkey
shell> memcat --servers=localhost hwkey
Hello world

• memrm: Remove an item from the cache:

shell> memcat --servers=localhost hwkey
Hello world
shell> memrm --servers=localhost hwkey
shell> memcat --servers=localhost hwkey

• memslap: Test the load on one or more memcached servers, simulating get/set and multiple client
operations. For example, you can simulate the load of 100 clients performing get operations:

shell> memslap --servers=localhost --concurrency=100 --flush --test=get
memslap --servers=localhost --concurrency=100 --flush --test=get Threads connecting to servers 100
 Took 13.571 seconds to read data

• memflush: Flush (empty) the contents of the memcached cache.

shell> memflush --servers=localhost

15.6.3.4 Using MySQL and memcached with Perl

The Cache::Memcached module provides a native interface to the Memcache protocol, and provides
support for the core functions offered by memcached. Install the module using your operating system's
package management system, or using CPAN:

root-shell> perl -MCPAN -e 'install Cache::Memcached'

To use memcached from Perl through the Cache::Memcached module, first create a new
Cache::Memcached object that defines the list of servers and other parameters for the connection.

Developing a memcached Application

1947

The only argument is a hash containing the options for the cache interface. For example, to create a
new instance that uses three memcached servers:

use Cache::Memcached;

my $cache = new Cache::Memcached {
 'servers' => [
 '192.168.0.100:11211',
 '192.168.0.101:11211',
 '192.168.0.102:11211',
],
};

Note

When using the Cache::Memcached interface with multiple servers, the API
automatically performs certain operations across all the servers in the group.
For example, getting statistical information through Cache::Memcached
returns a hash that contains data on a host-by-host basis, as well as
generalized statistics for all the servers in the group.

You can set additional properties on the cache object instance when it is created by specifying the
option as part of the option hash. Alternatively, you can use a corresponding method on the instance:

• servers or method set_servers(): Specifies the list of the servers to be used. The servers list
should be a reference to an array of servers, with each element as the address and port number
combination (separated by a colon). You can also specify a local connection through a Unix socket
(for example /tmp/sock/memcached). To specify the server with a weight (indicating how much
more frequently the server should be used during hashing), specify an array reference with the
memcached server instance and a weight number. Higher numbers give higher priority.

• compress_threshold or method set_compress_threshold(): Specifies the threshold when
values are compressed. Values larger than the specified number are automatically compressed
(using zlib) during storage and retrieval.

• no_rehash or method set_norehash(): Disables finding a new server if the original choice is
unavailable.

• readonly or method set_readonly(): Disables writes to the memcached servers.

Once the Cache::Memcached object instance has been configured, you can use the set() and
get() methods to store and retrieve information from the memcached servers. Objects stored in the
cache are automatically serialized and deserialized using the Storable module.

The Cache::Memcached interface supports the following methods for storing/retrieving data, and
relate to the generic methods as shown in the table.

Cache::Memcached Function Equivalent Generic Method

get() Generic get().

get_multi(keys) Gets multiple keys from memcache using just
one query. Returns a hash reference of key/value
pairs.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

Developing a memcached Application

1948

Cache::Memcached Function Equivalent Generic Method

decr() Generic decr().

Below is a complete example for using memcached with Perl and the Cache::Memcached module:

#!/usr/bin/perl

use Cache::Memcached;
use DBI;
use Data::Dumper;

Configure the memcached server

my $cache = new Cache::Memcached {
 'servers' => [
 'localhost:11211',
],
 };

Get the film name from the command line
memcached keys must not contain spaces, so create
a key name by replacing spaces with underscores

my $filmname = shift or die "Must specify the film name\n";
my $filmkey = $filmname;
$filmkey =~ s/ /_/;

Load the data from the cache

my $filmdata = $cache->get($filmkey);

If the data wasn't in the cache, then we load it from the database

if (!defined($filmdata))
{
 $filmdata = load_filmdata($filmname);

 if (defined($filmdata))
 {

Set the data into the cache, using the key

 if ($cache->set($filmkey,$filmdata))
 {
 print STDERR "Film data loaded from database and cached\n";
 }
 else
 {
 print STDERR "Couldn't store to cache\n";
 }
 }
 else
 {
 die "Couldn't find $filmname\n";
 }
}
else
{
 print STDERR "Film data loaded from Memcached\n";
}

sub load_filmdata
{
 my ($filmname) = @_;

 my $dsn = "DBI:mysql:database=sakila;host=localhost;port=3306";

 $dbh = DBI->connect($dsn, 'sakila','password');

 my ($filmbase) = $dbh->selectrow_hashref(sprintf('select * from film where title = %s',

Developing a memcached Application

1949

 $dbh->quote($filmname)));

 if (!defined($filmname))
 {
 return (undef);
 }

 $filmbase->{stars} =
 $dbh->selectall_arrayref(sprintf('select concat(first_name," ",last_name) ' .
 'from film_actor left join (actor) ' .
 'on (film_actor.actor_id = actor.actor_id) ' .
 ' where film_id=%s',
 $dbh->quote($filmbase->{film_id})));

 return($filmbase);
}

The example uses the Sakila database, obtaining film data from the database and writing a composite
record of the film and actors to memcached. When calling it for a film does not exist, you get this result:

shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from database and cached

When accessing a film that has already been added to the cache:

shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from Memcached

15.6.3.5 Using MySQL and memcached with Python

The Python memcache module interfaces to memcached servers, and is written in pure Python (that is,
without using one of the C APIs). You can download and install a copy from Python Memcached.

To install, download the package and then run the Python installer:

python setup.py install
running install
running bdist_egg
running egg_info
creating python_memcached.egg-info
...
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing python_memcached-1.43-py2.4.egg
creating /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Extracting python_memcached-1.43-py2.4.egg to /usr/lib64/python2.4/site-packages
Adding python-memcached 1.43 to easy-install.pth file

Installed /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Processing dependencies for python-memcached==1.43
Finished processing dependencies for python-memcached==1.43

Once installed, the memcache module provides a class-based interface to your memcached servers.
When you store Python data structures as memcached items, they are automatically serialized (turned
into string values) using the Python cPickle or pickle modules.

To create a new memcache interface, import the memcache module and create a new instance of the
memcache.Client class. For example, if the memcached daemon is running on localhost using the
default port:

import memcache
memc = memcache.Client(['127.0.0.1:11211'])

The first argument is an array of strings containing the server and port number for each memcached
instance to use. To enable debugging, set the optional debug parameter to 1.

http://www.tummy.com/Community/software/python-memcached/

Developing a memcached Application

1950

By default, the hashing mechanism used to divide the items among multiple servers is crc32. To
change the function used, set the value of memcache.serverHashFunction to the alternate function
to use. For example:

from zlib import adler32
memcache.serverHashFunction = adler32

Once you have defined the servers to use within the memcache instance, the core functions provide
the same functionality as in the generic interface specification. The following table provides a summary
of the supported functions:

Python memcache Function Equivalent Generic Function

get() Generic get().

get_multi(keys) Gets multiple values from the supplied array of
keys. Returns a hash reference of key/value
pairs.

set() Generic set().

set_multi(dict [, expiry [,
key_prefix]])

Sets multiple key/value pairs from the supplied
dict.

add() Generic add().

replace() Generic replace().

prepend(key, value [, expiry]) Prepends the supplied value to the value of the
existing key.

append(key, value [, expiry[) Appends the supplied value to the value of the
existing key.

delete() Generic delete().

delete_multi(keys [, expiry [,
key_prefix]])

Deletes all the keys from the hash matching each
string in the array keys.

incr() Generic incr().

decr() Generic decr().

Note

Within the Python memcache module, all the *_multi()functions support an
optional key_prefix parameter. If supplied, then the string is used as a prefix
to all key lookups. For example, if you call:

memc.get_multi(['a','b'], key_prefix='users:')

The function retrieves the keys users:a and users:b from the servers.

Here is an example showing the storage and retrieval of information to a memcache instance, loading
the raw data from MySQL:

import sys
import MySQLdb
import memcache

memc = memcache.Client(['127.0.0.1:11211'], debug=1);

try:
 conn = MySQLdb.connect (host = "localhost",
 user = "sakila",
 passwd = "password",
 db = "sakila")
except MySQLdb.Error, e:

Developing a memcached Application

1951

 print "Error %d: %s" % (e.args[0], e.args[1])
 sys.exit (1)

popularfilms = memc.get('top5films')

if not popularfilms:
 cursor = conn.cursor()
 cursor.execute('select film_id,title from film order by rental_rate desc limit 5')
 rows = cursor.fetchall()
 memc.set('top5films',rows,60)
 print "Updated memcached with MySQL data"
else:
 print "Loaded data from memcached"
 for row in popularfilms:
 print "%s, %s" % (row[0], row[1])

When executed for the first time, the data is loaded from the MySQL database and stored to the
memcached server.

shell> python memc_python.py
Updated memcached with MySQL data

Because the data is automatically serialized using cPickle/pickle, when you load the data back
from memcached, you can use the object directly. In the example above, the information stored to
memcached is in the form of rows from a Python DB cursor. When accessing the information (within
the 60 second expiry time), the data is loaded from memcached and dumped:

shell> python memc_python.py
Loaded data from memcached
2, ACE GOLDFINGER
7, AIRPLANE SIERRA
8, AIRPORT POLLOCK
10, ALADDIN CALENDAR
13, ALI FOREVER

The serialization and deserialization happens automatically. Because serialization of Python data may
be incompatible with other interfaces and languages, you can change the serialization module used
during initialization. For example, you might use JSON format when you store complex data structures
using a script written in one language, and access them in a script written in a different language.

15.6.3.6 Using MySQL and memcached with PHP

PHP provides support for the Memcache functions through a PECL extension. To enable the PHP
memcache extensions, build PHP using the --enable-memcache option to configure when
building from source.

If you are installing on a Red Hat-based server, you can install the php-pecl-memcache RPM:

root-shell> yum --install php-pecl-memcache

On Debian-based distributions, use the php-memcache package.

To set global runtime configuration options, specify the configuration option values within your
php.ini file. The following table provides the name, default value, and a description for each global
runtime configuration option.

Configuration option Default Description

memcache.allow_failover 1 Specifies whether another server in the list
should be queried if the first server selected
fails.

memcache.max_failover_attempts20 Specifies the number of servers to try before
returning a failure.

Developing a memcached Application

1952

Configuration option Default Description

memcache.chunk_size 8192 Defines the size of network chunks used to
exchange data with the memcached server.

memcache.default_port 11211 Defines the default port to use when
communicating with the memcached servers.

memcache.hash_strategy standard Specifies which hash strategy to use. Set to
consistent to enable servers to be added
or removed from the pool without causing the
keys to be remapped to other servers. When
set to standard, an older (modula) strategy
is used that potentially uses different servers
for storage.

memcache.hash_function crc32 Specifies which function to use when
mapping keys to servers. crc32 uses the
standard CRC32 hash. fnv uses the FNV-1a
hashing algorithm.

To create a connection to a memcached server, create a new Memcache object and then specify the
connection options. For example:

<?php

$cache = new Memcache;
$cache->connect('localhost',11211);
?>

This opens an immediate connection to the specified server.

To use multiple memcached servers, you need to add servers to the memcache object using
addServer():

bool Memcache::addServer (string $host [, int $port [, bool $persistent
 [, int $weight [, int $timeout [, int $retry_interval
 [, bool $status [, callback $failure_callback
]]]]]]])

The server management mechanism within the php-memcache module is a critical part of the interface
as it controls the main interface to the memcached instances and how the different instances are
selected through the hashing mechanism.

To create a simple connection to two memcached instances:

<?php

$cache = new Memcache;
$cache->addServer('192.168.0.100',11211);
$cache->addServer('192.168.0.101',11211);
?>

In this scenario, the instance connection is not explicitly opened, but only opened when you try to store
or retrieve a value. To enable persistent connections to memcached instances, set the $persistent
argument to true. This is the default setting, and causes the connections to remain open.

To help control the distribution of keys to different instances, use the global
memcache.hash_strategy setting. This sets the hashing mechanism used to select. You can also
add another weight to each server, which effectively increases the number of times the instance entry
appears in the instance list, therefore increasing the likelihood of the instance being chosen over other
instances. To set the weight, set the value of the $weight argument to more than one.

Developing a memcached Application

1953

The functions for setting and retrieving information are identical to the generic functional interface
offered by memcached, as shown in this table:

PECL memcache Function Generic Function

get() Generic get().

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

increment() Generic incr().

decrement() Generic decr().

A full example of the PECL memcache interface is provided below. The code loads film data from the
Sakila database when the user provides a film name. The data stored into the memcached instance is
recorded as a mysqli result row, and the API automatically serializes the information for you.

<?php

$memc = new Memcache;
$memc->addServer('localhost','11211');

if(empty($_POST['film'])) {
?>
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Simple Memcache Lookup</title>
 </head>
 <body>
 <form method="post">
 <p>Film: <input type="text" size="20" name="film"></p>
 <input type="submit">
 </form>
 <hr/>
<?php

} else {

 echo "Loading data...\n";

 $film = htmlspecialchars($_POST['film'], ENT_QUOTES, 'UTF-8');
 $mfilms = $memc->get($film);

 if ($mfilms) {

 printf("<p>Film data for %s loaded from memcache</p>", $mfilms['title']);

 foreach (array_keys($mfilms) as $key) {
 printf("<p>%s: %s</p>", $key, $mfilms[$key]);
 }

 } else {

 $mysqli = mysqli('localhost','sakila','password','sakila');

 if (mysqli_connect_error()) {
 sprintf("Database error: (%d) %s", mysqli_connect_errno(), mysqli_connect_error());
 exit;
 }

 $sql = sprintf('SELECT * FROM film WHERE title="%s"', $mysqli->real_escape_string($film));

 $result = $mysqli->query($sql);

Developing a memcached Application

1954

 if (!$result) {
 sprintf("Database error: (%d) %s", $mysqli->errno, $mysqli->error);
 exit;
 }

 $row = $result->fetch_assoc();

 $memc->set($row['title'], $row);

 printf("<p>Loaded (%s) from MySQL</p>", htmlspecialchars($row['title'], ENT_QUOTES, 'UTF-8');
 }
}
?>
 </body>
</html>

With PHP, the connections to the memcached instances are kept open as long as the PHP and
associated Apache instance remain running. When adding or removing servers from the list in a
running instance (for example, when starting another script that mentions additional servers), the
connections are shared, but the script only selects among the instances explicitly configured within the
script.

To ensure that changes to the server list within a script do not cause problems, make sure to use the
consistent hashing mechanism.

15.6.3.7 Using MySQL and memcached with Ruby

There are a number of different modules for interfacing to memcached within Ruby. The Ruby-
MemCache client library provides a native interface to memcached that does not require any external
libraries, such as libmemcached. You can obtain the installer package from http://www.deveiate.org/
projects/RMemCache.

To install, extract the package and then run install.rb:

shell> install.rb

If you have RubyGems, you can install the Ruby-MemCache gem:

shell> gem install Ruby-MemCache
Bulk updating Gem source index for: http://gems.rubyforge.org
Install required dependency io-reactor? [Yn] y
Successfully installed Ruby-MemCache-0.0.1
Successfully installed io-reactor-0.05
Installing ri documentation for io-reactor-0.05...
Installing RDoc documentation for io-reactor-0.05...

To use a memcached instance from within Ruby, create a new instance of the MemCache object.

require 'memcache'
memc = MemCache::new '192.168.0.100:11211'

You can add a weight to each server to increase the likelihood of the server being selected during
hashing by appending the weight count to the server host name/port string:

require 'memcache'
memc = MemCache::new '192.168.0.100:11211:3'

To add servers to an existing list, you can append them directly to the MemCache object:

memc += ["192.168.0.101:11211"]

http://www.deveiate.org/projects/RMemCache
http://www.deveiate.org/projects/RMemCache

Developing a memcached Application

1955

To set data into the cache, you can just assign a value to a key within the new cache object, which
works just like a standard Ruby hash object:

memc["key"] = "value"

Or to retrieve the value:

print memc["key"]

For more explicit actions, you can use the method interface, which mimics the main memcached API
functions, as summarized in the following table:

Ruby MemCache Method Equivalent memcached API Functions

get() Generic get().

get_hash(keys) Get the values of multiple keys, returning the
information as a hash of the keys and their values.

set() Generic set().

set_many(pairs) Set the values of the keys and values in the hash
pairs.

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

15.6.3.8 Using MySQL and memcached with Java

The com.danga.MemCached class within Java provides a native interface to memcached instances.
You can obtain the client from https://github.com/gwhalin/Memcached-Java-Client/downloads. The
Java class uses hashes that are compatible with libmemcached, so you can mix and match Java and
libmemcached applications accessing the same memcached instances. The serialization between
Java and other interfaces are not compatible. If this is a problem, use JSON or a similar nonbinary
serialization format.

On most systems, you can download the package and use the jar directly.

To use the com.danga.MemCached interface, you create a MemCachedClient instance and then
configure the list of servers by configuring the SockIOPool. Through the pool specification you set up
the server list, weighting, and the connection parameters to optimized the connections between your
client and the memcached instances that you configure.

Generally, you can configure the memcached interface once within a single class, then use this
interface throughout the rest of your application.

For example, to create a basic interface, first configure the MemCachedClient and base
SockIOPool settings:

public class MyClass {

 protected static MemCachedClient mcc = new MemCachedClient();

 static {

 String[] servers =
 {
 "localhost:11211",
 };

https://github.com/gwhalin/Memcached-Java-Client/downloads

Developing a memcached Application

1956

 Integer[] weights = { 1 };

 SockIOPool pool = SockIOPool.getInstance();

 pool.setServers(servers);
 pool.setWeights(weights);

In the above sample, the list of servers is configured by creating an array of the memcached instances
to use. You can then configure individual weights for each server.

The remainder of the properties for the connection are optional, but you can set the connection
numbers (initial connections, minimum connections, maximum connections, and the idle timeout) by
setting the pool parameters:

pool.setInitConn(5);
pool.setMinConn(5);
pool.setMaxConn(250);
pool.setMaxIdle(1000 * 60 * 60 * 6

Once the parameters have been configured, initialize the connection pool:

pool.initialize();

The pool, and the connection to your memcached instances should now be ready to use.

To set the hashing algorithm used to select the server used when storing a given key, use
pool.setHashingAlg():

pool.setHashingAlg(SockIOPool.NEW_COMPAT_HASH);

Valid values are NEW_COMPAT_HASH, OLD_COMPAT_HASH and NATIVE_HASH are also basic modula
hashing algorithms. For a consistent hashing algorithm, use CONSISTENT_HASH. These constants are
equivalent to the corresponding hash settings within libmemcached.

The following table outlines the Java com.danga.MemCached methods and the equivalent generic
methods in the memcached interface specification.

Java com.danga.MemCached Method Equivalent Generic Method

get() Generic get().

getMulti(keys) Get the values of multiple keys, returning
the information as Hash map using
java.lang.String for the keys and
java.lang.Object for the corresponding
values.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

15.6.3.9 Using the memcached TCP Text Protocol

Communicating with a memcached server can be achieved through either the TCP or UDP protocols.
When using the TCP protocol, you can use a simple text based interface for the exchange of
information.

Developing a memcached Application

1957

When communicating with memcached, you can connect to the server using the port configured for the
server. You can open a connection with the server without requiring authorization or login. As soon as
you have connected, you can start to send commands to the server. When you have finished, you can
terminate the connection without sending any specific disconnection command. Clients are encouraged
to keep their connections open to decrease latency and improve performance.

Data is sent to the memcached server in two forms:

• Text lines, which are used to send commands to the server, and receive responses from the server.

• Unstructured data, which is used to receive or send the value information for a given key. Data is
returned to the client in exactly the format it was provided.

Both text lines (commands and responses) and unstructured data are always terminated with the string
\r\n. Because the data being stored may contain this sequence, the length of the data (returned by
the client before the unstructured data is transmitted should be used to determine the end of the data.

Commands to the server are structured according to their operation:

• Storage commands: set, add, replace, append, prepend, cas

Storage commands to the server take the form:

command key [flags] [exptime] length [noreply]

Or when using compare and swap (cas):

cas key [flags] [exptime] length [casunique] [noreply]

Where:

• command: The command name.

• set: Store value against key

• add: Store this value against key if the key does not already exist

• replace: Store this value against key if the key already exists

• append: Append the supplied value to the end of the value for the specified key. The flags
and exptime arguments should not be used.

• prepend: Append value currently in the cache to the end of the supplied value for the specified
key. The flags and exptime arguments should not be used.

• cas: Set the specified key to the supplied value, only if the supplied casunique matches.
This is effectively the equivalent of change the information if nobody has updated it since I last
fetched it.

• key: The key. All data is stored using a the specific key. The key cannot contain control characters
or whitespace, and can be up to 250 characters in size.

• flags: The flags for the operation (as an integer). Flags in memcached are transparent. The
memcached server ignores the contents of the flags. They can be used by the client to indicate
any type of information. In memcached 1.2.0 and lower the value is a 16-bit integer value. In
memcached 1.2.1 and higher the value is a 32-bit integer.

• exptime: The expiry time, or zero for no expiry.

• length: The length of the supplied value block in bytes, excluding the terminating \r\n
characters.

Developing a memcached Application

1958

• casunique: A unique 64-bit value of an existing entry. This is used to compare against the
existing value. Use the value returned by the gets command when issuing cas updates.

• noreply: Tells the server not to reply to the command.

For example, to store the value abcdef into the key xyzkey, you would use:

set xyzkey 0 0 6\r\nabcdef\r\n

The return value from the server is one line, specifying the status or error information. For more
information, see Table 15.3, “memcached Protocol Responses”.

• Retrieval commands: get, gets

Retrieval commands take the form:

get key1 [key2 keyn]
gets key1 [key2 ... keyn]

You can supply multiple keys to the commands, with each requested key separated by whitespace.

The server responds with an information line of the form:

VALUE key flags bytes [casunique]

Where:

• key: The key name.

• flags: The value of the flag integer supplied to the memcached server when the value was
stored.

• bytes: The size (excluding the terminating \r\n character sequence) of the stored value.

• casunique: The unique 64-bit integer that identifies the item.

The information line is immediately followed by the value data block. For example:

get xyzkey\r\n
VALUE xyzkey 0 6\r\n
abcdef\r\n

If you have requested multiple keys, an information line and data block is returned for each key
found. If a requested key does not exist in the cache, no information is returned.

• Delete commands: delete

Deletion commands take the form:

delete key [time] [noreply]

Where:

• key: The key name.

• time: The time in seconds (or a specific Unix time) for which the client wishes the server to refuse
add or replace commands on this key. All add, replace, get, and gets commands fail during
this period. set operations succeed. After this period, the key is deleted permanently and all
commands are accepted.

Developing a memcached Application

1959

If not supplied, the value is assumed to be zero (delete immediately).

• noreply: Tells the server not to reply to the command.

Responses to the command are either DELETED to indicate that the key was successfully removed,
or NOT_FOUND to indicate that the specified key could not be found.

• Increment/Decrement: incr, decr

The increment and decrement commands change the value of a key within the server without
performing a separate get/set sequence. The operations assume that the currently stored value is a
64-bit integer. If the stored value is not a 64-bit integer, then the value is assumed to be zero before
the increment or decrement operation is applied.

Increment and decrement commands take the form:

incr key value [noreply]
decr key value [noreply]

Where:

• key: The key name.

• value: An integer to be used as the increment or decrement value.

• noreply: Tells the server not to reply to the command.

The response is:

• NOT_FOUND: The specified key could not be located.

• value: The new value associated with the specified key.

Values are assumed to be unsigned. For decr operations, the value is never decremented below 0.
For incr operations, the value wraps around the 64-bit maximum.

• Statistics commands: stats

The stats command provides detailed statistical information about the current status of the
memcached instance and the data it is storing.

Statistics commands take the form:

STAT [name] [value]

Where:

• name: The optional name of the statistics to return. If not specified, the general statistics are
returned.

• value: A specific value to be used when performing certain statistics operations.

The return value is a list of statistics data, formatted as follows:

STAT name value

The statistics are terminated with a single line, END.

For more information, see Section 15.6.4, “Getting memcached Statistics”.

Developing a memcached Application

1960

For reference, a list of the different commands supported and their formats is provided below.

Table 15.2 memcached Command Reference

Command Command Formats

set set key flags exptime length, set key flags exptime
length noreply

add add key flags exptime length, add key flags exptime
length noreply

replace replace key flags exptime length, replace key flags
exptime length noreply

append append key length, append key length noreply

prepend prepend key length, prepend key length noreply

cas cas key flags exptime length casunique, cas key flags
exptime length casunique noreply

get get key1 [key2 ... keyn]

gets

delete delete key, delete key noreply, delete key expiry, delete
key expiry noreply

incr incr key, incr key noreply, incr key value, incr key value
noreply

decr decr key, decr key noreply, decr key value, decr key value
noreply

stat stat, stat name, stat name value

When sending a command to the server, the response from the server is one of the settings in the
following table. All response values from the server are terminated by \r\n:

Table 15.3 memcached Protocol Responses

String Description

STORED Value has successfully been stored.

NOT_STORED The value was not stored, but not because of an error. For commands
where you are adding a or updating a value if it exists (such as add and
replace), or where the item has already been set to be deleted.

EXISTS When using a cas command, the item you are trying to store already exists
and has been modified since you last checked it.

NOT_FOUND The item you are trying to store, update or delete does not exist or has
already been deleted.

ERROR You submitted a nonexistent command name.

CLIENT_ERROR
errorstring

There was an error in the input line, the detail is contained in
errorstring.

SERVER_ERROR
errorstring

There was an error in the server that prevents it from returning the
information. In extreme conditions, the server may disconnect the client after
this error occurs.

VALUE keys flags
length

The requested key has been found, and the stored key, flags and data
block are returned, of the specified length.

DELETED The requested key was deleted from the server.

STAT name value A line of statistics data.

Getting memcached Statistics

1961

String Description

END The end of the statistics data.

15.6.4 Getting memcached Statistics

The memcached system has a built-in statistics system that collects information about the data being
stored into the cache, cache hit ratios, and detailed information on the memory usage and distribution
of information through the slab allocation used to store individual items. Statistics are provided at
both a basic level that provide the core statistics, and more specific statistics for specific areas of the
memcached server.

This information can be useful to ensure that you are getting the correct level of cache and memory
usage, and that your slab allocation and configuration properties are set at an optimal level.

The stats interface is available through the standard memcached protocol, so the reports can be
accessed by using telnet to connect to the memcached. The supplied memcached-tool includes
support for obtaining the Section 15.6.4.2, “memcached Slabs Statistics” and Section 15.6.4.1,
“memcached General Statistics” information. For more information, see Section 15.6.4.6, “Using
memcached-tool”.

Alternatively, most of the language API interfaces provide a function for obtaining the statistics from the
server.

For example, to get the basic stats using telnet:

shell> telnet localhost 11211
Trying ::1...
Connected to localhost.
Escape character is '^]'.
stats
STAT pid 23599
STAT uptime 675
STAT time 1211439587
STAT version 1.2.5
STAT pointer_size 32
STAT rusage_user 1.404992
STAT rusage_system 4.694685
STAT curr_items 32
STAT total_items 56361
STAT bytes 2642
STAT curr_connections 53
STAT total_connections 438
STAT connection_structures 55
STAT cmd_get 113482
STAT cmd_set 80519
STAT get_hits 78926
STAT get_misses 34556
STAT evictions 0
STAT bytes_read 6379783
STAT bytes_written 4860179
STAT limit_maxbytes 67108864
STAT threads 1
END

When using Perl and the Cache::Memcached module, the stats() function returns information
about all the servers currently configured in the connection object, and total statistics for all the
memcached servers as a whole.

For example, the following Perl script obtains the stats and dumps the hash reference that is returned:

use Cache::Memcached;
use Data::Dumper;

Getting memcached Statistics

1962

my $memc = new Cache::Memcached;
$memc->set_servers(\@ARGV);

print Dumper($memc->stats());

When executed on the same memcached as used in the Telnet example above we get a hash
reference with the host by host and total statistics:

$VAR1 = {
 'hosts' => {
 'localhost:11211' => {
 'misc' => {
 'bytes' => '2421',
 'curr_connections' => '3',
 'connection_structures' => '56',
 'pointer_size' => '32',
 'time' => '1211440166',
 'total_items' => '410956',
 'cmd_set' => '588167',
 'bytes_written' => '35715151',
 'evictions' => '0',
 'curr_items' => '31',
 'pid' => '23599',
 'limit_maxbytes' => '67108864',
 'uptime' => '1254',
 'rusage_user' => '9.857805',
 'cmd_get' => '838451',
 'rusage_system' => '34.096988',
 'version' => '1.2.5',
 'get_hits' => '581511',
 'bytes_read' => '46665716',
 'threads' => '1',
 'total_connections' => '3104',
 'get_misses' => '256940'
 },
 'sizes' => {
 '128' => '16',
 '64' => '15'
 }
 }
 },
 'self' => {},
 'total' => {
 'cmd_get' => 838451,
 'bytes' => 2421,
 'get_hits' => 581511,
 'connection_structures' => 56,
 'bytes_read' => 46665716,
 'total_items' => 410956,
 'total_connections' => 3104,
 'cmd_set' => 588167,
 'bytes_written' => 35715151,
 'curr_items' => 31,
 'get_misses' => 256940
 }
 };

The statistics are divided up into a number of distinct sections, and then can be requested by adding
the type to the stats command. Each statistics output is covered in more detail in the following
sections.

• General statistics, see Section 15.6.4.1, “memcached General Statistics”.

• Slab statistics (slabs), see Section 15.6.4.2, “memcached Slabs Statistics”.

• Item statistics (items), see Section 15.6.4.3, “memcached Item Statistics”.

• Size statistics (sizes), see Section 15.6.4.4, “memcached Size Statistics”.

Getting memcached Statistics

1963

• Detailed status (detail), see Section 15.6.4.5, “memcached Detail Statistics”.

15.6.4.1 memcached General Statistics

The output of the general statistics provides an overview of the performance and use of the
memcached instance. The statistics returned by the command and their meaning is shown in the
following table.

The following terms are used to define the value type for each statistics value:

• 32u: 32-bit unsigned integer

• 64u: 64-bit unsigned integer

• 32u:32u: Two 32-bit unsigned integers separated by a colon

• String: Character string

Statistic Data type Description Version

pid 32u Process ID of the memcached instance.

uptime 32u Uptime (in seconds) for this memcached instance.

time 32u Current time (as epoch).

version string Version string of this instance.

pointer_size string Size of pointers for this host specified in bits (32 or 64).

rusage_user 32u:32u Total user time for this instance
(seconds:microseconds).

rusage_system 32u:32u Total system time for this instance
(seconds:microseconds).

curr_items 32u Current number of items stored by this instance.

total_items 32u Total number of items stored during the life of this
instance.

bytes 64u Current number of bytes used by this server to store
items.

curr_connections32u Current number of open connections.

total_connections32u Total number of connections opened since the server
started running.

connection_structures32u Number of connection structures allocated by the
server.

cmd_get 64u Total number of retrieval requests (get operations).

cmd_set 64u Total number of storage requests (set operations).

get_hits 64u Number of keys that have been requested and found
present.

get_misses 64u Number of items that have been requested and not
found.

delete_hits 64u Number of keys that have been deleted and found
present.

1.3.x

delete_misses 64u Number of items that have been delete and not found. 1.3.x

incr_hits 64u Number of keys that have been incremented and found
present.

1.3.x

incr_misses 64u Number of items that have been incremented and not
found.

1.3.x

Getting memcached Statistics

1964

Statistic Data type Description Version

decr_hits 64u Number of keys that have been decremented and
found present.

1.3.x

decr_misses 64u Number of items that have been decremented and not
found.

1.3.x

cas_hits 64u Number of keys that have been compared and
swapped and found present.

1.3.x

cas_misses 64u Number of items that have been compared and
swapped and not found.

1.3.x

cas_badvalue 64u Number of keys that have been compared and
swapped, but the comparison (original) value did not
match the supplied value.

1.3.x

evictions 64u Number of valid items removed from cache to free
memory for new items.

bytes_read 64u Total number of bytes read by this server from network.

bytes_written 64u Total number of bytes sent by this server to network.

limit_maxbytes 32u Number of bytes this server is permitted to use for
storage.

threads 32u Number of worker threads requested.

conn_yields 64u Number of yields for connections (related to the -R
option).

1.4.0

The most useful statistics from those given here are the number of cache hits, misses, and evictions.

A large number of get_misses may just be an indication that the cache is still being populated
with information. The number should, over time, decrease in comparison to the number of cache
get_hits. If, however, you have a large number of cache misses compared to cache hits after an
extended period of execution, it may be an indication that the size of the cache is too small and you
either need to increase the total memory size, or increase the number of the memcached instances to
improve the hit ratio.

A large number of evictions from the cache, particularly in comparison to the number of items stored
is a sign that your cache is too small to hold the amount of information that you regularly want to keep
cached. Instead of items being retained in the cache, items are being evicted to make way for new
items keeping the turnover of items in the cache high, reducing the efficiency of the cache.

15.6.4.2 memcached Slabs Statistics

To get the slabs statistics, use the stats slabs command, or the API equivalent.

The slab statistics provide you with information about the slabs that have created and allocated for
storing information within the cache. You get information both on each individual slab-class and total
statistics for the whole slab.

STAT 1:chunk_size 104
STAT 1:chunks_per_page 10082
STAT 1:total_pages 1
STAT 1:total_chunks 10082
STAT 1:used_chunks 10081
STAT 1:free_chunks 1
STAT 1:free_chunks_end 10079
STAT 9:chunk_size 696
STAT 9:chunks_per_page 1506
STAT 9:total_pages 63
STAT 9:total_chunks 94878

Getting memcached Statistics

1965

STAT 9:used_chunks 94878
STAT 9:free_chunks 0
STAT 9:free_chunks_end 0
STAT active_slabs 2
STAT total_malloced 67083616
END

Individual stats for each slab class are prefixed with the slab ID. A unique ID is given to each allocated
slab from the smallest size up to the largest. The prefix number indicates the slab class number in
relation to the calculated chunk from the specified growth factor. Hence in the example, 1 is the first
chunk size and 9 is the 9th chunk allocated size.

The parameters returned for each chunk size and a description of each parameter are provided in the
following table.

Statistic Description Version

chunk_size Space allocated to each chunk within this slab class.

chunks_per_page Number of chunks within a single page for this slab class.

total_pages Number of pages allocated to this slab class.

total_chunks Number of chunks allocated to the slab class.

used_chunks Number of chunks allocated to an item..

free_chunks Number of chunks not yet allocated to items.

free_chunks_end Number of free chunks at the end of the last allocated page.

get_hits Number of get hits to this chunk 1.3.x

cmd_set Number of set commands on this chunk 1.3.x

delete_hits Number of delete hits to this chunk 1.3.x

incr_hits Number of increment hits to this chunk 1.3.x

decr_hits Number of decrement hits to this chunk 1.3.x

cas_hits Number of CAS hits to this chunk 1.3.x

cas_badval Number of CAS hits on this chunk where the existing value did not
match

1.3.x

mem_requested The true amount of memory of memory requested within this
chunk

1.4.1

The following additional statistics cover the information for the entire server, rather than on a chunk by
chunk basis:

Statistic Description Version

active_slabs Total number of slab classes allocated.

total_malloced Total amount of memory allocated to slab pages.

The key values in the slab statistics are the chunk_size, and the corresponding total_chunks
and used_chunks parameters. These given an indication of the size usage of the chunks within the
system. Remember that one key/value pair is placed into a chunk of a suitable size.

From these stats, you can get an idea of your size and chunk allocation and distribution. If you store
many items with a number of largely different sizes, consider adjusting the chunk size growth factor
to increase in larger steps to prevent chunk and memory wastage. A good indication of a bad growth
factor is a high number of different slab classes, but with relatively few chunks actually in use within
each slab. Increasing the growth factor creates fewer slab classes and therefore makes better use of
the allocated pages.

Getting memcached Statistics

1966

15.6.4.3 memcached Item Statistics

To get the items statistics, use the stats items command, or the API equivalent.

The items statistics give information about the individual items allocated within a given slab class.

STAT items:2:number 1
STAT items:2:age 452
STAT items:2:evicted 0
STAT items:2:evicted_nonzero 0
STAT items:2:evicted_time 2
STAT items:2:outofmemory 0
STAT items:2:tailrepairs 0
...
STAT items:27:number 1
STAT items:27:age 452
STAT items:27:evicted 0
STAT items:27:evicted_nonzero 0
STAT items:27:evicted_time 2
STAT items:27:outofmemory 0
STAT items:27:tailrepairs 0

The prefix number against each statistics relates to the corresponding chunk size, as returned by the
stats slabs statistics. The result is a display of the number of items stored within each chunk within
each slab size, and specific statistics about their age, eviction counts, and out of memory counts. A
summary of the statistics is given in the following table.

Statistic Description

number The number of items currently stored in this slab class.

age The age of the oldest item within the slab class, in seconds.

evicted The number of items evicted to make way for new entries.

evicted_time The time of the last evicted entry

evicted_nonzero The time of the last evicted non-zero entry 1.4.0

outofmemory The number of items for this slab class that have triggered an out
of memory error (only value when the -M command line option is
in effect).

tailrepairs Number of times the entries for a particular ID need repairing

Item level statistics can be used to determine how many items are stored within a given slab and their
freshness and recycle rate. You can use this to help identify whether there are certain slab classes that
are triggering a much larger number of evictions that others.

15.6.4.4 memcached Size Statistics

To get size statistics, use the stats sizes command, or the API equivalent.

The size statistics provide information about the sizes and number of items of each size within the
cache. The information is returned as two columns, the first column is the size of the item (rounded up
to the nearest 32 byte boundary), and the second column is the count of the number of items of that
size within the cache:

96 35
128 38
160 807
192 804
224 410
256 222
288 83
320 39

Getting memcached Statistics

1967

352 53
384 33
416 64
448 51
480 30
512 54
544 39
576 10065

Caution

Running this statistic locks up your cache as each item is read from the cache
and its size calculated. On a large cache, this may take some time and prevent
any set or get operations until the process completes.

The item size statistics are useful only to determine the sizes of the objects you are storing. Since the
actual memory allocation is relevant only in terms of the chunk size and page size, the information is
only useful during a careful debugging or diagnostic session.

15.6.4.5 memcached Detail Statistics

For memcached 1.3.x and higher, you can enable and obtain detailed statistics about the get, set,
and del operations on theindividual keys stored in the cache, and determine whether the attempts hit
(found) a particular key. These operations are only recorded while the detailed stats analysis is turned
on.

To enable detailed statistics, you must send the stats detail on command to the memcached
server:

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail on
OK

Individual statistics are recorded for every get, set and del operation on a key, including keys that
are not currently stored in the server. For example, if an attempt is made to obtain the value of key
abckey and it does not exist, the get operating on the specified key are recorded while detailed
statistics are in effect, even if the key is not currently stored. The hits, that is, the number of get or
del operations for a key that exists in the server are also counted.

To turn detailed statistics off, send the stats detail off command to the memcached server:

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail on
OK

To obtain the detailed statistics recorded during the process, send the stats detail dump
command to the memcached server:

stats detail dump
PREFIX hykkey get 0 hit 0 set 1 del 0
PREFIX xyzkey get 0 hit 0 set 1 del 0
PREFIX yukkey get 1 hit 0 set 0 del 0
PREFIX abckey get 3 hit 3 set 1 del 0
END

You can use the detailed statistics information to determine whether your memcached clients are using
a large number of keys that do not exist in the server by comparing the hit and get or del counts.

Getting memcached Statistics

1968

Because the information is recorded by key, you can also determine whether the failures or operations
are clustered around specific keys.

15.6.4.6 Using memcached-tool

The memcached-tool, located within the scripts directory within the memcached source directory.
The tool provides convenient access to some reports and statistics from any memcached instance.

The basic format of the command is:

shell> ./memcached-tool hostname:port [command]

The default output produces a list of the slab allocations and usage. For example:

shell> memcached-tool localhost:11211 display
 # Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
 1 80B 93s 1 20 no 0 0 0
 2 104B 93s 1 16 no 0 0 0
 3 136B 1335s 1 28 no 0 0 0
 4 176B 1335s 1 24 no 0 0 0
 5 224B 1335s 1 32 no 0 0 0
 6 280B 1335s 1 34 no 0 0 0
 7 352B 1335s 1 36 no 0 0 0
 8 440B 1335s 1 46 no 0 0 0
 9 552B 1335s 1 58 no 0 0 0
 10 696B 1335s 1 66 no 0 0 0
 11 872B 1335s 1 89 no 0 0 0
 12 1.1K 1335s 1 112 no 0 0 0
 13 1.3K 1335s 1 145 no 0 0 0
 14 1.7K 1335s 1 123 no 0 0 0
 15 2.1K 1335s 1 198 no 0 0 0
 16 2.6K 1335s 1 199 no 0 0 0
 17 3.3K 1335s 1 229 no 0 0 0
 18 4.1K 1335s 1 248 yes 36 2 0
 19 5.2K 1335s 2 328 no 0 0 0
 20 6.4K 1335s 2 316 yes 387 1 0
 21 8.1K 1335s 3 381 yes 492 1 0
 22 10.1K 1335s 3 303 yes 598 2 0
 23 12.6K 1335s 5 405 yes 605 1 0
 24 15.8K 1335s 6 384 yes 766 2 0
 25 19.7K 1335s 7 357 yes 908 170 0
 26 24.6K 1336s 7 287 yes 1012 1 0
 27 30.8K 1336s 7 231 yes 1193 169 0
 28 38.5K 1336s 4 104 yes 1323 169 0
 29 48.1K 1336s 1 21 yes 1287 1 0
 30 60.2K 1336s 1 17 yes 1093 169 0
 31 75.2K 1337s 1 13 yes 713 168 0
 32 94.0K 1337s 1 10 yes 278 168 0
 33 117.5K 1336s 1 3 no 0 0 0

This output is the same if you specify the command as display:

shell> memcached-tool localhost:11211 display
 # Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
 1 80B 93s 1 20 no 0 0 0
 2 104B 93s 1 16 no 0 0 0
...

The output shows a summarized version of the output from the slabs statistics. The columns provided
in the output are shown below:

• #: The slab number

• Item_Size: The size of the slab

memcached FAQ

1969

• Max_age: The age of the oldest item in the slab

• Pages: The number of pages allocated to the slab

• Count: The number of items in this slab

• Full?: Whether the slab is fully populated

• Evicted: The number of objects evicted from this slab

• Evict_Time: The time (in seconds) since the last eviction

• OOM: The number of items that have triggered an out of memory error

You can also obtain a dump of the general statistics for the server using the stats command:

shell> memcached-tool localhost:11211 stats
#localhost:11211 Field Value
 accepting_conns 1
 bytes 162
 bytes_read 485
 bytes_written 6820
 cas_badval 0
 cas_hits 0
 cas_misses 0
 cmd_flush 0
 cmd_get 4
 cmd_set 2
 conn_yields 0
 connection_structures 11
 curr_connections 10
 curr_items 2
 decr_hits 0
 decr_misses 1
 delete_hits 0
 delete_misses 0
 evictions 0
 get_hits 4
 get_misses 0
 incr_hits 0
 incr_misses 2
 limit_maxbytes 67108864
 listen_disabled_num 0
 pid 12981
 pointer_size 32
 rusage_system 0.013911
 rusage_user 0.011876
 threads 4
 time 1255518565
 total_connections 20
 total_items 2
 uptime 880
 version 1.4.2

15.6.5 memcached FAQ

Questions

• 16.6.5.1: [1970] Can memcached be run on a Windows environment?

• 16.6.5.2: [1970] What is the maximum size of an object you can store in memcached? Is that
configurable?

• 16.6.5.3: [1970] Is it true memcached will be much more effective with db-read-intensive
applications than with db-write-intensive applications?

• 16.6.5.4: [1970] Is there any overhead in not using persistent connections? If persistent is always
recommended, what are the downsides (for example, locking up)?

memcached FAQ

1970

• 16.6.5.5: [1971] How is an event such as a crash of one of the memcached servers handled by the
memcached client?

• 16.6.5.6: [1971] What is a recommended hardware configuration for a memcached server?

• 16.6.5.7: [1971] Is memcached more effective for video and audio as opposed to textual read/
writes?

• 16.6.5.8: [1971] Can memcached work with ASPX?

• 16.6.5.9: [1971] How expensive is it to establish a memcache connection? Should those
connections be pooled?

• 16.6.5.10: [1971] How is the data handled when the memcached server is down?

• 16.6.5.11: [1972] How are auto-increment columns in the MySQL database coordinated across
multiple instances of memcached?

• 16.6.5.12: [1972] Is compression available?

• 16.6.5.13: [1972] Can we implement different types of memcached as different nodes in the same
server, so can there be deterministic and non-deterministic in the same server?

• 16.6.5.14: [1972] What are best practices for testing an implementation, to ensure that it improves
performance, and to measure the impact of memcached configuration changes? And would you
recommend keeping the configuration very simple to start?

Questions and Answers

16.6.5.1: Can memcached be run on a Windows environment?

No. Currently memcached is available only on the Unix/Linux platform. There is an unofficial port
available, see http://www.codeplex.com/memcachedproviders.

16.6.5.2: What is the maximum size of an object you can store in memcached? Is that
configurable?

The default maximum object size is 1MB. In memcached 1.4.2 and later, you can change the maximum
size of an object using the -I command line option.

For versions before this, to increase this size, you have to re-compile memcached. You can modify the
value of the POWER_BLOCK within the slabs.c file within the source.

In memcached 1.4.2 and higher, you can configure the maximum supported object size by using the -I
command-line option. For example, to increase the maximum object size to 5MB:

$ memcached -I 5m

If an object is larger than the maximum object size, you must manually split it. memcached is very
simple: you give it a key and some data, it tries to cache it in RAM. If you try to store more than the
default maximum size, the value is just truncated for speed reasons.

16.6.5.3: Is it true memcached will be much more effective with db-read-intensive applications
than with db-write-intensive applications?

Yes. memcached plays no role in database writes, it is a method of caching data already read from the
database in RAM.

16.6.5.4: Is there any overhead in not using persistent connections? If persistent is always
recommended, what are the downsides (for example, locking up)?

http://www.codeplex.com/memcachedproviders

memcached FAQ

1971

If you don't use persistent connections when communicating with memcached, there will be a
small increase in the latency of opening the connection each time. The effect is comparable to use
nonpersistent connections with MySQL.

In general, the chance of locking or other issues with persistent connections is minimal, because there
is very little locking within memcached. If there is a problem, eventually your request will time out and
return no result, so your application will need to load from MySQL again.

16.6.5.5: How is an event such as a crash of one of the memcached servers handled by the
memcached client?

There is no automatic handling of this. If your client fails to get a response from a server, code a
fallback mechanism to load the data from the MySQL database.

The client APIs all provide the ability to add and remove memcached instances on the fly. If within your
application you notice that memcached server is no longer responding, you can remove the server from
the list of servers, and keys will automatically be redistributed to another memcached server in the list.
If retaining the cache content on all your servers is important, make sure you use an API that supports
a consistent hashing algorithm. For more information, see Section 15.6.2.4, “memcached Hashing/
Distribution Types”.

16.6.5.6: What is a recommended hardware configuration for a memcached server?

memcached has a very low processing overhead. All that is required is spare physical RAM capacity.
A memcached server does not require a dedicated machine. If you have web, application, or database
servers that have spare RAM capacity, then use them with memcached.

To build and deploy a dedicated memcached server, use a relatively low-power CPU, lots of RAM, and
one or more Gigabit Ethernet interfaces.

16.6.5.7: Is memcached more effective for video and audio as opposed to textual read/writes?

memcached works equally well for all kinds of data. To memcached, any value you store is just a
stream of data. Remember, though, that the maximum size of an object you can store in memcached
is 1MB, but can be configured to be larger by using the -I option in memcached 1.4.2 and later, or by
modifying the source in versions before 1.4.2. If you plan on using memcached with audio and video
content, you will probably want to increase the maximum object size. Also remember that memcached
is a solution for caching information for reading. It shouldn't be used for writes, except when updating
the information in the cache.

16.6.5.8: Can memcached work with ASPX?

There are ports and interfaces for many languages and environments. ASPX relies on an underlying
language such as C# or VisualBasic, and if you are using ASP.NET then there is a C# memcached
library. For more information, see https://sourceforge.net/projects/memcacheddotnet/.

16.6.5.9: How expensive is it to establish a memcache connection? Should those connections
be pooled?

Opening the connection is relatively inexpensive, because there is no security, authentication or other
handshake taking place before you can start sending requests and getting results. Most APIs support
a persistent connection to a memcached instance to reduce the latency. Connection pooling would
depend on the API you are using, but if you are communicating directly over TCP/IP, then connection
pooling would provide some small performance benefit.

16.6.5.10: How is the data handled when the memcached server is down?

The behavior is entirely application dependent. Most applications fall back to loading the data from
the database (just as if they were updating the memcached information). If you are using multiple
memcached servers, you might also remove a downed server from the list to prevent it from affecting

https://sourceforge.net/projects/memcacheddotnet/

MySQL Proxy

1972

performance. Otherwise, the client will still attempt to communicate with the memcached server that
corresponds to the key you are trying to load.

16.6.5.11: How are auto-increment columns in the MySQL database coordinated across
multiple instances of memcached?

They aren't. There is no relationship between MySQL and memcached unless your application (or, if
you are using the MySQL UDFs for memcached, your database definition) creates one.

If you are storing information based on an auto-increment key into multiple instances of memcached,
the information is only stored on one of the memcached instances anyway. The client uses the key
value to determine which memcached instance to store the information. It doesn't store the same
information across all the instances, as that would be a waste of cache memory.

16.6.5.12: Is compression available?

Yes. Most of the client APIs support some sort of compression, and some even allow you to specify the
threshold at which a value is deemed appropriate for compression during storage.

16.6.5.13: Can we implement different types of memcached as different nodes in the same
server, so can there be deterministic and non-deterministic in the same server?

Yes. You can run multiple instances of memcached on a single server, and in your client configuration
you choose the list of servers you want to use.

16.6.5.14: What are best practices for testing an implementation, to ensure that it improves
performance, and to measure the impact of memcached configuration changes? And would you
recommend keeping the configuration very simple to start?

The best way to test the performance is to start up a memcached instance. First, modify your
application so that it stores the data just before the data is about to be used or displayed into
memcached. Since the APIs handle the serialization of the data, it should just be a one-line
modification to your code. Then, modify the start of the process that would normally load that
information from MySQL with the code that requests the data from memcached. If the data cannot be
loaded from memcached, default to the MySQL process.

All of the changes required will probably amount to just a few lines of code. To get the best benefit,
make sure you cache entire objects (for example, all the components of a web page, blog post,
discussion thread, and so on), rather than using memcached as a simple cache of individual rows of
MySQL tables.

Keeping the configuration simple at the start, or even over the long term, is easy with memcached.
Once you have the basic structure up and running, often the only ongoing change is to add more
servers into the list of servers used by your applications. You don't need to manage the memcached
servers, and there is no complex configuration; just add more servers to the list and let the client API
and the memcached servers make the decisions.

15.7 MySQL Proxy

The MySQL Proxy is an application that communicates over the network using the MySQL network
protocol and provides communication between one or more MySQL servers and one or more MySQL
clients. Because MySQL Proxy uses the MySQL network protocol, it can be used without modification
with any MySQL-compatible client that uses the protocol. This includes the mysql command-line client,
any clients that uses the MySQL client libraries, and any connector that supports the MySQL network
protocol.

In the most basic configuration, MySQL Proxy simply interposes itself between the server and clients,
passing queries from the clients to the MySQL Server and returning the responses from the MySQL
Server to the appropriate client. In more advanced configurations, the MySQL Proxy can also monitor

MySQL Proxy Supported Platforms

1973

and alter the communication between the client and the server. Query interception enables you to add
profiling, and interception of the exchanges is scriptable using the Lua scripting language.

By intercepting the queries from the client, the proxy can insert additional queries into the list of queries
sent to the server, and remove the additional results when they are returned by the server. Using this
functionality you can return the results from the original query to the client while adding informational
statements to each query, for example, to monitor their execution time or progress, and separately log
the results.

The proxy enables you to perform additional monitoring, filtering, or manipulation of queries without
requiring you to make any modifications to the client and without the client even being aware that it is
communicating with anything but a genuine MySQL server.

This documentation covers MySQL Proxy 0.8.2. And MySQL Proxy contains third-party code. For
license information on third-party code, see Appendix A, Licenses for Third-Party Components.

Warning

MySQL Proxy is currently an Alpha release and should not be used within
production environments.

Important

MySQL Proxy is compatible with MySQL 5.0 or later. Testing has not been
performed with Version 4.1. Please provide feedback on your experiences using
the MySQL Proxy Forum.

For release notes detailing the changes in each release of MySQL Proxy, see MySQL Proxy Release
Notes.

15.7.1 MySQL Proxy Supported Platforms

MySQL Proxy is currently available as a precompiled binary for the following platforms:

• Linux (including Red Hat, Fedora, Debian, SuSE) and derivatives

• Mac OS X

• FreeBSD

• IBM AIX

• Sun Solaris

• Microsoft Windows (including Microsoft Windows XP, Microsoft Windows Vista, Microsoft Windows
Server 2003, Microsoft Windows Server 2008)

Note

You must have the .NET Framework 1.1 or higher installed.

Other Unix/Linux platforms not listed should be compatible by using the source package and building
MySQL Proxy locally.

System requirements for the MySQL Proxy application are the same as the main MySQL server.
Currently MySQL Proxy is compatible only with MySQL 5.0.1 and later. MySQL Proxy is provided as a
standalone, statically linked binary. You need not have MySQL or Lua installed.

15.7.2 Installing MySQL Proxy

You have three choices for installing MySQL Proxy:

http://forums.mysql.com/list.php?146
http://dev.mysql.com/doc/relnotes/mysql-proxy/en/
http://dev.mysql.com/doc/relnotes/mysql-proxy/en/

Installing MySQL Proxy

1974

• Precompiled binaries are available for a number of different platforms. See Section 15.7.2.1,
“Installing MySQL Proxy from a Binary Distribution”.

• You can install from the source code to build on an environment not supported by the binary
distributions. See Section 15.7.2.2, “Installing MySQL Proxy from a Source Distribution”.

• The latest version of the MySQL Proxy source code is available through a development repository
is the best way to stay up to date with the latest fixes and revisions. See Section 15.7.2.3, “Installing
MySQL Proxy from the Bazaar Repository”.

15.7.2.1 Installing MySQL Proxy from a Binary Distribution

If you download a binary package, you must extract and copy the package contents to your desired
installation directory. The package contains files required by MySQL Proxy, including additional Lua
scripts and other components required for execution.

To install, unpack the archive into the desired directory, then modify your PATH environment variable so
that you can use the mysql-proxy command directly:

shell> cd /usr/local
shell> tar zxf mysql-proxy-0.8.2-platform.tar.gz
shell> PATH=$PATH:/usr/local/mysql-proxy-0.8.2-platform/sbin

To update the path globally on a system, you might need administrator privileges to modify the
appropriate /etc/profile, /etc/bashrc, or other system configuration file.

On Windows, you can update the PATH environment variable using this procedure:

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable
dialogue should appear.

The Microsoft Visual C++ runtime libraries are a requirement for running MySQL Proxy as of version
0.8.2. Users that do not have these libraries must download and install the Microsoft Visual C++ 2008
Service Pack 1 Redistributable Package MFC Security Update. Use the following link to obtain the
package:

http://www.microsoft.com/download/en/details.aspx?id=26368

15.7.2.2 Installing MySQL Proxy from a Source Distribution

You can download a source package and compile the MySQL Proxy yourself. To build from source,
you must have the following prerequisite components installed:

• libevent 1.x or higher (1.3b or later is preferred).

• lua 5.1.x or higher.

• glib2 2.6.0 or higher.

• pkg-config.

• libtool 1.5 or higher.

• MySQL 5.0.x or higher developer files.

http://www.microsoft.com/download/en/details.aspx?id=26368

Installing MySQL Proxy

1975

Note

On some operating systems, you might need to manually build the required
components to get the latest version. If you have trouble compiling MySQL
Proxy, consider using a binary distributions instead.

After verifying that the prerequisite components are installed, configure and build MySQL Proxy:

shell> tar zxf mysql-proxy-0.8.2.tar.gz
shell> cd mysql-proxy-0.8.2
shell> ./configure
shell> make

To test the build, use the check target to make:

shell> make check

The tests try to connect to localhost using the root user. To provide a password, set the
MYSQL_PASSWORD environment variable:

shell> MYSQL_PASSWORD=root_pwd make check

You can install using the install target:

shell> make install

By default, mysql-proxy is installed into /usr/local/sbin/mysql-proxy. The Lua example
scripts are installed into /usr/local/share.

15.7.2.3 Installing MySQL Proxy from the Bazaar Repository

The MySQL Proxy source is available through a public Bazaar repository and is the quickest way to get
the latest releases and fixes.

A build from the Bazaar repository requires that the following prerequisite components be installed:

• Bazaar 1.10.0 or later.

• libtool 1.5 or higher.

• autoconf 2.56 or higher.

• automake 1.10 or higher.

• libevent 1.x or higher (1.3b or later is preferred).

• lua 5.1.x or higher.

• glib2 2.4.0 or higher.

• pkg-config.

• MySQL 5.0.x or higher developer files.

The mysql-proxy source is hosted on Launchpad. To check out a local copy of the Bazaar
repository, use bzr:

shell> bzr branch lp:mysql-proxy

The preceding command downloads a complete version of the Bazaar repository for mysql-proxy.
The main source files are located within the trunk subdirectory. The configuration scripts must be

Installing MySQL Proxy

1976

generated before you can configure and build mysql-proxy. The autogen.sh script generates the
required configuration scripts for you:

shell> sh ./autogen.sh

The autogen.sh script creates the standard configure script, which you then use to configure and
build with make:

shell> ./configure
shell> make
shell> make install

To create a standalone source distribution, identical to the source distribution available for download,
use this command:

shell> make distcheck

The preceding command creates the file mysql-proxy-0.8.2.tar.gz (with the corresponding
current version) within the current directory.

15.7.2.4 Setting Up MySQL Proxy as a Windows Service

The MySQL distribution on Windows includes the mysql-proxy-svc.exe command that enables
a MySQL Proxy instance to be managed by the Windows service control manager. You can control
the service, including automatically starting and stopping it during boot, reboot and shutdown, without
separately running the MySQL Proxy application.

To set up a MySQL Proxy service, use the sc command to create a new service using the MySQL
Proxy service command. Specify the MySQL Proxy options on the sc command line, and identify
the service with a unique name. For example, to configure a new MySQL Proxy instance that will
automatically start when your system boots, redirecting queries to the local MySQL server:

C:\> sc create "Proxy" DisplayName= "MySQL Proxy" start= "auto" »
 binPath= "C:\Program Files\MySQL\mysql-proxy-0.8.2\bin\mysql-proxy-svc.exe »
 --proxy-backend-addresses=127.0.0.1:3306"

Note

The space following the equal sign after each property is required; failure to
include it results in an error.

The preceding command creates a new service called Proxy. You can start and stop the service using
the net start|stop command with the service name. The service is not automatically started after it
is created. To start the service:

C:\> net start proxy
The MySQL Proxy service is starting.
The MySQL Proxy service was started successfully.

You can specify additional command-line options to the sc command. You can also set up multiple
MySQL Proxy services on the same machine (providing they are configured to listen on different ports
and/or IP addresses.

You can delete a service that you have created:

C:\> sc delete proxy

For more information on creating services using sc, see How to create a Windows service by using
Sc.exe.

http://support.microsoft.com/kb/251192
http://support.microsoft.com/kb/251192

MySQL Proxy Command Options

1977

15.7.3 MySQL Proxy Command Options

To start MySQL Proxy, you can run it directly from the command line:

shell> mysql-proxy

For most situations, you specify at least the host name or address and the port number of the backend
MySQL server to which the MySQL Proxy should pass queries.

You can specify options to mysql-proxy either on the command line, or by using a configuration file
and the --defaults-file command-line option to specify the file location.

If you use a configuration file, format it as follows:

• Specify the options within a [mysql-proxy] configuration group. For example:

[mysql-proxy]
admin-address = host:port

• Specify all configuration options in the form of a configuration name and the value to set.

• For options that are a simple toggle on the command line (for example, --proxy-skip-
profiling), use true or false. For example, the following is invalid:

[mysql-proxy]
proxy-skip-profiling

But this is valid:

[mysql-proxy]
proxy-skip-profiling = true

• Give the configuration file Unix permissions of 0660 (readable and writable by user and group, no
access for others).

Failure to adhere to any of these requirements causes mysql-proxy to generate an error during
startup.

The following tables list the supported configuration file and command-line options.

Table 15.4 mysql-proxy Help Options

Format Option File Description

--help Show help options

--help-admin Show admin module options

--help-all Show all help options

--help-proxy Show proxy module options

Table 15.5 mysql-proxy Admin Options

Format Option File Description

--admin-
address=host:port

admin-
address=host:port

The admin module listening host and port

--admin-lua-
script=file_name

admin-lua-
script=file_name

Script to execute by the admin module

--admin-
password=password

admin-
password=password

Authentication password for admin module

MySQL Proxy Command Options

1978

Format Option File Description

--admin-
username=user_name

admin-
username=user_name

Authentication user name for admin module

--proxy-
address=host:port

proxy-
address=host:port

The listening proxy server host and port

Table 15.6 mysql-proxy Proxy Options

Format Option File Description Removed

--no-proxy no-proxy Do not start the proxy module

--proxy-backend-
addresses=host:port

proxy-backend-
addresses=host:port

The MySQL server host and port

--proxy-fix-
bug-25371

proxy-fix-
bug-25371

Enable the fix for Bug #25371 for older libmysql
versions

0.8.1

--proxy-lua-
script=file_name

proxy-lua-
script=file_name

Filename for Lua script for proxy operations

--proxy-pool-no-
change-user

proxy-pool-no-
change-user

Do not use the protocol CHANGE_USER
command to reset the connection when coming
from the connection pool

--proxy-read-
only-backend-
addresses=host:port

proxy-read-
only-backend-
addresses=host:port

The MySQL server host and port (read only)

--proxy-skip-
profiling

proxy-skip-
profiling

Disable query profiling

Table 15.7 mysql-proxy Applications Options

Format Option File Description

--basedir=dir_name basedir=dir_name The base directory prefix for paths in the configuration

--daemon daemon Start in daemon mode

--defaults-
file=file_name

 The configuration file to use

--event-
threads=count

event-threads=count The number of event-handling threads

--keepalive keepalive Try to restart the proxy if a crash occurs

--log-backtrace-on-
crash

log-backtrace-on-
crash

Try to invoke the debugger and generate a backtrace on
crash

--log-file=file_name log-file=file_name The file where error messages are logged

--log-level=level log-level=level The logging level

--log-use-syslog log-use-syslog Log errors to syslog

--lua-
cpath=dir_name

lua-cpath=dir_name Set the LUA_CPATH

--lua-path=dir_name lua-path=dir_name Set the LUA_PATH

--max-open-
files=count

max-open-
files=count

The maximum number of open files to support

--pid-file=file_name pid-file=file_name File in which to store the process ID

--plugin-
dir=dir_name

plugin-dir=dir_name Directory containing plugin files

--plugins=plugin,... plugins=plugin,... List of plugins to load

MySQL Proxy Command Options

1979

Format Option File Description

--user=user_name user=user_name The user to use when running mysql-proxy

--version Show version information

Except as noted in the following details, all of the options can be used within the configuration file by
supplying the option and the corresponding value. For example:

[mysql-proxy]
log-file = /var/log/mysql-proxy.log
log-level = message

• --help, -h

Command-Line Format --help

 -h

Show available help options.

• --help-admin

Command-Line Format --help-admin

Show options for the admin module.

• --help-all

Command-Line Format --help-all

Show all help options.

• --help-proxy

Command-Line Format --help-proxy

Show options for the proxy module.

• --admin-address=host:port

Command-Line Format --admin-address=host:port

Option-File Format admin-address=host:port

Permitted Values

Type string

Default :4041

The host name (or IP address) and port for the administration port. The default is localhost:4041.

• --admin-lua-script=file_name

Command-Line Format --admin-lua-script=file_name

Option-File Format admin-lua-script=file_name

Permitted Values

Type file name

Default

The script to use for the proxy administration module.

MySQL Proxy Command Options

1980

• --admin-password=password

Command-Line Format --admin-password=password

Option-File Format admin-password=password

Permitted Values

Type string

Default

The password to use to authenticate users wanting to connect to the MySQL Proxy administration
module. This module uses the MySQL protocol to request a user name and password for
connections.

• --admin-username=user_name

Command-Line Format --admin-username=user_name

Option-File Format admin-username=user_name

Permitted Values

Type string

Default root

The user name to use to authenticate users wanting to connect to the MySQL Proxy administration
module. This module uses the MySQL protocol to request a user name and password for
connections. The default user name is root.

• --basedir=dir_name

Command-Line Format --basedir=dir_name

Option-File Format basedir=dir_name

Permitted Values

Type directory name

The base directory to use as a prefix for all other file name configuration options. The base name
should be an absolute (not relative) directory. If you specify a relative directory, mysql-proxy
generates an error during startup.

• --daemon

Command-Line Format --daemon

Option-File Format daemon

Starts the proxy in daemon mode.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

The file to read for configuration options. If not specified, MySQL Proxy takes options only from the
command line.

• --event-threads=count

Command-Line Format --event-threads=count

Option-File Format event-threads=count

 Permitted Values

MySQL Proxy Command Options

1981

Type numeric

Default 1

The number of event threads to reserve to handle incoming requests.

• --keepalive

Command-Line Format --keepalive

Option-File Format keepalive

Create a process surrounding the main mysql-proxy process that attempts to restart the main
mysql-proxy process in the event of a crash or other failure.

Note

The --keepalive option is not available on Microsoft Windows. When
running as a service, mysql-proxy automatically restarts.

• --log-backtrace-on-crash

Command-Line Format --log-backtrace-on-crash

Option-File Format log-backtrace-on-crash

Log a backtrace to the error log and try to initialize the debugger in the event of a failure.

• --log-file=file_name

Command-Line Format --log-file=file_name

Option-File Format log-file=file_name

Permitted Values

Type file name

The file to use to record log information. If this option is not given, mysql-proxy logs to the
standard error output.

• --log-level=level

Command-Line Format --log-level=level

Option-File Format log-level=level

Permitted Values

Type enumeration

Default critical

critical

error

warning

info

message

Valid
Values

debug

The log level to use when outputting error messages. Messages with that level (or lower) are output.
For example, message level also outputs message with info, warning, and error levels.

• --log-use-syslog

MySQL Proxy Command Options

1982

Command-Line Format --log-use-syslog

Option-File Format log-use-syslog

Log errors to the syslog (Unix/Linux only).

• --lua-cpath=dir_name

Command-Line Format --lua-cpath=dir_name

Option-File Format lua-cpath=dir_name

Permitted Values

Type directory name

The LUA_CPATH to use when loading compiled modules or libraries for Lua scripts.

• --lua-path=dir_name

Command-Line Format --lua-path=dir_name

Option-File Format lua-path=dir_name

Permitted Values

Type directory name

The LUA_CPATH to use when loading modules for Lua.

• --max-open-files=count

Command-Line Format --max-open-files=count

Option-File Format max-open-files=count

Permitted Values

Type numeric

The maximum number of open files and sockets supported by the mysql-proxy process. Certain
scripts might require a higher value.

• --no-proxy

Command-Line Format --no-proxy

Option-File Format no-proxy

Disable the proxy module.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Option-File Format plugin-dir=dir_name

Permitted Values

Type directory name

The directory to use when loading plugins for mysql-proxy.

• --plugins=plugin

Command-Line Format --plugins=plugin,...

Option-File Format plugins=plugin,...

MySQL Proxy Command Options

1983

Permitted Values

Type string

Loads a plugin.

When using this option on the command line, you can specify the option multiple times to specify
multiple plugins. For example:

shell> mysql-proxy --plugins=proxy --plugins=admin

When using the option within the configuration file, you should separate multiple plugins by commas.
The equivalent of the preceding example would be:

...
plugins=proxy,admin

• --proxy-address=host:port, -P host:port

Command-Line Format --proxy-address=host:port

 -P host:port

Option-File Format proxy-address=host:port

Permitted Values

Type string

Default :4040

The listening host name (or IP address) and port of the proxy server. The default is :4040 (all IPs on
port 4040).

• --proxy-read-only-backend-addresses=host:port, -r host:port

Command-Line Format --proxy-read-only-backend-addresses=host:port

 -r host:port

Option-File Format proxy-read-only-backend-addresses=host:port

Permitted Values

Type string

The listening host name (or IP address) and port of the proxy server for read-only connections. The
default is for this information not to be set.

Note

Setting this value only configures the servers within the corresponding
internal structure (see proxy.global.backends [1991]). You can
determine the backend type by checking the type field for each connection.

You should therefore only use this option in combination with a script
designed to make use of the different backend types.

When using this option on the command line, you can specify the option and the server multiple
times to specify multiple backends. For example:

shell> mysql-proxy --proxy-read-only-backend-addresses=192.168.0.1:3306 --proxy-read-only-backend-addresses=192.168.0.2:3306

MySQL Proxy Command Options

1984

When using the option within the configuration file, you should separate multiple servers by commas.
The equivalent of the preceding example would be:

...
proxy-read-only-backend-addresses = 192.168.0.1:3306,192.168.0.2:3306

• --proxy-backend-addresses=host:port, -b host:port

Command-Line Format --proxy-backend-addresses=host:port

 -b host:port

Option-File Format proxy-backend-addresses=host:port

Permitted Values

Type string

Default 127.0.0.1:3306

The host name (or IP address) and port of the MySQL server to connect to. You can specify multiple
backend servers by supplying multiple options. Clients are connected to each backend server in
round-robin fashion. For example, if you specify two servers A and B, the first client connection will
go to server A; the second client connection to server B and the third client connection to server A.

When using this option on the command line, you can specify the option and the server multiple
times to specify multiple backends. For example:

shell> mysql-proxy --proxy-backend-addresses 192.168.0.1:3306 --proxy-backend-addresses 192.168.0.2:3306

When using the option within the configuration file, you should separate multiple servers by commas.
The equivalent of the preceding example would be:

...
proxy-backend-addresses = 192.168.0.1:3306,192.168.0.2:3306

• --proxy-pool-no-change-user

Command-Line Format --proxy-pool-no-change-user

Option-File Format proxy-pool-no-change-user

Disable use of the MySQL protocol CHANGE_USER command when reusing a connection from the
pool of connections specified by the proxy-backend-addresses list.

• --proxy-skip-profiling

Command-Line Format --proxy-skip-profiling

Option-File Format proxy-skip-profiling

Disable query profiling (statistics time tracking). The default is for tracking to be enabled.

• --proxy-fix-bug-25371

Removed 0.8.1

Command-Line Format --proxy-fix-bug-25371

Option-File Format proxy-fix-bug-25371

Enable a workaround for an issue when connecting to a MySQL server later than 5.1.12 when using
a MySQL client library of any earlier version.

MySQL Proxy Command Options

1985

This option was removed in mysql-proxy 0.8.1. Now, mysql-proxy returns an error message
at the protocol level if it sees a COM_CHANGE_USER being sent to a server that has a version from
5.1.14 to 5.1.17.

• --proxy-lua-script=file_name, -s file_name

Command-Line Format --proxy-lua-script=file_name

 -s file_name

Option-File Format proxy-lua-script=file_name

Permitted Values

Type file name

The Lua script file to be loaded. Note that the script file is not physically loaded and parsed until
a connection is made. Also note that the specified Lua script is reloaded for each connection;
if the content of the Lua script changes while mysql-proxy is running, the updated content is
automatically used when a new connection is made.

• --pid-file=file_name

Command-Line Format --pid-file=file_name

Option-File Format pid-file=file_name

Permitted Values

Type file name

The name of the file in which to store the process ID.

• --user=user_name

Command-Line Format --user=user_name

Option-File Format user=user_name

Permitted Values

Type string

Run mysql-proxy as the specified user.

• --version, -V

Command-Line Format --version

 -V

Show the version number.

The most common usage is as a simple proxy service (that is, without additional scripting). For basic
proxy operation, you must specify at least one proxy-backend-addresses option to specify the
MySQL server to connect to by default:

shell> mysql-proxy --proxy-backend-addresses=MySQL.example.com:3306

The default proxy port is 4040, so you can connect to your MySQL server through the proxy by
specifying the host name and port details:

shell> mysql --host=localhost --port=4040

MySQL Proxy Scripting

1986

If your server requires authentication information, this will be passed through natively without alteration
by mysql-proxy, so you must also specify the required authentication information:

shell> mysql --host=localhost --port=4040 \
 --user=user_name --password=password

You can also connect to a read-only port (which filters out UPDATE and INSERT queries) by connecting
to the read-only port. By default the host name is the default, and the port is 4042, but you can alter
the host/port information by using the --proxy-read-only-backend-addresses command-line
option.

For more detailed information on how to use these command-line options, and mysql-proxy in
general in combination with Lua scripts, see Section 15.7.5, “Using MySQL Proxy”.

15.7.4 MySQL Proxy Scripting

You can control how MySQL Proxy manipulates and works with the queries and results that are passed
on to the MySQL server through the use of the embedded Lua scripting language. You can find out
more about the Lua programming language from the Lua Web site.

The following diagram shows an overview of the classes exposed by MySQL Proxy.

http://www.lua.org

MySQL Proxy Scripting

1987

MySQL Proxy Scripting

1988

The primary interaction between MySQL Proxy and the server is provided by defining one or more
functions through an Lua script. A number of functions are supported, according to different events and
operations in the communication sequence between a client and one or more backend MySQL servers:

• connect_server(): This function is called each time a connection is made to MySQL Proxy from a
client. You can use this function during load-balancing to intercept the original connection and decide
which server the client should ultimately be attached to. If you do not define a special solution, a
simple round-robin style distribution is used by default.

• read_handshake(): This function is called when the initial handshake information is returned
by the server. You can capture the handshake information returned and provide additional checks
before the authorization exchange takes place.

• read_auth(): This function is called when the authorization packet (user name, password, default
database) are submitted by the client to the server for authentication.

• read_auth_result(): This function is called when the server returns an authorization packet to
the client indicating whether the authorization succeeded.

• read_query(): This function is called each time a query is sent by the client to the server. You
can use this to edit and manipulate the original query, including adding new queries before and
after the original statement. You can also use this function to return information directly to the client,
bypassing the server, which can be useful to filter unwanted queries or queries that exceed known
limits.

• read_query_result(): This function is called each time a result is returned from the server,
providing you have manually injected queries into the query queue. If you have not explicitly injected
queries within the read_query() function, this function is not triggered. You can use this to edit the
result set, or to remove or filter the result sets generated from additional queries you injected into the
queue when using read_query().

The following table lists MySQL proxy and server communication functions, the supplied information,
and the direction of information flow when the function is triggered.

Function Supplied Information Direction

connect_server() None Client to Server

read_handshake() None Server to Client

read_auth() None Client to Server

read_auth_result() None Server to Client

read_query() Query Client to Server

read_query_result() Query result Server to Client

By default, all functions return a result that indicates whether the data should be passed on to the client
or server (depending on the direction of the information being transferred). This return value can be
overridden by explicitly returning a constant indicating that a particular response should be sent. For
example, it is possible to construct result set information by hand within read_query() and to return
the result set directly to the client without ever sending the original query to the server.

In addition to these functions, a number of built-in structures provide control over how MySQL Proxy
forwards queries and returns the results by providing a simplified interface to elements such as the list
of queries and the groups of result sets that are returned.

15.7.4.1 Proxy Scripting Sequence During Query Injection

The following figure gives an example of how the proxy might be used when injecting queries into the
query queue. Because the proxy sits between the client and MySQL server, what the proxy sends
to the server, and the information that the proxy ultimately returns to the client, need not match or

MySQL Proxy Scripting

1989

correlate. Once the client has connected to the proxy, the sequence shown in the following diagram
occurs for each individual query sent by the client.

1. When the client submits one query to the proxy, the read_query() function within the proxy is
triggered. The function adds the query to the query queue.

2. Once manipulation by read_query() has completed, the queries are submitted, sequentially, to
the MySQL server.

3. The MySQL server returns the results from each query, one result set for each query submitted.
The read_query_result() function is triggered for each result set, and each invocation can
decide which result set to return to the client

For example, you can queue additional queries into the global query queue to be processed by the
server. This can be used to add statistical information by adding queries before and after the original
query, changing the original query:

SELECT * FROM City;

Into a sequence of queries:

SELECT NOW();
SELECT * FROM City;
SELECT NOW();

MySQL Proxy Scripting

1990

You can also modify the original statement; for example, to add EXPLAIN to each statement executed
to get information on how the statement was processed, again altering our original SQL statement into
a number of statements:

SELECT * FROM City;
EXPLAIN SELECT * FROM City;

In both of these examples, the client would have received more result sets than expected. Regardless
of how you manipulate the incoming query and the returned result, the number of queries returned by
the proxy must match the number of original queries sent by the client.

You could adjust the client to handle the multiple result sets sent by the proxy, but in most cases you
will want the existence of the proxy to remain transparent. To ensure that the number of queries and
result sets match, you can use the MySQL Proxy read_query_result() to extract the additional
result set information and return only the result set the client originally requested back to the client.
You can achieve this by giving each query that you add to the query queue a unique ID, then filter out
queries that do not match the original query ID when processing them with read_query_result().

15.7.4.2 Internal Structures

There are a number of internal structures within the scripting element of MySQL Proxy. The primary
structure is proxy and this provides an interface to the many common structures used throughout the
script, such as connection lists and configured backend servers. Other structures, such as the incoming
packet from the client and result sets are only available within the context of one of the scriptable
functions.

The following table describes common attributes of the MySQL proxy scripting element.

Attribute Description

connection A structure containing the active client connections. For a list of
attributes, see proxy.connection [1990].

servers A structure containing the list of configured backend servers. For a list
of attributes, see proxy.global.backends [1991].

queries A structure containing the queue of queries that will be sent to
the server during a single client query. For a list of attributes, see
proxy.queries [1991].

PROXY_VERSION The version number of MySQL Proxy, encoded in hex. You can use
this to check that the version number supports a particular option from
within the Lua script. Note that the value is encoded as a hex value, so
to check the version is at least 0.5.1 you compare against 0x00501.

proxy.connection

The proxy.connection object is read only, and provides information about the current connection,
and is split into a client and server tables. This enables you to examine information about both the
incoming client connections to the proxy (client), and to the backend servers (server).

The following table describes the client and server attributes of the proxy.connection object.

Attribute Description

client.default_db Default database requested by the client

client.username User name used to authenticate

client.scrambled_passwordThe scrambled version of the password used to authenticate

client.dst.name The combined address:port of the Proxy port used by this client
(should match the --proxy-address configuration parameter)

client.dst.address The IP address of the of the Proxy port used by this client

client.dst.port The port number of the of the Proxy port used by this client

MySQL Proxy Scripting

1991

Attribute Description

client.src.name The combined address:port of the client (originating) TCP/IP
endpoint

client.src.address The IP address of the client (originating) TCP/IP port

client.src.port The port of the client (originating) TCP/IP endpoint

server.scramble_buffer The scramble buffer used to scramble the password

server.mysqld_version The MySQL version number of the server

server.thread_id The ID of the thread handling the connection to the current server

server.dst.name The combined address:port for the backend server for the current
connection (i.e. the connection to the MySQL server)

server.dst.address The address for the backend server

server.dst.port The port for the backend server

server.src.name The combined address:port for the TCP/IP endpoint used by the
Proxy to connect to the backend server

server.src.address The address of the endpoint for the proxy-side connection to the
MySQL server

server.src.port The port of the endpoint for the proxy-side connection to the MySQL
server

proxy.global.backends

The proxy.global.backends table is partially writable and contains an array of all the configured
backend servers and the server metadata (IP address, status, etc.). You can determine the array index
of the current connection using proxy.connection["backend_ndx"] which is the index into this
table of the backend server being used by the active connection.

The attributes for each entry within the proxy.global.backends table are shown in the following
table.

Attribute Description

dst.name The combined address:port of the backend server.

dst.address The IP address of the backend server.

dst.port The port of the backend server.

connected_clients The number of clients currently connected.

state The status of the backend server. See Backend State/Type
Constants [1994].

type The type of the backend server. You can use this to identify
whether the backed was configured as a standard read/write
backend, or a read-only backend. You can compare this value to the
proxy.BACKEND_TYPE_RW and proxy.BACKEND_TYPE_RO.

proxy.queries

The proxy.queries object is a queue representing the list of queries to be sent to the server. The
queue is not populated automatically, but if you do not explicitly populate the queue, queries are
passed on to the backend server verbatim. Also, if you do not populate the query queue by hand, the
read_query_result() function is not triggered.

The following functions are supported for populating the proxy.queries object.

Function Description

append(id,packet,
[options])

Appends a query to the end of the query queue. The id is an integer
identifier that you can use to recognize the query results when they

MySQL Proxy Scripting

1992

Function Description
are returned by the server. The packet should be a properly formatted
query packet. The optional options should be a table containing the
options specific to this packet.

prepend(id,packet) Prepends a query to the query queue. The id is an identifier that you
can use to recognize the query results when they are returned by the
server. The packet should be a properly formatted query packet.

reset() Empties the query queue.

len() Returns the number of query packets in the queue.

For example, you could append a query packet to the proxy.queries queue by using the
append():

proxy.queries:append(1,packet)

The optional third argument to append() should contain the options for the packet. To have access to
the result set through the read_query_result() function, set the resultset_is_needed flag to
true:

proxy.queries:append(1, packet, { resultset_is_needed = true })

If that flag is false (the default), proxy will:

• Send the result set to the client as soon as it is received

• Reduce memory usage (because the result set is not stored internally for processing)

• Reduce latency of returning results to the client

• Pass data from server to client unaltered

The default mode is therefore quicker and useful if you only want to monitor the queries sent, and the
basic statistics.

To perform any kind of manipulation on the returned data, you must set the flag to true, which will:

• Store the result set so that it can be processed.

• Enable modification of the result set before it is returned to the client.

• Enable you to discard the result set instead of returning it to the client.

proxy.response

The proxy.response structure is used when you want to return your own MySQL response, instead
of forwarding a packet that you have received a backend server. The structure holds the response type
information, an optional error message, and the result set (rows/columns) to return.

The following table describes the attributes of the proxy.response structure.

Attribute Description

type The type of the response. The type must be either
MYSQLD_PACKET_OK or MYSQLD_PACKET_ERR. If the
MYSQLD_PACKET_ERR, you should set the value of the
mysql.response.errmsg with a suitable error message.

errmsg A string containing the error message that will be returned to the client.

resultset A structure containing the result set information (columns and rows),
identical to what would be returned when returning a results from a
SELECT query.

MySQL Proxy Scripting

1993

When using proxy.response you either set proxy.response.type to
proxy.MYSQLD_PACKET_OK and then build resultset to contain the results to return, or set
proxy.response.type to proxy.MYSQLD_PACKET_ERR and set the proxy.response.errmsg
to a string with the error message. To send the completed result set or error message, you should
return the proxy.PROXY_SEND_RESULT to trigger the return of the packet information.

An example of this can be seen in the tutorial-resultset.lua script within the MySQL Proxy
package:

if string.lower(command) == "show" and string.lower(option) == "querycounter" then

 -- proxy.PROXY_SEND_RESULT requires
 --
 -- proxy.response.type to be either
 -- * proxy.MYSQLD_PACKET_OK or
 -- * proxy.MYSQLD_PACKET_ERR
 --
 -- for proxy.MYSQLD_PACKET_OK you need a resultset
 -- * fields
 -- * rows
 --
 -- for proxy.MYSQLD_PACKET_ERR
 -- * errmsg
 proxy.response.type = proxy.MYSQLD_PACKET_OK
 proxy.response.resultset = {
 fields = {
 { type = proxy.MYSQL_TYPE_LONG, name = "global_query_counter", },
 { type = proxy.MYSQL_TYPE_LONG, name = "query_counter", },
 },
 rows = {
 { proxy.global.query_counter, query_counter }
 }
 }

 -- we have our result, send it back
 return proxy.PROXY_SEND_RESULT
elseif string.lower(command) == "show" and string.lower(option) == "myerror" then
 proxy.response.type = proxy.MYSQLD_PACKET_ERR
 proxy.response.errmsg = "my first error"

 return proxy.PROXY_SEND_RESULT

proxy.response.resultset

The proxy.response.resultset structure should be populated with the rows and columns of data
to return. The structure contains the information about the entire result set, with the individual elements
of the data shown in the following table.

The following table describes the attributes of the proxy.response.resultset structure.

Attribute Description

fields The definition of the columns being returned. This should be a
dictionary structure with the type specifying the MySQL data type, and
the name specifying the column name. Columns should be listed in the
order of the column data that will be returned.

flags A number of flags related to the result set. Valid flags include
auto_commit (whether an automatic commit was triggered),
no_good_index_used (the query executed without using an
appropriate index), and no_index_used (the query executed without
using any index).

rows The actual row data. The information should be returned as an array of
arrays. Each inner array should contain the column data, with the outer
array making up the entire result set.

MySQL Proxy Scripting

1994

Attribute Description

warning_count The number of warnings for this result set.

affected_rows The number of rows affected by the original statement.

insert_id The last insert ID for an auto-incremented column in a table.

query_status The status of the query operation. You can use the
MYSQLD_PACKET_OK or MYSQLD_PACKET_ERR constants to populate
this parameter.

For an example showing how to use this structure, see proxy.response [1992].

Proxy Return State Constants

The following constants are used internally by the proxy to specify the response to send to the client or
server. All constants are exposed as values within the main proxy table.

Constant Description

PROXY_SEND_QUERY Causes the proxy to send the current contents of the queries queue to
the server.

PROXY_SEND_RESULT Causes the proxy to send a result set back to the client.

PROXY_IGNORE_RESULT Causes the proxy to drop the result set (nothing is returned to the
client).

As constants, these entities are available without qualification in the Lua scripts. For example, at the
end of the read_query_result() you might return PROXY_IGNORE_RESULT:

return proxy.PROXY_IGNORE_RESULT

Packet State Constants

The following states describe the status of a network packet. These items are entries within the main
proxy table.

Constant Description

MYSQLD_PACKET_OK The packet is OK

MYSQLD_PACKET_ERR The packet contains error information

MYSQLD_PACKET_RAW The packet contains raw data

Backend State/Type Constants

The following constants are used either to define the status or type of the backend MySQL server to
which the proxy is connected. These items are entries within the main proxy table.

Constant Description

BACKEND_STATE_UNKNOWN The current status is unknown

BACKEND_STATE_UP The backend is known to be up (available)

BACKEND_STATE_DOWN The backend is known to be down (unavailable)

BACKEND_TYPE_UNKNOWN Backend type is unknown

BACKEND_TYPE_RW Backend is available for read/write

BACKEND_TYPE_RO Backend is available only for read-only use

Server Command Constants

The values described in the table below are used in the packets exchanged between the client and
server to identify the information in the rest of the packet. These items are entries within the main

MySQL Proxy Scripting

1995

proxy table. The packet type is defined as the first character in the sent packet. For example, when
intercepting packets from the client to edit or monitor a query, you would check that the first byte of the
packet was of type proxy.COM_QUERY.

Constant Description

COM_SLEEP Sleep

COM_QUIT Quit

COM_INIT_DB Initialize database

COM_QUERY Query

COM_FIELD_LIST Field List

COM_CREATE_DB Create database

COM_DROP_DB Drop database

COM_REFRESH Refresh

COM_SHUTDOWN Shutdown

COM_STATISTICS Statistics

COM_PROCESS_INFO Process List

COM_CONNECT Connect

COM_PROCESS_KILL Kill

COM_DEBUG Debug

COM_PING Ping

COM_TIME Time

COM_DELAYED_INSERT Delayed insert

COM_CHANGE_USER Change user

COM_BINLOG_DUMP Binlog dump

COM_TABLE_DUMP Table dump

COM_CONNECT_OUT Connect out

COM_REGISTER_SLAVE Register slave

COM_STMT_PREPARE Prepare server-side statement

COM_STMT_EXECUTE Execute server-side statement

COM_STMT_SEND_LONG_DATALong data

COM_STMT_CLOSE Close server-side statement

COM_STMT_RESET Reset statement

COM_SET_OPTION Set option

COM_STMT_FETCH Fetch statement

COM_DAEMON Daemon (MySQL 5.1 only)

COM_ERROR Error

MySQL Type Constants

These constants are used to identify the field types in the query result data returned to clients from the
result of a query. These items are entries within the main proxy table.

Constant Field Type

MYSQL_TYPE_DECIMAL Decimal

MYSQL_TYPE_NEWDECIMAL Decimal (MySQL 5.0 or later)

MySQL Proxy Scripting

1996

Constant Field Type

MYSQL_TYPE_TINY Tiny

MYSQL_TYPE_SHORT Short

MYSQL_TYPE_LONG Long

MYSQL_TYPE_FLOAT Float

MYSQL_TYPE_DOUBLE Double

MYSQL_TYPE_NULL Null

MYSQL_TYPE_TIMESTAMP Timestamp

MYSQL_TYPE_LONGLONG Long long

MYSQL_TYPE_INT24 Integer

MYSQL_TYPE_DATE Date

MYSQL_TYPE_TIME Time

MYSQL_TYPE_DATETIME Datetime

MYSQL_TYPE_YEAR Year

MYSQL_TYPE_NEWDATE Date (MySQL 5.0 or later)

MYSQL_TYPE_ENUM Enumeration

MYSQL_TYPE_SET Set

MYSQL_TYPE_TINY_BLOB Tiny Blob

MYSQL_TYPE_MEDIUM_BLOB Medium Blob

MYSQL_TYPE_LONG_BLOB Long Blob

MYSQL_TYPE_BLOB Blob

MYSQL_TYPE_VAR_STRING Varstring

MYSQL_TYPE_STRING String

MYSQL_TYPE_TINY Tiny (compatible with MYSQL_TYPE_CHAR)

MYSQL_TYPE_ENUM Enumeration (compatible with MYSQL_TYPE_INTERVAL)

MYSQL_TYPE_GEOMETRY Geometry

MYSQL_TYPE_BIT Bit

15.7.4.3 Capturing a Connection with connect_server()

When the proxy accepts a connection from a MySQL client, the connect_server() function is
called.

There are no arguments to the function, but you can use and if necessary manipulate the information in
the proxy.connection table, which is unique to each client session.

For example, if you have multiple backend servers, you can specify which server that connection
should use by setting the value of proxy.connection.backend_ndx to a valid server number. The
following code chooses between two servers based on whether the current time in minutes is odd or
even:

function connect_server()
 print("--> a client really wants to talk to a server")
 if (tonumber(os.date("%M")) % 2 == 0) then
 proxy.connection.backend_ndx = 2
 print("Choosing backend 2")
 else
 proxy.connection.backend_ndx = 1
 print("Choosing backend 1")
 end

MySQL Proxy Scripting

1997

 print("Using " .. proxy.global.backends[proxy.connection.backend_ndx].dst.name)
end

This example also displays the IP address/port combination by accessing the information from the
internal proxy.global.backends table.

15.7.4.4 Examining the Handshake with read_handshake()

Handshake information is sent by the server to the client after the initial connection (through
connect_server()) has been made. The handshake information contains details about the MySQL
version, the ID of the thread that will handle the connection information, and the IP address of the client
and server. This information is exposed through the proxy.connection structure.

• proxy.connection.server.mysqld_version: The version of the MySQL server.

• proxy.connection.server.thread_id: The thread ID.

• proxy.connection.server.scramble_buffer: The password scramble buffer.

• proxy.connection.server.dst.name: The IP address of the server.

• proxy.connection.client.src.name: The IP address of the client.

For example, you can print out the handshake data and refuse clients by IP address with the following
function:

function read_handshake()
 print("<-- let's send him some information about us")
 print(" mysqld-version: " .. proxy.connection.server.mysqld_version)
 print(" thread-id : " .. proxy.connection.server.thread_id)
 print(" scramble-buf : " .. string.format("%q",proxy.connection.server.scramble_buffer))
 print(" server-addr : " .. proxy.connection.server.dst.name)
 print(" client-addr : " .. proxy.connection.client.dst.name)

 if not proxy.connection.client.src.name:match("^127.0.0.1:") then
 proxy.response.type = proxy.MYSQLD_PACKET_ERR
 proxy.response.errmsg = "only local connects are allowed"

 print("we don't like this client");

 return proxy.PROXY_SEND_RESULT
 end
end

Note that you must return an error packet to the client by using proxy.PROXY_SEND_RESULT.

15.7.4.5 Examining the Authentication Credentials with read_auth()

The read_auth() function is triggered when an authentication handshake is initiated by the client. In
the execution sequence, read_auth() occurs immediately after read_handshake(), so the server
selection has already been made, but the connection and authorization information has not yet been
provided to the backend server.

You can obtain the authentication information by examining the proxy.connection.client
structure. For more information, see proxy.connection [1990].

For example, you can print the user name and password supplied during authorization using:

function read_auth()
 print(" username : " .. proxy.connection.client.username)
 print(" password : " .. string.format("%q", proxy.connection.client.scrambled_password))
end

You can interrupt the authentication process within this function and return an error packet back to the
client by constructing a new packet and returning proxy.PROXY_SEND_RESULT:

MySQL Proxy Scripting

1998

proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "Logins are not allowed"
return proxy.PROXY_SEND_RESULT

15.7.4.6 Accessing Authentication Information with read_auth_result()

The return packet from the server during authentication is captured by read_auth_result(). The
only argument to this function is the authentication packet returned by the server. As the packet is a
raw MySQL network protocol packet, you must access the first byte to identify the packet type and
contents. The MYSQLD_PACKET_ERR and MYSQLD_PACKET_OK constants can be used to identify
whether the authentication was successful:

function read_auth_result(auth)
 local state = auth.packet:byte()

 if state == proxy.MYSQLD_PACKET_OK then
 print("<-- auth ok");
 elseif state == proxy.MYSQLD_PACKET_ERR then
 print("<-- auth failed");
 else
 print("<-- auth ... don't know: " .. string.format("%q", auth.packet));
 end
end

If a long-password capable client tries to authenticate to a server that supports long passwords, but
the user password provided is actually short, read_auth_result() will be called twice. The first
time, auth.packet:byte() will equal 254, indicating that the client should try again using the old
password protocol. The second time time read_auth_result()/ is called, auth.packet:byte()
will indicate whether the authentication actually succeeded.

15.7.4.7 Manipulating Queries with read_query()

The read_query() function is called once for each query submitted by the client and accepts a single
argument, the query packet that was provided. To access the content of the packet, you must parse the
packet contents manually.

For example, you can intercept a query packet and print out the contents using the following function
definition:

function read_query(packet)
 if packet:byte() == proxy.COM_QUERY then
 print("we got a normal query: " .. packet:sub(2))
 end
end

This example checks the first byte of the packet to determine the type. If the type is COM_QUERY (see
Server Command Constants [1994]), we extract the query from the packet and print it. The structure
of the packet type supplied is important. In the case of a COM_QUERY packet, the remaining contents of
the packet are the text of the query string. In this example, no changes have been made to the query or
the list of queries that will ultimately be sent to the MySQL server.

To modify a query, or add new queries, you must populate the query queue (proxy.queries), then
execute the queries that you have placed into the queue. If you do not modify the original query or the
queue, the query received from the client is sent to the MySQL server verbatim.

When adding queries to the queue, you should follow these guidelines:

• The packets inserted into the queue must be valid query packets. For each packet, you must set the
initial byte to the packet type. If you are appending a query, you can append the query statement to
the rest of the packet.

MySQL Proxy Scripting

1999

• Once you add a query to the queue, the queue is used as the source for queries sent to the server.
If you add a query to the queue to add more information, you must also add the original query to the
queue or it will not be executed.

• Once the queue has been populated, you must set the return value from read_query() to indicate
whether the query queue should be sent to the server.

• When you add queries to the queue, you should add an ID. The ID you specify is returned with the
result set so that you identify each query and corresponding result set. The ID has no other purpose
than as an identifier for correlating the query and result set. When operating in a passive mode,
during profiling for example, you identify the original query and the corresponding result set so that
the results expected by the client can be returned correctly.

• Unless your client is designed to cope with more result sets than queries, you should ensure that the
number of queries from the client match the number of results sets returned to the client. Using the
unique ID and removing result sets you inserted will help.

Normally, the read_query() and read_query_result() function are used in conjunction
with each other to inject additional queries and remove the additional result sets. However,
read_query_result() is only called if you populate the query queue within read_query().

15.7.4.8 Manipulating Results with read_query_result()

The read_query_result() is called for each result set returned by the server only if you have
manually injected queries into the query queue. If you have not manipulated the query queue, this
function is not called. The function supports a single argument, the result packet, which provides a
number of properties:

• id: The ID of the result set, which corresponds to the ID that was set when the query packet was
submitted to the server when using append(id) on the query queue. You must have set the
resultset_is_needed flag to append to intercept the result set before it is returned to the client.
See proxy.queries [1991].

• query: The text of the original query.

• query_time: The number of microseconds required to receive the first row of a result set since the
query was sent to the server.

• response_time: The number of microseconds required to receive the last row of the result set
since the query was sent to the server.

• resultset: The content of the result set data.

By accessing the result information from the MySQL server, you can extract the results that match the
queries that you injected, return different result sets (for example, from a modified query), and even
create your own result sets.

The following Lua script, for example, will output the query, followed by the query time and response
time (that is, the time to execute the query and the time to return the data for the query) for each query
sent to the server:

function read_query(packet)
 if packet:byte() == proxy.COM_QUERY then
 print("we got a normal query: " .. packet:sub(2))

 proxy.queries:append(1, packet)

 return proxy.PROXY_SEND_QUERY
 end
end

function read_query_result(inj)
 print("query-time: " .. (inj.query_time / 1000) .. "ms")
 print("response-time: " .. (inj.response_time / 1000) .. "ms")

Using MySQL Proxy

2000

end

You can access the rows of returned results from the result set by accessing the rows property of the
resultset property of the result that is exposed through read_query_result(). For example, you
can iterate over the results showing the first column from each row using this Lua fragment:

for row in inj.resultset.rows do
 print("injected query returned: " .. row[1])
end

Just like read_query(), read_query_result() can return different values for each result
according to the result returned. If you have injected additional queries into the query queue, for
example, remove the results returned from those additional queries and return only the results from the
query originally submitted by the client.

The following example injects additional SELECT NOW() statements into the query queue, giving them
a different ID to the ID of the original query. Within read_query_result(), if the ID for the injected
queries is identified, we display the result row, and return the proxy.PROXY_IGNORE_RESULT from
the function so that the result is not returned to the client. If the result is from any other query, we print
out the query time information for the query and return the default, which passes on the result set
unchanged. We could also have explicitly returned proxy.PROXY_IGNORE_RESULT to the MySQL
client.

function read_query(packet)
 if packet:byte() == proxy.COM_QUERY then
 proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()", {resultset_is_needed = true})
 proxy.queries:append(1, packet, {resultset_is_needed = true})
 proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()", {resultset_is_needed = true})

 return proxy.PROXY_SEND_QUERY
 end
end

function read_query_result(inj)
 if inj.id == 2 then
 for row in inj.resultset.rows do
 print("injected query returned: " .. row[1])
 end
 return proxy.PROXY_IGNORE_RESULT
 else
 print("query-time: " .. (inj.query_time / 1000) .. "ms")
 print("response-time: " .. (inj.response_time / 1000) .. "ms")
 end
end

For further examples, see Section 15.7.5, “Using MySQL Proxy”.

15.7.5 Using MySQL Proxy

There are a number of different ways to use MySQL Proxy. At the most basic level, you can allow
MySQL Proxy to pass queries from clients to a single server. To use MySQL Proxy in this mode, you
just have to specify on the command line the backend server to which the proxy should connect:

shell> mysql-proxy --proxy-backend-addresses=sakila:3306

If you specify multiple backend MySQL servers, the proxy connects each client to each server in a
round-robin fashion. Suppose that you have two MySQL servers, A and B. The first client to connect is
connected to server A, the second to server B, the third to server A. For example:

shell> mysql-proxy \
 --proxy-backend-addresses=narcissus:3306 \
 --proxy-backend-addresses=nostromo:3306

Using MySQL Proxy

2001

When you specify multiple servers in this way, the proxy automatically identifies when a MySQL server
has become unavailable and marks it accordingly. New connections are automatically attached to a
server that is available, and a warning is reported to the standard output from mysql-proxy:

network-mysqld.c.367: connect(nostromo:3306) failed: Connection refused
network-mysqld-proxy.c.2405: connecting to backend (nostromo:3306) failed, marking it as down for ...

Lua scripts enable a finer level of control, both over the connections and their distribution and how
queries and result sets are processed. When using an Lua script, you must specify the name of the
script on the command line using the --proxy-lua-script option:

shell> mysql-proxy --proxy-lua-script=mc.lua --proxy-backend-addresses=sakila:3306

When you specify a script, the script is not executed until a connection is made. This means that faults
with the script are not raised until the script is executed. Script faults will not affect the distribution of
queries to backend MySQL servers.

Note

Because a script is not read until the connection is made, you can modify the
contents of the Lua script file while the proxy is still running and the modified
script is automatically used for the next connection. This ensures that MySQL
Proxy remains available because it need not be restarted for the changes to
take effect.

15.7.5.1 Using the Administration Interface

The mysql-proxy administration interface can be accessed using any MySQL client using the
standard protocols. You can use the administration interface to gain information about the proxy server
as a whole - standard connections to the proxy are isolated to operate as if you were connected directly
to the backend MySQL server.

In mysql-proxy 0.8.0 and earlier, a rudimentary interface was built into the proxy. In later versions
this was replaced so that you must specify an administration script to be used when users connect to
the administration interface.

To use the administration interface, specify the user name and password required to connect to the
admin service, using the --admin-username and --admin-password options. You must also
specify the Lua script to be used as the interface to the administration service by using the admin-
lua-script script option to point to a Lua script.

For example, you can create a basic interface to the internal components of the mysql-proxy system
using the following script, written by Diego Medina:

--[[

 Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; version 2 of the License.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

--]]

Using MySQL Proxy

2002

-- admin.lua

--[[

 See http://www.chriscalender.com/?p=41
 (Thanks to Chris Calender)
 See http://datacharmer.blogspot.com/2009/01/mysql-proxy-is-back.html
 (Thanks Giuseppe Maxia)

--]]

function set_error(errmsg)
 proxy.response = {
 type = proxy.MYSQLD_PACKET_ERR,
 errmsg = errmsg or "error"
 }
end

function read_query(packet)
 if packet:byte() ~= proxy.COM_QUERY then
 set_error("[admin] we only handle text-based queries (COM_QUERY)")
 return proxy.PROXY_SEND_RESULT
 end

 local query = packet:sub(2)
 local rows = { }
 local fields = { }

 -- try to match the string up to the first non-alphanum
 local f_s, f_e, command = string.find(packet, "^%s*(%w+)", 2)
 local option

 if f_e then
 -- if that match, take the next sub-string as option
 f_s, f_e, option = string.find(packet, "^%s+(%w+)", f_e + 1)
 end

 -- we got our commands, execute it
 if command == "show" and option == "querycounter" then

 -- proxy.PROXY_SEND_RESULT requires
 --
 -- proxy.response.type to be either
 -- * proxy.MYSQLD_PACKET_OK or
 -- * proxy.MYSQLD_PACKET_ERR
 --
 -- for proxy.MYSQLD_PACKET_OK you need a resultset
 -- * fields
 -- * rows
 --
 -- for proxy.MYSQLD_PACKET_ERR
 -- * errmsg
 proxy.response.type = proxy.MYSQLD_PACKET_OK
 proxy.response.resultset = {
 fields = {
 { type = proxy.MYSQL_TYPE_LONG, name = "query_counter", },
 },
 rows = {
 { proxy.global.query_counter }
 }
 }

 -- we have our result, send it back
 return proxy.PROXY_SEND_RESULT
 elseif command == "show" and option == "myerror" then
 proxy.response.type = proxy.MYSQLD_PACKET_ERR
 proxy.response.errmsg = "my first error"

 return proxy.PROXY_SEND_RESULT

 elseif string.sub(packet, 2):lower() == 'select help' then
 return show_process_help()

Using MySQL Proxy

2003

 elseif string.sub(packet, 2):lower() == 'show proxy processlist' then
 return show_process_table()

 elseif query == "SELECT * FROM backends" then
 fields = {
 { name = "backend_ndx",
 type = proxy.MYSQL_TYPE_LONG },

 { name = "address",
 type = proxy.MYSQL_TYPE_STRING },
 { name = "state",
 type = proxy.MYSQL_TYPE_STRING },
 { name = "type",
 type = proxy.MYSQL_TYPE_STRING },
 }

 for i = 1, #proxy.global.backends do
 local b = proxy.global.backends[i]

 rows[#rows + 1] = {
 i, b.dst.name, b.state, b.type
 }
 end
 else
 set_error()
 return proxy.PROXY_SEND_RESULT
 end

 proxy.response = {
 type = proxy.MYSQLD_PACKET_OK,
 resultset = {
 fields = fields,
 rows = rows
 }
 }
 return proxy.PROXY_SEND_RESULT
end

function make_dataset (header, dataset)
 proxy.response.type = proxy.MYSQLD_PACKET_OK

 proxy.response.resultset = {
 fields = {},
 rows = {}
 }
 for i,v in pairs (header) do
 table.insert(proxy.response.resultset.fields, {type = proxy.MYSQL_TYPE_STRING, name = v})
 end
 for i,v in pairs (dataset) do
 table.insert(proxy.response.resultset.rows, v)
 end
 return proxy.PROXY_SEND_RESULT
end

function show_process_table()
 local dataset = {}
 local header = { 'Id', 'IP Address', 'Time' }
 local rows = {}
 for t_i, t_v in pairs (proxy.global.process) do
 for s_i, s_v in pairs (t_v) do
 table.insert(rows, { t_i, s_v.ip, os.date('%c',s_v.ts) })
 end
 end
 return make_dataset(header,rows)
end

function show_process_help()
 local dataset = {}
 local header = { 'command', 'description' }
 local rows = {

Using MySQL Proxy

2004

 {'SELECT HELP', 'This command.'},
 {'SHOW PROXY PROCESSLIST', 'Show all connections and their true IP Address.'},
 }
 return make_dataset(header,rows)
end

function dump_process_table()
 proxy.global.initialize_process_table()
 print('current contents of process table')
 for t_i, t_v in pairs (proxy.global.process) do
 print ('session id: ', t_i)
 for s_i, s_v in pairs (t_v) do
 print ('\t', s_i, s_v.ip, s_v.ts)
 end
 end
 print ('---END PROCESS TABLE---')
end

--[[Help

we use a simple string-match to split commands are word-boundaries

mysql> show querycounter

is split into
command = "show"
option = "querycounter"

spaces are ignored, the case has to be as is.

mysql> show myerror

returns a error-packet

--]]

The script works in combination with a main proxy script, reporter.lua:

--[[

 Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; version 2 of the License.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

--]]

-- reporter.lua

--[[

 See http://www.chriscalender.com/?p=41
 (Thanks to Chris Calender)
 See http://datacharmer.blogspot.com/2009/01/mysql-proxy-is-back.html
 (Thanks Giuseppe Maxia)

--]]

proxy.global.query_counter = proxy.global.query_counter or 0

function proxy.global.initialize_process_table()

Using MySQL Proxy

2005

 if proxy.global.process == nil then
 proxy.global.process = {}
 end
 if proxy.global.process[proxy.connection.server.thread_id] == nil then
 proxy.global.process[proxy.connection.server.thread_id] = {}
 end
end

function read_auth_result(auth)
 local state = auth.packet:byte()
 if state == proxy.MYSQLD_PACKET_OK then
 proxy.global.initialize_process_table()
 table.insert(proxy.global.process[proxy.connection.server.thread_id],
 { ip = proxy.connection.client.src.name, ts = os.time() })
 end
end

function disconnect_client()
 local connection_id = proxy.connection.server.thread_id
 if connection_id then
 -- client has disconnected, set this to nil
 proxy.global.process[connection_id] = nil
 end
end

-- read_query() can return a resultset
--
-- You can use read_query() to return a result-set.
--
-- @param packet the mysql-packet sent by the client
--
-- @return
-- * nothing to pass on the packet as is,
-- * proxy.PROXY_SEND_QUERY to send the queries from the proxy.queries queue
-- * proxy.PROXY_SEND_RESULT to send your own result-set
--
function read_query(packet)
 -- a new query came in in this connection
 -- using proxy.global.* to make it available to the admin plugin
 proxy.global.query_counter = proxy.global.query_counter + 1

end

To use the script, save the first script to a file (admin.lua in the following example) and the other to
reporter.lua, then run mysql-proxy specifying the admin script and a backend MySQL server:

shell> mysql-proxy --admin-lua-script=admin.lua --admin-password=password \ »
 --admin-username=root --proxy-backend-addresses=127.0.0.1:3306 -proxy-lua-script=reporter.lua

In a different window, connect to the MySQL server through the proxy:

shell> mysql --user=root --password=password --port=4040
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1798669
Server version: 5.0.70-log Gentoo Linux mysql-5.0.70-r1

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

In another different window, connect to the mysql-proxy admin service using the specified user
name and password:

shell> mysql --user=root --password=password --port=4041 --host=localhost
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1

MySQL Proxy FAQ

2006

Server version: 5.0.99-agent-admin

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

To monitor the status of the proxy, ask for a list of the current active processes:

mysql> show proxy processlist;
+---------+---------------------+--------------------------+
| Id | IP Address | Time |
+---------+---------------------+--------------------------+
| 1798669 | 192.168.0.112:52592 | Wed Jan 20 16:58:00 2010 |
+---------+---------------------+--------------------------+
1 row in set (0.00 sec)

mysql>

For more information on the example, see MySQL Proxy Admin Example.

15.7.6 MySQL Proxy FAQ

Questions

• 16.7.6.1: [2007] In load balancing, how can I separate reads from writes?

• 16.7.6.2: [2007] How do I use a socket with MySQL Proxy? Proxy change logs mention that support
for UNIX sockets has been added.

• 16.7.6.3: [2008] Can I use MySQL Proxy with all versions of MySQL?

• 16.7.6.4: [2008] Can I run MySQL Proxy as a daemon?

• 16.7.6.5: [2008] Do proxy applications run on a separate server? If not, what is the overhead
incurred by Proxy on the DB server side?

• 16.7.6.6: [2008] With load balancing, what happens to transactions? Are all queries sent to the
same server?

• 16.7.6.7: [2008] Is it possible to use MySQL Proxy with updating a Lucene index (or Solr) by making
TCP calls to that server to update?

• 16.7.6.8: [2008] Is the system context switch expensive, how much overhead does the Lua script
add?

• 16.7.6.9: [2008] How much latency does a proxy add to a connection?

• 16.7.6.10: [2008] Do you have to make one large script and call it at proxy startup, can I change
scripts without stopping and restarting (interrupting) the proxy?

• 16.7.6.11: [2008] If MySQL Proxy has to live on same machine as MySQL, are there any tuning
considerations to ensure both perform optimally?

• 16.7.6.12: [2008] I currently use SQL Relay for efficient connection pooling with a number of
Apache processes connecting to a MySQL server. Can MySQL Proxy currently accomplish this? My
goal is to minimize connection latency while keeping temporary tables available.

• 16.7.6.13: [2008] Are these reserved function names (for example, error_result()) that get
automatically called?

• 16.7.6.14: [2009] As the script is re-read by MySQL Proxy, does it cache this or is it looking at the
file system with each request?

• 16.7.6.15: [2009] Given that there is a connect_server() function, can a Lua script link up with
multiple servers?

http://fmpwizard.blogspot.com/2009/04/how-do-i-use-mysql-proxy-admin-plugin.html

MySQL Proxy FAQ

2007

• 16.7.6.16: [2009] Is the MySQL Proxy an API?

• 16.7.6.17: [2009] The global namespace variable example with quotas does not persist after a
reboot, is that correct?

• 16.7.6.18: [2009] Can MySQL Proxy handle SSL connections?

• 16.7.6.19: [2009] Could MySQL Proxy be used to capture passwords?

• 16.7.6.20: [2009] Are there tools for isolating problems? How can someone figure out whether a
problem is in the client, the database, or the proxy?

• 16.7.6.21: [2009] Is MySQL Proxy similar to what is provided by Java connection pools?

• 16.7.6.22: [2009] So authentication with connection pooling has to be done at every connection?
What is the authentication latency?

• 16.7.6.23: [2009] If you have multiple databases on the same box, can you use proxy to connect to
databases on default port 3306?

• 16.7.6.24: [2009] What about caching the authorization information so clients connecting are given
back-end connections that were established with identical authorization information, thus saving a
few more round trips?

• 16.7.6.25: [2010] Is there any big web site using MySQL Proxy? For what purpose and what
transaction rate have they achieved?

• 16.7.6.26: [2010] How does MySQL Proxy compare to DBSlayer?

• 16.7.6.27: [2010] I tried using MySQL Proxy without any Lua script to try a round-robin type load
balancing. In this case, if the first database in the list is down, MySQL Proxy would not connect the
client to the second database in the list.

• 16.7.6.28: [2010] Is it “safe” to use LuaSocket with proxy scripts?

• 16.7.6.29: [2010] How different is MySQL Proxy from DBCP (Database connection pooling) for
Apache in terms of connection pooling?

• 16.7.6.30: [2010] MySQL Proxy can handle about 5000 connections, what is the limit on a MySQL
server?

• 16.7.6.31: [2010] Would the Java-only connection pooling solution work for multiple web servers?
With this, I would assume that you can pool across many web servers at once?

Questions and Answers

16.7.6.1: In load balancing, how can I separate reads from writes?

There is no automatic separation of queries that perform reads or writes to the different backend
servers. However, you can specify to mysql-proxy that one or more of the “backend” MySQL servers
are read only.

shell> mysql-proxy \
--proxy-backend-addresses=10.0.1.2:3306 \
--proxy-read-only-backend-addresses=10.0.1.3:3306 &

16.7.6.2: How do I use a socket with MySQL Proxy? Proxy change logs mention that support for
UNIX sockets has been added.

Specify the path to the socket:

MySQL Proxy FAQ

2008

--proxy-backend-addresses=/path/to/socket

16.7.6.3: Can I use MySQL Proxy with all versions of MySQL?

MySQL Proxy is designed to work with MySQL 5.0 or higher, and supports the MySQL network
protocol for 5.0 and higher.

16.7.6.4: Can I run MySQL Proxy as a daemon?

Use the --daemon option. To keep track of the process ID, the daemon can be started with the --
pid-file=file option to save the PID to a known file name. On version 0.5.x, the Proxy cannot be
started natively as a daemon.

16.7.6.5: Do proxy applications run on a separate server? If not, what is the overhead incurred
by Proxy on the DB server side?

You can run the proxy on the application server, on its own box, or on the DB-server depending on the
use case.

16.7.6.6: With load balancing, what happens to transactions? Are all queries sent to the same
server?

Without any special customization the whole connection is sent to the same server. That keeps the
whole connection state intact.

16.7.6.7: Is it possible to use MySQL Proxy with updating a Lucene index (or Solr) by making
TCP calls to that server to update?

Yes, but it is not advised for now.

16.7.6.8: Is the system context switch expensive, how much overhead does the Lua script add?

Lua is fast and the overhead should be small enough for most applications. The raw packet overhead
is around 400 microseconds.

16.7.6.9: How much latency does a proxy add to a connection?

In the range of 400 microseconds per request.

16.7.6.10: Do you have to make one large script and call it at proxy startup, can I change scripts
without stopping and restarting (interrupting) the proxy?

You can just change the script and the proxy will reload it when a client connects.

16.7.6.11: If MySQL Proxy has to live on same machine as MySQL, are there any tuning
considerations to ensure both perform optimally?

MySQL Proxy can live on any box: application, database, or its own box. MySQL Proxy uses
comparatively little CPU or RAM, with negligible additional requirements or overhead.

16.7.6.12: I currently use SQL Relay for efficient connection pooling with a number of Apache
processes connecting to a MySQL server. Can MySQL Proxy currently accomplish this? My
goal is to minimize connection latency while keeping temporary tables available.

Yes.

16.7.6.13: Are these reserved function names (for example, error_result()) that get
automatically called?

Only functions and values starting with proxy.* are provided by the proxy. All others are user
provided.

MySQL Proxy FAQ

2009

16.7.6.14: As the script is re-read by MySQL Proxy, does it cache this or is it looking at the file
system with each request?

It looks for the script at client-connect and reads it if it has changed, otherwise it uses the cached
version.

16.7.6.15: Given that there is a connect_server() function, can a Lua script link up with
multiple servers?

MySQL Proxy provides some tutorials in the source package; one is examples/tutorial-
keepalive.lua.

16.7.6.16: Is the MySQL Proxy an API?

No, MySQL Proxy is an application that forwards packets from a client to a server using the MySQL
network protocol. The MySQL Proxy provides a API allowing you to change its behavior.

16.7.6.17: The global namespace variable example with quotas does not persist after a reboot,
is that correct?

Yes. If you restart the proxy, you lose the results, unless you save them in a file.

16.7.6.18: Can MySQL Proxy handle SSL connections?

No, being the man-in-the-middle, Proxy cannot handle encrypted sessions because it cannot share the
SSL information.

16.7.6.19: Could MySQL Proxy be used to capture passwords?

The MySQL network protocol does not allow passwords to be sent in cleartext, all you could capture is
the encrypted version.

16.7.6.20: Are there tools for isolating problems? How can someone figure out whether a
problem is in the client, the database, or the proxy?

You can set a debug script in the proxy, which is an exceptionally good tool for this purpose. You can
see very clearly which component is causing the problem, if you set the right breakpoints.

16.7.6.21: Is MySQL Proxy similar to what is provided by Java connection pools?

Yes and no. Java connection pools are specific to Java applications, MySQL Proxy works with
any client API that talks the MySQL network protocol. Also, connection pools do not provide any
functionality for intelligently examining the network packets and modifying the contents.

16.7.6.22: So authentication with connection pooling has to be done at every connection? What
is the authentication latency?

You can skip the round-trip and use the connection as it was added to the pool. As long as the
application cleans up the temporary tables it used. The overhead is (as always) around 400
microseconds.

16.7.6.23: If you have multiple databases on the same box, can you use proxy to connect to
databases on default port 3306?

Yes, MySQL Proxy can listen on any port, provided that none of the MySQL servers are listening on
the same port.

16.7.6.24: What about caching the authorization information so clients connecting are given
back-end connections that were established with identical authorization information, thus
saving a few more round trips?

There is an --proxy-pool-no-change-user option that provides this functionality.

MySQL Proxy FAQ

2010

16.7.6.25: Is there any big web site using MySQL Proxy? For what purpose and what
transaction rate have they achieved?

Yes, gaiaonline. They have tested MySQL Proxy and seen it handle 2400 queries per second through
the proxy.

16.7.6.26: How does MySQL Proxy compare to DBSlayer?

DBSlayer is a REST->MySQL tool, MySQL Proxy is transparent to your application. No change to the
application is needed.

16.7.6.27: I tried using MySQL Proxy without any Lua script to try a round-robin type load
balancing. In this case, if the first database in the list is down, MySQL Proxy would not connect
the client to the second database in the list.

This issue is fixed in version 0.7.0.

16.7.6.28: Is it “safe” to use LuaSocket with proxy scripts?

You can, but it is not advised because it may block.

16.7.6.29: How different is MySQL Proxy from DBCP (Database connection pooling) for Apache
in terms of connection pooling?

Connection Pooling is just one use case of the MySQL Proxy. You can use it for a lot more and it works
in cases where you cannot use DBCP (for example, if you do not have Java).

16.7.6.30: MySQL Proxy can handle about 5000 connections, what is the limit on a MySQL
server?

The server limit is given by the value of the max_connections system variable. The default value is
version dependent.

16.7.6.31: Would the Java-only connection pooling solution work for multiple web servers?
With this, I would assume that you can pool across many web servers at once?

Yes. But you can also start one proxy on each application server to get a similar behavior as you have
it already.

http://gaiaonline.com/

2011

Chapter 16 Replication

Table of Contents
16.1 Replication Configuration ... 2012

16.1.1 How to Set Up Replication .. 2013
16.1.2 Replication Formats .. 2022
16.1.3 Replication with Global Transaction Identifiers .. 2029
16.1.4 Replication and Binary Logging Options and Variables .. 2036
16.1.5 Common Replication Administration Tasks ... 2103

16.2 Replication Implementation .. 2106
16.2.1 Replication Implementation Details .. 2106
16.2.2 Replication Relay and Status Logs .. 2108
16.2.3 How Servers Evaluate Replication Filtering Rules ... 2113

16.3 Replication Solutions ... 2120
16.3.1 Using Replication for Backups ... 2121
16.3.2 Using Replication with Different Master and Slave Storage Engines 2124
16.3.3 Using Replication for Scale-Out ... 2125
16.3.4 Replicating Different Databases to Different Slaves .. 2126
16.3.5 Improving Replication Performance .. 2128
16.3.6 Switching Masters During Failover ... 2129
16.3.7 Setting Up Replication Using SSL .. 2131
16.3.8 Semisynchronous Replication .. 2132
16.3.9 Delayed Replication .. 2137

16.4 Replication Notes and Tips .. 2138
16.4.1 Replication Features and Issues .. 2138
16.4.2 Replication Compatibility Between MySQL Versions ... 2163
16.4.3 Upgrading a Replication Setup .. 2164
16.4.4 Troubleshooting Replication ... 2165
16.4.5 How to Report Replication Bugs or Problems ... 2167

Replication enables data from one MySQL database server (the master) to be replicated to one or
more MySQL database servers (the slaves). Replication is asynchronous by default - slaves need not
to connected permanently to receive updates from the master. This means that updates can occur
over long-distance connections and even over temporary or intermittent connections such as a dial-up
service. Depending on the configuration, you can replicate all databases, selected databases, or even
selected tables within a database.

For answers to some questions often asked by those who are new to MySQL Replication, see
Section B.13, “MySQL 5.7 FAQ: Replication”.

The target uses for replication in MySQL include:

• Scale-out solutions - spreading the load among multiple slaves to improve performance. In this
environment, all writes and updates must take place on the master server. Reads, however, may
take place on one or more slaves. This model can improve the performance of writes (since the
master is dedicated to updates), while dramatically increasing read speed across an increasing
number of slaves.

• Data security - because data is replicated to the slave, and the slave can pause the replication
process, it is possible to run backup services on the slave without corrupting the corresponding
master data.

• Analytics - live data can be created on the master, while the analysis of the information can take
place on the slave without affecting the performance of the master.

Replication Configuration

2012

• Long-distance data distribution - if a branch office would like to work with a copy of your main data,
you can use replication to create a local copy of the data for their use without requiring permanent
access to the master.

Replication in MySQL features support for one-way, asynchronous replication, in which one server acts
as the master, while one or more other servers act as slaves. This is in contrast to the synchronous
replication which is a characteristic of MySQL Cluster (see MySQL Cluster NDB 7.2). In MySQL 5.7,
an interface to semisynchronous replication is supported in addition to the built-in asynchronous
replication. With semisynchronous replication, a commit performed on the master side blocks before
returning to the session that performed the transaction until at least one slave acknowledges that it has
received and logged the events for the transaction. See Section 16.3.8, “Semisynchronous Replication”
MySQL 5.7 also supports delayed replication such that a slave server deliberately lags behind the
master by at least a specified amount of time. See Section 16.3.9, “Delayed Replication”.

There are a number of solutions available for setting up replication between two servers, but the
best method to use depends on the presence of data and the engine types you are using. For more
information on the available options, see Section 16.1.1, “How to Set Up Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates
entire SQL statements, and Row Based Replication (RBR), which replicates only the changed rows.
You may also use a third variety, Mixed Based Replication (MBR). For more information on the
different replication formats, see Section 16.1.2, “Replication Formats”. In MySQL 5.7, statement-based
format is the default.

MySQL 5.7 supports transactional replication based on global transaction identifiers (GTIDs). When
using this type of replication, it is not necessary to work directly with log files or positions within these
files, which greatly simplifies many common replication tasks. Because replication using GTIDs is
entirely transactional, consistency between master and slave is guaranteed as long as all transactions
committed on the master have also been applied on the slave. For more information about GTIDs and
GTID-based replication, see Section 16.1.3, “Replication with Global Transaction Identifiers”.

Replication is controlled through a number of different options and variables. These control the core
operation of the replication, timeouts, and the databases and filters that can be applied on databases
and tables. For more information on the available options, see Section 16.1.4, “Replication and Binary
Logging Options and Variables”.

You can use replication to solve a number of different problems, including problems with performance,
supporting the backup of different databases, and as part of a larger solution to alleviate system
failures. For information on how to address these issues, see Section 16.3, “Replication Solutions”.

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and problems and their resolution,
including an FAQ, see Section 16.4, “Replication Notes and Tips”.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are
recorded and replication, see Section 16.2, “Replication Implementation”.

16.1 Replication Configuration

Replication between servers in MySQL is based on the binary logging mechanism. The MySQL
instance operating as the master (the source of the database changes) writes updates and changes
as “events” to the binary log. The information in the binary log is stored in different logging formats
according to the database changes being recorded. Slaves are configured to read the binary log from
the master and to execute the events in the binary log on the slave's local database.

The master is “dumb” in this scenario. Once binary logging has been enabled, all statements are
recorded in the binary log. Each slave receives a copy of the entire contents of the binary log. It is the

http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html

How to Set Up Replication

2013

responsibility of the slave to decide which statements in the binary log should be executed; you cannot
configure the master to log only certain events. If you do not specify otherwise, all events in the master
binary log are executed on the slave. If required, you can configure the slave to process only events
that apply to particular databases or tables.

Each slave keeps a record of the binary log coordinates: The file name and position within the file that
it has read and processed from the master. This means that multiple slaves can be connected to the
master and executing different parts of the same binary log. Because the slaves control this process,
individual slaves can be connected and disconnected from the server without affecting the master's
operation. Also, because each slave remembers the position within the binary log, it is possible for
slaves to be disconnected, reconnect and then “catch up” by continuing from the recorded position.

Both the master and each slave must be configured with a unique ID (using the server-id [2037]
option). In addition, each slave must be configured with information about the master host name, log
file name, and position within that file. These details can be controlled from within a MySQL session
using the CHANGE MASTER TO statement on the slave. The details are stored within the slave's master
info repository, which can be either a file or a table (see Section 16.2.2, “Replication Relay and Status
Logs”).

This section describes the setup and configuration required for a replication environment, including
step-by-step instructions for creating a new replication environment. The major components of this
section are:

• For a guide to setting up two or more servers for replication, Section 16.1.1, “How to Set Up
Replication”, deals with the configuration of the systems and provides methods for copying data
between the master and slaves.

• Events in the binary log are recorded using a number of formats. These are referred to as statement-
based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication
(MIXED), uses SBR or RBR replication automatically to take advantage of the benefits of both
SBR and RBR formats when appropriate. The different formats are discussed in Section 16.1.2,
“Replication Formats”.

• Detailed information on the different configuration options and variables that apply to replication is
provided in Section 16.1.4, “Replication and Binary Logging Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However, for
advice on common tasks that you may want to execute, see Section 16.1.5, “Common Replication
Administration Tasks”.

16.1.1 How to Set Up Replication

This section describes how to set up complete replication of a MySQL server. There are a number
of different methods for setting up replication, and the exact method to use depends on how you are
setting up replication, and whether you already have data within your master database.

There are some generic tasks that are common to all replication setups:

• On the master, you must enable binary logging and configure a unique server ID. This might require
a server restart. See Section 16.1.1.1, “Setting the Replication Master Configuration”.

• On each slave that you want to connect to the master, you must configure a unique server ID. This
might require a server restart. See Section 16.1.1.2, “Setting the Replication Slave Configuration”.

• You may want to create a separate user that will be used by your slaves to authenticate with the
master to read the binary log for replication. The step is optional. See Section 16.1.1.3, “Creating a
User for Replication”.

• Before creating a data snapshot or starting the replication process, you should record the position
of the binary log on the master. You will need this information when configuring the slave so that the

How to Set Up Replication

2014

slave knows where within the binary log to start executing events. See Section 16.1.1.4, “Obtaining
the Replication Master Binary Log Coordinates”.

• If you already have data on your master and you want to use it to synchronize your slave,
you will need to create a data snapshot. You can create a snapshot using mysqldump (see
Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”) or by copying the data files directly
(see Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”).

• You will need to configure the slave with settings for connecting to the master, such as the host
name, login credentials, and binary log file name and position. See Section 16.1.1.10, “Setting the
Master Configuration on the Slave”.

Once you have configured the basic options, you will need to follow the instructions for your replication
setup. A number of alternatives are provided:

• If you are establishing a new MySQL master and one or more slaves, you need only set up the
configuration, as you have no data to exchange. For guidance on setting up replication in this
situation, see Section 16.1.1.7, “Setting Up Replication with New Master and Slaves”.

• If you are already running a MySQL server, and therefore already have data that must be transferred
to your slaves before replication starts, have not previously configured the binary log and are able to
shut down your MySQL server for a short period during the process, see Section 16.1.1.8, “Setting
Up Replication with Existing Data”.

• If you are adding slaves to an existing replication environment, you can set up the slaves without
affecting the master. See Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication
Environment”.

If you will be administering MySQL replication servers, we suggest that you read this entire chapter
through and try all statements mentioned in Section 13.4.1, “SQL Statements for Controlling Master
Servers”, and Section 13.4.2, “SQL Statements for Controlling Slave Servers”. You should also
familiarize yourself with the replication startup options described in Section 16.1.4, “Replication and
Binary Logging Options and Variables”.

Note

Note that certain steps within the setup process require the SUPER privilege. If
you do not have this privilege, it might not be possible to enable replication.

16.1.1.1 Setting the Replication Master Configuration

On a replication master, you must enable binary logging and establish a unique server ID. If this has
not already been done, this part of master setup requires a server restart.

Binary logging must be enabled on the master because the binary log is the basis for sending data
changes from the master to its slaves. If binary logging is not enabled, replication will not be possible.

Each server within a replication group must be configured with a unique server ID. This ID is used to
identify individual servers within the group, and must be a positive integer between 1 and (232)–1. How
you organize and select the numbers is entirely up to you.

To configure the binary log and server ID options, you will need to shut down your MySQL server and
edit the my.cnf or my.ini file. Add the following options to the configuration file within the [mysqld]
section. If these options already exist, but are commented out, uncomment the options and alter them
according to your needs. For example, to enable binary logging using a log file name prefix of mysql-
bin, and configure a server ID of 1, use these lines:

[mysqld]
log-bin=mysql-bin
server-id=1

How to Set Up Replication

2015

After making the changes, restart the server.

Note

If you omit server-id [2037] (or set it explicitly to its default value of 0), a
master refuses connections from all slaves.

Note

For the greatest possible durability and consistency in a
replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the master
my.cnf file.

Note

Ensure that the skip-networking option is not enabled on your replication
master. If networking has been disabled, your slave will not able to
communicate with the master and replication will fail.

16.1.1.2 Setting the Replication Slave Configuration

On a replication slave, you must establish a unique server ID. If this has not already been done, this
part of slave setup requires a server restart.

If the slave server ID is not already set, or the current value conflicts with the value that you have
chosen for the master server, you should shut down your slave server and edit the configuration to
specify a unique server ID. For example:

[mysqld]
server-id=2

After making the changes, restart the server.

If you are setting up multiple slaves, each one must have a unique server-id [2037] value that
differs from that of the master and from each of the other slaves. Think of server-id [2037]
values as something similar to IP addresses: These IDs uniquely identify each server instance in the
community of replication partners.

Note

If you omit server-id [2037] (or set it explicitly to its default value of 0), a
slave refuses to connect to a master.

You do not have to enable binary logging on the slave for replication to be enabled. However, if you
enable binary logging on the slave, you can use the binary log for data backups and crash recovery on
the slave, and also use the slave as part of a more complex replication topology (for example, where
the slave acts as a master to other slaves).

16.1.1.3 Creating a User for Replication

Each slave must connect to the master using a MySQL user name and password, so there must be
a user account on the master that the slave can use to connect. Any account can be used for this
operation, providing it has been granted the REPLICATION SLAVE privilege. You may wish to create a
different account for each slave, or connect to the master using the same account for each slave.

You need not create an account specifically for replication. owever, you should be aware that the
user name and password are stored in plain text in the master info repository file or table (see
Section 16.2.2.2, “Slave Status Logs”). Therefore, you may want to create a separate account that has
privileges only for the replication process, to minimize the possibility of compromise to other accounts.

How to Set Up Replication

2016

To create a new account, use CREATE USER. To grant this account the privileges required for
replication, use the GRANT statement. If you create an account solely for the purposes of replication,
that account needs only the REPLICATION SLAVE privilege. For example, to set up a new user,
repl, that can connect for replication from any host within the mydomain.com domain, issue these
statements on the master:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.mydomain.com';

See Section 13.7.1, “Account Management Statements”, for more information on statements for
manipulation of user accounts.

16.1.1.4 Obtaining the Replication Master Binary Log Coordinates

To configure replication on the slave you must determine the master's current coordinates within its
binary log. You will need this information so that when the slave starts the replication process, it is able
to start processing events from the binary log at the correct point.

If you have existing data on your master that you want to synchronize on your slaves before starting
the replication process, you must stop processing statements on the master, and then obtain its
current binary log coordinates and dump its data, before permitting the master to continue executing
statements. If you do not stop the execution of statements, the data dump and the master status
information that you use will not match and you will end up with inconsistent or corrupted databases on
the slaves.

To obtain the master binary log coordinates, follow these steps:

1. Start a session on the master by connecting to it with the command-line client, and flush all tables
and block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

For InnoDB tables, note that FLUSH TABLES WITH READ LOCK also blocks COMMIT operations.

Warning

Leave the client from which you issued the FLUSH TABLES statement
running so that the read lock remains in effect. If you exit the client, the lock
is released.

2. In a different session on the master, use the SHOW MASTER STATUS statement to determine the
current binary log file name and position:

mysql > SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 | 73 | test | manual,mysql |
+------------------+----------+--------------+------------------+

The File column shows the name of the log file and Position shows the position within the file.
In this example, the binary log file is mysql-bin.000003 and the position is 73. Record these
values. You need them later when you are setting up the slave. They represent the replication
coordinates at which the slave should begin processing new updates from the master.

If the master has been running previously without binary logging enabled, the log file name and
position values displayed by SHOW MASTER STATUS or mysqldump --master-data will be
empty. In that case, the values that you need to use later when specifying the slave's log file and
position are the empty string ('') and 4.

How to Set Up Replication

2017

You now have the information you need to enable the slave to start reading from the binary log in the
correct place to start replication.

If you have existing data that needs be to synchronized with the slave before you start replication,
leave the client running so that the lock remains in place and then proceed to Section 16.1.1.5,
“Creating a Data Snapshot Using mysqldump”, or Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”. The idea here is to prevent any further changes so that the data copied to the slaves
is in synchrony with the master.

If you are setting up a brand new master and slave replication group, you can exit the first session to
release the read lock.

16.1.1.5 Creating a Data Snapshot Using mysqldump

One way to create a snapshot of the data in an existing master database is to use the mysqldump tool
to create a dump of all the databases you want to replicate. Once the data dump has been completed,
you then import this data into the slave before starting the replication process.

The example shown here dumps all databases to a file named dbdump.db, and includes the --
master-data option which automatically appends the CHANGE MASTER TO statement required on
the slave to start the replication process:

shell> mysqldump --all-databases --master-data > dbdump.db

If you do not use --master-data, then it is necessary to lock all tables in a separate session
manually (using FLUSH TABLES WITH READ LOCK) prior to running mysqldump, then exiting or
running UNLOCK TABLES from the second session to release the locks. You must also obtain binary
log position information matching the snapshot, using SHOW MASTER STATUS, and use this to issue
the appropriate CHANGE MASTER TO statement when starting the slave.

When choosing databases to include in the dump, remember that you need to filter out databases on
each slave that you do not want to include in the replication process.

To import the data, either copy the dump file to the slave, or access the file from the master when
connecting remotely to the slave.

16.1.1.6 Creating a Data Snapshot Using Raw Data Files

If your database is large, copying the raw data files can be more efficient than using mysqldump and
importing the file on each slave. This technique skips the overhead of updating indexes as the INSERT
statements are replayed.

Using this method with tables in storage engines with complex caching or logging algorithms requires
extra steps to produce a perfect “point in time” snapshot: the initial copy command might leave out
cache information and logging updates, even if you have acquired a global read lock. How the storage
engine responds to this depends on its crash recovery abilities.

This method also does not work reliably if the master and slave have different values for
ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having
full-text indexes.

If you use InnoDB tables, you can use the mysqlbackup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This command records the log name and
offset corresponding to the snapshot to be later used on the slave. MySQL Enterprise Backup is a
commercial product that is included as part of a MySQL Enterprise subscription. See Section 23.2,
“MySQL Enterprise Backup” for detailed information.

Otherwise, use the cold backup technique to obtain a reliable binary snapshot of InnoDB tables: copy
all data files after doing a slow shutdown of the MySQL Server.

How to Set Up Replication

2018

To create a raw data snapshot of MyISAM tables, you can use standard copy tools such as cp or
copy, a remote copy tool such as scp or rsync, an archiving tool such as zip or tar, or a file
system snapshot tool such as dump, providing that your MySQL data files exist on a single file system.
If you are replicating only certain databases, copy only those files that relate to those tables. (For
InnoDB, all tables in all databases are stored in the system tablespace files, unless you have the
innodb_file_per_table option enabled.)

You might want to specifically exclude the following files from your archive:

• Files relating to the mysql database.

• The master info repository file, if used (see Section 16.2.2, “Replication Relay and Status Logs”).

• The master's binary log files.

• Any relay log files.

To get the most consistent results with a raw data snapshot, shut down the master server during the
process, as follows:

1. Acquire a read lock and get the master's status. See Section 16.1.1.4, “Obtaining the Replication
Master Binary Log Coordinates”.

2. In a separate session, shut down the master server:

shell> mysqladmin shutdown

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

4. Restart the master server.

If you are not using InnoDB tables, you can get a snapshot of the system from a master without
shutting down the server as described in the following steps:

1. Acquire a read lock and get the master's status. See Section 16.1.1.4, “Obtaining the Replication
Master Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, release the lock:

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, copy the files to each slave before starting
the slave replication process.

16.1.1.7 Setting Up Replication with New Master and Slaves

The easiest and most straightforward method for setting up replication is to use new master and slave
servers.

How to Set Up Replication

2019

You can also use this method if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading
the data into a new master, the data will be automatically replicated to the slaves.

To set up replication between a new master and slave:

1. Configure the MySQL master with the necessary configuration properties. See Section 16.1.1.1,
“Setting the Replication Master Configuration”.

2. Start up the MySQL master.

3. Set up a user. See Section 16.1.1.3, “Creating a User for Replication”.

4. Obtain the master status information. See Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”.

5. On the master, release the read lock:

mysql> UNLOCK TABLES;

6. On the slave, edit the MySQL configuration. See Section 16.1.1.2, “Setting the Replication Slave
Configuration”.

7. Start up the MySQL slave.

8. Execute a CHANGE MASTER TO statement to set the master replication server configuration. See
Section 16.1.1.10, “Setting the Master Configuration on the Slave”.

Perform the slave setup steps on each slave.

Because there is no data to load or exchange on a new server configuration you do not need to copy or
import any information.

If you are setting up a new replication environment using the data from a different existing database
server, you will now need to run the dump file generated from that server on the new master. The
database updates will automatically be propagated to the slaves:

shell> mysql -h master < fulldb.dump

16.1.1.8 Setting Up Replication with Existing Data

When setting up replication with existing data, you will need to decide how best to get the data from the
master to the slave before starting the replication service.

The basic process for setting up replication with existing data is as follows:

1. With the MySQL master running, create a user to be used by the slave when connecting to the
master during replication. See Section 16.1.1.3, “Creating a User for Replication”.

2. If you have not already configured the server-id [2037] and enabled binary logging on the
master server, you will need to shut it down to configure these options. See Section 16.1.1.1,
“Setting the Replication Master Configuration”.

If you have to shut down your master server, this is a good opportunity to take a snapshot of its
databases. You should obtain the master status (see Section 16.1.1.4, “Obtaining the Replication
Master Binary Log Coordinates”) before taking down the master, updating the configuration
and taking a snapshot. For information on how to create a snapshot using raw data files, see
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”.

3. If your master server is already correctly configured, obtain its status (see Section 16.1.1.4,
“Obtaining the Replication Master Binary Log Coordinates”) and then use mysqldump to take a

How to Set Up Replication

2020

snapshot (see Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”) or take a raw
snapshot of the live server using the guide in Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”.

4. Update the configuration of the slave. See Section 16.1.1.2, “Setting the Replication Slave
Configuration”.

5. The next step depends on how you created the snapshot of data on the master.

If you used mysqldump:

a. Start the slave, using the --skip-slave-start option so that replication does not start.

b. Import the dump file:

shell> mysql < fulldb.dump

If you created a snapshot using the raw data files:

a. Extract the data files into your slave data directory. For example:

shell> tar xvf dbdump.tar

You may need to set permissions and ownership on the files so that the slave server can
access and modify them.

b. Start the slave, using the --skip-slave-start option so that replication does not start.

6. Configure the slave with the replication coordinates from the master. This tells the slave the binary
log file and position within the file where replication needs to start. Also, configure the slave with the
login credentials and host name of the master. For more information on the CHANGE MASTER TO
statement required, see Section 16.1.1.10, “Setting the Master Configuration on the Slave”.

7. Start the slave threads:

mysql> START SLAVE;

After you have performed this procedure, the slave should connect to the master and catch up on any
updates that have occurred since the snapshot was taken.

If you have forgotten to set the server-id [2037] option for the master, slaves cannot connect to it.

If you have forgotten to set the server-id [2037] option for the slave, you get the following error in
the slave's error log:

Warning: You should set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this MySQL server will
not act as a slave.

You also find error messages in the slave's error log if it is not able to replicate for any other reason.

The slave uses information stored in its master info repository to keep track of how much of the
master's binary log it has processed. The repository can be in the form of files or a table, as determined
by the value set for --master-info-repository. When a slave runs with --master-info-
repository=FILE, you can find in its data directory two files, named master.info and relay-
log.info. If --master-info-repository=TABLE instead, this information is saved in the table
master_slave_info in the mysql database. In either case, do not remove or edit the files or table
unless you know exactly what you are doing and fully understand the implications. Even in that case,
it is preferred that you use the CHANGE MASTER TO statement to change replication parameters.

How to Set Up Replication

2021

The slave can use the values specified in the statement to update the status files automatically. See
Section 16.2.2, “Replication Relay and Status Logs”, for more information.

Note

The contents of the master info repository override some of the server options
specified on the command line or in my.cnf. See Section 16.1.4, “Replication
and Binary Logging Options and Variables”, for more details.

A single snapshot of the master suffices for multiple slaves. To set up additional slaves, use the same
master snapshot and follow the slave portion of the procedure just described.

16.1.1.9 Introducing Additional Slaves to an Existing Replication Environment

To add another slave to an existing replication configuration, you can do so without stopping the
master. Instead, set up the new slave by making a copy of an existing slave, except that you configure
the new slave with a different server-id [2037] value.

To duplicate an existing slave:

1. Shut down the existing slave:

shell> mysqladmin shutdown

2. Copy the data directory from the existing slave to the new slave. You can do this by creating an
archive using tar or WinZip, or by performing a direct copy using a tool such as cp or rsync.
Ensure that you also copy the log files and relay log files.

A common problem that is encountered when adding new replication slaves is that the new slave
fails with a series of warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a slave and has his hostname
changed!! Please use '--relay-log=new_slave_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] Failed to open the relay log './old_slave_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure

This is due to the fact that, if the --relay-log option is not specified, the relay log files contain
the host name as part of their file names. (This is also true of the relay log index file if the --
relay-log-index option is not used. See Section 16.1.4, “Replication and Binary Logging
Options and Variables”, for more information about these options.)

To avoid this problem, use the same value for --relay-log on the new slave that was
used on the existing slave. (If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.) If this is not feasible, copy the existing slave's relay
log index file to the new slave and set the --relay-log-index option on the new slave to match
what was used on the existing slave. (If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.index.) Alternatively—if you have already tried to
start the new slave (after following the remaining steps in this section) and have encountered errors
like those described previously—then perform the following steps:

a. If you have not already done so, issue a STOP SLAVE on the new slave.

If you have already started the existing slave again, issue a STOP SLAVE on the existing slave
as well.

b. Copy the contents of the existing slave's relay log index file into the new slave's relay log index
file, making sure to overwrite any content already in the file.

Replication Formats

2022

c. Proceed with the remaining steps in this section.

3. Copy the master info and relay log info repositories (see Section 16.2.2, “Replication Relay and
Status Logs”) from the existing slave to the new slave. These hold the current log coordinates for
the master's binary log and the slave's relay log.

4. Start the existing slave.

5. On the new slave, edit the configuration and give the new slave a unique server-id [2037] not
used by the master or any of the existing slaves.

6. Start the new slave. The slave uses the information in its master info repository to start the
replication process.

16.1.1.10 Setting the Master Configuration on the Slave

To set up the slave to communicate with the master for replication, you must tell the slave the
necessary connection information. To do this, execute the following statement on the slave, replacing
the option values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_host_name',
 -> MASTER_USER='replication_user_name',
 -> MASTER_PASSWORD='replication_password',
 -> MASTER_LOG_FILE='recorded_log_file_name',
 -> MASTER_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the
master MySQL server using TCP/IP.

The CHANGE MASTER TO statement has other options as well. For example, it is possible to set up
secure replication using SSL. For a full list of options, and information about the maximum permissible
length for the string-valued options, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”.

16.1.2 Replication Formats

Replication works because events written to the binary log are read from the master and then
processed on the slave. The events are recorded within the binary log in different formats according
to the type of event. The different replication formats used correspond to the binary logging format
used when the events were recorded in the master's binary log. The correlation between binary logging
formats and the terms used during replication are:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from
master to slave. This is called statement-based replication (often abbreviated as SBR), which
corresponds to the standard statement-based binary logging format. In older versions of MySQL
(5.1.4 and earlier), binary logging and replication used this format exclusively.

• Row-based binary logging logs changes in individual table rows. When used with MySQL replication,
this is known as row-based replication (often abbreviated as RBR). In row-based replication, the
master writes events to the binary log that indicate how individual table rows are changed.

• The server can change the binary logging format in real time according to the type of event using
mixed-format logging.

When the mixed format is in effect, statement-based logging is used by default, but automatically
switches to row-based logging in particular cases as described later. Replication using the mixed
format is often referred to as mixed-based replication or mixed-format replication. For more
information, see Section 5.2.4.3, “Mixed Binary Logging Format”.

In MySQL 5.7, statement-based format is the default.

Replication Formats

2023

When using MIXED format, the binary logging format is determined in part by the storage engine being
used and the statement being executed. For more information on mixed-format logging and the rules
governing the support of different logging formats, see Section 5.2.4.3, “Mixed Binary Logging Format”.

The logging format in a running MySQL server is controlled by setting the binlog_format server
system variable. This variable can be set with session or global scope. The rules governing when and
how the new setting takes effect are the same as for other MySQL server system variables—setting
the variable for the current session lasts only until the end of that session, and the change is not visible
to other sessions; setting the variable globally requires a restart of the server to take effect. For more
information, see Section 13.7.4, “SET Syntax”.

There are conditions under which you cannot change the binary logging format at runtime or doing so
causes replication to fail. See Section 5.2.4.2, “Setting The Binary Log Format”.

You must have the SUPER privilege to set either the global or session binlog_format value.

The statement-based and row-based replication formats have different issues and limitations. For a
comparison of their relative advantages and disadvantages, see Section 16.1.2.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

With statement-based replication, you may encounter issues with replicating stored routines or
triggers. You can avoid these issues by using row-based replication instead. For more information, see
Section 18.7, “Binary Logging of Stored Programs”.

16.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication

Each binary logging format has advantages and disadvantages. For most users, the mixed replication
format should provide the best combination of data integrity and performance. If, however, you want to
take advantage of the features specific to the statement-based or row-based replication format when
performing certain tasks, you can use the information in this section, which provides a summary of their
relative advantages and disadvantages, to determine which is best for your needs.

• Advantages of statement-based replication

• Disadvantages of statement-based replication

• Advantages of row-based replication

• Disadvantages of row-based replication

Advantages of statement-based replication

• Proven technology that has existed in MySQL since 3.23.

• Less data written to log files. When updates or deletes affect many rows, this results in much less
storage space required for log files. This also means that taking and restoring from backups can be
accomplished more quickly.

• Log files contain all statements that made any changes, so they can be used to audit the database.

Disadvantages of statement-based replication

• Statements that are unsafe for SBR.
Not all statements which modify data (such as INSERT DELETE, UPDATE, and REPLACE statements)
can be replicated using statement-based replication. Any nondeterministic behavior is difficult
to replicate when using statement-based replication. Examples of such DML (Data Modification
Language) statements include the following:

• A statement that depends on a UDF or stored program that is nondeterministic, since the value
returned by such a UDF or stored program or depends on factors other than the parameters
supplied to it. (Row-based replication, however, simply replicates the value returned by the UDF
or stored program, so its effect on table rows and data is the same on both the master and slave.)
See Section 16.4.1.11, “Replication of Invoked Features”, for more information.

Replication Formats

2024

• DELETE and UPDATE statements that use a LIMIT clause without an ORDER BY are
nondeterministic. See Section 16.4.1.16, “Replication and LIMIT”.

• Statements using any of the following functions cannot be replicated properly using statement-
based replication:

• LOAD_FILE()

• UUID(), UUID_SHORT()

• USER()

• FOUND_ROWS()

• SYSDATE() (unless both the master and the slave are started with the --sysdate-is-now
option)

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

• MASTER_POS_WAIT()

• RAND()

• RELEASE_LOCK()

• SLEEP()

• VERSION()

However, all other functions are replicated correctly using statement-based replication, including
NOW() and so forth.

For more information, see Section 16.4.1.15, “Replication and System Functions”.

Statements that cannot be replicated correctly using statement-based replication are logged with a
warning like the one shown here:

[Warning] Statement is not safe to log in statement format.

A similar warning is also issued to the client in such cases. The client can display it using SHOW
WARNINGS.

• INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

• UPDATE statements that require a table scan (because no index is used in the WHERE clause) must
lock a greater number of rows than with row-based replication.

• For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other nonconflicting INSERT
statements.

• For complex statements, the statement must be evaluated and executed on the slave before the
rows are updated or inserted. With row-based replication, the slave only has to modify the affected
rows, not execute the full statement.

• If there is an error in evaluation on the slave, particularly when executing complex statements,
statement-based replication may slowly increase the margin of error across the affected rows over
time. See Section 16.4.1.26, “Slave Errors During Replication”.

Replication Formats

2025

• Stored functions execute with the same NOW() value as the calling statement. However, this is not
true of stored procedures.

• Deterministic UDFs must be applied on the slaves.

• Table definitions must be (nearly) identical on master and slave. See Section 16.4.1.9, “Replication
with Differing Table Definitions on Master and Slave”, for more information.

Advantages of row-based replication

• All changes can be replicated. This is the safest form of replication.

The mysql database is not replicated. The mysql database is instead seen as a node-specific
database. Row-based replication is not supported on tables in this database. Instead, statements
that would normally update this information—such as GRANT, REVOKE and the manipulation of
triggers, stored routines (including stored procedures), and views—are all replicated to slaves using
statement-based replication.

For statements such as CREATE TABLE ... SELECT, a CREATE statement is generated from the
table definition and replicated using statement-based format, while the row insertions are replicated
using row-based format.

• The technology is the same as in most other database management systems; knowledge about
other systems transfers to MySQL.

• Fewer row locks are required on the master, which thus achieves higher concurrency, for the
following types of statements:

• INSERT ... SELECT

• INSERT statements with AUTO_INCREMENT

• UPDATE or DELETE statements with WHERE clauses that do not use keys or do not change most of
the examined rows.

• Fewer row locks are required on the slave for any INSERT, UPDATE, or DELETE statement.

Disadvantages of row-based replication

• RBR tends to generate more data that must be logged. To replicate a DML statement (such as an
UPDATE or DELETE statement), statement-based replication writes only the statement to the binary
log. By contrast, row-based replication writes each changed row to the binary log. If the statement
changes many rows, row-based replication may write significantly more data to the binary log; this is
true even for statements that are rolled back. This also means that taking and restoring from backup
can require more time. In addition, the binary log is locked for a longer time to write the data, which
may cause concurrency problems.

• Deterministic UDFs that generate large BLOB values take longer to replicate with row-based
replication than with statement-based replication. This is because the BLOB column value is logged,
rather than the statement generating the data.

• You cannot examine the logs to see what statements were executed, nor can you see on the slave
what statements were received from the master and executed.

However, you can see what data was changed using mysqlbinlog with the options --base64-
output=DECODE-ROWS and --verbose.

• For tables using the MyISAM storage engine, a stronger lock is required on the slave for INSERT
statements when applying them as row-based events to the binary log than when applying them as
statements. This means that concurrent inserts on MyISAM tables are not supported when using row-
based replication.

Replication Formats

2026

16.1.2.2 Usage of Row-Based Logging and Replication

Major changes in the replication environment and in the behavior of applications can result from using
row-based logging (RBL) or row-based replication (RBR) rather than statement-based logging or
replication. This section describes a number of issues known to exist when using row-based logging
or replication, and discusses some best practices for taking advantage of row-based logging and
replication.

For additional information, see Section 16.1.2, “Replication Formats”, and Section 16.1.2.1,
“Advantages and Disadvantages of Statement-Based and Row-Based Replication”.

• RBL, RBR, and temporary tables. As noted in Section 16.4.1.22, “Replication and Temporary
Tables”, temporary tables are not replicated when using row-based format. When mixed format is in
effect, “safe” statements involving temporary tables are logged using statement-based format. For
more information, see Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and
Row-Based Replication”.

Temporary tables are not replicated when using row-based format because there is no need. In
addition, because temporary tables can be read only from the thread which created them, there is
seldom if ever any benefit obtained from replicating them, even when using statement-based format.

In MySQL 5.7, you can switch from statement-based to row-based binary logging mode even when
temporary tables have been created. However, while using the row-based format, the MySQL server
cannot determine the logging mode that was in effect when a given temporary table was created.
For this reason, the server in such cases logs a DROP TEMPORARY TABLE IF EXISTS statement
for each temporary table that still exists for a given client session when that session ends. While this
means that it is possible that an unnecessary DROP TEMPORARY TABLE statement might be logged
in some cases, the statement is harmless, and does not cause an error even if the table does not
exist, due to the presence of the IF NOT EXISTS option.

Nontransactional DML statements involving temporary tablesare allowed when using
binlog_format=ROW, as long as any nontransactional tables affected by the statements are
temporary tables (Bug #14272672).

• RBL and synchronization of nontransactional tables. When many rows are affected, the set
of changes is split into several events; when the statement commits, all of these events are written to
the binary log. When executing on the slave, a table lock is taken on all tables involved, and then the
rows are applied in batch mode. (This may or may not be effective, depending on the engine used for
the slave's copy of the table.)

• Latency and binary log size. Because RBL writes changes for each row to the binary log, its
size can increase quite rapidly. In a replication environment, this can significantly increase the time
required to make changes on the slave that match those on the master. You should be aware of the
potential for this delay in your applications.

• Reading the binary log. mysqlbinlog displays row-based events in the binary log using the
BINLOG statement (see Section 13.7.6.1, “BINLOG Syntax”). This statement displays an event in
printable form, but as a base 64-encoded string the meaning of which is not evident. When invoked
with the --base64-output=DECODE-ROWS and --verbose options, mysqlbinlog formats the
contents of the binary log in a manner that is easily human readable. This is helpful when binary
log events were written in row-based format if you want to read or recover from a replication or
database failure using the contents of the binary log. For more information, see Section 4.6.7.2,
“mysqlbinlog Row Event Display”.

• Binary log execution errors and slave_exec_mode. If slave_exec_mode is IDEMPOTENT, a
failure to apply changes from RBL because the original row cannot be found does not trigger an error
or cause replication to fail. This means that it is possible that updates are not applied on the slave,
so that the master and slave are no longer synchronized. Latency issues and use of nontransactional
tables with RBR when slave_exec_mode is IDEMPOTENT can cause the master and slave to

Replication Formats

2027

diverge even further. For more information about slave_exec_mode, see Section 5.1.4, “Server
System Variables”.

Note

slave_exec_mode=IDEMPOTENT is generally useful only for circular
replication or multi-master replication with MySQL Cluster, for which
IDEMPOTENT is the default value.

For other scenarios, setting slave_exec_mode to STRICT is normally
sufficient; this is the default value for storage engines other than NDB.

The NDBCLUSTER storage engine is currently not supported in MySQL 5.7.
MySQL Cluster users wishing to upgrade from MySQL 5.0 should instead
migrate to MySQL Cluster NDB 7.1 or later. For more information about
MySQL Cluster NDB 7.1, see MySQL Cluster NDB 6.1 - 7.1; for more
information about MySQL Cluster NDB 7.2, see MySQL Cluster NDB 7.2.

• Lack of binary log checksums. RBL uses no checksums. This means that network, disk, and
other errors may not be identified when processing the binary log. To ensure that data is transmitted
without network corruption, you may want to consider using SSL, which adds another layer of
checksumming, for replication connections. The CHANGE MASTER TO statement has options to
enable replication over SSL. See also Section 13.4.2.1, “CHANGE MASTER TO Syntax”, for general
information about setting up MySQL with SSL.

• Filtering based on server ID not supported. A common practice is to filter out changes on
some slaves by using a WHERE clause that includes the relation @@server_id <> id_value
clause with UPDATE and DELETE statements, a simple example of such a clause being
WHERE @@server_id <> 1. However, this does not work correctly with row-based logging.
If you must use the server_id system variable for statement filtering, you must also use --
binlog_format=STATEMENT.

In MySQL 5.7, you can do filtering based on server ID by using the IGNORE_SERVER_IDS option
for the CHANGE MASTER TO statement. This option works with the statement-based and row-based
logging formats.

• Database-level replication options. The effects of the --replicate-do-db, --replicate-
ignore-db, and --replicate-rewrite-db options differ considerably depending on whether
row-based or statement-based logging is used. Because of this, it is recommended to avoid
database-level options and instead use table-level options such as --replicate-do-table and
--replicate-ignore-table. For more information about these options and the impact that your
choice of replication format has on how they operate, see Section 16.1.4, “Replication and Binary
Logging Options and Variables”.

• RBL, nontransactional tables, and stopped slaves. When using row-based logging, if the
slave server is stopped while a slave thread is updating a nontransactional table, the slave database
may reaches an inconsistent state. For this reason, it is recommended that you use a transactional
storage engine such as InnoDB for all tables replicated using the row-based format.

Use of STOP SLAVE or STOP SLAVE SQL_THREAD prior to shutting down the slave MySQL server
helps prevent such issues from occurring, and is always recommended regardless of the logging
format or storage engines employed.

16.1.2.3 Determination of Safe and Unsafe Statements in Binary Logging

When speaking of the “safeness” of a statement in MySQL Replication, we are referring to whether a
statement and its effects can be replicated correctly using statement-based format. If this is true of the
statement, we refer to the statement as safe; otherwise, we refer to it as unsafe.

In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain
nondeterministic functions are not considered unsafe (see Nondeterministic functions not considered

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html

Replication Formats

2028

unsafe, later in this section). In addition, statements using results from floating-point math functions—
which are hardware-dependent—are always considered unsafe (see Section 16.4.1.12, “Replication
and Floating-Point Values”).

Handling of safe and unsafe statements. A statement is treated differently depending on whether
the statement is considered safe, and with respect to the binary logging format (that is, the current
value of binlog_format).

• No distinction is made in the treatment of safe and unsafe statements when the binary logging mode
is ROW.

• If the binary logging format is MIXED, statements flagged as unsafe are logged using the row-based
format; statements regarded as safe are logged using the statement-based format.

• If the binary logging format is STATEMENT, statements flagged as being unsafe generate a warning
to this effect. (Safe statements are logged normally.)

Each statement flagged as unsafe generates a warning. Formerly, in cases where a great
many such statements were executed on the master, this could lead to very large error log files,
sometimes even filling up an entire disk unexpectedly. To guard against this, MySQL 5.7 provides
a warning suppression mechanism, which behaves as follows: Whenever the 50 most recent
ER_BINLOG_UNSAFE_STATEMENT warnings have been generated more than 50 times in any 50-
second period, warning suppression is enabled. When activated, this causes such warnings not to be
written to the error log; instead, for each 50 warnings of this type, a note The last warning was
repeated N times in last S seconds is written to the error log. This continues as long as the
50 most recent such warnings were issued in 50 seconds or less; once the rate has decreased below
this threshold, the warnings are once again logged normally. Warning suppression has no effect on
how the safety of statements for statement-based logging is determined, nor on how warnings are sent
to the client (MySQL clients still receive one warning for each such statement).

For more information, see Section 16.1.2, “Replication Formats”.

Statements considered unsafe.
Statements having the following characteristics are considered unsafe:

• Statements containing system functions that may return a different value on slave.
These functions include FOUND_ROWS(), GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(),
LOAD_FILE(), MASTER_POS_WAIT(), PASSWORD(), RAND(), RELEASE_LOCK(), ROW_COUNT(),
SESSION_USER(), SLEEP(), SYSDATE(), SYSTEM_USER(), USER(), UUID(), and
UUID_SHORT().

Nondeterministic functions not considered unsafe. Although these functions are not
deterministic, they are treated as safe for purposes of logging and replication: CONNECTION_ID(),
CURDATE(), CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP(), CURTIME(),,
LAST_INSERT_ID(), LOCALTIME(), LOCALTIMESTAMP(), NOW(), UNIX_TIMESTAMP(),
UTC_DATE(), UTC_TIME(), and UTC_TIMESTAMP().

For more information, see Section 16.4.1.15, “Replication and System Functions”.

• References to system variables. Most system variables are not replicated correctly using the
statement-based format. For exceptions, see Section 5.2.4.3, “Mixed Binary Logging Format”.

See Section 16.4.1.34, “Replication and Variables”.

• UDFs. Since we have no control over what a UDF does, we must assume that it is executing
unsafe statements.

• Fulltext plugin. Since this plugin may behave differently on different MySQL servers (and we
have no control over this), we must assume that statements depending on it may have different
results. For this reason, all statements relying on the fulltext plugin are treated as unsafe in MySQKL
5.7.1 and later. (Bug #11756280, Bug #48183)

Replication with Global Transaction Identifiers

2029

• Trigger or stored program updates a table having an AUTO_INCREMENT column. This is
unsafe because the order in which the rows are updated may differ on the master and the slave.

In addition, an INSERT into a table that has a composite primary key containing an
AUTO_INCREMENT column that is not the first column of this composite key is unsafe.

For more information, see Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

• INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or
unique keys. When executed against a table that contains more than one primary or unique key,
this statement is considered unsafe, being sensitive to the order in which the storage engine checks
the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server
depends.

An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one
unique or primary key is marked as unsafe for statement-based replication. (Bug #11765650, Bug
#58637)

• Updates using LIMIT. The order in which rows are retrieved is not specified.

See Section 16.4.1.16, “Replication and LIMIT”.

• Accesses or references log tables. The contents of the system log table may differ between
master and slave.

• Nontransactional operations after transactional operations. Within a transaction, allowing
any nontransactional reads or writes to execute after any transactional reads or writes is considered
unsafe.

For more information, see Section 16.4.1.31, “Replication and Transactions”.

• Accesses or references self-logging tables. All reads and writes to self-logging tables are
considered unsafe. Within a transaction, any statement following a read or write to self-logging tables
is also considered unsafe.

• LOAD DATA INFILE statements. LOAD DATA INFILE is considered unsafe, it causes a
warning in statement-based mode, and a switch to row-based format when using mixed-format
logging. See Section 16.4.1.17, “Replication and LOAD DATA INFILE”.

For additional information, see Section 16.4.1, “Replication Features and Issues”.

16.1.3 Replication with Global Transaction Identifiers

In this section, we discuss transaction-based replication using global transaction identifiers (GTIDs).
When using GTIDs, each transaction can be identified and tracked as it is committed on the originating
server and applied by any slaves; this means that it is not necessary when using GTIDs to refer to log
files or positions within those files when starting a new slave or failing over to a new master, which
greatly simplifies these tasks. Because GTID-based replication is completely transaction-based, it is
simple to determine whether masters and slaves are consistent; as long as all transactions committed
on a master are also committed on a slave, consistency between the two is guaranteed. You can
use either statement-based or row-based replication with GTIDs (see Section 16.1.2, “Replication
Formats”); however, for best results, we recommend that you use the row-based format.

The next few sections discuss the following topics:

• How GTIDs are defined and created, and how they are represented in the MySQL Server (see
Section 16.1.3.1, “GTID Concepts”).

• A general procedure for setting up and starting GTID-based replication (see Section 16.1.3.2,
“Setting Up Replication Using GTIDs”).

Replication with Global Transaction Identifiers

2030

• Suggested methods for provisioning new replication servers when using GTIDs (see
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”).

• Restrictions and limitations that you should be aware of when using GTID-based replication (see
Section 16.1.3.4, “Restrictions on Replication with GTIDs”).

For information about MySQL Server options and variables relating to GTID-based replication, see
Section 16.1.4.5, “Global Transaction ID Options and Variables”. See also Section 12.15, “Functions
Used with Global Transaction IDs”, which describes SQL functions supported by MySQL 5.7 for use
with GTIDs.

16.1.3.1 GTID Concepts

A global transaction identifier (GTID) is a unique identifier created and associated with each transaction
when it is committed on the server of origin (master). This identifier is unique not only to the server
on which it originated, but is unique across all servers in a given replication setup. There is a 1-to-1
mapping between all transactions and all GTIDs.

A GTID is represented as a pair of coordinates, separated by a colon character (:), as shown here:

GTID = source_id:transaction_id

The source_id identifies the originating server. Normally, the server's server_uuid [2037]
is used for this purpose. (It is theoretically possible for it to be determined in a different manner if
the source of the transaction is not a MySQL Server instance, but this is currently not supported.)
The transaction_id is a sequence number determined by the order in which the transaction
was committed on this server; for example, the first transaction to be committed has 1 as its
transaction_id, and the tenth transaction to be committed on the same originating server is
assigned a transaction_id of 10. (It is not possible for a transaction to have 0 as a sequence
number in a GTID.) Thus, the twenty-third transaction to be committed originally on the server having
the UUID 3E11FA47-71CA-11E1-9E33-C80AA9429562 has this GTID:

3E11FA47-71CA-11E1-9E33-C80AA9429562:23

This format is used to represent GTIDs in the output of statements such as SHOW SLAVE STATUS
as well as in the binary log. They can also be seen when viewing the log file with mysqlbinlog --
base64-output=DECODE-ROWS or in the output from SHOW BINLOG EVENTS.

As written in the output of statements such as SHOW MASTER STATUS or SHOW SLAVE STATUS, a
sequence of GTIDs originating from the same server may be collapsed into a single expression, as
shown here.

3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5

The example just shown represents the first through fifth transactions originating on the MySQL Server
whose server_uuid [2037] is 3E11FA47-71CA-11E1-9E33-C80AA9429562.

This format is also used to supply the argument required by the START SLAVE options
SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS.

GTID sets. A GTID set is a set of global transaction identifiers which is represented as shown here:

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

Replication with Global Transaction Identifiers

2031

h:
 [0-9|A-F]

interval:
 n[-n]

 (n >= 1)

GTID sets are used in the MySQL Server in several ways. For example, the values stored by the
gtid_executed and gtid_purged system variables are represented as GTID sets. In addition, the
functions GTID_SUBSET() and GTID_SUBTRACT() require GTID sets as input.

GTIDs are always preserved between master and slave. This means that you can always determine
the source for any transaction applied on any slave by examining its binary log. In addition, once a
transaction with a given GTID is committed on a given server, any subsequent transaction having the
same GTID is ignored by that server. Thus, a transaction committed on the master can be applied no
more than once on the slave, which helps to guarantee consistency.

When GTIDs are in use, the slave has no need for any nonlocal data, such as the name of a file
on the master and a position within that file. All necessary information for synchronizing with the
master is obtained directly from the replication data stream. From the perspective of the database
administrator or developer, GTIDs entirely take the place of the file-offset pairs previously required
to determine points for starting, stopping, or resuming the flow of data between master and slave.
This means that, when you are using GTIDs for replication, you do not need (or want) to include
MASTER_LOG_FILE or MASTER_LOG_POS options in the CHANGE MASTER TO statement used to
direct a slave to replicate from a given master; in place of these options, it is necessary only to enable
the MASTER_AUTO_POSITION option. For the exact steps needed to configure and start masters and
slaves using GTID-based replication, see Section 16.1.3.2, “Setting Up Replication Using GTIDs”.

The generation and lifecycle of a GTID consists of the following steps:

1. A transaction is executed and committed on the master.

This transaction is assigned a GTID using the master's UUID and the smallest nonzero transaction
sequence number not yet used on this server; the GTID is written to the master's binary log
(immediately preceding the transaction itself in the log).

2. After the binary log data is transmitted to the slave and stored in the slave's relay log (using
established mechanisms for this process—see Section 16.2, “Replication Implementation”, for
details), the slave reads the GTID and sets the value of its gtid_next system variable as this
GTID. This tells the slave that the next transaction must be logged using this GTID.

It is important to note that the slave sets gtid_next in a session context.

3. The slave checks to make sure that this GTID has not already been used to log a transaction in
its own binary log. If and only if this GTID has not been used, the slave then writes the GTID and
applies the transaction (and writes the transaction to its binary log). By reading and checking the
transaction's GTID first, before processing the transaction itself, the slave guarantees not only that
no previous transaction having this GTID has been applied on the slave, but also that no other
session has already read this GTID but has not yet committed the associated transaction. In other
words, multiple clients are not permitted to apply the same transaction concurrently.

4. Because gtid_next is not empty, the slave does not attempt to generate a GTID for this
transaction but instead writes the GTID stored in this variable—that is, the GTID obtained from the
master—immediately preceding the transaction in its binary log.

16.1.3.2 Setting Up Replication Using GTIDs

This section describes a process for configuring and starting GTID-based replication in MySQL 5.7.
This is a “cold start” procedure that assumes either that you are starting the replication master for
the first time, or that it is possible to stop it; for information about provisioning replication slaves using
GTIDs from a running master, see Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”.

Replication with Global Transaction Identifiers

2032

The key steps in this startup process for the simplest possible GTID replication topology—consisting of
one master and one slave—are as follows:

1. If replication is already running, synchronize both servers by making them read-only.

2. Stop both servers.

3. Restart both servers with GTIDs, binary logging, and slave update logging enabled, and with
statements that are unsafe for GTID-based replication disabled. In addition, the servers should be
started in read-only mode, and the slave SQL and I/O threads should be prevented from starting on
the slave.

The mysqld options necessary to start the servers as described are discussed in the example that
follows later in this section.

4. Instruct the slave to use the master as the replication data source and to use auto-positioning, and
then start the slave.

The SQL statements needed to accomplish this step are described in the example that follows later
in this section.

5. Disable read-only mode on both servers, so that they can once again accept updates.

We now present a more detailed example. We assume two servers already running as master and
slave, using MySQL's “classic” file-based replication protocol.

Most of the steps that follow require the use of the MySQL root account or another MySQL user
account that has the SUPER privilege. mysqladmin shutdown requires either the SUPER privilege or
the SHUTDOWN privilege.

Step 1: Synchronize the servers. Make the servers read-only. To do this, enable the read_only
system variable by executing the following statement on both servers:

mysql> SET @@global.read_only = ON;

Then, allow the slave to catch up with the master. It is extremely important that you make sure the
slave has processed all updates before continuing.

Step 2: Stop both servers. Stop each server using mysqladmin as shown here, where username
is the user name for a MySQL user having sufficient privileges to shut down the server:

shell> mysqladmin -uusername -p shutdown

Then supply this user's password at the prompt.

Step 3: Restart both servers with GTIDs enabled. To enable binary logging with global
transaction identifiers, each server must be started with GTID mode, binary logging, slave update
logging enabled, and with statements that are unsafe for GTID-based replication disabled. In addition,
you should prevent unwanted or accidental updates from being performed on either server by starting
both in read-only mode. This means that both servers must be started with (at least) the options shown
in the following invocation of mysqld_safe:

shell> mysqld_safe --gtid_mode=ON --log-bin --log-slave-updates --enforce-gtid-consistency &

In addition, you should start the slave with the --skip-slave-start option along with the other
server options specified in the example just shown.

Although it may appear that --gtid-mode is a boolean, it is not (in fact, its values are enumerated).
Use one of the values ON or OFF only, when setting this option. Using a numeric value such as 0 or 1
can lead to unexpected results.

Replication with Global Transaction Identifiers

2033

For more information about the --gtid-mode and --enforce-gtid-consistency server options,
see Section 16.1.4.5, “Global Transaction ID Options and Variables”.

Depending on your circumstances, you may want or need to supply additional options to
mysqld_safe (or other mysqld startup script).

Step 4: Direct the slave to use the master. Instruct the slave to use the master as the replication
data source, and to use GTID-based auto-positioning rather than file-based positioning. You can do
this by executing a CHANGE MASTER TO statement on the slave, using the MASTER_AUTO_POSITION
option to tell the slave that transactions will be identified by GTIDs.

You may also need to supply appropriate values for the master's host name and port number as well as
the user name and password for a replication user account which can be used by the slave to connect
to the master; if these have already been set prior to Step 1 and no further changes need to be made,
the corresponding options can safely be omitted from the statement shown here.

mysql> CHANGE MASTER TO
 > MASTER_HOST = host,
 > MASTER_PORT = port,
 > MASTER_USER = user,
 > MASTER_PASSWORD = password,
 > MASTER_AUTO_POSITION = 1;

Neither the MASTER_LOG_FILE option nor the MASTER_LOG_POS option may be used with
MASTER_AUTO_POSITION set equal to 1. Attempting to do so causes the CHANGE MASTER
TO statement to fail with an error. (If you need to revert from GTID-based replication to
replication based on files and positions, you must use one or both of these options together with
MASTER_AUTO_POSITION = 0 in the CHANGE MASTER TO statement.)

Assuming that the CHANGE MASTER TO statement has succeeded, you can then start the slave, like
this:

mysql> START SLAVE;

Step 5: Disable read-only mode. Allow the master to begin accepting updates once again by
running the following statement:

mysql> SET @@global.read_only = OFF;

GTID-based replication should now be running, and you can begin (or resume) activity on the master
as before. Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”, discusses creation of new slaves
when using GTIDs.

16.1.3.3 Using GTIDs for Failover and Scaleout

There are a number of techniques when using MySQL Replication with Global Transaction Identifiers
(GTIDs) for provisioning a new slave which can then be used for scaleout, being promoted to master as
necessary for failover. In this section, we discuss the four techniques listed here:

• Simple replication

• Copying data and transactions to the slave

• Injecting empty transactions

• Excluding transactions with gtid_purged

Global transaction identifiers were added to MySQL Replication for the purpose of simplifying in
general management of the replication data flow and of failover activities in particular. Each identifier
uniquely identifies a set of binary log events that together make up a transaction. GTIDs play a key role
in applying changes to the database: the server automatically skips any transaction having an identifier

Replication with Global Transaction Identifiers

2034

which the server recognizes as one that it has processed before. This behavior is critical for automatic
replication positioning and correct failover.

The mapping between identifiers and sets of events comprising a given transaction is captured in the
binary log. This poses some challenges when a user wants to provision a new server with data from
another existing server. To reproduce the identifier set on the new server, it is necessary, not only
to copy the identifiers from the old server to the new one, but to preserve the relationship between
the identifiers and the actual events as well, which is what is needed for restoring a slave that is
immediately available as a candidate to become a new master on failover or switchover.

Simple replication. This is the easiest way to reproduce all identifiers and transactions on a
new server; you simply make the new server into the slave of a master that has the entire execution
history, and enable global transaction identifiers on both servers. (This requires that both master
and slave are running with the options --gtid-mode=ON --log-bin --log-slave-updates --
enforce-gtid-consistency; see Section 16.1.3.2, “Setting Up Replication Using GTIDs”, for more
information.)

Once replication is started, the new server copies the entire binary log from the master and thus
obtains all information about all GTIDs.

This method is simple and effective, but requires the slave to read the binary log from the master; it
can sometimes take a comparatively long time for the new slave to catch up with the master, so this
method is not suitable for fast failover or restoring from backup. We can obviate the need to fetch all of
the execution history from the master by copying binary log files to the new server, as discussed in the
next few paragraphs.

Copying data and transactions to the slave. Playing back the entire transaction history can
be time-consuming, and represents a major bottleneck when setting up a new replication slave. To
eliminate this requirement, we can take from the master a backup that includes, in addition to a dump
containing a snapshot of the data set, the binary logs and the global transaction information they
contain. Setting up the slave then consists of importing the snapshot, then playing back the binary
log, after which replication can be started, allowing the slave to become current with any remaining
transactions.

There are several variants of this method; these can be distinguished by the manner in which data
(dumps) and transactions (binary logs) are shipped to the new slave, as outlined here:

Data Set Transaction History

• Use the mysql client to import a dump
file created with mysqldump. Use the --
master-data option to include binary logging
information and --set-gtid-purged to AUTO
(the default) or ON, to include information about
executed transactions. You should have --
gtid-mode=ON while importing the dump on
the slave.

• Stop the slave, copy the contents of the
master's data directory to the slave's data
directory, then restart the slave.

If gtid_mode is not ON, restart the server with
GTID mode enabled.

• Import the binary log using mysqlbinlog, with
the --read-from-remote-server and --
read-from-remote-master options.

• Copy the master's binary log files to the slave.
You can make copies from the slave using
mysqlbinlog --read-from-remote-
server --raw. These can be read in to the
slave in either of the following ways:

• Update the slave's binlog.index file to
point to the copied log files. Then execute a
CHANGE MASTER TO statement in the mysql
client to point to the first log file, and START
SLAVE to read them.

• Use mysqlbinlog > file (without the
--raw option) to export the binary log files

Replication with Global Transaction Identifiers

2035

Data Set Transaction History
to SQL files that can be processed by the
mysql client.

See also Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”.

This method has the advantage that a new server is available almost immediately; only those
transactions that were committed while the snapshot or dump file was being replayed still need to
be obtained from the existing master. This means that the slave's availability is not instantanteous—
but only a relatively short amount of time should be required for the slave to catch up with these few
remaining transactions.

Copying over binary logs to the target server in advance is usually faster than reading the
entire transaction execution history from the master in real time. However, due to size or other
considerations, it may not always be feasible to move these files to the target when required. The two
remaining methods for provisioning a new slave discussed in this section use other means to convey
information about transactions to the new slave.

Injecting empty transactions. The master's global gtid_executed variable contains the set
of all transactions executed on the master. Rather than copy the binary logs when taking a snapshot
to provision a new server, you can instead note the content of gtid_executed on the server from
which the snapshot was taken. Before adding the new server to the replication chain, simply commit
an empty transaction on the new server for each transaction identifier contained in the master's
gtid_executed, like this:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';

BEGIN;
COMMIT;

SET GTID_NEXT='AUTOMATIC';

Once all transaction identifiers have been reinstated in this way using empty transactions, you must
flush and purge the slave's binary logs, as shown here, where N is the nonzero suffix of the current
binary log file name:

FLUSH LOGS;
PURGE BINARY LOGS TO 'master-bin.00000N';

You should do this to prevent this server from flooding the replication stream with false transactions in
the event that it is later promoted to master. (The FLUSH LOGS statement forces the creation of a new
binary log file; PURGE BINARY LOGS purges the empty transactions, but retains their identifiers.)

This method creates a server that is essentially a snapshot, but in time is able to become a master
as its binary log history converges with that of the replication stream (that is, as it catches up with the
master or masters). This outcome is similar in effect to that obtained using the remaining provisioning
method, which we discuss in the next few paragraphs.

Excluding transactions with gtid_purged. The master's global gtid_purged variable contains
the set of all transactions that have been purged from the master's binary log. As with the method
discussed previously (see Injecting empty transactions), you can record the value of gtid_executed
on the server from which the snapshot was taken (in place of copying the binary logs to the new
server). Unlike the previous method, there is no need to commit empty transactions (or to issue PURGE
BINARY LOGS); instead, you can set gtid_purged on the slave directly, based on the value of
gtid_executed on the server from which the backup or snapshot was taken.

As with the method using empty transactions, this method creates a server that is functionally a
snapshot, but in time is able to become a master as its binary log history converges with that of the
replication master or group.

Replication and Binary Logging Options and Variables

2036

16.1.3.4 Restrictions on Replication with GTIDs

Because GTID-based replication is dependent on transactions, some features otherwise available in
MySQL are not supported when using it. This section provides information about restrictions on and
limitations of replication with GTIDs.

Updates involving nontransactional storage engines. When using GTIDs, updates to tables
using nontransactional storage engines such as MyISAM cannot be made in the same statement or
transaction as updates to tables using transactional storage engines such as InnoDB.

This restriction is due to the fact that updates to tables that use a nontransactional storage engine
mixed with updates to tables that use a transactional storage engine within the same transaction can
result in multiple GTIDs being assigned to the same transaction.

Such problems can also occur when the master and the slave use different storage engines for their
respective versions of the same table, where one storage engine is transactional and the other is not.

In any of the cases just mentioned, the one-to-one correspondence between transactions and GTIDs is
broken, with the result that GTID-based replication cannot function correctly.

CREATE TABLE ... SELECT statements. CREATE TABLE ... SELECT is not safe for
statement-based replication. When using row-based replication, this statement is actually logged as
two separate events—one for the creation of the table, and another for the insertion of rows from the
source table into the new table just created. When this statement is executed within a transaction, it is
possible in some cases for these two events to receive the same transaction identifier, which means
that the transaction containing the inserts is skipped by the slave. Therefore, CREATE TABLE ...
SELECT is not supported when using GTID-based replication.

Temporary tables. CREATE TEMPORARY TABLE and DROP TEMPORARY TABLE statements are
not supported inside transactions when using GTIDs (that is, when the server was started with the
--enforce-gtid-consistency option). It is possible to use use these statements with GTIDs
enabled, but only outside of any transaction, and only with autocommit=1.

Preventing execution of unsupported statements. In order to prevent execution of statements
that would cause GTID-based replication to fail, all servers must be started with the --enforce-
gtid-consistency option when enabling GTIDs. This causes statements of any of the types
discussed previously in this section to fail with an error.

For information about other required startup options when enabling GTIDs, see Section 16.1.3.2,
“Setting Up Replication Using GTIDs”.

sql_slave_skip_counter is not supported when using GTIDs. If you need to skip transactions, use
the value of the master's gtid_executed variable instead; see Injecting empty transactions, for more
information.

GTID mode and mysqldump. It is possible to import a dump made using mysqldump into a MySQL
Server running with GTID mode enabled, provided that there are no GTIDs in the target server's binary
log.

GTID mode and mysql_upgrade. It is possible but is not recommended to to use
mysql_upgrade on a MySQL Server running with --gtid-mode=ON, since mysql_upgrade can
make changes to system tables that use the MyISAM storage engine, which is nontransactional.

16.1.4 Replication and Binary Logging Options and Variables

The next few sections contain information about mysqld options and server variables that are used in
replication and for controlling the binary log. Options and variables for use on replication masters and
replication slaves are covered separately, as are options and variables relating to binary logging. A set
of quick-reference tables providing basic information about these options and variables is also included
(in the next section following this one).

Replication and Binary Logging Options and Variables

2037

 Of particular importance is the --server-id [2037] option.

Command-Line Format --server-id=#

Option-File Format server-id

System Variable Name server_id

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 4294967295

This option is common to both master and slave replication servers, and is used in replication to
enable master and slave servers to identify themselves uniquely. For additional information, see
Section 16.1.4.2, “Replication Master Options and Variables”, and Section 16.1.4.3, “Replication Slave
Options and Variables”.

On the master and each slave, you must use the --server-id [2037] option to establish a unique
replication ID in the range from 1 to 232 – 1. “Unique”, means that each ID must be different from every
other ID in use by any other replication master or slave. Example: server-id=3.

In MySQL 5.7.2 and earlier, if you omit --server-id [2037], the default ID is 0, in which case the
master refuses connections from all slaves, and slaves refuse to connect to the master, and the server
sets the server_id system variable to 1. In MySQL 5.7.3 and later, the --server-id must be used
if binary logging is enabled, and a value of 0 is not changed by the server. (You can let the default be
used by specifying --server-id without an argument, but the effect is the same as using 0.) In either
case, if the server_id is 0, binary logging takes place, but the server cannot connect to any slaves as
a master, nor can any other servers connect to it as slaves. (Bug #11763963, Bug #56718)

For more information, see Section 16.1.1.2, “Setting the Replication Slave Configuration”.

 server_uuid [2037]

In MySQL 5.7, the server generates a true UUID in addition to the --server-id [2037] supplied by
the user. This is available as the global, read-only variable server_uuid [2037].

System Variable Name server_uuid [2037]

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

When starting, the MySQL server automatically obtains a UUID as follows:

1. Attempt to read and use the UUID written in the file data_dir/auto.cnf (where data_dir is
the server's data directory); exit on success.

2. Otherwise, generate a new UUID and save it to this file, creating the file if necessary.

The auto.cnf file has a format similar to that used for my.cnf or my.ini files. In MySQL 5.7,
auto.cnf has only a single [auto] section containing a single server_uuid [2037] setting and
value; the file's contents appear similar to what is shown here:

[auto]
server_uuid=8a94f357-aab4-11df-86ab-c80aa9429562

Replication and Binary Logging Options and Variables

2038

Important

The auto.cnf file is automatically generated; you should not attempt to write
or modify this file.

When using MySQL replication, masters and slaves know one another's UUIDs. The value of a slave's
UUID can be seen in the output of SHOW SLAVE HOSTS. Once START SLAVE has been executed
(but not before), the value of the master's UUID is available on the slave in the output of SHOW SLAVE
STATUS.

Note

Issuing a STOP SLAVE or RESET SLAVE statement does not reset the master's
UUID as used on the slave.

A server's server_uuid is also used in GTIDs for transactions originating on that server. For more
information, see Section 16.1.3, “Replication with Global Transaction Identifiers”.

When starting, the slave I/O thread generates an error and aborts if its master's UUID is equal to its
own unless the --replicate-same-server-id option has been set. In addition, the slave I/O
thread generates a warning if either of the following is true:

• No master having the expected server_uuid [2037] exists.

• The master's server_uuid [2037] has changed, although no CHANGE MASTER TO statement has
ever been executed.

Note

The addition of the server_uuid [2037] system variable in MySQL 5.7 does
not change the requirement for setting a unique --server-id [2037] for
each MySQL server as part of preparing and running MySQL replication, as
described earlier in this section.

16.1.4.1 Replication and Binary Logging Option and Variable Reference

The following tables list basic information about the MySQL command-line options and system
variables applicable to replication and the binary log.

Table 16.1 Replication Options and Variables: MySQL 5.7

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

N N Both
Com_change_master

N Y N

N N Both
Com_show_master_status

N Y N

N N Both
Com_show_new_master

N Y N

N N Both
Com_show_slave_hosts

N Y N

N N Both
Com_show_slave_status

N Y N

N N Both
Com_slave_start

N Y N

Replication and Binary Logging Options and Variables

2039

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

N N Both
Com_slave_stop

N Y N

N N Global
Rpl_semi_sync_master_clients

N Y N

N N Global
Rpl_semi_sync_master_net_avg_wait_time

N Y N

N N Global
Rpl_semi_sync_master_net_wait_time

N Y N

N N Global
Rpl_semi_sync_master_net_waits

N Y N

N N Global
Rpl_semi_sync_master_no_times

N Y N

N N Global
Rpl_semi_sync_master_no_tx

N Y N

N N Global
Rpl_semi_sync_master_status

N Y N

N N Global
Rpl_semi_sync_master_timefunc_failures

N Y N

N N Global
Rpl_semi_sync_master_tx_avg_wait_time

N Y N

N N Global
Rpl_semi_sync_master_tx_wait_time

N Y N

N N Global
Rpl_semi_sync_master_tx_waits

N Y N

N N Global
Rpl_semi_sync_master_wait_pos_backtraverse

N Y N

N N Global
Rpl_semi_sync_master_wait_sessions

N Y N

N N Global
Rpl_semi_sync_master_yes_tx

N Y N

N N Global
Rpl_semi_sync_slave_status

N Y N

Y Y Global
slave_exec_mode

Y N Y

N N Global
Slave_open_temp_tables

N Y N

N N Global
Slave_retried_transactions

N Y N

Replication and Binary Logging Options and Variables

2040

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

N N Global
Slave_running

N Y N

Y N Global
abort-slave-event-count

Y N N

Y N Global
disconnect-slave-event-count

Y N N

Y Y Global
enforce-gtid-consistency

Y N N

Y Y Global
enforce_gtid_consistency

Y N N

N Y Both
gtid_executed

N N N

Y Y Global
gtid-mode

Y N N

N Y Global
gtid_mode

N N N

N Y Session
gtid_next

N N Y

N Y Both
gtid_owned

N N N

N Y Global
gtid_purged

N N Y

Y Y Global
init_slave

Y N Y

Y Y Global
log-slave-updates

Y N N

Y Y Global
log_slave_updates

Y N N

Y N Global
master-info-file

Y N N

Y N Global
master-info-repository

Y N N

Y Y Global
master_info_repository

Y N Y

Y N Global
master-retry-count

Y N N

Y Y Global
relay-log

Y N N

Replication and Binary Logging Options and Variables

2041

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

N Y Global
relay_log_basename

N N N

Y Y Global
relay-log-index

Y N N

Y N Global
relay-log-info-file

Y N N

Y Y Global
relay_log_info_file

Y N N

Y N Global
relay-log-info-repository

Y N N

N Y Global
relay_log_info_repository

N N Y

Y Y Global
relay_log_index

Y N N

Y Y Global
relay_log_purge

Y N Y

Y N Global
relay-log-recovery

Y N N

Y Y Global
relay_log_recovery

Y N Y

Y Y Global
relay_log_space_limit

Y N N

Y N Global
replicate-do-db

Y N N

Y N Global
replicate-do-table

Y N N

Y N Global
replicate-ignore-db

Y N N

Y N Global
replicate-ignore-table

Y N N

Y N Global
replicate-rewrite-db

Y N N

Y N Global
replicate-same-server-id

Y N N

Y N Global
replicate-wild-do-table

Y N N

Y N Global
replicate-wild-ignore-table

Y N N

Replication and Binary Logging Options and Variables

2042

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

Y Y Global
report-host

Y N N

Y Y Global
report-password

Y N N

Y Y Global
report-port

Y N N

Y Y Global
report-user

Y N N

N Y Global
rpl_semi_sync_master_enabled

N N Y

N Y Global
rpl_semi_sync_master_timeout

N N Y

N Y Global
rpl_semi_sync_master_trace_level

N N Y

N Y Global
rpl_semi_sync_master_wait_for_slave_count

N N Y

N Y Global
rpl_semi_sync_master_wait_no_slave

N N Y

N Y Global
rpl_semi_sync_master_wait_point

N N Y

N Y Global
rpl_semi_sync_slave_enabled

N N Y

N Y Global
rpl_semi_sync_slave_trace_level

N N Y

Y Y Global
rpl_stop_slave_timeout

Y N Y

N Y Global
server_uuid [2037]

N N N

Y N Global
show-slave-auth-info

Y N N

Y N Global
skip-slave-start

Y N N

Y Y Global
slave_allow_batching

Y N Y

Y Y Global
slave-load-tmpdir

Y N N

Y Y Global
slave-skip-errors

Y N N

Replication and Binary Logging Options and Variables

2043

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

Y N Global
slave-checkpoint-group

Y N N

Y Y Global
slave_checkpoint_group

Y N Y

Y N Global
slave-checkpoint-period

Y N N

Y Y Global
slave_checkpoint_period

Y N Y

Y Y Global
slave_compressed_protocol

Y N Y

Y N Global
slave-max-allowed-packet

Y N N

N Y Global
slave_max_allowed_packet

N N Y

Y Y Global
slave_net_timeout

Y N Y

Y N Global
slave-parallel-type

Y N N

N Y Global
slave_parallel_type

N N Y

N Y Global
slave_parallel_workers

N N Y

Y N Global
slave-parallel-workers

Y N N

Y N Global
slave-pending-jobs-size-max

N N N

N Y Global
slave_pending_jobs_size_max

N N Y

Y N Global
slave-rows-search-algorithms

Y N N

N Y Global
slave_rows_search_algorithms

N N Y

Y Y Global
slave_transaction_retries

Y N Y

Y Y Global
slave_type_conversions

Y N N

N Y Global
sql_slave_skip_counter

N N Y

Replication and Binary Logging Options and Variables

2044

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

Y Y Global
sync_binlog

Y N Y

Y Y Global
sync_master_info

Y N Y

Y Y Global
sync_relay_log

Y N Y

Y Y Global
sync_relay_log_info

Y N Y

Section 16.1.4.2, “Replication Master Options and Variables”, provides more detailed information about
options and variables relating to replication master servers. For more information about options and
variables relating to replication slaves, see Section 16.1.4.3, “Replication Slave Options and Variables”.

Table 16.2 Binary Logging Options and Variables: MySQL 5.7

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

N N Global
Binlog_cache_disk_use

N Y N

Y Y Both
binlog_row_image

Y N Y

N Y Both
binlog_rows_query_log_events

N N Y

N N Global
Binlog_stmt_cache_disk_use

N Y N

N N Global
Binlog_cache_use

N Y N

N N Global
Binlog_stmt_cache_use

N Y N

N N Both
Com_show_binlog_events

N Y N

N N Both
Com_show_binlogs

N Y N

Y N Global
binlog-checksum

Y N N

N Y Global
binlog_checksum

N N Y

Y N Global
binlog-do-db

Y N N

binlog-ignore-db Y N Global

Replication and Binary Logging Options and Variables

2045

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

Y N N

Y N Global
binlog-row-event-max-size

Y N N

Y Y Global
binlog_cache_size

Y N Y

N Y Global
binlog_max_flush_queue_time

N N Y

N Y Global
binlog_order_commits

N N Y

Y Y Global
binlog_stmt_cache_size

Y N Y

Y Y Both
binlog_format

Y N Y

Y N Global
binlog-rows-query-log-events

Y N N

Y Y Both
binlog_direct_non_transactional_updates

Y N Y

N Y Global
log_bin_basename

N N N

Y Y Global
log-bin-use-v1-row-events

Y N N

Y Y Global
log_bin_use_v1_row_events

Y N N

Y N Global
master-verify-checksum

Y N N

N Y Global
master_verify_checksum

N N Y

Y N Global
max-binlog-dump-events

Y N N

Y Y Global
max_binlog_cache_size

Y N Y

Y Y Global
max_binlog_size

Y N Y

Y Y Global
max_binlog_stmt_cache_size

Y N Y

Y N Global
slave-sql-verify-checksum

Y N N

slave_sql_verify_checksum N Y Global

Replication and Binary Logging Options and Variables

2046

Command
Line

System
Variable

Scope

Option or Variable Name
Option
File

Status
Variable

Dynamic

N N Y

Y N Global
sporadic-binlog-dump-fail

Y N N

Section 16.1.4.4, “Binary Log Options and Variables”, provides more detailed information about options
and variables relating to binary logging. For additional general information about the binary log, see
Section 5.2.4, “The Binary Log”.

For information about the sql_log_bin and sql_log_off variables, see Section 5.1.4, “Server
System Variables”.

For a table showing all command-line options, system and status variables used with mysqld, see
Section 5.1.1, “Server Option and Variable Reference”.

16.1.4.2 Replication Master Options and Variables

This section describes the server options and system variables that you can use on replication master
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the master and each slave, you must use the server-id [2037] option to establish a unique
replication ID. For each server, you should pick a unique positive integer in the range from 1 to 232 –
1, and each ID must be different from every other ID in use by any other replication master or slave.
Example: server-id=3.

For options used on the master for controlling binary logging, see Section 16.1.4.4, “Binary Log Options
and Variables”.

System variables used on replication masters. The following system variables are used in
controlling replication masters:

• auto_increment_increment

System Variable Name auto_increment_increment

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1

Range 1 .. 65535

auto_increment_increment and auto_increment_offset are intended for use with master-
to-master replication, and can be used to control the operation of AUTO_INCREMENT columns. Both
variables have global and session values, and each can assume an integer value between 1 and
65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set
to 1 instead. Attempting to set the value of either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of
auto_increment_increment or auto_increment_offset to a noninteger value gives rise to
an error, and the actual value of the variable remains unchanged.

Replication and Binary Logging Options and Variables

2047

Note

auto_increment_increment is intended for use with MySQL Cluster,
which is not currently supported in MySQL 5.7.

These two variables affect AUTO_INCREMENT column behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc1
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
 Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column
value. Consider the following, assuming that these statements are executed during the same
session as the example given in the description for auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2

Replication and Binary Logging Options and Variables

2048

 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+
4 rows in set (0.02 sec)

If the value of auto_increment_offset is greater than that of auto_increment_increment,
the value of auto_increment_offset is ignored.

Should one or both of these variables be changed and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column,
and the next value inserted is the least value in the series that is greater than the maximum existing
value in the AUTO_INCREMENT column. In other words, the series is calculated like so:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)

Replication and Binary Logging Options and Variables

2049

The values shown for auto_increment_increment and auto_increment_offset generate
the series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The greatest value present in the col column
prior to the INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the
inserted values for col begin at that point and the results are as shown for the SELECT query.

It is not possible to confine the effects of these two variables to a single table, and thus they do
not take the place of the sequences offered by some other database management systems; these
variables control the behavior of all AUTO_INCREMENT columns in all tables on the MySQL server.
If the global value of either variable is set, its effects persist until the global value is changed or
overridden by setting the session value, or until mysqld is restarted. If the local value is set, the
new value affects AUTO_INCREMENT columns for all tables into which new rows are inserted by the
current user for the duration of the session, unless the values are changed during that session.

The default value of auto_increment_increment is 1. See Section 16.4.1.1, “Replication and
AUTO_INCREMENT”.

• auto_increment_offset

System Variable Name auto_increment_offset

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1

Range 1 .. 65535

This variable has a default value of 1. For particulars, see the description for
auto_increment_increment.

Note

auto_increment_offset is intended for use with MySQL Cluster, which is
not currently supported in MySQL 5.7.

16.1.4.3 Replication Slave Options and Variables

This section describes the server options and system variables that apply to slave replication servers.
You can specify the options either on the command line or in an option file. Many of the options can be
set while the server is running by using the CHANGE MASTER TO statement. You can specify system
variable values using SET.

Server ID. On the master and each slave, you must use the server-id [2037] option to establish
a unique replication ID in the range from 1 to 232 – 1. “Unique” means that each ID must be different
from every other ID in use by any other replication master or slave. Example my.cnf file:

[mysqld]
server-id=3

Startup options for replication slaves. The following list describes startup options for controlling
replication slave servers. Many of these options can be set while the server is running by using the
CHANGE MASTER TO statement. Others, such as the --replicate-* options, can be set only when
the slave server starts. Replication-related system variables are discussed later in this section.

• --abort-slave-event-count

Command-Line Format --abort-slave-event-count=#

Replication and Binary Logging Options and Variables

2050

Option-File Format abort-slave-event-count

Permitted Values

Type numeric

Default 0

Min
Value

0

When this option is set to some positive integer value other than 0 (the default) it affects replication
behavior as follows: After the slave SQL thread has started, value log events are permitted to be
executed; after that, the slave SQL thread does not receive any more events, just as if the network
connection from the master were cut. The slave thread continues to run, and the output from SHOW
SLAVE STATUS displays Yes in both the Slave_IO_Running and the Slave_SQL_Running
columns, but no further events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

• --disconnect-slave-event-count

Command-Line Format --disconnect-slave-event-count=#

Option-File Format disconnect-slave-event-count

Permitted Values

Type numeric

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --log-slave-updates

Command-Line Format --log-slave-updates

Option-File Format log-slave-updates

System Variable Name log_slave_updates

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default FALSE

Normally, a slave does not log to its own binary log any updates that are received from a master
server. This option tells the slave to log the updates performed by its SQL thread to its own binary
log. For this option to have any effect, the slave must also be started with the --log-bin option
to enable binary logging. Prior to MySQL 5.5, the server would not start when using the --log-
slave-updates option without also starting the server with the --log-bin option, and would fail
with an error; in MySQL 5.7, only a warning is generated. (Bug #44663) --log-slave-updates is
used when you want to chain replication servers. For example, you might want to set up replication
servers using this arrangement:

A -> B -> C

Here, A serves as the master for the slave B, and B serves as the master for the slave C. For this to
work, B must be both a master and a slave. You must start both A and B with --log-bin to enable

Replication and Binary Logging Options and Variables

2051

binary logging, and B with the --log-slave-updates option so that updates received from A are
logged by B to its binary log.

• --log-slow-slave-statements

Removed 5.7.1

Command-Line Format --log-
slow-
slave-
statements

through 5.7.0

Option-File Format log-slow-slave-statements

Permitted Values

Type boolean

Default OFF

When the slow query log is enabled, this option enables logging for queries that have taken more
than long_query_time seconds to execute on the slave.

This command-line option was removed in MySQL 5.7.1 and replaced by the
log_slow_slave_statements system variable. The system variable can be set on the command
line or in option files the same way as the option, so there is no need for any changes at server
startup, but the system variable also makes it possible to examine or set the value at runtime.

• --log-warnings[=level]

Deprecated 5.7.2

Command-Line Format --log-warnings[=#]

 -W [#]

Option-File Format log-warnings[=#]

System Variable Name log_warnings

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 1

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 1

Range 0 .. 18446744073709547520

Note

As of MySQL 5.7.2, the log_error_verbosity system variable is
preferred over, and should be used instead of, the --log-warnings
option or log_warnings system variable. For more information, see the
descriptions of log_error_verbosity and log_warnings. The --log-

Replication and Binary Logging Options and Variables

2052

warnings command-line option and log_warnings system variable are
deprecated and will be removed in a future MySQL release.

This option causes a server to print more messages to the error log about what it is doing. With
respect to replication, the server generates warnings that it succeeded in reconnecting after a
network/connection failure, and informs you as to how each slave thread started. This option is
enabled (1) by default; to disable it, use --log-warnings=0. If the value is greater than 1, aborted
connections are written to the error log, and access-denied errors for new connection attempts are
written. See Section C.5.2.11, “Communication Errors and Aborted Connections”.

Note that the effects of this option are not limited to replication. It produces warnings across a
spectrum of server activities.

• --master-info-file=file_name

Command-Line Format --master-info-file=file_name

Option-File Format master-info-file

Permitted Values

Type file name

Default master.info

The name to use for the file in which the slave records information about the master. The default
name is master.info in the data directory. For information about the format of this file, see
Section 16.2.2.2, “Slave Status Logs”.

• --master-retry-count=count

Deprecated 5.6.1

Command-Line Format --master-retry-count=#

Option-File Format master-retry-count

Permitted Values

Platform
Bit Size

32

Type numeric

Default 86400

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 86400

Range 0 .. 18446744073709551615

The number of times that the slave tries to connect to the master before giving up. Reconnects are
attempted at intervals set by the MASTER_CONNECT_RETRY option of the CHANGE MASTER TO
statement (default 60). Reconnects are triggered when data reads by the slave time out according to
the --slave-net-timeout option. The default value is 86400. A value of 0 means “infinite”; the
slave attempts to connect forever.

This option is deprecated and will be removed in a future MySQL release. Applications should be
updated to use the MASTER_RETRY_COUNT option of the CHANGE MASTER TO statement instead.

• --max-relay-log-size=size

Replication and Binary Logging Options and Variables

2053

Command-Line Format --max_relay_log_size=#

Option-File Format max_relay_log_size

System Variable Name max_relay_log_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 1073741824

The size at which the server rotates relay log files automatically. For more information, see
Section 16.2.2, “Replication Relay and Status Logs”. The default size is 1GB.

• --read-only

Command-Line Format --read-only

Option-File Format read_only

System Variable Name read_only

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default false

Cause the slave to permit no updates except from slave threads or from users having the SUPER
privilege. On a slave server, this can be useful to ensure that the slave accepts updates only from its
master server and not from clients. This variable does not apply to TEMPORARY tables.

• --relay-log=file_name

Command-Line Format --relay-log=name

Option-File Format relay-log

System Variable Name relay_log

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The basename for the relay log. The default basename is host_name-relay-bin. The server
writes the file in the data directory unless the basename is given with a leading absolute path name
to specify a different directory. The server creates relay log files in sequence by adding a numeric
suffix to the basename.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply
a value; the default basename is used only if the option is not actually specified. If you use the --
relay-log option without specifying a value, unexpected behavior is likely to result; this behavior
depends on the other options used, the order in which they are specified, and whether they are
specified on the command line or in an option file. For more information about how MySQL handles
server options, see Section 4.2.3, “Specifying Program Options”.

Replication and Binary Logging Options and Variables

2054

If you specify this option, the value specified is also used as the basename for the relay log index file.
You can override this behavior by specifying a different relay log index file basename using the --
relay-log-index option.

When the server reads an entry from the index file, it checks whether the entry contains a relative
path. If it does, the relative part of the path in replaced with the absolute path set using the --
relay-log option. An absolute path remains unchanged; in such a case, the index must be edited
manually to enable the new path or paths to be used. (Previously, manual intervention was required
whenever relocating the binary log or relay log files.) (Bug #11745230, Bug #12133)

You may find the --relay-log option useful in performing the following tasks:

• Creating relay logs whose names are independent of host names.

• If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease max_relay_log_size.

• To increase speed by using load-balancing between disks.

You can obtain the relay log filename (and path) from the relay_log_basename system variable.

• --relay-log-index=file_name

Command-Line Format --relay-log-index=name

Option-File Format relay-log-index

System Variable Name relay_log_index

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The name to use for the relay log index file. The default name is host_name-relay-bin.index in
the data directory, where host_name is the name of the slave server.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply
a value; the default basename is used only if the option is not actually specified. If you use the --
relay-log-index option without specifying a value, unexpected behavior is likely to result; this
behavior depends on the other options used, the order in which they are specified, and whether
they are specified on the command line or in an option file. For more information about how MySQL
handles server options, see Section 4.2.3, “Specifying Program Options”.

If you specify this option, the value specified is also used as the basename for the relay logs. You
can override this behavior by specifying a different relay log file basename using the --relay-log
option.

• --relay-log-info-file=file_name

Command-Line Format --relay-log-info-file=file_name

Option-File Format relay-log-info-file

Permitted Values

Type file name

Default relay-log.info

Replication and Binary Logging Options and Variables

2055

The name to use for the file in which the slave records information about the relay logs. The default
name is relay-log.info in the data directory. For information about the format of this file, see
Section 16.2.2.2, “Slave Status Logs”.

• --relay-log-purge={0|1}

Command-Line Format --relay_log_purge

Option-File Format relay_log_purge

System Variable Name relay_log_purge

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default TRUE

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay_log_purge = N.

• --relay-log-recovery={0|1}

Command-Line Format --relay-log-recovery

Option-File Format relay-log-recovery

Permitted Values

Type boolean

Default FALSE

Enables automatic relay log recovery immediately following server startup, which means that the
replication slave discards all unprocessed relay logs and retrieves them from the replication master.
This should be used following a crash on the replication slave to ensure that no possibly corrupted
relay logs are processed. The default value is 0 (disabled).

To provide a crash-proof slave, this option must be enabled (set to 1), and --relay-log-info-
repository must be set to TABLE. See Crash-safe replication, for more information.

If this option is enabled for a multi-threaded slave, and the slave fails with errors, you can use START
SLAVE UNTIL SQL_AFTER_MTS_GAPS to ensure that any gaps in the relay log are processed;
after running this statement, you can then use CHANGE MASTER TO to fail this slave over to a new
master. (Bug #13893363)

• --relay-log-space-limit=size

Command-Line Format --relay_log_space_limit=#

Option-File Format relay_log_space_limit

System Variable Name relay_log_space_limit

Variable Scope Global

Dynamic Variable No

Permitted Values

Platform
Bit Size

32

Type numeric

Replication and Binary Logging Options and Variables

2056

Default 0

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 0

Range 0 .. 18446744073709547520

This option places an upper limit on the total size in bytes of all relay logs on the slave. A value of 0
means “no limit.” This is useful for a slave server host that has limited disk space. When the limit is
reached, the I/O thread stops reading binary log events from the master server until the SQL thread
has caught up and deleted some unused relay logs. Note that this limit is not absolute: There are
cases where the SQL thread needs more events before it can delete relay logs. In that case, the I/
O thread exceeds the limit until it becomes possible for the SQL thread to delete some relay logs
because not doing so would cause a deadlock. You should not set --relay-log-space-limit to
less than twice the value of --max-relay-log-size (or --max-binlog-size if --max-relay-
log-size is 0). In that case, there is a chance that the I/O thread waits for free space because
--relay-log-space-limit is exceeded, but the SQL thread has no relay log to purge and is
unable to satisfy the I/O thread. This forces the I/O thread to ignore --relay-log-space-limit
temporarily.

• --replicate-do-db=db_name

Command-Line Format --replicate-do-db=name

Option-File Format replicate-do-db

Permitted Values

Type string

Creates a replication filter using the name of a database. In MySQL 5.7.3 and later, such filters can
also be created using CHANGE REPLICATION FILTER REPLICATE_DO_DB. The precise effect
of this filtering depends on whether statement-based or row-based replication is in use, and are
described in the next several paragraphs.

Statement-based replication. Tell the slave SQL thread to restrict replication to statements
where the default database (that is, the one selected by USE) is db_name. To specify more than
one database, use this option multiple times, once for each database; however, doing so does not
replicate cross-database statements such as UPDATE some_db.some_table SET foo='bar'
while a different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list then the list will be treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If
the slave is started with --replicate-do-db=sales and you issue the following statements on
the master, the UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “check just the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table

Replication and Binary Logging Options and Variables

2057

DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Row-based replication. Tells the slave SQL thread to restrict replication to database db_name.
Only tables belonging to db_name are changed; the current database has no effect on this. Suppose
that the slave is started with --replicate-do-db=sales and row-based replication is in effect,
and then the following statements are run on the master:

USE prices;
UPDATE sales.february SET amount=amount+100;

The february table in the sales database on the slave is changed in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, issuing the following
statements on the master has no effect on the slave when using row-based replication and --
replicate-do-db=sales:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects
would still not be replicated.

Another important difference in how --replicate-do-db is handled in statement-based replication
as opposed to row-based replication occurs with regard to statements that refer to multiple
databases. Suppose that the slave is started with --replicate-do-db=db1, and the following
statements are executed on the master:

USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

If you are using statement-based replication, then both tables are updated on the slave. However,
when using row-based replication, only table1 is affected on the slave; since table2 is in a
different database, table2 on the slave is not changed by the UPDATE. Now suppose that, instead
of the USE db1 statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

In this case, the UPDATE statement would have no effect on the slave when using statement-based
replication. However, if you are using row-based replication, the UPDATE would change table1 on
the slave, but not table2—in other words, only tables in the database named by --replicate-
do-db are changed, and the choice of default database has no effect on this behavior.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-do-db
affects binary logging, and the effects of the replication format on how --
replicate-do-db affects replication behavior are the same as those of the
logging format on the behavior of --binlog-do-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-ignore-db=db_name

Command-Line Format --replicate-ignore-db=name

Replication and Binary Logging Options and Variables

2058

Option-File Format replicate-ignore-db

Permitted Values

Type string

Creates a replication filter using the name of a database. In MySQL 5.7.3 and later, such filters can
also be created using CHANGE REPLICATION FILTER REPLICATE_IGNORE_DB. As with --
replicate-do-db, the precise effect of this filtering depends on whether statement-based or row-
based replication is in use, and are described in the next several paragraphs.

Statement-based replication. Tells the slave SQL thread not to replicate any statement where
the default database (that is, the one selected by USE) is db_name.

Row-based replication. Tells the slave SQL thread not to update any tables in the database
db_name. The default database has no effect.

When using statement-based replication, the following example does not work as you might expect.
Suppose that the slave is started with --replicate-ignore-db=sales and you issue the
following statements on the master:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies
only to the default database (determined by the USE statement). Because the sales database
was specified explicitly in the statement, the statement has not been filtered. However, when using
row-based replication, the UPDATE statement's effects are not propagated to the slave, and the
slave's copy of the sales.january table is unchanged; in this instance, --replicate-ignore-
db=sales causes all changes made to tables in the master's copy of the sales database to be
ignored by the slave.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, if you supply a comma separated list then the list
will be treated as the name of a single database.

You should not use this option if you are using cross-database updates and you do not want these
updates to be replicated. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.
% instead. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-ignore-
db affects binary logging, and the effects of the replication format on how --
replicate-ignore-db affects replication behavior are the same as those
of the logging format on the behavior of --binlog-ignore-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-do-table=db_name.tbl_name

Command-Line Format --replicate-do-table=name

Option-File Format replicate-do-table

Permitted Values

Type string

Replication and Binary Logging Options and Variables

2059

Creates a replication filter by telling the slave SQL thread to restrict replication to a given table. To
specify more than one table, use this option multiple times, once for each table. This works for both
cross-database updates and default database updates, in contrast to --replicate-do-db. See
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_DO_TABLE statement.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the --replicate-*-db options.

• --replicate-ignore-table=db_name.tbl_name

Command-Line Format --replicate-ignore-table=name

Option-File Format replicate-ignore-table

Permitted Values

Type string

Creates a replication filter by telling the slave SQL thread not to replicate any statement that updates
the specified table, even if any other tables might be updated by the same statement. To specify
more than one table to ignore, use this option multiple times, once for each table. This works for
cross-database updates, in contrast to --replicate-ignore-db. See Section 16.2.3, “How
Servers Evaluate Replication Filtering Rules”.

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_IGNORE_TABLE statement.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the --replicate-*-db options.

• --replicate-rewrite-db=from_name->to_name

Command-Line Format --replicate-rewrite-db=old_name->new_name

Option-File Format replicate-rewrite-db

Permitted Values

Type string

Tells the slave to create a replication filter that translates the default database (that is, the one
selected by USE) to to_name if it was from_name on the master. Only statements involving
tables are affected (not statements such as CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), and only if from_name is the default database on the master. To specify multiple
rewrites, use this option multiple times. The server uses the first one with a from_name value that
matches. The database name translation is done before the --replicate-* rules are tested.

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_REWRITE_DB statement.

Statements in which table names are qualified with database names when using this option do not
work with table-level replication filtering options such as --replicate-do-table. Suppose we
have a database named a on the master, one named b on the slave, each containing a table t, and
have started the master with --replicate-rewrite-db='a->b'. At a later point in time, we
execute DELETE FROM a.t. In this case, no relevant filtering rule works, for the reasons shown
here:

Replication and Binary Logging Options and Variables

2060

1. --replicate-do-table=a.t does not work because the slave has table t in database b.

2. --replicate-do-table=b.t does not match the original statement and so is ignored.

3. --replicate-do-table=*.t is handled identically to --replicate-do-table=a.t, and
thus does not work, either.

Similarly, the --replication-rewrite-db option does not work with cross-database updates.

If you use this option on the command line and the “>” character is special to your command
interpreter, quote the option value. For example:

shell> mysqld --replicate-rewrite-db="olddb->newdb"

• --replicate-same-server-id

Command-Line Format --replicate-same-server-id

Option-File Format replicate-same-server-id

Permitted Values

Type boolean

Default FALSE

To be used on slave servers. Usually you should use the default setting of 0, to prevent infinite loops
caused by circular replication. If set to 1, the slave does not skip events having its own server ID.
Normally, this is useful only in rare configurations. Cannot be set to 1 if --log-slave-updates is
used. By default, the slave I/O thread does not write binary log events to the relay log if they have the
slave's server ID (this optimization helps save disk usage). If you want to use --replicate-same-
server-id, be sure to start the slave with this option before you make the slave read its own events
that you want the slave SQL thread to execute.

• --replicate-wild-do-table=db_name.tbl_name

Command-Line Format --replicate-wild-do-table=name

Option-File Format replicate-wild-do-table

Permitted Values

Type string

Creates a replication filter by telling the slave thread to restrict replication to statements where any
of the updated tables match the specified database and table name patterns. Patterns can contain
the “%” and “_” wildcard characters, which have the same meaning as for the LIKE pattern-matching
operator. To specify more than one table, use this option multiple times, once for each table. This
works for cross-database updates. See Section 16.2.3, “How Servers Evaluate Replication Filtering
Rules”.

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_WILD_DO_TABLE statement.

This option applies to tables, views, and triggers. It does not apply to stored procedures and
functions, or events. To filter statements operating on the latter objects, use one or more of the --
replicate-*-db options.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a table
where the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-
level statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if

Replication and Binary Logging Options and Variables

2061

you use --replicate-wild-do-table=foo%.%, database-level statements are replicated if the
database name matches the pattern foo%.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not
replicate tables from the my1ownAABCdb database, you should escape the “_” and “%” characters
like this: --replicate-wild-do-table=my_own\%db. If you use the option on the command
line, you might need to double the backslashes or quote the option value, depending on your
command interpreter. For example, with the bash shell, you would need to type --replicate-
wild-do-table=my_own\\%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Command-Line Format --replicate-wild-ignore-table=name

Option-File Format replicate-wild-ignore-table

Permitted Values

Type string

Creates a replication filter which keeps the slave thread from replicating a statement in which any
table matches the given wildcard pattern. To specify more than one table to ignore, use this option
multiple times, once for each table. This works for cross-database updates. See Section 16.2.3,
“How Servers Evaluate Replication Filtering Rules”.

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_WILD_IGNORE_TABLE statement.

Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates that use a
table where the database name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the --replicate-wild-do-
table option. The rules for including literal wildcard characters in the option value are the same as
for --replicate-wild-ignore-table as well.

• --report-host=host_name

Command-Line Format --report-host=host_name

Option-File Format report-host

System Variable Name report_host

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The host name or IP address of the slave to be reported to the master during slave registration. This
value appears in the output of SHOW SLAVE HOSTS on the master server. Leave the value unset if
you do not want the slave to register itself with the master. Note that it is not sufficient for the master
to simply read the IP address of the slave from the TCP/IP socket after the slave connects. Due to
NAT and other routing issues, that IP may not be valid for connecting to the slave from the master or
other hosts.

• --report-password=password

Command-Line Format --report-password=name

Option-File Format report-password

System Variable Name report_password

Replication and Binary Logging Options and Variables

2062

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The account password of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-
info option is given.

Although the name of this option might imply otherwise, --report-password is not connected to
the MySQL user privilege system and so is not necessarily (or even likely to be) the same as the
password for the MySQL replication user account.

• --report-port=slave_port_num

Command-Line Format --report-port=#

Option-File Format report-port

System Variable Name report_port

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default [slave_port]

Range 0 .. 65535

The TCP/IP port number for connecting to the slave, to be reported to the master during slave
registration. Set this only if the slave is listening on a nondefault port or if you have a special tunnel
from the master or other clients to the slave. If you are not sure, do not use this option.

The default value for this option is the port number actually used by the slave (Bug #13333431). This
is also the default value displayed by SHOW SLAVE HOSTS.

• --report-user=user_name

Command-Line Format --report-user=name

Option-File Format report-user

System Variable Name report_user

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

The account user name of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-
info option is given.

Although the name of this option might imply otherwise, --report-user is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the name
of the MySQL replication user account.

• --show-slave-auth-info

Replication and Binary Logging Options and Variables

2063

Command-Line Format --show-slave-auth-info

Option-File Format show-slave-auth-info

Permitted Values

Type boolean

Default FALSE

Display slave user names and passwords in the output of SHOW SLAVE HOSTS on the master server
for slaves started with the --report-user and --report-password options.

• --slave-checkpoint-group=#

Command-Line Format --slave-checkpoint-group=#

Option-File Format slave-checkpoint-group

Permitted Values

Type numeric

Default 512

Range 32 .. 524280

Block
Size

8

Sets the maximum number of transactions that can be processed by a multi-threaded slave before a
checkpoint operation is called to update its status as shown by SHOW SLAVE STATUS. Setting this
option has no effect on slaves for which multi-threading is not enabled.

This option works in combination with the --slave-checkpoint-period option in such a way
that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this option is 32, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to
a value that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before
storing the value. (Exception: No such rounding is performed by the debug server.) Regardless of
how the server was built, the default value is 512, and the maximum allowed value is 524280.

• --slave-checkpoint-period=#

Command-Line Format --slave-checkpoint-period=#

Option-File Format slave-checkpoint-period

Permitted Values

Type numeric

Default 300

Range 1 .. 4G

Sets the maximum time (in milliseconds) that is allowed to pass before a checkpoint operation is
called to update the status of a multi-threaded slave as shown by SHOW SLAVE STATUS. Setting this
option has no effect on slaves for which multi-threading is not enabled.

This option works in combination with the --slave-checkpoint-group option in such a way that,
when either limit is exceeded, the checkpoint is executed and the counters tracking both the number
of transactions and the time elapsed since the last checkpoint are reset.

Replication and Binary Logging Options and Variables

2064

The minimum allowed value for this option is 1, unless the server was built using -DWITH_DEBUG, in
which case the minimum value is 0. Regardless of how the server was built, the default value is 300,
and the maximum possible value is 4294967296 (4GB).

• --slave-parallel-workers

Command-Line Format --slave-parallel-workers=#

Option-File Format slave-parallel-workers

Permitted Values

Type numeric

Default 0

Range 0 .. 1024

Sets the number of slave worker threads for executing replication events (transactions) in parallel.
Setting this variable to 0 (the default) disables parallel execution. The maximum is 1024.

When parallel execution is enabled, the slave SQL thread acts as the coordinator for the slave
worker threads, among which transactions are distributed on a per-database basis. This means
that a worker thread on the slave slave can process successive transactions on a given database
without waiting for updates to other databases to complete. The current implementation of multi-
threading on the slave assumes that the data is partitioned per database, and that updates within a
given database occur in the same relative order as they do on the master, in order to work correctly.
However, transactions do not need to be coordinated between any two databases.

Due to the fact that transactions on different databases can occur in a different order on the slave
than on the master, checking for the most recently executed transaction does not guarantee that
all previous transactions from the master have been executed on the slave. This has implications
for logging and recovery when using a multi-threaded slave. For information about how to interpret
binary logging information when using multi-threading on the slave, see Section 13.7.5.33, “SHOW
SLAVE STATUS Syntax”. In addition, this means that START SLAVE UNTIL is not supported with a
multi-threaded slave.

When multi-threading is enabled, slave_transaction_retries is treated as equal to 0, and
cannot be changed. (Currently, retrying of transactions is not supported with multi-threaded slaves.)

You should also note that enforcing foreign key relationships between tables in different databases
causes multi-threaded slaves to use sequential rather than parallel mode, which can have a negative
impact on performance. (Bug #14092635)

• --slave-pending-jobs-size-max=#

Command-Line Format --slave-pending-jobs-size-max=#

Permitted Values

Type numeric

Default 16M

Range 1024 .. 18EB

Block
Size

1024

For multi-threaded slaves, this option sets the maximum amount of memory (in bytes) available to
slave worker queues holding events not yet applied. Setting this option has no effect on slaves for
which multi-threading is not enabled.

Replication and Binary Logging Options and Variables

2065

The minimum possible value for this option is 1024; the default is 16MB. The maximum possible
value is 18446744073709551615 (16 exabytes). Values that are not exact multiples of 1024 are
rounded down to the next-highest multiple of 1024 prior to being stored.

Important

The value for this option must not be less than the master's value for
max_allowed_packet; otherwise a slave worker queue may become full
while there remain events coming from the master to be processed.

• --skip-slave-start

Command-Line Format --skip-slave-start

Option-File Format skip-slave-start

Permitted Values

Type boolean

Default FALSE

Tells the slave server not to start the slave threads when the server starts. To start the threads later,
use a START SLAVE statement.

• --slave_compressed_protocol={0|1}

Command-Line Format --slave_compressed_protocol

Option-File Format slave_compressed_protocol

System Variable Name slave_compressed_protocol

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

If this option is set to 1, use compression for the slave/master protocol if both the slave and the
master support it. The default is 0 (no compression).

• --slave-load-tmpdir=file_name

Command-Line Format --slave-load-tmpdir=path

Option-File Format slave-load-tmpdir

System Variable Name slave_load_tmpdir

Variable Scope Global

Dynamic Variable No

Permitted Values

Type directory name

Default /tmp

The name of the directory where the slave creates temporary files. This option is by default equal
to the value of the tmpdir system variable. When the slave SQL thread replicates a LOAD DATA
INFILE statement, it extracts the file to be loaded from the relay log into temporary files, and then
loads these into the table. If the file loaded on the master is huge, the temporary files on the slave
are huge, too. Therefore, it might be advisable to use this option to tell the slave to put temporary

Replication and Binary Logging Options and Variables

2066

files in a directory located in some file system that has a lot of available space. In that case, the relay
logs are huge as well, so you might also want to use the --relay-log option to place the relay logs
in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-
based file system) because the temporary files used to replicate LOAD DATA INFILE must survive
machine restarts. The directory also should not be one that is cleared by the operating system during
the system startup process.

• slave-max-allowed-packet=bytes

Command-Line Format --slave-max-allowed-packet=#

Option-File Format slave-max-allowed-packet

Permitted Values

Type numeric

Default 1073741824

Range 1024 .. 1073741824

This option sets the maximum packet size in bytes for the slave SQL and I/O threads, so that large
updates using row-based replication do not cause replication to fail because an update exceeded
max_allowed_packet. (Bug #12400221, Bug #60926)

The corresponding server variable slave_max_allowed_packet always has a value that is a
positive integer multiple of 1024; if you set it to some value that is not such a multiple, the value is
automatically rounded down to the next highest multiple of 1024. (For example, if you start the server
with --slave-max-allowed-packet=10000, the value used is 9216; setting 0 as the value
causes 1024 to be used.) A truncation warning is issued in such cases.

The maximum (and default) value is 1073741824 (1 GB); the minimum is 1024.

• --slave-net-timeout=seconds

Command-Line Format --slave-net-timeout=#

Option-File Format slave-net-timeout

System Variable Name slave_net_timeout

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 3600

Min
Value

1

The number of seconds to wait for more data from the master before the slave considers the
connection broken, aborts the read, and tries to reconnect. The first retry occurs immediately after
the timeout. The interval between retries is controlled by the MASTER_CONNECT_RETRY option for
the CHANGE MASTER TO statement, and the number of reconnection attempts is limited by the --
master-retry-count option. The default is 3600 seconds (one hour).

• --slave-parallel-type=type

Introduced 5.7.2

Command-Line Format --slave-parallel-type=type

Replication and Binary Logging Options and Variables

2067

Option-File Format slave-parallel-type

Permitted Values

Type enumeration

Default DATABASE

DATABASE

Valid
Values LOGICAL_CLOCK

Normally, transactions are applied in parallel only if they do not make changes in the same
database. Beginning with MySQL 5.7.2, is it possible to enable parallel execution on the
slave of all uncommitted threads already in the prepare phase, without violating consistency,
by starting the slave with --slave-parallel-type=LOGICAL_CLOCK, or by setting the
slave_parallel_type system variable.

When this feature is enabled, each transaction is marked with a logical timestamp generated by
the master. The timestamp identifies the last transaction committed at the time that the current
transaction entered the prepare stage, and all transactions having the same timestamp can execute
in parallel.

This option was added in MySQL 5.7.2. The default value is DATABASE.

• slave-rows-search-algorithms=list

Command-Line Format --slave-rows-search-algorithms=list

Option-File Format slave-rows-search-algorithms

Permitted Values

Type set

Default TABLE_SCAN,INDEX_SCAN

TABLE_SCAN,INDEX_SCAN

INDEX_SCAN,HASH_SCAN

TABLE_SCAN,HASH_SCAN

Valid
Values

TABLE_SCAN,INDEX_SCAN,HASH_SCAN (equivalent to
INDEX_SCAN,HASH_SCAN)

When preparing batches of rows for row-based logging and replication using
slave_allow_batching, this option controls how the rows are searched for matches—that is,
whether or not hashing is used for searches using a primary or unique key, some other key, or no
key at all. This option takes a comma-separated list of any 2 (or possibly 3) values from the list
INDEX_SCAN, TABLE_SCAN, HASH_SCAN. The list need not be quoted, but must contain no spaces,
whether or not quotes are used. Possible combinations (lists) and their effects are shown in the
following table:

Index used / option
value

INDEX_SCAN,HASH_SCAN
or
INDEX_SCAN,TABLE_SCAN,HASH_SCAN

INDEX_SCAN,TABLE_SCANTABLE_SCAN,HASH_SCAN

Primary key or unique
key

Index scan Index scan Hash scan over index

(Other) Key Hash scan over index Index scan Hash scan over index

No index Hash scan Table scan Hash scan

The order in which the algorithms are specified in the list does not make any difference in the order
in which they are displayed by a SELECT or SHOW VARIABLES statement (which is the same as
that used in the table just shown previously).The default value is TABLE_SCAN,INDEX_SCAN, which

Replication and Binary Logging Options and Variables

2068

means that all searches that can use indexes do use them, and searches without any indexes use
table scans.

Specifying INDEX_SCAN,TABLE_SCAN,HASH_SCAN has the same effect as specifying
INDEX_SCAN,HASH_SCAN. To use hashing for any searches that does not use a primary or
unique key, set this option to INDEX_SCAN,HASH_SCAN. To force hashing for all searches, set it to
TABLE_SCAN,HASH_SCAN.

• --slave-skip-errors=[err_code1,err_code2,...|all|ddl_exist_errors]

Command-Line Format --slave-skip-errors=name

Option-File Format slave-skip-errors

System Variable Name slave_skip_errors

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

Default OFF

OFF

[list of error codes]

all

Valid
Values

ddl_exist_errors

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to
resolve the inconsistency in the data manually. This option tells the slave SQL thread to continue
replication when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no
bugs in your replication setup and client programs, and no bugs in MySQL itself, an error that
stops replication should never occur. Indiscriminate use of this option results in slaves becoming
hopelessly out of synchrony with the master, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in your slave error
log and in the output of SHOW SLAVE STATUS. Appendix C, Errors, Error Codes, and Common
Problems, lists server error codes.

You can also (but should not) use the very nonrecommended value of all to cause the slave to
ignore all error messages and keeps going regardless of what happens. Needless to say, if you use
all, there are no guarantees regarding the integrity of your data. Please do not complain (or file bug
reports) in this case if the slave's data is not anywhere close to what it is on the master. You have
been warned.

MySQL 5.7 supports an additional shorthand value ddl_exist_errors, which is equivalent to the
error code list 1007,1008,1050,1051,1054,1060,1061,1068,1094,1146.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all
--slave-skip-errors=ddl_exist_errors

• --slave-sql-verify-checksum={0|1}

Command-Line Format --slave-sql-verify-checksum=value

Option-File Format slave-sql-verify-checksum

Replication and Binary Logging Options and Variables

2069

Permitted Values

Type boolean

Default 0

0

Valid
Values 1

When this option is enabled, the slave examines checksums read from the relay log, in the event of a
mismatch, the slave stops with an error. Disabled by default.

Obsolete options. The following options were removed in MySQL 5.6 and are no longer supported.
If you attempt to start mysqld with any of these options in MySQL 5.7, the server aborts with an
unknown variable error. To set the replication parameters formerly associated with these options,
you must use the CHANGE MASTER TO ... statement (see Section 13.4.2.1, “CHANGE MASTER TO
Syntax”).

The options affected are shown in this list:

• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

System variables used on replication slaves. The following list describes system variables
for controlling replication slave servers. They can be set at server startup and some of them can be
changed at runtime using SET. Server options used with replication slaves are listed earlier in this
section.

• slave_allow_batching

Command-Line Format --slave-allow-batching

Option-File Format slave_allow_batching

System Variable Name slave_allow_batching

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default off

Whether or not batched updates are enabled on replication slaves.

Replication and Binary Logging Options and Variables

2070

• init_slave

Command-Line Format --init-slave=name

Option-File Format init_slave

System Variable Name init_slave

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

This variable is similar to init_connect, but is a string to be executed by a slave server each time
the SQL thread starts. The format of the string is the same as for the init_connect variable.

Note

The SQL thread sends an acknowledgment to the client before it executes
init_slave. Therefore, it is not guaranteed that init_slave has been
executed when START SLAVE returns. See Section 13.4.2.6, “START SLAVE
Syntax”, for more information.

• log_slow_slave_statements

Introduced 5.7.1

System Variable Name log_slow_slave_statements

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

When the slow query log is enabled, this variable enables logging for queries that have taken more
than long_query_time seconds to execute on the slave. This variable was added in MySQL 5.7.1.

• master_info_repository

Command-Line Format --master-info-repository=FILE|TABLE

Option-File Format master_info_repository

System Variable Name master_info_repository

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Default FILE

FILE

Valid
Values TABLE

The setting of this variable determines whether the slave logs master status and connection
information to a FILE (master.info), or to a TABLE (mysql.slave_master_info).

The setting of this variable also has a direct bearing on the effect had by the setting of the
sync_master_info system variable; see that variable's description for further information.

Replication and Binary Logging Options and Variables

2071

• relay_log

Command-Line Format --relay-log=name

Option-File Format relay-log

System Variable Name relay_log

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The name of the relay log file.

• relay_log_basename

System Variable Name relay_log_basename

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Default datadir + '/' + hostname + '-relay-bin'

Holds the name and complete path to the relay log file.

• relay_log_index

Command-Line Format --relay-log-index

Option-File Format relay_log_index

System Variable Name relay_log_index

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Default *host_name*-relay-bin.index

The name of the relay log index file. The default name is host_name-relay-bin.index in the
data directory, where host_name is the name of the slave server.

• relay_log_info_file

Command-Line Format --relay-log-info-file=file_name

Option-File Format relay_log_info_file

System Variable Name relay_log_info_file

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Default relay-log.info

Replication and Binary Logging Options and Variables

2072

The name of the file in which the slave records information about the relay logs. The default name is
relay-log.info in the data directory.

• relay_log_info_repository

System Variable Name relay_log_info_repository

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Default FILE

FILE

Valid
Values TABLE

This variable determines whether the slave's position in the relay logs is written to a FILE (relay-
log.info) or to a TABLE (mysql.slave_relay_log_info).

The setting of this variable also has a direct bearing on the effect had by the setting of the
sync_relay_log_info system variable; see that variable's description for further information.

• relay_log_recovery

Command-Line Format --relay-log-recovery

Option-File Format relay_log_recovery

System Variable Name relay_log_recovery

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default FALSE

Enables automatic relay log recovery immediately following server startup, which means that the
replication slave discards all unprocessed relay logs and retrieves them from the replication master.
In MySQL 5.7, this global variable is read-only; its value can be changed by starting the slave with
the --relay-log-recovery option, which should be used following a crash on the replication
slave to ensure that no possibly corrupted relay logs are processed, and must be used in order to
guarantee a crash-proof slave. The default value is 0 (disabled).

When relay_log_recovery is enabled and the slave has stopped due to errors encountered
while running in multi-threaded mode, you can use START SLAVE UNTIL SQL_AFTER_MTS_GAPS
to ensure that all gaps are processed before switching back to single-threaded mode or executing a
CHANGE MASTER TO statement.

• rpl_stop_slave_timeout

Introduced 5.7.2

Command-Line Format --rpl-stop-slave-timeout=seconds

Option-File Format rpl_stop_slave_timeout

System Variable Name rpl_stop_slave_timeout

Variable Scope Global

Dynamic Variable Yes

Replication and Binary Logging Options and Variables

2073

Permitted Values

Type integer

Default 31536000

Range 2 .. 31536000

In MySQL 5.7.2 and later, you can control the length of time (in seconds) that STOP SLAVE waits
before timing out by setting this variable. This can be used to avoid deadlocks between STOP SLAVE
and other slave SQL statements using different client connections to the slave. The maximum and
default value of rpl_stop_slave_timeout is 31536000 seconds (1 year). The minimum is 2
seconds.

• slave_checkpoint_group

Command-Line Format --slave-checkpoint-group=#

Option-File Format slave_checkpoint_group

System Variable Name slave_checkpoint_group=#

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 512

Range 32 .. 524280

Block
Size

8

Sets the maximum number of transactions that can be processed by a multi-threaded slave before a
checkpoint operation is called to update its status as shown by SHOW SLAVE STATUS. Setting this
variable has no effect on slaves for which multi-threading is not enabled.

This variable works in combination with the slave_checkpoint_period system variable in such
a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both
the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 32, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to
a value that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before
storing the value. (Exception: No such rounding is performed by the debug server.) Regardless of
how the server was built, the default value is 512, and the maximum allowed value is 524280.

• slave_checkpoint_period

Command-Line Format --slave-checkpoint-period=#

Option-File Format slave_checkpoint_period

System Variable Name slave_checkpoint_period=#

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 300

Range 1 .. 4G

Replication and Binary Logging Options and Variables

2074

Sets the maximum time (in milliseconds) that is allowed to pass before a checkpoint operation is
called to update the status of a multi-threaded slave as shown by SHOW SLAVE STATUS. Setting this
variable has no effect on slaves for which multi-threading is not enabled.

This variable works in combination with the slave_checkpoint_group system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both
the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 1, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 0. Regardless of how the server was built, the default value is
300, and the maximum possible value is 4294967296 (4GB).

• slave_compressed_protocol

Command-Line Format --slave_compressed_protocol

Option-File Format slave_compressed_protocol

System Variable Name slave_compressed_protocol

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Whether to use compression of the slave/master protocol if both the slave and the master support it.

• slave_exec_mode

Command-Line Format --slave-exec-mode=mode

Option-File Format slave_exec_mode

System Variable Name slave_exec_mode

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type enumeration

Default STRICT (ALL)

Default IDEMPOTENT (NDB)

IDEMPOTENT

Valid
Values STRICT

Controls whether IDEMPOTENT or STRICT mode is used in replication conflict resolution and error
checking. IDEMPOTENT mode causes suppression of duplicate-key and no-key-found errors. This
mode should be employed in multi-master replication, circular replication, and some other special
replication scenarios. STRICT mode is the default, and is suitable for most other cases.

• slave_load_tmpdir

Command-Line Format --slave-load-tmpdir=path

Option-File Format slave-load-tmpdir

System Variable Name slave_load_tmpdir

Variable Scope Global

Replication and Binary Logging Options and Variables

2075

Dynamic Variable No

Permitted Values

Type directory name

Default /tmp

The name of the directory where the slave creates temporary files for replicating LOAD DATA
INFILE statements.

• slave_max_allowed_packet

System Variable Name slave_max_allowed_packet

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1073741824

Range 1024 .. 1073741824

In MySQL 5.6.6 and later, this variable sets the maximum packet size for the slave SQL and I/O
threads, so that large updates using row-based replication do not cause replication to fail because an
update exceeded max_allowed_packet.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or
used; setting slave_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning
is issued in all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is
1024.

slave_max_allowed_packet can also be set at startup, using the --slave-max-allowed-
packet option.

• slave_net_timeout

Command-Line Format --slave-net-timeout=#

Option-File Format slave-net-timeout

System Variable Name slave_net_timeout

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 3600

Min
Value

1

The number of seconds to wait for more data from a master/slave connection before aborting the
read.

• slave_parallel_type=type

Introduced 5.7.2

Command-Line Format --slave-parallel-type=type

Replication and Binary Logging Options and Variables

2076

Option-File Format slave-parallel-type

Permitted Values

Type enumeration

Default DATABASE

DATABASE

Valid
Values LOGICAL_CLOCK

Normally, transactions are applied in parallel only if they do not make any changes in the same
database. Beginning with MySQL 5.7.2, it is possible to enable parallel execution on the slave of
all uncommitted threads already in the prepare phase, without violating consistency, using the SQL
statement shown here:

SET @@global.slave_parallel_type='LOGICAL_CLOCK';

You can set slave_parallel_type in a running MySQL server only when the slave is stopped;
that is, before issuing START SLAVE or after issuing STOP SLAVE.

When parallel execution of prepared transactions is enabled, each transaction is marked with a
logical timestamp by the master. This timestamp identifies the last transaction committed at the
time that the current transaction entered the prepare stage, and all transactions having the same
timestamp can execute in parallel. You can also enable this feature using the --slave-parallel-
type option when starting the MySQL Server.

To disable parallel execution of prepared transactions in a running server, set
slave_parallel_type to 'DATABASE' (the default value).

This variable is global. In addition, when setting slave_parallel_type, the value (one of
'DATABASE' or 'LOGICAL_CLOCK') must be quoted.

• slave_parallel_workers

System Variable Name slave_parallel_workers

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 1024

Sets the number of slave worker threads for executing replication events (transactions) in parallel.
Setting this variable to 0 (the default) disables parallel execution. The maximum is 1024.

When parallel execution is enabled, the slave SQL thread acts as the coordinator for the slave
worker threads, among which transactions are distributed on a per-database basis. This means
that a worker thread on the slave slave can process successive transactions on a given database
without waiting for updates to other databases to complete. The current implementation of multi-
threading on the slave assumes that the data is partitioned per database, and that updates within a
given database occur in the same relative order as they do on the master, in order to work correctly.
However, transactions do not need to be coordinated between any two databases.

Due to the fact that transactions on different databases can occur in a different order on the slave
than on the master, checking for the most recently executed transaction does not guarantee that
all previous transactions from the master have been executed on the slave. This has implications
for logging and recovery when using a multi-threaded slave. For information about how to interpret

Replication and Binary Logging Options and Variables

2077

binary logging information when using multi-threading on the slave, see Section 13.7.5.33, “SHOW
SLAVE STATUS Syntax”. In addition, this means that START SLAVE UNTIL is not supported with a
multi-threaded slave.

When multi-threading is enabled, slave_transaction_retries is treated as equal to 0, and
cannot be changed. (Currently, retrying of transactions is not supported with multi-threaded slaves.)

• slave_pending_jobs_size_max

System Variable Name slave_pending_jobs_size_max

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 1024 .. 18EB

Block
Size

1024

For multi-threaded slaves, this variable sets the maximum amount of memory (in bytes) available to
slave worker queues holding events not yet applied. Setting this variable has no effect on slaves for
which multi-threading is not enabled.

The minimum possible value for this variable is 1024; the default is 16MB. The maximum possible
value is 18446744073709551615 (16 exabytes). Values that are not exact multiples of 1024 are
rounded down to the next-highest multiple of 1024 prior to being stored.

Important

The value of this variable must not be less than the master's value for
max_allowed_packet; otherwise a slave worker queue may become full
while there remain events coming from the master to be processed.

• slave_rows_search_algorithms

System Variable Name slave_rows_search_algorithms=list

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type set

Default TABLE_SCAN,INDEX_SCAN

TABLE_SCAN,INDEX_SCAN

INDEX_SCAN,HASH_SCAN

TABLE_SCAN,HASH_SCAN

Valid
Values

TABLE_SCAN,INDEX_SCAN,HASH_SCAN (equivalent to
INDEX_SCAN,HASH_SCAN)

When preparing batches of rows for row-based logging and replication using
slave_allow_batching, the slave_rows_search_algorithms variable controls how the
rows are searched for matches—that is, whether or not hashing is used for searches using a primary
or unique key, using some other key, or using no key at all. This option takes a comma-separated list
of at least 2 values from the list INDEX_SCAN, TABLE_SCAN, HASH_SCAN. The value expected as

Replication and Binary Logging Options and Variables

2078

a string, so the value must be quoted. In addition, the value must not contain any spaces. Possible
combinations (lists) and their effects are shown in the following table:

Index used / option
value

INDEX_SCAN,HASH_SCAN
or
INDEX_SCAN,TABLE_SCAN,HASH_SCAN

INDEX_SCAN,TABLE_SCANTABLE_SCAN,HASH_SCAN

Primary key or unique
key

Index scan index scan Index hash

(Other) Key Index hash Index scan Index hash

No index Table hash Table scan Table hash

The order in which the algorithms are specified in the list does not make any difference in the order
in which they are displayed by a SELECT or SHOW VARIABLES statement, as shown here:

mysql> SET GLOBAL slave_rows_search_algorithms = "INDEX_SCAN,TABLE_SCAN";
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE '%algorithms%';
+------------------------------+-----------------------+
| Variable_name | Value |
+------------------------------+-----------------------+
| slave_rows_search_algorithms | TABLE_SCAN,INDEX_SCAN |
+------------------------------+-----------------------+
1 row in set (0.00 sec)

mysql> SET GLOBAL slave_rows_search_algorithms = "TABLE_SCAN,INDEX_SCAN";
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE '%algorithms%';
+------------------------------+-----------------------+
| Variable_name | Value |
+------------------------------+-----------------------+
| slave_rows_search_algorithms | TABLE_SCAN,INDEX_SCAN |
+------------------------------+-----------------------+
1 row in set (0.00 sec)

The default value is TABLE_SCAN,INDEX_SCAN, which means that all searches that can use
indexes do use them, and searches without any indexes use table scans.

Specifying INDEX_SCAN,TABLE_SCAN,HASH_SCAN has the same effect as specifying
INDEX_SCAN,HASH_SCAN. To use hashing for any searches that does not use a primary or unique
key, set this variable to INDEX_SCAN,HASH_SCAN. To force hashing for all searches, set it to
TABLE_SCAN,HASH_SCAN.

• slave_skip_errors

Command-Line Format --slave-skip-errors=name

Option-File Format slave-skip-errors

System Variable Name slave_skip_errors

Variable Scope Global

Dynamic Variable No

Permitted Values

Type string

Default OFF

OFF

[list of error codes]

Valid
Values

all

Replication and Binary Logging Options and Variables

2079

ddl_exist_errors

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to
resolve the inconsistency in the data manually. This variable tells the slave SQL thread to continue
replication when a statement returns any of the errors listed in the variable value.

• slave_sql_verify_checksum

System Variable Name slave_sql_verify_checksum

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default 1

0

Valid
Values 1

Cause the slave SQL thread to verify data using the checksums read from the relay log. In the event
of a mismatch, the slave stops with an error.

Note

The slave I/O thread always reads checksums if possible when accepting
events from over the network.

• slave_transaction_retries

Command-Line Format --slave_transaction_retries=#

Option-File Format slave_transaction_retries

System Variable Name slave_transaction_retries

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 10

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 10

Range 0 .. 18446744073709547520

If a replication slave SQL thread fails to execute a transaction because of an InnoDB deadlock or
because the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout,
it automatically retries slave_transaction_retries times before stopping with an error. The
default value is 10.

Replication and Binary Logging Options and Variables

2080

Transactions cannot be retried when using a multi-threaded slave. In other words, whenever
slave_parallel_workers is greater than 0, slave_transaction_retries is treated as equal
to 0, and cannot be changed.

• slave_type_conversions

Command-Line Format --slave_type_conversions=set

Option-File Format slave_type_conversions

System Variable Name slave_type_conversions

Variable Scope Global

Dynamic Variable No

Permitted Values (<= 5.7.1)

Type set

Default

ALL_LOSSY

Valid
Values ALL_NON_LOSSY

Permitted Values (>= 5.7.2)

Type set

Default

ALL_LOSSY

ALL_NON_LOSSY

ALL_SIGNED

Valid
Values

ALL_UNSIGNED

Controls the type conversion mode in effect on the slave when using row-based replication. In
MySQL 5.7.2 and later, its value is a comma-delimited set of zero or more elements from the list:
ALL_LOSSY, ALL_NON_LOSSY, ALL_SIGNED, ALL_UNSIGNED. Set this variable to an empty string
to disallow type conversions between the master and the slave. Changes require a restart of the
slave to take effect.

ALL_SIGNED and ALL_UNSIGNED were added in MySQL 5.7.2 (Bug#15831300). For additional
information on type conversion modes applicable to attribute promotion and demotion in row-based
replication, see Row-based replication: attribute promotion and demotion.

• sql_slave_skip_counter

System Variable Name sql_slave_skip_counter

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

The number of events from the master that a slave server should skip.

This option is incompatible with GTID-based replication, and must not be set to a nonzero value
when --gtid-mode=ON. In MySQL 5.7.1 and later, trying to do so is specifically disallowed. (Bug
#15833516) If you need to skip transactions when employing GTIDs, use gtid_executed from the
master instead. See Injecting empty transactions, for information about how to do this.

Replication and Binary Logging Options and Variables

2081

Important

If skipping the number of events specified by setting this variable would
cause the slave to begin in the middle of an event group, the slave continues
to skip until it finds the beginning of the next event group and begins from
that point. For more information, see Section 13.4.2.5, “SET GLOBAL
sql_slave_skip_counter Syntax”.

• sync_master_info

Command-Line Format --sync-master-info=#

Option-File Format sync_master_info

System Variable Name sync_master_info

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 10000

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 10000

Range 0 .. 18446744073709547520

The effects of this variable on a replication slave depend on whether the slave's
master_info_repository is set to FILE or TABLE, as explained in the following paragraphs.

master_info_repository = FILE. If the value of sync_master_info is greater
than 0, the slave synchronizes its master.info file to disk (using fdatasync()) after every
sync_master_info events. If it is 0, the MySQL server performs no synchronization of the
master.info file to disk; instead, the server relies on the operating system to flush its contents
periodically as with any other file.

master_info_repository = TABLE. If the value of sync_master_info is greater than 0,
the slave updates its master info repository table after every sync_master_info events. If it is 0,
the table is never updated.

The default value for sync_master_info is 10000.

• sync_relay_log

Command-Line Format --sync-relay-log=#

Option-File Format sync_relay_log

System Variable Name sync_relay_log

Variable Scope Global

Dynamic Variable Yes

 Permitted Values

Replication and Binary Logging Options and Variables

2082

Platform
Bit Size

32

Type numeric

Default 10000

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 10000

Range 0 .. 18446744073709547520

If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk
(using fdatasync()) after every sync_relay_log events are written to the relay log.

Setting sync_relay_log to 0 causes no synchronization to be done to disk; in this case, the server
relies on the operating system to flush the relay log's contents from time to time as for any other file.

A value of 1 is the safest choice because in the event of a crash you lose at most one event from the
relay log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which
makes synchronization very fast).

• sync_relay_log_info

Command-Line Format --sync-relay-log-info=#

Option-File Format sync_relay_log_info

System Variable Name sync_relay_log_info

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 10000

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 10000

Range 0 .. 18446744073709547520

The effects of this variable on the slave depend on the server's relay_log_info_repository
setting (FILE or TABLE), and if this is TABLE, additionally on whether the storage engine used by the
relay log info table is transactional (such as InnoDB) or not (MyISAM). The effects of these factors
on the behavior of the server for sync_relay_log_info values of zero and greater than zero are
shown in the following table:

Replication and Binary Logging Options and Variables

2083

relay_log_info_repository

TABLE

sync_relay_log_info

FILE

Transactional Nontransactional

N > 0 The slave synchronizes its
relay-log.info file to
disk (using fdatasync())
after every N transactions.

The table is
updated after
every N events.

0 The MySQL server performs
no synchronization of the
relay-log.info file to
disk; instead, the server
relies on the operating
system to flush its contents
periodically as with any other
file.

The table is
updated after
each transaction.
(N is effectively
ignored.) The table is never

updated.

The default value for sync_relay_log_info is 10000.

Options for logging slave status to tables. MySQL logging of replication slave status information
to tables rather than files. Writing of the master info log and the relay log info log can be configured
separately using the two server options listed here:

• --master-info-repository={FILE|TABLE}

Command-Line Format --master-info-repository=FILE|TABLE

Option-File Format master-info-repository

Permitted Values

Type string

Default FILE

FILE

Valid
Values TABLE

This option causes the server to write its master info log to a file or a table. The name of the file
defaults to master.info; you can change the name of the file using the --master-info-file
server option.

The default value for this option is FILE. If you use TABLE, the log is written to the
slave_master_info table in the mysql database.

• --relay-log-info-repository={FILE|TABLE}

Command-Line Format --relay-log-info-repository=FILE|TABLE

Option-File Format relay-log-info-repository

Permitted Values

Type string

Default FILE

FILE

Valid
Values TABLE

This option causes the server to log its relay log info to a file or a table. The name of the file defaults
to relay-log.info; you can change the name of the file using the --relay-log-info-file
server option.

Replication and Binary Logging Options and Variables

2084

The default value for this option is FILE. If you use TABLE, the log is written to the
slave_relay_log_info table in the mysql database.

For replication to be crash-safe, this option must be set to TABLE; in additon, the --relay-log-
recovery option must be enabled. See Crash-safe replication, for more information.

The info log tables and their contents are considered local to a given MySQL Server. They are not
replicated, and changes to them are not written to the binary log.

For more information, see Section 16.2.2, “Replication Relay and Status Logs”.

16.1.4.4 Binary Log Options and Variables

You can use the mysqld options and system variables that are described in this section to affect
the operation of the binary log as well as to control which statements are written to the binary log.
For additional information about the binary log, see Section 5.2.4, “The Binary Log”. For additional
information about using MySQL server options and system variables, see Section 5.1.3, “Server
Command Options”, and Section 5.1.4, “Server System Variables”.

Startup options used with binary logging. The following list describes startup options for enabling
and configuring the binary log. System variables used with binary logging are discussed later in this
section.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Option-File Format binlog-row-event-max-size

Permitted Values

Platform
Bit Size

32

Type numeric

Default 8192

Range 256 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 8192

Range 256 .. 18446744073709547520

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 8192. See
Section 16.1.2, “Replication Formats”.

• --log-bin[=base_name]

Command-Line Format --log-bin

Option-File Format log-bin

System Variable Name log_bin

Variable Scope Global

Dynamic Variable No

 Permitted Values

Replication and Binary Logging Options and Variables

2085

Type file name

Enable binary logging. The server logs all statements that change data to the binary log, which is
used for backup and replication. See Section 5.2.4, “The Binary Log”.

The option value, if given, is the basename for the log sequence. The server creates binary log files
in sequence by adding a numeric suffix to the basename. It is recommended that you specify a
basename (see Section C.5.8, “Known Issues in MySQL”, for the reason). Otherwise, MySQL uses
host_name-bin as the basename.

When the server reads an entry from the index file, it checks whether the entry contains a relative
path, and if it does, the relative part of the path in replaced with the absolute path set using the
--log-bin option. An absolute path remains unchanged; in such a case, the index must be
edited manually to enable the new path or paths to be used. (In older versions of MySQL, manual
intervention was required whenever relocating the binary log or relay log files.) (Bug #11745230, Bug
#12133)

Setting this option causes the log_bin system variable to be set to ON (or 1), and not to the
basename. The binary log filename (with path) is available as the log_bin_basename system
variable.

In MySQL 5.7.3 and later, if you specify this option without also specifying a --server-id [2037],
the server is not allowed to start. (Bug #11763963, Bug #56739)

• --log-bin-index[=file_name]

Command-Line Format --log-bin-index=name

Option-File Format log-bin-index

Permitted Values

Type file name

The index file for binary log file names. See Section 5.2.4, “The Binary Log”. If you omit the file
name, and if you did not specify one with --log-bin, MySQL uses host_name-bin.index as the
file name.

• --log-bin-trust-function-creators[={0|1}]

Command-Line Format --log-bin-trust-function-creators

Option-File Format log-bin-trust-function-creators

System Variable Name log_bin_trust_function_creators

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default FALSE

This option sets the corresponding log_bin_trust_function_creators system variable. If no
argument is given, the option sets the variable to 1. log_bin_trust_function_creators affects
how MySQL enforces restrictions on stored function and trigger creation. See Section 18.7, “Binary
Logging of Stored Programs”.

• --log-bin-use-v1-row-events[={0|1}]

Command-Line Format --log-bin-use-v1-row-events[={0|1}]

Option-File Format log-bin-use-v1-row-events

Replication and Binary Logging Options and Variables

2086

System Variable Name log_bin_use_v1_row_events

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default 0

MySQL 5.7 uses Version 2 binary log row events, which cannot be read by MySQL Server releases
prior to MySQL 5.6.6. Setting this option to 1 causes mysqld to write the binary log using Version
1 logging events, which is the only version of binary log events used in previous releases, and thus
produce binary logs that can be read by older slaves. Setting --log-bin-use-v1-row-events to
0 (the default) causes mysqld to use Version 2 binary log events.

The value used for this option can be obtained from the read-only log_bin_use_v1_row_events
system variable.

• --log-short-format

Command-Line Format --log-short-format

Option-File Format log-short-format

Permitted Values

Type boolean

Default FALSE

Log less information to the binary log and slow query log, if they have been activated.

Statement selection options. The options in the following list affect which statements are written
to the binary log, and thus sent by a replication master server to its slaves. There are also options for
slave servers that control which statements received from the master should be executed or ignored.
For details, see Section 16.1.4.3, “Replication Slave Options and Variables”.

• --binlog-do-db=db_name

Command-Line Format --binlog-do-db=name

Option-File Format binlog-do-db

Permitted Values

Type string

This option affects binary logging in a manner similar to the way that --replicate-do-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is
in use, in the same way that the effects of --replicate-do-db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of binlog_format.
For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
--binlog-do-db always apply in determining whether or not the statement is logged.

Statement-based logging. Only those statements are written to the binary log where the default
database (that is, the one selected by USE) is db_name. To specify more than one database,
use this option multiple times, once for each database; however, doing so does not cause cross-
database statements such as UPDATE some_db.some_table SET foo='bar' to be logged
while a different database (or no database) is selected.

Replication and Binary Logging Options and Variables

2087

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, the list will be treated as the
name of a single database if you supply a comma-separated list.

An example of what does not work as you might expect when using statement-based logging: If the
server is started with --binlog-do-db=sales and you issue the following statements, the UPDATE
statement is not logged:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Another case which may not be self-evident occurs when a given database is replicated even though
it was not specified when setting the option. If the server is started with --binlog-do-db=sales,
the following UPDATE statement is logged even though prices was not included when setting --
binlog-do-db:

USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;

Because sales is the default database when the UPDATE statement is issued, the UPDATE is
logged.

Row-based logging. Logging is restricted to database db_name. Only changes to tables
belonging to db_name are logged; the default database has no effect on this. Suppose that the
server is started with --binlog-do-db=sales and row-based logging is in effect, and then the
following statements are executed:

USE prices;
UPDATE sales.february SET amount=amount+100;

The changes to the february table in the sales database are logged in accordance with the
UPDATE statement; this occurs whether or not the USE statement was issued. However, when using
the row-based logging format and --binlog-do-db=sales, changes made by the following
UPDATE are not logged:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the USE prices statement were changed to USE sales, the UPDATE statement's effects
would still not be written to the binary log.

Another important difference in --binlog-do-db handling for statement-based logging as opposed
to the row-based logging occurs with regard to statements that refer to multiple databases. Suppose
that the server is started with --binlog-do-db=db1, and the following statements are executed:

USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

If you are using statement-based logging, the updates to both tables are written to the binary log.
However, when using the row-based format, only the changes to table1 are logged; table2 is in a

Replication and Binary Logging Options and Variables

2088

different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE db1
statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

In this case, the UPDATE statement is not written to the binary log when using statement-based
logging. However, when using row-based logging, the change to table1 is logged, but not that to
table2—in other words, only changes to tables in the database named by --binlog-do-db are
logged, and the choice of default database has no effect on this behavior.

• --binlog-ignore-db=db_name

Command-Line Format --binlog-ignore-db=name

Option-File Format binlog-ignore-db

Permitted Values

Type string

This option affects binary logging in a manner similar to the way that --replicate-ignore-db
affects replication.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --replicate-ignore-db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of binlog_format.
For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
--binlog-ignore-db always apply in determining whether or not the statement is logged.

Statement-based logging. Tells the server to not log any statement where the default database
(that is, the one selected by USE) is db_name.

Prior to MySQL 5.7.2, this option caused any statements containing fully qualified table names not to
be logged if there was no default database specified (that is, when SELECT DATABASE() returned
NULL). In MySQL 5.7.2 and later, when there is no default database, no --binlog-ignore-db
options are applied, and such statements are always logged. (Bug #11829838, Bug #60188)

Row-based format. Tells the server not to log updates to any tables in the database db_name.
The current database has no effect.

When using statement-based logging, the following example does not work as you might expect.
Suppose that the server is started with --binlog-ignore-db=sales and you issue the following
statements:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is logged in such a case because --binlog-ignore-db applies only
to the default database (determined by the USE statement). Because the sales database was
specified explicitly in the statement, the statement has not been filtered. However, when using row-
based logging, the UPDATE statement's effects are not written to the binary log, which means that no
changes to the sales.january table are logged; in this instance, --binlog-ignore-db=sales
causes all changes made to tables in the master's copy of the sales database to be ignored for
purposes of binary logging.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, the list will be treated as the name of a single
database if you supply a comma-separated list.

Replication and Binary Logging Options and Variables

2089

You should not use this option if you are using cross-database updates and you do not want these
updates to be logged.

Checksum options. MySQL 5.7 supports reading and writing of binary log checksums. These are
enabled using the two options listed here:

• --binlog-checksum={NONE|CRC32}

Command-Line Format --binlog-checksum=type

Option-File Format binlog-checksum

Permitted Values

Type string

Default CRC32

NONE

Valid
Values CRC32

Enabling this option causes the master to write checksums for events written to the binary log. Set to
NONE to disable, or the name of the algorithm to be used for generating checksums; currently, only
CRC32 checksums are supported, and CRC32 is the default.

• --master-verify-checksum={0|1}

Command-Line Format --master-verify-checksum=name

Option-File Format master-verify-checksum

Permitted Values

Type boolean

Default OFF

Enabling this option causes the master to verify events from the binary log using checksums, and to
stop with an error in the event of a mismatch. Disabled by default.

To control reading of checksums by the slave (from the relay) log, use the --slave-sql-verify-
checksum option.

Testing and debugging options. The following binary log options are used in replication testing
and debugging. They are not intended for use in normal operations.

• --max-binlog-dump-events=N

Command-Line Format --max-binlog-dump-events=#

Option-File Format max-binlog-dump-events

Permitted Values

Type numeric

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --sporadic-binlog-dump-fail

Command-Line Format --sporadic-binlog-dump-fail

Option-File Format sporadic-binlog-dump-fail

 Permitted Values

Replication and Binary Logging Options and Variables

2090

Type boolean

Default FALSE

This option is used internally by the MySQL test suite for replication testing and debugging.

• --binlog-rows-query-log-events

Command-Line Format --binlog-rows-query-log-events

Option-File Format binlog-rows-query-log-events

Permitted Values

Type boolean

Default FALSE

This option enables binlog_rows_query_log_events.

System variables used with the binary log. The following list describes system variables for
controlling binary logging. They can be set at server startup and some of them can be changed at
runtime using SET. Server options used to control binary logging are listed earlier in this section. For
information about the sql_log_bin and sql_log_off variables, see Section 5.1.4, “Server System
Variables”.

• binlog_cache_size

Command-Line Format --binlog_cache_size=#

Option-File Format binlog_cache_size

System Variable Name binlog_cache_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 32768

Range 4096 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 32768

Range 4096 .. 18446744073709547520

The size of the cache to hold changes to the binary log during a transaction. A binary log cache is
allocated for each client if the server supports any transactional storage engines and if the server has
the binary log enabled (--log-bin option). If you often use large transactions, you can increase this
cache size to get better performance. The Binlog_cache_use and Binlog_cache_disk_use
status variables can be useful for tuning the size of this variable. See Section 5.2.4, “The Binary
Log”.

binlog_cache_size sets the size for the transaction cache only; the size of the statement cache
is governed by the binlog_stmt_cache_size system variable.

• binlog_checksum

Replication and Binary Logging Options and Variables

2091

System Variable Name binlog_checksum

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

Default CRC32

NONE

Valid
Values CRC32

When enabled, this variable causes the master to write a checksum for each event in the binary log.
binlog_checksum supports the values NONE (disabled) and CRC32. The default is CRC32.

When binlog_checksum is disabled (value NONE), the server verifies that it is writing only complete
events to the binary log by writing and checking the event length (rather than a checksum) for each
event.

Changing the value of this variable causes the binary log to be rotated; checksums are always
written to an entire binary log file, and never to only part of one.

Setting this variable on the master to a value unrecognized by the slave causes the slave to set
its own binlog_checksum value to NONE, and to stop replication with an error. (Bug #13553750,
Bug #61096) If backward compatibility with older slaves is a concern, you may want to set the value
explicitly to NONE.

• binlog_direct_non_transactional_updates

Command-Line Format --binlog_direct_non_transactional_updates[=value]

Option-File Format binlog_direct_non_transactional_updates

System Variable Name binlog_direct_non_transactional_updates

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Due to concurrency issues, a slave can become inconsistent when a transaction contains updates
to both transactional and nontransactional tables. MySQL tries to preserve causality among these
statements by writing nontransactional statements to the transaction cache, which is flushed upon
commit. However, problems arise when modifications done to nontransactional tables on behalf of
a transaction become immediately visible to other connections because these changes may not be
written immediately into the binary log.

The binlog_direct_non_transactional_updates variable offers one
possible workaround to this issue. By default, this variable is disabled. Enabling
binlog_direct_non_transactional_updates causes updates to nontransactional tables to
be written directly to the binary log, rather than to the transaction cache.

binlog_direct_non_transactional_updates works only for statements that are replicated
using the statement-based binary logging format; that is, it works only when the value of
binlog_format is STATEMENT, or when binlog_format is MIXED and a given statement is
being replicated using the statement-based format. This variable has no effect when the binary log

Replication and Binary Logging Options and Variables

2092

format is ROW, or when binlog_format is set to MIXED and a given statement is replicated using
the row-based format.

Important

Before enabling this variable, you must make certain that there are no
dependencies between transactional and nontransactional tables; an
example of such a dependency would be the statement INSERT INTO
myisam_table SELECT * FROM innodb_table. Otherwise, such
statements are likely to cause the slave to diverge from the master.

In MySQL 5.7, this variable has no effect when the binary log format is ROW or MIXED. (Bug #51291)

• binlog_format

Command-Line Format --binlog-format=format

Option-File Format binlog-format

System Variable Name binlog_format

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default STATEMENT

ROW

STATEMENT

Valid
Values

MIXED

This variable sets the binary logging format, and can be any one of STATEMENT, ROW, or MIXED. See
Section 16.1.2, “Replication Formats”. binlog_format is set by the --binlog-format option at
startup, or by the binlog_format variable at runtime.

Note

While you can change the logging format at runtime, it is not recommended
that you change it while replication is ongoing. This is due in part to the fact
that slaves do not honor the master's binlog_format setting; a given
MySQL Server can change only its own logging format.

In MySQL 5.7, the default format is STATEMENT.

You must have the SUPER privilege to set either the global or session binlog_format value.

The rules governing when changes to this variable take effect and how long the effect lasts are
the same as for other MySQL server system variables. See Section 13.7.4, “SET Syntax”, for more
information.

When MIXED is specified, statement-based replication is used, except for cases where only
row-based replication is guaranteed to lead to proper results. For example, this happens when
statements contain user-defined functions (UDF) or the UUID() function. An exception to this rule is
that MIXED always uses statement-based replication for stored functions and triggers.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger.

• If the session is currently in row-based replication mode and has open temporary tables.

Replication and Binary Logging Options and Variables

2093

• From within a transaction.

Trying to switch the format in those cases results in an error.

The binary log format affects the behavior of the following server options:

• --replicate-do-db

• --replicate-ignore-db

• --binlog-do-db

• --binlog-ignore-db

These effects are discussed in detail in the descriptions of the individual options.

• binlog_max_flush_queue_time

System Variable Name binlog_max_flush_queue_time

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 0

Range 0 .. 100000

How long in microseconds to keep reading transactions from the flush queue before proceeding with
the group commit (and syncing the log to disk, if sync_binlog is greater than 0). If the value is 0
(the default), there is no timeout and the server keeps reading new transactions until the queue is
empty.

Normally, binlog_max_flush_queue_time can remain set to 0. If the server processes a large
number of connections (for example, 100 or more) and many short transactions with low-latency
requirements, it may be useful to set the value larger than 0 to force more frequent flushes to disk.

• binlog_order_commits

System Variable Name binlog_order_commits

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default ON

If this variable is enabled (the default), transactions are committed in the same order they are written
to the binary log. If disabled, transactions may be committed in parallel. In some cases, disabling this
variable might produce a performance increment.

• binlog_row_image

Command-Line Format --binlog-row-image=image_type

Option-File Format binlog_row_image

System Variable Name binlog_row_image=image_type

Variable Scope Global, Session

Replication and Binary Logging Options and Variables

2094

Dynamic Variable Yes

Permitted Values

Type enumeration

Default full

full (Log all columns)

minimal (Log only changed columns, and columns needed to
identify rows)

Valid
Values

noblob (Log all columns, except for unneeded BLOB and
TEXT columns)

In MySQL row-based replication, each row change event contains two images, a “before” image
whose columns are matched against when searching for the row to be updated, and an “after” image
containing the changes. Normally, MySQL logs full rows (that is, all columns) for both the before and
after images. However, it is not strictly necessary to include every column in both images, and we
can often save disk, memory, and network usage by logging only those columns which are actually
required.

Note

When deleting a row, only the before image is logged, since there are no
changed values to propagate following the deletion. When inserting a row,
only the after image is logged, since there is no existing row to be matched.
Only when updating a row are both the before and after images required, and
both written to the binary log.

For the before image, it is necessary only that the minimum set of columns required to uniquely
identify rows is logged. If the table containing the row has a primary key, then only the primary key
column or columns are written to the binary log. Otherwise, if the table has a unique key all of whose
columns are NOT NULL, then only the columns in the unique key need be logged. (If the table has
neither a primary key nor a unique key without any NULL columns, then all columns must be used in
the before image, and logged.) In the after image, it is necessary to log only the columns which have
actually changed.

You can cause the server to log full or minimal rows using the binlog_row_image system variable.
This variable actually takes one of three possible values, as shown in the following list:

• full: Log all columns in both the before image and the after image.

• minimal: Log only those columns in the before image that are required to identify the row to be
changed; log only those columns in the after image that are actually changed.

• noblob: Log all columns (same as full), except for BLOB and TEXT columns that are not
required to identify rows, or that have not changed.

The default value is full.

In MySQL 5.5 and earlier, full row images are always used for both before images and after images.
If you need to replicate from a newer master to a slave running MySQL 5.5 or earlier, the master
should always use this value.

When using minimal or noblob, deletes and updates are guaranteed to work correctly for a given
table if and only if the following conditions are true for both the source and destination tables:

• All columns must be present and in the same order; each column must use the same data type as
its counterpart in the other table.

• The tables must have identical primary key definitions.

Replication and Binary Logging Options and Variables

2095

(In other words, the tables must be identical with the possible exception of indexes that are not part
of the tables' primary keys.)

If these conditions are not met, it is possible that the primary key column values in the destination
table may prove insufficient to provide a unique match for a delete or update. In this event, no
warning or error is issued; the master and slave silently diverge, thus breaking consistency.

Setting this variable has no effect when the binary logging format is STATEMENT. When
binlog_format is MIXED, the setting for binlog_row_image is applied to changes that are
logged using row-based format, but this setting no effect on changes logged as statements.

Setting binlog_row_image on either the global or session level does not cause an implicit commit;
this means that this variable can be changed while a transaction is in progress without affecting the
transaction.

• binlog_rows_query_log_events

System Variable Name binlog_rows_query_log_events

Variable Scope Global, Session

Dynamic Variable Yes

Permitted Values

Type boolean

Default FALSE

The binlog_rows_query_log_events system variable affects row-based logging only. When
enabled, it causes the MySQL Server to write informational log events such as row query log
events into its binary log. This information can be used for debugging and related purposes; such
as obtaining the original query issued on the master when it cannot be reconstructed from the row
updates.

These events are normally ignored by MySQL programs reading the binary log and so cause no
issues when replicating or restoring from backup.

• binlog_stmt_cache_size

Command-Line Format --binlog_stmt_cache_size=#

Option-File Format binlog_stmt_cache_size

System Variable Name binlog_stmt_cache_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 32768

Range 4096 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 32768

Replication and Binary Logging Options and Variables

2096

Range 4096 .. 18446744073709547520

This variable determines the size of the cache for the binary log to hold nontransactional
statements issued during a transaction. Separate binary log transaction and statement caches
are allocated for each client if the server supports any transactional storage engines and if the
server has the binary log enabled (--log-bin option). If you often use large nontransactional
statements during transactions, you can increase this cache size to get better performance. The
Binlog_stmt_cache_use and Binlog_stmt_cache_disk_use status variables can be useful
for tuning the size of this variable. See Section 5.2.4, “The Binary Log”.

The binlog_cache_size system variable sets the size for the transaction cache.

• log_bin

System Variable Name log_bin

Variable Scope Global

Dynamic Variable No

Whether the binary log is enabled. If the --log-bin option is used, then the value of this variable
is ON; otherwise it is OFF. This variable reports only on the status of binary logging (enabled or
disabled); it does not actually report the value to which --log-bin is set.

See Section 5.2.4, “The Binary Log”.

• log_bin_basename

System Variable Name log_bin_basename

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

Default datadir + '/' + hostname + '-bin'

Holds the name and complete path to the binary log file. Unlike the log_bin system variable,
log_bin_basename reflects the name set with the --log-bin server option.

• log_bin_index

System Variable Name log_bin_index

Variable Scope Global

Dynamic Variable No

Permitted Values

Type file name

The index file for binary log file names.

• log_bin_use_v1_row_events

Command-Line Format --log-bin-use-v1-row-events[={0|1}]

Option-File Format log_bin_use_v1_row_events

System Variable Name log_bin_use_v1_row_events

Variable Scope Global

Dynamic Variable No

Replication and Binary Logging Options and Variables

2097

Permitted Values

Type boolean

Default 0

Shows whether Version 2 binary logging is in use. A value of 1 shows that the server is writing the
binary log using Version 1 logging events (the only version of binary log events used in previous
releases), and thus producing a binary log that can be read by older slaves. 0 indicates that Version
2 binary log events are in use.

This variable is read-only. To switch between Version 1 and Version 2 binary event binary logging, it
is necessary to restart mysqld with the --log-bin-use-v1-row-events option.

• log_slave_updates

Command-Line Format --log-slave-updates

Option-File Format log_slave_updates

System Variable Name log_slave_updates

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default FALSE

Whether updates received by a slave server from a master server should be logged to the slave's
own binary log. Binary logging must be enabled on the slave for this variable to have any effect. See
Section 16.1.4, “Replication and Binary Logging Options and Variables”.

• master_verify_checksum

System Variable Name master_verify_checksum

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type boolean

Default OFF

Enabling this variable causes the master to examine checksums when reading from the binary log.
master_verify_checksum is disabled by default; in this case, the master uses the event length
from the binary log to verify events, so that only complete events are read from the binary log.

• max_binlog_cache_size

Command-Line Format --max_binlog_cache_size=#

Option-File Format max_binlog_cache_size

System Variable Name max_binlog_cache_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 18446744073709547520

Replication and Binary Logging Options and Variables

2098

Range 4096 .. 18446744073709547520

If a transaction requires more than this many bytes of memory, the server generates a Multi-
statement transaction required more than 'max_binlog_cache_size' bytes of
storage error. The minimum value is 4096. The maximum possible value is 16EB (exabytes). The
maximum recommended value is 4GB; this is due to the fact that MySQL currently cannot work with
binary log positions greater than 4GB.

max_binlog_cache_size sets the size for the transaction cache only; the upper limit for the
statement cache is governed by the max_binlog_stmt_cache_size system variable.

In MySQL 5.7, the visibility to sessions of max_binlog_cache_size matches that of the
binlog_cache_size system variable; in other words, changing its value effects only new sessions
that are started after the value is changed.

• max_binlog_size

Command-Line Format --max_binlog_size=#

Option-File Format max_binlog_size

System Variable Name max_binlog_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 1073741824

Range 4096 .. 1073741824

If a write to the binary log causes the current log file size to exceed the value of this variable, the
server rotates the binary logs (closes the current file and opens the next one). The minimum value is
4096 bytes. The maximum and default value is 1GB.

A transaction is written in one chunk to the binary log, so it is never split between several
binary logs. Therefore, if you have big transactions, you might see binary log files larger than
max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

• max_binlog_stmt_cache_size

Command-Line Format --max_binlog_stmt_cache_size=#

Option-File Format max_binlog_stmt_cache_size

System Variable Name max_binlog_stmt_cache_size

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type numeric

Default 18446744073709547520

Range 4096 .. 18446744073709547520

If nontransactional statements within a transaction require more than this many bytes of memory, the
server generates an error. The minimum value is 4096. The maximum and default values are 4GB
on 32-bit platforms and 16EB (exabytes) on 64-bit platforms.

Replication and Binary Logging Options and Variables

2099

max_binlog_stmt_cache_size sets the size for the statement cache only; the upper limit for the
transaction cache is governed exclusively by the max_binlog_cache_size system variable.

• sync_binlog

Command-Line Format --sync-binlog=#

Option-File Format sync_binlog

System Variable Name sync_binlog

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Platform
Bit Size

32

Type numeric

Default 0

Range 0 .. 4294967295

Permitted Values

Platform
Bit Size

64

Type numeric

Default 0

Range 0 .. 18446744073709547520

If the value of this variable is greater than 0, the MySQL server synchronizes its binary log to disk
(using fdatasync()) after sync_binlog commit groups are written to the binary log. The default
value of sync_binlog is 0, which does no synchronizing to disk—in this case, the server relies on
the operating system to flush the binary log's contents from time to time as for any other file. A value
of 1 is the safest choice because in the event of a crash you lose at most one commit group from the
binary log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which
makes synchronization very fast).

16.1.4.5 Global Transaction ID Options and Variables

The MySQL Server options and system variables described in this section are used to monitor and
control Global Transaction Identifiers (GTIDs).

For additional information, see Section 16.1.3, “Replication with Global Transaction Identifiers”.

Startup options used in GTID replication. The followup server startup options are used with
GTID-based replication:

• --enforce-gtid-consistency

Command-Line Format --enforce-gtid-consistency[=value]

Option-File Format enforce-gtid-consistency

System Variable Name enforce_gtid_consistency

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Replication and Binary Logging Options and Variables

2100

Default false

When set, this option allows execution of only those statements that can be logged in a
transactionally safe manner. This means that the following operations cannot be used when this
option is enabled:

• CREATE TABLE ... SELECT statements

• CREATE TEMPORARY TABLE statements inside transactions

• Transactions or statements that update both transactional and nontransactional tables.

Nontransactional DML statements are allowed on temporary tables with --enforce-gtid-
consistency as long as all affected tables are temporary tables.

This option is intended chiefly for use with programs such as mysql_install_db and
mysql_upgrade.

• --gtid-mode

Command-Line Format --gtid-mode=MODE

Option-File Format gtid-mode

System Variable Name gtid_mode

Variable Scope Global

Dynamic Variable No

Permitted Values

Type enumeration

Default OFF

OFF

UPGRADE_STEP_1

UPGRADE_STEP_2

Valid
Values

ON

This option specifies whether GTIDs are enabled. Starting the server with --gtid-mode=ON
requires that the server also be started with the --log-bin and --log-slave-updates options
as well. (In addition, you should also use --enforce-gtid-consistency.)

Setting this option to OFF when there are GTIDs in the binary log or in the relay log, or to ON when
there remain anonymous transactions to be executed, causes an error.

Important

This option does not employ boolean values; its values are in fact
enumerated. You should not attempt to use numeric values when
setting this option, as these may lead to unexpected results. The values
UPGRADE_STEP_1 and UPGRADE_STEP_2 are reserved for future use, but
currently are not supported in production; if you use one of these two values
with --gtid-mode, the server refuses to start.

It is possible but not recommended to run mysql_upgrade on a server where --gtid-mode=ON,
since it may make changes to MySQL system tables that use the MyISAM storage engine, which is
nontransactional.

Prior to MySQL 5.7.1, setting the global value for the sql_slave_skip_counter variable to 1
had no effect --gtid-mode was set to ON.. (Bug #15833516) A workaround in in previous versions

Replication and Binary Logging Options and Variables

2101

is to reset the slave's position using CHANGE MASTER TO ... MASTER_LOG_FILE = ...
MASTER_LOG_POS = ..., including the MASTER_AUTO_POSITION = 0 option with this statement
if needed.

System variables used on replication masters. The following system variables are used with
GTID-based replication:

• enforce_gtid_consistency

Command-Line Format --enforce-gtid-consistency[=value]

Option-File Format enforce_gtid_consistency

System Variable Name enforce_gtid_consistency

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default false

When this variable is true, execution is allowed of only those statements that can be logged in a
transactionally safe manner, which means that the following operations cannot be used:

• CREATE TABLE ... SELECT statements

• CREATE TEMPORARY TABLE statements inside transactions

• Transactions or statements that update both transactional and nontransactional tables.

This variable is read-only. To set it, use the --enforce-gtid-consistency option on the
command line or in an option file when starting the MySQL Server.

• gtid_executed

System Variable Name gtid_executed

Variable Scope Global, Session

Dynamic Variable No

Permitted Values

Type string

When used with global scope, this variable contains a representation of the set of all transactions
that are logged in the binary log. This is the same as the value of the Executed_Gtid_Set column
in the output of SHOW MASTER STATUS and SHOW SLAVE STATUS.

When used with session scope, this variable contains a representation of the set of transactions that
are written to the cache in the current session.

The set of transactions that can be found in the binary logs at any given time is equal to
GTID_SUBTRACT(@@global.gtid_executed, @@global.gtid_purged); that is, to all
transactions in the binary log that have not yet been purged.

When the server starts, @@global.gtid_executed is initialized to the union of the following two
sets:

• The GTIDs listed in the Previous_gtids_log_event of the newest binary log

• The GTIDs found in every Gtid_log_event in the newest binary log.

Replication and Binary Logging Options and Variables

2102

Thereafter, GTIDs are added to the set as transactions are executed.

Issuing RESET MASTER causes the global value (but not the session value) of this variable to be
reset to an empty string. GTIDs are not otherwise removed from this set other than when the set is
cleared due to RESET MASTER. The set is also cleared if the server is shut down and all binary logs
are removed.

• gtid_mode

System Variable Name gtid_mode

Variable Scope Global

Dynamic Variable No

Permitted Values

Type enumeration

Default OFF

OFF

UPGRADE_STEP_1

UPGRADE_STEP_2

Valid
Values

ON

Shows whether GTIDs are enabled. Read-only; set using --gtid-mode.

• gtid_next

System Variable Name gtid_next

Variable Scope Session

Dynamic Variable Yes

Permitted Values

Type enumeration

Default AUTOMATIC

AUTOMATIC

ANONYMOUS

Valid
Values

UUID:NUMBER

This variable is used to specify whether and how the next GTID is obtained. gtid_next can take
any of the following values:

• AUTOMATIC: Use the next automatically-generated global transaction ID.

• ANONYMOUS: Transactions do not have global identifiers, and are identified by file and position
only.

• A global transaction ID in UUID:NUMBER format.

You must have the SUPER privilege to set this variable. Setting this variable has no effect if
gtid_mode is OFF.

In MySQL 5.7.1, you cannot execute any of the statements CHANGE MASTER TO, START SLAVE,
STOP SLAVE, REPAIR TABLE, OPTIMIZE TABLE, ANALYZE TABLE, CHECK TABLE, CREATE
SERVER, ALTER SERVER, DROP SERVER, CACHE INDEX, LOAD INDEX INTO CACHE, FLUSH, or
RESET when gtid_next is set to any value other than AUTOMATIC; in such cases, the statement

Common Replication Administration Tasks

2103

fails with an error. Such statements are not disallowed in MySQL 5.7.2 and later. (Bug #16062608,
Bug #16715809, Bug #69045) (Bug #16062608)

• gtid_owned

System Variable Name gtid_owned

Variable Scope Global, Session

Dynamic Variable No

Permitted Values

Type string

This read-only variable holds a list whose contents depend on its scope. When used with session
scope, the list holds all GTIDs that are owned by this client; when used with global scope, it holds a
list of all GTIDs along with their owners.

• gtid_purged

System Variable Name gtid_purged

Variable Scope Global

Dynamic Variable Yes

Permitted Values

Type string

The set of all transactions that have been purged from the binary log.

When the server starts, the global value of gtid_purged is initialized to the set of GTIDs contained
by the Previous_gtid_log_event of the oldest binary log. When a binary log is purged,
@@global.gtid_purged is re-read from the binary log that has now become the oldest one.

It is possible to update the value of this variable, but only by adding GTIDs to those already listed,
and only when gtid_executed is unset—that is, on a new server.

Issuing RESET MASTER causes the value of this variable to be reset to an empty string.

16.1.5 Common Replication Administration Tasks

Once replication has been started it should execute without requiring much regular administration.
Depending on your replication environment, you will want to check the replication status of each slave
periodically, daily, or even more frequently.

16.1.5.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking
place and that there have been no errors between the slave and the master. The primary statement for
this is SHOW SLAVE STATUS, which you must execute on each slave:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: master1
 Master_User: root
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000004
 Read_Master_Log_Pos: 931
 Relay_Log_File: slave1-relay-bin.000056
 Relay_Log_Pos: 950
 Relay_Master_Log_File: mysql-bin.000004
 Slave_IO_Running: Yes

Common Replication Administration Tasks

2104

 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 931
 Relay_Log_Space: 1365
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids: 0

The key fields from the status report to examine are:

• Slave_IO_State: The current status of the slave. See Section 8.12.5.5, “Replication Slave I/O
Thread States”, and Section 8.12.5.6, “Replication Slave SQL Thread States”, for more information.

• Slave_IO_Running: Whether the I/O thread for reading the master's binary log is running.
Normally, you want this to be Yes unless you have not yet started replication or have explicitly
stopped it with STOP SLAVE.

• Slave_SQL_Running: Whether the SQL thread for executing events in the relay log is running. As
with the I/O thread, this should normally be Yes.

• Last_IO_Error, Last_SQL_Error: The last errors registered by the I/O and SQL threads when
processing the relay log. Ideally these should be blank, indicating no errors.

• Seconds_Behind_Master: The number of seconds that the slave SQL thread is behind processing
the master binary log. A high number (or an increasing one) can indicate that the slave is unable to
handle events from the master in a timely fashion.

A value of 0 for Seconds_Behind_Master can usually be interpreted as meaning that the slave
has caught up with the master, but there are some cases where this is not strictly true. For example,
this can occur if the network connection between master and slave is broken but the slave I/O thread
has not yet noticed this—that is, slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Master may not reflect the situation
accurately. When the slave SQL thread has caught up on I/O, Seconds_Behind_Master displays
0; but when the slave I/O thread is still queuing up a new event, Seconds_Behind_Master may
show a large value until the SQL thread finishes executing the new event. This is especially likely
when the events have old timestamps; in such cases, if you execute SHOW SLAVE STATUS several
times in a relatively short period, you may see this value change back and forth repeatedly between
0 and a relatively large value.

Several pairs of fields provide information about the progress of the slave in reading events from the
master binary log and processing them in the relay log:

• (Master_Log_file, Read_Master_Log_Pos): Coordinates in the master binary log indicating
how far the slave I/O thread has read events from that log.

Common Replication Administration Tasks

2105

• (Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the master binary log
indicating how far the slave SQL thread has executed events received from that log.

• (Relay_Log_File, Relay_Log_Pos): Coordinates in the slave relay log indicating how far the
slave SQL thread has executed the relay log. These correspond to the preceding coordinates, but
are expressed in slave relay log coordinates rather than master binary log coordinates.

On the master, you can check the status of connected slaves using SHOW PROCESSLIST to examine
the list of running processes. Slave connections have Binlog Dump in the Command field:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
 Id: 10
 User: root
 Host: slave1:58371
 db: NULL
Command: Binlog Dump
 Time: 777
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

Because it is the slave that drives the replication process, very little information is available in this
report.

For slaves that were started with the --report-host option and are connected to the master, the
SHOW SLAVE HOSTS statement on the master shows basic information about the slaves. The output
includes the ID of the slave server, the value of the --report-host option, the connecting port, and
master ID:

mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
| 10 | slave1 | 3306 | 0 | 1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)

16.1.5.2 Pausing Replication on the Slave

You can stop and start the replication of statements on the slave using the STOP SLAVE and START
SLAVE statements.

To stop processing of the binary log from the master, use STOP SLAVE:

mysql> STOP SLAVE;

When replication is stopped, the slave I/O thread stops reading events from the master binary log and
writing them to the relay log, and the SQL thread stops reading events from the relay log and executing
them. You can pause the I/O or SQL thread individually by specifying the thread type:

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;

To start execution again, use the START SLAVE statement:

mysql> START SLAVE;

To start a particular thread, specify the thread type:

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;

Replication Implementation

2106

For a slave that performs updates only by processing events from the master, stopping only the SQL
thread can be useful if you want to perform a backup or other task. The I/O thread will continue to read
events from the master but they are not executed. This makes it easier for the slave to catch up when
you restart the SQL thread.

Stopping only the I/O thread enables the events in the relay log to be executed by the SQL thread up
to the point where the relay log ends. This can be useful when you want to pause execution to catch
up with events already received from the master, when you want to perform administration on the slave
but also ensure that it has processed all updates to a specific point. This method can also be used
to pause event receipt on the slave while you conduct administration on the master. Stopping the I/O
thread but permitting the SQL thread to run helps ensure that there is not a massive backlog of events
to be executed when replication is started again.

16.2 Replication Implementation

Replication is based on the master server keeping track of all changes to its databases (updates,
deletes, and so on) in its binary log. The binary log serves as a written record of all events that modify
database structure or content (data) from the moment the server was started. Typically, SELECT
statements are not recorded because they modify neither database structure nor content.

Each slave that connects to the master requests a copy of the binary log. That is, it pulls the data from
the master, rather than the master pushing the data to the slave. The slave also executes the events
from the binary log that it receives. This has the effect of repeating the original changes just as they
were made on the master. Tables are created or their structure modified, and data is inserted, deleted,
and updated according to the changes that were originally made on the master.

Because each slave is independent, the replaying of the changes from the master's binary log occurs
independently on each slave that is connected to the master. In addition, because each slave receives
a copy of the binary log only by requesting it from the master, the slave is able to read and update
the copy of the database at its own pace and can start and stop the replication process at will without
affecting the ability to update to the latest database status on either the master or slave side.

For more information on the specifics of the replication implementation, see Section 16.2.1,
“Replication Implementation Details”.

Masters and slaves report their status in respect of the replication process regularly so that you can
monitor them. See Section 8.12.5, “Examining Thread Information”, for descriptions of all replicated-
related states.

The master binary log is written to a local relay log on the slave before it is processed. The slave also
records information about the current position with the master's binary log and the local relay log. See
Section 16.2.2, “Replication Relay and Status Logs”.

Database changes are filtered on the slave according to a set of rules that are applied according to the
various configuration options and variables that control event evaluation. For details on how these rules
are applied, see Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

16.2.1 Replication Implementation Details

MySQL replication capabilities are implemented using three threads, one on the master server and two
on the slave:

• Binlog dump thread. The master creates a thread to send the binary log contents to a slave
when the slave connects. This thread can be identified in the output of SHOW PROCESSLIST on the
master as the Binlog Dump thread.

The binlog dump thread acquires a lock on the master's binary log for reading each event that is to
be sent to the slave. As soon as the event has been read, the lock is released, even before the event
is sent to the slave.

Replication Implementation Details

2107

• Slave I/O thread. When a START SLAVE statement is issued on a slave server, the slave creates
an I/O thread, which connects to the master and asks it to send the updates recorded in its binary
logs.

The slave I/O thread reads the updates that the master's Binlog Dump thread sends (see previous
item) and copies them to local files that comprise the slave's relay log.

The state of this thread is shown as Slave_IO_running in the output of SHOW SLAVE STATUS or
as Slave_running in the output of SHOW STATUS.

• Slave SQL thread. The slave creates an SQL thread to read the relay log that is written by the
slave I/O thread and execute the events contained therein.

In the preceding description, there are three threads per master/slave connection. A master that has
multiple slaves creates one binlog dump thread for each currently connected slave, and each slave has
its own I/O and SQL threads.

A slave uses two threads to separate reading updates from the master and executing them into
independent tasks. Thus, the task of reading statements is not slowed down if statement execution
is slow. For example, if the slave server has not been running for a while, its I/O thread can quickly
fetch all the binary log contents from the master when the slave starts, even if the SQL thread lags
far behind. If the slave stops before the SQL thread has executed all the fetched statements, the I/
O thread has at least fetched everything so that a safe copy of the statements is stored locally in the
slave's relay logs, ready for execution the next time that the slave starts. This enables the master
server to purge its binary logs sooner because it no longer needs to wait for the slave to fetch their
contents.

The SHOW PROCESSLIST statement provides information that tells you what is happening on the
master and on the slave regarding replication. For information on master states, see Section 8.12.5.4,
“Replication Master Thread States”. For slave states, see Section 8.12.5.5, “Replication Slave I/O
Thread States”, and Section 8.12.5.6, “Replication Slave SQL Thread States”.

The following example illustrates how the three threads show up in the output from SHOW
PROCESSLIST.

On the master server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 2
 User: root
 Host: localhost:32931
 db: NULL
Command: Binlog Dump
 Time: 94
 State: Has sent all binlog to slave; waiting for binlog to
 be updated
 Info: NULL

Here, thread 2 is a Binlog Dump replication thread that services a connected slave. The State
information indicates that all outstanding updates have been sent to the slave and that the master is
waiting for more updates to occur. If you see no Binlog Dump threads on a master server, this means
that replication is not running; that is, no slaves are currently connected.

On a slave server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11

Replication Relay and Status Logs

2108

 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 11
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Has read all relay log; waiting for the slave I/O
 thread to update it
 Info: NULL

The State information indicates that thread 10 is the I/O thread that is communicating with the master
server, and thread 11 is the SQL thread that is processing the updates stored in the relay logs. At the
time that SHOW PROCESSLIST was run, both threads were idle, waiting for further updates.

The value in the Time column can show how late the slave is compared to the master. See
Section B.13, “MySQL 5.7 FAQ: Replication”. If sufficient time elapses on the master side without
activity on the Binlog Dump thread, the master determines that the slave is no longer connected. As
for any other client connection, the timeouts for this depend on the values of net_write_timeout
and net_retry_count; for more information about these, see Section 5.1.4, “Server System
Variables”.

The SHOW SLAVE STATUS statement provides additional information about replication processing on a
slave server. See Section 16.1.5.1, “Checking Replication Status”.

16.2.2 Replication Relay and Status Logs

During replication, a slave server creates several logs that hold the binary log events relayed from the
master to the slave, and to record information about the current status and location within the relay log.
There are three types of logs used in the process, listed here:

• The relay log consists of the events read from the binary log of the master and written by the slave I/
O thread. Events in the relay log are executed on the slave as part of the SQL thread.

• The master info log contains status and current configuration information for the slave's connection
to the master. This log holds information on the master host name, login credentials, and coordinates
indicating how far the slave has read from the master's binary log.

This log can be written to the mysql.slave_master_info table instead of a file, by starting the
slave with --master-info-repository=TABLE.

• The relay log info log holds status information about the execution point within the slave's relay log.

This log can be written to the mysql.slave_relay_log_info table instead of a file by starting the
slave with --relay-log-info-repository=TABLE.

Crash-safe replication. In order for replication to be crash-safe when using tables for logging
status and relay information, these tables must use a transactional storage engine, such as InnoDB.
Beginning with MySQL 5.6.6, these tables are created using InnoDB. (Bug #13538891)

Therefore, in order to guarantee crash safety on the slave, you must run the slave with --relay-log-
recovery enabled, in addition to setting --relay-log-info-repository to TABLE.

In MySQL 5.7, a warning is given when mysqld is unable to initialize the replication logging tables, but
the slave is allowed to continue starting. (Bug #13971348) This situation is most likely to occur when
upgrading from a version of MySQL that does not support slave logging tables to one in which they are
supported.

In MySQL 5.7, execution of any statement requiring a write lock on either or both of the
slave_master_info and slave_relay_log_info tables is disallowed while replication is
ongoing, while statements that perform only reads are permitted at any time.

Replication Relay and Status Logs

2109

Important

Do not attempt to update or insert rows in the slave_master_info or
slave_relay_log_info table manually. Doing so can cause undefined
behavior, and is not supported.

16.2.2.1 The Slave Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

Relay log files have the same format as binary log files and can be read using mysqlbinlog (see
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”).

By default, relay log file names have the form host_name-relay-bin.nnnnnn in the data
directory, where host_name is the name of the slave server host and nnnnnn is a sequence number.
Successive relay log files are created using successive sequence numbers, beginning with 000001.
The slave uses an index file to track the relay log files currently in use. The default relay log index file
name is host_name-relay-bin.index in the data directory.

The default relay log file and relay log index file names can be overridden with, respectively, the --
relay-log and --relay-log-index server options (see Section 16.1.4, “Replication and Binary
Logging Options and Variables”).

If a slave uses the default host-based relay log file names, changing a slave's host name after
replication has been set up can cause replication to fail with the errors Failed to open the relay
log and Could not find target log during relay log initialization. This is a
known issue (see Bug #2122). If you anticipate that a slave's host name might change in the future (for
example, if networking is set up on the slave such that its host name can be modified using DHCP),
you can avoid this issue entirely by using the --relay-log and --relay-log-index options to
specify relay log file names explicitly when you initially set up the slave. This will make the names
independent of server host name changes.

If you encounter the issue after replication has already begun, one way to work around it is to stop the
slave server, prepend the contents of the old relay log index file to the new one, and then restart the
slave. On a Unix system, this can be done as shown here:

shell> cat new_relay_log_name.index >> old_relay_log_name.index
shell> mv old_relay_log_name.index new_relay_log_name.index

A slave server creates a new relay log file under the following conditions:

• Each time the I/O thread starts.

• When the logs are flushed; for example, with FLUSH LOGS or mysqladmin flush-logs.

• When the size of the current relay log file becomes “too large,” determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay
log file size.

The SQL thread automatically deletes each relay log file as soon as it has executed all events in the
file and no longer needs it. There is no explicit mechanism for deleting relay logs because the SQL
thread takes care of doing so. However, FLUSH LOGS rotates relay logs, which influences when the
SQL thread deletes them.

Replication Relay and Status Logs

2110

16.2.2.2 Slave Status Logs

A replication slave server creates two logs. By default, these logs are files named master.info and
relay-log.info and created in the data directory. The names and locations of these files can be
changed by using the --master-info-file and --relay-log-info-file options, respectively.
In MySQL 5.7, either or both of these logs can also be written to tables in the mysql database by
starting the server with the appropriate option: use --master-info-repository to have the
master info log written to the mysql.slave_master_info table, and use --relay-log-info-
repository to have the relay log info log written to the mysql.slave_relay_log_info table. See
Section 16.1.4, “Replication and Binary Logging Options and Variables”.

The two status logs contain information like that shown in the output of the SHOW SLAVE STATUS
statement, which is discussed in Section 13.4.2, “SQL Statements for Controlling Slave Servers”.
Because the status logs are stored on disk, they survive a slave server's shutdown. The next time the
slave starts up, it reads the two logs to determine how far it has proceeded in reading binary logs from
the master and in processing its own relay logs.

The master info log file or table should be protected because it contains the password for connecting to
the master. See Section 6.1.2.3, “Passwords and Logging”.

The slave I/O thread updates the master info log. The following table shows the correspondence
between the lines in the master.info file, the columns in the mysql.slave_master_info table,
and the columns displayed by SHOW SLAVE STATUS.

Line in
master.info
File

slave_master_info
Table Column

SHOW SLAVE STATUS Column Description

1 Number_of_lines [None] Number of lines
in the file

2 Master_log_name Master_Log_File The name of the
master binary
log currently
being read from
the master

3 Master_log_pos Read_Master_Log_Pos The current
position within
the master
binary log that
have been read
from the master

4 Host Master_Host The host name
of the master

5 User Master_User The user name
used to connect
to the master

6 User_password Password (not shown by SHOW
SLAVE STATUS)

The password
used to connect
to the master

7 Port Master_Port The network
port used to
connect to the
master

8 Connect_retry Connect_Retry The period (in
seconds) that
the slave will
wait before

Replication Relay and Status Logs

2111

Line in
master.info
File

slave_master_info
Table Column

SHOW SLAVE STATUS Column Description

trying to
reconnect to the
master

9 Enabled_ssl Master_SSL_Allowed Indicates
whether
the server
supports SSL
connections

10 Ssl_ca Master_SSL_CA_File The file used for
the Certificate
Authority (CA)
certificate

11 Ssl_capath Master_SSL_CA_Path The path to
the Certificate
Authority (CA)
certificates

12 Ssl_cert Master_SSL_Cert The name of the
SSL certificate
file

13 Ssl_cipher Master_SSL_Cipher The list of
possible ciphers
used in the
handshake
for the SSL
connection

14 Ssl_key Master_SSL_Key The name of the
SSL key file

15 Ssl_verify_server_cert Master_SSL_Verify_Server_CertWhether to
verify the server
certificate

16 Heartbeat [None] Interval between
replication
heartbeats, in
seconds

17 Bind Master_Bind Which of the
slave's network
interfaces
should be used
for connecting
to the master

18 Ignored_server_ids Replicate_Ignore_Server_Ids The number
of server IDs
to be ignored,
followed by the
actual server
IDs

19 Uuid Master_UUID The master's
unique ID

20 Retry_count Master_Retry_Count Maximum
number of

Replication Relay and Status Logs

2112

Line in
master.info
File

slave_master_info
Table Column

SHOW SLAVE STATUS Column Description

reconnection
attempts
permitted

The slave SQL thread updates the relay log info log. In MySQL 5.7, the relay-log.info file includes
a line count and a replication delay value. The following table shows the correspondence between the
lines in the relay-log.info file, the columns in the mysql.slave_relay_log_info table, and
the columns displayed by SHOW SLAVE STATUS.

Line in
relay-
log.info

slave_relay_log_info
Table Column

SHOW SLAVE STATUS Column Description

1 Number_of_lines [None] Number of lines in
the file or rows in
the table

2 Relay_log_name Relay_Log_File The name of the
current relay log
file

3 Relay_log_pos Relay_Log_Pos The current
position within
the relay log file;
events up to this
position have
been executed
on the slave
database

4 Master_log_name Relay_Master_Log_File The name of the
master binary log
file from which the
events in the relay
log file were read

5 Master_log_pos Exec_Master_Log_Pos The equivalent
position within the
master's binary
log file of events
that have already
been executed

5 Sql_delay SQL_Delay The number of
seconds that the
slave must lag the
master

In older versions of MySQL (prior to MySQL 5.6), the relay-log.info file does not include a line
count or a delay value (and the slave_relay_log_info table is not available).

Line Status Column Description

1 Relay_Log_File The name of the current relay log file

2 Relay_Log_Pos The current position within the relay log file;
events up to this position have been executed on
the slave database

How Servers Evaluate Replication Filtering Rules

2113

Line Status Column Description

3 Relay_Master_Log_File The name of the master binary log file from which
the events in the relay log file were read

4 Exec_Master_Log_Pos The equivalent position within the master's binary
log file of events that have already been executed

Note

If you downgrade a slave server to a version older than MySQL 5.6, the older
server does not read the relay-log.info file correctly. To address this,
modify the file in a text editor by deleting the initial line containing the number of
lines.

The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATUS
statement might not match if the relay-log.info file has not been flushed to disk. Ideally, you
should only view relay-log.info on a slave that is offline (that is, mysqld is not running). For
a running system, you can use SHOW SLAVE STATUS, or query the slave_master_info and
slave_relay_log_info tables if you are writing the status logs to tables.

When you back up the slave's data, you should back up these two status logs, along with the relay
log files. The status logs are needed to resume replication after you restore the data from the slave.
If you lose the relay logs but still have the relay log info log, you can check it to determine how far the
SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with the
MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that
point. Of course, this requires that the binary logs still exist on the master.

16.2.3 How Servers Evaluate Replication Filtering Rules

If a master server does not write a statement to its binary log, the statement is not replicated. If the
server does log the statement, the statement is sent to all slaves and each slave determines whether to
execute it or ignore it.

On the master, you can control which databases to log changes for by using the --binlog-do-
db and --binlog-ignore-db options to control binary logging. For a description of the rules
that servers use in evaluating these options, see Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”. You should not use these options to control which databases
and tables are replicated. Instead, use filtering on the slave to control the events that are executed on
the slave.

On the slave side, decisions about whether to execute or ignore statements received from the
master are made according to the --replicate-* options that the slave was started with. (See
Section 16.1.4, “Replication and Binary Logging Options and Variables”.) In MySQL 5.7.3 and later,
the filters governed by these options can also be set dynamically using the CHANGE REPLICATION
FILTER statement. The rules governing such filters are the same whether they are created on startup
using --replicate-* options or while the slave server is running by CHANGE REPLICATION
FILTER.

In the simplest case, when there are no --replicate-* options, the slave executes all statements
that it receives from the master. Otherwise, the result depends on the particular options given.

Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first;
see Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a
description of this process. If no database-level options are used, option checking proceeds to any
table-level options that may be in use (see Section 16.2.3.2, “Evaluation of Table-Level Replication
Options”, for a discussion of these). If one or more database-level options are used but none are
matched, the statement is not replicated.

For statements affecting databases only (that is, CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), database-level options always take precedence over any --replicate-wild-do-

How Servers Evaluate Replication Filtering Rules

2114

table options. In other words, for such statements, --replicate-wild-do-table options are
checked if and only if there are no database-level options that apply. This is a change in behavior from
previous versions of MySQL, where the statement CREATE DATABASE dbx was not replicated if the
slave had been started with --replicate-do-db=dbx --replicate-wild-do-table=db%.t1.
(Bug #46110)

To make it easier to determine what effect an option set will have, it is recommended that you avoid
mixing “do” and “ignore” options, or wildcard and nonwildcard options.

If any --replicate-rewrite-db options were specified, they are applied before the --
replicate-* filtering rules are tested.

Note

In MySQL 5.7, all replication filtering options follow the same rules for case
sensitivity that apply to names of databases and tables elsewhere in the MySQL
server, including the effects of the lower_case_table_names system
variable.

This is a change from previous versions of MySQL. (Bug #51639)

16.2.3.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the slave begins by checking to see whether there are any --
replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db
or --binlog-ignore-db, the process is similar, but the options are checked on the master.

With statement-based replication, the default database is checked for a match. With row-based
replication, the database where data is to be changed is the database that is checked. Regardless
of the binary logging format, checking of database-level options proceeds as shown in the following
diagram.

How Servers Evaluate Replication Filtering Rules

2115

The steps involved are listed here:

1. Are there any --replicate-do-db options?

• Yes. Do any of them match the database?

• Yes. Execute the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 2.

2. Are there any --replicate-ignore-db options?

• Yes. Do any of them match the database?

• Yes. Ignore the statement and exit.

• No. Continue to step 3.

• No. Continue to step 3.

3. Proceed to checking the table-level replication options, if there are any. For a description of how
these options are checked, see Section 16.2.3.2, “Evaluation of Table-Level Replication Options”.

How Servers Evaluate Replication Filtering Rules

2116

Important

A statement that is still permitted at this stage is not yet actually executed.
The statement is not executed until all table-level options (if any) have also
been checked, and the outcome of that process permits execution of the
statement.

For binary logging, the steps involved are listed here:

1. Are there any --binlog-do-db or --binlog-ignore-db options?

• Yes. Continue to step 2.

• No. Log the statement and exit.

2. Is there a default database (has any database been selected by USE)?

• Yes. Continue to step 3.

• No. Ignore the statement and exit.

3. There is a default database. Are there any --binlog-do-db options?

• Yes. Do any of them match the database?

• Yes. Log the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 4.

4. Do any of the --binlog-ignore-db options match the database?

• Yes. Ignore the statement and exit.

• No. Log the statement and exit.

Important

For statement-based logging, an exception is made in the rules just given for
the CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements.
In those cases, the database being created, altered, or dropped replaces the
default database when determining whether to log or ignore updates.

--binlog-do-db can sometimes mean “ignore other databases”. For example, when using
statement-based logging, a server running with only --binlog-do-db=sales does not write to
the binary log statements for which the default database differs from sales. When using row-based
logging with the same option, the server logs only those updates that change data in sales.

16.2.3.2 Evaluation of Table-Level Replication Options

The slave checks for and evaluates table options only if either of the following two conditions is true:

• No matching database options were found.

• One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 16.2.3.1, “Evaluation of
Database-Level Replication and Binary Logging Options”).

First, as a preliminary condition, the slave checks whether statement-based replication is enabled.
If so, and the statement occurs within a stored function, the slave executes the statement and exits.

How Servers Evaluate Replication Filtering Rules

2117

If row-based replication is enabled, the slave does not know whether a statement occurred within a
stored function on the master, so this condition does not apply.

Note

For statement-based replication, replication events represent statements (all
changes making up a given event are associated with a single SQL statement);
for row-based replication, each event represents a change in a single table row
(thus a single statement such as UPDATE mytable SET mycol = 1 may
yield many row-based events). When viewed in terms of events, the process
of checking table options is the same for both row-based and statement-based
replication.

Having reached this point, if there are no table options, the slave simply executes all events. If there
are any --replicate-do-table or --replicate-wild-do-table options, the event must match
one of these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-
table or --replicate-wild-ignore-table options, all events are executed except those that
match any of these options. This process is illustrated in the following diagram.

How Servers Evaluate Replication Filtering Rules

2118

The following steps describe this evaluation in more detail:

1. Are there any table options?

• Yes. Continue to step 2.

• No. Execute the event and exit.

2. Are there any --replicate-do-table options?

How Servers Evaluate Replication Filtering Rules

2119

• Yes. Does the table match any of them?

• Yes. Execute the event and exit.

• No. Continue to step 3.

• No. Continue to step 3.

3. Are there any --replicate-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the event and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Are there any --replicate-wild-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the event and exit.

• No. Continue to step 5.

• No. Continue to step 5.

5. Are there any --replicate-wild-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the event and exit.

• No. Continue to step 6.

• No. Continue to step 6.

6. Are there any --replicate-do-table or --replicate-wild-do-table options?

• Yes. Ignore the event and exit.

• No. Execute the event and exit.

16.2.3.3 Replication Rule Application

This section provides additional explanation and examples of usage for different combinations of
replication filtering options.

Some typical combinations of replication filter rule types are given in the following table:

Condition (Types of Options) Outcome

No --replicate-* options at all: The slave executes all events that it receives from the
master.

--replicate-*-db options, but no
table options:

The slave accepts or ignores events using the database
options. It executes all events permitted by those options
because there are no table restrictions.

--replicate-*-table options, but
no database options:

All events are accepted at the database-checking stage
because there are no database conditions. The slave

Replication Solutions

2120

Condition (Types of Options) Outcome
executes or ignores events based solely on the table
options.

A combination of database and table
options:

The slave accepts or ignores events using the database
options. Then it evaluates all events permitted by those
options according to the table options. This can sometimes
lead to results that seem counterintuitive, and that may be
different depending on whether you are using statement-
based or row-based replication; see the text for an example.

A more complex example follows, in which we examine the outcomes for both statement-based and
row-based settings.

Suppose that we have two tables mytbl1 in database db1 and mytbl2 in database db2 on the
master, and the slave is running with the following options (and no other replication filtering options):

replicate-ignore-db = db1
replicate-do-table = db2.tbl2

Now we execute the following statements on the master:

USE db1;
INSERT INTO db2.tbl2 VALUES (1);

The results on the slave vary considerably depending on the binary log format, and may not match
initial expectations in either case.

Statement-based replication. The USE statement causes db1 to be the default database. Thus the
--replicate-ignore-db option matches, and the INSERT statement is ignored. The table options
are not checked.

Row-based replication. The default database has no effect on how the slave reads database
options when using row-based replication. Thus, the USE statement makes no difference in how the
--replicate-ignore-db option is handled: the database specified by this option does not match
the database where the INSERT statement changes data, so the slave proceeds to check the table
options. The table specified by --replicate-do-table matches the table to be updated, and the
row is inserted.

16.3 Replication Solutions

Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 16.3.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the master and slaves, see Section 16.3.2,
“Using Replication with Different Master and Slave Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of
applications that use the solution. See Section 16.3.3, “Using Replication for Scale-Out”.

For performance or data distribution reasons, you may want to replicate different databases to different
replication slaves. See Section 16.3.4, “Replicating Different Databases to Different Slaves”

As the number of replication slaves increases, the load on the master can increase and lead to reduced
performance (because of the need to replicate the binary log to each slave). For tips on improving

Using Replication for Backups

2121

your replication performance, including using a single secondary server as an replication master, see
Section 16.3.5, “Improving Replication Performance”.

For guidance on switching masters, or converting slaves into masters as part of an emergency failover
solution, see Section 16.3.6, “Switching Masters During Failover”.

To secure your replication communication, you can use SSL to encrypt the communication channel.
For step-by-step instructions, see Section 16.3.7, “Setting Up Replication Using SSL”.

16.3.1 Using Replication for Backups

To use replication as a backup solution, replicate data from the master to a slave, and then back up
the data slave. The slave can be paused and shut down without affecting the running operation of the
master, so you can produce an effective snapshot of “live” data that would otherwise require the master
to be shut down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replication slave state so that you can rebuild the slave in the event of failure. There are
therefore two choices:

• If you are using replication as a solution to enable you to back up the data on the master, and the
size of your database is not too large, the mysqldump tool may be suitable. See Section 16.3.1.1,
“Backing Up a Slave Using mysqldump”.

• For larger databases, where mysqldump would be impractical or inefficient, you can back up the
raw data files instead. Using the raw data files option also means that you can back up the binary
and relay logs that will enable you to recreate the slave in the event of a slave failure. For more
information, see Section 16.3.1.2, “Backing Up Raw Data from a Slave”.

Another backup strategy, which can be used for either master or slave servers, is to put the server in a
read-only state. The backup is performed against the read-only server, which then is changed back to
its usual read/write operational status. See Section 16.3.1.3, “Backing Up a Master or Slave by Making
It Read Only”.

16.3.1.1 Backing Up a Slave Using mysqldump

Using mysqldump to create a copy of a database enables you to capture all of the data in the
database in a format that enables the information to be imported into another instance of MySQL
Server (see Section 4.5.4, “mysqldump — A Database Backup Program”). Because the format of the
information is SQL statements, the file can easily be distributed and applied to running servers in the
event that you need access to the data in an emergency. However, if the size of your data set is very
large, mysqldump may be impractical.

When using mysqldump, you should stop replication on the slave before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the slave from processing requests. You can stop replication completely on the slave using
mysqladmin:

shell> mysqladmin stop-slave

Alternatively, you can stop only the slave SQL thread to pause event execution:

shell> mysql -e 'STOP SLAVE SQL_THREAD;'

This enables the slave to continue to receive data change events from the master's binary log
and store them in the relay logs using the I/O thread, but prevents the slave from executing these
events and changing its data. Within busy replication environments, permitting the I/O thread to run
during backup may speed up the catch-up process when you restart the slave SQL thread.

2. Run mysqldump to dump your databases. You may either dump all databases or select databases
to be dumped. For example, to dump all databases:

Using Replication for Backups

2122

shell> mysqldump --all-databases > fulldb.dump

3. Once the dump has completed, start slave operations again:

shell> mysqladmin start-slave

In the preceding example, you may want to add login credentials (user name, password) to the
commands, and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the slave replication process to ensure that the time
taken to run the backup does not affect the slave's ability to keep up with events from the master. See
Section 16.1.5.1, “Checking Replication Status”. If the slave is unable to keep up, you may want to add
another slave and distribute the backup process. For an example of how to configure this scenario, see
Section 16.3.4, “Replicating Different Databases to Different Slaves”.

16.3.1.2 Backing Up Raw Data from a Slave

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL
replication slave should take place while your slave server is shut down. If the MySQL server is still
running, background tasks may still be updating the database files, particularly those involving storage
engines with background processes such as InnoDB. With InnoDB, these problems should be
resolved during crash recovery, but since the slave server can be shut down during the backup process
without affecting the execution of the master it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the slave MySQL server:

shell> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or
WinZip. For example, assuming that the data directory is located under the current directory, you
can archive the entire directory as follows:

shell> tar cf /tmp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

shell> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"

Normally you should back up the entire data directory for the slave MySQL server. If you want to be
able to restore the data and operate as a slave (for example, in the event of failure of the slave), then in
addition to the slave's data, you should also back up the slave status files, the master info and relay log
info repositories, and the relay log files. These files are needed to resume replication after you restore
the slave's data.

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how far
the SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with
the MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from
that point. This requires that the binary logs still exist on the master server.

If your slave is replicating LOAD DATA INFILE statements, you should also back up any SQL_LOAD-
* files that exist in the directory that the slave uses for this purpose. The slave needs these files to
resume replication of any interrupted LOAD DATA INFILE operations. The location of this directory
is the value of the --slave-load-tmpdir option. If the server was not started with that option, the
directory location is the value of the tmpdir system variable.

Using Replication for Backups

2123

16.3.1.3 Backing Up a Master or Slave by Making It Read Only

It is possible to back up either master or slave servers in a replication setup by acquiring a global read
lock and manipulating the read_only system variable to change the read-only state of the server to
be backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.

2. Perform the backup.

3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as mysqldump
(see Section 4.5.4, “mysqldump — A Database Backup Program”). You should
not attempt to use these instructions to make a binary backup by copying files
directly because the server may still have modified data cached in memory and
not flushed to disk.

The following instructions describe how to do this for a master server and for a slave server. For both
scenarios discussed here, suppose that you have the following replication setup:

• A master server M1

• A slave server S1 that has M1 as its master

• A client C1 connected to M1

• A client C2 connected to S1

In either scenario, the statements to acquire the global read lock and manipulate the read_only
variable are performed on the server to be backed up and do not propagate to any slaves of that
server.

Scenario 1: Backup with a Read-Only Master

Put the master M1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While M1 is in a read-only state, the following properties are true:

• Requests for updates sent by C1 to M1 will block because the server is in read-only mode.

• Requests for query results sent by C1 to M1 will succeed.

• Making a backup on M1 is safe.

• Making a backup on S1 is not safe. This server is still running, and might be processing the binary
log or update requests coming from client C2

While M1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on M1 completes, restore M1 to its normal operational state by executing
these statements:

mysql> SET GLOBAL read_only = OFF;

Using Replication with Different Master and Slave Storage Engines

2124

mysql> UNLOCK TABLES;

Although performing the backup on M1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of M1 are blocked from executing updates.

This strategy applies to backing up a master server in a replication setup, but can also be used for a
single server in a nonreplication setting.

Scenario 2: Backup with a Read-Only Slave

Put the slave S1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While S1 is in a read-only state, the following properties are true:

• The master M1 will continue to operate, so making a backup on the master is not safe.

• The slave S1 is stopped, so making a backup on the slave S1 is safe.

These properties provide the basis for a popular backup scenario: Having one slave busy performing a
backup for a while is not a problem because it does not affect the entire network, and the system is still
running during the backup. In particular, clients can still perform updates on the master server, which
remains unaffected by backup activity on the slave.

While S1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing
these statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

After the slave is restored to normal operation, it again synchronizes to the master by catching up with
any outstanding updates from the binary log of the master.

16.3.2 Using Replication with Different Master and Slave Storage Engines

It does not matter for the replication process whether the source table on the master and the
replicated table on the slave use different engine types. In fact, the default_storage_engine and
storage_engine system variables are not replicated.

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 16.3.3, “Using Replication for Scale-Out”), you want to use InnoDB tables on the master to
take advantage of the transactional functionality, but use MyISAM on the slaves where transaction
support is not required because the data is only read. When using replication in a data-logging
environment you may want to use the Archive storage engine on the slave.

Configuring different engines on the master and slave depends on how you set up the initial replication
process:

• If you used mysqldump to create the database snapshot on your master, you could edit the dump
file text to change the engine type used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the
slave before using the dump to build the data on the slave. For example, you can add the --skip-
innodb option on your slave to disable the InnoDB engine. If a specific engine does not exist for a
table to be created, MySQL will use the default engine type, usually MyISAM. (This requires that the

Using Replication for Scale-Out

2125

NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable additional engines
in this way, you may want to consider building a special binary to be used on the slave that only
supports the engines you want.

• If you are using raw data files (a binary backup) to set up the slave, you will be unable to change the
initial table format. Instead, use ALTER TABLE to change the table types after the slave has been
started.

• For new master/slave replication setups where there are currently no tables on the master, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another
engine type, follow these steps:

1. Stop the slave from running replication updates:

mysql> STOP SLAVE;

This will enable you to change engine types without interruptions.

2. Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.

3. Start the slave replication process again:

mysql> START SLAVE;

Although the default_storage_engine variable is not replicated, be aware that CREATE TABLE
and ALTER TABLE statements that include the engine specification will be correctly replicated to the
slave. For example, if you have a CSV table and you execute:

mysql> ALTER TABLE csvtable Engine='MyISAM';

The above statement will be replicated to the slave and the engine type on the slave will be converted
to MyISAM, even if you have previously changed the table type on the slave to an engine other than
CSV. If you want to retain engine differences on the master and slave, you should be careful to use the
default_storage_engine variable on the master when creating a new table. For example, instead
of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET default_storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

When replicated, the default_storage_engine variable will be ignored, and the CREATE TABLE
statement will execute on the slave using the slave's default engine.

16.3.3 Using Replication for Scale-Out

You can use replication as a scale-out solution; that is, where you want to split up the load of database
queries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one master to one or more slaves, using replication
for scale-out works best in an environment where you have a high number of reads and low number of
writes/updates. Most Web sites fit into this category, where users are browsing the Web site, reading
articles, posts, or viewing products. Updates only occur during session management, or when making a
purchase or adding a comment/message to a forum.

Replicating Different Databases to Different Slaves

2126

Replication in this situation enables you to distribute the reads over the replication slaves, while still
enabling your web servers to communicate with the replication master when a write is required. You
can see a sample replication layout for this scenario in Figure 16.1, “Using Replication to Improve
Performance During Scale-Out”.

Figure 16.1 Using Replication to Improve Performance During Scale-Out

If the part of your code that is responsible for database access has been properly abstracted/
modularized, converting it to run with a replicated setup should be very smooth and easy. Change
the implementation of your database access to send all writes to the master, and to send reads to
either the master or a slave. If your code does not have this level of abstraction, setting up a replicated
system gives you the opportunity and motivation to clean it up. Start by creating a wrapper library or
module that implements the following functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions.
You can use different names for the functions. The important thing is to have a unified interface for
connecting for reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to take
advantage of a master/slave configuration, even one involving multiple slaves. The code is much easier
to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions;
for example, to log how long each statement took, or which statement among those issued gave you an
error.

If you have written a lot of code, you may want to automate the conversion task by using the replace
utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your
code uses consistent programming style conventions. If not, then you are probably better off rewriting it
anyway, or at least going through and manually regularizing it to use a consistent style.

16.3.4 Replicating Different Databases to Different Slaves

There may be situations where you have a single master and want to replicate different databases to
different slaves. For example, you may want to distribute different sales data to different departments

Replicating Different Databases to Different Slaves

2127

to help spread the load during data analysis. A sample of this layout is shown in Figure 16.2, “Using
Replication to Replicate Databases to Separate Replication Slaves”.

Figure 16.2 Using Replication to Replicate Databases to Separate Replication Slaves

You can achieve this separation by configuring the master and slaves as normal, and then limiting
the binary log statements that each slave processes by using the --replicate-wild-do-table
configuration option on each slave.

Important

You should not use --replicate-do-db for this purpose when using
statement-based replication, since statement-based replication causes this
option's affects to vary according to the database that is currently selected. This
applies to mixed-format replication as well, since this enables some updates to
be replicated using the statement-based format.

However, it should be safe to use --replicate-do-db for this purpose if you
are using row-based replication only, since in this case the currently selected
database has no effect on the option's operation.

For example, to support the separation as shown in Figure 16.2, “Using Replication to Replicate
Databases to Separate Replication Slaves”, you should configure each replication slave as follows,
before executing START SLAVE:

• Replication slave 1 should use --replicate-wild-do-table=databaseA.%.

• Replication slave 2 should use --replicate-wild-do-table=databaseB.%.

• Replication slave 3 should use --replicate-wild-do-table=databaseC.%.

Each slave in this configuration receives the entire binary log from the master, but executes only those
events from the binary log that apply to the databases and tables included by the --replicate-
wild-do-table option in effect on that slave.

If you have data that must be synchronized to the slaves before replication starts, you have a number
of choices:

• Synchronize all the data to each slave, and delete the databases, tables, or both that you do not
want to keep.

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file
on each slave.

• Use a raw data file dump and include only the specific files and databases that you need for each
slave.

Note

This does not work with InnoDB databases unless you use
innodb_file_per_table.

Improving Replication Performance

2128

16.3.5 Improving Replication Performance

As the number of slaves connecting to a master increases, the load, although minimal, also increases,
as each slave uses a client connection to the master. Also, as each slave must receive a full copy of
the master binary log, the network load on the master may also increase and create a bottleneck.

If you are using a large number of slaves connected to one master, and that master is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication
structure that enables the master to replicate to only one slave, and for the remaining slaves to connect
to this primary slave for their individual replication requirements. A sample of this structure is shown in
Figure 16.3, “Using an Additional Replication Host to Improve Performance”.

Figure 16.3 Using an Additional Replication Host to Improve Performance

For this to work, you must configure the MySQL instances as follows:

• Master 1 is the primary master where all changes and updates are written to the database. Binary
logging should be enabled on this machine.

• Master 2 is the slave to the Master 1 that provides the replication functionality to the remainder of
the slaves in the replication structure. Master 2 is the only machine permitted to connect to Master
1. Master 2 also has binary logging enabled, and the --log-slave-updates option so that
replication instructions from Master 1 are also written to Master 2's binary log so that they can then
be replicated to the true slaves.

• Slave 1, Slave 2, and Slave 3 act as slaves to Master 2, and replicate the information from Master 2,
which actually consists of the upgrades logged on Master 1.

The above solution reduces the client load and the network interface load on the primary master, which
should improve the overall performance of the primary master when used as a direct database solution.

If your slaves are having trouble keeping up with the replication process on the master, there are a
number of options available:

• If possible, put the relay logs and the data files on different physical drives. To do this, use the --
relay-log option to specify the location of the relay log.

• If the slaves are significantly slower than the master, you may want to divide up the responsibility
for replicating different databases to different slaves. See Section 16.3.4, “Replicating Different
Databases to Different Slaves”.

• If your master makes use of transactions and you are not concerned about transaction support on
your slaves, use MyISAM or another nontransactional engine on the slaves. See Section 16.3.2,
“Using Replication with Different Master and Slave Storage Engines”.

• If your slaves are not acting as masters, and you have a potential solution in place to ensure that you
can bring up a master in the event of failure, then you can switch off --log-slave-updates. This
prevents “dumb” slaves from also logging events they have executed into their own binary log.

Switching Masters During Failover

2129

16.3.6 Switching Masters During Failover

When using replication with GTIDs (see Section 16.1.3, “Replication with Global Transaction
Identifiers”), you can provide failover between master and slaves in the event of a failure using
mysqlfailover, which is provided by the MySQL Utilities; see mysqlfailover — Automatic
replication health monitoring and failover, for more information. Otherwise, you must set up a master
and one or more slaves; then, you need to write an application or script that monitors the master to
check whether it is up, and instructs the slaves and applications to change to another master in case of
failure. This section discusses some of the issues encountered when setting up failover in this fashion.

You can tell a slave to change to a new master using the CHANGE MASTER TO statement. The slave
does not check whether the databases on the master are compatible with those on the slave; it simply
begins reading and executing events from the specified coordinates in the new master's binary log. In
a failover situation, all the servers in the group are typically executing the same events from the same
binary log file, so changing the source of the events should not affect the structure or integrity of the
database, provided that you exercise care in making the change.

Slaves should be run with the --log-bin option and without --log-slave-updates. In this way,
the slave is ready to become a master without restarting the slave mysqld. Assume that you have the
structure shown in Figure 16.4, “Redundancy Using Replication, Initial Structure”.

Figure 16.4 Redundancy Using Replication, Initial Structure

In this diagram, the MySQL Master holds the master database, the MySQL Slave hosts are
replication slaves, and the Web Client machines are issuing database reads and writes. Web clients
that issue only reads (and would normally be connected to the slaves) are not shown, as they do not
need to switch to a new server in the event of failure. For a more detailed example of a read/write
scale-out replication structure, see Section 16.3.3, “Using Replication for Scale-Out”.

Each MySQL Slave (Slave 1, Slave 2, and Slave 3) is a slave running with --log-bin and
without --log-slave-updates. Because updates received by a slave from the master are not
logged in the binary log unless --log-slave-updates is specified, the binary log on each slave is
empty initially. If for some reason MySQL Master becomes unavailable, you can pick one of the slaves
to become the new master. For example, if you pick Slave 1, all Web Clients should be redirected
to Slave 1, which writes the updates to its binary log. Slave 2 and Slave 3 should then replicate
from Slave 1.

The reason for running the slave without --log-slave-updates is to prevent slaves from receiving
updates twice in case you cause one of the slaves to become the new master. If Slave 1 has --log-
slave-updates enabled, it writes any updates that it receives from Master in its own binary log. This

http://dev.mysql.com/doc/mysql-utilities/1.4/en/mysqlfailover.html
http://dev.mysql.com/doc/mysql-utilities/1.4/en/mysqlfailover.html

Switching Masters During Failover

2130

means that, when Slave 2 changes from Master to Slave 1 as its master, it may receive updates
from Slave 1 that it has already received from Master.

Make sure that all slaves have processed any statements in their relay log. On each slave, issue STOP
SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read all
relay log. When this is true for all slaves, they can be reconfigured to the new setup. On the slave
Slave 1 being promoted to become the master, issue STOP SLAVE and RESET MASTER.

On the other slaves Slave 2 and Slave 3, use STOP SLAVE and CHANGE MASTER TO
MASTER_HOST='Slave1' (where 'Slave1' represents the real host name of Slave 1). To use
CHANGE MASTER TO, add all information about how to connect to Slave 1 from Slave 2 or Slave
3 (user, password, port). When issuing the CHANGE MASTER TO statement in this, there is no need
to specify the name of the Slave 1 binary log file or log position to read from, since the first binary log
file and position 4, are the defaults. Finally, execute START SLAVE on Slave 2 and Slave 3.

Once the new replication setup is in place, you need to tell each Web Client to direct its statements
to Slave 1. From that point on, all updates statements sent by Web Client to Slave 1 are written
to the binary log of Slave 1, which then contains every update statement sent to Slave 1 since
Master died.

The resulting server structure is shown in Figure 16.5, “Redundancy Using Replication, After Master
Failure”.

Figure 16.5 Redundancy Using Replication, After Master Failure

When Master becomes available again, you should make it a slave of Slave 1. To do this, issue
on Master the same CHANGE MASTER TO statement as that issued on Slave 2 and Slave 3
previously. Master then becomes a slave of S1ave 1 and picks up the Web Client writes that it
missed while it was offline.

To make Master a master again (for example, because it is the most powerful machine), use the
preceding procedure as if Slave 1 was unavailable and Master was to be the new master. During
this procedure, do not forget to run RESET MASTER on Master before making Slave 1, Slave 2,
and Slave 3 slaves of Master. If you fail to do this, the slaves may pick up stale writes from the Web
Client applications dating from before the point at which Master became unavailable.

You should be aware that that there is no synchronization between slaves, even when they share
the same master, and thus some slaves might be considerably ahead of others. This means that in

Setting Up Replication Using SSL

2131

some cases the procedure outlined in the previous example might not work as expected. In practice,
however, relay logs on all slaves should be relatively close together.

One way to keep applications informed about the location of the master is to have a dynamic DNS
entry for the master. With bind you can use nsupdate to update the DNS dynamically.

16.3.7 Setting Up Replication Using SSL

To use SSL for encrypting the transfer of the binary log required during replication, both the master
and the slave must support SSL network connections. If either host does not support SSL connections
(because it has not been compiled or configured for SSL), replication through an SSL connection is not
possible.

Setting up replication using an SSL connection is similar to setting up a server and client using SSL.
You must obtain (or create) a suitable security certificate that you can use on the master, and a similar
certificate (from the same certificate authority) on each slave.

For more information on setting up a server and client for SSL connectivity, see Section 6.3.11.2,
“Configuring MySQL for SSL”.

To enable SSL on the master you must create or obtain suitable certificates, and then add the following
configuration options to the master's configuration within the [mysqld] section of the master's
my.cnf file:

[mysqld]
ssl-ca=cacert.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

The paths to the certificates may be relative or absolute; we recommend that you always use complete
paths for this purpose.

The options are as follows:

• ssl-ca identifies the Certificate Authority (CA) certificate.

• ssl-cert identifies the server public key. This can be sent to the client and authenticated against
the CA certificate that it has.

• ssl-key identifies the server private key.

On the slave, you have two options available for setting the SSL information. You can either add the
slave certificates to the [client] section of the slave's my.cnf file, or you can explicitly specify the
SSL information using the CHANGE MASTER TO statement:

• To add the slave certificates using an option file, add the following lines to the [client] section of
the slave's my.cnf file:

[client]
ssl-ca=cacert.pem
ssl-cert=client-cert.pem
ssl-key=client-key.pem

Restart the slave server, using the --skip-slave-start option to prevent the slave from
connecting to the master. Use CHANGE MASTER TO to specify the master configuration, using the
MASTER_SSL option to enable SSL connectivity:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_hostname',
 -> MASTER_USER='replicate',
 -> MASTER_PASSWORD='password',

Semisynchronous Replication

2132

 -> MASTER_SSL=1;

• To specify the SSL certificate options using the CHANGE MASTER TO statement, append the SSL
options:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_hostname',
 -> MASTER_USER='replicate',
 -> MASTER_PASSWORD='password',
 -> MASTER_SSL=1,
 -> MASTER_SSL_CA = 'ca_file_name',
 -> MASTER_SSL_CAPATH = 'ca_directory_name',
 -> MASTER_SSL_CERT = 'cert_file_name',
 -> MASTER_SSL_KEY = 'key_file_name';

After the master information has been updated, start the slave replication process:

mysql> START SLAVE;

You can use the SHOW SLAVE STATUS statement to confirm that the SSL connection was established
successfully.

For more information on the CHANGE MASTER TO statement, see Section 13.4.2.1, “CHANGE MASTER
TO Syntax”.

If you want to enforce the use of SSL connections during replication, then create a user with the
REPLICATION SLAVE privilege and use the REQUIRE SSL option for that user. For example:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.*
 -> TO 'repl'@'%.mydomain.com' REQUIRE SSL;

If the account already exists, you can add REQUIRE SSL to it with this statement:

mysql> GRANT USAGE ON *.*
 -> TO 'repl'@'%.mydomain.com' REQUIRE SSL;

16.3.8 Semisynchronous Replication

In addition to the built-in asynchronous replication, MySQL 5.7 supports an interface to
semisynchronous replication that is implemented by plugins. This section discusses what
semisynchronous replication is and how it works. The following sections cover the administrative
interface to semisynchronous replication and how to install, configure, and monitor it.

MySQL replication by default is asynchronous. The master writes events to its binary log but does not
know whether or when a slave has retrieved and processed them. With asynchronous replication, if
the master crashes, transactions that it has committed might not have been transmitted to any slave.
Consequently, failover from master to slave in this case may result in failover to a server that is missing
transactions relative to the master.

Semisynchronous replication can be used as an alternative to asynchronous replication:

• A slave indicates whether it is semisynchronous-capable when it connects to the master.

• If semisynchronous replication is enabled on the master side and there is at least one
semisynchronous slave, a thread that performs a transaction commit on the master blocks and
waits until at least one semisynchronous slave acknowledges that it has received all events for the
transaction, or until a timeout occurs.

• The slave acknowledges receipt of a transaction's events only after the events have been written to
its relay log and flushed to disk.

Semisynchronous Replication

2133

• If a timeout occurs without any slave having acknowledged the transaction, the master reverts to
asynchronous replication. When at least one semisynchronous slave catches up, the master returns
to semisynchronous replication.

• Semisynchronous replication must be enabled on both the master and slave sides. If
semisynchronous replication is disabled on the master, or enabled on the master but on no slaves,
the master uses asynchronous replication.

While the master is blocking (waiting for acknowledgment from a slave), it does not return to the
session that performed the transaction. When the block ends, the master returns to the session, which
then can proceed to execute other statements. At this point, the transaction has committed on the
master side, and receipt of its events has been acknowledged by at least one slave.

As of MySQL 5.7.3, the number of slave acknowledgments the master must receive per transaction
before proceeding is configurable using the rpl_semi_sync_master_wait_for_slave_count
system variable. The default value is 1.

Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction
that modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though
it has no effect for transactional tables because the modifications to the nontransactional tables cannot
be rolled back and must be sent to slaves.

For statements that do not occur in transactional context (that is, when no transaction has been started
with START TRANSACTION or SET autocommit = 0), autocommit is enabled and each statement
commits implicitly. With semisynchronous replication, the master blocks for each such statement, just
as it does for explicit transaction commits.

To understand what the “semi” in “semisynchronous replication” means, compare it with asynchronous
and fully synchronous replication:

• With asynchronous replication, the master writes events to its binary log and slaves request them
when they are ready. There is no guarantee that any event will ever reach any slave.

• With fully synchronous replication, when a master commits a transaction, all slaves also will have
committed the transaction before the master returns to the session that performed the transaction.
The drawback of this is that there might be a lot of delay to complete a transaction.

• Semisynchronous replication falls between asynchronous and fully synchronous replication. The
master waits only until at least one slave has received and logged the events. It does not wait for
all slaves to acknowledge receipt, and it requires only receipt, not that the events have been fully
executed and committed on the slave side.

Compared to asynchronous replication, semisynchronous replication provides improved data integrity.
When a commit returns successfully, it is known that the data exists in at least two places (on the
master and at least one slave). If the master commits but a crash occurs while the master is waiting for
acknowledgment from a slave, it is possible that the transaction may not have reached any slave.

Semisynchronous replication also places a rate limit on busy sessions by constraining the speed at
which binary log events can be sent from master to slave. When one user is too busy, this will slow it
down, which is useful in some deployment situations.

Semisynchronous replication does have some performance impact because commits are slower due
to the need to wait for slaves. This is the tradeoff for increased data integrity. The amount of slowdown
is at least the TCP/IP roundtrip time to send the commit to the slave and wait for the acknowledgment
of receipt by the slave. This means that semisynchronous replication works best for close servers
communicating over fast networks, and worst for distant servers communicating over slow networks.

The rpl_semi_sync_master_wait_point system variable controls the point at which a
semisynchronous replication master waits for slave acknowledgment of transaction receipt before
returning a status to the client that committed the transaction. These values are permitted:

Semisynchronous Replication

2134

• AFTER_SYNC (the default): The master writes each transaction to its binary log and the slave, and
syncs the binary log to disk. The master waits for slave acknowledgment of transaction receipt after
the sync. Upon receiving acknowledgment, the master commits the transaction to the storage engine
and returns a result to the client, which then can proceed.

• AFTER_COMMIT: The master writes each transaction to its binary log and the slave, syncs the binary
log, and commits the transaction to the storage engine. The master waits for slave acknowledgment
of transaction receipt after the commit. Upon receiving acknowledgment, the master returns a result
to the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the slave and committed to the storage engine on the master. Thus, all clients see
the same data on the master.

In the event of master failure, all transactions committed on the master have been replicated to the
slave (saved to its relay log). A crash of the master and failover to the slave is lossless because the
slave is up to date.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives slave acknowledgment. After the commit and before
slave acknowledgment, other clients can see the committed transaction before the committing client.

If something goes wrong such that the slave does not process the transaction, then in the event of a
master crash and failover to the slave, it is possible that such clients will see a loss of data relative to
what they saw on the master.

16.3.8.1 Semisynchronous Replication Administrative Interface

The administrative interface to semisynchronous replication has several components:

• Two plugins implement semisynchronous capability. There is one plugin for the master side and one
for the slave side.

• System variables control plugin behavior. Some examples:

• rpl_semi_sync_master_enabled

Controls whether semisynchronous replication is enabled on the master. To enable or disable the
plugin, set this variable to 1 or 0, respectively. The default is 0 (off).

• rpl_semi_sync_master_timeout

A value in milliseconds that controls how long the master waits on a commit for acknowledgment
from a slave before timing out and reverting to asynchronous replication. The default value is
10000 (10 seconds).

• rpl_semi_sync_slave_enabled

Similar to rpl_semi_sync_master_enabled, but controls the slave plugin.

All rpl_semi_sync_xxx system variables are described at Section 5.1.4, “Server System
Variables”.

• Status variables enable semisynchronous replication monitoring. Some examples:

• Rpl_semi_sync_master_clients

The number of semisynchronous slaves.

• Rpl_semi_sync_master_status

Semisynchronous Replication

2135

Whether semisynchronous replication currently is operational on the master. The value is 1 if the
plugin has been enabled and a commit acknowledgment has not occurred. It is 0 if the plugin is not
enabled or the master has fallen back to asynchronous replication due to commit acknowledgment
timeout.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a slave.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a slave.

• Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the slave. This is 1 if the plugin
has been enabled and the slave I/O thread is running, 0 otherwise.

All Rpl_semi_sync_xxx status variables are described at Section 5.1.6, “Server Status Variables”.

The system and status variables are available only if the appropriate master or slave plugin has been
installed with INSTALL PLUGIN.

16.3.8.2 Semisynchronous Replication Installation and Configuration

Semisynchronous replication is implemented using plugins, so the plugins must be installed into the
server to make them available. After a plugin has been installed, you control it by means of the system
variables associated with it. These system variables are unavailable until the associated plugin has
been installed.

To use semisynchronous replication, the following requirements must be satisfied:

• MySQL 5.5 or higher must be installed.

• The capability of installing plugins requires a MySQL server that supports dynamic loading. To
verify this, check that the value of the have_dynamic_loading system variable is YES. Binary
distributions should support dynamic loading.

• Replication must already be working. For information on creating a master/slave relationship, see
Section 16.1.1, “How to Set Up Replication”.

To set up semisynchronous replication, use the following instructions. The INSTALL PLUGIN, SET
GLOBAL, STOP SLAVE, and START SLAVE statements mentioned here require the SUPER privilege.

The semisynchronous replication plugins are included with MySQL distributions.

Unpack the component distribution, which contains files for the master side and the slave side.

Install the component files in the plugin directory of the appropriate server. Install the
semisync_master* files in the plugin directory of the master server. Install the semisync_slave*
files in the plugin directory of each slave server. The location of the plugin directory is available as the
value of the server's plugin_dir system variable.

To load the plugins, use the INSTALL PLUGIN statement on the master and on each slave that is to
be semisynchronous.

On the master:

mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';

On each slave:

Semisynchronous Replication

2136

mysql> INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';

The preceding commands use a plugin file name suffix of .so. A different suffix might apply on your
system. If you are not sure about the plugin file name, look for the plugins in the server's plugin
directory.

If an attempt to install a plugin results in an error on Linux similar to that shown here, you will need to
install libimf:

mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_master.so' (errno: 22 libimf.so: cannot open
shared object file: No such file or directory)

You can obtain libimf from http://dev.mysql.com/downloads/os-linux.html.

To see which plugins are installed, use the SHOW PLUGINS statement, or query the
INFORMATION_SCHEMA.PLUGINS table.

After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins
must be enabled both on the master side and the slave side to enable semisynchronous replication. If
only one side is enabled, replication will be asynchronous.

To control whether an installed plugin is enabled, set the appropriate system variables. You can set
these variables at runtime using SET GLOBAL, or at server startup on the command line or in an option
file.

At runtime, these master-side system variables are available:

mysql> SET GLOBAL rpl_semi_sync_master_enabled = {0|1};
mysql> SET GLOBAL rpl_semi_sync_master_timeout = N;

On the slave side, this system variable is available:

mysql> SET GLOBAL rpl_semi_sync_slave_enabled = {0|1};

For rpl_semi_sync_master_enabled or rpl_semi_sync_slave_enabled, the value should be
1 to enable semisynchronous replication or 0 to disable it. By default, these variables are set to 1.

For rpl_semi_sync_master_timeout, the value N is given in milliseconds. The default value is
10000 (10 seconds).

If you enable semisynchronous replication on a slave at runtime, you must also start the slave I/O
thread (stopping it first if it is already running) to cause the slave to connect to the master and register
as a semisynchronous slave:

mysql> STOP SLAVE IO_THREAD; START SLAVE IO_THREAD;

If the I/O thread is already running and you do not restart it, the slave continues to use asynchronous
replication.

At server startup, the variables that control semisynchronous replication can be set as command-line
options or in an option file. A setting listed in an option file takes effect each time the server starts. For
example, you can set the variables in my.cnf files on the master and slave sides as follows.

On the master:

[mysqld]
rpl_semi_sync_master_enabled=1
rpl_semi_sync_master_timeout=1000 # 1 second

http://dev.mysql.com/downloads/os-linux.html

Delayed Replication

2137

On each slave:

[mysqld]
rpl_semi_sync_slave_enabled=1

16.3.8.3 Semisynchronous Replication Monitoring

The plugins for the semisynchronous replication capability expose several system and status variables
that you can examine to determine its configuration and operational state.

The system variable reflect how semisynchronous replication is configured. To check their values, use
SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';

The status variables enable you to monitor the operation of semisynchronous replication. To check
their values, use SHOW STATUS:

mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';

When the master switches between asynchronous or semisynchronous replication due to commit-
blocking timeout or a slave catching up, it sets the value of the Rpl_semi_sync_master_status
status variable appropriately. Automatic fallback from semisynchronous to asynchronous replication on
the master means that it is possible for the rpl_semi_sync_master_enabled system variable to
have a value of 1 on the master side even when semisynchronous replication is in fact not operational
at the moment. You can monitor the Rpl_semi_sync_master_status status variable to determine
whether the master currently is using asynchronous or semisynchronous replication.

To see how many semisynchronous slaves are connected, check
Rpl_semi_sync_master_clients.

The number of commits that have been acknowledged successfully or unsuccessfully by slaves
are indicated by the Rpl_semi_sync_master_yes_tx and Rpl_semi_sync_master_no_tx
variables.

On the slave side, Rpl_semi_sync_slave_status indicates whether semisynchronous replication
currently is operational.

16.3.9 Delayed Replication

MySQL 5.7 supports delayed replication such that a slave server deliberately lags behind the master by
at least a specified amount of time. The default delay is 0 seconds. Use the MASTER_DELAY option for
CHANGE MASTER TO to set the delay to N seconds:

CHANGE MASTER TO MASTER_DELAY = N;

An event received from the master is not executed until at least N seconds later than its execution on
the master. The exceptions are that there is no delay for format description events or log file rotation
events, which affect only the internal state of the SQL thread.

Delayed replication can be used for several purposes:

• To protect against user mistakes on the master. A DBA can roll back a delayed slave to the time just
before the disaster.

• To test how the system behaves when there is a lag. For example, in an application, a lag might be
caused by a heavy load on the slave. However, it can be difficult to generate this load level. Delayed
replication can simulate the lag without having to simulate the load. It can also be used to debug
conditions related to a lagging slave.

Replication Notes and Tips

2138

• To inspect what the database looked like long ago, without having to reload a backup. For example,
if the delay is one week and the DBA needs to see what the database looked like before the last few
days' worth of development, the delayed slave can be inspected.

START SLAVE and STOP SLAVE take effect immediately and ignore any delay. RESET SLAVE resets
the delay to 0.

SHOW SLAVE STATUS has three fields that provide information about the delay:

• SQL_Delay: A nonnegative integer indicating the number of seconds that the slave must lag the
master.

• SQL_Remaining_Delay: When Slave_SQL_Running_State is Waiting until
MASTER_DELAY seconds after master executed event, this field contains an integer
indicating the number of seconds left of the delay. At other times, this field is NULL.

• Slave_SQL_Running_State: A string indicating the state of the SQL thread (analogous to
Slave_IO_State). The value is identical to the State value of the SQL thread as displayed by
SHOW PROCESSLIST.

When the slave SQL thread is waiting for the delay to elapse before executing an event, SHOW
PROCESSLIST displays its State value as Waiting until MASTER_DELAY seconds after
master executed event.

16.4 Replication Notes and Tips

16.4.1 Replication Features and Issues

The following sections provide information about what is supported and what is not in MySQL
replication, and about specific issues and situations that may occur when replicating certain
statements.

Statement-based replication depends on compatibility at the SQL level between the master and slave.
In others, successful SBR requires that any SQL features used be supported by both the master and
the slave servers. For example, if you use a feature on the master server that is available only in
MySQL 5.7 (or later), you cannot replicate to a slave that uses MySQL 5.6 (or earlier).

Such incompatibilities also can occur within a release series when using pre-production releases of
MySQL. For example, the SLEEP() function is available beginning with MySQL 5.0.12. If you use this
function on the master, you cannot replicate to a slave that uses MySQL 5.0.11 or earlier.

For this reason, use Generally Available (GA) releases of MySQL for statement-based replication in a
production setting, since we do not introduce new SQL statements or change their behavior within a
given release series once that series reaches GA release status.

If you are planning to use statement-based replication between MySQL 5.7 and a previous MySQL
release series, it is also a good idea to consult the edition of the MySQL Reference Manual
corresponding to the earlier release series for information regarding the replication characteristics of
that series.

With MySQL's statement-based replication, there may be issues with replicating stored routines or
triggers. You can avoid these issues by using MySQL's row-based replication instead. For a detailed
list of issues, see Section 18.7, “Binary Logging of Stored Programs”. For more information about
row-based logging and row-based replication, see Section 5.2.4.1, “Binary Logging Formats”, and
Section 16.1.2, “Replication Formats”.

For additional information specific to replication and InnoDB, see Section 14.2.15, “InnoDB and
MySQL Replication”. For information relating to replication with MySQL Cluster, see MySQL Cluster
Replication.

16.4.1.1 Replication and AUTO_INCREMENT

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication.html

Replication Features and Issues

2139

Statement-based replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is
done correctly, subject to the following exceptions:

• When using statement-based replication prior to MySQL 5.7.1, AUTO_INCREMENT columns in tables
on the slave must match the same columns on the master; that is, AUTO_INCREMENT columns must
be replicated to AUTO_INCREMENT columns.

• A statement invoking a trigger or function that causes an update to an AUTO_INCREMENT column
is not replicated correctly using statement-based replication. In MySQL 5.7, such statements are
marked as unsafe. (Bug #45677)

• An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT
column that is not the first column of this composite key is not safe for statement-based logging or
replication. In MySQL 5.7 and later, such statements are marked as unsafe. (Bug #11754117, Bug
#45670)

This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an
AUTO_INCREMENT column requires at least one key where the auto-increment column is the only
or leftmost column.

• Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the slave and the master. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which
the rows were inserted. If it is important to have the same order on the master and slave, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements
produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, the ORDER BY
clause must name all columns of t1.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key
definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a
table definition includes any of those characteristics, create t2 using a CREATE TABLE statement
that is identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT
column, the final step is to drop the original table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Section C.5.7.1, “Problems with ALTER TABLE”.

16.4.1.2 Replication and BLACKHOLE Tables

The BLACKHOLE storage engine accepts data but discards it and does not store it. When performing
binary logging, all inserts to such tables are always logged, regardless of the logging format in use.
Updates and deletes are handled differently depending on whether statement based or row based
logging is in use. With the statement based logging format, all statements affecting BLACKHOLE tables
are logged, but their effects ignored. When using row-based logging, updates and deletes to such
tables are simply skipped—they are not written to the binary log. In MySQL 5.7.2 and later, a warning is
logged whenever this occurs (Bug #13004581)

Replication Features and Issues

2140

For this reason we recommend when you replicate to tables using the BLACKHOLE storage engine that
you have the binlog_format server variable set to STATEMENT, and not to either ROW or MIXED.

16.4.1.3 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

• If the master uses MySQL 4.1, you must always use the same global character set and collation on
the master and the slave, regardless of the slave MySQL version. (These are controlled by the --
character-set-server and --collation-server options.) Otherwise, you may get duplicate-
key errors on the slave, because a key that is unique in the master character set might not be unique
in the slave character set. Note that this is not a cause for concern when master and slave are both
MySQL 5.0 or later.

• If the master is older than MySQL 4.1.3, the character set of any client should never be made
different from its global value because this character set change is not known to the slave. In other
words, clients should not use SET NAMES, SET CHARACTER SET, and so forth. If both the master
and the slave are 4.1.3 or newer, clients can freely set session values for character set variables
because these settings are written to the binary log and so are known to the slave. That is, clients
can use SET NAMES or SET CHARACTER SET or can set variables such as collation_client
or collation_server. However, clients are prevented from changing the global value of these
variables; as stated previously, the master and slave must always have identical global character set
values. This is true whether you are using statement-based or row-based replication.

• If the master has databases with a character set different from the global character_set_server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on
the database default character set. A good workaround is to state the character set and collation
explicitly in CREATE TABLE statements.

16.4.1.4 Replication of CREATE ... IF NOT EXISTS Statements

MySQL applies these rules when various CREATE ... IF NOT EXISTS statements are replicated:

• Every CREATE DATABASE IF NOT EXISTS statement is replicated, whether or not the database
already exists on the master.

• Similarly, every CREATE TABLE IF NOT EXISTS statement without a SELECT is replicated,
whether or not the table already exists on the master. This includes CREATE TABLE IF NOT
EXISTS ... LIKE. Replication of CREATE TABLE IF NOT EXISTS ... SELECT follows
somewhat different rules; see Section 16.4.1.5, “Replication of CREATE TABLE ... SELECT
Statements”, for more information.

• CREATE EVENT IF NOT EXISTS is always replicated in MySQL 5.7, whether or not the event
named in the statement already exists on the master.

See also Bug #45574.

16.4.1.5 Replication of CREATE TABLE ... SELECT Statements

This section discusses how MySQL replicates CREATE TABLE ... SELECT statements.

MySQL 5.7 does not allow a CREATE TABLE ... SELECT statement to make any changes in tables
other than the table that is created by the statement. Some older versions of MySQL which permitted
these statements to do so; this means that, when using statement-based replication between a MySQL
5.6 or later slave and a master running a previous version of MySQL, a CREATE TABLE ... SELECT
statement causing changes in other tables on the master fails on the slave, causing replication to stop.
To keep this from happening, you should use row-based replication, rewrite the offending statement
before running it on the master, or upgrade the master to MySQL 5.7. (If you choose to upgrade
the master, keep in mind that such a CREATE TABLE ... SELECT statement will fail following the
upgrade unless it is rewritten to remove any side effects on other tables.) This is not an issue when
using row-based replication, because the statement is logged as a CREATE TABLE statement with

Replication Features and Issues

2141

any changes to table data logged as row-insert events, rather than as the entire CREATE TABLE ...
SELECT.

These behaviors are not dependent on MySQL version:

• CREATE TABLE ... SELECT always performs an implicit commit (Section 13.3.3, “Statements
That Cause an Implicit Commit”).

• If destination table does not exist, logging occurs as follows. It does not matter whether IF NOT
EXISTS is present.

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-
row events.

• If the statement fails, nothing is logged. This includes the case that the destination table exists and
IF NOT EXISTS is not given.

When the destination table exists and IF NOT EXISTS is given, MySQL 5.7 ignores the statement
completely; nothing is inserted or logged. The handling of such statements in this regard has changed
considerably in previous MySQL releases; if you are replicating from a MySQL 5.5.6 or older master to
a newer slave, see Replication of CREATE ... IF NOT EXISTS Statements, for more information.

16.4.1.6 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

In MySQL 5.7, the statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written
to the binary log, regardless of the binary logging format that is in use.

16.4.1.7 Replication of CURRENT_USER()

The following statements support use of the CURRENT_USER() function to take the place of the name
of (and, possibly, the host for) an affected user or a definer; in such cases, CURRENT_USER() is
expanded where and as needed:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

When CURRENT_USER() or CURRENT_USER is used as the definer in any of the statements CREATE
FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, CREATE EVENT, CREATE VIEW, or ALTER
VIEW when binary logging is enabled, the function reference is expanded before it is written to the
binary log, so that the statement refers to the same user on both the master and the slave when the
statement is replicated. CURRENT_USER() or CURRENT_USER is also expanded prior to being written
to the binary log when used in DROP USER, RENAME USER, GRANT, REVOKE, or ALTER EVENT.

http://dev.mysql.com/doc/refman/5.5/en/replication-features-create-if-not-exists.html

Replication Features and Issues

2142

16.4.1.8 Replication of DROP ... IF EXISTS Statements

The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS
statements are always replicated, even if the database, table, or view to be dropped does not exist on
the master. This is to ensure that the object to be dropped no longer exists on either the master or the
slave, once the slave has caught up with the master.

DROP ... IF EXISTS statements for stored programs (stored procedures and functions, triggers,
and events) are also replicated, even if the stored program to be dropped does not exist on the master.

16.4.1.9 Replication with Differing Table Definitions on Master and Slave

Source and target tables for replication do not have to be identical. A table on the master can have
more or fewer columns than the slave's copy of the table. In addition, corresponding table columns on
the master and the slave can use different data types, subject to certain conditions.

In all cases where the source and target tables do not have identical definitions, the database and table
names must be the same on both the master and the slave. Additional conditions are discussed, with
examples, in the following two sections.

Replication with More Columns on Master or Slave

You can replicate a table from the master to the slave such that the master and slave copies of the
table have differing numbers of columns, subject to the following conditions:

• Columns common to both versions of the table must be defined in the same order on the master and
the slave.

(This is true even if both tables have the same number of columns.)

• Columns common to both versions of the table must be defined before any additional columns.

This means that executing an ALTER TABLE statement on the slave where a new column is inserted
into the table within the range of columns common to both tables causes replication to fail, as shown
in the following example:

Suppose that a table t, existing on the master and the slave, is defined by the following CREATE
TABLE statement:

CREATE TABLE t (
 c1 INT,
 c2 INT,
 c3 INT
);

Suppose that the ALTER TABLE statement shown here is executed on the slave:

ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;

The previous ALTER TABLE is permitted on the slave because the columns c1, c2, and c3 that are
common to both versions of table t remain grouped together in both versions of the table, before any
columns that differ.

However, the following ALTER TABLE statement cannot be executed on the slave without causing
replication to break:

ALTER TABLE t ADD COLUMN cnew2 INT AFTER c2;

Replication fails after execution on the slave of the ALTER TABLE statement just shown, because
the new column cnew2 comes between columns common to both versions of t.

Replication Features and Issues

2143

• Each “extra” column in the version of the table having more columns must have a default value.

A column's default value is determined by a number of factors, including its type, whether it is defined
with a DEFAULT option, whether it is declared as NULL, and the server SQL mode in effect at the
time of its creation; for more information, see Section 11.5, “Data Type Default Values”).

In addition, when the slave's copy of the table has more columns than the master's copy, each column
common to the tables must use the same data type in both tables.

Examples. The following examples illustrate some valid and invalid table definitions:

More columns on the master. The following table definitions are valid and replicate correctly:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);

The following table definitions would raise Error 1532 (ER_BINLOG_ROW_RBR_TO_SBR) because the
definitions of the columns common to both versions of the table are in a different order on the slave
than they are on the master:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT);

The following table definitions would also raise Error 1532 because the definition of the extra column
on the master appears before the definitions of the columns common to both versions of the table:

master> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);

More columns on the slave. The following table definitions are valid and replicate correctly:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

The following definitions raise Error 1532 because the columns common to both versions of the table
are not defined in the same order on both the master and the slave:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);

The following table definitions also raise Error 1532 because the definition for the extra column in the
slave's version of the table appears before the definitions for the columns which are common to both
versions of the table:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);

The following table definitions fail because the slave's version of the table has additional columns
compared to the master's version, and the two versions of the table use different data types for the
common column c2:

master> CREATE TABLE t1 (c1 INT, c2 BIGINT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

Replication of Columns Having Different Data Types

Corresponding columns on the master's and the slave's copies of the same table ideally should have
the same data type. However, beginning with MySQL 5.1.21, this is not always strictly enforced, as
long as certain conditions are met.

Replication Features and Issues

2144

All other things being equal, it is always possible to replicate from a column of a given data type to
another column of the same type and same size or width, where applicable, or larger. For example,
you can replicate from a CHAR(10) column to another CHAR(10), or from a CHAR(10) column to a
CHAR(25) column without any problems. In certain cases, it also possible to replicate from a column
having one data type (on the master) to a column having a different data type (on the slave); when the
data type of the master's version of the column is promoted to a type that is the same size or larger on
the slave, this is known as attribute promotion.

Attribute promotion can be used with both statement-based and row-based replication, and is not
dependent on the storage engine used by either the master or the slave. However, the choice of
logging format does have an effect on the type conversions that are permitted; the particulars are
discussed later in this section.

Important

Whether you use statement-based or row-based replication, the slave's copy
of the table cannot contain more columns than the master's copy if you wish to
employ attribute promotion.

Statement-based replication. When using statement-based replication, a simple rule of thumb to
follow is, “If the statement run on the master would also execute successfully on the slave, it should
also replicate successfully”. In other words, if the statement uses a value that is compatible with the
type of a given column on the slave, the statement can be replicated. For example, you can insert any
value that fits in a TINYINT column into a BIGINT column as well; it follows that, even if you change
the type of a TINYINT column in the slave's copy of a table to BIGINT, any insert into that column
on the master that succeeds should also succeed on the slave, since it is impossible to have a legal
TINYINT value that is large enough to exceed a BIGINT column.

Prior to MySQL 5.7.1, when using statement-based replication, AUTO_INCREMENT columns were
required to be the same on both the master and the slave; otherwise, updates could be applied to the
wrong table on the slave. (Bug #12669186)

Row-based replication: attribute promotion and demotion. Row-based replication in MySQL
5.7 supports attribute promotion and demotion between smaller data types and larger types. It is also
possible to specify whether or not to permit lossy (truncated) or non-lossy conversions of demoted
column values, as explained later in this section.

Lossy and non-lossy conversions. In the event that the target type cannot represent the value
being inserted, a decision must be made on how to handle the conversion. If we permit the conversion
but truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make
what is known as a lossy conversion. A conversion which does not require truncation or similar
modifications to fit the source column value in the target column is a non-lossy conversion.

Type conversion modes (slave_type_conversions variable). The setting of the
slave_type_conversions global server variable controls the type conversion mode used on the
slave. This variable takes a set of values from the following table, which shows the effects of each
mode on the slave's type-conversion behavior:

Mode Effect

ALL_LOSSY In this mode, type conversions that would mean loss of
information are permitted.

This does not imply that non-lossy conversions are permitted,
merely that only cases requiring either lossy conversions or no
conversion at all are permitted; for example, enabling only this
mode permits an INT column to be converted to TINYINT (a
lossy conversion), but not a TINYINT column to an INT column
(non-lossy). Attempting the latter conversion in this case would
cause replication to stop with an error on the slave.

Replication Features and Issues

2145

Mode Effect

ALL_NON_LOSSY This mode permits conversions that do not require truncation
or other special handling of the source value; that is, it permits
conversions where the target type has a wider range than the
source type.

Setting this mode has no bearing on whether lossy conversions
are permitted; this is controlled with the ALL_LOSSY mode. If only
ALL_NON_LOSSY is set, but not ALL_LOSSY, then attempting a
conversion that would result in the loss of data (such as INT to
TINYINT, or CHAR(25) to VARCHAR(20)) causes the slave to
stop with an error.

ALL_LOSSY,ALL_NON_LOSSY When this mode is set, all supported type conversions are
permitted, whether or not they are lossy conversions.

ALL_SIGNED Treat promoted integer types as signed values (the default
behavior).

ALL_UNSIGNED Treat promoted integer types as unsigned values.

ALL_SIGNED,ALL_UNSIGNED Treat promoted integer types as signed if possible, otherwise as
unsigned.

[empty] When slave_type_conversions is not set, no attribute
promotion or demotion is permitted; this means that all columns in
the source and target tables must be of the same types.

This mode is the default.

When an integer type is promoted, its signedness is not preserved. By default, the slave treats all such
values as signed. Beginning with MySQL 5.7.2, you can control this behavior using ALL_SIGNED,
ALL_UNSIGNED, or both. (Bug#15831300) ALL_SIGNED tells the slave to treat all promoted integer
types as signed; ALL_UNSIGNED instructs it to treat these as unsigned. Specifying both causes the
slave to treat the value as signed if possible, otherwise to treat it as unsigned; the order in which they
are listed is not significant. Neither ALL_SIGNED nor ALL_UNSIGNED has any effect if at least one of
ALL_LOSSY or ALL_NONLOSSY is not also used.

Changing the type conversion mode requires restarting the slave with the new
slave_type_conversions setting.

Supported conversions. Supported conversions between different but similar data types are
shown in the following list:

• Between any of the integer types TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.

This includes conversions between the signed and unsigned versions of these types.

Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted
by the target column. For insuring non-lossy conversions when going from unsigned to signed types,
the target column must be large enough to accommodate the range of values in the source column.
For example, you can demote TINYINT UNSIGNED non-lossily to SMALLINT, but not to TINYINT.

• Between any of the decimal types DECIMAL, FLOAT, DOUBLE, and NUMERIC.

FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A
conversion from DECIMAL(M,D) to DECIMAL(M',D') where M' => M and D' => D is non-lossy;
for any case where M' < M, D' < D, or both, only a lossy conversion can be made.

For any of the decimal types, if a value to be stored cannot be fit in the target type, the value
is rounded down according to the rounding rules defined for the server elsewhere in the
documentation. See Section 12.19.4, “Rounding Behavior”, for information about how this is done for
decimal types.

Replication Features and Issues

2146

• Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different
widths.

Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or
larger is never lossy. Lossy conversion is handled by inserting only the first N characters of the string
on the slave, where N is the width of the target column.

Important

Replication between columns using different character sets is not supported.

• Between any of the binary data types BINARY, VARBINARY, and BLOB, including conversions
between different widths.

Conversion of a BINARY, VARBINARY, or BLOB to a BINARY, VARBINARY, or BLOB column the
same size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of
the string on the slave, where N is the width of the target column.

• Between any 2 BIT columns of any 2 sizes.

When inserting a value from a BIT(M) column into a BIT(M') column, where M' > M, the most
significant bits of the BIT(M') columns are cleared (set to zero) and the M bits of the BIT(M) value
are set as the least significant bits of the BIT(M') column.

When inserting a value from a source BIT(M) column into a target BIT(M') column, where M' <
M, the maximum possible value for the BIT(M') column is assigned; in other words, an “all-set”
value is assigned to the target column.

Conversions between types not in the previous list are not permitted.

Replication type conversions in MySQL 5.5.3 and earlier. Prior to MySQL 5.5.3, with row-based
binary logging, you could not replicate between different INT subtypes, such as from TINYINT to
BIGINT, because changes to columns of these types were represented differently from one another in
the binary log when using row-based logging. (However, you could replicate from BLOB to TEXT using
row-based replication because changes to BLOB and TEXT columns were represented using the same
format in the binary log.)

Supported conversions for attribute promotion when using row-based replication prior to MySQL 5.5.3
are shown in the following table:

From (Master) To (Slave)

BINARY CHAR

BLOB TEXT

CHAR BINARY

DECIMAL NUMERIC

NUMERIC DECIMAL

TEXT BLOB

VARBINARY VARCHAR

VARCHAR VARBINARY

Note

In all cases, the size or width of the column on the slave must be equal to or
greater than that of the column on the master. For example, you could replicate
from a CHAR(10) column on the master to a column that used BINARY(10)
or BINARY(25) on the slave, but you could not replicate from a CHAR(10)
column on the master to BINARY(5) column on the slave.

Replication Features and Issues

2147

Any unique index (including primary keys) having a prefix must use a prefix
of the same length on both master and slave; in such cases, differing prefix
lengths are disallowed. It is possible to use a nonunique index whose
prefix length differs between master and slave, but this can cause serious
performance issues, particularly when the prefix used on the master is longer.
This is due to the fact that 2 unique prefixes of a given length may no longer
be unique at a shorter length; for example, the words catalogue and catamount
have the 5-character prefixes catal and catam, respectively, but share the
same 4-character prefix (cata). This can lead to queries that use such indexes
executing less efficiently on the slave, when a shorter prefix is employed in the
slave' definition of the same index than on the master.

For DECIMAL and NUMERIC columns, both the mantissa (M) and the number of
decimals (D) must be the same size or larger on the slave as compared with the
master. For example, replication from a NUMERIC(5,4) to a DECIMAL(6,4)
worked, but not from a NUMERIC(5,4) to a DECIMAL(5,3).

Prior to MySQL 5.5.3, MySQL replication did not support attribute promotion of any of the following
data types to or from any other data type when using row-based replication:

• INT (including TINYINT, SMALLINT, MEDIUMINT, BIGINT).

Promotion between INT subtypes—for example, from SMALLINT to BIGINT—was also not
supported prior to MySQL 5.5.3.

• SET or ENUM.

• FLOAT or DOUBLE.

• All of the data types relating to dates, times, or both: DATE, TIME, DATETIME, TIMESTAMP, and
YEAR.

16.4.1.10 Replication and DIRECTORY Table Options

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement
on the master server, the table option is also used on the slave. This can cause problems if no
corresponding directory exists in the slave host file system or if it exists but is not accessible to the
slave server. This can be overridden by using the NO_DIR_IN_CREATE server SQL mode on the slave,
which causes the slave to ignore the DATA DIRECTORY and INDEX DIRECTORY table options when
replicating CREATE TABLE statements. The result is that MyISAM data and index files are created in
the table's database directory.

For more information, see Section 5.1.7, “Server SQL Modes”.

16.4.1.11 Replication of Invoked Features

Replication of invoked features such as user-defined functions (UDFs) and stored programs (stored
procedures and functions, triggers, and events) provides the following characteristics:

• The effects of the feature are always replicated.

• The following statements are replicated using statement-based replication:

• CREATE EVENT

• ALTER EVENT

• DROP EVENT

• CREATE PROCEDURE

Replication Features and Issues

2148

• DROP PROCEDURE

• CREATE FUNCTION

• DROP FUNCTION

• CREATE TRIGGER

• DROP TRIGGER

However, the effects of features created, modified, or dropped using these statements are replicated
using row-based replication.

Note

Attempting to replicate invoked features using statement-based replication
produces the warning Statement is not safe to log in statement
format. For example, trying to replicate a UDF with statement-based
replication generates this warning because it currently cannot be determined
by the MySQL server whether the UDF is deterministic. If you are absolutely
certain that the invoked feature's effects are deterministic, you can safely
disregard such warnings.

• In the case of CREATE EVENT and ALTER EVENT:

• The status of the event is set to SLAVESIDE_DISABLED on the slave regardless of the state
specified (this does not apply to DROP EVENT).

• The master on which the event was created is identified on the slave by its server ID. The
ORIGINATOR column in INFORMATION_SCHEMA.EVENTS and the originator column in
mysql.event store this information. See Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”, and Section 13.7.5.17, “SHOW EVENTS Syntax”, for more information.

• The feature implementation resides on the slave in a renewable state so that if the master fails, the
slave can be used as the master without loss of event processing.

To determine whether there are any scheduled events on a MySQL server that were created on a
different server (that was acting as a replication master), query the INFORMATION_SCHEMA.EVENTS
table in a manner similar to what is shown here:

SELECT EVENT_SCHEMA, EVENT_NAME
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

Alternatively, you can use the SHOW EVENTS statement, like this:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

When promoting a replication slave having such events to a replication master, you must enable each
event using ALTER EVENT event_name ENABLED, where event_name is the name of the event.

If more than one master was involved in creating events on this slave, and you wish to identify events
that were created only on a given master having the server ID master_id, modify the previous query
on the EVENTS table to include the ORIGINATOR column, as shown here:

SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'master_id'

Replication Features and Issues

2149

You can employ ORIGINATOR with the SHOW EVENTS statement in a similar fashion:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'master_id'

Before enabling events that were replicated from the master, you should disable the MySQL Event
Scheduler on the slave (using a statement such as SET GLOBAL event_scheduler = OFF;), run
any necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on
the slave afterward (using a statement such as SET GLOBAL event_scheduler = ON;)-

If you later demote the new master back to being a replication slave, you must disable manually all
events enabled by the ALTER EVENT statements. You can do this by storing in a separate table the
event names from the SELECT statement shown previously, or using ALTER EVENT statements to
rename the events with a common prefix such as replicated_ to identify them.

If you rename the events, then when demoting this server back to being a replication slave, you can
identify the events by querying the EVENTS table, as shown here:

SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event'
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE INSTR(EVENT_NAME, 'replicated_') = 1;

16.4.1.12 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving
floating-point values are inexact. This is true for operations that use floating-point values explicitly,
or that use values that are converted to floating-point implicitly. Comparisons of floating-point values
might yield different results on master and slave servers due to differences in computer architecture,
the compiler used to build MySQL, and so forth. See Section 12.2, “Type Conversion in Expression
Evaluation”, and Section C.5.5.8, “Problems with Floating-Point Values”.

16.4.1.13 Replication and Fractional Seconds Support

MySQL 5.7 permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. See Section 11.3.6, “Fractional Seconds in Time Values”.

There may be problems replicating from a master server that understands fractional seconds to an
older slave (MySQL 5.6.3 and earlier) that does not:

• For CREATE TABLE statements containing columns that have an fsp (fractional seconds precision)
value greater than 0, replication will fail due to parser errors.

• Statements that use temporal data types with an fsp value of 0 will work for with statement-based
logging but not row-based logging. In the latter case, the data types have binary formats and type
codes on the master that differ from those on the slave.

• Some expression results will differ on master and slave. Examples: On the master, the timestamp
system variable returns a value that includes a microseconds fractional part; on the slave, it returns
an integer. On the master, functions that return a result that includes the current time (such as
CURTIME(), SYSDATE(), or UTC_TIMESTAMP()) interpret an argument as an fsp value and the
return value includes a fractional seconds part of that many digits. On the slave, these functions
permit an argument but ignore it.

16.4.1.14 Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated
to a slave: FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK.

Replication Features and Issues

2150

For a syntax example, see Section 13.7.6.3, “FLUSH Syntax”. The FLUSH TABLES, ANALYZE TABLE,
OPTIMIZE TABLE, and REPAIR TABLE statements are written to the binary log and thus replicated to
slaves. This is not normally a problem because these statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the mysql database and update those tables directly without using GRANT, you must issue
a FLUSH PRIVILEGES on the slaves to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH
TABLES manually on the slaves. These statements are written to the binary log unless you specify
NO_WRITE_TO_BINLOG or its alias LOCAL.

16.4.1.15 Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER() (or CURRENT_USER), UUID(), VERSION(), and LOAD_FILE()
functions are replicated without change and thus do not work reliably on the slave unless row-based
replication is enabled. (See Section 16.1.2, “Replication Formats”.)

USER() and CURRENT_USER() are automatically replicated using row-based replication when using
MIXED mode, and generate a warning in STATEMENT mode. (See also Section 16.4.1.7, “Replication
of CURRENT_USER()”.) This is also true for VERSION() and RAND().

• For NOW(), the binary log includes the timestamp. This means that the value as returned by the call
to this function on the master is replicated to the slave. This can lead to a possibly unexpected result
when replicating between MySQL servers in different time zones. Suppose that the master is located
in New York, the slave is located in Stockholm, and both servers are using local time. Suppose
further that, on the master, you create a table mytable, perform an INSERT statement on this table,
and then select from the table, as shown here:

mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO mytable VALUES (NOW());
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the
slave at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason,
if you select from the slave's copy of mytable after the CREATE TABLE and INSERT statements
just shown have been replicated, you might expect mycol to contain the value 2009-09-01
18:00:00. However, this is not the case; when you select from the slave's copy of mytable, you
obtain exactly the same result as on the master:

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET
TIMESTAMP statements in the binary log and is nondeterministic if statement-based logging is used.
This is not a problem if row-based logging is used.

Replication Features and Issues

2151

An alternative is to use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This must be done on the master and the slave to work correctly. In such cases, a warning
is still issued by this function, but can safely be ignored as long as --sysdate-is-now is used on
both the master and the slave.

Beginning with MySQL 5.5.1, SYSDATE() is automatically replicated using row-based replication
when using MIXED mode, and generates a warning in STATEMENT mode. (Bug #47995)

See also Section 16.4.1.30, “Replication and Time Zones”.

• The following restriction applies to statement-based replication only, not to row-based replication.
The GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that
handle user-level locks are replicated without the slave knowing the concurrency context on the
master. Therefore, these functions should not be used to insert into a master table because the
content on the slave would differ. For example, do not issue a statement such as INSERT INTO
mytable VALUES(GET_LOCK(...)).

Beginning with MySQL 5.5.1, these functions are automatically replicated using row-based
replication when using MIXED mode, and generate a warning in STATEMENT mode. (Bug #47995)

As a workaround for the preceding limitations when statement-based replication is in effect, you can
use the strategy of saving the problematic function result in a user variable and referring to the variable
in a later statement. For example, the following single-row INSERT is problematic due to the reference
to the UUID() function:

INSERT INTO t VALUES(UUID());

To work around the problem, do this instead:

SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a
user-variable event prior to the INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert,
you can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

INSERT INTO t2 SELECT UUID(), * FROM t1;

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the
execution of the function. (You can consider the function execution timestamp and random number
seed as implicit inputs that are identical on the master and slave.)

The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based
replication. A workaround is to store the result of the function call in a user variable, and then use that
in the INSERT statement. For example, if you wish to store the result in a table named mytable, you
might normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(FOUND_ROWS());

Replication Features and Issues

2152

However, if you are replicating mytable, you should use SELECT ... INTO, and then store the
variable in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the slave correctly.

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)

Prior to MySQL 5.7.3, the value of LAST_INSERT_ID() was not replicated correctly if any filtering
options such as --replicate-ignore-db and --replicate-do-table were enabled on the
slave. (Bug #17234370, BUG# 69861)

16.4.1.16 Replication and LIMIT

Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT
statements is unsafe since the order of the rows affected is not defined. (Such statements can be
replicated correctly with statement-based replication only if they also contain an ORDER BY clause.)
When such a statement is encountered:

• When using STATEMENT mode, a warning that the statement is not safe for statement-based
replication is now issued.

Currently, when using STATEMENT mode, warnings are issued for DML statements containing LIMIT
even when they also have an ORDER BY clause (and so are made deterministic). This is a known
issue. (Bug #42851)

• When using MIXED mode, the statement is now automatically replicated using row-based mode.

16.4.1.17 Replication and LOAD DATA INFILE

The LOAD DATA INFILE statement was not always replicated correctly to a slave running MySQL
5.5.0 or earlier from a master running MySQL 4.0 or earlier. When using statement-based replication,
the LOAD DATA INFILE statement CONCURRENT option was not replicated. This issue was fixed in
MySQL 5.5.0. This issue does not have any impact on CONCURRENT option handling when using row-
based replication in MySQL 5.1 or later. (Bug #34628)

In MySQL 5.7, LOAD DATA INFILE is considered unsafe (see Section 16.1.2.3, “Determination of
Safe and Unsafe Statements in Binary Logging”). It causes a warning when using statement-based
logging format, and is logged using row-based format when using mixed-format logging.

16.4.1.18 Replication and REPAIR TABLE

When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed
by this statement are not replicated, which can cause master and slave to lose synchronization.
For this reason, in the event that a table on the master becomes damaged and you use REPAIR
TABLE to repair it, you should first stop replication (if it is still running) before using REPAIR TABLE,
then afterward compare the master's and slave's copies of the table and be prepared to correct any
discrepancies manually, before restarting replication.

16.4.1.19 Replication and Master or Slave Shutdowns

It is safe to shut down a master server and restart it later. When a slave loses its connection to the
master, the slave tries to reconnect immediately and retries periodically if that fails. The default is to
retry every 60 seconds. This may be changed with the CHANGE MASTER TO statement. A slave also
is able to deal with network connectivity outages. However, the slave notices the network outage only

Replication Features and Issues

2153

after receiving no data from the master for slave_net_timeout seconds. If your outages are short,
you may want to decrease slave_net_timeout. See Section 5.1.4, “Server System Variables”.

An unclean shutdown (for example, a crash) on the master side can result in the master binary log
having a final position less than the most recent position read by the slave, due to the master binary
log file not being flushed. This can cause the slave not to be able to replicate when the master comes
back up. Setting sync_binlog=1 in the master my.cnf file helps to minimize this problem because it
causes the master to flush its binary log more frequently.

Shutting down a slave cleanly is safe because it keeps track of where it left off. However, be careful
that the slave does not have temporary tables open; see Section 16.4.1.22, “Replication and
Temporary Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not
flushed to disk before the problem occurred:

• For transactions, the slave commits and then updates relay-log.info. If a crash occurs between
these two operations, relay log processing will have proceeded further than the information file
indicates and the slave will re-execute the events from the last transaction in the relay log after it has
been restarted.

• A similar problem can occur if the slave updates relay-log.info but the server host
crashes before the write has been flushed to disk. To minimize the chance of this occurring, set
sync_relay_log_info=1 in the slave my.cnf file. The default value of sync_relay_log_info
is 0, which does not cause writes to be forced to disk; the server relies on the operating system to
flush the file from time to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

16.4.1.20 Replication and max_allowed_packet

max_allowed_packet sets an upper limit on the size of any single message between the MySQL
server and clients, including replication slaves. If you are replicating large column values (such as
might be found in TEXT or BLOB columns) and max_allowed_packet is too small on the master, the
master fails with an error, and the slave shuts down the I/O thread. If max_allowed_packet is too
small on the slave, this also causes the slave to stop the I/O thread.

Row-based replication currently sends all columns and column values for updated rows from the
master to the slave, including values of columns that were not actually changed by the update. This
means that, when you are replicating large column values using row-based replication, you must take
care to set max_allowed_packet large enough to accommodate the largest row in any table to be
replicated, even if you are replicating updates only, or you are inserting only relatively small values.

16.4.1.21 Replication and MEMORY Tables

When a master server shuts down and restarts, its MEMORY tables become empty. To replicate this
effect to slaves, the first time that the master uses a given MEMORY table after startup, it logs an event
that notifies slaves that the table must to be emptied by writing a DELETE statement for that table to the
binary log.

When a slave server shuts down and restarts, its MEMORY tables become empty. This causes the slave
to be out of synchrony with the master and may lead to other failures or cause the slave to stop:

• Row-format updates and deletes received from the master may fail with Can't find record in
'memory_table'.

• Statements such as INSERT INTO ... SELECT FROM memory_table may insert a different set
of rows on the master and slave.

The safe way to restart a slave that is replicating MEMORY tables is to first drop or delete all rows from
the MEMORY tables on the master and wait until those changes have replicated to the slave. Then it is
safe to restart the slave.

Replication Features and Issues

2154

An alternative restart method may apply in some cases. When binlog_format=ROW, you can prevent
the slave from stopping if you set slave_exec_mode=IDEMPOTENT before you start the slave again.
This allows the slave to continue to replicate, but its MEMORY tables will still be different from those on
the master. This can be okay if the application logic is such that the contents of MEMORY tables can be
safely lost (for example, if the MEMORY tables are used for caching). slave_exec_mode=IDEMPOTENT
applies globally to all tables, so it may hide other replication errors in non-MEMORY tables.

The size of MEMORY tables is limited by the value of the max_heap_table_size system
variable, which is not replicated (see Section 16.4.1.34, “Replication and Variables”). A change in
max_heap_table_size takes effect for MEMORY tables that are created or updated using ALTER
TABLE ... ENGINE = MEMORY or TRUNCATE TABLE following the change, or for all MEMORY tables
following a server restart. If you increase the value of this variable on the master without doing so on
the slave, it becomes possible for a table on the master to grow larger than its counterpart on the slave,
leading to inserts that succeed on the master but fail on the slave with Table is full errors. This is
a known issue (Bug #48666). In such cases, you must set the global value of max_heap_table_size
on the slave as well as on the master, then restart replication. It is also recommended that you restart
both the master and slave MySQL servers, to insure that the new value takes complete (global) effect
on each of them.

See Section 14.4, “The MEMORY Storage Engine”, for more information about MEMORY tables.

16.4.1.22 Replication and Temporary Tables

The discussion in the following paragraphs does not apply when binlog_format=ROW because, in
that case, temporary tables are not replicated; this means that there are never any temporary tables
on the slave to be lost in the event of an unplanned shutdown by the slave. The remainder of this
section applies only when using statement-based or mixed-format replication. Loss of replicated
temporary tables on the slave can be an issue, whenever binlog_format is STATEMENT or MIXED,
for statements involving temporary tables that can be logged safely using statement-based format. For
more information about row-based replication and temporary tables, see RBL, RBR, and temporary
tables.

Safe slave shutdown when using temporary tables. Temporary tables are replicated except
in the case where you stop the slave server (not just the slave threads) and you have replicated
temporary tables that are open for use in updates that have not yet been executed on the slave. If you
stop the slave server, the temporary tables needed by those updates are no longer available when
the slave is restarted. To avoid this problem, do not shut down the slave while it has temporary tables
open. Instead, use the following procedure:

1. Issue a STOP SLAVE SQL_THREAD statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is not 0, restart the slave SQL thread with START SLAVE SQL_THREAD and repeat the
procedure later.

4. When the value is 0, issue a mysqladmin shutdown command to stop the slave.

Temporary tables and replication options. By default, all temporary tables are replicated; this
happens whether or not there are any matching --replicate-do-db, --replicate-do-table, or
--replicate-wild-do-table options in effect. However, the --replicate-ignore-table and
--replicate-wild-ignore-table options are honored for temporary tables.

A recommended practice when using statement-based or mixed-format replication is to designate a
prefix for exclusive use in naming temporary tables that you do not want replicated, then employ a --
replicate-wild-ignore-table option to match that prefix. For example, you might give all such
tables names beginning with norep (such as norepmytable, norepyourtable, and so on), then
use --replicate-wild-ignore-table=norep% to prevent them from being replicated.

16.4.1.23 Replication of the mysql System Database

Replication Features and Issues

2155

Data modification statements made to tables in the mysql database are replicated according to the
value of binlog_format; if this value is MIXED, these statements are replicated using row-based
format. However, statements that would normally update this information indirectly—such GRANT,
REVOKE, and statements manipulating triggers, stored routines, and views—are replicated to slaves
using statement-based replication.

16.4.1.24 Replication and the Query Optimizer

It is possible for the data on the master and slave to become different if a statement is written in such
a way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this
is not a good practice, even outside of replication.) Examples of nondeterministic statements include
DELETE or UPDATE statements that use LIMIT with no ORDER BY clause; see Section 16.4.1.16,
“Replication and LIMIT”, for a detailed discussion of these.

16.4.1.25 Replication and Reserved Words

You can encounter problems when you attempt to replicate from an older master to a newer slave and
you make use of identifiers on the master that are reserved words in the newer MySQL version running
on the slave. An example of this is using a table column named current_user on a 4.0 master
that is replicating to a 4.1 or higher slave because CURRENT_USER is a reserved word beginning in
MySQL 4.1. Replication can fail in such cases with Error 1064 You have an error in your SQL
syntax..., even if a database or table named using the reserved word or a table having a column
named using the reserved word is excluded from replication. This is due to the fact that each SQL
event must be parsed by the slave prior to execution, so that the slave knows which database object
or objects would be affected; only after the event is parsed can the slave apply any filtering rules
defined by --replicate-do-db, --replicate-do-table, --replicate-ignore-db, and --
replicate-ignore-table.

To work around the problem of database, table, or column names on the master which would be
regarded as reserved words by the slave, do one of the following:

• Use one or more ALTER TABLE statements on the master to change the names of any database
objects where these names would be considered reserved words on the slave, and change any SQL
statements that use the old names to use the new names instead.

• In any SQL statements using these database object names, write the names as quoted identifiers
using backtick characters (`).

For listings of reserved words by MySQL version, see Reserved Words, in the MySQL Server Version
Reference. For identifier quoting rules, see Section 9.2, “Schema Object Names”.

16.4.1.26 Slave Errors During Replication

If a statement produces the same error (identical error code) on both the master and the slave, the
error is logged, but replication continues.

If a statement produces different errors on the master and the slave, the slave SQL thread terminates,
and the slave writes a message to its error log and waits for the database administrator to decide what
to do about the error. This includes the case that a statement produces an error on the master or the
slave, but not both. To address the issue, connect to the slave manually and determine the cause of
the problem. SHOW SLAVE STATUS is useful for this. Then fix the problem and run START SLAVE. For
example, you might need to create a nonexistent table before you can start the slave again.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored)
with the --slave-skip-errors option.

For nontransactional storage engines such as MyISAM, it is possible to have a statement that only
partially updates a table and returns an error code. This can happen, for example, on a multiple-row
insert that has one row violating a key constraint, or if a long update statement is killed after updating
some of the rows. If that happens on the master, the slave expects execution of the statement to result
in the same error code. If it does not, the slave SQL thread stops as described previously.

http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-optvar.html

Replication Features and Issues

2156

If you are replicating between tables that use different storage engines on the master and slave, keep
in mind that the same statement might produce a different error when run against one version of the
table, but not the other, or might cause an error for one version of the table, but not the other. For
example, since MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing
an InnoDB table on the master might cause a foreign key violation but the same statement performed
on a MyISAM version of the same table on the slave would produce no such error, causing replication
to stop.

16.4.1.27 Replication of Server-Side Help Tables

The server maintains tables in the mysql database that store information for the HELP statement (see
Section 13.8.3, “HELP Syntax”. These tables can be loaded manually as described at Section 5.1.10,
“Server-Side Help”.

Help table content is derived from the MySQL Reference Manual. There are versions of the manual
specific to each MySQL release series, so help content is specific to each series as well. Normally, you
load a version of help content that matches the server version. This has implications for replication. For
example, you would load MySQL 5.5 help content into a MySQL 5.5 master server, but not necessarily
replicate that content to a MySQL 5.6 slave server for which 5.6 help content is more appropriate.

This section describes how to manage help table content upgrades when your servers participate in
replication. Server versions are one factor in this task. Another is that help table structure may differ
between the master and the slave.

Assume that help content is stored in a file named fill_help_tables.sql. In MySQL distributions,
this file is located under the share or share/mysql directory, and the most recent version is always
available for download from http://dev.mysql.com/doc/index-other.html.

To upgrade help tables, using the following procedure. Connection parameters are not shown for the
mysql commands discussed here; in all cases, connect to the server using an account such as root
that has privileges for modifying tables in the mysql database.

1. Upgrade your servers by running mysql_upgrade, first on the slaves and then on the master. This
is the usual principle of upgrading slaves first.

2. Decide whether you want to replicate help table content from the master to its slaves. If not, load
the content on the master and each slave individually. Otherwise, check for and resolve any
incompatibilities between help table structure on the master and its slaves, then load the content
into the master and let it replicate to the slaves.

More detail about these two methods of loading help table content follows.

Loading Help Table Content Without Replication to Slaves

To load help table content without replication, run this command on the master and each slave
individually, using a fill_help_tables.sql file containing content appropriate to the server version
(enter the command on one line):

mysql --init-command="SET sql_log_bin=0"
 mysql < fill_help_tables.sql

Use the --init-command option on each server, including the slaves, in case a slave also acts as a
master to other slaves in your replication topology. The SET statement suppresses binary logging. After
the command has been run on each server to be upgraded, you are done.

Note

As of MySQL 5.7.5, the fill_help_tables.sql file includes the SET
statement to cause the file contents not to replicate. Thus, for 5.7. and up, the
command is simpler:

http://dev.mysql.com/doc/index-other.html

Replication Features and Issues

2157

mysql mysql < fill_help_tables.sql

Loading Help Table Content With Replication to Slaves

Note

As mentioned previously, fill_help_tables.sql in MySQL 5.7.5 and up
includes a SET statement to suppress binary logging of the file contents. If you
want to replicate help table contents for MySQL 5.7.5 or later, you must edit
fill_help_tables.sql to remove the SET statement. This should rarely be
desireable because help table contents are specific to the version of the server
into which they are loaded, which may differ for master and slave.

If you do want to replicate help table content, check for help table incompatibilities between your
master and its slaves. The url column in the help_category and help_topic tables was originally
CHAR(128), but is TEXT in newer MySQL versions to accommodate longer URLs. To check help table
structure, use this statement:

SELECT TABLE_NAME, COLUMN_NAME, COLUMN_TYPE
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = 'mysql'
AND COLUMN_NAME = 'url';

For tables with the old structure, the statement produces this result:

+---------------+-------------+-------------+
| TABLE_NAME | COLUMN_NAME | COLUMN_TYPE |
+---------------+-------------+-------------+
| help_category | url | char(128) |
| help_topic | url | char(128) |
+---------------+-------------+-------------+

For tables with the new structure, the statement produces this result:

+---------------+-------------+-------------+
| TABLE_NAME | COLUMN_NAME | COLUMN_TYPE |
+---------------+-------------+-------------+
| help_category | url | text |
| help_topic | url | text |
+---------------+-------------+-------------+

If the master and slave both have the old structure or both have the new structure, they are compatible
and you can replicate help table content by executing this command on the master:

mysql mysql < fill_help_tables.sql

The table content will load into the master, then replicate to the slaves.

If the master and slave have incompatible help tables (one server has the old structure and the other
has the new), you have a choice between not replicating help table content after all, or making the table
structures compatible so that you can replicate the content.

• If you decide not to replicate the content after all, upgrade the master and slaves individually using
mysql with the --init-command option, as described previously.

• If instead you decide to make the table structures compatible, upgrade the tables on the server that
has the old structure. Suppose that your master server has the old table structure. Upgrade its tables
to the new structure manually by executing these statements (binary logging is disabled here to
prevent replication of the changes to the slaves, which already have the new structure):

Replication Features and Issues

2158

SET sql_log_bin=0;
ALTER TABLE mysql.help_category ALTER COLUMN url TEXT;
ALTER TABLE mysql.help_topic ALTER COLUMN url TEXT;

Then run this command on the master:

mysql mysql < fill_help_tables.sql

The table content will load into the master, then replicate to the slaves.

16.4.1.28 Replication and Server SQL Mode

Using different server SQL mode settings on the master and the slave may cause the same INSERT
statements to be handled differently on the master and the slave, leading the master and slave to
diverge. For best results, you should always use the same server SQL mode on the master and on the
slave. This advice applies whether you are using statement-based or row-based replication.

If you are replicating partitioned tables, using different SQL modes on the master and the slave is likely
to cause issues. At a minimum, this is likely to cause the distribution of data among partitions to be
different in the master's and slave's copies of a given table. It may also cause inserts into partitioned
tables that succeed on the master to fail on the slave.

For more information, see Section 5.1.7, “Server SQL Modes”.

As of MySQL 5.7.4, the deprecated ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and
NO_ZERO_IN_DATE SQL modes do nothing. Instead, their previous effects are included in
the effects of strict SQL mode (STRICT_ALL_TABLES or STRICT_TRANS_TABLES). In other
words, strict mode now means the same thing as the previous meaning of strict mode plus the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. This change
reduces the number of SQL modes with an effect dependent on strict mode and makes them part of
strict mode itself.

To prepare for these SQL mode changes, it is advisable before upgrading to read SQL Mode Changes
in MySQL 5.7. That discussion provides guidelines to assess whether your applications will be affected
by these changes.

The deprecated ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL
modes are still recognized so that statements that name them do not produce an error, but will be
removed in a future version of MySQL. To make advance preparation for versions of MySQL in which
these modes do not exist, applications should be modified to not refer to those mode names.

16.4.1.29 Replication Retries and Timeouts

The global system variable slave_transaction_retries affects replication as follows:
If the slave SQL thread fails to execute a transaction because of an InnoDB deadlock or
because it exceeded the InnoDB innodb_lock_wait_timeout value, or the NDBCLUSTER
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout value, the slave
automatically retries the transaction slave_transaction_retries times before stopping with an
error. The default value is 10. The total retry count can be seen in the output of SHOW STATUS; see
Section 5.1.6, “Server Status Variables”.

16.4.1.30 Replication and Time Zones

The same system time zone should be set for both master and slave. Otherwise, statements
depending on the local time on the master are not replicated properly, such as statements that use
the NOW() or FROM_UNIXTIME() functions. You can set the time zone in which MySQL server runs
by using the --timezone=timezone_name option of the mysqld_safe script or by setting the TZ
environment variable. See also Section 16.4.1.15, “Replication and System Functions”.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Replication Features and Issues

2159

If the master is MySQL 4.1 or earlier, both master and slave should also use the same default
connection time zone. That is, the --default-time-zone parameter should have the same value for
both master and slave.

CONVERT_TZ(...,...,@@session.time_zone) is properly replicated only if both master and
slave are running MySQL 5.0.4 or newer.

16.4.1.31 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In
general, you should avoid transactions that update both transactional and nontransactional tables in a
replication environment. You should also avoid using any statement that accesses both transactional
(or temporary) and nontransactional tables and writes to any of them.

As of MySQL 5.5.2, the server uses these rules for binary logging:

• If the initial statements in a transaction are nontransactional, they are written to the binary log
immediately. The remaining statements in the transaction are cached and not written to the binary
log until the transaction is committed. (If the transaction is rolled back, the cached statements are
written to the binary log only if they make nontransactional changes that cannot be rolled back.
Otherwise, they are discarded.)

• For statement-based logging, logging of nontransactional statements is affected by the
binlog_direct_non_transactional_updates system variable. When this variable is OFF
(the default), logging is as just described. When this variable is ON, logging occurs immediately for
nontransactional statements occurring anywhere in the transaction (not just initial nontransactional
statements). Other statements are kept in the transaction cache and logged when the transaction
commits. binlog_direct_non_transactional_updates has no effect for row-format or mixed-
format binary logging.

Transactional, nontransactional, and mixed statements.
To apply those rules, the server considers a statement nontransactional if it changes only
nontransactional tables, and transactional if it changes only transactional tables. In MySQL 5.7, a
statement that references both nontransactional and transactional tables and updates any of the tables
involved, is considered a “mixed” statement. (In previous MySQL release series, a statement that
changed both nontransactional and transactional tables was considered mixed.) Mixed statements, like
transactional statements, are cached and logged when the transaction commits.

A mixed statement that updates a transactional table is considered unsafe if the statement also
performs either of the following actions:

• Updates or reads a transactional table

• Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ

A mixed statement following the update of a transactional table within a transaction is considered
unsafe if it performs either of the following actions:

• Updates any table and reads from any temporary table

• Updates a nontransactional table and binlog_direct_non_trans_update is OFF

For more information, see Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary
Logging”.

Note

A mixed statement is unrelated to mixed binary logging format.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in

Replication Features and Issues

2160

case of a ROLLBACK. However, when a second connection updates the nontransactional table before
the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on master and slave. It is possible to replicate transactional
tables on the master using nontransactional tables on the slave. For example, you can replicate an
InnoDB master table as a MyISAM slave table. However, if you do this, there are problems if the slave
is stopped in the middle of a BEGIN ... COMMIT block because the slave restarts at the beginning of the
BEGIN block.

In MySQL 5.7, it is also safe to replicate transactions from MyISAM tables on the master to
transactional tables—such as tables that use the InnoDB storage engine—on the slave. In such cases
(beginning with MySQL 5.5.0), an AUTOCOMMIT=1 statement issued on the master is replicated, thus
enforcing AUTOCOMMIT mode on the slave.

When the storage engine type of the slave is nontransactional, transactions on the master that mix
updates of transactional and nontransactional tables should be avoided because they can cause
inconsistency of the data between the master transactional table and the slave nontransactional table.
That is, such transactions can lead to master storage engine-specific behavior with the possible effect
of replication going out of synchrony. MySQL does not issue a warning about this currently, so extra
care should be taken when replicating transactional tables from the master to nontransactional tables
on the slaves.

Changing the binary logging format within transactions. Beginning with MySQL 5.5.3, the
binlog_format system variable is read-only as long as a transaction is in progress. (Bug #47863)

Every transaction (including autocommit transactions) is recorded in the binary log as though it starts
with a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. In MySQL 5.7,
this true is even for statements affecting tables that use a nontransactional storage engine (such as
MyISAM).

16.4.1.32 Replication and Triggers

With statement-based replication, triggers executed on the master also execute on the slave. With
row-based replication, triggers executed on the master do not execute on the slave. Instead, the row
changes on the master resulting from trigger execution are replicated and applied on the slave.

This behavior is by design. If under row-based replication the slave applied the triggers as well as the
row changes caused by them, the changes would in effect be applied twice on the slave, leading to
different data on the master and the slave.

If you want triggers to execute on both the master and the slave—perhaps because you have different
triggers on the master and slave—you must use statement-based replication. However, to enable
slave-side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to
switch to statement-based replication only for those statements where you want this effect, and to use
row-based replication the rest of the time.

A statement invoking a trigger (or function) that causes an update to an AUTO_INCREMENT column
is not replicated correctly using statement-based replication. MySQL 5.7 marks such statements as
unsafe. (Bug #45677)

A trigger can have triggers for different combinations of trigger event (INSERT, UPDATE, DELETE) and
action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have the
same trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are permitted.
This change has replication implications for upgrades and downgrades.

For brevity, “multiple triggers” here is shorthand for “multiple triggers that have the same trigger event
and action time.”

Replication Features and Issues

2161

Upgrades. Suppose that you upgrade an old server that does not support multiple triggers to MySQL
5.7.2 or newer. If the new server is a replication master and has old slaves that do not support multiple
triggers, an error occurs on those slaves if a trigger is created on the master for a table that already has
a trigger with the same trigger event and action time. To avoid this problem, upgrade the slaves first,
then upgrade the master.

Downgrades. If you downgrade a server that supports multiple triggers to an older version that does
not, the downgrade has these effects:

• For each table that has triggers, all trigger definitions remain in the .TRG file for the table. However, if
there are multiple triggers with the same trigger event and action time, the server executes only one
of them when the trigger event occurs. For information about .TRG files, see Table Trigger Storage.

• If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites the
table's .TRG file. The rewritten file retains only one trigger per combination of trigger event and action
time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed
using NEW and OLD can be passed to the routine using parameters. If the trigger needs a single
result value from the code, you can put the code in a stored function and have the function return
the value. If the trigger needs multiple result values from the code, you can put the code in a stored
procedure and return the values using OUT parameters.

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for this
trigger is thus the same as the multiple triggers it replaces.

16.4.1.33 Replication and TRUNCATE TABLE

TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be
logged and replicated using row-based format when the binary logging mode is ROW or MIXED.
However this caused issues when logging or replicating, in STATEMENT or MIXED mode, tables that
used transactional storage engines such as InnoDB when the transaction isolation level was READ
COMMITTED or READ UNCOMMITTED, which precludes statement-based logging.

TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that
it can be logged and replicated as a statement. However, the effects of the statement as applicable
to InnoDB and other transactional tables on replication slaves still follow the rules described in
Section 13.1.27, “TRUNCATE TABLE Syntax” governing such tables. (Bug #36763)

16.4.1.34 Replication and Variables

System variables are not replicated correctly when using STATEMENT mode, except for the following
variables when they are used with session scope:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

http://dev.mysql.com/doc/internals/en/sp-storage.html#sp-storage-trigger

Replication Features and Issues

2162

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

When MIXED mode is used, the variables in the preceding list, when used with session scope, cause
a switch from statement-based to row-based logging. See Section 5.2.4.3, “Mixed Binary Logging
Format”.

sql_mode is also replicated except for the NO_DIR_IN_CREATE mode; the slave always preserves
its own value for NO_DIR_IN_CREATE, regardless of changes to it on the master. This is true for all
replication formats.

However, when mysqlbinlog parses a SET @@sql_mode = mode statement, the full mode value,
including NO_DIR_IN_CREATE, is passed to the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT mode is in use.

The default_storage_engine and storage_engine system variables are not replicated,
regardless of the logging mode; this is intended to facilitate replication between different storage
engines.

The read_only system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

The max_heap_table_size system variable is not replicated. Increasing the value of this variable on
the master without doing so on the slave can lead eventually to Table is full errors on the slave
when trying to execute INSERT statements on a MEMORY table on the master that is thus permitted to
grow larger than its counterpart on the slave. For more information, see Section 16.4.1.21, “Replication
and MEMORY Tables”.

In statement-based replication, session variables are not replicated properly when used in statements
that update tables. For example, the following sequence of statements will not insert the same data on
the master and the slave:

SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);

This does not apply to the common sequence:

SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));

Replication Compatibility Between MySQL Versions

2163

Replication of session variables is not a problem when row-based replication is being used, in which
case, session variables are always replicated safely. See Section 16.1.2, “Replication Formats”.

In MySQL 5.7, the following session variables are written to the binary log and honored by the
replication slave when parsing the binary log, regardless of the logging format:

• sql_mode

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

Important

Even though session variables relating to character sets and collations are
written to the binary log, replication between different character sets is not
supported.

To help reduce possible confusion, we recommend that you always use the same setting for the
lower_case_table_names system variable on both master and slave, especially when you are
running MySQL on platforms with case-sensitive file systems.

16.4.1.35 Replication and Views

Views are always replicated to slaves. Views are filtered by their own name, not by the tables they refer
to. This means that a view can be replicated to the slave even if the view contains a table that would
normally be filtered out by replication-ignore-table rules. Care should therefore be taken to
ensure that views do not replicate table data that would normally be filtered for security reasons.

Replication from a table to a samed-named view is supported using statement-based logging, but not
when using row-based logging. In MySQL 5.7.1 and later, trying to do so when row-based logging is in
effect causes an error. (Bug #11752707, Bug #43975)

16.4.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one major version to the next higher major version. For example, you
can replicate from a master running MySQL 5.0 to a slave running MySQL 5.1, from a master running
MySQL 5.1 to a slave running MySQL 5.5, and so on.

However, one may encounter difficulties when replicating from an older master to a newer slave if the
master uses statements or relies on behavior no longer supported in the version of MySQL used on
the slave. For example, in MySQL 5.5, CREATE TABLE ... SELECT statements are permitted to
change tables other than the one being created, but are no longer allowed to do so in MySQL 5.6 (see
Section 16.4.1.5, “Replication of CREATE TABLE ... SELECT Statements”).

The use of more than 2 MySQL Server versions is not supported in replication setups involving multiple
masters, regardless of the number of master or slave MySQL servers. This restriction applies not only
to major versions, but to minor versions within the same major version as well. For example, if you are
using a chained or circular replication setup, you cannot use MySQL 5.7.1, MySQL 5.7.2, and MySQL
5.7.4 concurrently, although you could use any 2 of these releases together.

In some cases, it is also possible to replicate between a master and a slave that is more than one
major version newer than the master. However, there are known issues with trying to replicate from

Upgrading a Replication Setup

2164

a master running MySQL 4.1 or earlier to a slave running MySQL 5.1 or later. To work around such
problems, you can insert a MySQL server running an intermediate version between the two; for
example, rather than replicating directly from a MySQL 4.1 master to a MySQL 5.1 slave, it is possible
to replicate from a MySQL 4.1 server to a MySQL 5.0 server, and then from the MySQL 5.0 server to a
MySQL 5.1 server.

Important

It is strongly recommended to use the most recent release available within a
given MySQL major version because replication (and other) capabilities are
continually being improved. It is also recommended to upgrade masters and
slaves that use early releases of a major version of MySQL to GA (production)
releases when the latter become available for that major version.

Replication from newer masters to older slaves may be possible, but is generally not supported. This is
due to a number of factors:

• Binary log format changes. The binary log format can change between major releases. While
we attempt to maintain backward compatibility, this is not always possible. For example, the binary
log format implemented in MySQL 5.0 changed considerably from that used in previous versions,
especially with regard to handling of character sets, LOAD DATA INFILE, and time zones. This
means that replication from a MySQL 5.0 (or later) master to a MySQL 4.1 (or earlier) slave is
generally not supported.

This also has significant implications for upgrading replication servers; see Section 16.4.3,
“Upgrading a Replication Setup”, for more information.

• Use of row-based replication. Row-based replication was implemented in MySQL 5.1.5, so you
cannot replicate using row-based replication from any MySQL 5.7 or later master to a slave older
than MySQL 5.1.5.

For more information about row-based replication, see Section 16.1.2, “Replication Formats”.

• SQL incompatibilities. You cannot replicate from a newer master to an older slave using
statement-based replication if the statements to be replicated use SQL features available on the
master but not on the slave.

However, if both the master and the slave support row-based replication, and there are no data
definition statements to be replicated that depend on SQL features found on the master but not on
the slave, you can use row-based replication to replicate the effects of data modification statements
even if the DDL run on the master is not supported on the slave.

For more information on potential replication issues, see Section 16.4.1, “Replication Features and
Issues”.

16.4.3 Upgrading a Replication Setup

When you upgrade servers that participate in a replication setup, the procedure for upgrading depends
on the current server versions and the version to which you are upgrading.

This section applies to upgrading replication from older versions of MySQL to MySQL 5.7. A 4.0 server
should be 4.0.3 or newer.

When you upgrade a master to 5.7 from an earlier MySQL release series, you should first ensure that
all the slaves of this master are using the same 5.7.x release. If this is not the case, you should first
upgrade the slaves. To upgrade each slave, shut it down, upgrade it to the appropriate 5.7.x version,
restart it, and restart replication. Relay logs created by the slave after the upgrade are in 5.7 format.

Changes affecting operations in strict SQL mode may result in replication failure on an updated
slave. For example, as of MySQL 5.7.2, the server restricts insertion of a DEFAULT value of 0 for

Troubleshooting Replication

2165

temporal data types in strict mode (STRICT_TRANS_TABLES or STRICT_ALL_TABLES). A resulting
incompatibility for replication if you use statement-based logging (binlog_format=STATEMENT) is
that if a slave is upgraded, a nonupgraded master will execute statements without error that may fail
on the slave and replication will stop. To deal with this, stop all new statements on the master and wait
until the slaves catch up. Then upgrade the slaves. Alternatively, if you cannot stop new statements,
temporarily change to row-based logging on the master (binlog_format=ROW) and wait until all
slaves have processed all binary logs produced up to the point of this change. Then upgrade the
slaves.

After the slaves have been upgraded, shut down the master, upgrade it to the same 5.7.x release as
the slaves, and restart it. If you had temporarily changed the master to row-based logging, change
it back to statement-based logging. The 5.7 master is able to read the old binary logs written prior to
the upgrade and to send them to the 5.7 slaves. The slaves recognize the old format and handle it
properly. Binary logs created by the master subsequent to the upgrade are in 5.7 format. These too are
recognized by the 5.7 slaves.

In other words, when upgrading to MySQL 5.7, the slaves must be MySQL 5.7 before you can upgrade
the master to 5.7. Note that downgrading from 5.7 to older versions does not work so simply: You must
ensure that any 5.7 binary log or relay log has been fully processed, so that you can remove it before
proceeding with the downgrade.

Downgrading a replication setup to a previous version cannot be done once you have switched from
statement-based to row-based replication, and after the first row-based statement has been written to
the binlog. See Section 16.1.2, “Replication Formats”.

Some upgrades may require that you drop and re-create database objects when you move from
one MySQL series to the next. For example, collation changes might require that table indexes be
rebuilt. Such operations, if necessary, will be detailed at Section 2.10.1.2, “Upgrading from MySQL
5.6 to 5.7”. It is safest to perform these operations separately on the slaves and the master, and to
disable replication of these operations from the master to the slave. To achieve this, use the following
procedure:

1. Stop all the slaves and upgrade them. Restart them with the --skip-slave-start option so
that they do not connect to the master. Perform any table repair or rebuilding operations needed
to re-create database objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and
reloading tables or triggers.

2. Disable the binary log on the master. To do this without restarting the master, execute a SET
sql_log_bin = 0 statement. Alternatively, stop the master and restart it without the --log-bin
option. If you restart the master, you might also want to disallow client connections. For example,
if all clients connect using TCP/IP, use the --skip-networking option when you restart the
master.

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the slaves later.

4. Re-enable the binary log on the master. If you set sql_log_bin to 0 earlier, execute a SET
sql_log_bin = 1 statement. If you restarted the master to disable the binary log, restart it with
--log-bin, and without --skip-networking so that clients and slaves can connect.

5. Restart the slaves, this time without the --skip-slave-start option.

If you are upgrading an existing replication setup from a version of MySQL that does not support global
transaction identifiers to a version that does, you should not enable GTIDs on either the master or the
slave before making sure that the setup meets all the requirements for GTID-based replication. See
Section 16.1.3.2, “Setting Up Replication Using GTIDs”, which contains information about converting
existing replication setups to use GTID-based replication.

16.4.4 Troubleshooting Replication

Troubleshooting Replication

2166

If you have followed the instructions but your replication setup is not working, the first thing to do is
check the error log for messages. Many users have lost time by not doing this soon enough after
encountering problems.

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the master has binary logging enabled by issuing a SHOW MASTER STATUS statement. If
logging is enabled, Position is nonzero. If binary logging is not enabled, verify that you are running
the master with the --log-bin option.

• Verify that the master and slave both were started with the --server-id [2037] option and that the
ID value is unique on each server.

• Verify that the slave is running. Use SHOW SLAVE STATUS to check whether the
Slave_IO_Running and Slave_SQL_Running values are both Yes. If not, verify the options that
were used when starting the slave server. For example, --skip-slave-start prevents the slave
threads from starting until you issue a START SLAVE statement.

• If the slave is running, check whether it established a connection to the master. Use SHOW
PROCESSLIST, find the I/O and SQL threads and check their State column to see what they
display. See Section 16.2.1, “Replication Implementation Details”. If the I/O thread state says
Connecting to master, check the following:

• Verify the privileges for the user being used for replication on the master.

• Check that the host name of the master is correct and that you are using the correct port to
connect to the master. The port used for replication is the same as used for client network
communication (the default is 3306). For the host name, ensure that the name resolves to the
correct IP address.

• Check that networking has not been disabled on the master or slave. Look for the skip-
networking option in the configuration file. If present, comment it out or remove it.

• If the master has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

• Check that you can reach the master by using ping or traceroute/tracert to reach the host.

• If the slave was running previously but has stopped, the reason usually is that some statement
that succeeded on the master failed on the slave. This should never happen if you have taken
a proper snapshot of the master, and never modified the data on the slave outside of the slave
thread. If the slave stops unexpectedly, it is a bug or you have encountered one of the known
replication limitations described in Section 16.4.1, “Replication Features and Issues”. If it is a bug,
see Section 16.4.5, “How to Report Replication Bugs or Problems”, for instructions on how to report
it.

• If a statement that succeeded on the master refuses to run on the slave, try the following procedure
if it is not feasible to do a full database resynchronization by deleting the slave's databases and
copying a new snapshot from the master:

1. Determine whether the affected table on the slave is different from the master table. Try to
understand how this happened. Then make the slave's table identical to the master's and run
START SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe
to make the update manually (if needed) and then ignore the next statement from the master.

3. If you decide that the slave can skip the next statement from the master, issue the following
statements:

mysql> SET GLOBAL sql_slave_skip_counter = N;

How to Report Replication Bugs or Problems

2167

mysql> START SLAVE;

The value of N should be 1 if the next statement from the master does not use AUTO_INCREMENT
or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for
statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in
the binary log of the master.

See also Section 13.4.2.5, “SET GLOBAL sql_slave_skip_counter Syntax”.

4. If you are sure that the slave started out perfectly synchronized with the master, and that no one
has updated the tables involved outside of the slave thread, then presumably the discrepancy
is the result of a bug. If you are running the most recent version of MySQL, please report the
problem. If you are running an older version, try upgrading to the latest production release to
determine whether the problem persists.

16.4.5 How to Report Replication Bugs or Problems

When you have determined that there is no user error involved, and replication still either does not
work at all or is unstable, it is time to send us a bug report. We need to obtain as much information as
possible from you to be able to track down the bug. Please spend some time and effort in preparing a
good bug report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database
using the instructions given in Section 1.7, “How to Report Bugs or Problems”. If you have a “phantom”
problem (one that you cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the slave outside of the slave
thread, the data goes out of synchrony, and you can have unique key violations on updates. In
this case, the slave thread stops and waits for you to clean up the tables manually to bring them
into synchrony. This is not a replication problem. It is a problem of outside interference causing
replication to fail.

2. Run the slave with the --log-slave-updates and --log-bin options. These options cause the
slave to log the updates that it receives from the master into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary log files from the master

• All binary log files from the slave

• The output of SHOW MASTER STATUS from the master at the time you discovered the problem

• The output of SHOW SLAVE STATUS from the slave at the time you discovered the problem

• Error logs from the master and the slave

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem
statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos
values from SHOW SLAVE STATUS.

shell> mysqlbinlog --start-position=log_pos log_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
Section 1.7, “How to Report Bugs or Problems”.

2168

2169

Chapter 17 Partitioning

Table of Contents
17.1 Overview of Partitioning in MySQL ... 2171
17.2 Partitioning Types .. 2173

17.2.1 RANGE Partitioning .. 2175
17.2.2 LIST Partitioning .. 2179
17.2.3 COLUMNS Partitioning .. 2181
17.2.4 HASH Partitioning .. 2189
17.2.5 KEY Partitioning .. 2192
17.2.6 Subpartitioning .. 2193
17.2.7 How MySQL Partitioning Handles NULL ... 2196

17.3 Partition Management .. 2200
17.3.1 Management of RANGE and LIST Partitions ... 2201
17.3.2 Management of HASH and KEY Partitions ... 2207
17.3.3 Exchanging Partitions and Subpartitions with Tables ... 2208
17.3.4 Maintenance of Partitions .. 2213
17.3.5 Obtaining Information About Partitions ... 2214

17.4 Partition Pruning .. 2217
17.5 Partition Selection .. 2220
17.6 Restrictions and Limitations on Partitioning ... 2225

17.6.1 Partitioning Keys, Primary Keys, and Unique Keys ... 2231
17.6.2 Partitioning Limitations Relating to Storage Engines .. 2234
17.6.3 Partitioning Limitations Relating to Functions .. 2235
17.6.4 Partitioning and Locking .. 2236

This chapter discusses MySQL's implementation of user-defined partitioning. You can determine
whether your MySQL Server supports partitioning by checking the output of the SHOW PLUGINS
statement, as shown here:

mysql> SHOW PLUGINS;
+------------+----------+----------------+---------+---------+
| Name | Status | Type | Library | License |
+------------+----------+----------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
FEDERATED	DISABLED	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	DISABLED	STORAGE ENGINE	NULL	GPL
+------------+----------+----------------+---------+---------+
11 rows in set (0.00 sec)

You can also check the INFORMATION_SCHEMA.PLUGINS table with a query similar to this one:

mysql> SELECT
 -> PLUGIN_NAME as Name,
 -> PLUGIN_VERSION as Version,
 -> PLUGIN_STATUS as Status
 -> FROM INFORMATION_SCHEMA.PLUGINS
 -> WHERE PLUGIN_TYPE='STORAGE ENGINE';
+--------------------+---------+--------+
| Name | Version | Status |

2170

+--------------------+---------+--------+
binlog	1.0	ACTIVE
CSV	1.0	ACTIVE
MEMORY	1.0	ACTIVE
MRG_MYISAM	1.0	ACTIVE
MyISAM	1.0	ACTIVE
PERFORMANCE_SCHEMA	0.1	ACTIVE
BLACKHOLE	1.0	ACTIVE
ARCHIVE	3.0	ACTIVE
InnoDB	5.6	ACTIVE
partition	1.0	ACTIVE
+--------------------+---------+--------+
10 rows in set (0.00 sec)

In either case, if you do not see the partition plugin listed with the value ACTIVE for the Status
column in the output (shown in bold text in each of the examples just given), then your version of
MySQL was not built with partitioning support.

MySQL 5.7 Community binaries provided by Oracle include partitioning support. For information about
partitioning support offered in commercial MySQL Server binaries, see MySQL Enterprise Server 5.1
on the MySQL Web site at http://www.mysql.com/products/enterprise/server.html.

To enable partitioning if you are compiling MySQL 5.7 from source, the build must be configured with
the -DWITH_PARTITION_STORAGE_ENGINE option. For more information, see Section 2.8, “Installing
MySQL from Source”.

If your MySQL binary is built with partitioning support, nothing further needs to be done to enable it (for
example, no special entries are required in your my.cnf file).

If you want to disable partitioning support, you can start the MySQL Server with the --skip-
partition option, in which case the value of have_partitioning is DISABLED. When partitioning
support is disabled, you can see any existing partitioned tables and drop them (although doing this is
not advised), but you cannot otherwise manipulate them or access their data.

See Section 17.1, “Overview of Partitioning in MySQL”, for an introduction to partitioning and
partitioning concepts.

MySQL supports several types of partitioning as well as subpartitioning; see Section 17.2, “Partitioning
Types”, and Section 17.2.6, “Subpartitioning”.

Section 17.3, “Partition Management”, covers methods of adding, removing, and altering partitions in
existing partitioned tables.

Section 17.3.4, “Maintenance of Partitions”, discusses table maintenance commands for use with
partitioned tables.

The PARTITIONS table in the INFORMATION_SCHEMA database provides information about partitions
and partitioned tables. See Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”, for
more information; for some examples of queries against this table, see Section 17.2.7, “How MySQL
Partitioning Handles NULL”.

For known issues with partitioning in MySQL 5.7, see Section 17.6, “Restrictions and Limitations on
Partitioning”.

You may also find the following resources to be useful when working with partitioned tables.

Additional Resources. Other sources of information about user-defined partitioning in MySQL
include the following:

• MySQL Partitioning Forum

This is the official discussion forum for those interested in or experimenting with MySQL Partitioning
technology. It features announcements and updates from MySQL developers and others. It is
monitored by members of the Partitioning Development and Documentation Teams.

http://www.mysql.com/products/enterprise/server.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_have_partitioning
http://forums.mysql.com/list.php?106

Overview of Partitioning in MySQL

2171

• Mikael Ronström's Blog

MySQL Partitioning Architect and Lead Developer Mikael Ronström frequently posts articles here
concerning his work with MySQL Partitioning and MySQL Cluster.

• PlanetMySQL

A MySQL news site featuring MySQL-related blogs, which should be of interest to anyone using
my MySQL. We encourage you to check here for links to blogs kept by those working with MySQL
Partitioning, or to have your own blog added to those covered.

MySQL 5.7 binaries are available from http://dev.mysql.com/downloads/mysql/5.7.html.
However, for the latest partitioning bugfixes and feature additions, you can obtain the source
from our Bazaar repository. To enable partitioning, the build must be configured with the -
DWITH_PARTITION_STORAGE_ENGINE option. For more information about building MySQL, see
Section 2.8, “Installing MySQL from Source”. If you have problems compiling a partitioning-enabled
MySQL 5.7 build, check the MySQL Partitioning Forum and ask for assistance there if you do not find a
solution to your problem already posted.

17.1 Overview of Partitioning in MySQL

This section provides a conceptual overview of partitioning in MySQL 5.7.

For information on partitioning restrictions and feature limitations, see Section 17.6, “Restrictions and
Limitations on Partitioning”.

The SQL standard does not provide much in the way of guidance regarding the physical aspects
of data storage. The SQL language itself is intended to work independently of any data structures
or media underlying the schemas, tables, rows, or columns with which it works. Nonetheless, most
advanced database management systems have evolved some means of determining the physical
location to be used for storing specific pieces of data in terms of the file system, hardware or even
both. In MySQL, the InnoDB storage engine has long supported the notion of a tablespace, and the
MySQL Server, even prior to the introduction of partitioning, could be configured to employ different
physical directories for storing different databases (see Section 8.11.3.1, “Using Symbolic Links”, for an
explanation of how this is done).

Partitioning takes this notion a step further, by enabling you to distribute portions of individual tables
across a file system according to rules which you can set largely as needed. In effect, different portions
of a table are stored as separate tables in different locations. The user-selected rule by which the
division of data is accomplished is known as a partitioning function, which in MySQL can be the
modulus, simple matching against a set of ranges or value lists, an internal hashing function, or a linear
hashing function. The function is selected according to the partitioning type specified by the user, and
takes as its parameter the value of a user-supplied expression. This expression can be a column value,
a function acting on one or more column values, or a set of one or more column values, depending on
the type of partitioning that is used.

In the case of RANGE, LIST, and [LINEAR] HASH partitioning, the value of the partitioning column
is passed to the partitioning function, which returns an integer value representing the number of the
partition in which that particular record should be stored. This function must be nonconstant and
nonrandom. It may not contain any queries, but may use an SQL expression that is valid in MySQL, as
long as that expression returns either NULL or an integer intval such that

-MAXVALUE <= intval <= MAXVALUE

(MAXVALUE is used to represent the least upper bound for the type of integer in question. -MAXVALUE
represents the greatest lower bound.)

For [LINEAR] KEY, RANGE COLUMNS, and LIST COLUMNS partitioning, the partitioning expression
consists of a list of one or more columns.

http://mikaelronstrom.blogspot.com/
http://www.planetmysql.org/
http://dev.mysql.com/downloads/mysql/5.7.html
http://forums.mysql.com/list.php?106

Overview of Partitioning in MySQL

2172

For [LINEAR] KEY partitioning, the partitioning function is supplied by MySQL.

For more information about permitted partitioning column types and partitioning functions, see
Section 17.2, “Partitioning Types”, as well as Section 13.1.14, “CREATE TABLE Syntax”, which
provides partitioning syntax descriptions and additional examples. For information about restrictions on
partitioning functions, see Section 17.6.3, “Partitioning Limitations Relating to Functions”.

This is known as horizontal partitioning—that is, different rows of a table may be assigned to different
physical partitions. MySQL 5.7 does not support vertical partitioning, in which different columns of a
table are assigned to different physical partitions. There are not at this time any plans to introduce
vertical partitioning into MySQL 5.7.

For information about determining whether your MySQL Server binary supports user-defined
partitioning, see Chapter 17, Partitioning.

For creating partitioned tables, you can use most storage engines that are supported by your MySQL
server; the MySQL partitioning engine runs in a separate layer and can interact with any of these.
In MySQL 5.7, all partitions of the same partitioned table must use the same storage engine; for
example, you cannot use MyISAM for one partition and InnoDB for another. However, there is nothing
preventing you from using different storage engines for different partitioned tables on the same MySQL
server or even in the same database.

MySQL partitioning cannot be used with the MERGE, CSV, or FEDERATED storage engines.

To employ a particular storage engine for a partitioned table, it is necessary only to use the
[STORAGE] ENGINE option just as you would for a nonpartitioned table. However, you should keep
in mind that [STORAGE] ENGINE (and other table options) need to be listed before any partitioning
options are used in a CREATE TABLE statement. This example shows how to create a table that is
partitioned by hash into 6 partitions and which uses the InnoDB storage engine:

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)
 ENGINE=INNODB
 PARTITION BY HASH(MONTH(tr_date))
 PARTITIONS 6;

Each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 5.7 this has no
effect.

Important

Partitioning applies to all data and indexes of a table; you cannot partition only
the data and not the indexes, or vice versa, nor can you partition only a portion
of the table.

Data and indexes for each partition can be assigned to a specific directory using the DATA
DIRECTORY and INDEX DIRECTORY options for the PARTITION clause of the CREATE TABLE
statement used to create the partitioned table.

The DATA DIRECTORY and INDEX DIRECTORY options have no effect when defining partitions for
tables using the InnoDB storage engine.

DATA DIRECTORY and INDEX DIRECTORY are not supported for individual partitions or subpartitions
on Windows. These options are ignored on Windows, except that a warning is generated.

In addition, MAX_ROWS and MIN_ROWS can be used to determine the maximum and minimum numbers
of rows, respectively, that can be stored in each partition. See Section 17.3, “Partition Management”,
for more information on these options.

Some advantages of partitioning are listed here:

• Partitioning makes it possible to store more data in one table than can be held on a single disk or file
system partition.

Partitioning Types

2173

• Data that loses its usefulness can often be easily removed from a partitioned table by dropping the
partition (or partitions) containing only that data. Conversely, the process of adding new data can in
some cases be greatly facilitated by adding one or more new partitions for storing specifically that
data.

• Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause
can be stored only on one or more partitions, which automatically excludes any remaining partitions
from the search. Because partitions can be altered after a partitioned table has been created, you
can reorganize your data to enhance frequent queries that may not have been often used when the
partitioning scheme was first set up. This ability to exclude non-matching partitions (and thus any
rows they contain) is often referred to as partition pruning. For more information, see Section 17.4,
“Partition Pruning”.

In addition, MySQL 5.7 supports explicit partition selection for queries. For example, SELECT *
FROM t PARTITION (p0,p1) WHERE c < 5 selects only those rows in partitions p0 and p1
that match the WHERE condition. In this case, MySQL does not check any other partitions of table t;
this can greatly speed up queries when you already know which partition or partitions you wish to
examine. Partition selection is also supported for the data modification statements DELETE, INSERT,
REPLACE, UPDATE, and LOAD DATA, LOAD XML. See the descriptions of these statements for more
information and examples.

Other benefits usually associated with partitioning include those in the following list. These features are
not currently implemented in MySQL Partitioning, but are high on our list of priorities.

• Queries involving aggregate functions such as SUM() and COUNT() can easily be parallelized.
A simple example of such a query might be SELECT salesperson_id, COUNT(orders) as
order_total FROM sales GROUP BY salesperson_id;. By “parallelized,” we mean that the
query can be run simultaneously on each partition, and the final result obtained merely by summing
the results obtained for all partitions.

• Achieving greater query throughput in virtue of spreading data seeks over multiple disks.

Be sure to check this section and chapter frequently for updates as MySQL Partitioning development
continues.

17.2 Partitioning Types
This section discusses the types of partitioning which are available in MySQL 5.7. These include the
types listed here:

• RANGE partitioning. This type of partitioning assigns rows to partitions based on column values
falling within a given range. See Section 17.2.1, “RANGE Partitioning”. For information about an
extension to this type, RANGE COLUMNS, see Section 17.2.3.1, “RANGE COLUMNS partitioning”.

• LIST partitioning. Similar to partitioning by RANGE, except that the partition is selected based
on columns matching one of a set of discrete values. See Section 17.2.2, “LIST Partitioning”. For
information about an extension to this type, LIST COLUMNS, see Section 17.2.3.2, “LIST COLUMNS
partitioning”.

• HASH partitioning. With this type of partitioning, a partition is selected based on the value
returned by a user-defined expression that operates on column values in rows to be inserted into
the table. The function may consist of any expression valid in MySQL that yields a nonnegative
integer value. An extension to this type, LINEAR HASH, is also available. See Section 17.2.4, “HASH
Partitioning”.

• KEY partitioning. This type of partitioning is similar to partitioning by HASH, except that only one
or more columns to be evaluated are supplied, and the MySQL server provides its own hashing
function. These columns can contain other than integer values, since the hashing function supplied
by MySQL guarantees an integer result regardless of the column data type. An extension to this
type, LINEAR KEY, is also available. See Section 17.2.5, “KEY Partitioning”.

Partitioning Types

2174

A very common use of database partitioning is to segregate data by date. Some database systems
support explicit date partitioning, which MySQL does not implement in 5.7. However, it is not difficult
in MySQL to create partitioning schemes based on DATE, TIME, or DATETIME columns, or based on
expressions making use of such columns.

When partitioning by KEY or LINEAR KEY, you can use a DATE, TIME, or DATETIME column as the
partitioning column without performing any modification of the column value. For example, this table
creation statement is perfectly valid in MySQL:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY KEY(joined)
PARTITIONS 6;

In MySQL 5.7, it is also possible to use a DATE or DATETIME column as the partitioning column using
RANGE COLUMNS and LIST COLUMNS partitioning.

MySQL's other partitioning types, however, require a partitioning expression that yields an integer value
or NULL. If you wish to use date-based partitioning by RANGE, LIST, HASH, or LINEAR HASH, you can
simply employ a function that operates on a DATE, TIME, or DATETIME column and returns such a
value, as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

Additional examples of partitioning using dates may be found in the following sections of this chapter:

• Section 17.2.1, “RANGE Partitioning”

• Section 17.2.4, “HASH Partitioning”

• Section 17.2.4.1, “LINEAR HASH Partitioning”

For more complex examples of date-based partitioning, see the following sections:

• Section 17.4, “Partition Pruning”

• Section 17.2.6, “Subpartitioning”

MySQL partitioning is optimized for use with the TO_DAYS(), YEAR(), and TO_SECONDS()
functions. However, you can use other date and time functions that return an integer or NULL, such
as WEEKDAY(), DAYOFYEAR(), or MONTH(). See Section 12.7, “Date and Time Functions”, for more
information about such functions.

It is important to remember—regardless of the type of partitioning that you use—that partitions are
always numbered automatically and in sequence when created, starting with 0. When a new row is
inserted into a partitioned table, it is these partition numbers that are used in identifying the correct

RANGE Partitioning

2175

partition. For example, if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For
the RANGE and LIST partitioning types, it is necessary to ensure that there is a partition defined for
each partition number. For HASH partitioning, the user function employed must return an integer value
greater than 0. For KEY partitioning, this issue is taken care of automatically by the hashing function
which the MySQL server employs internally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for
tables and databases. However, you should note that partition names are not case-sensitive. For
example, the following CREATE TABLE statement fails as shown:

mysql> CREATE TABLE t2 (val INT)
 -> PARTITION BY LIST(val)(
 -> PARTITION mypart VALUES IN (1,3,5),
 -> PARTITION MyPart VALUES IN (2,4,6)
 ->);
ERROR 1488 (HY000): Duplicate partition name mypart

Failure occurs because MySQL sees no difference between the partition names mypart and MyPart.

When you specify the number of partitions for the table, this must be expressed as a positive, nonzero
integer literal with no leading zeros, and may not be an expression such as 0.8E+01 or 6-2, even if it
evaluates to an integer value. Decimal fractions are not permitted.

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can
be used for creating each partition type; this information may be found in Section 13.1.14, “CREATE
TABLE Syntax”.

17.2.1 RANGE Partitioning

A table that is partitioned by range is partitioned in such a way that each partition contains rows for
which the partitioning expression value lies within a given range. Ranges should be contiguous but
not overlapping, and are defined using the VALUES LESS THAN operator. For the next few examples,
suppose that you are creating a table such as the following to hold personnel records for a chain of 20
video stores, numbered 1 through 20:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Note

The employees table used here has no primary or unique keys. While the
examples work as shown for purposes of the present discussion, you should
keep in mind that tables are extremely likely in practice to have primary keys,
unique keys, or both, and that allowable choices for partitioning columns
depend on the columns used for these keys, if any are present. For a discussion
of these issues, see Section 17.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”.

This table can be partitioned by range in a number of ways, depending on your needs. One way would
be to use the store_id column. For instance, you might decide to partition the table 4 ways by adding
a PARTITION BY RANGE clause as shown here:

CREATE TABLE employees (
 id INT NOT NULL,

RANGE Partitioning

2176

 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN (21)
);

In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5
are stored in partition p0, to those employed at stores 6 through 10 are stored in partition p1, and
so on. Note that each partition is defined in order, from lowest to highest. This is a requirement of
the PARTITION BY RANGE syntax; you can think of it as being analogous to a series of if ...
elseif ... statements in C or Java in this regard.

It is easy to determine that a new row containing the data (72, 'Michael', 'Widenius',
'1998-06-25', NULL, 13) is inserted into partition p2, but what happens when your chain adds
a 21st store? Under this scheme, there is no rule that covers a row whose store_id is greater than
20, so an error results because the server does not know where to place it. You can keep this from
occurring by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that
provides for all values greater than the highest value explicitly named:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Note

Another way to avoid an error when no matching value is found is to use
the IGNORE keyword as part of the INSERT statement. For an example, see
Section 17.2.2, “LIST Partitioning”. Also see Section 13.2.5, “INSERT Syntax”,
for general information about IGNORE.

MAXVALUE represents an integer value that is always greater than the largest possible integer value (in
mathematical language, it serves as a least upper bound). Now, any rows whose store_id column
value is greater than or equal to 16 (the highest value defined) are stored in partition p3. At some point
in the future—when the number of stores has increased to 25, 30, or more—you can use an ALTER
TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Section 17.3, “Partition
Management”, for details of how to do this).

In much the same fashion, you could partition the table based on employee job codes—that is, based
on ranges of job_code column values. For example—assuming that two-digit job codes are used for
regular (in-store) workers, three-digit codes are used for office and support personnel, and four-digit
codes are used for management positions—you could create the partitioned table using the following
statement:

CREATE TABLE employees (

RANGE Partitioning

2177

 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (job_code) (
 PARTITION p0 VALUES LESS THAN (100),
 PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (10000)
);

In this instance, all rows relating to in-store workers would be stored in partition p0, those relating to
office and support staff in p1, and those relating to managers in partition p2.

It is also possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be
able to evaluate the expression's return value as part of a LESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on
one of the two DATE columns instead. For example, let us suppose that you wish to partition based on
the year that each employee left the company; that is, the value of YEAR(separated). An example of
a CREATE TABLE statement that implements such a partitioning scheme is shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY RANGE (YEAR(separated)) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1996),
 PARTITION p2 VALUES LESS THAN (2001),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

In this scheme, for all employees who left before 1991, the rows are stored in partition p0; for those
who left in the years 1991 through 1995, in p1; for those who left in the years 1996 through 2000, in
p2; and for any workers who left after the year 2000, in p3.

It is also possible to partition a table by RANGE, based on the value of a TIMESTAMP column, using the
UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
 PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)

RANGE Partitioning

2178

Range partitioning is particularly useful when one or more of the following conditions is true:

• You want or need to delete “old” data. If you are using the partitioning scheme shown immediately
above, you can simply use ALTER TABLE employees DROP PARTITION p0; to delete all rows
relating to employees who stopped working for the firm prior to 1991. (See Section 13.1.6, “ALTER
TABLE Syntax”, and Section 17.3, “Partition Management”, for more information.) For a table with
a great many rows, this can be much more efficient than running a DELETE query such as DELETE
FROM employees WHERE YEAR(separated) <= 1990;.

• You want to use a column containing date or time values, or containing values arising from some
other series.

• You frequently run queries that depend directly on the column used for partitioning the table. For
example, when executing a query such as EXPLAIN PARTITIONS SELECT COUNT(*) FROM
employees WHERE separated BETWEEN '2000-01-01' AND '2000-12-31' GROUP BY
store_id;, MySQL can quickly determine that only partition p2 needs to be scanned because
the remaining partitions cannot contain any records satisfying the WHERE clause. See Section 17.4,
“Partition Pruning”, for more information about how this is accomplished.

A variant on this type of partitioning is RANGE COLUMNS partitioning. Partitioning by RANGE COLUMNS
makes it possible to employ multiple columns for defining partitioning ranges that apply both to
placement of rows in partitions and for determining the inclusion or exclusion of specific partitions
when performing partition pruning. See Section 17.2.3.1, “RANGE COLUMNS partitioning”, for more
information.

Partitioning schemes based on time intervals. If you wish to implement a partitioning scheme
based on ranges or intervals of time in MySQL 5.7, you have two options:

1. Partition the table by RANGE, and for the partitioning expression, employ a function operating on a
DATE, TIME, or DATETIME column and returning an integer value, as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

In MySQL 5.7, it is also possible to partition a table by RANGE based on the value of a TIMESTAMP
column, using the UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),

LIST Partitioning

2179

 PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

In MySQL 5.7, any other expressions involving TIMESTAMP values are not permitted. (See Bug
#42849.)

Note

It is also possible in MySQL 5.7 to use
UNIX_TIMESTAMP(timestamp_column) as a partitioning expression for
tables that are partitioned by LIST. However, it is usually not practical to do
so.

2. Partition the table by RANGE COLUMNS, using a DATE or DATETIME column as the partitioning
column. For example, the members table could be defined using the joined column directly, as
shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE COLUMNS(joined) (
 PARTITION p0 VALUES LESS THAN ('1960-01-01'),
 PARTITION p1 VALUES LESS THAN ('1970-01-01'),
 PARTITION p2 VALUES LESS THAN ('1980-01-01'),
 PARTITION p3 VALUES LESS THAN ('1990-01-01'),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

Note

The use of partitioning columns employing date or time types other than DATE
or DATETIME is not supported with RANGE COLUMNS.

17.2.2 LIST Partitioning

List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE,
each partition must be explicitly defined. The chief difference between the two types of partitioning is
that, in list partitioning, each partition is defined and selected based on the membership of a column
value in one of a set of value lists, rather than in one of a set of contiguous ranges of values. This is
done by using PARTITION BY LIST(expr) where expr is a column value or an expression based
on a column value and returning an integer value, and then defining each partition by means of a
VALUES IN (value_list), where value_list is a comma-separated list of integers.

Note

In MySQL 5.7, it is possible to match against only a list of integers (and possibly
NULL—see Section 17.2.7, “How MySQL Partitioning Handles NULL”) when
partitioning by LIST.

However, other column types may be used in value lists when employing LIST
COLUMN partitioning, which is described later in this section.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any
particular order. For more detailed syntactical information, see Section 13.1.14, “CREATE TABLE
Syntax”.

For the examples that follow, we assume that the basic definition of the table to be partitioned is
provided by the CREATE TABLE statement shown here:

LIST Partitioning

2180

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
);

(This is the same table used as a basis for the examples in Section 17.2.1, “RANGE Partitioning”.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table.

Region Store ID Numbers

North 3, 5, 6, 9, 17

East 1, 2, 10, 11, 19, 20

West 4, 12, 13, 14, 18

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in the
same partition, you could use the CREATE TABLE statement shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LIST(store_id) (
 PARTITION pNorth VALUES IN (3,5,6,9,17),
 PARTITION pEast VALUES IN (1,2,10,11,19,20),
 PARTITION pWest VALUES IN (4,12,13,14,18),
 PARTITION pCentral VALUES IN (7,8,15,16)
);

This makes it easy to add or drop employee records relating to specific regions to or from the table.
For instance, suppose that all stores in the West region are sold to another company. In MySQL
5.7, all rows relating to employees working at stores in that region can be deleted with the query
ALTER TABLE employees TRUNCATE PARTITION pWest, which can be executed much more
efficiently than the equivalent DELETE statement DELETE FROM employees WHERE store_id IN
(4,12,13,14,18);. (Using ALTER TABLE employees DROP PARTITION pWest would also
delete all of these rows, but would also remove the partition pWest from the definition of the table; you
would need to use an ALTER TABLE ... ADD PARTITION statement to restore the table's original
partitioning scheme.)

As with RANGE partitioning, it is possible to combine LIST partitioning with partitioning by hash or key
to produce a composite partitioning (subpartitioning). See Section 17.2.6, “Subpartitioning”.

Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVALUE; all expected values
for the partitioning expression should be covered in PARTITION ... VALUES IN (...) clauses.
An INSERT statement containing an unmatched partitioning column value fails with an error, as shown
in this example:

mysql> CREATE TABLE h2 (
 -> c1 INT,
 -> c2 INT
 ->)

COLUMNS Partitioning

2181

 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (1, 4, 7),
 -> PARTITION p1 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.11 sec)

mysql> INSERT INTO h2 VALUES (3, 5);
ERROR 1525 (HY000): Table has no partition for value 3

When inserting multiple rows using a single INSERT statement the behavior depends on whether the
table uses a transactional storage engine. For an InnoDB table, the statement is considered a single
transaction, so the presence of any unmatched values causes the statement to fail completely, and
no rows are inserted. For a table using a nontransactional storage engine such as MyISAM, any rows
coming before the row containing the unmatched value are inserted, but any coming after it are not.

You can cause this type of error to be ignored by using the IGNORE keyword. If you do so, rows
containing unmatched partitioning column values are not inserted, but any rows with matching values
are inserted, and no errors are reported:

mysql> TRUNCATE h2;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM h2;
Empty set (0.00 sec)

mysql> INSERT IGNORE INTO h2 VALUES (2, 5), (6, 10), (7, 5), (3, 1), (1, 9);
Query OK, 3 rows affected (0.00 sec)
Records: 5 Duplicates: 2 Warnings: 0

mysql> SELECT * FROM h2;
+------+------+
| c1 | c2 |
+------+------+
7	5
1	9
2	5
+------+------+
3 rows in set (0.00 sec)

MySQL 5.7 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning that
enables you to use columns of types other than integer types for partitioning columns, as well as to use
multiple columns as partitioning keys. For more information, see Section 17.2.3.2, “LIST COLUMNS
partitioning”.

17.2.3 COLUMNS Partitioning

The next two sections discuss COLUMNS partitioning, which are variants on RANGE and LIST
partitioning. COLUMNS partitioning enables the use of multiple columns in partitioning keys. All of
these columns are taken into account both for the purpose of placing rows in partitions and for the
determination of which partitions are to be checked for matching rows in partition pruning.

In addition, both RANGE COLUMNS partitioning and LIST COLUMNS partitioning support the use of non-
integer columns for defining value ranges or list members. The permitted data types are shown in the
following list:

• All integer types: TINYINT, SMALLINT, MEDIUMINT, INT (INTEGER), and BIGINT. (This is the
same as with partitioning by RANGE and LIST.)

Other numeric data types (such as DECIMAL or FLOAT) are not supported as partitioning columns.

• DATE and DATETIME.

Columns using other data types relating to dates or times are not supported as partitioning columns.

• The following string types: CHAR, VARCHAR, BINARY, and VARBINARY.

COLUMNS Partitioning

2182

TEXT and BLOB columns are not supported as partitioning columns.

The discussions of RANGE COLUMNS and LIST COLUMNS partitioning in the next two sections assume
that you are already familiar with partitioning based on ranges and lists as supported in MySQL 5.1 and
later; for more information about these, see Section 17.2.1, “RANGE Partitioning”, and Section 17.2.2,
“LIST Partitioning”, respectively.

17.2.3.1 RANGE COLUMNS partitioning

Range columns partitioning is similar to range partitioning, but enables you to define partitions using
ranges based on multiple column values. In addition, you can define the ranges using columns of types
other than integer types.

RANGE COLUMNS partitioning differs significantly from RANGE partitioning in the following ways:

• RANGE COLUMNS does not accept expressions, only names of columns.

• RANGE COLUMNS accepts a list of one or more columns.

RANGE COLUMNS partitions are based on comparisons between tuples (lists of column values) rather
than comparisons between scalar values. Placement of rows in RANGE COLUMNS partitions is also
based on comparisons between tuples; this is discussed further later in this section.

• RANGE COLUMNS partitioning columns are not restricted to integer columns; string, DATE and
DATETIME columns can also be used as partitioning columns. (See Section 17.2.3, “COLUMNS
Partitioning”, for details.)

The basic syntax for creating a table partitioned by RANGE COLUMNS is shown here:

CREATE TABLE table_name
PARTITIONED BY RANGE COLUMNS(column_list) (
 PARTITION partition_name VALUES LESS THAN (value_list)[,
 PARTITION partition_name VALUES LESS THAN (value_list)][,
 ...]
)

column_list:
 column_name[, column_name][, ...]

value_list:
 value[, value][, ...]

Note

Not all CREATE TABLE options that can be used when creating partitioned
tables are shown here. For complete information, see Section 13.1.14, “CREATE
TABLE Syntax”.

In the syntax just shown, column_list is a list of one or more columns (sometimes called a
partitioning column list), and value_list is a list of values (that is, it is a partition definition value list).
A value_list must be supplied for each partition definition, and each value_list must have the
same number of values as the column_list has columns. Generally speaking, if you use N columns
in the COLUMNS clause, then each VALUES LESS THAN clause must also be supplied with a list of N
values.

The elements in the partitioning column list and in the value list defining each partition must occur
in the same order. In addition, each element in the value list must be of the same data type as the
corresponding element in the column list. However, the order of the column names in the partitioning
column list and the value lists does not have to be the same as the order of the table column definitions
in the main part of the CREATE TABLE statement. As with table partitioned by RANGE, you can use
MAXVALUE to represent a value such that any legal value inserted into a given column is always less

COLUMNS Partitioning

2183

than this value. Here is an example of a CREATE TABLE statement that helps to illustrate all of these
points:

mysql> CREATE TABLE rcx (
 -> a INT,
 -> b INT,
 -> c CHAR(3),
 -> d INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,d,c) (
 -> PARTITION p0 VALUES LESS THAN (5,10,'ggg'),
 -> PARTITION p1 VALUES LESS THAN (10,20,'mmmm'),
 -> PARTITION p2 VALUES LESS THAN (15,30,'sss'),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
Query OK, 0 rows affected (0.15 sec)

Table rcx contains the columns a, b, c, d. The partitioning column list supplied to the COLUMNS
clause uses 3 of these columns, in the order a, d, c. Each value list used to define a partition contains
3 values in the same order; that is, each value list tuple has the form (INT, INT, CHAR(3)), which
corresponds to the data types used by columns a, d, and c (in that order).

Placement of rows into partitions is determined by comparing the tuple from a row to be inserted that
matches the column list in the COLUMNS clause with the tuples used in the VALUES LESS THAN
clauses to define partitions of the table. Because we are comparing tuples (that is, lists or sets
of values) rather than scalar values, the semantics of VALUES LESS THAN as used with RANGE
COLUMNS partitions differs somewhat from the case with simple RANGE partitions. In RANGE partitioning,
a row generating an expression value that is equal to a limiting value in a VALUES LESS THAN is
never placed in the corresponding partition; however, when using RANGE COLUMNS partitioning, it is
sometimes possible for a row whose partitioning column list's first element is equal in value to the that
of the first element in a VALUES LESS THAN value list to be placed in the corresponding partition.

Consider the RANGE partitioned table created by this statement:

CREATE TABLE r1 (
 a INT,
 b INT
)
PARTITION BY RANGE (a) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert 3 rows into this table such that the column value for a is 5 for each row, all 3 rows are
stored in partition p1 because the a column value is in each case not less than 5, as we can see by
executing the proper query against the INFORMATION_SCHEMA.PARTITIONS table:

mysql> INSERT INTO r1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'r1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 3 |
+----------------+------------+
2 rows in set (0.00 sec)

Now consider a similar table rc1 that uses RANGE COLUMNS partitioning with both columns a and b
referenced in the COLUMNS clause, created as shown here:

COLUMNS Partitioning

2184

CREATE TABLE rc1 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a, b) (
 PARTITION p0 VALUES LESS THAN (5, 12),
 PARTITION p3 VALUES LESS THAN (MAXVALUE, MAXVALUE)
);

If we insert exactly the same rows into rc1 as we just inserted into r1, the distribution of the rows is
quite different:

mysql> INSERT INTO rc1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rc1';
+--------------+----------------+------------+
| TABLE_SCHEMA | PARTITION_NAME | TABLE_ROWS |
+--------------+----------------+------------+
| p | p0 | 2 |
| p | p1 | 1 |
+--------------+----------------+------------+
2 rows in set (0.00 sec)

This is because we are comparing rows rather than scalar values. We can compare the row values
inserted with the limiting row value from the VALUES THAN LESS THAN clause used to define partition
p0 in table rc1, like this:

mysql> SELECT (5,10) < (5,12), (5,11) < (5,12), (5,12) < (5,12);
+-----------------+-----------------+-----------------+
| (5,10) < (5,12) | (5,11) < (5,12) | (5,12) < (5,12) |
+-----------------+-----------------+-----------------+
| 1 | 1 | 0 |
+-----------------+-----------------+-----------------+
1 row in set (0.00 sec)

The 2 tuples (5,10) and (5,11) evaluate as less than (5,12), so they are stored in partition p0.
Since 5 is not less than 5 and 12 is not less than 12, (5,12) is considered not less than (5,12), and
is stored in partition p1.

The SELECT statement in the preceding example could also have been written using explicit row
constructors, like this:

SELECT ROW(5,10) < ROW(5,12), ROW(5,11) < ROW(5,12), ROW(5,12) < ROW(5,12);

For more information about the use of row constructors in MySQL, see Section 13.2.10.5, “Row
Subqueries”.

For a table partitioned by RANGE COLUMNS using only a single partitioning column, the storing of
rows in partitions is the same as that of an equivalent table that is partitioned by RANGE. The following
CREATE TABLE statement creates a table partitioned by RANGE COLUMNS using 1 partitioning column:

CREATE TABLE rx (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS (a) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

COLUMNS Partitioning

2185

If we insert the rows (5,10), (5,11), and (5,12) into this table, we can see that their placement is
the same as it is for the table r we created and populated earlier:

mysql> INSERT INTO rx VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rx';
+--------------+----------------+------------+
| TABLE_SCHEMA | PARTITION_NAME | TABLE_ROWS |
+--------------+----------------+------------+
| p | p0 | 0 |
| p | p1 | 3 |
+--------------+----------------+------------+
2 rows in set (0.00 sec)

It is also possible to create tables partitioned by RANGE COLUMNS where limiting values for one or
more columns are repeated in successive partition definitions. You can do this as long as the tuples of
column values used to define the partitions are strictly increasing. For example, each of the following
CREATE TABLE statements is valid:

CREATE TABLE rc2 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

CREATE TABLE rc3 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (10,35),
 PARTITION p4 VALUES LESS THAN (20,40),
 PARTITION p5 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

The following statement also succeeds, even though it might appear at first glance that it would not,
since the limiting value of column b is 25 for partition p0 and 20 for partition p1, and the limiting value
of column c is 100 for partition p1 and 50 for partition p2:

CREATE TABLE rc4 (
 a INT,
 b INT,
 c INT
)
PARTITION BY RANGE COLUMNS(a,b,c) (
 PARTITION p0 VALUES LESS THAN (0,25,50),
 PARTITION p1 VALUES LESS THAN (10,20,100),
 PARTITION p2 VALUES LESS THAN (10,30,50)
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
);

When designing tables partitioned by RANGE COLUMNS, you can always test successive partition
definitions by comparing the desired tuples using the mysql client, like this:

COLUMNS Partitioning

2186

mysql> SELECT (0,25,50) < (10,20,100), (10,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (10,20,100) | (10,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 1 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

If a CREATE TABLE statement contains partition definitions that are not in strictly increasing order, it
fails with an error, as shown in this example:

mysql> CREATE TABLE rcf (
 -> a INT,
 -> b INT,
 -> c INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,b,c) (
 -> PARTITION p0 VALUES LESS THAN (0,25,50),
 -> PARTITION p1 VALUES LESS THAN (20,20,100),
 -> PARTITION p2 VALUES LESS THAN (10,30,50),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
ERROR 1493 (HY000): VALUES LESS THAN value must be strictly increasing for each partition

When you get such an error, you can deduce which partition definitions are invalid by making “less
than” comparisons between their column lists. In this case, the problem is with the definition of partition
p2 because the tuple used to define it is not less than the tuple used to define partition p3, as shown
here:

mysql> SELECT (0,25,50) < (20,20,100), (20,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (20,20,100) | (20,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 0 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

It is also possible for MAXVALUE to appear for the same column in more than one VALUES LESS THAN
clause when using RANGE COLUMNS. However, the limiting values for individual columns in successive
partition definitions should otherwise be increasing, there should be no more than one partition defined
where MAXVALUE is used as the upper limit for all column values, and this partition definition should
appear last in the list of PARTITION ... VALUES LESS THAN clauses. In addition, you cannot use
MAXVALUE as the limiting value for the first column in more than one partition definition.

As stated previously, it is also possible with RANGE COLUMNS partitioning to use non-integer columns
as partitioning columns. (See Section 17.2.3, “COLUMNS Partitioning”, for a complete listing of these.)
Consider a table named employees (which is not partitioned), created using the following statement:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Using RANGE COLUMNS partitioning, you can create a version of this table that stores each row in one
of four partitions based on the employee's last name, like this:

CREATE TABLE employees_by_lname (
 id INT NOT NULL,
 fname VARCHAR(30),

COLUMNS Partitioning

2187

 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Alternatively, you could cause the employees table as created previously to be partitioned using this
scheme by executing the following ALTER TABLE statement:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Note

Because different character sets and collations have different sort orders,
the character sets and collations in use may effect which partition of a table
partitioned by RANGE COLUMNS a given row is stored in when using string
columns as partitioning columns. In addition, changing the character set or
collation for a given database, table, or column after such a table is created may
cause changes in how rows are distributed. For example, when using a case-
sensitive collation, 'and' sorts before 'Andersen', but when using a collation
that is case insensitive, the reverse is true.

For information about how MySQL handles character sets and collations, see
Section 10.1, “Character Set Support”.

Similarly, you can cause the employees table to be partitioned in such a way that each row is stored
in one of several partitions based on the decade in which the corresponding employee was hired using
the ALTER TABLE statement shown here:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (hired) (
 PARTITION p0 VALUES LESS THAN ('1970-01-01'),
 PARTITION p1 VALUES LESS THAN ('1980-01-01'),
 PARTITION p2 VALUES LESS THAN ('1990-01-01'),
 PARTITION p3 VALUES LESS THAN ('2000-01-01'),
 PARTITION p4 VALUES LESS THAN ('2010-01-01'),
 PARTITION p5 VALUES LESS THAN (MAXVALUE)
);

See Section 13.1.14, “CREATE TABLE Syntax”, for additional information about PARTITION BY
RANGE COLUMNS syntax.

17.2.3.2 LIST COLUMNS partitioning

MySQL 5.7 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning
that enables the use of multiple columns as partition keys, and for columns of data types other than
integer types to be used as partitioning columns; you can use string types, DATE, and DATETIME
columns. (For more information about permitted data types for COLUMNS partitioning columns, see
Section 17.2.3, “COLUMNS Partitioning”.)

Suppose that you have a business that has customers in 12 cities which, for sales and marketing
purposes, you organize into 4 regions of 3 cities each as shown in the following table:

COLUMNS Partitioning

2188

Region Cities

1 Oskarshamn, Högsby, Mönsterås

2 Vimmerby, Hultsfred, Västervik

3 Nässjö, Eksjö, Vetlanda

4 Uppvidinge, Alvesta, Växjo

With LIST COLUMNS partitioning, you can create a table for customer data that assigns a row to any of
4 partitions corresponding to these regions based on the name of the city where a customer resides, as
shown here:

CREATE TABLE customers_1 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(city) (
 PARTITION pRegion_1 VALUES IN('Oskarshamn', 'Högsby', 'Mönsterås'),
 PARTITION pRegion_2 VALUES IN('Vimmerby', 'Hultsfred', 'Västervik'),
 PARTITION pRegion_3 VALUES IN('Nässjö', 'Eksjö', 'Vetlanda'),
 PARTITION pRegion_4 VALUES IN('Uppvidinge', 'Alvesta', 'Växjo')
);

As with partitioning by RANGE COLUMNS, you do not need to use expressions in the COLUMNS() clause
to convert column values into integers. (In fact, the use of expressions other than column names is not
permitted with COLUMNS().)

It is also possible to use DATE and DATETIME columns, as shown in the following example that
uses the same name and columns as the customers_1 table shown previously, but employs LIST
COLUMNS partitioning based on the renewal column to store rows in one of 4 partitions depending on
the week in February 2010 the customer's account is scheduled to renew:

CREATE TABLE customers_2 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES IN('2010-02-01', '2010-02-02', '2010-02-03',
 '2010-02-04', '2010-02-05', '2010-02-06', '2010-02-07'),
 PARTITION pWeek_2 VALUES IN('2010-02-08', '2010-02-09', '2010-02-10',
 '2010-02-11', '2010-02-12', '2010-02-13', '2010-02-14'),
 PARTITION pWeek_3 VALUES IN('2010-02-15', '2010-02-16', '2010-02-17',
 '2010-02-18', '2010-02-19', '2010-02-20', '2010-02-21'),
 PARTITION pWeek_4 VALUES IN('2010-02-22', '2010-02-23', '2010-02-24',
 '2010-02-25', '2010-02-26', '2010-02-27', '2010-02-28')
);

This works, but becomes cumbersome to define and maintain if the number of dates involved grows
very large; in such cases, it is usually more practical to employ RANGE or RANGE COLUMNS partitioning
instead. In this case, since the column we wish to use as the partitioning key is a DATE column, we use
RANGE COLUMNS partitioning, as shown here:

CREATE TABLE customers_3 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),

HASH Partitioning

2189

 city VARCHAR(15),
 renewal DATE
)
PARTITION BY RANGE COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES LESS THAN('2010-02-09'),
 PARTITION pWeek_2 VALUES LESS THAN('2010-02-15'),
 PARTITION pWeek_3 VALUES LESS THAN('2010-02-22'),
 PARTITION pWeek_4 VALUES LESS THAN('2010-03-01')
);

See Section 17.2.3.1, “RANGE COLUMNS partitioning”, for more information.

In addition (as with RANGE COLUMNS partitioning), you can use multiple columns in the COLUMNS()
clause.

See Section 13.1.14, “CREATE TABLE Syntax”, for additional information about PARTITION BY LIST
COLUMNS() syntax.

17.2.4 HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined
number of partitions. With range or list partitioning, you must specify explicitly into which partition a
given column value or set of column values is to be stored; with hash partitioning, MySQL takes care
of this for you, and you need only specify a column value or expression based on a column value to be
hashed and the number of partitions into which the partitioned table is to be divided.

To partition a table using HASH partitioning, it is necessary to append to the CREATE TABLE statement
a PARTITION BY HASH (expr) clause, where expr is an expression that returns an integer. This
can simply be the name of a column whose type is one of MySQL's integer types. In addition, you
will most likely want to follow this with a PARTITIONS num clause, where num is a positive integer
representing the number of partitions into which the table is to be divided.

For example, the following statement creates a table that uses hashing on the store_id column and
is divided into 4 partitions:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(store_id)
PARTITIONS 4;

If you do not include a PARTITIONS clause, the number of partitions defaults to 1.

Using the PARTITIONS keyword without a number following it results in a syntax error.

You can also use an SQL expression that returns an integer for expr. For instance, you might want to
partition based on the year in which an employee was hired. This can be done as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(YEAR(hired))
PARTITIONS 4;

HASH Partitioning

2190

expr must return a nonconstant, nonrandom integer value (in other words, it should be varying
but deterministic), and must not contain any prohibited constructs as described in Section 17.6,
“Restrictions and Limitations on Partitioning”. You should also keep in mind that this expression is
evaluated each time a row is inserted or updated (or possibly deleted); this means that very complex
expressions may give rise to performance issues, particularly when performing operations (such as
batch inserts) that affect a great many rows at one time.

The most efficient hashing function is one which operates upon a single table column and whose value
increases or decreases consistently with the column value, as this allows for “pruning” on ranges of
partitions. That is, the more closely that the expression varies with the value of the column on which it
is based, the more efficiently MySQL can use the expression for hash partitioning.

For example, where date_col is a column of type DATE, then the expression TO_DAYS(date_col)
is said to vary directly with the value of date_col, because for every change in the value
of date_col, the value of the expression changes in a consistent manner. The variance of
the expression YEAR(date_col) with respect to date_col is not quite as direct as that of
TO_DAYS(date_col), because not every possible change in date_col produces an equivalent
change in YEAR(date_col). Even so, YEAR(date_col) is a good candidate for a hashing function,
because it varies directly with a portion of date_col and there is no possible change in date_col
that produces a disproportionate change in YEAR(date_col).

By way of contrast, suppose that you have a column named int_col whose type is INT. Now
consider the expression POW(5-int_col,3) + 6. This would be a poor choice for a hashing function
because a change in the value of int_col is not guaranteed to produce a proportional change in
the value of the expression. Changing the value of int_col by a given amount can produce by
widely different changes in the value of the expression. For example, changing int_col from 5 to 6
produces a change of -1 in the value of the expression, but changing the value of int_col from 6 to
7 produces a change of -7 in the expression value.

In other words, the more closely the graph of the column value versus the value of the expression
follows a straight line as traced by the equation y=cx where c is some nonzero constant, the better the
expression is suited to hashing. This has to do with the fact that the more nonlinear an expression is,
the more uneven the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but
determining which of such expressions are suitable can be quite difficult and time-consuming. For this
reason, the use of hashing expressions involving multiple columns is not particularly recommended.

When PARTITION BY HASH is used, MySQL determines which partition of num partitions to use
based on the modulus of the result of the user function. In other words, for an expression expr, the
partition in which the record is stored is partition number N, where N = MOD(expr, num). Suppose
that table t1 is defined as follows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY HASH(YEAR(col3))
 PARTITIONS 4;

If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is
stored is determined as follows:

MOD(YEAR('2005-09-01'),4)
= MOD(2005,4)
= 1

MySQL 5.7 also supports a variant of HASH partitioning known as linear hashing which employs a more
complex algorithm for determining the placement of new rows inserted into the partitioned table. See
Section 17.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm.

The user function is evaluated each time a record is inserted or updated. It may also—depending on
the circumstances—be evaluated when records are deleted.

HASH Partitioning

2191

Note

If a table to be partitioned has a UNIQUE key, then any columns supplied as
arguments to the HASH user function or to the KEY's column_list must be
part of that key.

17.2.4.1 LINEAR HASH Partitioning

MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a
linear powers-of-two algorithm whereas regular hashing employs the modulus of the hashing function's
value.

Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of
the LINEAR keyword in the PARTITION BY clause, as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LINEAR HASH(YEAR(hired))
PARTITIONS 4;

Given an expression expr, the partition in which the record is stored when linear hashing is used is
partition number N from among num partitions, where N is derived according to the following algorithm:

1. Find the next power of 2 greater than num. We call this value V; it can be calculated as:

V = POWER(2, CEILING(LOG(2, num)))

(Suppose that num is 13. Then LOG(2,13) is 3.7004397181411. CEILING(3.7004397181411)
is 4, and V = POWER(2,4), which is 16.)

2. Set N = F(column_list) & (V - 1).

3. While N >= num:

• Set V = CEIL(V / 2)

• Set N = N & (V - 1)

Suppose that the table t1, using linear hash partitioning and having 6 partitions, is created using this
statement:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR HASH(YEAR(col3))
 PARTITIONS 6;

Now assume that you want to insert two records into t1 having the col3 column values
'2003-04-14' and '1998-10-19'. The partition number for the first of these is determined as
follows:

V = POWER(2, CEILING(LOG(2,6))) = 8
N = YEAR('2003-04-14') & (8 - 1)
 = 2003 & 7
 = 3

(3 >= 6 is FALSE: record stored in partition #3)

KEY Partitioning

2192

The number of the partition where the second record is stored is calculated as shown here:

V = 8
N = YEAR('1998-10-19') & (8-1)
 = 1998 & 7
 = 6

(6 >= 6 is TRUE: additional step required)

N = 6 & CEILING(8 / 2)
 = 6 & 3
 = 2

(2 >= 6 is FALSE: record stored in partition #2)

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of
partitions is made much faster, which can be beneficial when dealing with tables containing extremely
large amounts (terabytes) of data. The disadvantage is that data is less likely to be evenly distributed
between partitions as compared with the distribution obtained using regular hash partitioning.

17.2.5 KEY Partitioning

Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a
user-defined expression, the hashing function for key partitioning is supplied by the MySQL server.
This internal hashing function is based on the same algorithm as PASSWORD().

The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a
table that is partitioned by hash. The major differences are listed here:

• KEY is used rather than HASH.

• KEY takes only a list of zero or more column names. Any columns used as the partitioning key
must comprise part or all of the table's primary key, if the table has one. Where no column name is
specified as the partitioning key, the table's primary key is used, if there is one. For example, the
following CREATE TABLE statement is valid in MySQL 5.7:

CREATE TABLE k1 (
 id INT NOT NULL PRIMARY KEY,
 name VARCHAR(20)
)
PARTITION BY KEY()
PARTITIONS 2;

If there is no primary key but there is a unique key, then the unique key is used for the partitioning
key:

CREATE TABLE k1 (
 id INT NOT NULL,
 name VARCHAR(20),
 UNIQUE KEY (id)
)
PARTITION BY KEY()
PARTITIONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement
would fail.

In both of these cases, the partitioning key is the id column, even though it is not shown
in the output of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the
INFORMATION_SCHEMA.PARTITIONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted
to integer or NULL values. For example, the following CREATE TABLE statement is valid:

Subpartitioning

2193

CREATE TABLE tm1 (
 s1 CHAR(32) PRIMARY KEY
)
PARTITION BY KEY(s1)
PARTITIONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified. (In
this case, simply using PARTITION BY KEY() would also be valid and have the same effect as
PARTITION BY KEY(s1), since s1 is the table's primary key.)

For additional information about this issue, see Section 17.6, “Restrictions and Limitations on
Partitioning”.

Important

For a key-partitioned table, you cannot execute an ALTER TABLE DROP
PRIMARY KEY, as doing so generates the error ERROR 1466 (HY000):
Field in list of fields for partition function not found
in table.

It is also possible to partition a table by linear key. Here is a simple example:

CREATE TABLE tk (
 col1 INT NOT NULL,
 col2 CHAR(5),
 col3 DATE
)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;

Using LINEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the
partition number being derived using a powers-of-two algorithm rather than modulo arithmetic. See
Section 17.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm and its implications.

17.2.6 Subpartitioning

Subpartitioning—also known as composite partitioning—is the further division of each partition in a
partitioned table. Consider the following CREATE TABLE statement:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased))
 SUBPARTITIONS 2 (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

Table ts has 3 RANGE partitions. Each of these partitions—p0, p1, and p2—is further divided into
2 subpartitions. In effect, the entire table is divided into 3 * 2 = 6 partitions. However, due to the
action of the PARTITION BY RANGE clause, the first 2 of these store only those records with a value
less than 1990 in the purchased column.

In MySQL 5.7, it is possible to subpartition tables that are partitioned by RANGE or LIST. Subpartitions
may use either HASH or KEY partitioning. This is also known as composite partitioning.

Note

SUBPARTITION BY HASH and SUBPARTITION BY KEY generally follow
the same syntax rules as PARTITION BY HASH and PARTITION BY KEY,
respectively. An exception to this is that SUBPARTITION BY KEY (unlike

Subpartitioning

2194

PARTITION BY KEY) does not currently support a default column, so the
column used for this purpose must be specified, even if the table has an explicit
primary key. This is a known issue which we are working to address; see Issues
with subpartitions, for more information and an example.

It is also possible to define subpartitions explicitly using SUBPARTITION clauses to specify options for
individual subpartitions. For example, a more verbose fashion of creating the same table ts as shown
in the previous example would be:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)
);

Some syntactical items of note are listed here:

• Each partition must have the same number of subpartitions.

• If you explicitly define any subpartitions using SUBPARTITION on any partition of a partitioned table,
you must define them all. In other words, the following statement will fail:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s2,
 SUBPARTITION s3
)
);

This statement would still fail even if it included a SUBPARTITIONS 2 clause.

• Each SUBPARTITION clause must include (at a minimum) a name for the subpartition. Otherwise,
you may set any desired option for the subpartition or allow it to assume its default setting for that
option.

• Subpartition names must be unique across the entire table. For example, the following CREATE
TABLE statement is valid in MySQL 5.7:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (

Subpartitioning

2195

 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)
);

Subpartitions can be used with especially large tables to distribute data and indexes across many
disks. Suppose that you have 6 disks mounted as /disk0, /disk1, /disk2, and so on. Now consider
the following example:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0
 DATA DIRECTORY = '/disk0/data'
 INDEX DIRECTORY = '/disk0/idx',
 SUBPARTITION s1
 DATA DIRECTORY = '/disk1/data'
 INDEX DIRECTORY = '/disk1/idx'
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2
 DATA DIRECTORY = '/disk2/data'
 INDEX DIRECTORY = '/disk2/idx',
 SUBPARTITION s3
 DATA DIRECTORY = '/disk3/data'
 INDEX DIRECTORY = '/disk3/idx'
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4
 DATA DIRECTORY = '/disk4/data'
 INDEX DIRECTORY = '/disk4/idx',
 SUBPARTITION s5
 DATA DIRECTORY = '/disk5/data'
 INDEX DIRECTORY = '/disk5/idx'
)
);

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other
variations are possible; another example might be:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0a
 DATA DIRECTORY = '/disk0'
 INDEX DIRECTORY = '/disk1',
 SUBPARTITION s0b
 DATA DIRECTORY = '/disk2'
 INDEX DIRECTORY = '/disk3'
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s1a
 DATA DIRECTORY = '/disk4/data'
 INDEX DIRECTORY = '/disk4/idx',
 SUBPARTITION s1b
 DATA DIRECTORY = '/disk5/data'
 INDEX DIRECTORY = '/disk5/idx'
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s2a,
 SUBPARTITION s2b
)
);

How MySQL Partitioning Handles NULL

2196

Here, the storage is as follows:

• Rows with purchased dates from before 1990 take up a vast amount of space, so are split up 4
ways, with a separate disk dedicated to the data and to the indexes for each of the two subpartitions
(s0a and s0b) making up partition p0. In other words:

• The data for subpartition s0a is stored on /disk0.

• The indexes for subpartition s0a are stored on /disk1.

• The data for subpartition s0b is stored on /disk2.

• The indexes for subpartition s0b are stored on /disk3.

• Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as
those from before 1990. These are split between 2 disks (/disk4 and /disk5) rather than 4 disks
as with the legacy records stored in p0:

• Data and indexes belonging to p1's first subpartition (s1a) are stored on /disk4—the data in /
disk4/data, and the indexes in /disk4/idx.

• Data and indexes belonging to p1's second subpartition (s1b) are stored on /disk5—the data in
/disk5/data, and the indexes in /disk5/idx.

• Rows reflecting dates from the year 2000 to the present (partition p2) do not take up as much space
as required by either of the two previous ranges. Currently, it is sufficient to store all of these in the
default location.

In future, when the number of purchases for the decade beginning with the year 2000 grows to a
point where the default location no longer provides sufficient space, the corresponding rows can
be moved using an ALTER TABLE ... REORGANIZE PARTITION statement. See Section 17.3,
“Partition Management”, for an explanation of how this can be done.

The DATA DIRECTORY and INDEX DIRECTORY options are not permitted in partition definitions when
the NO_DIR_IN_CREATE server SQL mode is in effect. In MySQL 5.7, these options are also not
permitted when defining subpartitions (Bug #42954).

17.2.7 How MySQL Partitioning Handles NULL

Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether
it is a column value or the value of a user-supplied expression. Even though it is permitted to use
NULL as the value of an expression that must otherwise yield an integer, it is important to keep in mind
that NULL is not a number. MySQL's partitioning implementation treats NULL as being less than any
non-NULL value, just as ORDER BY does.

This means that treatment of NULL varies between partitioning of different types, and may produce
behavior which you do not expect if you are not prepared for it. This being the case, we discuss in
this section how each MySQL partitioning type handles NULL values when determining the partition in
which a row should be stored, and provide examples for each.

Handling of NULL with RANGE partitioning. If you insert a row into a table partitioned by RANGE
such that the column value used to determine the partition is NULL, the row is inserted into the lowest
partition. Consider these two tables in a database named p, created as follows:

mysql> CREATE TABLE t1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (0),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN MAXVALUE

How MySQL Partitioning Handles NULL

2197

 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE t2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (10),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.09 sec)

You can see the partitions created by these two CREATE TABLE statements using the following query
against the PARTITIONS table in the INFORMATION_SCHEMA database:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
t1	p0	0	0	0
t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	0	0	0
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.00 sec)

(For more information about this table, see Section 19.14, “The INFORMATION_SCHEMA PARTITIONS
Table”.) Now let us populate each of these tables with a single row containing a NULL in the column
used as the partitioning key, and verify that the rows were inserted using a pair of SELECT statements:

mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

You can see which partitions are used to store the inserted rows by rerunning the previous query
against INFORMATION_SCHEMA.PARTITIONS and inspecting the output:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |

How MySQL Partitioning Handles NULL

2198

+------------+----------------+------------+----------------+-------------+
t1	p0	1	20	20
t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	1	20	20
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

You can also demonstrate that these rows were stored in the lowest partition of each table by dropping
these partitions, and then re-running the SELECT statements:

mysql> ALTER TABLE t1 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> ALTER TABLE t2 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTITION, see Section 13.1.6, “ALTER TABLE
Syntax”.)

NULL is also treated in this way for partitioning expressions that use SQL functions. Suppose that we
define a table using a CREATE TABLE statement such as this one:

CREATE TABLE tndate (
 id INT,
 dt DATE
)
PARTITION BY RANGE(YEAR(dt)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

As with other MySQL functions, YEAR(NULL) returns NULL. A row with a dt column value of NULL is
treated as though the partitioning expression evaluated to a value less than any other value, and so is
inserted into partition p0.

Handling of NULL with LIST partitioning. A table that is partitioned by LIST admits NULL values
if and only if one of its partitions is defined using that value-list that contains NULL. The converse of
this is that a table partitioned by LIST which does not explicitly use NULL in a value list rejects rows
resulting in a NULL value for the partitioning expression, as shown in this example:

mysql> CREATE TABLE ts1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts1 VALUES (9, 'mothra');
ERROR 1504 (HY000): Table has no partition for value 9

mysql> INSERT INTO ts1 VALUES (NULL, 'mothra');

How MySQL Partitioning Handles NULL

2199

ERROR 1504 (HY000): Table has no partition for value NULL

Only rows having a c1 value between 0 and 8 inclusive can be inserted into ts1. NULL falls outside
this range, just like the number 9. We can create tables ts2 and ts3 having value lists containing
NULL, as shown here:

mysql> CREATE TABLE ts2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8),
 -> PARTITION p3 VALUES IN (NULL)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE ts3 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7, NULL),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can (and should) treat NULL just as you would any other
value. For example, both VALUES IN (NULL) and VALUES IN (1, 4, 7, NULL) are valid, as are
VALUES IN (1, NULL, 4, 7), VALUES IN (NULL, 1, 4, 7), and so on. You can insert a row
having NULL for column c1 into each of the tables ts2 and ts3:

mysql> INSERT INTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

By issuing the appropriate query against INFORMATION_SCHEMA.PARTITIONS, you can determine
which partitions were used to store the rows just inserted (we assume, as in the previous examples,
that the partitioned tables were created in the p database):

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 'ts_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
ts2	p0	0	0	0
ts2	p1	0	0	0
ts2	p2	0	0	0
ts2	p3	1	20	20
ts3	p0	0	0	0
ts3	p1	1	20	20
ts3	p2	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

As shown earlier in this section, you can also verify which partitions were used for storing the rows by
deleting these partitions and then performing a SELECT.

Handling of NULL with HASH and KEY partitioning. NULL is handled somewhat differently for
tables partitioned by HASH or KEY. In these cases, any partition expression that yields a NULL value
is treated as though its return value were zero. We can verify this behavior by examining the effects

Partition Management

2200

on the file system of creating a table partitioned by HASH and populating it with a record containing
appropriate values. Suppose that you have a table th (also in the p database) created using the
following statement:

mysql> CREATE TABLE th (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY HASH(c1)
 -> PARTITIONS 2;
Query OK, 0 rows affected (0.00 sec)

The partitions belonging to this table can be viewed using the query shown here:

mysql> SELECT TABLE_NAME,PARTITION_NAME,TABLE_ROWS,AVG_ROW_LENGTH,DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 0 | 0 | 0 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

Note that TABLE_ROWS for each partition is 0. Now insert two rows into th whose c1 column values
are NULL and 0, and verify that these rows were inserted, as shown here:

mysql> INSERT INTO th VALUES (NULL, 'mothra'), (0, 'gigan');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM th;
+------+---------+
| c1 | c2 |
+------+---------+
| NULL | mothra |
+------+---------+
| 0 | gigan |
+------+---------+
2 rows in set (0.01 sec)

Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned
by HASH or KEY, this result is treated for determining the correct partition as 0. Checking the
INFORMATION_SCHEMA.PARTITIONS table once again, we can see that both rows were inserted into
partition p0:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 2 | 20 | 20 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

If you repeat this example using PARTITION BY KEY in place of PARTITION BY HASH in the
definition of the table, you can verify easily that NULL is also treated like 0 for this type of partitioning.

17.3 Partition Management

MySQL 5.7 provides a number of ways to modify partitioned tables. It is possible to add, drop,
redefine, merge, or split existing partitions. All of these actions can be carried out using the partitioning

Management of RANGE and LIST Partitions

2201

extensions to the ALTER TABLE statement. There are also ways to obtain information about
partitioned tables and partitions. We discuss these topics in the sections that follow.

• For information about partition management in tables partitioned by RANGE or LIST, see
Section 17.3.1, “Management of RANGE and LIST Partitions”.

• For a discussion of managing HASH and KEY partitions, see Section 17.3.2, “Management of HASH
and KEY Partitions”.

• See Section 17.3.5, “Obtaining Information About Partitions”, for a discussion of mechanisms
provided in MySQL 5.7 for obtaining information about partitioned tables and partitions.

• For a discussion of performing maintenance operations on partitions, see Section 17.3.4,
“Maintenance of Partitions”.

Note

In MySQL 5.7, all partitions of a partitioned table must have the same number of
subpartitions, and it is not possible to change the subpartitioning once the table
has been created.

To change a table's partitioning scheme, it is necessary only to use the ALTER TABLE statement
with a partition_options clause. This clause has the same syntax as that as used with CREATE
TABLE for creating a partitioned table, and always begins with the keywords PARTITION BY. Suppose
that you have a table partitioned by range using the following CREATE TABLE statement:

CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (2005)
);

To repartition this table so that it is partitioned by key into two partitions using the id column value as
the basis for the key, you can use this statement:

ALTER TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using
CREATE TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;.

ALTER TABLE ... ENGINE = ... changes only the storage engine used by the table, and leaves
the table's partitioning scheme intact. Use ALTER TABLE ... REMOVE PARTITIONING to remove a
table's partitioning. See Section 13.1.6, “ALTER TABLE Syntax”.

Important

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION,
REORGANIZE PARTITION, or COALESCE PARTITION clause can be used in a
given ALTER TABLE statement. If you (for example) wish to drop a partition and
reorganize a table's remaining partitions, you must do so in two separate ALTER
TABLE statements (one using DROP PARTITION and then a second one using
REORGANIZE PARTITIONS).

In MySQL 5.7, it is possible to delete all rows from one or more selected partitions using ALTER
TABLE ... TRUNCATE PARTITION.

17.3.1 Management of RANGE and LIST Partitions

Range and list partitions are very similar with regard to how the adding and dropping of partitions
are handled. For this reason we discuss the management of both sorts of partitioning in this section.

Management of RANGE and LIST Partitions

2202

For information about working with tables that are partitioned by hash or key, see Section 17.3.2,
“Management of HASH and KEY Partitions”. Dropping a RANGE or LIST partition is more straightforward
than adding one, so we discuss this first.

Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished
using the ALTER TABLE statement with a DROP PARTITION clause. Here is a very basic example,
which supposes that you have already created a table which is partitioned by range and then populated
with 10 records using the following CREATE TABLE and INSERT statements:

mysql> CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)
 -> PARTITION BY RANGE(YEAR(purchased)) (
 -> PARTITION p0 VALUES LESS THAN (1990),
 -> PARTITION p1 VALUES LESS THAN (1995),
 -> PARTITION p2 VALUES LESS THAN (2000),
 -> PARTITION p3 VALUES LESS THAN (2005)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO tr VALUES
 -> (1, 'desk organiser', '2003-10-15'),
 -> (2, 'CD player', '1993-11-05'),
 -> (3, 'TV set', '1996-03-10'),
 -> (4, 'bookcase', '1982-01-10'),
 -> (5, 'exercise bike', '2004-05-09'),
 -> (6, 'sofa', '1987-06-05'),
 -> (7, 'popcorn maker', '2001-11-22'),
 -> (8, 'aquarium', '1992-08-04'),
 -> (9, 'study desk', '1984-09-16'),
 -> (10, 'lava lamp', '1998-12-25');
Query OK, 10 rows affected (0.01 sec)

You can see which items should have been inserted into partition p2 as shown here:

mysql> SELECT * FROM tr
 -> WHERE purchased BETWEEN '1995-01-01' AND '1999-12-31';
+------+-----------+------------+
| id | name | purchased |
+------+-----------+------------+
| 3 | TV set | 1996-03-10 |
| 10 | lava lamp | 1998-12-25 |
+------+-----------+------------+
2 rows in set (0.00 sec)

To drop the partition named p2, execute the following command:

mysql> ALTER TABLE tr DROP PARTITION p2;
Query OK, 0 rows affected (0.03 sec)

It is very important to remember that, when you drop a partition, you also delete all the data that was
stored in that partition. You can see that this is the case by re-running the previous SELECT query:

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '1999-12-31';
Empty set (0.00 sec)

Because of this, you must have the DROP privilege for a table before you can execute ALTER
TABLE ... DROP PARTITION on that table.

If you wish to drop all data from all partitions while preserving the table definition and its partitioning
scheme, use the TRUNCATE TABLE statement. (See Section 13.1.27, “TRUNCATE TABLE Syntax”.)

If you intend to change the partitioning of a table without losing data, use ALTER TABLE ...
REORGANIZE PARTITION instead. See below or in Section 13.1.6, “ALTER TABLE Syntax”, for
information about REORGANIZE PARTITION.

Management of RANGE and LIST Partitions

2203

If you now execute a SHOW CREATE TABLE statement, you can see how the partitioning makeup of
the table has been changed:

mysql> SHOW CREATE TABLE tr\G
*************************** 1. row ***************************
 Table: tr
Create Table: CREATE TABLE `tr` (
 `id` int(11) default NULL,
 `name` varchar(50) default NULL,
 `purchased` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM
)
1 row in set (0.01 sec)

When you insert new rows into the changed table with purchased column values between
'1995-01-01' and '2004-12-31' inclusive, those rows will be stored in partition p3. You can verify
this as follows:

mysql> INSERT INTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
+------+----------------+------------+
| id | name | purchased |
+------+----------------+------------+
11	pencil holder	1995-07-12
1	desk organiser	2003-10-15
5	exercise bike	2004-05-09
7	popcorn maker	2001-11-22
+------+----------------+------------+
4 rows in set (0.00 sec)

mysql> ALTER TABLE tr DROP PARTITION p3;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
Empty set (0.00 sec)

Note that the number of rows dropped from the table as a result of ALTER TABLE ... DROP
PARTITION is not reported by the server as it would be by the equivalent DELETE query.

Dropping LIST partitions uses exactly the same ALTER TABLE ... DROP PARTITION syntax as
used for dropping RANGE partitions. However, there is one important difference in the effect this has
on your use of the table afterward: You can no longer insert into the table any rows having any of the
values that were included in the value list defining the deleted partition. (See Section 17.2.2, “LIST
Partitioning”, for an example.)

To add a new range or list partition to a previously partitioned table, use the ALTER TABLE ... ADD
PARTITION statement. For tables which are partitioned by RANGE, this can be used to add a new
range to the end of the list of existing partitions. Suppose that you have a partitioned table containing
membership data for your organization, which is defined as follows:

CREATE TABLE members (
 id INT,
 fname VARCHAR(25),
 lname VARCHAR(25),
 dob DATE
)
PARTITION BY RANGE(YEAR(dob)) (

Management of RANGE and LIST Partitions

2204

 PARTITION p0 VALUES LESS THAN (1970),
 PARTITION p1 VALUES LESS THAN (1980),
 PARTITION p2 VALUES LESS THAN (1990)
);

Suppose further that the minimum age for members is 16. As the calendar approaches the end of
2005, you realize that you will soon be admitting members who were born in 1990 (and later in years
to come). You can modify the members table to accommodate new members born in the years 1990 to
1999 as shown here:

ALTER TABLE members ADD PARTITION (PARTITION p3 VALUES LESS THAN (2000));

With tables that are partitioned by range, you can use ADD PARTITION to add new partitions to the
high end of the partitions list only. Trying to add a new partition in this manner between or before
existing partitions results in an error as shown here:

mysql> ALTER TABLE members
 > ADD PARTITION (
 > PARTITION n VALUES LESS THAN (1960));
ERROR 1463 (HY000): VALUES LESS THAN value must be strictly »
 increasing for each partition

You can work around this problem by reorganizing the first partition into two new ones that split the
range between them, like this:

ALTER TABLE members
 REORGANIZE PARTITION p0 INTO (
 PARTITION n0 VALUES LESS THAN (1960),
 PARTITION n1 VALUES LESS THAN (1970)
);

Using SHOW CREATE TABLE you can see that the ALTER TABLE statement has had the desired
effect:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) DEFAULT NULL,
 `fname` varchar(25) DEFAULT NULL,
 `lname` varchar(25) DEFAULT NULL,
 `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1960) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2000) ENGINE = InnoDB) */
1 row in set (0.00 sec)

See also Section 13.1.6.1, “ALTER TABLE Partition Operations”.

You can also use ALTER TABLE ... ADD PARTITION to add new partitions to a table that is
partitioned by LIST. Suppose a table tt is defined using the following CREATE TABLE statement:

CREATE TABLE tt (
 id INT,
 data INT
)
PARTITION BY LIST(data) (
 PARTITION p0 VALUES IN (5, 10, 15),
 PARTITION p1 VALUES IN (6, 12, 18)

Management of RANGE and LIST Partitions

2205

);

You can add a new partition in which to store rows having the data column values 7, 14, and 21 as
shown:

ALTER TABLE tt ADD PARTITION (PARTITION p2 VALUES IN (7, 14, 21));

Note that you cannot add a new LIST partition encompassing any values that are already included in
the value list of an existing partition. If you attempt to do so, an error will result:

mysql> ALTER TABLE tt ADD PARTITION
 > (PARTITION np VALUES IN (4, 8, 12));
ERROR 1465 (HY000): Multiple definition of same constant »
 in list partitioning

Because any rows with the data column value 12 have already been assigned to partition p1, you
cannot create a new partition on table tt that includes 12 in its value list. To accomplish this, you could
drop p1, and add np and then a new p1 with a modified definition. However, as discussed earlier, this
would result in the loss of all data stored in p1—and it is often the case that this is not what you really
want to do. Another solution might appear to be to make a copy of the table with the new partitioning
and to copy the data into it using CREATE TABLE ... SELECT ..., then drop the old table and
rename the new one, but this could be very time-consuming when dealing with a large amounts of
data. This also might not be feasible in situations where high availability is a requirement.

You can add multiple partitions in a single ALTER TABLE ... ADD PARTITION statement as shown
here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 hired DATE NOT NULL
)
PARTITION BY RANGE(YEAR(hired)) (
 PARTITION p1 VALUES LESS THAN (1991),
 PARTITION p2 VALUES LESS THAN (1996),
 PARTITION p3 VALUES LESS THAN (2001),
 PARTITION p4 VALUES LESS THAN (2005)
);

ALTER TABLE employees ADD PARTITION (
 PARTITION p5 VALUES LESS THAN (2010),
 PARTITION p6 VALUES LESS THAN MAXVALUE
);

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing
data. Let us look first at a couple of simple examples involving RANGE partitioning. Recall the members
table which is now defined as shown here:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) default NULL,
 `fname` varchar(25) default NULL,
 `lname` varchar(25) default NULL,
 `dob` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(dob)) (
 PARTITION p0 VALUES LESS THAN (1970) ENGINE = MyISAM,
 PARTITION p1 VALUES LESS THAN (1980) ENGINE = MyISAM,
 PARTITION p2 VALUES LESS THAN (1990) ENGINE = MyISAM.
 PARTITION p3 VALUES LESS THAN (2000) ENGINE = MyISAM
)

Management of RANGE and LIST Partitions

2206

Suppose that you would like to move all rows representing members born before 1960 into a separate
partition. As we have already seen, this cannot be done using ALTER TABLE ... ADD PARTITION.
However, you can use another partition-related extension to ALTER TABLE to accomplish this:

ALTER TABLE members REORGANIZE PARTITION p0 INTO (
 PARTITION s0 VALUES LESS THAN (1960),
 PARTITION s1 VALUES LESS THAN (1970)
);

In effect, this command splits partition p0 into two new partitions s0 and s1. It also moves the data that
was stored in p0 into the new partitions according to the rules embodied in the two PARTITION ...
VALUES ... clauses, so that s0 contains only those records for which YEAR(dob) is less than 1960
and s1 contains those rows in which YEAR(dob) is greater than or equal to 1960 but less than 1970.

A REORGANIZE PARTITION clause may also be used for merging adjacent partitions. You can return
the members table to its previous partitioning as shown here:

ALTER TABLE members REORGANIZE PARTITION s0,s1 INTO (
 PARTITION p0 VALUES LESS THAN (1970)
);

No data is lost in splitting or merging partitions using REORGANIZE PARTITION. In executing the
above statement, MySQL moves all of the records that were stored in partitions s0 and s1 into partition
p0.

The general syntax for REORGANIZE PARTITION is shown here:

ALTER TABLE tbl_name
 REORGANIZE PARTITION partition_list
 INTO (partition_definitions);

Here, tbl_name is the name of the partitioned table, and partition_list is a comma-separated
list of names of one or more existing partitions to be changed. partition_definitions
is a comma-separated list of new partition definitions, which follow the same rules as for the
partition_definitions list used in CREATE TABLE (see Section 13.1.14, “CREATE TABLE
Syntax”). It should be noted that you are not limited to merging several partitions into one, or to splitting
one partition into many, when using REORGANIZE PARTITION. For example, you can reorganize all
four partitions of the members table into two, as follows:

ALTER TABLE members REORGANIZE PARTITION p0,p1,p2,p3 INTO (
 PARTITION m0 VALUES LESS THAN (1980),
 PARTITION m1 VALUES LESS THAN (2000)
);

You can also use REORGANIZE PARTITION with tables that are partitioned by LIST. Let us return
to the problem of adding a new partition to the list-partitioned tt table and failing because the new
partition had a value that was already present in the value-list of one of the existing partitions. We can
handle this by adding a partition that contains only nonconflicting values, and then reorganizing the
new partition and the existing one so that the value which was stored in the existing one is now moved
to the new one:

ALTER TABLE tt ADD PARTITION (PARTITION np VALUES IN (4, 8));
ALTER TABLE tt REORGANIZE PARTITION p1,np INTO (
 PARTITION p1 VALUES IN (6, 18),
 PARTITION np VALUES in (4, 8, 12)
);

Here are some key points to keep in mind when using ALTER TABLE ... REORGANIZE PARTITION
to repartition tables that are partitioned by RANGE or LIST:

Management of HASH and KEY Partitions

2207

• The PARTITION clauses used to determine the new partitioning scheme are subject to the same
rules as those used with a CREATE TABLE statement.

Most importantly, you should remember that the new partitioning scheme cannot have any
overlapping ranges (applies to tables partitioned by RANGE) or sets of values (when reorganizing
tables partitioned by LIST).

• The combination of partitions in the partition_definitions list should account for the same
range or set of values overall as the combined partitions named in the partition_list.

For instance, in the members table used as an example in this section, partitions p1 and p2 together
cover the years 1980 through 1999. Therefore, any reorganization of these two partitions should
cover the same range of years overall.

• For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip over
range partitions.

For instance, you could not reorganize the members table used as an example in this section using a
statement beginning with ALTER TABLE members REORGANIZE PARTITION p0,p2 INTO ...
because p0 covers the years prior to 1970 and p2 the years from 1990 through 1999 inclusive, and
thus the two are not adjacent partitions.

• You cannot use REORGANIZE PARTITION to change the table's partitioning type; that is, you cannot
(for example) change RANGE partitions to HASH partitions or vice versa. You also cannot use this
command to change the partitioning expression or column. To accomplish either of these tasks
without dropping and re-creating the table, you can use ALTER TABLE ... PARTITION BY
For example:

ALTER TABLE members
 PARTITION BY HASH(YEAR(dob))
 PARTITIONS 8;

17.3.2 Management of HASH and KEY Partitions

Tables which are partitioned by hash or by key are very similar to one another with regard to making
changes in a partitioning setup, and both differ in a number of ways from tables which have been
partitioned by range or list. For that reason, this section addresses the modification of tables partitioned
by hash or by key only. For a discussion of adding and dropping of partitions of tables that are
partitioned by range or list, see Section 17.3.1, “Management of RANGE and LIST Partitions”.

You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that
you can from tables that are partitioned by RANGE or LIST. However, you can merge HASH or KEY
partitions using the ALTER TABLE ... COALESCE PARTITION statement. Suppose that you have
a table containing data about clients, which is divided into twelve partitions. The clients table is
defined as shown here:

CREATE TABLE clients (
 id INT,
 fname VARCHAR(30),
 lname VARCHAR(30),
 signed DATE
)
PARTITION BY HASH(MONTH(signed))
PARTITIONS 12;

To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE
command:

mysql> ALTER TABLE clients COALESCE PARTITION 4;
Query OK, 0 rows affected (0.02 sec)

Exchanging Partitions and Subpartitions with Tables

2208

COALESCE works equally well with tables that are partitioned by HASH, KEY, LINEAR HASH, or LINEAR
KEY. Here is an example similar to the previous one, differing only in that the table is partitioned by
LINEAR KEY:

mysql> CREATE TABLE clients_lk (
 -> id INT,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30),
 -> signed DATE
 ->)
 -> PARTITION BY LINEAR KEY(signed)
 -> PARTITIONS 12;
Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE clients_lk COALESCE PARTITION 4;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

Note that the number following COALESCE PARTITION is the number of partitions to merge into the
remainder—in other words, it is the number of partitions to remove from the table.

If you attempt to remove more partitions than the table has, the result is an error like the one shown:

mysql> ALTER TABLE clients COALESCE PARTITION 18;
ERROR 1478 (HY000): Cannot remove all partitions, use DROP TABLE instead

To increase the number of partitions for the clients table from 12 to 18. use ALTER TABLE ...
ADD PARTITION as shown here:

ALTER TABLE clients ADD PARTITION PARTITIONS 6;

17.3.3 Exchanging Partitions and Subpartitions with Tables

In MySQL 5.7, it is possible to exchange a table partition or subpartition with a table using the ALTER
TABLE ... EXCHANGE PARTITION statement—that is, to move any existing rows in the partition or
subpartition to the nonpartitioned table, and any existing rows in the nonpartitioned table to the table
partition or subpartition.

Such operations are subject to the following conditions:

• The table to be exchanged must not be partitioned, but must otherwise have the same table structure
as the partitioned table.

• The table to be exchanged must not be a temporary table.

• Any rows existing in the nonpartitioned table prior to the exchange must lie within the range defined
for the partition or subpartition.

• The table to be exchanged may not have any foreign keys, nor may any other tables have foreign
keys which reference this table.

• In addition to the ALTER, INSERT, and CREATE privileges usually required for ALTER TABLE
statements, you must have the DROP privilege to perform ALTER TABLE ... EXCHANGE
PARTITION.

In addition, you should also be aware of the following effects of ALTER TABLE ... EXCHANGE
PARTITION:

• Executing this statement does not invoke any triggers on either the partitioned table or the
exchanged table.

• Any AUTO_INCREMENT columns in the exchanged table are reset.

Exchanging Partitions and Subpartitions with Tables

2209

The complete syntax of the the ALTER TABLE ... EXCHANGE PARTITION statement is shown
here, where pt is the partitioned table, p is the partition or subpartition to be exchanged, and t is the
nonpartitioned table to be exchanged with p:

ALTER TABLE pt
 EXCHANGE PARTITION p
 WITH TABLE t;

One and only one partition or subpartition may be exchanged with one and only one nonpartitioned
table in a single ALTER TABLE EXCHANGE PARTITION statement. To exchange multiple partitions
or subpartitions, use multiple ALTER TABLE EXCHANGE PARTITION statements. EXCHANGE
PARTITION may not be combined with other ALTER TABLE options. The partitioning and (if
applicable) subpartitioning used by the partitioned table may be of any type or types supported in
MySQL 5.7.

Suppose that a partitioned table e has been created and populated using the following SQL
statements:

CREATE TABLE e (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
)
 PARTITION BY RANGE (id) (
 PARTITION p0 VALUES LESS THAN (50),
 PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (150),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

INSERT INTO e VALUES
 (1669, "Jim", "Smith"),
 (337, "Mary", "Jones"),
 (16, "Frank", "White"),
 (2005, "Linda", "Black");

Now we create a nonpartitioned copy of e named e2. This can be done using the mysql client as
shown here:

mysql> CREATE TABLE e2 LIKE e;
Query OK, 0 rows affected (1.34 sec)

mysql> ALTER TABLE e2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.90 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can see which partitions in table e contain rows by querying the
INFORMATION_SCHEMA.PARTITIONS table, like this:

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

To exchange partition p0 in table e with table e2, you can use the ALTER TABLE statement shown
here:

Exchanging Partitions and Subpartitions with Tables

2210

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)

More precisely, the statement just issued causes any rows found in the partition to be swapped
with those found in the table. You can observe how this has happened by querying the
INFORMATION_SCHEMA.PARTITIONS table, as before. The table row that was previously found in
partition p0 is no longer present:

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	0
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

If you query table e2, you can see that the “missing” row can now be found there:

mysql> SELECT * FROM e2;
+----+-------+-------+
| id | fname | lname |
+----+-------+-------+
| 16 | Frank | White |
+----+-------+-------+
1 row in set (0.00 sec)

The table to be exchanged with the partition does not necessarily have to be empty. To demonstrate
this, we first insert a new row into table e, making sure that this row is stored in partition p0 by
choosing an id column value that is less than 50, and verifying this afterwards by querying the
PARTITIONS table:

mysql> INSERT INTO e VALUES (41, "Michael", "Green");
Query OK, 1 row affected (0.05 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

Now we once again exchange partition p0 with table e2 using the same ALTER TABLE statement as
previously:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)

The output of the following queries shows that the table row that was stored in partition p0 and the
table row that was stored in table e2, prior to issuing the ALTER TABLE statement, have now switched
places:

mysql> SELECT * FROM e;

Exchanging Partitions and Subpartitions with Tables

2211

+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
16	Frank	White
1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
4 rows in set (0.00 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

mysql> SELECT * FROM e2;
+----+---------+-------+
| id | fname | lname |
+----+---------+-------+
| 41 | Michael | Green |
+----+---------+-------+
1 row in set (0.00 sec)

You should keep in mind that any rows found in the nonpartitioned table prior to issuing the ALTER
TABLE ... EXCHANGE PARTITION statement must meet any conditions required for them to be
stored in the target partition; otherwise, the statement fails. To see how this occurs, first insert a row
into e2 that cannot be stored in partition p0 of table e because its id column value is too large; then,
try to exchange the table with the partition again:

mysql> INSERT INTO e2 VALUES (51, "Ellen", "McDonald");
Query OK, 1 row affected (0.08 sec)

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition

The IGNORE keyword is accepted, but has no effect when used with EXCHANGE PARTITION, as
shown here:

mysql> ALTER IGNORE TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition

You can also exchange a subpartition of a subpartitioned table (see Section 17.2.6, “Subpartitioning”)
with a nonpartitioned table using an ALTER TABLE ... EXCHANGE PARTITION statement. In the
following example, we first create a table es that is partitioned by RANGE and subpartitioned by KEY,
populate this table as we did table e, and then create an empty, nonpartitioned copy es2 of the table,
as shown here:

mysql> CREATE TABLE es (
 -> id INT NOT NULL,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30)
 ->)
 -> PARTITION BY RANGE (id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (50),
 -> PARTITION p1 VALUES LESS THAN (100),
 -> PARTITION p2 VALUES LESS THAN (150),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE)

Exchanging Partitions and Subpartitions with Tables

2212

 ->);
Query OK, 0 rows affected (2.76 sec)

mysql> INSERT INTO es VALUES
 -> (1669, "Jim", "Smith"),
 -> (337, "Mary", "Jones"),
 -> (16, "Frank", "White"),
 -> (2005, "Linda", "Black");
Query OK, 4 rows affected (0.04 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> CREATE TABLE es2 LIKE es;
Query OK, 0 rows affected (1.27 sec)

mysql> ALTER TABLE es2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.70 sec)
Records: 0 Duplicates: 0 Warnings: 0

Although we did not explicitly name any of the subpartitions when creating table es, we can obtain
generated names for these by including the SUBPARTITION_NAME of the PARTITIONS table from
INFORMATION_SCHEMA when selecting from that table, as shown here:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
p0	p0sp0	1
p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0
p3	p3sp0	3
p3	p3sp1	0
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

The following ALTER TABLE statement exchanges subpartition p3sp0 table es with the nonpartitioned
table es2:

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es2;
Query OK, 0 rows affected (0.29 sec)

You can verify that the rows were exchanged by issuing the following queries:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
p0	p0sp0	1
p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0
p3	p3sp0	0
p3	p3sp1	0
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM es2;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+

Maintenance of Partitions

2213

1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
3 rows in set (0.00 sec)

If a table is subpartitioned, you can exchange only a subpartition of the table—not an entire partition—
with an unpartitioned table, as shown here:

mysql> ALTER TABLE es EXCHANGE PARTITION p3 WITH TABLE es2;
ERROR 1704 (HY000): Subpartitioned table, use subpartition instead of partition

The comparison of table structures used by MySQL is very strict. The number, order, names, and types
of columns and indexes of the partitioned table and the nonpartitioned table must match exactly. In
addition, both tables must use the same storage engine:

mysql> CREATE TABLE es3 LIKE e;
Query OK, 0 rows affected (1.31 sec)

mysql> ALTER TABLE es3 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.53 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE es3\G
*************************** 1. row ***************************
 Table: es3
Create Table: CREATE TABLE `es3` (
 `id` int(11) NOT NULL,
 `fname` varchar(30) DEFAULT NULL,
 `lname` varchar(30) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

mysql> ALTER TABLE es3 ENGINE = MyISAM;
Query OK, 0 rows affected (0.15 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es3;
ERROR 1497 (HY000): The mix of handlers in the partitions is not allowed in this version of MySQL

17.3.4 Maintenance of Partitions

A number of table and partition maintenance tasks can be carried out using SQL statements intended
for such purposes on partitioned tables in MySQL 5.7.

Table maintenance of partitioned tables can be accomplished using the statements CHECK TABLE,
OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE, which are supported for partitioned tables.

You can use a number of extensions to ALTER TABLE for performing operations of this type on one or
more partitions directly, as described in the following list:

• Rebuilding partitions. Rebuilds the partition; this has the same effect as dropping all records
stored in the partition, then reinserting them. This can be useful for purposes of defragmentation.

Example:

ALTER TABLE t1 REBUILD PARTITION p0, p1;

• Optimizing partitions. If you have deleted a large number of rows from a partition or if you have
made many changes to a partitioned table with variable-length rows (that is, having VARCHAR, BLOB,
or TEXT columns), you can use ALTER TABLE ... OPTIMIZE PARTITION to reclaim any unused
space and to defragment the partition data file.

Example:

Obtaining Information About Partitions

2214

ALTER TABLE t1 OPTIMIZE PARTITION p0, p1;

Using OPTIMIZE PARTITION on a given partition is equivalent to running CHECK PARTITION,
ANALYZE PARTITION, and REPAIR PARTITION on that partition.

Some MySQL storage engines, including InnoDB, do not support per-partition optimization; in
these cases, ALTER TABLE ... OPTIMIZE PARTITION analyzes and rebuilds the entire table,
and causes an appropriate warning to be issued. (Bug #11751825, Bug #42822) Use ALTER
TABLE ... REBUILD PARTITION and ALTER TABLE ... ANALYZE PARTITION instead, to
avoid this issue.

• Analyzing partitions. This reads and stores the key distributions for partitions.

Example:

ALTER TABLE t1 ANALYZE PARTITION p3;

• Repairing partitions. This repairs corrupted partitions.

Example:

ALTER TABLE t1 REPAIR PARTITION p0,p1;

Normally, REPAIR PARTITION fails when the partition contains duplicate key errors. In MySQL
5.7.2 and later, you can use ALTER IGNORE TABLE with this option, in which case all rows that
cannot be moved due to the presence of duplicate keys are removed from the partition (Bug
#16900947).

• Checking partitions. You can check partitions for errors in much the same way that you can use
CHECK TABLE with nonpartitioned tables.

Example:

ALTER TABLE trb3 CHECK PARTITION p1;

This command will tell you if the data or indexes in partition p1 of table t1 are corrupted. If this is the
case, use ALTER TABLE ... REPAIR PARTITION to repair the partition.

Normally, CHECK PARTITION fails when the partition contains duplicate key errors. In MySQL 5.7.2
and later, you can use ALTER IGNORE TABLE with this option, in which case the statement returns
the contents of each row in the partition where a duplicate key violation is found. Note that only the
values for the columns in the partitioning expression for the table are reported. (Bug #16900947)

Each of the statements in the list just shown also supports the keyword ALL in place of the list of
partition names. Using ALL causes the statement to act on all partitions in the table.

The use of mysqlcheck and myisamchk is not supported with partitioned tables.

In MySQL 5.7, you can also truncate partitions using ALTER TABLE ... TRUNCATE PARTITION.
This statement can be used to delete all rows from one or more partitions in much the same way that
TRUNCATE TABLE deletes all rows from a table.

ALTER TABLE ... TRUNCATE PARTITION ALL truncates all partitions in the table.

Prior to MySQL 5.7.2, ANALYZE, CHECK, OPTIMIZE, REBUILD, REPAIR, and TRUNCATE operations
were not permitted on subpartitions (Bug #14028340, Bug #65184).

17.3.5 Obtaining Information About Partitions

Obtaining Information About Partitions

2215

This section discusses obtaining information about existing partitions, which can be done in a number
of ways. Methods of obtaining such information include the following:

• Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a
partitioned table.

• Using the SHOW TABLE STATUS statement to determine whether a table is partitioned.

• Querying the INFORMATION_SCHEMA.PARTITIONS table.

• Using the statement EXPLAIN PARTITIONS SELECT to see which partitions are used by a given
SELECT.

As discussed elsewhere in this chapter, SHOW CREATE TABLE includes in its output the PARTITION
BY clause used to create a partitioned table. For example:

mysql> SHOW CREATE TABLE trb3\G
*************************** 1. row ***************************
 Table: trb3
Create Table: CREATE TABLE `trb3` (
 `id` int(11) default NULL,
 `name` varchar(50) default NULL,
 `purchased` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = MyISAM,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM
)
1 row in set (0.00 sec)

The output from SHOW TABLE STATUS for partitioned tables is the same as that for nonpartitioned
tables, except that the Create_options column contains the string partitioned. The
Engine column contains the name of the storage engine used by all partitions of the table. (See
Section 13.7.5.35, “SHOW TABLE STATUS Syntax”, for more information about this statement.)

You can also obtain information about partitions from INFORMATION_SCHEMA, which contains a
PARTITIONS table. See Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”.

It is possible to determine which partitions of a partitioned table are involved in a given SELECT query
using EXPLAIN PARTITIONS. The PARTITIONS keyword adds a partitions column to the output
of EXPLAIN listing the partitions from which records would be matched by the query.

Suppose that you have a table trb1 created and populated as follows:

CREATE TABLE trb1 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(id)
 (
 PARTITION p0 VALUES LESS THAN (3),
 PARTITION p1 VALUES LESS THAN (7),
 PARTITION p2 VALUES LESS THAN (9),
 PARTITION p3 VALUES LESS THAN (11)
);

INSERT INTO trb1 VALUES
 (1, 'desk organiser', '2003-10-15'),
 (2, 'CD player', '1993-11-05'),
 (3, 'TV set', '1996-03-10'),
 (4, 'bookcase', '1982-01-10'),
 (5, 'exercise bike', '2004-05-09'),
 (6, 'sofa', '1987-06-05'),
 (7, 'popcorn maker', '2001-11-22'),
 (8, 'aquarium', '1992-08-04'),
 (9, 'study desk', '1984-09-16'),

Obtaining Information About Partitions

2216

 (10, 'lava lamp', '1998-12-25');

You can see which partitions are used in a query such as SELECT * FROM trb1;, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1,p2,p3
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using filesort

In this case, all four partitions are searched. However, when a limiting condition making use of the
partitioning key is added to the query, you can see that only those partitions containing matching
values are scanned, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where

EXPLAIN PARTITIONS provides information about keys used and possible keys, just as with the
standard EXPLAIN SELECT statement:

mysql> ALTER TABLE trb1 ADD PRIMARY KEY (id);
Query OK, 10 rows affected (0.03 sec)
Records: 10 Duplicates: 0 Warnings: 0

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 7
 Extra: Using where

You should take note of the following restrictions and limitations on EXPLAIN PARTITIONS:

• You cannot use the PARTITIONS and EXTENDED keywords together in the same EXPLAIN ...
SELECT statement. Attempting to do so produces a syntax error.

• If EXPLAIN PARTITIONS is used to examine a query against a nonpartitioned table, no error is
produced, but the value of the partitions column is always NULL.

The rows column of EXPLAIN PARTITIONS output displays the total number of rows in the table.

Partition Pruning

2217

See also Section 13.8.2, “EXPLAIN Syntax”.

17.4 Partition Pruning
This section discusses an optimization known as partition pruning. The core concept behind partition
pruning is relatively simple, and can be described as “Do not scan partitions where there can be no
matching values”. Suppose that you have a partitioned table t1 defined by this statement:

CREATE TABLE t1 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(region_code) (
 PARTITION p0 VALUES LESS THAN (64),
 PARTITION p1 VALUES LESS THAN (128),
 PARTITION p2 VALUES LESS THAN (192),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Consider the case where you wish to obtain results from a SELECT statement such as this one:

SELECT fname, lname, region_code, dob
 FROM t1
 WHERE region_code > 125 AND region_code < 130;

It is easy to see that none of the rows which ought to be returned will be in either of the partitions p0
or p3; that is, we need to search only in partitions p1 and p2 to find matching rows. By doing so, it is
possible to expend much less time and effort in finding matching rows than would be required to scan
all partitions in the table. This “cutting away” of unneeded partitions is known as pruning. When the
optimizer can make use of partition pruning in performing this query, execution of the query can be
an order of magnitude faster than the same query against a nonpartitioned table containing the same
column definitions and data.

The optimizer can perform pruning whenever a WHERE condition can be reduced to either one of the
following two cases:

• partition_column = constant

• partition_column IN (constant1, constant2, ..., constantN)

In the first case, the optimizer simply evaluates the partitioning expression for the value given,
determines which partition contains that value, and scans only this partition. In many cases, the equal
sign can be replaced with another arithmetic comparison, including <, >, <=, >=, and <>. Some queries
using BETWEEN in the WHERE clause can also take advantage of partition pruning. See the examples
later in this section.

In the second case, the optimizer evaluates the partitioning expression for each value in the list,
creates a list of matching partitions, and then scans only the partitions in this partition list.

MySQL can apply partition pruning to SELECT, DELETE, and UPDATE statements. INSERT statements
currently cannot be pruned.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists
of values. For instance, in the previous example, the WHERE clause can be converted to WHERE
region_code IN (126, 127, 128, 129). Then the optimizer can determine that the first three
values in the list are found in partition p1, the remaining three values in partition p2, and that the other
partitions contain no relevant values and so do not need to be searched for matching rows.

Yhe optimizer can also perform pruning for WHERE conditions that involve comparisons of the preceding
types on multiple columns for tables that use RANGE COLUMNS or LIST COLUMNS partitioning.

Partition Pruning

2218

This type of optimization can be applied whenever the partitioning expression consists of an equality
or a range which can be reduced to a set of equalities, or when the partitioning expression represents
an increasing or decreasing relationship. Pruning can also be applied for tables partitioned on a DATE
or DATETIME column when the partitioning expression uses the YEAR() or TO_DAYS() function. In
addition, in MySQL 5.7, pruning can be applied for such tables when the partitioning expression uses
the TO_SECONDS() function.

Suppose that table t2, defined as shown here, is partitioned on a DATE column:

CREATE TABLE t2 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(YEAR(dob)) (
 PARTITION d0 VALUES LESS THAN (1970),
 PARTITION d1 VALUES LESS THAN (1975),
 PARTITION d2 VALUES LESS THAN (1980),
 PARTITION d3 VALUES LESS THAN (1985),
 PARTITION d4 VALUES LESS THAN (1990),
 PARTITION d5 VALUES LESS THAN (2000),
 PARTITION d6 VALUES LESS THAN (2005),
 PARTITION d7 VALUES LESS THAN MAXVALUE
);

The following statements using t2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = '1982-06-23';

UPDATE t2 SET region_code = 8 WHERE dob BETWEEN '1991-02-15' AND '1997-04-25';

DELETE FROM t2 WHERE dob >= '1984-06-21' AND dob <= '1999-06-21'

In the case of the last statement, the optimizer can also act as follows:

1. Find the partition containing the low end of the range.

YEAR('1984-06-21') yields the value 1984, which is found in partition d3.

2. Find the partition containing the high end of the range.

YEAR('1999-06-21') evaluates to 1999, which is found in partition d5.

3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitions d3, d4, and d5 are scanned. The remaining partitions
may be safely ignored (and are ignored).

Important

Invalid DATE and DATETIME values referenced in the WHERE condition of
a statement against a partitioned table are treated as NULL. This means
that a query such as SELECT * FROM partitioned_table WHERE
date_column < '2008-12-00' does not return any values (see Bug
#40972).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with
other partitioning types as well.

Consider a table that is partitioned by LIST, where the partitioning expression is increasing or
decreasing, such as the table t3 shown here. (In this example, we assume for the sake of brevity that
the region_code column is limited to values between 1 and 10 inclusive.)

Partition Pruning

2219

CREATE TABLE t3 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY LIST(region_code) (
 PARTITION r0 VALUES IN (1, 3),
 PARTITION r1 VALUES IN (2, 5, 8),
 PARTITION r2 VALUES IN (4, 9),
 PARTITION r3 VALUES IN (6, 7, 10)
);

For a statement such as SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3, the
optimizer determines in which partitions the values 1, 2, and 3 are found (r0 and r1) and skips the
remaining ones (r2 and r3).

For tables that are partitioned by HASH or KEY, partition pruning is also possible in cases in which the
WHERE clause uses a simple = relation against a column used in the partitioning expression. Consider a
table created like this:

CREATE TABLE t4 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY KEY(region_code)
PARTITIONS 8;

A statement that compares a column value with a constant can be pruned:

UPDATE t4 WHERE region_code = 7;

Pruning can also be employed for short ranges, because the optimizer can turn such conditions into IN
relations. For example, using the same table t4 as defined previously, queries such as these can be
pruned:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE region_code IN
(3, 4, 5).

Important

This optimization is used only if the range size is smaller than the number of
partitions. Consider this statement:

DELETE FROM t4 WHERE region_code BETWEEN 4 AND 12;

The range in the WHERE clause covers 9 values (4, 5, 6, 7, 8, 9, 10, 11, 12), but
t4 has only 8 partitions. This means that the DELETE cannot be pruned.

When a table is partitioned by HASH or KEY, pruning can be used only on integer columns. For
example, this statement cannot use pruning because dob is a DATE column:

SELECT * FROM t4 WHERE dob >= '2001-04-14' AND dob <= '2005-10-15';

However, if the table stores year values in an INT column, then a query having WHERE year_col >=
2001 AND year_col <= 2005 can be pruned.

Partition Selection

2220

Prior to MySQL 5.7.1, partition pruning was disabled for all tables using a storage that provides
automatic partitioning, such as the NDB storage engine used by MySQL Cluster (not currently
supported in MySQL 5.7). (Bug #14672885) Beginning with MySQL 5.7.1, such tables can be pruned if
they are explicitly partitioned. (Bug #14827952)

17.5 Partition Selection
MySQL 5.7 supports explicit selection of partitions and subpartitions that, when executing a statement,
should be checked for rows matching a given WHERE condition. Partition selection is similar to partition
pruning, in that only specific partitions are checked for matches, but differs in two key respects:

1. The partitions to be checked are specified by the issuer of the statement, unlike partition pruning,
which is automatic.

2. Whereas partition pruning applies only to queries, explicit selection of partitions is supported for
both queries and a number of DML statements.

SQL statements supporting explicit partition selection are listed here:

• SELECT

• DELETE

• INSERT

• REPLACE

• UPDATE

• LOAD DATA.

• LOAD XML.

The remainder of this section discusses explicit partition selection as it applies generally to the
statements just listed, and provides some examples.

Explicit partition selection is implemented using a PARTITION option. For all supported statements,
this option uses the syntax shown here:

 PARTITION (partition_names)

 partition_names:
 partition_name, ...

This option always follows the name of the table to which the partition or partitions belong.
partition_names is a comma-separated list of partitions or subpartitions to be used. Each
name in this list must be the name of an existing partition or subpartition of the specified table; if
any of the partitions or subpartitions are not found, the statement fails with an error (partition
'partition_name' doesn't exist). Partitions and subpartitions named in partition_names
may be listed in any order, and may overlap.

When the PARTITION option is used, only the partitions and subpartitions listed are checked for
matching rows. This option can be used in a SELECT statement to determine which rows belong to
a given partition. Consider a partitioned table named employees, created and populated using the
statements shown here:

SET @@SQL_MODE = '';

CREATE TABLE employees (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 fname VARCHAR(25) NOT NULL,
 lname VARCHAR(25) NOT NULL,
 store_id INT NOT NULL,

Partition Selection

2221

 department_id INT NOT NULL
)
 PARTITION BY RANGE(id) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (10),
 PARTITION p2 VALUES LESS THAN (15),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

INSERT INTO employees VALUES
 ('', 'Bob', 'Taylor', 3, 2), ('', 'Frank', 'Williams', 1, 2),
 ('', 'Ellen', 'Johnson', 3, 4), ('', 'Jim', 'Smith', 2, 4),
 ('', 'Mary', 'Jones', 1, 1), ('', 'Linda', 'Black', 2, 3),
 ('', 'Ed', 'Jones', 2, 1), ('', 'June', 'Wilson', 3, 1),
 ('', 'Andy', 'Smith', 1, 3), ('', 'Lou', 'Waters', 2, 4),
 ('', 'Jill', 'Stone', 1, 4), ('', 'Roger', 'White', 3, 2),
 ('', 'Howard', 'Andrews', 1, 2), ('', 'Fred', 'Goldberg', 3, 3),
 ('', 'Barbara', 'Brown', 2, 3), ('', 'Alice', 'Rogers', 2, 2),
 ('', 'Mark', 'Morgan', 3, 3), ('', 'Karen', 'Cole', 3, 2);

You can see which rows are stored in partition p1 like this:

mysql> SELECT * FROM employees PARTITION (p1);
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
5	Mary	Jones	1	1
6	Linda	Black	2	3
7	Ed	Jones	2	1
8	June	Wilson	3	1
9	Andy	Smith	1	3
+----+-------+--------+----------+---------------+
5 rows in set (0.00 sec)

The result is the same as obtained by the query SELECT * FROM employees WHERE id BETWEEN
5 AND 9.

To obtain rows from multiple partitions, supply their names as a comma-delimited list. For example,
SELECT * FROM employees PARTITION (p1, p2) returns all rows from partitions p1 and p2
while excluding rows from the remaining partitions.

Any valid query against a partitioned table can be rewritten with a PARTITION option to restrict the
result to one or more desired partitions. You can use WHERE conditions, ORDER BY and LIMIT options,
and so on. You can also use aggregate functions with HAVING and GROUP BY options. Each of the
following queries produces a valid result when run on the employees table as previously defined:

mysql> SELECT * FROM employees PARTITION (p0, p2)
 -> WHERE lname LIKE 'S%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 4 | Jim | Smith | 2 | 4 |
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
2 rows in set (0.00 sec)

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees PARTITION (p0) ORDER BY lname;
+----+----------------+
| id | name |
+----+----------------+
3	Ellen Johnson
4	Jim Smith
1	Bob Taylor
2	Frank Williams
+----+----------------+
4 rows in set (0.06 sec)

Partition Selection

2222

mysql> SELECT store_id, COUNT(department_id) AS c
 -> FROM employees PARTITION (p1,p2,p3)
 -> GROUP BY store_id HAVING c > 4;
+---+----------+
| c | store_id |
+---+----------+
| 5 | 2 |
| 5 | 3 |
+---+----------+
2 rows in set (0.00 sec)

Statements using partition selection can be employed with tables using any of the partitioning types
supported in MySQL 5.7. When a table is created using [LINEAR] HASH or [LINEAR] KEY
partitioning and the names of the partitions are not specified, MySQL automatically names the
partitions p0, p1, p2, ..., pN-1, where N is the number of partitions. For subpartitions not explicitly
named, MySQL assigns automatically to the subpartitions in each partition pX the names pXsp0,
pXsp1, pXsp2, ..., pXspM-1, where M is the number of subpartitions. When executing against this
table a SELECT (or other SQL statement for which explicit partition selection is allowed), you can use
these generated names in a PARTITION option, as shown here:

mysql> CREATE TABLE employees_sub (
 -> id INT NOT NULL AUTO_INCREMENT,
 -> fname VARCHAR(25) NOT NULL,
 -> lname VARCHAR(25) NOT NULL,
 -> store_id INT NOT NULL,
 -> department_id INT NOT NULL,
 -> PRIMARY KEY pk (id, lname)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (5),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN (15),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (1.14 sec)

mysql> INSERT INTO employees_sub # re-use data in employees table
 -> SELECT * FROM employees;
Query OK, 18 rows affected (0.09 sec)
Records: 18 Duplicates: 0 Warnings: 0

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees_sub PARTITION (p2sp1);
+----+---------------+
| id | name |
+----+---------------+
| 10 | Lou Waters |
| 14 | Fred Goldberg |
+----+---------------+
2 rows in set (0.00 sec)

You may also use a PARTITION option in the SELECT portion of an INSERT ... SELECT statement,
as shown here:

mysql> CREATE TABLE employees_copy LIKE employees;
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO employees_copy
 -> SELECT * FROM employees PARTITION (p2);
Query OK, 5 rows affected (0.04 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM employees_copy;
+----+--------+----------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+--------+----------+----------+---------------+

Partition Selection

2223

10	Lou	Waters	2	4
11	Jill	Stone	1	4
12	Roger	White	3	2
13	Howard	Andrews	1	2
14	Fred	Goldberg	3	3
+----+--------+----------+----------+---------------+
5 rows in set (0.00 sec)

Partition selection can also be used with joins. Suppose we create and populate two tables using the
statements shown here:

CREATE TABLE stores (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 city VARCHAR(30) NOT NULL
)
 PARTITION BY HASH(id)
 PARTITIONS 2;

INSERT INTO stores VALUES
 ('', 'Nambucca'), ('', 'Uranga'),
 ('', 'Bellingen'), ('', 'Grafton');

CREATE TABLE departments (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30) NOT NULL
)
 PARTITION BY KEY(id)
 PARTITIONS 2;

INSERT INTO departments VALUES
 ('', 'Sales'), ('', 'Customer Service'),
 ('', 'Delivery'), ('', 'Accounting');

You can explicitly select partitions (or subpartitions, or both) from any or all of the tables in a join.
(Note that the PARTITION option used to select partitions from a given table immediately follows the
name of the table, before all other options, including any table alias.) For example, the following query
gets the name, employee ID, department, and city of all employees who work in the Sales or Delivery
department (partition p1 of the departments table) at the stores in either of the cities of Nambucca
and Bellingen (partition p0 of the stores table):

mysql> SELECT
 -> e.id AS 'Employee ID', CONCAT(e.fname, ' ', e.lname) AS Name,
 -> s.city AS City, d.name AS department
 -> FROM employees AS e
 -> JOIN stores PARTITION (p1) AS s ON e.store_id=s.id
 -> JOIN departments PARTITION (p0) AS d ON e.department_id=d.id
 -> ORDER BY e.lname;
+-------------+---------------+-----------+------------+
| Employee ID | Name | City | department |
+-------------+---------------+-----------+------------+
14	Fred Goldberg	Bellingen	Delivery
5	Mary Jones	Nambucca	Sales
17	Mark Morgan	Bellingen	Delivery
9	Andy Smith	Nambucca	Delivery
8	June Wilson	Bellingen	Sales
+-------------+---------------+-----------+------------+
5 rows in set (0.00 sec)

For general information about joins in MySQL, see Section 13.2.9.2, “JOIN Syntax”.

When the PARTITION option is used with DELETE statements, only those partitions (and subpartitions,
if any) listed with the option are checked for rows to be deleted. Any other partitions are ignored, as
shown here:

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |

Partition Selection

2224

+----+-------+--------+----------+---------------+
4	Jim	Smith	2	4
8	June	Wilson	3	1
11	Jill	Stone	1	4
+----+-------+--------+----------+---------------+
3 rows in set (0.00 sec)

mysql> DELETE FROM employees PARTITION (p0, p1)
 -> WHERE fname LIKE 'j%';
Query OK, 2 rows affected (0.09 sec)

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

Only the two rows in partitions p0 and p1 matching the WHERE condition were deleted. As you can see
from the result when the SELECT is run a second time, there remains a row in the table matching the
WHERE condition, but residing in a different partition (p2).

UPDATE statements using explicit partition selection behave in the same way; only rows in the
partitions referenced by the PARTITION option are considered when determining the rows to be
updated, as can be seen by executing the following statements:

mysql> UPDATE employees PARTITION (p0)
 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0 Changed: 0 Warnings: 0

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

mysql> UPDATE employees PARTITION (p2)
 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 1 row affected (0.09 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 2 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

In the same way, when PARTITION is used with DELETE, only rows in the partition or partitions named
in the partition list are checked for deletion.

For statements that insert rows, the behavior differs in that failure to find a suitable partition causes the
statement to fail. This is true for both INSERT and REPLACE statements, as shown here:

mysql> INSERT INTO employees PARTITION (p2) VALUES (20, 'Jan', 'Jones', 1, 3);
ERROR 1729 (HY000): Found a row not matching the given partition set
mysql> INSERT INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 1, 3);
Query OK, 1 row affected (0.07 sec)

mysql> REPLACE INTO employees PARTITION (p0) VALUES (20, 'Jan', 'Jones', 3, 2);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> REPLACE INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 3, 2);

Restrictions and Limitations on Partitioning

2225

Query OK, 2 rows affected (0.09 sec)

For statements that write multiple rows to a partitioned table that uses the InnoDB storage engine:
If any row in the list following VALUES cannot be written to one of the partitions specified in the
partition_names list, the entire statement fails and no rows are written. This is shown for INSERT
statements in the following example, reusing the employees table created previously:

mysql> ALTER TABLE employees
 -> REORGANIZE PARTITION p3 INTO (
 -> PARTITION p3 VALUES LESS THAN (20),
 -> PARTITION p4 VALUES LESS THAN (25),
 -> PARTITION p5 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 6 rows affected (2.09 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE employees\G
*************************** 1. row ***************************
 Table: employees
Create Table: CREATE TABLE `employees` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `fname` varchar(25) NOT NULL,
 `lname` varchar(25) NOT NULL,
 `store_id` int(11) NOT NULL,
 `department_id` int(11) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=27 DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (id)
(PARTITION p0 VALUES LESS THAN (5) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (10) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (15) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (20) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (25) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */
1 row in set (0.00 sec)

mysql> INSERT INTO employees PARTITION (p3, p4) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> INSERT INTO employees PARTITION (p3, p4. p5) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
Query OK, 2 rows affected (0.06 sec)
Records: 2 Duplicates: 0 Warnings: 0

The preceding is true for both INSERT statements and REPLACE statements that write multiple rows.

In MySQL 5.7.1 and later, partition selection is disabled for tables employing a storage engine that
supplies automatic partitioning, such as NDB. (Bug #14827952)

17.6 Restrictions and Limitations on Partitioning
This section discusses current restrictions and limitations on MySQL partitioning support.

Prohibited constructs. The following constructs are not permitted in partitioning expressions:

• Stored procedures, stored functions, UDFs, or plugins.

• Declared variables or user variables.

For a list of SQL functions which are permitted in partitioning expressions, see Section 17.6.3,
“Partitioning Limitations Relating to Functions”.

Arithmetic and logical operators. Use of the arithmetic operators +, -, and * is permitted in
partitioning expressions. However, the result must be an integer value or NULL (except in the case of
[LINEAR] KEY partitioning, as discussed elsewhere in this chapter; see Section 17.2, “Partitioning
Types”, for more information).

Restrictions and Limitations on Partitioning

2226

The DIV operator is also supported, and the / operator is not permitted. (Bug #30188, Bug #33182)

The bit operators |, &, ^, <<, >>, and ~ are not permitted in partitioning expressions.

HANDLER statements. Previously, the HANDLER statement was not supported with partitioned
tables. This limitation is removed beginning with MySQL 5.7.1.

Server SQL mode. Tables employing user-defined partitioning do not preserve the SQL mode
in effect at the time that they were created. As discussed in Section 5.1.7, “Server SQL Modes”, the
results of many MySQL functions and operators may change according to the server SQL mode.
Therefore, a change in the SQL mode at any time after the creation of partitioned tables may lead to
major changes in the behavior of such tables, and could easily lead to corruption or loss of data. For
these reasons, it is strongly recommended that you never change the server SQL mode after creating
partitioned tables.

Examples. The following examples illustrate some changes in behavior of partitioned tables due to
a change in the server SQL mode:

1. Error handling. Suppose that you create a partitioned table whose partitioning expression is
one such as column DIV 0 or column MOD 0, as shown here:

mysql> CREATE TABLE tn (c1 INT)
 -> PARTITION BY LIST(1 DIV c1) (
 -> PARTITION p0 VALUES IN (NULL),
 -> PARTITION p1 VALUES IN (1)
 ->);
Query OK, 0 rows affected (0.05 sec)

The default behavior for MySQL is to return NULL for the result of a division by zero, without
producing any errors:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

However, changing the server SQL mode to treat division by zero as an error and to enforce strict
error handling causes the same INSERT statement to fail, as shown here:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
ERROR 1365 (22012): Division by 0

As of MySQL 5.7.4, strict mode includes the effect of ERROR_FOR_DIVISION_BY_ZERO, so that
mode need not be named explicitly when setting sql_mode.

2. Table accessibility. Sometimes a change in the server SQL mode can make partitioned tables
unusable. The following CREATE TABLE statement can be executed successfully only if the
NO_UNSIGNED_SUBTRACTION mode is in effect:

mysql> SELECT @@sql_mode;
+------------+

Restrictions and Limitations on Partitioning

2227

| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),
 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1563 (HY000): Partition constant is out of partition function domain

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@sql_mode;
+-------------------------+
| @@sql_mode |
+-------------------------+
| NO_UNSIGNED_SUBTRACTION |
+-------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),
 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.05 sec)

If you remove the NO_UNSIGNED_SUBTRACTION server SQL mode after creating tu, you may no
longer be able to access this table:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM tu;
ERROR 1563 (HY000): Partition constant is out of partition function domain
mysql> INSERT INTO tu VALUES (20);
ERROR 1563 (HY000): Partition constant is out of partition function domain

Server SQL modes also impact replication of partitioned tables. Differing SQL modes on master and
slave can lead to partitioning expressions being evaluated differently; this can cause the distribution of
data among partitions to be different in the master's and slave's copies of a given table, and may even
cause inserts into partitioned tables that succeed on the master to fail on the slave. For best results,
you should always use the same server SQL mode on the master and on the slave.

Performance considerations. Some affects of partitioning operations on performance are given in
the following list:

• File system operations. Partitioning and repartitioning operations (such as ALTER TABLE
with PARTITION BY ..., REORGANIZE PARTITIONS, or REMOVE PARTITIONING) depend
on file system operations for their implementation. This means that the speed of these operations
is affected by such factors as file system type and characteristics, disk speed, swap space, file
handling efficiency of the operating system, and MySQL server options and variables that relate
to file handling. In particular, you should make sure that large_files_support is enabled
and that open_files_limit is set properly. For partitioned tables using the MyISAM storage
engine, increasing myisam_max_sort_file_size may improve performance; partitioning
and repartitioning operations involving InnoDB tables may be made more efficient by enabling
innodb_file_per_table.

Restrictions and Limitations on Partitioning

2228

See also Maximum number of partitions.

• Table locks. The process executing a partitioning operation on a table takes a write lock on the
table. Reads from such tables are relatively unaffected; pending INSERT and UPDATE operations are
performed as soon as the partitioning operation has completed.

• Storage engine. Partitioning operations, queries, and update operations generally tend to be
faster with MyISAM tables than with InnoDB tables.

• Indexes; partition pruning. As with nonpartitioned tables, proper use of indexes can speed
up queries on partitioned tables significantly. In addition, designing partitioned tables and queries
on these tables to take advantage of partition pruning can improve performance dramatically. See
Section 17.4, “Partition Pruning”, for more information.

Previously, index condition pushdown was not supported for partitioned tables. This limitation was
removed in MySQL 5.7.3. See Section 8.2.1.6, “Index Condition Pushdown Optimization”.

• Performance with LOAD DATA. In MySQL 5.7, LOAD DATA uses buffering to improve
performance. You should be aware that the buffer uses 130 KB memory per partition to achieve this.

Maximum number of partitions.
In MySQL 5.7, the maximum possible number of partitions for a given table is 8192. This number
includes subpartitions.

If, when creating tables with a large number of partitions (but less than the maximum), you encounter
an error message such as Got error ... from storage engine: Out of resources
when opening file, you may be able to address the issue by increasing the value of the
open_files_limit system variable. However, this is dependent on the operating system, and may
not be possible or advisable on all platforms; see Section C.5.2.18, “'File' Not Found and Similar
Errors”, for more information. In some cases, using large numbers (hundreds) of partitions may also
not be advisable due to other concerns, so using more partitions does not automatically lead to better
results.

See also File system operations.

Query cache not supported.
The query cache is not supported for partitioned tables, and is automatically disabled for queries
involving partitioned tables. The query cache cannot be enabled for such queries.

Per-partition key caches.
In MySQL 5.7, key caches are supported for partitioned MyISAM tables, using the CACHE INDEX and
LOAD INDEX INTO CACHE statements. Key caches may be defined for one, several, or all partitions,
and indexes for one, several, or all partitions may be preloaded into key caches.

Foreign keys not supported for partitioned InnoDB tables.
Partitioned tables using the InnoDB storage engine do not support foreign keys. More specifically, this
means that the following two statements are true:

1. No definition of an InnoDB table employing user-defined partitioning may contain foreign key
references; no InnoDB table whose definition contains foreign key references may be partitioned.

2. No InnoDB table definition may contain a foreign key reference to a user-partitioned table; no
InnoDB table with user-defined partitioning may contain columns referenced by foreign keys.

The scope of the restrictions just listed includes all tables that use the InnoDB storage engine. CREATE
TABLE and ALTER TABLE statements that would result in tables violating these restrictions are not
allowed.

ALTER TABLE ... ORDER BY. An ALTER TABLE ... ORDER BY column statement run
against a partitioned table causes ordering of rows only within each partition.

Restrictions and Limitations on Partitioning

2229

FULLTEXT indexes.
Partitioned tables do not support FULLTEXT indexes or searches, even for partitioned tables employing
the InnoDB or MyISAM storage engine.

Spatial columns. Columns with spatial data types such as POINT or GEOMETRY cannot be used in
partitioned tables.

Temporary tables.
Temporary tables cannot be partitioned. (Bug #17497)

Log tables. It is not possible to partition the log tables; an ALTER TABLE ... PARTITION
BY ... statement on such a table fails with an error.

Data type of partitioning key.
A partitioning key must be either an integer column or an expression that resolves to an integer. The
column or expression value may also be NULL. (See Section 17.2.7, “How MySQL Partitioning Handles
NULL”.)

There are two exceptions to this restriction:

1. When partitioning by [LINEAR] KEY, it is possible to use columns of other types as partitioning keys,
because MySQL's internal key-hashing functions produce the correct data type from these types.
For example, the following CREATE TABLE statement is valid:

CREATE TABLE tkc (c1 CHAR)
PARTITION BY KEY(c1)
PARTITIONS 4;

2. When partitioning by RANGE COLUMNS or LIST COLUMNS, it is possible to use string, DATE, and
DATETIME columns. For example, each of the following CREATE TABLE statements is valid:

CREATE TABLE rc (c1 INT, c2 DATE)
PARTITION BY RANGE COLUMNS(c2) (
 PARTITION p0 VALUES LESS THAN('1990-01-01'),
 PARTITION p1 VALUES LESS THAN('1995-01-01'),
 PARTITION p2 VALUES LESS THAN('2000-01-01'),
 PARTITION p3 VALUES LESS THAN('2005-01-01'),
 PARTITION p4 VALUES LESS THAN(MAXVALUE)
);

CREATE TABLE lc (c1 INT, c2 CHAR(1))
PARTITION BY LIST COLUMNS(c2) (
 PARTITION p0 VALUES IN('a', 'd', 'g', 'j', 'm', 'p', 's', 'v', 'y'),
 PARTITION p1 VALUES IN('b', 'e', 'h', 'k', 'n', 'q', 't', 'w', 'z'),
 PARTITION p2 VALUES IN('c', 'f', 'i', 'l', 'o', 'r', 'u', 'x', NULL)
);

Neither of the preceding exceptions applies to BLOB or TEXT column types.

Subqueries.
A partitioning key may not be a subquery, even if that subquery resolves to an integer value or NULL.

Issues with subpartitions.
Subpartitions must use HASH or KEY partitioning. Only RANGE and LIST partitions may be
subpartitioned; HASH and KEY partitions cannot be subpartitioned.

 Currently, SUBPARTITION BY KEY requires that the subpartitioning column or columns be specified
explicitly, unlike the case with PARTITION BY KEY, where it can be omitted (in which case the table's
primary key column is used by default). Consider the table created by this statement:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

Restrictions and Limitations on Partitioning

2230

 name VARCHAR(30)
);

You can create a table having the same columns, partitioned by KEY, using a statement such as this
one:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY()
PARTITIONS 4;

The previous statement is treated as though it had been written like this, with the table's primary key
column used as the partitioning column:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY(id)
PARTITIONS 4;

However, the following statement that attempts to create a subpartitioned table using the default
column as the subpartitioning column fails, and the column must be specified for the statement to
succeed, as shown here:

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY()
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near ')

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY(id)
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.07 sec)

This is a known issue (see Bug #51470).

DATA DIRECTORY and INDEX DIRECTORY options. DATA DIRECTORY and INDEX DIRECTORY
are subject to the following restrictions when used with partitioned tables:

• Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored (see Bug #32091).

• On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for
individual partitions or subpartitions of MyISAM tables. However, you can use DATA DIRECTORY for
individual partitions or subpartitions of InnoDB tables.

Partitioning Keys, Primary Keys, and Unique Keys

2231

Repairing and rebuilding partitioned tables. The statements CHECK TABLE, OPTIMIZE TABLE,
ANALYZE TABLE, and REPAIR TABLE are supported for partitioned tables.

In addition, you can use ALTER TABLE ... REBUILD PARTITION to rebuild one or more partitions
of a partitioned table; ALTER TABLE ... REORGANIZE PARTITION also causes partitions to be
rebuilt. See Section 13.1.6, “ALTER TABLE Syntax”, for more information about these two statements.

mysqlcheck, myisamchk, and myisampack are not supported with partitioned tables.

FOR EXPORT option (FLUSH TABLES). The FLUSH TABLES statement's FOR EXPORT option is
not supported for for partitioned InnoDB tables in MySQL 5.7.4 and earlier. (Bug #16943907)

17.6.1 Partitioning Keys, Primary Keys, and Unique Keys

This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule
governing this relationship can be expressed as follows: All columns used in the partitioning expression
for a partitioned table must be part of every unique key that the table may have.

In other words, every unique key on the table must use every column in the table's partitioning
expression. (This also includes the table's primary key, since it is by definition a unique key. This
particular case is discussed later in this section.) For example, each of the following table creation
statements is invalid:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1),
 UNIQUE KEY (col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns
used in the partitioning expression.

Each of the following statements is valid, and represents one way in which the corresponding invalid
table creation statement could be made to work:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2, col3)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,

Partitioning Keys, Primary Keys, and Unique Keys

2232

 UNIQUE KEY (col1, col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

This example shows the error produced in such cases:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,
 -> UNIQUE KEY (col1, col2),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col1 + col3)
 -> PARTITIONS 4;
ERROR 1491 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

The CREATE TABLE statement fails because both col1 and col3 are included in the proposed
partitioning key, but neither of these columns is part of both of unique keys on the table. This shows
one possible fix for the invalid table definition:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,
 -> UNIQUE KEY (col1, col2, col3),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col3)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.05 sec)

In this case, the proposed partitioning key col3 is part of both unique keys, and the table creation
statement succeeds.

The following table cannot be partitioned at all, because there is no way to include in a partitioning key
any columns that belong to both unique keys:

CREATE TABLE t4 (
 col1 INT NOT NULL,
 col2 INT NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col3),
 UNIQUE KEY (col2, col4)
);

Since every primary key is by definition a unique key, this restriction also includes the table's primary
key, if it has one. For example, the next two statements are invalid:

CREATE TABLE t5 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t6 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,

Partitioning Keys, Primary Keys, and Unique Keys

2233

 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col3),
 UNIQUE KEY(col2)
)
PARTITION BY HASH(YEAR(col2))
PARTITIONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression.
However, both of the next two statements are valid:

CREATE TABLE t7 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

CREATE TABLE t8 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2, col4),
 UNIQUE KEY(col2, col1)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

If a table has no unique keys—this includes having no primary key—then this restriction does not
apply, and you may use any column or columns in the partitioning expression as long as the column
type is compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes
all columns used by the table's partitioning expression. Consider the partitioned table created as shown
here:

mysql> CREATE TABLE t_no_pk (c1 INT, c2 INT)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (10),
 -> PARTITION p1 VALUES LESS THAN (20),
 -> PARTITION p2 VALUES LESS THAN (30),
 -> PARTITION p3 VALUES LESS THAN (40)
 ->);
Query OK, 0 rows affected (0.12 sec)

It is possible to add a primary key to t_no_pk using either of these ALTER TABLE statements:

possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1);
Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0

drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0

use another possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1, c2);
Query OK, 0 rows affected (0.12 sec)
Records: 0 Duplicates: 0 Warnings: 0

drop this PK

Partitioning Limitations Relating to Storage Engines

2234

mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

However, the next statement fails, because c1 is part of the partitioning key, but is not part of the
proposed primary key:

fails with error 1503
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c2);
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

Since t_no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2
alone fails. However, you can add a unique key that uses both c1 and c2.

These rules also apply to existing nonpartitioned tables that you wish to partition using ALTER
TABLE ... PARTITION BY. Consider a table np_pk created as shown here:

mysql> CREATE TABLE np_pk (
 -> id INT NOT NULL AUTO_INCREMENT,
 -> name VARCHAR(50),
 -> added DATE,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.08 sec)

The following ALTER TABLE statement fails with an error, because the added column is not part of
any unique key in the table:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(TO_DAYS(added))
 -> PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

However, this statement using the id column for the partitioning column is valid, as shown here:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(id)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

In the case of np_pk, the only column that may be used as part of a partitioning expression is id; if
you wish to partition this table using any other column or columns in the partitioning expression, you
must first modify the table, either by adding the desired column or columns to the primary key, or by
dropping the primary key altogether.

17.6.2 Partitioning Limitations Relating to Storage Engines

The following limitations apply to the use of storage engines with user-defined partitioning of tables.

MERGE storage engine. User-defined partitioning and the MERGE storage engine are not compatible.
Tables using the MERGE storage engine cannot be partitioned. Partitioned tables cannot be merged.

FEDERATED storage engine. Partitioning of FEDERATED tables is not supported; it is not possible to
create partitioned FEDERATED tables.

CSV storage engine. Partitioned tables using the CSV storage engine are not supported; it is not
possible to create partitioned CSV tables.

InnoDB storage engine. InnoDB foreign keys and MySQL partitioning are not compatible.
Partitioned InnoDB tables cannot have foreign key references, nor can they have columns referenced

Partitioning Limitations Relating to Functions

2235

by foreign keys. InnoDB tables which have or which are referenced by foreign keys cannot be
partitioned.

In addition, ALTER TABLE ... OPTIMIZE PARTITION does not work correctly with partitioned
tables that use the InnoDB storage engine. Use ALTER TABLE ... REBUILD PARTITION and
ALTER TABLE ... ANALYZE PARTITION, instead, for such tables. For more information, see
Section 13.1.6.1, “ALTER TABLE Partition Operations”.

Upgrading partitioned tables. When performing an upgrade, tables which are partitioned by KEY
must be dumped and reloaded.

Same storage engine for all partitions. All partitions of a partitioned table must use the same
storage engine and it must be the same storage engine used by the table as a whole. In addition, if one
does not specify an engine on the table level, then one must do either of the following when creating or
altering a partitioned table:

• Do not specify any engine for any partition or subpartition

• Specify the engine for all partitions or subpartitions

17.6.3 Partitioning Limitations Relating to Functions

This section discusses limitations in MySQL Partitioning relating specifically to functions used in
partitioning expressions.

Only the MySQL functions shown in the following table are allowed in partitioning expressions.

ABS() CEILING() (see CEILING()
and FLOOR())

DAY()

DAYOFMONTH() DAYOFWEEK() DAYOFYEAR()

DATEDIFF() EXTRACT() (see EXTRACT()
function with WEEK specifier)

FLOOR() (see CEILING() and
FLOOR())

HOUR() MICROSECOND() MINUTE()

MOD() MONTH() QUARTER()

SECOND() TIME_TO_SEC() TO_DAYS()

TO_SECONDS() UNIX_TIMESTAMP() (with
TIMESTAMP columns)

WEEKDAY()

YEAR() YEARWEEK()

In MySQL 5.7, partition pruning is supported for the TO_DAYS(), TO_SECONDS(), YEAR(), and
UNIX_TIMESTAMP() functions. See Section 17.4, “Partition Pruning”, for more information.

CEILING() and FLOOR(). Each of these functions returns an integer only if it is passed an
argument of an exact numeric type, such as one of the INT types or DECIMAL. This means, for
example, that the following CREATE TABLE statement fails with an error, as shown here:

mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST(FLOOR(c))(
 -> PARTITION p0 VALUES IN (1,3,5),
 -> PARTITION p1 VALUES IN (2,4,6)
 ->);
ERROR 1490 (HY000): The PARTITION function returns the wrong type

EXTRACT() function with WEEK specifier. The value returned by the EXTRACT() function, when
used as EXTRACT(WEEK FROM col), depends on the value of the default_week_format system
variable. For this reason, EXTRACT() is not permitted as a partitioning function when it specifies the
unit as WEEK. (Bug #54483)

Partitioning and Locking

2236

See Section 12.6.2, “Mathematical Functions”, for more information about the return types of these
functions, as well as Section 11.2, “Numeric Types”.

17.6.4 Partitioning and Locking

For storage engines such as MyISAM that actually execute table-level locks when executing DML
or DDL statements, such a statement in older versions of MySQL (5.6.5 and earlier)that affected a
partitioned table imposed a lock on the table as a whole; that is, all partitions were locked until the
statement was finished. In MySQL 5.7, partition lock pruning eliminates unneeded locks in many cases,
and most statements reading from or updating a partitioned MyISAM table cause only the effected
partitions to be locked. For example, a SELECT from a partitioned MyISAM table locks only those
partitions actually containing rows that satisfy the SELECT statement's WHERE condition are locked.

For statements effecting partitioned tables using storage engines such as InnoDB, that employ row-
level locking and do not actually perform (or need to perform) the locks prior to partition pruning, this is
not an issue.

The next few paragraphs discuss the effects of partition lock pruning for various MySQL statements on
tables using storage engines that employ table-level locks.

Affects on DML statements

SELECT statements (including those containing unions or joins) lock only those partitions that actually
need to be read. This also applies to SELECT ... PARTITION.

An UPDATE prunes locks only for tables on which no partitioning columns are updated.

REPLACE and INSERT lock only those partitions having rows to be inserted or replaced. However, if an
AUTO_INCREMENT value is generated for any partitioning column then all partitions are locked.

INSERT ... ON DUPLICATE KEY UPDATE is pruned as long as no partitioning column is updated.

INSERT ... SELECT locks only those partitions in the source table that need to be read, although all
partitions in the target table are locked.

Locks imposed by LOAD DATA statements on partitioned tables cannot be pruned.

The presence of BEFORE INSERT or BEFORE UPDATE triggers using any partitioning column of a
partitioned table means that locks on INSERT and UPDATE statements updating this table cannot
be pruned, since the trigger can alter its values: A BEFORE INSERT trigger on any of the table's
partitioning columns means that locks set by INSERT or REPLACE cannot be pruned, since the BEFORE
INSERT trigger may change a row's partitioning columns before the row is inserted, forcing the row
into a different partition than it would be otherwise. A BEFORE UPDATE trigger on a partitioning column
means that locks imposed by UPDATE or INSERT ... ON DUPLICATE KEY UPDATE cannot be
pruned.

Affected DDL statements

CREATE VIEW does not cause any locks.

ALTER TABLE ... EXCHANGE PARTITION prunes locks; only the exchanged table and the
exchanged partition are locked.

ALTER TABLE ... TRUNCATE PARTITION prunes locks; only the partitions to be emptied are
locked.

In addition, ALTER TABLE statements take metadata locks on the table level.

Other statements

LOCK TABLES cannot prune partition locks.

Partitioning and Locking

2237

CALL stored_procedure(expr) supports lock pruning, but evaluating expr does not.

DO and SET statements do not support partitioning lock pruning.

2238

2239

Chapter 18 Stored Programs and Views

Table of Contents
18.1 Defining Stored Programs .. 2240
18.2 Using Stored Routines (Procedures and Functions) ... 2241

18.2.1 Stored Routine Syntax .. 2241
18.2.2 Stored Routines and MySQL Privileges .. 2242
18.2.3 Stored Routine Metadata ... 2243
18.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 2243

18.3 Using Triggers ... 2243
18.3.1 Trigger Syntax and Examples .. 2244
18.3.2 Trigger Metadata .. 2247

18.4 Using the Event Scheduler ... 2248
18.4.1 Event Scheduler Overview .. 2248
18.4.2 Event Scheduler Configuration .. 2249
18.4.3 Event Syntax .. 2251
18.4.4 Event Metadata .. 2251
18.4.5 Event Scheduler Status ... 2252
18.4.6 The Event Scheduler and MySQL Privileges .. 2253

18.5 Using Views .. 2255
18.5.1 View Syntax ... 2256
18.5.2 View Processing Algorithms .. 2256
18.5.3 Updatable and Insertable Views .. 2258
18.5.4 View Metadata .. 2259

18.6 Access Control for Stored Programs and Views .. 2260
18.7 Binary Logging of Stored Programs .. 2261

This chapter discusses stored programs and views, which are database objects defined in terms of
SQL code that is stored on the server for later execution.

Stored programs include these objects:

• Stored routines, that is, stored procedures and functions. A stored procedure is invoked using the
CALL statement. A procedure does not have a return value but can modify its parameters for later
inspection by the caller. It can also generate result sets to be returned to the client program. A stored
function is used much like a built-in function. you invoke it in an expression and it returns a value
during expression evaluation.

• Triggers. A trigger is a named database object that is associated with a table and that is activated
when a particular event occurs for the table, such as an insert or update.

• Events. An event is a task that the server runs according to schedule.

Views are stored queries that when referenced produce a result set. A view acts as a virtual table.

This chapter describes how to use stored programs and views. The following sections provide
additional information about SQL syntax for statements related to these objects:

• For each object type, there are CREATE, ALTER, and DROP statements that control which objects
exist and how they are defined. See Section 13.1, “Data Definition Statements”.

• The CALL statement is used to invoke stored procedures. See Section 13.2.1, “CALL Syntax”.

• Stored program definitions include a body that may use compound statements, loops, conditionals,
and declared variables. See Section 13.6, “MySQL Compound-Statement Syntax”.

Defining Stored Programs

2240

In MySQL 5.7, metadata changes to objects referred to by stored programs are detected and
cause automatic reparsing of the affected statements when the program is next executed. For more
information, see Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.

18.1 Defining Stored Programs

Each stored program contains a body that consists of an SQL statement. This statement may be a
compound statement made up of several statements separated by semicolon (;) characters. For
example, the following stored procedure has a body made up of a BEGIN ... END block that contains
a SET statement and a REPEAT loop that itself contains another SET statement:

CREATE PROCEDURE dorepeat(p1 INT)
BEGIN
 SET @x = 0;
 REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
END;

If you use the mysql client program to define a stored program containing semicolon characters, a
problem arises. By default, mysql itself recognizes the semicolon as a statement delimiter, so you
must redefine the delimiter temporarily to cause mysql to pass the entire stored program definition to
the server.

To redefine the mysql delimiter, use the delimiter command. The following example shows how to
do this for the dorepeat() procedure just shown. The delimiter is changed to // to enable the entire
definition to be passed to the server as a single statement, and then restored to ; before invoking the
procedure. This enables the ; delimiter used in the procedure body to be passed through to the server
rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL dorepeat(1000);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

You can redefine the delimiter to a string other than //, and the delimiter can consist of a single
character or multiple characters. You should avoid the use of the backslash (“\”) character because
that is the escape character for MySQL.

The following is an example of a function that takes a parameter, performs an operation using an SQL
function, and returns the result. In this case, it is unnecessary to use delimiter because the function
definition contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

Using Stored Routines (Procedures and Functions)

2241

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

18.2 Using Stored Routines (Procedures and Functions)
Stored routines (procedures and functions) are supported in MySQL 5.7. A stored routine is a set of
SQL statements that can be stored in the server. Once this has been done, clients don't need to keep
reissuing the individual statements but can refer to the stored routine instead.

Stored routines require the proc table in the mysql database. This table is created during the MySQL
5.7 installation procedure. If you are upgrading to MySQL 5.7 from an earlier version, be sure to update
your grant tables to make sure that the proc table exists. See Section 4.4.7, “mysql_upgrade —
Check and Upgrade MySQL Tables”.

Stored routines can be particularly useful in certain situations:

• When multiple client applications are written in different languages or work on different platforms, but
need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures and functions for all
common operations. This provides a consistent and secure environment, and routines can ensure
that each operation is properly logged. In such a setup, applications and users would have no access
to the database tables directly, but can only execute specific stored routines.

Stored routines can provide improved performance because less information needs to be sent between
the server and the client. The tradeoff is that this does increase the load on the database server
because more of the work is done on the server side and less is done on the client (application)
side. Consider this if many client machines (such as Web servers) are serviced by only one or a few
database servers.

Stored routines also enable you to have libraries of functions in the database server. This is a feature
shared by modern application languages that enable such design internally (for example, by using
classes). Using these client application language features is beneficial for the programmer even
outside the scope of database use.

MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2. All syntax
described here is supported and any limitations and extensions are documented where appropriate.

Additional Resources

• You may find the Stored Procedures User Forum of use when working with stored procedures and
functions.

• For answers to some commonly asked questions regarding stored routines in MySQL, see
Section B.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”.

• There are some restrictions on the use of stored routines. See Section E.1, “Restrictions on Stored
Programs”.

• Binary logging for stored routines takes place as described in Section 18.7, “Binary Logging of
Stored Programs”.

18.2.1 Stored Routine Syntax

A stored routine is either a procedure or a function. Stored routines are created with the CREATE
PROCEDURE and CREATE FUNCTION statements (see Section 13.1.12, “CREATE PROCEDURE and

http://forums.mysql.com/list.php?98

Stored Routines and MySQL Privileges

2242

CREATE FUNCTION Syntax”). A procedure is invoked using a CALL statement (see Section 13.2.1,
“CALL Syntax”), and can only pass back values using output variables. A function can be called from
inside a statement just like any other function (that is, by invoking the function's name), and can return
a scalar value. The body of a stored routine can use compound statements (see Section 13.6, “MySQL
Compound-Statement Syntax”).

Stored routines can be dropped with the DROP PROCEDURE and DROP FUNCTION statements (see
Section 13.1.21, “DROP PROCEDURE and DROP FUNCTION Syntax”), and altered with the ALTER
PROCEDURE and ALTER FUNCTION statements (see Section 13.1.4, “ALTER PROCEDURE Syntax”).

A stored procedure or function is associated with a particular database. This has several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the routine
terminates). USE statements within stored routines are not permitted.

• You can qualify routine names with the database name. This can be used to refer to a routine that
is not in the current database. For example, to invoke a stored procedure p or function f that is
associated with the test database, you can say CALL test.p() or test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

Stored functions cannot be recursive.

Recursion in stored procedures is permitted but disabled by default. To enable recursion, set
the max_sp_recursion_depth server system variable to a value greater than zero. Stored
procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the
value of thread_stack at server startup. See Section 5.1.4, “Server System Variables”, for more
information.

MySQL supports a very useful extension that enables the use of regular SELECT statements (that
is, without using cursors or local variables) inside a stored procedure. The result set of such a query
is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so the
client must use a MySQL client library that supports multiple result sets. This means the client must
use a client library from a version of MySQL at least as recent as 4.1. The client should also specify
the CLIENT_MULTI_RESULTS option when it connects. For C programs, this can be done with the
mysql_real_connect() C API function. See Section 21.8.7.54, “mysql_real_connect()”, and
Section 21.8.17, “C API Support for Multiple Statement Execution”.

18.2.2 Stored Routines and MySQL Privileges

The MySQL grant system takes stored routines into account as follows:

• The CREATE ROUTINE privilege is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted
automatically to the creator of a routine if necessary, and dropped from the creator when the routine
is dropped.

• The EXECUTE privilege is required to execute stored routines. However, this privilege is granted
automatically to the creator of a routine if necessary (and dropped from the creator when the routine
is dropped). Also, the default SQL SECURITY characteristic for a routine is DEFINER, which enables
users who have access to the database with which the routine is associated to execute the routine.

• If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE
privileges are not automatically granted to and dropped from the routine creator.

• The creator of a routine is the account used to execute the CREATE statement for it. This might not
be the same as the account named as the DEFINER in the routine definition.

The server manipulates the mysql.proc table in response to statements that create, alter, or drop
stored routines. It is not supported that the server will notice manual manipulation of this table.

Stored Routine Metadata

2243

18.2.3 Stored Routine Metadata

Metadata about stored routines can be obtained as follows:

• Query the ROUTINES table of the INFORMATION_SCHEMA database. See Section 19.19, “The
INFORMATION_SCHEMA ROUTINES Table”.

• Use the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements to see routine
definitions. See Section 13.7.5.9, “SHOW CREATE PROCEDURE Syntax”.

• Use the SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS statements to see routine
characteristics. See Section 13.7.5.27, “SHOW PROCEDURE STATUS Syntax”.

18.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects (see Section 12.14, “Information Functions”). The effect of a stored routine or trigger
upon the value of LAST_INSERT_ID() that is seen by following statements depends on the kind of
routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements do not see a changed value.

18.3 Using Triggers
A trigger is a named database object that is associated with a table, and that activates when a
particular event occurs for the table. Some uses for triggers are to perform checks of values to be
inserted into a table or to perform calculations on values involved in an update.

A trigger is defined to activate when a statement inserts, updates, or deletes rows in the associated
table. These row operations are trigger events. For example, rows can be inserted by INSERT or LOAD
DATA statements, and an insert trigger activates for each inserted row. A trigger can be set to activate
either before or after the trigger event. For example, you can have a trigger activate before each row
that is inserted into a table or after each row that is updated.

Important

MySQL triggers activate only for changes made to tables by SQL statements.
They do not activate for changes in views, nor by changes to tables made
by APIs that do not transmit SQL statements to the MySQL Server. This
means that triggers are not activated by changes in INFORMATION_SCHEMA or
performance_schema tables, because these tables are actually views.

The following sections describe the syntax for creating and dropping triggers, show some examples of
how to use them, and indicate how to obtain trigger metadata.

Additional Resources

• You may find the Triggers User Forum of use when working with triggers.

• For answers to commonly asked questions regarding triggers in MySQL, see Section B.5, “MySQL
5.7 FAQ: Triggers”.

• There are some restrictions on the use of triggers; see Section E.1, “Restrictions on Stored
Programs”.

• Binary logging for triggers takes place as described in Section 18.7, “Binary Logging of Stored
Programs”.

http://forums.mysql.com/list.php?100

Trigger Syntax and Examples

2244

18.3.1 Trigger Syntax and Examples

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement,
described in Section 13.1.15, “CREATE TRIGGER Syntax”, and Section 13.1.24, “DROP TRIGGER
Syntax”.

Here is a simple example that associates a trigger with a table, to activate for INSERT operations. The
trigger acts as an accumulator, summing the values inserted into one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 -> FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.06 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the
account table. It also includes clauses that specify the trigger action time, the triggering event, and
what to do when the trigger activates:

• The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each
row inserted into the table. The other permitted keyword here is AFTER.

• The keyword INSERT indicates the trigger event; that is, the type of operation that activates the
trigger. In the example, INSERT operations cause trigger activation. You can also create triggers for
DELETE and UPDATE operations.

• The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute
each time the trigger activates, which occurs once for each row affected by the triggering event.
In the example, the trigger body is a simple SET that accumulates into a user variable the values
inserted into the amount column. The statement refers to the column as NEW.amount which means
“the value of the amount column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see
what value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 -
100, or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the
trigger is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names
within a schema. Triggers in different schemas can have the same name.

As of MySQL 5.7.2, it is possible to define multiple triggers for a given table that have the same trigger
event and action time. For example, you can have two BEFORE UPDATE triggers for a table. By default,
triggers that have the same trigger event and action time activate in the order they were created. To

Trigger Syntax and Examples

2245

affect trigger order, specify a clause after FOR EACH ROW that indicates FOLLOWS or PRECEDES and
the name of an existing trigger that also has the same trigger event and action time. With FOLLOWS,
the new trigger activates after the existing trigger. With PRECEDES, the new trigger activates before the
existing trigger.

For example, the following trigger definition defines another BEFORE INSERT trigger for the account
table:

mysql> CREATE TRIGGER ins_transaction BEFORE INSERT ON account
 -> FOR EACH ROW PRECEDES ins_sum
 -> SET
 -> @deposits = @deposits + IF(NEW.amount>0,NEW.amount,0),
 -> @withdrawals = @withdrawals + IF(NEW.amount<0,-NEW.amount,0);
Query OK, 0 rows affected (0.02 sec)

This trigger, ins_transaction, is similar to ins_sum but accumulates deposits and withdrawals
separately. It has a PRECEDES clause that causes it to activate before ins_sum; without that clause, it
would activate after ins_sum because it is created after ins_sum.

Before MySQL 5.7.2, there cannot be multiple triggers for a given table that have the same trigger
event and action time. For example, you cannot have two BEFORE UPDATE triggers for a table. To
work around this, you can define a trigger that executes multiple statements by using the BEGIN ...
END compound statement construct after FOR EACH ROW. (An example appears later in this section.)

Within the trigger body, the OLD and NEW keywords enable you to access columns in the rows affected
by a trigger. OLD and NEW are MySQL extensions to triggers; they are not case sensitive.

In an INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only
OLD.col_name can be used; there is no new row. In an UPDATE trigger, you can use OLD.col_name
to refer to the columns of a row before it is updated and NEW.col_name to refer to the columns of the
row after it is updated.

A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but
not modify it. You can refer to a column named with NEW if you have the SELECT privilege for it. In a
BEFORE trigger, you can also change its value with SET NEW.col_name = value if you have the
UPDATE privilege for it. This means you can use a trigger to modify the values to be inserted into a new
row or used to update a row. (Such a SET statement has no effect in an AFTER trigger because the row
change will have already occurred.)

In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the sequence number
that is generated automatically when the new row actually is inserted.

By using the BEGIN ... END construct, you can define a trigger that executes multiple statements.
Within the BEGIN block, you also can use other syntax that is permitted within stored routines such as
conditionals and loops. However, just as for stored routines, if you use the mysql program to define a
trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so
that you can use the ; statement delimiter within the trigger definition. The following example illustrates
these points. It defines an UPDATE trigger that checks the new value to be used for updating each row,
and modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger because
the value must be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
 -> FOR EACH ROW
 -> BEGIN
 -> IF NEW.amount < 0 THEN
 -> SET NEW.amount = 0;
 -> ELSEIF NEW.amount > 100 THEN
 -> SET NEW.amount = 100;
 -> END IF;
 -> END;//
mysql> delimiter ;

Trigger Syntax and Examples

2246

It can be easier to define a stored procedure separately and then invoke it from the trigger using a
simple CALL statement. This is also advantageous if you want to execute the same code from within
several triggers.

There are limitations on what can appear in statements that a trigger executes when activated:

• The trigger cannot use the CALL statement to invoke stored procedures that return data to the client
or that use dynamic SQL. (Stored procedures are permitted to return data to the trigger through OUT
or INOUT parameters.)

• The trigger cannot use statements that explicitly or implicitly begin or end a transaction, such as
START TRANSACTION, COMMIT, or ROLLBACK.

See also Section E.1, “Restrictions on Stored Programs”.

MySQL handles errors during trigger execution as follows:

• If a BEFORE trigger fails, the operation on the corresponding row is not performed.

• A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the
attempt subsequently succeeds.

• An AFTER trigger is executed only if any BEFORE triggers and the row operation execute
successfully.

• An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused
trigger invocation.

• For transactional tables, failure of a statement should cause rollback of all changes performed by the
statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For
nontransactional tables, such rollback cannot be done, so although the statement fails, any changes
performed prior to the point of the error remain in effect.

Triggers can contain direct references to tables by name, such as the trigger named testref shown
in this example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
 a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b4 INT DEFAULT 0
);

delimiter |

CREATE TRIGGER testref BEFORE INSERT ON test1
 FOR EACH ROW
 BEGIN
 INSERT INTO test2 SET a2 = NEW.a1;
 DELETE FROM test3 WHERE a3 = NEW.a1;
 UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
 END;
|

delimiter ;

INSERT INTO test3 (a3) VALUES
 (NULL), (NULL), (NULL), (NULL), (NULL),
 (NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
 (0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

Suppose that you insert the following values into table test1 as shown here:

Trigger Metadata

2247

mysql> INSERT INTO test1 VALUES
 -> (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

As a result, the four tables contain the following data:

mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
1	3
2	0
3	1
4	2
5	0
6	0
7	1
8	1
9	0
10	0
+----+------+
10 rows in set (0.00 sec)

18.3.2 Trigger Metadata

Metadata about triggers can be obtained as follows:

Using the Event Scheduler

2248

• Query the TRIGGERS table of the INFORMATION_SCHEMA database. See Section 19.27, “The
INFORMATION_SCHEMA TRIGGERS Table”.

• Use the SHOW CREATE TRIGGER statement. See Section 13.7.5.11, “SHOW CREATE TRIGGER
Syntax”.

• Use the SHOW TRIGGERS statement. See Section 13.7.5.37, “SHOW TRIGGERS Syntax”.

18.4 Using the Event Scheduler
The MySQL Event Scheduler manages the scheduling and execution of events, that is, tasks that run
according to a schedule. The following discussion covers the Event Scheduler and is divided into the
following sections:

• Section 18.4.1, “Event Scheduler Overview”, provides an introduction to and conceptual overview of
MySQL Events.

• Section 18.4.3, “Event Syntax”, discusses the SQL statements for creating, altering, and dropping
MySQL Events.

• Section 18.4.4, “Event Metadata”, shows how to obtain information about events and how this
information is stored by the MySQL Server.

• Section 18.4.6, “The Event Scheduler and MySQL Privileges”, discusses the privileges required to
work with events and the ramifications that events have with regard to privileges when executing.

Stored routines require the event table in the mysql database. This table is created during the
MySQL 5.7 installation procedure. If you are upgrading to MySQL 5.7 from an earlier version,
be sure to update your grant tables to make sure that the event table exists. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

Additional Resources

• You may find the MySQL Event Scheduler User Forum of use when working with scheduled events.

• There are some restrictions on the use of events; see Section E.1, “Restrictions on Stored
Programs”.

• Binary logging for events takes place as described in Section 18.7, “Binary Logging of Stored
Programs”.

18.4.1 Event Scheduler Overview

MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as
scheduled events. When you create an event, you are creating a named database object containing
one or more SQL statements to be executed at one or more regular intervals, beginning and ending at
a specific date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a
“cron job”) or the Windows Task Scheduler.

Scheduled tasks of this type are also sometimes known as “temporal triggers”, implying that these are
objects that are triggered by the passage of time. While this is essentially correct, we prefer to use the
term events to avoid confusion with triggers of the type discussed in Section 18.3, “Using Triggers”.
Events should more specifically not be confused with “temporary triggers”. Whereas a trigger is a
database object whose statements are executed in response to a specific type of event that occurs
on a given table, a (scheduled) event is an object whose statements are executed in response to the
passage of a specified time interval.

While there is no provision in the SQL Standard for event scheduling, there are precedents in other
database systems, and you may notice some similarities between these implementations and that
found in the MySQL Server.

MySQL Events have the following major features and properties:

http://forums.mysql.com/list.php?119

Event Scheduler Configuration

2249

• In MySQL 5.7, an event is uniquely identified by its name and the schema to which it is assigned.

• An event performs a specific action according to a schedule. This action consists of an SQL
statement, which can be a compound statement in a BEGIN ... END block if desired (see
Section 13.6, “MySQL Compound-Statement Syntax”). An event's timing can be either one-time
or recurrent. A one-time event executes one time only. A recurrent event repeats its action at a
regular interval, and the schedule for a recurring event can be assigned a specific start day and time,
end day and time, both, or neither. (By default, a recurring event's schedule begins as soon as it is
created, and continues indefinitely, until it is disabled or dropped.)

If a repeating event does not terminate within its scheduling interval, the result may be multiple
instances of the event executing simultaneously. If this is undesirable, you should institute a
mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK()
function, or row or table locking.

• Users can create, modify, and drop scheduled events using SQL statements intended for these
purposes. Syntactically invalid event creation and modification statements fail with an appropriate
error message. A user may include statements in an event's action which require privileges that the
user does not actually have. The event creation or modification statement succeeds but the event's
action fails. See Section 18.4.6, “The Event Scheduler and MySQL Privileges” for details.

• Many of the properties of an event can be set or modified using SQL statements. These properties
include the event's name, timing, persistence (that is, whether it is preserved following the expiration
of its schedule), status (enabled or disabled), action to be performed, and the schema to which it is
assigned. See Section 13.1.2, “ALTER EVENT Syntax”.

The default definer of an event is the user who created the event, unless the event has been altered,
in which case the definer is the user who issued the last ALTER EVENT statement affecting that
event. An event can be modified by any user having the EVENT privilege on the database for which
the event is defined. See Section 18.4.6, “The Event Scheduler and MySQL Privileges”.

• An event's action statement may include most SQL statements permitted within stored routines. For
restrictions, see Section E.1, “Restrictions on Stored Programs”.

18.4.2 Event Scheduler Configuration

Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we
actually refer to this thread. When running, the event scheduler thread and its current state can be
seen by users having the PROCESS privilege in the output of SHOW PROCESSLIST, as shown in the
discussion that follows.

The global event_scheduler system variable determines whether the Event Scheduler is enabled
and running on the server. It has one of these 3 values, which affect event scheduling as described
here:

• OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown in the
output of SHOW PROCESSLIST, and no scheduled events are executed. OFF is the default value for
event_scheduler.

When the Event Scheduler is stopped (event_scheduler is OFF), it can be started by setting the
value of event_scheduler to ON. (See next item.)

• ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled
events.

When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW
PROCESSLIST as a daemon process, and its state is represented as shown here:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Event Scheduler Configuration

2250

 Id: 1
 User: root
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: NULL
 Info: show processlist
*************************** 2. row ***************************
 Id: 2
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 3
 State: Waiting for next activation
 Info: NULL
2 rows in set (0.00 sec)

Event scheduling can be stopped by setting the value of event_scheduler to OFF.

• DISABLED: This value renders the Event Scheduler nonoperational. When the Event Scheduler is
DISABLED, the event scheduler thread does not run (and so does not appear in the output of SHOW
PROCESSLIST). In addition, the Event Scheduler state cannot be changed at runtime.

If the Event Scheduler status has not been set to DISABLED, event_scheduler can be toggled
between ON and OFF (using SET). It is also possible to use 0 for OFF, and 1 for ON when setting this
variable. Thus, any of the following 4 statements can be used in the mysql client to turn on the Event
Scheduler:

SET GLOBAL event_scheduler = ON;
SET @@global.event_scheduler = ON;
SET GLOBAL event_scheduler = 1;
SET @@global.event_scheduler = 1;

Similarly, any of these 4 statements can be used to turn off the Event Scheduler:

SET GLOBAL event_scheduler = OFF;
SET @@global.event_scheduler = OFF;
SET GLOBAL event_scheduler = 0;
SET @@global.event_scheduler = 0;

Although ON and OFF have numeric equivalents, the value displayed for event_scheduler by
SELECT or SHOW VARIABLES is always one of OFF, ON, or DISABLED. DISABLED has no numeric
equivalent. For this reason, ON and OFF are usually preferred over 1 and 0 when setting this variable.

Note that attempting to set event_scheduler without specifying it as a global variable causes an
error:

mysql< SET @@event_scheduler = OFF;
ERROR 1229 (HY000): Variable 'event_scheduler' is a GLOBAL
variable and should be set with SET GLOBAL

Important

It is possible to set the Event Scheduler to DISABLED only at server startup. If
event_scheduler is ON or OFF, you cannot set it to DISABLED at runtime.
Also, if the Event Scheduler is set to DISABLED at startup, you cannot change
the value of event_scheduler at runtime.

To disable the event scheduler, use one of the following two methods:

• As a command-line option when starting the server:

Event Syntax

2251

--event-scheduler=DISABLED

• In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it
will be read by the server (for example, in a [mysqld] section):

event_scheduler=DISABLED

To enable the Event Scheduler, restart the server without the --event-scheduler=DISABLED
command-line option, or after removing or commenting out the line containing event-
scheduler=DISABLED in the server configuration file, as appropriate. Alternatively, you can use ON
(or 1) or OFF (or 0) in place of the DISABLED value when starting the server.

Note

You can issue event-manipulation statements when event_scheduler is set
to DISABLED. No warnings or errors are generated in such cases (provided
that the statements are themselves valid). However, scheduled events cannot
execute until this variable is set to ON (or 1). Once this has been done, the event
scheduler thread executes all events whose scheduling conditions are satisfied.

Starting the MySQL server with the --skip-grant-tables option causes event_scheduler to
be set to DISABLED, overriding any other value set either on the command line or in the my.cnf or
my.ini file (Bug #26807).

For SQL statements used to create, alter, and drop events, see Section 18.4.3, “Event Syntax”.

MySQL 5.7 provides an EVENTS table in the INFORMATION_SCHEMA database. This table can be
queried to obtain information about scheduled events which have been defined on the server. See
Section 18.4.4, “Event Metadata”, and Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”, for
more information.

For information regarding event scheduling and the MySQL privilege system, see Section 18.4.6, “The
Event Scheduler and MySQL Privileges”.

18.4.3 Event Syntax

MySQL 5.7 provides several SQL statements for working with scheduled events:

• New events are defined using the CREATE EVENT statement. See Section 13.1.9, “CREATE EVENT
Syntax”.

• The definition of an existing event can be changed by means of the ALTER EVENT statement. See
Section 13.1.2, “ALTER EVENT Syntax”.

• When a scheduled event is no longer wanted or needed, it can be deleted from the server by its
definer using the DROP EVENT statement. See Section 13.1.18, “DROP EVENT Syntax”. Whether an
event persists past the end of its schedule also depends on its ON COMPLETION clause, if it has one.
See Section 13.1.9, “CREATE EVENT Syntax”.

An event can be dropped by any user having the EVENT privilege for the database on which the
event is defined. See Section 18.4.6, “The Event Scheduler and MySQL Privileges”.

18.4.4 Event Metadata

Metadata about events can be obtained as follows:

• Query the event table of the mysql database.

• Query the EVENTS table of the INFORMATION_SCHEMA database. See Section 19.7, “The
INFORMATION_SCHEMA EVENTS Table”.

• Use the SHOW CREATE EVENT statement. See Section 13.7.5.7, “SHOW CREATE EVENT Syntax”.

Event Scheduler Status

2252

• Use the SHOW EVENTS statement. See Section 13.7.5.17, “SHOW EVENTS Syntax”.

Event Scheduler Time Representation

Each session in MySQL has a session time zone (STZ). This is the session time_zone value that is
initialized from the server's global time_zone value when the session begins but may be changed
during the session.

The session time zone that is current when a CREATE EVENT or ALTER EVENT statement executes is
used to interpret times specified in the event definition. This becomes the event time zone (ETZ); that
is, the time zone that is used for event scheduling and is in effect within the event as it executes.

For representation of event information in the mysql.event table, the execute_at, starts, and
ends times are converted to UTC and stored along with the event time zone. This enables event
execution to proceed as defined regardless of any subsequent changes to the server time zone or
daylight saving time effects. The last_executed time is also stored in UTC.

If you select information from mysql.event, the times just mentioned are retrieved as UTC values.
These times can also be obtained by selecting from the INFORMATION_SCHEMA.EVENTS table or
from SHOW EVENTS, but they are reported as ETZ values. Other times available from these sources
indicate when an event was created or last altered; these are displayed as STZ values. The following
table summarizes representation of event times.

Value mysql.event INFORMATION_SCHEMA.EVENTSSHOW EVENTS

Execute at UTC ETZ ETZ

Starts UTC ETZ ETZ

Ends UTC ETZ ETZ

Last executed UTC ETZ n/a

Created STZ STZ n/a

Last altered STZ STZ n/a

18.4.5 Event Scheduler Status

The Event Scheduler writes information about event execution that terminates with an error or warning
to the MySQL Server's error log. See Section 18.4.6, “The Event Scheduler and MySQL Privileges” for
an example.

To obtain information about the state of the Event Scheduler for debugging and troubleshooting
purposes, run mysqladmin debug (see Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”); after running this command, the server's error log contains output relating to the
Event Scheduler, similar to what is shown here:

Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : init_scheduler:313
LUA : init_scheduler:318
WOC : NO
Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 1
Data locked : NO
Attempting lock : NO
LLA : init_queue:148

The Event Scheduler and MySQL Privileges

2253

LUA : init_queue:168
WOC : NO
Next activation : 0000-00-00 00:00:00

In statements that occur as part of events executed by the Event Scheduler, diagnostics messages
(not only errors, but also warnings) are written to the error log, and, on Windows, to the application
event log. For frequently executed events, it is possible for this to result in many logged messages.
For example, for SELECT ... INTO var_list statements, if the query returns no rows, a warning
with error code 1329 occurs (No data), and the variable values remain unchanged. If the query
returns multiple rows, error 1172 occurs (Result consisted of more than one row). For
either condition, you can avoid having the warnings be logged by declaring a condition handler; see
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”. For statements that may retrieve multiple rows,
another strategy is to use LIMIT 1 to limit the result set to a single row.

18.4.6 The Event Scheduler and MySQL Privileges

To enable or disable the execution of scheduled events, it is necessary to set the value of the global
event_scheduler system variable. This requires the SUPER privilege.

The EVENT privilege governs the creation, modification, and deletion of events. This privilege can
be bestowed using GRANT. For example, this GRANT statement confers the EVENT privilege for the
schema named myschema on the user jon@ghidora:

GRANT EVENT ON myschema.* TO jon@ghidora;

(We assume that this user account already exists, and that we wish for it to remain unchanged
otherwise.)

To grant this same user the EVENT privilege on all schemas, use the following statement:

GRANT EVENT ON *.* TO jon@ghidora;

The EVENT privilege has global or schema-level scope. Therefore, trying to grant it on a single table
results in an error as shown:

mysql> GRANT EVENT ON myschema.mytable TO jon@ghidora;
ERROR 1144 (42000): Illegal GRANT/REVOKE command; please
consult the manual to see which privileges can be used

It is important to understand that an event is executed with the privileges of its definer, and that it
cannot perform any actions for which its definer does not have the requisite privileges. For example,
suppose that jon@ghidora has the EVENT privilege for myschema. Suppose also that this user
has the SELECT privilege for myschema, but no other privileges for this schema. It is possible for
jon@ghidora to create a new event such as this one:

CREATE EVENT e_store_ts
 ON SCHEDULE
 EVERY 10 SECOND
 DO
 INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());

The user waits for a minute or so, and then performs a SELECT * FROM mytable; query, expecting
to see several new rows in the table. Instead, the table is empty. Since the user does not have the
INSERT privilege for the table in question, the event has no effect.

If you inspect the MySQL error log (hostname.err), you can see that the event is executing, but the
action it is attempting to perform fails:

2013-09-24T12:41:31.261992Z 25 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user

The Event Scheduler and MySQL Privileges

2254

'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:31.262022Z 25 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.
2013-09-24T12:41:41.271796Z 26 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:41.272761Z 26 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.

Since this user very likely does not have access to the error log, it is possible to verify whether the
event's action statement is valid by executing it directly:

mysql> INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
ERROR 1142 (42000): INSERT command denied to user
'jon'@'ghidora' for table 'mytable'

Inspection of the INFORMATION_SCHEMA.EVENTS table shows that e_store_ts exists and is
enabled, but its LAST_EXECUTED column is NULL:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 > WHERE EVENT_NAME='e_store_ts'
 > AND EVENT_SCHEMA='myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: NULL
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_store_ts
 DEFINER: jon@ghidora
 EVENT_BODY: SQL
EVENT_DEFINITION: INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP())
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 5
 INTERVAL_FIELD: SECOND
 SQL_MODE: NULL
 STARTS: 0000-00-00 00:00:00
 ENDS: 0000-00-00 00:00:00
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2006-02-09 22:36:06
 LAST_ALTERED: 2006-02-09 22:36:06
 LAST_EXECUTED: NULL
 EVENT_COMMENT:
1 row in set (0.00 sec)

To rescind the EVENT privilege, use the REVOKE statement. In this example, the EVENT privilege on the
schema myschema is removed from the jon@ghidora user account:

REVOKE EVENT ON myschema.* FROM jon@ghidora;

Important

Revoking the EVENT privilege from a user does not delete or disable any events
that may have been created by that user.

An event is not migrated or dropped as a result of renaming or dropping the
user who created it.

Suppose that the user jon@ghidora has been granted the EVENT and INSERT privileges on the
myschema schema. This user then creates the following event:

CREATE EVENT e_insert
 ON SCHEDULE
 EVERY 7 SECOND
 DO
 INSERT INTO myschema.mytable;

Using Views

2255

After this event has been created, root revokes the EVENT privilege for jon@ghidora. However,
e_insert continues to execute, inserting a new row into mytable each seven seconds. The same
would be true if root had issued either of these statements:

• DROP USER jon@ghidora;

• RENAME USER jon@ghidora TO someotherguy@ghidora;

You can verify that this is true by examining the mysql.event table (discussed later in this section) or
the INFORMATION_SCHEMA.EVENTS table (see Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”) before and after issuing a DROP USER or RENAME USER statement.

Event definitions are stored in the mysql.event table. To drop an event created by another user
account, the MySQL root user (or another user with the necessary privileges) can delete rows from
this table. For example, to remove the event e_insert shown previously, root can use the following
statement:

DELETE FROM mysql.event
 WHERE db = 'myschema'
 AND definer = 'jon@ghidora'
 AND name = 'e_insert';

It is very important to match the event name, database schema name, and user account when deleting
rows from the mysql.event table. This is because the same user can create different events of the
same name in different schemas.

Users' EVENT privileges are stored in the Event_priv columns of the mysql.user and
mysql.db tables. In both cases, this column holds one of the values 'Y' or 'N'. 'N' is the default.
mysql.user.Event_priv is set to 'Y' for a given user only if that user has the global EVENT privilege
(that is, if the privilege was bestowed using GRANT EVENT ON *.*). For a schema-level EVENT
privilege, GRANT creates a row in mysql.db and sets that row's Db column to the name of the schema,
the User column to the name of the user, and the Event_priv column to 'Y'. There should never be
any need to manipulate these tables directly, since the GRANT EVENT and REVOKE EVENT statements
perform the required operations on them.

Five status variables provide counts of event-related operations (but not of statements executed by
events; see Section E.1, “Restrictions on Stored Programs”). These are:

• Com_create_event: The number of CREATE EVENT statements executed since the last server
restart.

• Com_alter_event: The number of ALTER EVENT statements executed since the last server
restart.

• Com_drop_event: The number of DROP EVENT statements executed since the last server restart.

• Com_show_create_event: The number of SHOW CREATE EVENT statements executed since the
last server restart.

• Com_show_events: The number of SHOW EVENTS statements executed since the last server
restart.

You can view current values for all of these at one time by running the statement SHOW STATUS LIKE
'%event%';.

18.5 Using Views
Views (including updatable views) are available in MySQL Server 5.7. Views are stored queries that
when invoked produce a result set. A view acts as a virtual table.

To use views if you have upgraded to MySQL 5.7 from an older release that did not support views, you
should upgrade your grant tables so that they contain the view-related privileges. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

Additional Resources

2256

The following discussion describes the syntax for creating and dropping views, and shows some
examples of how to use them.

Additional Resources

• You may find the Views User Forum of use when working with views.

• For answers to some commonly asked questions regarding views in MySQL, see Section B.6,
“MySQL 5.7 FAQ: Views”.

• There are some restrictions on the use of views; see Section E.5, “Restrictions on Views”.

18.5.1 View Syntax

The CREATE VIEW statement creates a new view (see Section 13.1.16, “CREATE VIEW Syntax”).
To alter the definition of a view or drop a view, use ALTER VIEW (see Section 13.1.7, “ALTER VIEW
Syntax”), or DROP VIEW (see Section 13.1.25, “DROP VIEW Syntax”).

A view can be created from many kinds of SELECT statements. It can refer to base tables or other
views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The
following example defines a view that selects two columns from another table, as well as an expression
calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50), (5, 60);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
| 5 | 60 | 300 |
+------+-------+-------+
mysql> SELECT * FROM v WHERE qty = 5;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 5 | 60 | 300 |
+------+-------+-------+

18.5.2 View Processing Algorithms

The optional ALGORITHM clause for CREATE VIEW or ALTER VIEW is a MySQL extension to standard
SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE,
or UNDEFINED. The default algorithm is UNDEFINED if no ALGORITHM clause is present.

For MERGE, the text of a statement that refers to the view and the view definition are merged such that
parts of the view definition replace corresponding parts of the statement.

For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to
execute the statement.

For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if
possible, because MERGE is usually more efficient and because a view cannot be updatable if a
temporary table is used.

A reason to choose TEMPTABLE explicitly is that locks can be released on underlying tables after the
temporary table has been created and before it is used to finish processing the statement. This might
result in quicker lock release than the MERGE algorithm so that other clients that use the view are not
blocked as long.

A view algorithm can be UNDEFINED for three reasons:

• No ALGORITHM clause is present in the CREATE VIEW statement.

http://forums.mysql.com/list.php?100

View Processing Algorithms

2257

• The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.

• ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In
this case, MySQL generates a warning and sets the algorithm to UNDEFINED.

As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the
statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm
works. The examples assume that there is a view v_merge that has this definition:

CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;

Example 1: Suppose that we issue this statement:

SELECT * FROM v_merge;

MySQL handles the statement as follows:

• v_merge becomes t

• * becomes vc1, vc2, which corresponds to c1, c2

• The view WHERE clause is added

The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 2: Suppose that we issue this statement:

SELECT * FROM v_merge WHERE vc1 < 100;

This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100
and the view WHERE clause is added to the statement WHERE clause using an AND connective (and
parentheses are added to make sure the parts of the clause are executed with correct precedence).
The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);

Effectively, the statement to be executed has a WHERE clause of this form:

WHERE (select WHERE) AND (view WHERE)

If the MERGE algorithm cannot be used, a temporary table must be used instead. MERGE cannot be
used if the view contains any of the following constructs:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• LIMIT

• UNION or UNION ALL

• Subquery in the select list

• Refers only to literal values (in this case, there is no underlying table)

Updatable and Insertable Views

2258

18.5.3 Updatable and Insertable Views

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or
INSERT to update the contents of the underlying table. For a view to be updatable, there must be
a one-to-one relationship between the rows in the view and the rows in the underlying table. There
are also certain other constructs that make a view nonupdatable. To be more specific, a view is not
updatable if it contains any of the following:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list

• Certain joins (see additional join discussion later in this section)

• Nonupdatable view in the FROM clause

• A subquery in the WHERE clause that refers to a table in the FROM clause

• Refers only to literal values (in this case, there is no underlying table to update)

• Uses ALGORITHM = TEMPTABLE (use of a temporary table always makes a view nonupdatable)

• Multiple references to any column of a base table.

With respect to insertability (being updatable with INSERT statements), an updatable view is insertable
if it also satisfies these additional requirements for the view columns:

• There must be no duplicate view column names.

• The view must contain all columns in the base table that do not have a default value.

• The view columns must be simple column references and not derived columns. A derived column is
one that is not a simple column reference but is derived from an expression. These are examples of
derived columns:

3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)

A view that has a mix of simple column references and derived columns is not insertable, but it can be
updatable if you update only those columns that are not derived. Consider this view:

CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;

This view is not insertable because col2 is derived from an expression. But it is updatable if the
update does not try to update col2. This update is permissible:

UPDATE v SET col1 = 0;

This update is not permissible because it attempts to update a derived column:

UPDATE v SET col2 = 0;

View Metadata

2259

It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed
with the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a
UNION). Also, only a single table in the view definition can be updated, so the SET clause must name
only columns from one of the tables in the view. Views that use UNION ALL are not permitted even
though they might be theoretically updatable, because the implementation uses temporary tables to
process them.

For a multiple-table updatable view, INSERT can work if it inserts into a single table. DELETE is not
supported.

If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that
does not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(),
because the side effects of inserting default values into columns not part of the view should not be
visible.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to
rows except those for which the WHERE clause in the select_statement is true.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords
determine the scope of check testing when the view is defined in terms of another view. The LOCAL
keyword restricts the CHECK OPTION only to the view being defined. CASCADED causes the checks
for underlying views to be evaluated as well. When neither keyword is given, the default is CASCADED.
Consider the definitions for the following table and set of views:

mysql> CREATE TABLE t1 (a INT);
mysql> CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2
 -> WITH CHECK OPTION;
mysql> CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0
 -> WITH LOCAL CHECK OPTION;
mysql> CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0
 -> WITH CASCADED CHECK OPTION;

Here the v2 and v3 views are defined in terms of another view, v1. v2 has a LOCAL check option,
so inserts are tested only against the v2 check. v3 has a CASCADED check option, so inserts are
tested not only against its own check, but against those of underlying views. The following statements
illustrate these differences:

mysql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES
(true) if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set
to NO (false). The IS_UPDATABLE column in the INFORMATION_SCHEMA.VIEWS table displays the
status of this flag. It means that the server always knows whether a view is updatable. If the view is
not updatable, statements such UPDATE, DELETE, and INSERT are illegal and will be rejected. (Note
that even if a view is updatable, it might not be possible to insert into it, as described elsewhere in this
section.)

The updatability of views may be affected by the value of the updatable_views_with_limit
system variable. See Section 5.1.4, “Server System Variables”.

18.5.4 View Metadata

Metadata about views can be obtained as follows:

• Query the VIEWS table of the INFORMATION_SCHEMA database. See Section 19.29, “The
INFORMATION_SCHEMA VIEWS Table”.

• Use the SHOW CREATE VIEW statement. See Section 13.7.5.12, “SHOW CREATE VIEW Syntax”.

Access Control for Stored Programs and Views

2260

18.6 Access Control for Stored Programs and Views
Stored programs and views are defined prior to use and, when referenced, execute within a security
context that determines their privileges. These privileges are controlled by their DEFINER attribute, and,
if there is one, their SQL SECURITY characteristic.

All stored programs (procedures, functions, triggers, and events) and views can have a DEFINER
attribute that names a MySQL account. If the DEFINER attribute is omitted from a stored program or
view definition, the default account is the user who creates the object.

In addition, stored routines (procedures and functions) and views can have a SQL SECURITY
characteristic with a value of DEFINER or INVOKER to specify whether the object executes in definer or
invoker context. If the SQL SECURITY characteristic is omitted, the default is definer context.

Triggers and events have no SQL SECURITY characteristic and always execute in definer context. The
server invokes these objects automatically as necessary, so there is no invoking user.

Definer and invoker security contexts differ as follows:

• A stored program or view that executes in definer security context executes with the privileges
of the account named by its DEFINER attribute. These privileges may be entirely different from
those of the invoking user. The invoker must have appropriate privileges to reference the object (for
example, EXECUTE to call a stored procedure or SELECT to select from a view), but when the object
executes, the invoker's privileges are ignored and only the DEFINER account privileges matter. If this
account has few privileges, the object is correspondingly limited in the operations it can perform. If
the DEFINER account is highly privileged (such as a root account), the object can perform powerful
operations no matter who invokes it.

• A stored routine or view that executes in invoker security context can perform only operations for
which the invoker has privileges. The DEFINER attribute can be specified but has no effect for
objects that execute in invoker context.

Consider the following stored procedure:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p1()
SQL SECURITY DEFINER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

Any user who has the EXECUTE privilege for p1 can invoke it with a CALL statement. However,
when p1 executes, it does so in DEFINER security context and thus executes with the privileges of
'admin'@'localhost', the account named in the DEFINER attribute. This account must have the
EXECUTE privilege for p1 as well as the UPDATE privilege for the table t1. Otherwise, the procedure
fails.

Now consider this stored procedure, which is identical to p1 except that its SQL SECURITY
characteristic is INVOKER:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p2()
SQL SECURITY INVOKER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

p2, unlike p1, executes in INVOKER security context. The DEFINER attribute is irrelevant and p2
executes with the privileges of the invoking user. p2 fails if the invoker lacks the EXECUTE privilege for
p2 or the UPDATE privilege for the table t1.

MySQL uses the following rules to control which accounts a user can specify in an object DEFINER
attribute:

Binary Logging of Stored Programs

2261

• You can specify a DEFINER value other than your own account only if you have the SUPER privilege.

• If you do not have the SUPER privilege, the only legal user value is your own account, either specified
literally or by using CURRENT_USER. You cannot set the definer to some other account.

To minimize the risk potential for stored program and view creation and use, follow these guidelines:

• For a stored routine or view, use SQL SECURITY INVOKER in the object definition when possible so
that it can be used only by users with permissions appropriate for the operations performed by the
object.

• If you create definer-context stored programs or views while using an account that has the SUPER
privilege, specify an explicit DEFINER attribute that names an account possessing only the privileges
required for the operations performed by the object. Specify a highly privileged DEFINER account
only when absolutely necessary.

• Administrators can prevent users from specifying highly privileged DEFINER accounts by not granting
them the SUPER privilege.

• Definer-context objects should be written keeping in mind that they may be able to access data for
which the invoking user has no privileges. In some cases, you can prevent reference to these objects
by not granting unauthorized users particular privileges:

• A stored procedure or function cannot be referenced by a user who does not have the EXECUTE
privilege for it.

• A view cannot be referenced by a user who does not have the appropriate privilege for it (SELECT
to select from it, INSERT to insert into it, and so forth).

However, no such control exists for triggers because users do not reference them directly. A
trigger always executes in DEFINER context and is activated by access to the table with which it is
associated, even ordinary table accesses by users with no special privileges. If the DEFINER account
is highly privileged, the trigger can perform sensitive or dangerous operations. This remains true
if the SUPER and TRIGGER privileges needed to create the trigger are revoked from the account
of the user who created it. Administrators should be especially careful about granting users that
combination of privileges.

18.7 Binary Logging of Stored Programs
The binary log contains information about SQL statements that modify database contents. This
information is stored in the form of “events” that describe the modifications. The binary log has two
important purposes:

• For replication, the binary log is used on master replication servers as a record of the statements to
be sent to slave servers. The master server sends the events contained in its binary log to its slaves,
which execute those events to make the same data changes that were made on the master. See
Section 16.2, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup file has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 7.3.2, “Using Backups
for Recovery”.

However, there are certain binary logging issues that apply with respect to stored programs (stored
procedures and functions, triggers, and events), if logging occurs at the statement level:

• In some cases, it is possible that a statement will affect different sets of rows on a master and a
slave.

• Replicated statements executed on a slave are processed by the slave SQL thread, which has full
privileges. It is possible for a procedure to follow different execution paths on master and slave

Binary Logging of Stored Programs

2262

servers, so a user can write a routine containing a dangerous statement that will execute only on the
slave where it is processed by a thread that has full privileges.

• If a stored program that modifies data is nondeterministic, it is not repeatable. This can result in
different data on a master and slave, or cause restored data to differ from the original data.

This section describes how MySQL 5.7 handles binary logging for stored programs. It states the current
conditions that the implementation places on the use of stored programs, and what you can do to avoid
problems. It also provides additional information about the reasons for these conditions.

In general, the issues described here result when binary logging occurs at the SQL statement level.
If you use row-based binary logging, the log contains changes made to individual rows as a result
of executing SQL statements. When routines or triggers execute, row changes are logged, not the
statements that make the changes. For stored procedures, this means that the CALL statement is
not logged. For stored functions, row changes made within the function are logged, not the function
invocation. For triggers, row changes made by the trigger are logged. On the slave side, only the
row changes are seen, not the stored program invocation. For general information about row-based
logging, see Section 16.1.2, “Replication Formats”.

Unless noted otherwise, the remarks here assume that you have enabled binary logging by starting
the server with the --log-bin option. (See Section 5.2.4, “The Binary Log”.) If the binary log is not
enabled, replication is not possible, nor is the binary log available for data recovery.

The current conditions on the use of stored functions in MySQL 5.7 can be summarized as follows.
These conditions do not apply to stored procedures or Event Scheduler events and they do not apply
unless binary logging is enabled.

• To create or alter a stored function, you must have the SUPER privilege, in addition to the CREATE
ROUTINE or ALTER ROUTINE privilege that is normally required. (Depending on the DEFINER value
in the function definition, SUPER might be required regardless of whether binary logging is enabled.
See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.)

• When you create a stored function, you must declare either that it is deterministic or that it does not
modify data. Otherwise, it may be unsafe for data recovery or replication.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

This function is deterministic (and does not modify data), so it is safe:

CREATE FUNCTION f1(i INT)
RETURNS INT
DETERMINISTIC
READS SQL DATA
BEGIN
 RETURN i;
END;

This function uses UUID(), which is not deterministic, so the function also is not deterministic and is
not safe:

CREATE FUNCTION f2()
RETURNS CHAR(36) CHARACTER SET utf8
BEGIN
 RETURN UUID();
END;

Binary Logging of Stored Programs

2263

This function modifies data, so it may not be safe:

CREATE FUNCTION f3(p_id INT)
RETURNS INT
BEGIN
 UPDATE t SET modtime = NOW() WHERE id = p_id;
 RETURN ROW_COUNT();
END;

Assessment of the nature of a function is based on the “honesty” of the creator: MySQL does not
check that a function declared DETERMINISTIC is free of statements that produce nondeterministic
results.

• Although it is possible to create a deterministic stored function without specifying DETERMINISTIC,
you cannot execute this function using statement-based binary logging. To execute such a
function, you must use row-based or mixed binary logging. Alternatively, if you explicitly specify
DETERMINISTIC in the function definition, you can use any kind of logging, including statement-
based logging.

• To relax the preceding conditions on function creation (that you must have the SUPER privilege
and that a function must be declared deterministic or to not modify data), set the global
log_bin_trust_function_creators system variable to 1. By default, this variable has a value
of 0, but you can change it like this:

mysql> SET GLOBAL log_bin_trust_function_creators = 1;

You can also set this variable by using the --log-bin-trust-function-creators=1 option
when starting the server.

If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• For information about built-in functions that may be unsafe for replication (and thus cause stored
functions that use them to be unsafe as well), see Section 16.4.1, “Replication Features and Issues”.

Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to
triggers with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC
characteristic, so triggers are assumed to be always deterministic. However, this assumption might in
some cases be invalid. For example, the UUID() function is nondeterministic (and does not replicate).
You should be careful about using such functions in triggers.

Triggers can update tables, so error messages similar to those for stored functions occur with CREATE
TRIGGER if you do not have the required privileges. On the slave side, the slave uses the trigger
DEFINER attribute to determine which user is considered to be the creator of the trigger.

The rest of this section provides additional detail about the logging implementation and its implications.
You need not read it unless you are interested in the background on the rationale for the current
logging-related conditions on stored routine use. This discussion applies only for statement-based
logging, and not for row-based logging, with the exception of the first item: CREATE and DROP
statements are logged as statements regardless of the logging mode.

• The server writes CREATE EVENT, CREATE PROCEDURE, CREATE FUNCTION, ALTER EVENT,
ALTER PROCEDURE, ALTER FUNCTION, DROP EVENT, DROP PROCEDURE, and DROP FUNCTION
statements to the binary log.

• A stored function invocation is logged as a SELECT statement if the function changes data and
occurs within a statement that would not otherwise be logged. This prevents nonreplication of data
changes that result from use of stored functions in nonlogged statements. For example, SELECT
statements are not written to the binary log, but a SELECT might invoke a stored function that makes

Binary Logging of Stored Programs

2264

changes. To handle this, a SELECT func_name() statement is written to the binary log when the
given function makes a change. Suppose that the following statements are executed on the master:

CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN
 IF (a < 3) THEN
 INSERT INTO t2 VALUES (a);
 END IF;
 RETURN 0;
END;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);

SELECT f1(a) FROM t1;

When the SELECT statement executes, the function f1() is invoked three times. Two of those
invocations insert a row, and MySQL logs a SELECT statement for each of them. That is, MySQL
writes the following statements to the binary log:

SELECT f1(1);
SELECT f1(2);

The server also logs a SELECT statement for a stored function invocation when the function invokes
a stored procedure that causes an error. In this case, the server writes the SELECT statement to the
log along with the expected error code. On the slave, if the same error occurs, that is the expected
result and replication continues. Otherwise, replication stops.

• Logging stored function invocations rather than the statements executed by a function has a security
implication for replication, which arises from two factors:

• It is possible for a function to follow different execution paths on master and slave servers.

• Statements executed on a slave are processed by the slave SQL thread which has full privileges.

The implication is that although a user must have the CREATE ROUTINE privilege to create a
function, the user can write a function containing a dangerous statement that will execute only on the
slave where it is processed by a thread that has full privileges. For example, if the master and slave
servers have server ID values of 1 and 2, respectively, a user on the master server could create and
invoke an unsafe function unsafe_func() as follows:

mysql> delimiter //
mysql> CREATE FUNCTION unsafe_func () RETURNS INT
 -> BEGIN
 -> IF @@server_id=2 THEN dangerous_statement; END IF;
 -> RETURN 1;
 -> END;
 -> //
mysql> delimiter ;
mysql> INSERT INTO t VALUES(unsafe_func());

The CREATE FUNCTION and INSERT statements are written to the binary log, so the slave will
execute them. Because the slave SQL thread has full privileges, it will execute the dangerous
statement. Thus, the function invocation has different effects on the master and slave and is not
replication-safe.

To guard against this danger for servers that have binary logging enabled, stored function creators
must have the SUPER privilege, in addition to the usual CREATE ROUTINE privilege that is required.
Similarly, to use ALTER FUNCTION, you must have the SUPER privilege in addition to the ALTER
ROUTINE privilege. Without the SUPER privilege, an error will occur:

ERROR 1419 (HY000): You do not have the SUPER privilege and

Binary Logging of Stored Programs

2265

binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

If you do not want to require function creators to have the SUPER privilege (for example, if all users
with the CREATE ROUTINE privilege on your system are experienced application developers), set
the global log_bin_trust_function_creators system variable to 1. You can also set this
variable by using the --log-bin-trust-function-creators=1 option when starting the server.
If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• If a function that performs updates is nondeterministic, it is not repeatable. This can have two
undesirable effects:

• It will make a slave different from the master.

• Restored data will be different from the original data.

To deal with these problems, MySQL enforces the following requirement: On a master server,
creation and alteration of a function is refused unless you declare the function to be deterministic or
to not modify data. Two sets of function characteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function
always produces the same result for given inputs. The default is NOT DETERMINISTIC if
neither characteristic is given. To declare that a function is deterministic, you must specify
DETERMINISTIC explicitly.

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics
provide information about whether the function reads or writes data. Either NO SQL or READS SQL
DATA indicates that a function does not change data, but you must specify one of these explicitly
because the default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

If you set log_bin_trust_function_creators to 1, the requirement that functions be
deterministic or not modify data is dropped.

• Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the
server does not log the CALL statement, it logs those statements within the procedure that actually
execute. As a result, the same changes that occur on the master will be observed on slave servers.
This prevents problems that could result from a procedure having different execution paths on
different machines.

In general, statements executed within a stored procedure are written to the binary log using the
same rules that would apply were the statements to be executed in standalone fashion. Some
special care is taken when logging procedure statements because statement execution within
procedures is not quite the same as in nonprocedure context:

• A statement to be logged might contain references to local procedure variables. These variables
do not exist outside of stored procedure context, so a statement that refers to such a variable
cannot be logged literally. Instead, each reference to a local variable is replaced by this construct
for logging purposes:

NAME_CONST(var_name, var_value)

Binary Logging of Stored Programs

2266

var_name is the local variable name, and var_value is a constant indicating the value that the
variable has at the time the statement is logged. NAME_CONST() has a value of var_value, and
a “name” of var_name. Thus, if you invoke this function directly, you get a result like this:

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

NAME_CONST() enables a logged standalone statement to be executed on a slave with the same
effect as the original statement that was executed on the master within a stored procedure.

The use of NAME_CONST() can result in a problem for CREATE TABLE ... SELECT statements
when the source column expressions refer to local variables. Converting these references to
NAME_CONST() expressions can result in column names that are different on the master and
slave servers, or names that are too long to be legal column identifiers. A workaround is to supply
aliases for columns that refer to local variables. Consider this statement when myvar has a value
of 1:

CREATE TABLE t1 SELECT myvar;

That will be rewritten as follows:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1);

To ensure that the master and slave tables have the same column names, write the statement like
this:

CREATE TABLE t1 SELECT myvar AS myvar;

The rewritten statement becomes:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1) AS myvar;

• A statement to be logged might contain references to user-defined variables. To handle this,
MySQL writes a SET statement to the binary log to make sure that the variable exists on the slave
with the same value as on the master. For example, if a statement refers to a variable @my_var,
that statement will be preceded in the binary log by the following statement, where value is the
value of @my_var on the master:

SET @my_var = value;

• Procedure calls can occur within a committed or rolled-back transaction. Transactional context is
accounted for so that the transactional aspects of procedure execution are replicated correctly.
That is, the server logs those statements within the procedure that actually execute and modify
data, and also logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if
a procedure updates only transactional tables and is executed within a transaction that is rolled
back, those updates are not logged. If the procedure occurs within a committed transaction, BEGIN
and COMMIT statements are logged with the updates. For a procedure that executes within a
rolled-back transaction, its statements are logged using the same rules that would apply if the
statements were executed in standalone fashion:

• Updates to transactional tables are not logged.

• Updates to nontransactional tables are logged because rollback does not cancel them.

Binary Logging of Stored Programs

2267

• Updates to a mix of transactional and nontransactional tables are logged surrounded by BEGIN
and ROLLBACK so that slaves will make the same changes and rollbacks as on the master.

• A stored procedure call is not written to the binary log at the statement level if the procedure is
invoked from within a stored function. In that case, the only thing logged is the statement that invokes
the function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a
statement that is not logged). For this reason, care should be exercised in the use of stored functions
that invoke a procedure, even if the procedure is otherwise safe in itself.

2268

2269

Chapter 19 INFORMATION_SCHEMA Tables

Table of Contents
19.1 The INFORMATION_SCHEMA CHARACTER_SETS Table .. 2272
19.2 The INFORMATION_SCHEMA COLLATIONS Table .. 2272
19.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table 2273
19.4 The INFORMATION_SCHEMA COLUMNS Table .. 2273
19.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table ... 2274
19.6 The INFORMATION_SCHEMA ENGINES Table .. 2275
19.7 The INFORMATION_SCHEMA EVENTS Table .. 2275
19.8 The INFORMATION_SCHEMA FILES Table .. 2279
19.9 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables 2280
19.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables 2280
19.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table ... 2280
19.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table ... 2281
19.13 The INFORMATION_SCHEMA PARAMETERS Table ... 2282
19.14 The INFORMATION_SCHEMA PARTITIONS Table ... 2282
19.15 The INFORMATION_SCHEMA PLUGINS Table .. 2285
19.16 The INFORMATION_SCHEMA PROCESSLIST Table ... 2286
19.17 The INFORMATION_SCHEMA PROFILING Table .. 2287
19.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 2288
19.19 The INFORMATION_SCHEMA ROUTINES Table .. 2289
19.20 The INFORMATION_SCHEMA SCHEMATA Table .. 2290
19.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table ... 2290
19.22 The INFORMATION_SCHEMA STATISTICS Table ... 2291
19.23 The INFORMATION_SCHEMA TABLES Table .. 2291
19.24 The INFORMATION_SCHEMA TABLESPACES Table ... 2293
19.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table ... 2293
19.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table ... 2293
19.27 The INFORMATION_SCHEMA TRIGGERS Table .. 2294
19.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table ... 2296
19.29 The INFORMATION_SCHEMA VIEWS Table .. 2296
19.30 INFORMATION_SCHEMA Tables for InnoDB .. 2297

19.30.1 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables 2298
19.30.2 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 2298
19.30.3 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables ... 2299
19.30.4 The INFORMATION_SCHEMA INNODB_TRX Table .. 2300
19.30.5 The INFORMATION_SCHEMA INNODB_LOCKS Table .. 2301
19.30.6 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table 2302
19.30.7 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table 2303
19.30.8 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table 2303
19.30.9 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table 2304
19.30.10 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table 2305
19.30.11 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table 2305
19.30.12 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table 2305
19.30.13 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View 2306
19.30.14 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table 2307
19.30.15 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table 2307
19.30.16 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 2307
19.30.17 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 2309
19.30.18 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 2309
19.30.19 The INFORMATION_SCHEMA INNODB_METRICS Table 2310
19.30.20 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 2316

Usage Notes for the INFORMATION_SCHEMA Database

2270

19.30.21 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 2317
19.30.22 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 2317
19.30.23 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 2318
19.30.24 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 2318
19.30.25 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 2319
19.30.26 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 2319

19.31 Extensions to SHOW Statements .. 2320

INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server
such as the name of a database or table, the data type of a column, or access privileges. Other terms
that are sometimes used for this information are data dictionary and system catalog.

Usage Notes for the INFORMATION_SCHEMA Database

INFORMATION_SCHEMA is a database within each MySQL instance, the place that stores information
about all the other databases that the MySQL server maintains. The INFORMATION_SCHEMA database
contains several read-only tables. They are actually views, not base tables, so there are no files
associated with them, and you cannot set triggers on them. Also, there is no database directory with
that name.

Although you can select INFORMATION_SCHEMA as the default database with a USE statement, you
can only read the contents of tables, not perform INSERT, UPDATE, or DELETE operations on them.

Example

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
 -> FROM information_schema.tables
 -> WHERE table_schema = 'db5'
 -> ORDER BY table_name;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
fk	BASE TABLE	InnoDB
fk2	BASE TABLE	InnoDB
goto	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
loop	BASE TABLE	MyISAM
pk	BASE TABLE	InnoDB
t	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
tables	BASE TABLE	MyISAM
v	VIEW	NULL
v2	VIEW	NULL
v3	VIEW	NULL
v56	VIEW	NULL
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, showing just three pieces
of information: the name of the table, its type, and its storage engine.

Character Set Considerations

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N)
CHARACTER SET utf8 where N is at least 64. MySQL uses the default collation for this character

INFORMATION_SCHEMA as Alternative to SHOW Statements

2271

set (utf8_general_ci) for all searches, sorts, comparisons, and other string operations on such
columns.

Because some MySQL objects are represented as files, searches in INFORMATION_SCHEMA string
columns can be affected by file system case sensitivity. For more information, see Section 10.1.7.9,
“Collation and INFORMATION_SCHEMA Searches”.

INFORMATION_SCHEMA as Alternative to SHOW Statements

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way
to provide access to the information provided by the various SHOW statements that MySQL supports
(SHOW DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared to
SHOW:

• It conforms to Codd's rules, because all access is done on tables.

• You can use the familiar syntax of the SELECT statement, and only need to learn some table and
column names.

• The implementor need not worry about adding keywords.

• You can filter, sort, concatenate, and transform the results from INFORMATION_SCHEMA queries into
whatever format your application needs, such as a data structure or a text representation to parse.

• This technique is more interoperable with other database systems. For example, Oracle Database
users are familiar with querying tables in the Oracle data dictionary.

Because SHOW is familiar and widely used, the SHOW statements remain as an alternative. In fact, along
with the implementation of INFORMATION_SCHEMA, there are enhancements to SHOW as described in
Section 19.31, “Extensions to SHOW Statements”.

Privileges

Each MySQL user has the right to access these tables, but can see only the rows in the tables that
correspond to objects for which the user has the proper access privileges. In some cases (for example,
the ROUTINE_DEFINITION column in the INFORMATION_SCHEMA.ROUTINES table), users who have
insufficient privileges see NULL. These restrictions do not apply for InnoDB tables; you can see them
with only the PROCESS privilege.

The same privileges apply to selecting information from INFORMATION_SCHEMA and viewing the same
information through SHOW statements. In either case, you must have some privilege on an object to see
information about it.

Performance Considerations

INFORMATION_SCHEMA queries that search for information from more than one database might take
a long time and impact performance. To check the efficiency of a query, you can use EXPLAIN. For
information about using EXPLAIN output to tune INFORMATION_SCHEMA queries, see Section 8.2.4,
“Optimizing INFORMATION_SCHEMA Queries”.

Standards Considerations

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO
SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core
feature F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity.
However, MySQL has omitted many columns that are not relevant for our implementation,
and added columns that are MySQL-specific. One such column is the ENGINE column in the
INFORMATION_SCHEMA.TABLES table.

Conventions in the INFORMATION_SCHEMA Reference Sections

2272

Although other DBMSs use a variety of names, like syscat or system, the standard name is
INFORMATION_SCHEMA.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we
changed the names of some columns marked “MySQL extension”. (For example, we changed
COLLATION to TABLE_COLLATION in the TABLES table.) See the list of reserved words near the end
of this article: http://web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/
gulutzan5.

Conventions in the INFORMATION_SCHEMA Reference Sections

The following sections describe each of the tables and columns in INFORMATION_SCHEMA. For each
column, there are three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA
table. This corresponds to the standard SQL name unless the “Remarks” field says “MySQL
extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the
value of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL
extension to standard SQL.

Many sections indicate what SHOW statement is equivalent to a SELECT that retrieves information from
INFORMATION_SCHEMA. For SHOW statements that display information for the default database if you
omit a FROM db_name clause, you can often select information for the default database by adding an
AND TABLE_SCHEMA = SCHEMA() condition to the WHERE clause of a query that retrieves information
from an INFORMATION_SCHEMA table.

For information about INFORMATION_SCHEMA tables specific to the InnoDB storage engine, see
Section 19.30, “INFORMATION_SCHEMA Tables for InnoDB”.

For answers to questions that are often asked concerning the INFORMATION_SCHEMA database, see
Section B.7, “MySQL 5.7 FAQ: INFORMATION_SCHEMA”.

19.1 The INFORMATION_SCHEMA CHARACTER_SETS Table

The CHARACTER_SETS table provides information about available character sets.

INFORMATION_SCHEMA Name SHOW Name Remarks

CHARACTER_SET_NAME Charset

DEFAULT_COLLATE_NAME Default collation

DESCRIPTION Description MySQL extension

MAXLEN Maxlen MySQL extension

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 [WHERE CHARACTER_SET_NAME LIKE 'wild']

SHOW CHARACTER SET
 [LIKE 'wild']

19.2 The INFORMATION_SCHEMA COLLATIONS Table

The COLLATIONS table provides information about collations for each character set.

http://web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/gulutzan5
http://web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/gulutzan5

The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table

2273

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset MySQL extension

ID Id MySQL extension

IS_DEFAULT Default MySQL extension

IS_COMPILED Compiled MySQL extension

SORTLEN Sortlen MySQL extension

• COLLATION_NAME is the collation name.

• CHARACTER_SET_NAME is the name of the character set with which the collation is associated.

• ID is the collation ID.

• IS_DEFAULT indicates whether the collation is the default for its character set.

• IS_COMPILED indicates whether the character set is compiled into the server.

• SORTLEN is related to the amount of memory required to sort strings expressed in the character set.

Collation information is also available from the SHOW COLLATION statement. The following statements
are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
 [WHERE COLLATION_NAME LIKE 'wild']

SHOW COLLATION
 [LIKE 'wild']

19.3 The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable
for what collation. The columns are equivalent to the first two display fields that we get from SHOW
COLLATION.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset

19.4 The INFORMATION_SCHEMA COLUMNS Table

The COLUMNS table provides information about columns in tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME Field

ORDINAL_POSITION see notes

COLUMN_DEFAULT Default

The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

2274

INFORMATION_SCHEMA Name SHOW Name Remarks

IS_NULLABLE Null

DATA_TYPE Type

CHARACTER_MAXIMUM_LENGTH Type

CHARACTER_OCTET_LENGTH

NUMERIC_PRECISION Type

NUMERIC_SCALE Type

DATETIME_PRECISION Type

CHARACTER_SET_NAME

COLLATION_NAME Collation

COLUMN_TYPE Type MySQL extension

COLUMN_KEY Key MySQL extension

EXTRA Extra MySQL extension

PRIVILEGES Privileges MySQL extension

COLUMN_COMMENT Comment MySQL extension

Notes:

• In SHOW, the Type display includes values from several different COLUMNS columns.

• ORDINAL_POSITION is necessary because you might want to say ORDER BY
ORDINAL_POSITION. Unlike SHOW, SELECT does not have automatic ordering.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for
multi-byte character sets.

• CHARACTER_SET_NAME can be derived from Collation. For example, if you say SHOW FULL
COLUMNS FROM t, and you see in the Collation column a value of latin1_swedish_ci, the
character set is what is before the first underscore: latin1.

The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE table_name = 'tbl_name'
 [AND table_schema = 'db_name']
 [AND column_name LIKE 'wild']

SHOW COLUMNS
 FROM tbl_name
 [FROM db_name]
 [LIKE 'wild']

19.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

The COLUMN_PRIVILEGES table provides information about column privileges. This information comes
from the mysql.columns_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

TABLE_CATALOG def

TABLE_SCHEMA

The INFORMATION_SCHEMA ENGINES Table

2275

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_NAME

COLUMN_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• In the output from SHOW FULL COLUMNS, the privileges are all in one field and in lowercase, for
example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege
per row, in uppercase.

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES.

• If the user has GRANT OPTION privilege, IS_GRANTABLE should be YES. Otherwise,
IS_GRANTABLE should be NO. The output does not list GRANT OPTION as a separate privilege.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW GRANTS ...

19.6 The INFORMATION_SCHEMA ENGINES Table

The ENGINES table provides information about storage engines.

INFORMATION_SCHEMA Name SHOW Name Remarks

ENGINE Engine MySQL extension

SUPPORT Support MySQL extension

COMMENT Comment MySQL extension

TRANSACTIONS Transactions MySQL extension

XA XA MySQL extension

SAVEPOINTS Savepoints MySQL extension

Notes:

• The ENGINES table is a nonstandard table. Its contents correspond to the columns of the SHOW
ENGINES statement. For descriptions of its columns, see Section 13.7.5.15, “SHOW ENGINES
Syntax”.

See also Section 13.7.5.15, “SHOW ENGINES Syntax”.

19.7 The INFORMATION_SCHEMA EVENTS Table

The EVENTS table provides information about scheduled events, which are discussed in Section 18.4,
“Using the Event Scheduler”. The SHOW Name values correspond to column names of the SHOW
EVENTS statement.

INFORMATION_SCHEMA Name SHOW Name Remarks

EVENT_CATALOG def, MySQL extension

EVENT_SCHEMA Db MySQL extension

The INFORMATION_SCHEMA EVENTS Table

2276

INFORMATION_SCHEMA Name SHOW Name Remarks

EVENT_NAME Name MySQL extension

DEFINER Definer MySQL extension

TIME_ZONE Time zone MySQL extension

EVENT_BODY MySQL extension

EVENT_DEFINITION MySQL extension

EVENT_TYPE Type MySQL extension

EXECUTE_AT Execute at MySQL extension

INTERVAL_VALUE Interval value MySQL extension

INTERVAL_FIELD Interval field MySQL extension

SQL_MODE MySQL extension

STARTS Starts MySQL extension

ENDS Ends MySQL extension

STATUS Status MySQL extension

ON_COMPLETION MySQL extension

CREATED MySQL extension

LAST_ALTERED MySQL extension

LAST_EXECUTED MySQL extension

EVENT_COMMENT MySQL extension

ORIGINATOR Originator MySQL extension

CHARACTER_SET_CLIENT character_set_client MySQL extension

COLLATION_CONNECTION collation_connection MySQL extension

DATABASE_COLLATION Database Collation MySQL extension

Notes:

• The EVENTS table is a nonstandard table.

• EVENT_CATALOG: The value of this column is always def.

• EVENT_SCHEMA: The name of the schema (database) to which this event belongs.

• EVENT_NAME: The name of the event.

• DEFINER: The account of the user who created the event, in 'user_name'@'host_name' format.

• TIME_ZONE: The event time zone, which is the time zone used for scheduling the event and that is in
effect within the event as it executes. The default value is SYSTEM.

• EVENT_BODY: The language used for the statements in the event's DO clause; in MySQL 5.7, this is
always SQL.

This column is not to be confused with the column of the same name (now named
EVENT_DEFINITION) that existed in earlier MySQL versions.

• EVENT_DEFINITION: The text of the SQL statement making up the event's DO clause; in other
words, the statement executed by this event.

• EVENT_TYPE: The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• EXECUTE_AT: For a one-time event, this is the DATETIME value specified in the AT clause of
the CREATE EVENT statement used to create the event, or of the last ALTER EVENT statement

The INFORMATION_SCHEMA EVENTS Table

2277

that modified the event. The value shown in this column reflects the addition or subtraction of
any INTERVAL value included in the event's AT clause. For example, if an event is created using
ON SCHEDULE AT CURRENT_TIMESTAMP + '1:6' DAY_HOUR, and the event was created at
2006-02-09 14:05:30, the value shown in this column would be '2006-02-10 20:05:30'.

If the event's timing is determined by an EVERY clause instead of an AT clause (that is, if the event is
recurring), the value of this column is NULL.

• INTERVAL_VALUE: For recurring events, this column contains the numeric portion of the event's
EVERY clause.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column is
NULL.

• INTERVAL_FIELD: For recurring events, this column contains the units portion of the EVERY clause
governing the timing of the event. Thus, this column contains a value such as 'YEAR', 'QUARTER',
'DAY', and so on.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column is
NULL.

• SQL_MODE: The SQL mode in effect when the event was created or altered, and under which the
event executes. For the permitted values, see Section 5.1.7, “Server SQL Modes”.

• STARTS: For a recurring event whose definition includes a STARTS clause, this column contains
the corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used.

If there is no STARTS clause affecting the timing of the event, this column is NULL

• ENDS: For a recurring event whose definition includes a ENDS clause, this column contains the
corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used.

If there is no ENDS clause affecting the timing of the event, this column is NULL.

• STATUS: One of the three values ENABLED, DISABLED, or SLAVESIDE_DISABLED.

SLAVESIDE_DISABLED indicates that the creation of the event occurred on another MySQL server
acting as a replication master and was replicated to the current MySQL server which is acting as a
slave, but the event is not presently being executed on the slave. See Section 16.4.1.11, “Replication
of Invoked Features”, for more information.

• ON_COMPLETION: One of the two values PRESERVE or NOT PRESERVE.

• CREATED: The date and time when the event was created. This is a TIMESTAMP value.

• LAST_ALTERED: The date and time when the event was last modified. This is a TIMESTAMP value.
If the event has not been modified since its creation, this column holds the same value as the
CREATED column.

• LAST_EXECUTED: The date and time when the event last executed. A DATETIME value. If the event
has never executed, this column is NULL.

LAST_EXECUTED indicates when the event started. As a result, the ENDS column is never less than
LAST_EXECUTED.

• EVENT_COMMENT: The text of a comment, if the event has one. If not, the value of this column is an
empty string.

• ORIGINATOR: The server ID of the MySQL server on which the event was created; used in
replication. The default value is 0.

The INFORMATION_SCHEMA EVENTS Table

2278

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the event was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the event was created.

• DATABASE_COLLATION: The collation of the database with which the event is associated.

Example: Suppose that the user jon@ghidora creates an event named e_daily, and then modifies
it a few minutes later using an ALTER EVENT statement, as shown here:

DELIMITER |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

DELIMITER ;

ALTER EVENT e_daily
 ENABLED;

(Note that comments can span multiple lines.)

This user can then run the following SELECT statement, and obtain the output shown:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 > WHERE EVENT_NAME = 'e_daily'
 > AND EVENT_SCHEMA = 'myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: def
 EVENT_SCHEMA: test
 EVENT_NAME: e_daily
 DEFINER: me@localhost
 TIME_ZONE: SYSTEM
 EVENT_BODY: SQL
 EVENT_DEFINITION: BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 1
 INTERVAL_FIELD: DAY
 SQL_MODE:
 STARTS: 2008-09-03 12:13:39
 ENDS: NULL
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2008-09-03 12:13:39
 LAST_ALTERED: 2008-09-03 12:13:39
 LAST_EXECUTED: NULL
 EVENT_COMMENT: Saves total number of sessions then clears the
 table each day
 ORIGINATOR: 1
CHARACTER_SET_CLIENT: latin1
COLLATION_CONNECTION: latin1_swedish_ci
 DATABASE_COLLATION: latin1_swedish_ci

The INFORMATION_SCHEMA FILES Table

2279

Times in the EVENTS table are displayed using the event time zone or the current session time zone,
as described in Section 18.4.4, “Event Metadata”.

See also Section 13.7.5.17, “SHOW EVENTS Syntax”.

19.8 The INFORMATION_SCHEMA FILES Table
The FILES table provides information about the files in which MySQL tablespace data is stored.

INFORMATION_SCHEMA Name SHOW Name Remarks

FILE_ID MySQL extension

FILE_NAME MySQL extension

FILE_TYPE MySQL extension

TABLESPACE_NAME MySQL extension

TABLE_CATALOG MySQL extension

TABLE_SCHEMA MySQL extension

TABLE_NAME MySQL extension

LOGFILE_GROUP_NAME MySQL extension

LOGFILE_GROUP_NUMBER MySQL extension

ENGINE MySQL extension

FULLTEXT_KEYS MySQL extension

DELETED_ROWS MySQL extension

UPDATE_COUNT MySQL extension

FREE_EXTENTS MySQL extension

TOTAL_EXTENTS MySQL extension

EXTENT_SIZE MySQL extension

INITIAL_SIZE MySQL extension

MAXIMUM_SIZE MySQL extension

AUTOEXTEND_SIZE MySQL extension

CREATION_TIME MySQL extension

LAST_UPDATE_TIME MySQL extension

LAST_ACCESS_TIME MySQL extension

RECOVER_TIME MySQL extension

TRANSACTION_COUNTER MySQL extension

VERSION MySQL extension

ROW_FORMAT MySQL extension

TABLE_ROWS MySQL extension

AVG_ROW_LENGTH MySQL extension

DATA_LENGTH MySQL extension

MAX_DATA_LENGTH MySQL extension

INDEX_LENGTH MySQL extension

DATA_FREE MySQL extension

CREATE_TIME MySQL extension

UPDATE_TIME MySQL extension

CHECK_TIME MySQL extension

The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables

2280

INFORMATION_SCHEMA Name SHOW Name Remarks

CHECKSUM MySQL extension

STATUS MySQL extension

EXTRA MySQL extension

Notes:

• FILE_ID column values are auto-generated.

• FILE_NAME is the name of a data file created by CREATE TABLESPACE or ALTER TABLESPACE.

• FILE_TYPE is the tablespace file type.

• TABLESPACE_NAME is the name of the tablespace with which the file is associated.

• Currently, the value of the TABLESPACE_CATALOG column is always NULL.

• TABLE_NAME is the name of the table with which the file is associated, if any.

• The EXTENT_SIZE is always 0.

• There are no SHOW statements associated with the FILES table.

19.9 The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables

The GLOBAL_STATUS and SESSION_STATUS tables provide information about server status variables.
Their contents correspond to the information produced by the SHOW GLOBAL STATUS and SHOW
SESSION STATUS statements (see Section 13.7.5.34, “SHOW STATUS Syntax”).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name

VARIABLE_VALUE Value

Notes:

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024).

19.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables

The GLOBAL_VARIABLES and SESSION_VARIABLES tables provide information about server status
variables. Their contents correspond to the information produced by the SHOW GLOBAL VARIABLES
and SHOW SESSION VARIABLES statements (see Section 13.7.5.38, “SHOW VARIABLES Syntax”).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name

VARIABLE_VALUE Value

Notes:

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024).

19.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
The KEY_COLUMN_USAGE table describes which key columns have constraints.

http://dev.mysql.com/doc/refman/5.6/en/create-tablespace.html
http://dev.mysql.com/doc/refman/5.6/en/alter-tablespace.html

The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

2281

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG def

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG def

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

ORDINAL_POSITION

POSITION_IN_UNIQUE_CONSTRAINT

REFERENCED_TABLE_SCHEMA

REFERENCED_TABLE_NAME

REFERENCED_COLUMN_NAME

Notes:

• If the constraint is a foreign key, then this is the column of the foreign key, not the column that the
foreign key references.

• The value of ORDINAL_POSITION is the column's position within the constraint, not the column's
position within the table. Column positions are numbered beginning with 1.

• The value of POSITION_IN_UNIQUE_CONSTRAINT is NULL for unique and primary-key constraints.
For foreign-key constraints, it is the ordinal position in key of the table that is being referenced.

Suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(
 s1 INT,
 s2 INT,
 s3 INT,
 PRIMARY KEY(s3)
) ENGINE=InnoDB;

CREATE TABLE t3
(
 s1 INT,
 s2 INT,
 s3 INT,
 KEY(s1),
 CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)
) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

19.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

The OPTIMIZER_TRACE table provides information produced by the optimizer tracing capability.
To enable tracking, use the optimizer_trace system variable. For details, see MySQL Internals:
Tracing the Optimizer.

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

The INFORMATION_SCHEMA PARAMETERS Table

2282

19.13 The INFORMATION_SCHEMA PARAMETERS Table

The PARAMETERS table provides information about stored procedure and function parameters,
and about return values for stored functions. Parameter information is similar to the contents of the
param_list column in the mysql.proc table.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_CATALOG def

SPECIFIC_SCHEMA db routine database

SPECIFIC_NAME name routine name

ORDINAL_POSITION 1, 2, 3, ... for parameters, 0
for function RETURNS clause

PARAMETER_MODE IN, OUT, INOUT (NULL for
RETURNS)

PARAMETER_NAME parameter name (NULL for
RETURNS)

DATA_TYPE same as for COLUMNS table

CHARACTER_MAXIMUM_LENGTH same as for COLUMNS table

CHARACTER_OCTET_LENGTH same as for COLUMNS table

NUMERIC_PRECISION same as for COLUMNS table

NUMERIC_SCALE same as for COLUMNS table

DATETIME_PRECISION same as for COLUMNS table

CHARACTER_SET_NAME same as for COLUMNS table

COLLATION_NAME same as for COLUMNS table

DTD_IDENTIFIER same as for COLUMNS table

ROUTINE_TYPE type same as for ROUTINES table

Notes:

• For successive parameters of a stored procedure or function, the ORDINAL_POSITION values are
1, 2, 3, and so forth. For a stored function, there is also a row that describes the data type for the
RETURNS clause. The return value is not a true parameter, so the row that describes it has these
unique characteristics:

• The ORDINAL_POSITION value is 0.

• The PARAMETER_NAME and PARAMETER_MODE values are NULL because the return value has no
name and the mode does not apply.

19.14 The INFORMATION_SCHEMA PARTITIONS Table

The PARTITIONS table provides information about table partitions. See Chapter 17, Partitioning, for
more information about partitioning tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG MySQL extension

TABLE_SCHEMA MySQL extension

TABLE_NAME MySQL extension

PARTITION_NAME MySQL extension

The INFORMATION_SCHEMA PARTITIONS Table

2283

INFORMATION_SCHEMA Name SHOW Name Remarks

SUBPARTITION_NAME MySQL extension

PARTITION_ORDINAL_POSITION MySQL extension

SUBPARTITION_ORDINAL_POSITION MySQL extension

PARTITION_METHOD MySQL extension

SUBPARTITION_METHOD MySQL extension

PARTITION_EXPRESSION MySQL extension

SUBPARTITION_EXPRESSION MySQL extension

PARTITION_DESCRIPTION MySQL extension

TABLE_ROWS MySQL extension

AVG_ROW_LENGTH MySQL extension

DATA_LENGTH MySQL extension

MAX_DATA_LENGTH MySQL extension

INDEX_LENGTH MySQL extension

DATA_FREE MySQL extension

CREATE_TIME MySQL extension

UPDATE_TIME MySQL extension

CHECK_TIME MySQL extension

CHECKSUM MySQL extension

PARTITION_COMMENT MySQL extension

NODEGROUP MySQL extension

TABLESPACE_NAME MySQL extension

Notes:

• The PARTITIONS table is a nonstandard table.

Each record in this table corresponds to an individual partition or subpartition of a partitioned table.

• TABLE_CATALOG: This column is always def.

• TABLE_SCHEMA: This column contains the name of the database to which the table belongs.

• TABLE_NAME: This column contains the name of the table containing the partition.

• PARTITION_NAME: The name of the partition.

• SUBPARTITION_NAME: If the PARTITIONS table record represents a subpartition, then this column
contains the name of subpartition; otherwise it is NULL.

• PARTITION_ORDINAL_POSITION: All partitions are indexed in the same order as they are defined,
with 1 being the number assigned to the first partition. The indexing can change as partitions are
added, dropped, and reorganized; the number shown is this column reflects the current order, taking
into account any indexing changes.

• SUBPARTITION_ORDINAL_POSITION: Subpartitions within a given partition are also indexed and
reindexed in the same manner as partitions are indexed within a table.

• PARTITION_METHOD: One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY;
that is, one of the available partitioning types as discussed in Section 17.2, “Partitioning Types”.

• SUBPARTITION_METHOD: One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is,
one of the available subpartitioning types as discussed in Section 17.2.6, “Subpartitioning”.

The INFORMATION_SCHEMA PARTITIONS Table

2284

• PARTITION_EXPRESSION: This is the expression for the partitioning function used in the CREATE
TABLE or ALTER TABLE statement that created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
 c1 INT,
 c2 INT,
 c3 VARCHAR(25)
)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table record for a partition from this table
displays c1 + c2, as shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';
+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2 |
+----------------------+
1 row in set (0.09 sec)

• SUBPARTITION_EXPRESSION: This works in the same fashion for the subpartitioning expression
that defines the subpartitioning for a table as PARTITION_EXPRESSION does for the partitioning
expression used to define a table's partitioning.

If the table has no subpartitions, then this column is NULL.

• PARTITION_DESCRIPTION: This column is used for RANGE and LIST partitions. For a RANGE
partition, it contains the value set in the partition's VALUES LESS THAN clause, which can be
either an integer or MAXVALUE. For a LIST partition, this column contains the values defined in the
partition's VALUES IN clause, which is a comma-separated list of integer values.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.

• TABLE_ROWS: The number of table rows in the partition.

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column is only an estimated
value used in SQL optimization, and may not always be exact.

• AVG_ROW_LENGTH: The average length of the rows stored in this partition or subpartition, in bytes.

This is the same as DATA_LENGTH divided by TABLE_ROWS.

• DATA_LENGTH: The total length of all rows stored in this partition or subpartition, in bytes—that is,
the total number of bytes stored in the partition or subpartition.

• MAX_DATA_LENGTH: The maximum number of bytes that can be stored in this partition or
subpartition.

• INDEX_LENGTH: The length of the index file for this partition or subpartition, in bytes.

• DATA_FREE: The number of bytes allocated to the partition or subpartition but not used.

• CREATE_TIME: The time of the partition's or subpartition's creation.

• UPDATE_TIME: The time that the partition or subpartition was last modified.

• CHECK_TIME: The last time that the table to which this partition or subpartition belongs was checked.

The INFORMATION_SCHEMA PLUGINS Table

2285

Note

Some storage engines do not update this time; for tables using these storage
engines, this value is always NULL.

• CHECKSUM: The checksum value, if any; otherwise, this column is NULL.

• PARTITION_COMMENT: This column contains the text of any comment made for the partition.

In MySQL 5.7, the maximum length for a partition comment is defined as 1024 characters, and the
display width of the PARTITION_COMMENT column is also 1024, characters to match this limit (Bug
#11748924, Bug #37728).

The default value for this column is an empty string.

• NODEGROUP: This is the nodegroup to which the partition belongs. This is relevant only to MySQL
Cluster tables; otherwise the value of this column is always 0.

• TABLESPACE_NAME: This column contains the name of the tablespace to which the partition
belongs. Currently, the value of this column is always DEFAULT.

• A nonpartitioned table has one record in INFORMATION_SCHEMA.PARTITIONS; however, the
values of the PARTITION_NAME, SUBPARTITION_NAME, PARTITION_ORDINAL_POSITION,
SUBPARTITION_ORDINAL_POSITION, PARTITION_METHOD, SUBPARTITION_METHOD,
PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and PARTITION_DESCRIPTION
columns are all NULL. (The PARTITION_COMMENT column in this case is blank.)

19.15 The INFORMATION_SCHEMA PLUGINS Table
The PLUGINS table provides information about server plugins.

INFORMATION_SCHEMA Name SHOW Name Remarks

PLUGIN_NAME Name MySQL extension

PLUGIN_VERSION MySQL extension

PLUGIN_STATUS Status MySQL extension

PLUGIN_TYPE Type MySQL extension

PLUGIN_TYPE_VERSION MySQL extension

PLUGIN_LIBRARY Library MySQL extension

PLUGIN_LIBRARY_VERSION MySQL extension

PLUGIN_AUTHOR MySQL extension

PLUGIN_DESCRIPTION MySQL extension

PLUGIN_LICENSE License MySQL extension

LOAD_OPTION MySQL extension

Notes:

• The PLUGINS table is a nonstandard table.

• PLUGIN_NAME is the name used to refer to the plugin in statements such as INSTALL PLUGIN and
UNINSTALL PLUGIN.

• PLUGIN_VERSION is the version from the plugin's general type descriptor.

• PLUGIN_STATUS indicates the plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• PLUGIN_TYPE indicates the type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or
AUTHENTICATION.

The INFORMATION_SCHEMA PROCESSLIST Table

2286

• PLUGIN_TYPE_VERSION is the version from the plugin's type-specific descriptor.

• PLUGIN_LIBRARY is the name of the plugin shared object file. This is the name used to refer to the
plugin file in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in
the directory named by the plugin_dir system variable. If the library name is NULL, the plugin is
compiled in and cannot be uninstalled with UNINSTALL PLUGIN.

• PLUGIN_LIBRARY_VERSION indicates the plugin API interface version.

• PLUGIN_AUTHOR names the plugin author.

• PLUGIN_DESCRIPTION provides a short description of the plugin.

• PLUGIN_LICENSE indicates how the plugin is licensed; for example, GPL.

• LOAD_OPTION indicates how the plugin was loaded. The value is OFF, ON, FORCE, or
FORCE_PLUS_PERMANENT. See Section 5.1.8.1, “Installing and Uninstalling Plugins”.

For plugins installed with INSTALL PLUGIN, the PLUGIN_NAME and PLUGIN_LIBRARY values are
also registered in the mysql.plugin table.

These statements are equivalent:

SELECT
 PLUGIN_NAME, PLUGIN_STATUS, PLUGIN_TYPE,
 PLUGIN_LIBRARY, PLUGIN_LICENSE
FROM INFORMATION_SCHEMA.PLUGINS;

SHOW PLUGINS;

For information about plugin data structures that form the basis of the information in the PLUGINS
table, see Section 22.2, “The MySQL Plugin API”.

Plugin information is also available using the SHOW PLUGINS statement. See Section 13.7.5.24, “SHOW
PLUGINS Syntax”.

19.16 The INFORMATION_SCHEMA PROCESSLIST Table
The PROCESSLIST table provides information about which threads are running.

INFORMATION_SCHEMA Name SHOW Name Remarks

ID Id MySQL extension

USER User MySQL extension

HOST Host MySQL extension

DB db MySQL extension

COMMAND Command MySQL extension

TIME Time MySQL extension

STATE State MySQL extension

INFO Info MySQL extension

For an extensive description of the table columns, see Section 13.7.5.28, “SHOW PROCESSLIST
Syntax”.

Notes:

• The PROCESSLIST table is a nonstandard table.

• Like the output from the corresponding SHOW statement, the PROCESSLIST table will only show
information about your own threads, unless you have the PROCESS privilege, in which case you will
see information about other threads, too. As an anonymous user, you cannot see any rows at all.

The INFORMATION_SCHEMA PROFILING Table

2287

• If an SQL statement refers to INFORMATION_SCHEMA.PROCESSLIST, then MySQL will populate
the entire table once, when statement execution begins, so there is read consistency during the
statement. There is no read consistency for a multi-statement transaction, though.

• Process information is also available from the performance_schema.threads table. However,
access to threads does not require a mutex and has minimal impact on server performance.
INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance
consequences because they require a mutex. threads also shows information about background
threads, which INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST do not. This
means that threads can be used to monitor activity the other thread information sources cannot.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST

SHOW FULL PROCESSLIST

19.17 The INFORMATION_SCHEMA PROFILING Table

The PROFILING table provides statement profiling information. Its contents correspond to the
information produced by the SHOW PROFILES and SHOW PROFILE statements (see Section 13.7.5.30,
“SHOW PROFILES Syntax”). The table is empty unless the profiling session variable is set to 1.

Note

This table is deprecated as of MySQL 5.7.2 and will be removed in a future
MySQL release. Use the Performance Schema instead; see Chapter 20,
MySQL Performance Schema.

INFORMATION_SCHEMA Name SHOW Name Remarks

QUERY_ID Query_ID

SEQ

STATE Status

DURATION Duration

CPU_USER CPU_user

CPU_SYSTEM CPU_system

CONTEXT_VOLUNTARY Context_voluntary

CONTEXT_INVOLUNTARY Context_involuntary

BLOCK_OPS_IN Block_ops_in

BLOCK_OPS_OUT Block_ops_out

MESSAGES_SENT Messages_sent

MESSAGES_RECEIVED Messages_received

PAGE_FAULTS_MAJOR Page_faults_major

PAGE_FAULTS_MINOR Page_faults_minor

SWAPS Swaps

SOURCE_FUNCTION Source_function

SOURCE_FILE Source_file

SOURCE_LINE Source_line

Notes:

• QUERY_ID is a numeric statement identifier.

The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

2288

• SEQ is a sequence number indicating the display order for rows with the same QUERY_ID value.

• STATE is the profiling state to which the row measurements apply.

• DURATION indicates how long statement execution remained in the given state, in seconds.

• CPU_USER and CPU_SYSTEM indicate user and system CPU use, in seconds.

• CONTEXT_VOLUNTARY and CONTEXT_INVOLUNTARY indicate how many voluntary and involuntary
context switches occurred.

• BLOCK_OPS_IN and BLOCK_OPS_OUT indicate the number of block input and output operations.

• MESSAGES_SENT and MESSAGES_RECEIVED indicate the number of communication messages sent
and received.

• PAGE_FAULTS_MAJOR and PAGE_FAULTS_MINOR indicate the number of major and minor page
faults.

• SWAPS indicates how many swaps occurred.

• SOURCE_FUNCTION, SOURCE_FILE, and SOURCE_LINE provide information indicating where in the
source code the profiled state executes.

19.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS
Table

The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG def

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

UNIQUE_CONSTRAINT_CATALOG def

UNIQUE_CONSTRAINT_SCHEMA

UNIQUE_CONSTRAINT_NAME

MATCH_OPTION

UPDATE_RULE

DELETE_RULE

TABLE_NAME

REFERENCED_TABLE_NAME

Notes:

• TABLE_NAME has the same value as TABLE_NAME in
INFORMATION_SCHEMA.TABLE_CONSTRAINTS.

• CONSTRAINT_SCHEMA and CONSTRAINT_NAME identify the foreign key.

• UNIQUE_CONSTRAINT_SCHEMA, UNIQUE_CONSTRAINT_NAME, and REFERENCED_TABLE_NAME
identify the referenced key.

• The only valid value at this time for MATCH_OPTION is NONE.

• The possible values for UPDATE_RULE or DELETE_RULE are CASCADE, SET NULL, SET DEFAULT,
RESTRICT, NO ACTION.

The INFORMATION_SCHEMA ROUTINES Table

2289

19.19 The INFORMATION_SCHEMA ROUTINES Table

The ROUTINES table provides information about stored routines (both procedures and functions). The
ROUTINES table does not include user-defined functions (UDFs).

The column named “mysql.proc name” indicates the mysql.proc table column that corresponds to
the INFORMATION_SCHEMA.ROUTINES table column, if any.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_NAME specific_name

ROUTINE_CATALOG def

ROUTINE_SCHEMA db

ROUTINE_NAME name

ROUTINE_TYPE type {PROCEDURE|FUNCTION}

DATA_TYPE same as for COLUMNS table

CHARACTER_MAXIMUM_LENGTH same as for COLUMNS table

CHARACTER_OCTET_LENGTH same as for COLUMNS table

NUMERIC_PRECISION same as for COLUMNS table

NUMERIC_SCALE same as for COLUMNS table

DATETIME_PRECISION same as for COLUMNS table

CHARACTER_SET_NAME same as for COLUMNS table

COLLATION_NAME same as for COLUMNS table

DTD_IDENTIFIER data type descriptor

ROUTINE_BODY SQL

ROUTINE_DEFINITION body_utf8

EXTERNAL_NAME NULL

EXTERNAL_LANGUAGE language NULL

PARAMETER_STYLE SQL

IS_DETERMINISTIC is_deterministic

SQL_DATA_ACCESS sql_data_access

SQL_PATH NULL

SECURITY_TYPE security_type

CREATED created

LAST_ALTERED modified

SQL_MODE sql_mode MySQL extension

ROUTINE_COMMENT comment MySQL extension

DEFINER definer MySQL extension

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

DATABASE_COLLATION MySQL extension

Notes:

• MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL

The INFORMATION_SCHEMA SCHEMATA Table

2290

• Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do not
have external languages yet, so it is always NULL.

• CREATED: The date and time when the routine was created. This is a TIMESTAMP value.

• LAST_ALTERED: The date and time when the routine was last modified. This is a TIMESTAMP value.
If the routine has not been modified since its creation, this column holds the same value as the
CREATED column.

• SQL_MODE: The SQL mode in effect when the routine was created or altered, and under which the
routine executes. For the permitted values, see Section 5.1.7, “Server SQL Modes”.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the routine was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the routine was created.

• DATABASE_COLLATION: The collation of the database with which the routine is associated.

• The DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
NUMERIC_PRECISION, NUMERIC_SCALE, DATETIME_PRECISION, CHARACTER_SET_NAME, and
COLLATION_NAME columns provide information about the data type for the RETURNS clause of
stored functions. If a stored routine is a stored procedure, these columns all are NULL.

• Information about stored function RETURNS data types is also available in the PARAMETERS
table. The return value data type row for a function can be identified as the row that has an
ORDINAL_POSITION value of 0.

19.20 The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

CATALOG_NAME def

SCHEMA_NAME Database

DEFAULT_CHARACTER_SET_NAME

DEFAULT_COLLATION_NAME

SQL_PATH NULL

The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
 FROM INFORMATION_SCHEMA.SCHEMATA
 [WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
 [LIKE 'wild']

19.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. This
information comes from the mysql.db grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value, MySQL extension

The INFORMATION_SCHEMA STATISTICS Table

2291

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def, MySQL extension

TABLE_SCHEMA MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a nonstandard table. It takes its values from the mysql.db table.

19.22 The INFORMATION_SCHEMA STATISTICS Table
The STATISTICS table provides information about table indexes.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def

TABLE_SCHEMA = Database

TABLE_NAME Table

NON_UNIQUE Non_unique

INDEX_SCHEMA = Database

INDEX_NAME Key_name

SEQ_IN_INDEX Seq_in_index

COLUMN_NAME Column_name

COLLATION Collation

CARDINALITY Cardinality

SUB_PART Sub_part MySQL extension

PACKED Packed MySQL extension

NULLABLE Null MySQL extension

INDEX_TYPE Index_type MySQL extension

COMMENT Comment MySQL extension

Notes:

• There is no standard table for indexes. The preceding list is similar to what SQL Server 2000 returns
for sp_statistics, except that we replaced the name QUALIFIER with CATALOG and we replaced
the name OWNER with SCHEMA.

Clearly, the preceding table and the output from SHOW INDEX are derived from the same parent. So
the correlation is already close.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
 WHERE table_name = 'tbl_name'
 AND table_schema = 'db_name'

SHOW INDEX
 FROM tbl_name
 FROM db_name

19.23 The INFORMATION_SCHEMA TABLES Table
The TABLES table provides information about tables in databases.

The INFORMATION_SCHEMA TABLES Table

2292

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def

TABLE_SCHEMA Table_...

TABLE_NAME Table_...

TABLE_TYPE

ENGINE Engine MySQL extension

VERSION Version The version number of the
table's .frm file, MySQL
extension

ROW_FORMAT Row_format MySQL extension

TABLE_ROWS Rows MySQL extension

AVG_ROW_LENGTH Avg_row_length MySQL extension

DATA_LENGTH Data_length MySQL extension

MAX_DATA_LENGTH Max_data_length MySQL extension

INDEX_LENGTH Index_length MySQL extension

DATA_FREE Data_free MySQL extension

AUTO_INCREMENT Auto_increment MySQL extension

CREATE_TIME Create_time MySQL extension

UPDATE_TIME Update_time MySQL extension

CHECK_TIME Check_time MySQL extension

TABLE_COLLATION Collation MySQL extension

CHECKSUM Checksum MySQL extension

CREATE_OPTIONS Create_options MySQL extension

TABLE_COMMENT Comment MySQL extension

Notes:

• TABLE_SCHEMA and TABLE_NAME are a single field in a SHOW display, for example Table_in_db1.

• TABLE_TYPE should be BASE TABLE or VIEW. Currently, the TABLES table does not list
TEMPORARY tables.

• For partitioned tables, the ENGINE column shows the name of the storage engine used by all
partitions. (Previously, this column showed PARTITION for such tables.)

• The TABLE_ROWS column is NULL if the table is in the INFORMATION_SCHEMA database.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also
true if the InnoDB table is partitioned.)

• The DATA_FREE column shows the free space in bytes for InnoDB tables.

• We have nothing for the table's default character set. TABLE_COLLATION is close, because collation
names begin with a character set name.

• The CREATE_OPTIONS column shows partitioned if the table is partitioned.

• Beginning with MySQL 5.7.2, UPDATE_TIME displays a timestamp value for the last UPDATE,
INSERT, or DELETE performed on InnoDB tables. Previously, UPDATE_TIME displayed a NULL
value for InnoDB tables. For MVCC, the timestamp value reflects the COMMIT time, which is
considered the last update time. Timestamps are not persisted when the server is restarted or when
the table is evicted from the InnoDB data dictionary cache.

The INFORMATION_SCHEMA TABLESPACES Table

2293

The following statements are equivalent:

SELECT table_name FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']

SHOW TABLES
 FROM db_name
 [LIKE 'wild']

19.24 The INFORMATION_SCHEMA TABLESPACES Table

The TABLESPACES table provides information about active tablespaces.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLESPACE_NAME MySQL extension

ENGINE MySQL extension

TABLESPACE_TYPE MySQL extension

LOGFILE_GROUP_NAME MySQL extension

EXTENT_SIZE MySQL extension

AUTOEXTEND_SIZE MySQL extension

MAXIMUM_SIZE MySQL extension

NODEGROUP_ID MySQL extension

TABLESPACE_COMMENT MySQL extension

19.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG def

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_SCHEMA

TABLE_NAME

CONSTRAINT_TYPE

Notes:

• The CONSTRAINT_TYPE value can be UNIQUE, PRIMARY KEY, or FOREIGN KEY.

• The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name
field in the output from SHOW INDEX when the Non_unique field is 0.

• The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY,
FOREIGN KEY, CHECK. This is a CHAR (not ENUM) column. The CHECK value is not available until we
support CHECK.

19.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

The TABLE_PRIVILEGES table provides information about table privileges. This information comes
from the mysql.tables_priv grant table.

The INFORMATION_SCHEMA TRIGGERS Table

2294

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

TABLE_CATALOG def

TABLE_SCHEMA

TABLE_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES, ALTER, INDEX, DROP, CREATE VIEW.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

SHOW GRANTS ...

19.27 The INFORMATION_SCHEMA TRIGGERS Table
The TRIGGERS table provides information about triggers. You can see information only for databases
and tables for which you have the TRIGGER privilege.

INFORMATION_SCHEMA Name SHOW Name Remarks

TRIGGER_CATALOG def

TRIGGER_SCHEMA

TRIGGER_NAME Trigger

EVENT_MANIPULATION Event

EVENT_OBJECT_CATALOG def

EVENT_OBJECT_SCHEMA

EVENT_OBJECT_TABLE Table

ACTION_ORDER

ACTION_CONDITION NULL

ACTION_STATEMENT Statement

ACTION_ORIENTATION ROW

ACTION_TIMING Timing

ACTION_REFERENCE_OLD_TABLE NULL

ACTION_REFERENCE_NEW_TABLE NULL

ACTION_REFERENCE_OLD_ROW OLD

ACTION_REFERENCE_NEW_ROW NEW

CREATED Created

SQL_MODE sql_mode MySQL extension

DEFINER Definer MySQL extension

CHARACTER_SET_CLIENT character_set_client MySQL extension

COLLATION_CONNECTION collation_connection MySQL extension

DATABASE_COLLATION Database Collation MySQL extension

The INFORMATION_SCHEMA TRIGGERS Table

2295

Notes:

• The names in the “SHOW Name” column refer to the SHOW TRIGGERS statement, not SHOW CREATE
TRIGGER. See Section 13.7.5.37, “SHOW TRIGGERS Syntax”.

• TRIGGER_SCHEMA and TRIGGER_NAME: The name of the database in which the trigger occurs and
the trigger name, respectively.

• EVENT_MANIPULATION: The trigger event. This is the type of operation on the associated table for
which the trigger activates. The value is 'INSERT' (a row was inserted), 'DELETE' (a row was
deleted), or 'UPDATE' (a row was modified).

• EVENT_OBJECT_SCHEMA and EVENT_OBJECT_TABLE: As noted in Section 18.3, “Using Triggers”,
every trigger is associated with exactly one table. These columns indicate the database in which this
table occurs, and the table name, respectively.

• ACTION_ORDER: The ordinal position of the trigger's action within the list of triggers on the same
table with the same EVENT_MANIPULATION and ACTION_TIMING values. Before MySQL 5.7.2, this
value is always 0 because it is not possible for a table to have more than one trigger with the same
EVENT_MANIPULATION and ACTION_TIMING values.

• ACTION_STATEMENT: The trigger body; that is, the statement executed when the trigger activates.
This text uses UTF-8 encoding.

• ACTION_ORIENTATION: Always contains the value 'ROW'.

• ACTION_TIMING: Whether the trigger activates before or after the triggering event. The value is
'BEFORE' or 'AFTER'.

• ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW: The old and new column
identifiers, respectively. This means that ACTION_REFERENCE_OLD_ROW always contains the value
'OLD' and ACTION_REFERENCE_NEW_ROW always contains the value 'NEW'.

• CREATED: The date and time when the trigger was created. This is a TIMESTAMP(2) value (with
a fractional part in hundredths of seconds) for triggers created in MySQL 5.7.2 or later, NULL for
triggers created prior to 5.7.2.

• SQL_MODE: The SQL mode in effect when the trigger was created, and under which the trigger
executes. For the permitted values, see Section 5.1.7, “Server SQL Modes”.

• DEFINER: The account of the user who created the trigger, in 'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the trigger was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the trigger was created.

• DATABASE_COLLATION: The collation of the database with which the trigger is associated.

• The following columns currently always contain NULL: ACTION_CONDITION,
ACTION_REFERENCE_OLD_TABLE, and ACTION_REFERENCE_NEW_TABLE.

Example, using the ins_sum trigger defined in Section 18.3, “Using Triggers”:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS
 -> WHERE TRIGGER_SCHEMA='test' AND TRIGGER_NAME='ins_sum'\G
*************************** 1. row ***************************
 TRIGGER_CATALOG: def
 TRIGGER_SCHEMA: test
 TRIGGER_NAME: ins_sum
 EVENT_MANIPULATION: INSERT
 EVENT_OBJECT_CATALOG: def
 EVENT_OBJECT_SCHEMA: test

The INFORMATION_SCHEMA USER_PRIVILEGES Table

2296

 EVENT_OBJECT_TABLE: account
 ACTION_ORDER: 1
 ACTION_CONDITION: NULL
 ACTION_STATEMENT: SET @sum = @sum + NEW.amount
 ACTION_ORIENTATION: ROW
 ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
 ACTION_REFERENCE_OLD_ROW: OLD
 ACTION_REFERENCE_NEW_ROW: NEW
 CREATED: 2013-07-05 07:41:21.26
 SQL_MODE: NO_ENGINE_SUBSTITUTION
 DEFINER: me@localhost
 CHARACTER_SET_CLIENT: utf8
 COLLATION_CONNECTION: utf8_general_ci
 DATABASE_COLLATION: latin1_swedish_ci

19.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table
The USER_PRIVILEGES table provides information about global privileges. This information comes
from the mysql.user grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value, MySQL extension

TABLE_CATALOG def, MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a nonstandard table. It takes its values from the mysql.user table.

19.29 The INFORMATION_SCHEMA VIEWS Table
The VIEWS table provides information about views in databases. You must have the SHOW VIEW
privilege to access this table.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def

TABLE_SCHEMA

TABLE_NAME

VIEW_DEFINITION

CHECK_OPTION

IS_UPDATABLE

DEFINER

SECURITY_TYPE

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

Notes:

• The VIEW_DEFINITION column has most of what you see in the Create Table field that SHOW
CREATE VIEW produces. Skip the words before SELECT and skip the words WITH CHECK OPTION.
Suppose that the original statement was:

INFORMATION_SCHEMA Tables for InnoDB

2297

CREATE VIEW v AS
 SELECT s2,s1 FROM t
 WHERE s1 > 5
 ORDER BY s1
 WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• The CHECK_OPTION column has a value of NONE, CASCADE, or LOCAL.

• MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES
(true) if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is
set to NO (false). The IS_UPDATABLE column in the VIEWS table displays the status of this flag.
It means that the server always knows whether a view is updatable. If the view is not updatable,
statements such UPDATE, DELETE, and INSERT are illegal and will be rejected. (Note that even
if a view is updatable, it might not be possible to insert into it; for details, refer to Section 13.1.16,
“CREATE VIEW Syntax”.)

• DEFINER: The account of the user who created the view, in 'user_name'@'host_name' format.
SECURITY_TYPE has a value of DEFINER or INVOKER.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the view was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the view was created.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support.
For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard
SQL concatenation operator, the double bar (||), in your queries. If you then create a view that
concatenates items, you might worry that changing the sql_mode setting to a value different from
ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a
view definition, MySQL always stores it the same way, in a canonical form. Here is an example that
shows how the server changes a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS
 -> WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+
| VIEW_DEFINITION |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value
of sql_mode will not affect the results from the view. However an additional consequence is that
comments prior to SELECT are stripped from the definition by the server.

19.30 INFORMATION_SCHEMA Tables for InnoDB

The InnoDB tables related to the InnoDB storage engine serve two purposes:

• You can monitor ongoing InnoDB activity, to detect inefficiencies before they turn into issues, or to
troubleshoot performance and capacity issues that do occur. As your database becomes bigger and

The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables

2298

busier, running up against the limits of your hardware capacity, you monitor and tune these aspects
to keep the database running smoothly. The monitoring information deals with:

• InnoDB table compression, a feature whose use depends on a balance between I/O reduction,
CPU usage, buffer pool management, and how much compression is possible for your data.

• Transactions and locks, features that balance high performance for a single operation, against
the ability to run multiple operations concurrently. (Transactions are the high-level, user-visible
aspect of concurrency. Locks are the low-level mechanism that transactions use to avoid reading
or writing unreliable data.)

• You can extract information about schema objects managed by InnoDB, using the INNODB_SYS_*
tables. This information comes from the InnoDB data dictionary, which cannot be queried directly
like regular InnoDB tables. Traditionally, you would get this type of information using the techniques
from Section 14.2.12.4, “InnoDB Monitors”, setting up InnoDB monitors and parsing the output from
the SHOW ENGINE INNODB STATUS command. The InnoDB interface offers a simpler, familiar
technique to access this data.

19.30.1 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET
Tables

The INNODB_CMP and INNODB_CMP_RESET tables contain status information on operations related to
compressed InnoDB tables.

Table 19.1 Columns of INNODB_CMP and INNODB_CMP_RESET

Column name Description

PAGE_SIZE Compressed page size in bytes.

COMPRESS_OPS Number of times a B-tree page of the size PAGE_SIZE has been
compressed. Pages are compressed whenever an empty page is created
or the space for the uncompressed modification log runs out.

COMPRESS_OPS_OK Number of times a B-tree page of the size PAGE_SIZE has
been successfully compressed. This count should never exceed
COMPRESS_OPS.

COMPRESS_TIME Total time in seconds spent in attempts to compress B-tree pages of the
size PAGE_SIZE.

UNCOMPRESS_OPS Number of times a B-tree page of the size PAGE_SIZE has been
uncompressed. B-tree pages are uncompressed whenever compression
fails or at first access when the uncompressed page does not exist in the
buffer pool.

UNCOMPRESS_TIME Total time in seconds spent in uncompressing B-tree pages of the size
PAGE_SIZE.

Notes:

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.2.7.4, “Monitoring Compression at Runtime” and Using the
Compression Information Schema Tables. For general information about InnoDB table compression,
see Section 14.2.7, “InnoDB Compressed Tables”.

19.30.2 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables contain status
information on operations related to compressed InnoDB tables and indexes, with separate statistics

The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

2299

for each combination of database, table, and index, to help you evaluate the performance and
usefulness of compression for specific tables.

For a compressed InnoDB table, both the table data and all the secondary indexes are compressed. In
this context, the table data is treated as just another index, one that happens to contain all the columns:
the clustered index.

Table 19.2 Columns of INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET

Column name Description

DATABASE_NAME Database containing the applicable table.

TABLE_NAME Table to monitor for compression statistics.

INDEX_NAME Index to monitor for compression statistics.

COMPRESS_OPS Number of compression operations attempted. Pages are compressed
whenever an empty page is created or the space for the uncompressed
modification log runs out.

COMPRESS_OPS_OK Number of successful compression operations. Subtract from the
COMPRESS_OPS value to get the number of compression failures. Divide
by the COMPRESS_OPS value to get the percentage of compression
failures.

COMPRESS_TIME Total amount of CPU time, in seconds, used for compressing data in this
index.

UNCOMPRESS_OPS Number of uncompression operations performed. Compressed InnoDB
pages are uncompressed whenever compression fails, or the first time a
compressed page is accessed in the buffer pool and the uncompressed
page does not exist.

UNCOMPRESS_TIME Total amount of CPU time, in seconds, used for uncompressing data in
this index.

Notes:

• Use these tables to measure the effectiveness of InnoDB table compression for specific tables,
indexes, or both.

• You must have the PROCESS privilege to query these tables.

• Because collecting separate measurements for every index imposes substantial performance
overhead, enable the innodb_cmp_per_index_enabled configuration option before performing
the operations on compressed tables that you want to monitor.

• For usage information, see Section 14.2.7.4, “Monitoring Compression at Runtime” and Using the
Compression Information Schema Tables. For general information about InnoDB table compression,
see Section 14.2.7, “InnoDB Compressed Tables”.

19.30.3 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables contain status information on compressed
pages within the InnoDB buffer pool.

Table 19.3 Columns of INNODB_CMPMEM and INNODB_CMPMEM_RESET

Column name Description

PAGE_SIZE Block size in bytes. Each record of this table describes blocks of this size.

BUFFER_POOL_INSTANCEA unique identifier for the buffer pool instance.

The INFORMATION_SCHEMA INNODB_TRX Table

2300

Column name Description

PAGES_USED Number of blocks of the size PAGE_SIZE that are currently in use.

PAGES_FREE Number of blocks of the size PAGE_SIZE that are currently available for
allocation. This column shows the external fragmentation in the memory
pool. Ideally, these numbers should be at most 1.

RELOCATION_OPS Number of times a block of the size PAGE_SIZE has been relocated.
The buddy system can relocate the allocated “buddy neighbor” of a freed
block when it tries to form a bigger freed block. Reading from the table
INNODB_CMPMEM_RESET resets this count.

RELOCATION_TIME Total time in microseconds spent in relocating blocks of the size
PAGE_SIZE. Reading from the table INNODB_CMPMEM_RESET resets this
count.

Notes:

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.2.7.4, “Monitoring Compression at Runtime” and Using the
Compression Information Schema Tables. For general information about InnoDB table compression,
see Section 14.2.7, “InnoDB Compressed Tables”.

19.30.4 The INFORMATION_SCHEMA INNODB_TRX Table

The INNODB_TRX table contains information about every transaction currently executing inside
InnoDB, including whether the transaction is waiting for a lock, when the transaction started, and the
SQL statement the transaction is executing.

Table 19.4 INNODB_TRX Columns

Column name Description

TRX_ID Unique transaction ID number, internal to InnoDB. (Starting in
MySQL 5.6, these IDs are not created for transactions that are
read-only and non-locking. See Optimizations for Read-Only
Transactions for details.)

TRX_WEIGHT The weight of a transaction, reflecting (but not necessarily the
exact count of) the number of rows altered and the number of
rows locked by the transaction. To resolve a deadlock, InnoDB
selects the transaction with the smallest weight as the “victim” to
rollback. Transactions that have changed non-transactional tables
are considered heavier than others, regardless of the number of
altered and locked rows.

TRX_STATE Transaction execution state. One of RUNNING, LOCK WAIT,
ROLLING BACK or COMMITTING.

TRX_STARTED Transaction start time.

TRX_REQUESTED_LOCK_ID ID of the lock the transaction is currently waiting for (if TRX_STATE
is LOCK WAIT, otherwise NULL). Details about the lock can be
found by joining with INNODB_LOCKS on LOCK_ID.

TRX_WAIT_STARTED Time when the transaction started waiting on the lock (if
TRX_STATE is LOCK WAIT, otherwise NULL).

TRX_MYSQL_THREAD_ID MySQL thread ID. Can be used for joining with PROCESSLIST on
ID. See Possible Inconsistency with PROCESSLIST.

TRX_QUERY The SQL query that is being executed by the transaction.

TRX_OPERATION_STATE The transaction's current operation, or NULL.

The INFORMATION_SCHEMA INNODB_LOCKS Table

2301

Column name Description

TRX_TABLES_IN_USE The number of InnoDB tables used while processing the current
SQL statement of this transaction.

TRX_TABLES_LOCKED Number of InnoDB tables that the current SQL statement has row
locks on. (Because these are row locks, not table locks, the tables
can usually still be read from and written to by multiple transactions,
despite some rows being locked.)

TRX_LOCK_STRUCTS The number of locks reserved by the transaction.

TRX_LOCK_MEMORY_BYTES Total size taken up by the lock structures of this transaction in
memory.

TRX_ROWS_LOCKED Approximate number or rows locked by this transaction. The value
might include delete-marked rows that are physically present but
not visible to the transaction.

TRX_ROWS_MODIFIED The number of modified and inserted rows in this transaction.

TRX_CONCURRENCY_TICKETS A value indicating how much work the current transaction
can do before being swapped out, as specified by the
innodb_concurrency_tickets option.

TRX_ISOLATION_LEVEL The isolation level of the current transaction.

TRX_UNIQUE_CHECKS Whether unique checks are turned on or off for the current
transaction. (They might be turned off during a bulk data load, for
example.)

TRX_FOREIGN_KEY_CHECKS Whether foreign key checks are turned on or off for the current
transaction. (They might be turned off during a bulk data load, for
example.)

TRX_LAST_FOREIGN_KEY_ERRORDetailed error message for last FK error, or NULL.

TRX_ADAPTIVE_HASH_LATCHED Whether or not the adaptive hash index is locked by the current
transaction. (Only a single transaction at a time can modify the
adaptive hash index.)

TRX_ADAPTIVE_HASH_TIMEOUT Whether to relinquish the search latch immediately for the adaptive
hash index, or reserve it across calls from MySQL. When there is
no AHI contention, this value remains zero and statements reserve
the latch until they finish. During times of contention, it counts down
to zero, and statements release the latch immediately after each
row lookup.

TRX_IS_READ_ONLY A value of 1 indicates the transaction is read-only. (5.6.4 and up.)

TRX_AUTOCOMMIT_NON_LOCKINGA value of 1 indicates the transaction is a SELECT statement
that does not use the FOR UPDATE or LOCK IN SHARED MODE
clauses, and is executing with the autocommit setting turned
on so that the transaction will only contain this one statement.
(5.6.4 and up.) When this column and TRX_IS_READ_ONLY are
both 1, InnoDB optimizes the transaction to reduce the overhead
associated with transactions that change table data.

Notes:

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Granularity of INFORMATION_SCHEMA Data.

• You must have the PROCESS privilege to query this table.

• For usage information, see Using the Transaction Information Schema Tables.

19.30.5 The INFORMATION_SCHEMA INNODB_LOCKS Table

The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

2302

The INNODB_LOCKS table contains information about each lock that an InnoDB transaction has
requested but not yet acquired, and each lock that a transaction holds that is blocking another
transaction.

Table 19.5 INNODB_LOCKS Columns

Column name Description

LOCK_ID Unique lock ID number, internal to InnoDB. Treat it as an opaque string.
Although LOCK_ID currently contains TRX_ID, the format of the data in LOCK_ID
is not guaranteed to remain the same in future releases. Do not write programs
that parse the LOCK_ID value.

LOCK_TRX_ID ID of the transaction holding this lock. Details about the transaction can be found
by joining with INNODB_TRX on TRX_ID.

LOCK_MODE Mode of the lock. One of S, X, IS, IX, S_GAP, X_GAP, IS_GAP, IX_GAP, or
AUTO_INC for shared, exclusive, intention shared, intention exclusive row locks,
shared and exclusive gap locks, intention shared and intention exclusive gap
locks, and auto-increment table level lock, respectively. Refer to the sections
Section 14.2.2.3, “InnoDB Lock Modes” and Section 14.2.2.2, “The InnoDB
Transaction Model and Locking” for information on InnoDB locking.

LOCK_TYPE Type of the lock. One of RECORD or TABLE for record (row) level or table level
locks, respectively.

LOCK_TABLE Name of the table that has been locked or contains locked records.

LOCK_INDEX Name of the index if LOCK_TYPE='RECORD', otherwise NULL.

LOCK_SPACE Tablespace ID of the locked record if LOCK_TYPE='RECORD', otherwise NULL.

LOCK_PAGE Page number of the locked record if LOCK_TYPE='RECORD', otherwise NULL.

LOCK_REC Heap number of the locked record within the page if LOCK_TYPE='RECORD',
otherwise NULL.

LOCK_DATA Primary key of the locked record if LOCK_TYPE='RECORD', otherwise NULL.
This column contains the value(s) of the primary key column(s) in the locked row,
formatted as a valid SQL string (ready to be copied to SQL commands). If there
is no primary key then the InnoDB internal unique row ID number is used. When
the page containing the locked record is not in the buffer pool (in the case that it
was paged out to disk while the lock was held), InnoDB does not fetch the page
from disk, to avoid unnecessary disk operations. Instead, LOCK_DATA is set to
NULL.

Notes:

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Granularity of INFORMATION_SCHEMA Data.

• You must have the PROCESS privilege to query this table.

• For usage information, see Using the Transaction Information Schema Tables.

19.30.6 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

The INNODB_LOCK_WAITS table contains one or more rows for each blocked InnoDB transaction,
indicating the lock it has requested and any locks that are blocking that request.

Table 19.6 INNODB_LOCK_WAITS Columns

Column name Description

REQUESTING_TRX_ID ID of the requesting transaction.

The INFORMATION_SCHEMA INNODB_SYS_TABLES Table

2303

Column name Description

REQUESTED_LOCK_ID ID of the lock for which a transaction is waiting. Details about the lock can
be found by joining with INNODB_LOCKS on LOCK_ID.

BLOCKING_TRX_ID ID of the blocking transaction.

BLOCKING_LOCK_ID ID of a lock held by a transaction blocking another transaction from
proceeding. Details about the lock can be found by joining with
INNODB_LOCKS on LOCK_ID.

Notes:

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Granularity of INFORMATION_SCHEMA Data.

• You must have the PROCESS privilege to query this table.

• For usage information, see Using the Transaction Information Schema Tables.

19.30.7 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table

The INNODB_SYS_TABLES table provides status information about InnoDB tables, equivalent to the
information from the SYS_TABLES table in the InnoDB data dictionary.

Table 19.7 INNODB_SYS_TABLES Columns

Column name Description

TABLE_ID An identifier for each InnoDB table that is unique across all databases in
the instance.

NAME The name of the table. Preceded by the database name where
appropriate, for example test/t1. InnoDB system table names
are in all uppercase. Names of databases and user tables are in the
same case as they were originally defined, possibly influenced by the
lower_case_table_names setting.

FLAG 0 = InnoDB system table, 1 = user table.

N_COLS The number of columns in the table.

SPACE An identifier for the tablespace where the table resides. 0 means the
InnoDB system tablespace. Any other number represents a table created
in file-per-table mode with a separate .ibd file. This identifier stays the
same after a TRUNCATE TABLE statement. Other than the zero value,
this identifier is unique for tables across all the databases in the instance.

Notes:

• You must have the PROCESS privilege to query this table.

19.30.8 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table

The INNODB_SYS_INDEXES table provides status information about InnoDB indexes, equivalent to
the information from the SYS_INDEXES table in the InnoDB data dictionary.

Table 19.8 INNODB_SYS_INDEXES Columns

Column name Description

INDEX_ID An identifier for each index that is unique across all the databases in an
instance.

The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table

2304

Column name Description

NAME The name of the index. User-created indexes have names in all
lowercase. Indexes created implicitly by InnoDB have names in all
lowercase. The index names are not necessarily unique. Indexes created
implicitly by InnoDB have consistent names: PRIMARY for a primary
key index, GEN_CLUST_INDEX for the index representing a primary key
when one is not specified, ID_IND, FOR_IND for validating a foreign key
constraint, and REF_IND.

TABLE_ID An identifier representing the table associated with the index; the same
value from INNODB_SYS_TABLES.TABLE_ID.

TYPE A numeric identifier signifying the kind of index. 0 = Secondary Index, 1
= Clustered Index, 2 = Unique Index, 3 = Primary Index, 32 = Full-text
Index.

N_FIELDS The number of columns in the index key. For the GEN_CLUST_INDEX
indexes, this value is 0 because the index is created using an artificial
value rather than a real table column.

PAGE_NO The root page number of the index B-tree. For full-text indexes, the
PAGE_NO field is unused and set to -1 (FIL_NULL) because the full-text
index is laid out in several B-trees (auxiliary tables).

SPACE An identifier for the tablespace where the index resides. 0 means the
InnoDB system tablespace. Any other number represents a table created
in file-per-table mode with a separate .ibd file. This identifier stays
the same after a TRUNCATE TABLE statement. Because all indexes
for a table reside in the same tablespace as the table, this value is not
necessarily unique.

Notes:

• You must have the PROCESS privilege to query this table.

19.30.9 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table

The INNODB_SYS_COLUMNS table provides status information about InnoDB table columns, equivalent
to the information from the SYS_COLUMNS table in the InnoDB data dictionary.

Table 19.9 INNODB_SYS_COLUMNS Columns

Column name Description

TABLE_ID An identifier representing the table associated with the column; the same
value from INNODB_SYS_TABLES.TABLE_ID.

NAME The name of each column in each table. These names can be uppercase
or lowercase depending on the lower_case_table_names setting.
There are no special system-reserved names for columns.

POS The ordinal position of the column within the table, starting from 0 and
incrementing sequentially. When a column is dropped, the remaining
columns are reordered so that the sequence has no gaps.

MTYPE A numeric identifier for the column type. 1 = VARCHAR, 2 = CHAR, 3 =
FIXBINARY, 4 = BINARY, 5 = BLOB, 6 = INT, 7 = SYS_CHILD, 8 = SYS, 9
= FLOAT, 10 = DOUBLE, 11 = DECIMAL, 12 = VARMYSQL, 13 = MYSQL.

PRTYPE The InnoDB “precise type”, a binary value with bits representing MySQL
data type, character set code, and nullability.

LEN The column length, for example 4 for INT and 8 for BIGINT. For
character columns in multi-byte character sets, this length value is
the maximum length in bytes needed to represent a definition such as

The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table

2305

Column name Description
VARCHAR(N); that is, it might be 2*N, 3*N, and so on depending on the
character encoding.

Notes:

• You must have the PROCESS privilege to query this table.

19.30.10 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table

The INNODB_SYS_FIELDS table provides status information about the key columns (fields) of InnoDB
indexes, equivalent to the information from the SYS_FIELDS table in the InnoDB data dictionary.

Table 19.10 INNODB_SYS_FIELDS Columns

Column name Description

INDEX_ID An identifier for the index associated with this key field, using the same
value as in INNODB_SYS_INDEXES.INDEX_ID.

NAME The name of the original column from the table, using the same value as
in INNODB_SYS_COLUMNS.NAME.

POS The ordinal position of the key field within the index, starting from 0 and
incrementing sequentially. When a column is dropped, the remaining
columns are reordered so that the sequence has no gaps.

Notes:

• You must have the PROCESS privilege to query this table.

19.30.11 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table

The INNODB_SYS_FOREIGN table provides status information about InnoDB foreign keys, equivalent
to the information from the SYS_FOREIGN table in the InnoDB data dictionary.

Table 19.11 INNODB_SYS_FOREIGN Columns

Column name Description

ID The name (not a numeric value) of the foreign key index. Preceded by the
database name, for example, test/products_fk.

FOR_NAME The name of the child table in this foreign key relationship.

REF_NAME The name of the parent table in this foreign key relationship.

N_COLS The number of columns in the foreign key index.

TYPE A collection of bit flags with information about the foreign key column,
ORed together. 1 = ON DELETE CASCADE, 2 = ON UPDATE SET
NULL, 4 = ON UPDATE CASCADE, 8 = ON UPDATE SET NULL, 16 = ON
DELETE NO ACTION, 32 = ON UPDATE NO ACTION.

Notes:

• You must have the PROCESS privilege to query this table.

19.30.12 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table

The INNODB_SYS_FOREIGN_COLS table provides status information about the columns of InnoDB
foreign keys, equivalent to the information from the SYS_FOREIGN_COLS table in the InnoDB data
dictionary.

The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View

2306

Table 19.12 INNODB_SYS_FOREIGN_COLS Columns

Column name Description

ID The foreign key index associated with this index key field, using the same
value as INNODB_SYS_FOREIGN.ID.

FOR_COL_NAME The name of the associated column in the child table.

REF_COL_NAME The name of the associated column in the parent table.

POS The ordinal position of this key field within the foreign key index, starting
from 0.

Notes:

• You must have the PROCESS privilege to query this table.

19.30.13 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View

The INNODB_SYS_TABLESTATS view provides status information about performance statistics for
InnoDB tables. These statistics represent low-level information used by the MySQL optimizer to
calculate which index to use when querying an InnoDB table. This information is derived from in-
memory data structures rather than corresponding to data stored on disk.

InnoDB tables are represented in this view if they have been opened since the last server restart, and
not aged out of the table cache. Tables for which persistent stats are available are always represented
in this view.

Table 19.13 INNODB_SYS_TABLESTATS Columns

Column name Description

TABLE_ID An identifier representing the table for which statistics are available, using
the same value as INNODB_SYS_TABLES.TABLE_ID.

NAME The name of the table, using the same value as
INNODB_SYS_TABLES.NAME.

STATS_INITIALIZED The value is Initialized if the statistics are already collected,
Uninitialized if not.

NUM_ROWS The current estimated number of rows in the table. Updated after each
DML operation. Could be imprecise if uncommitted transactions are
inserting into or deleting from the table.

CLUST_INDEX_SIZE Number of pages on disk that store the clustered index, which holds the
InnoDB table data in primary key order. This value might be null if no
statistics are collected yet for the table.

OTHER_INDEX_SIZE Number of pages on disk that store all secondary indexes for the table.
This value might be null if no statistics are collected yet for the table.

MODIFIED_COUNTER The number of rows modified by DML operations, such as INSERT,
UPDATE, DELETE, and also cascade operations from foreign keys. This
column is reset each time table statistics are recalculated

AUTOINC

REF_COUNT When this counter reaches zero, the table metadata can be evicted from
the table cache.

Notes:

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table

2307

• Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this
table rather than the corresponding InnoDB system table for any new monitoring application you
develop.

• You must have the PROCESS privilege to query this table.

19.30.14 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table

The INNODB_SYS_DATAFILES table stores InnoDB datafile path information, allowing it to be queried
through INFORMATION_SCHEMA.

Table 19.14 INNODB_SYS_DATAFILES Columns

Column name Description

SPACE The tablespace Space ID.

PATH The tablespace datafile path (for example, “.\world\innodb
\city.ibd”).

Notes:

• You must have the PROCESS privilege to query this table.

19.30.15 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

The INNODB_SYS_TABLESPACES table stores information about InnoDB tablespaces, allowing it to be
queried through INFORMATION_SCHEMA.

Table 19.15 INNODB_SYS_TABLESPACES Columns

Column name Description

SPACE Tablespace Space ID.

NAME The database and table name (for example, world_innodb\city)

FLAG The table was created with the CREATE TABLE ... DATA DIRECTORY
(0 = false, 1 = true)

FILE_FORMAT The tablespace file format (for example, Antelope or Barracuda). The
data in this field is interpreted from the tablespace flags information that
resides in the .ibd file. For more information about InnoDB file formats,
see Section 14.2.8, “InnoDB File-Format Management”.

ROW_FORMAT The tablespace row format (for example, Compact or Redundant). The
data in this field is interpreted from the tablespace flags information that
resides in the .ibd file.

PAGE_SIZE The tablespace page size. The data in this field is interpreted from the
tablespace flags information that resides in the .ibd file.

ZIP_PAGE_SIZE The tablespace zip page size. The data in this field is interpreted from the
tablespace flags information that resides in the .ibd file.

Notes:

• You must have the PROCESS privilege to query this table.

• Because tablespace flags are always zero for all Antelope file formats (unlike table flags), there is no
way to determine from this flag integer if the tablespace row format is Redundant or Compact. As a
result, the possible values for the ROW_FORMAT field are “Compact or Redundant”, “Compressed”, or
“Dynamic.”

19.30.16 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

2308

The INNODB_BUFFER_PAGE table holds information about each page in the InnoDB buffer pool.

Table 19.16 INNODB_BUFFER_PAGE Columns

Column name Description

POOL_ID Buffer Pool ID. An identifier to distinguish between multiple buffer pool
instances.

BLOCK_ID Buffer Pool Block ID.

SPACE Tablespace ID. Uses the same value as in
INNODB_SYS_TABLES.SPACE.

PAGE_NUMBER Page number.

PAGE_TYPE Page type string. One of allocated (Freshly allocated page),
index (B-tree node), undo_log (Undo log page), inode (Index
node), ibuf_free_list (Insert buffer free list), ibuf_bitmap
(Insert buffer bitmap), system (System page), trx_system
(Transaction system data), file_space_header (File space header),
extent_descriptor (Extent descriptor page), blob (Uncompressed
BLOB page), compressed_blob (First compressed BLOB page),
compressed_blob2 (Subsequent comp BLOB page), unknown
(unknown).

FLUSH_TYPE Flush type.

FIX_COUNT Number of threads using this block within the buffer pool. When zero, the
block is eligible to be evicted.

IS_HASHED Whether hash index has been built on this page.

NEWEST_MODIFICATION Log Sequence Number of the youngest modification.

OLDEST_MODIFICATION Log Sequence Number of the oldest modification.

ACCESS_TIME An abstract number used to judge the first access time of the page.

TABLE_NAME Name of the table the page belongs to.

INDEX_NAME Name of the index the page belongs to. It can be the name of a clustered
index or a secondary index.

NUMBER_RECORDS Number of records within the page.

DATA_SIZE Sum of the sizes of the records.

COMPRESSED_SIZE Compressed page size. Null for pages that are not compressed.

PAGE_STATE Page state. A page with valid data has one of the following states:
FILE_PAGE (buffers a page of data from a file), MEMORY (buffers a page
from an in-memory object), Other possible states (managed by InnoDB)
are: null, READY_FOR_USE, NOT_USED, REMOVE_HASH.

IO_FIX Specifies whether any I/O is pending for this page: IO_NONE = no
pending I/O, IO_READ = read pending, IO_WRITE = write pending.

IS_OLD bpage->old.

FREE_PAGE_CLOCK bpage->freed_page_clock.

Notes:

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this
table rather than the corresponding InnoDB system table for any new monitoring application you
develop.

• You must have the PROCESS privilege to query this table.

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

2309

19.30.17 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered in the LRU list that determines which pages to evict from the buffer
pool when it becomes full.

The definition for this page is the same as for INNODB_BUFFER_PAGE, except this table has an
LRU_POSITION column instead of BLOCK_ID.

Notes:

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this
table rather than the corresponding InnoDB system table for any new monitoring application you
develop.

• Querying this table can require MySQL to allocate a large block of contiguous memory, more than 64
bytes time the number of active pages in the buffer pool. This allocation could potentially cause an
out-of-memory error, especially for systems with multi-gigabyte buffer pools.

• Querying this table requires MySQL to lock the data structure representing the buffer pool while
traversing the LRU list, which can reduce concurrency, especially for systems with multi-gigabyte
buffer pools.

19.30.18 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides much of the same buffer pool information provided
in SHOW ENGINE INNODB STATUS output. Much of the same information may also be obtained using
InnoDB buffer pool server status variables.

The idea of making pages in the buffer pool “young” or “not young” refers to transferring them between
the sublists at the head and tail of the buffer pool data structure. Pages made “young” take longer
to age out of the buffer pool, while pages made “not young” are moved much closer to the point of
eviction.

Table 19.17 INNODB_BUFFER_POOL_STATS Columns

Column name Description

POOL_ID Buffer Pool ID. A unique identifier to distinguish between multiple buffer
pool instances.

POOL_SIZE The InnoDB buffer pool size in pages.

FREE_BUFFERS The number of free pages in the InnoDB buffer pool

DATABASE_PAGES The number of pages in the InnoDB buffer pool containing data. The
number includes both dirty and clean pages.

OLD_DATABASE_PAGES The number of pages in the old buffer pool sublist.

MODIFIED_DATABASE_PAGESThe number of modified (dirty) database pages

PENDING_DECOMPRESS The number of pages pending decompression

PENDING_READS The number of pending reads

PENDING_FLUSH_LRU The number of pages pending flush in the LRU

PENDING_FLUSH_LIST The number of pages pending flush in the flush list

PAGES_MADE_YOUNG The number of pages made young

PAGES_NOT_MADE_YOUNG The number of pages not made young

The INFORMATION_SCHEMA INNODB_METRICS Table

2310

Column name Description

PAGES_MADE_YOUNG_RATEThe number of pages made young per second (pages made young since
the last printout / time elapsed)

PAGES_MADE_NOT_YOUNG_RATEThe number of pages not made per second (pages not made young since
the last printout / time elapsed)

NUMBER_PAGES_READ The number of pages read

NUMBER_PAGES_CREATED The number of pages created

NUMBER_PAGES_WRITTEN The number of pages written

PAGES_READ_RATE The number of pages read per second (pages read since the last
printout / time elapsed)

PAGES_CREATE_RATE The number of pages created per second (pages created since the last
printout / time elapsed)

PAGES_WRITTEN_RATE The number of pages written per second (pages written since the last
printout / time elapsed)

NUMBER_PAGES_GET The number of logical read requests.

HIT_RATE The buffer pool hit rate

YOUNG_MAKE_PER_THOUSAND_GETSThe number of pages made young per thousand gets

NOT_YOUNG_MAKE_PER_THOUSAND_GETSThe number of pages not made young per thousand gets

NUMBER_PAGES_READ_AHEADThe number of pages read ahead

NUMBER_READ_AHEAD_EVICTEDThe number of pages read into the InnoDB buffer pool by the read-ahead
background thread that were subsequently evicted without having been
accessed by queries.

READ_AHEAD_RATE The read ahead rate per second (pages read ahead since the last
printout / time elapsed)

READ_AHEAD_EVICTED_RATEThe number of read ahead pages evicted without access per second
(read ahead pages not accessed since the last printout / time elapsed)

LRU_IO_TOTAL LRU IO total

LRU_IO_CURRENT LRU IO for the current interval

UNCOMPRESS_TOTAL Total number of pages decompressed

UNCOMPRESS_CURRENT The number of pages decompressed in the current interval

Notes:

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this
table rather than the corresponding InnoDB system table for any new monitoring application you
develop.

• You must have the PROCESS privilege to query this table.

19.30.19 The INFORMATION_SCHEMA INNODB_METRICS Table

This INFORMATION_SCHEMA table presents a wide variety of InnoDB performance information,
complementing the specific focus areas of the PERFORMANCE_SCHEMA tables for InnoDB. With simple
queries, you can check the overall health of the system. With more detailed queries, you can diagnose
issues such as performance bottlenecks, resource shortages, and application issues.

Each monitor represents a point within the InnoDB source code that is instrumented to gather counter
information. Each counter can be started, stopped, and reset. You can also perform these actions for a
group of counters using their common module name.

The INFORMATION_SCHEMA INNODB_METRICS Table

2311

Table 19.18 INNODB_METRICS Columns

Column name Description

NAME Unique name for the counter.

SUBSYSTEM The aspect of InnoDB that the metric applies to. See the list following the
table for the corresponding module names to use with the SET GLOBAL
syntax.

COUNT Value since the counter is enabled.

MAX_COUNT Maximum value since the counter is enabled.

MIN_COUNT Minimum value since the counter is enabled.

AVG_COUNT Average value since the counter is enabled.

COUNT_RESET Counter value since it was last reset. (The _RESET fields act like the
lap counter on a stopwatch: you can measure the activity during some
time interval, while the cumulative figures are still available in the COUNT,
MAX_COUNT, and so on fields.)

MAX_COUNT_RESET Maximum counter value since it was last reset.

MIN_COUNT_RESET Minimum counter value since it was last reset.

AVG_COUNT_RESET Average counter value since it was last reset.

TIME_ENABLED Timestamp of last start.

TIME_DISABLED Timestamp of last stop.

TIME_ELAPSED Elapsed time in seconds since the counter started.

TIME_RESET Timestamp of last stop.

STATUS Whether the counter is still running () or stopped ().

TYPE Whether the item is a cumulative counter, or measures the current value
of some resource.

COMMENT Additional description.

Notes:

• You must have the PROCESS privilege to query this table.

• By default, relatively little data is collected. To start, stop, and reset counters, you set one
of the configuration options innodb_monitor_enable, innodb_monitor_disable,
innodb_monitor_reset, or innodb_monitor_reset_all, using the name of the counter,
the name of the module, a wildcard match for such a name using the “%” character, or the special
keyword all. For example:

Turn on a counter:
set global innodb_monitor_enable = counter-name;
-- For example:
set global innodb_monitor_enable = trx_undo_slots_used;

Turn off a counter:
set global innodb_monitor_disable = counter-name;
-- For example:
set global innodb_monitor_disable = trx_undo_slots_used;

Reset a counter:
set global innodb_monitor_reset = counter_name;
-- For example:
set global innodb_monitor_reset = trx_undo_slots_used;

Reset all the counter values:
set global innodb_monitor_reset_all = [counter-name|module_name|pattern|all];
-- Examples:
set global innodb_monitor_reset_all = log_writes

The INFORMATION_SCHEMA INNODB_METRICS Table

2312

set global innodb_monitor_reset_all = module_os;
set global innodb_monitor_reset_all = all;
set global innodb_monitor_reset_all = "trx%";

Turn on a group of counters:
set global innodb_monitor_enable = module_name;
-- For example:
set global innodb_monitor_enable = module_os;

Turn off a group of counters:
set global innodb_monitor_disable = module_name;
-- For example:
set global innodb_monitor_disable = module_os;

Turn on monitor "log_writes":
set global innodb_monitor_enable = log_writes;
-- For example:

Reset all values for "log_writes":
set global innodb_monitor_reset_all = log_writes;

Reset the counters for all dml monitors
set global innodb_monitor_reset = "dml_%";

Turn on all monitors for the transaction subsystem
set global innodb_monitor_enable = module_trx;

Turn off all monitors
set global innodb_monitor_disable = all;

• You can also enable counters and modules using your configuration file. For example, to enable the
log module, metadata_table_handles_opened and metadata_table_handles_closed
counters, enter the following line in the [mysqld] section of your my.cnf configuration file.

[mysqld]
innodb_monitor_enable = module_recovery,metadata_table_handles_opened,metadata_table_handles_closed

When enabling multiple counters or modules in your configuration file, you must specify the
configuration option (innodb_monitor_enable) followed by counter and module names separated
by a comma, as shown in the example above. Only the innodb_monitor_enable option can be
used in your configuration file. The disable and reset configuration options are only supported at the
command line.

• The module names correspond to, but are not identical to, the values from the SUBSYSTEM column.
Here are the values you can use for module_name with the innodb_monitor_enable and related
configuration options, along with the corresponding SUBSYSTEM names:

• module_metadata (subsystem = metadata)

• module_lock (subsystem = lock)

• module_buffer (subsystem = buffer)

• module_buf_page (subsystem = buffer_page_io)

• module_os (subsystem = os)

• module_trx (subsystem = transaction)

• module_purge (subsystem = purge)

• module_compress (subsystem = compression)

• module_file (subsystem = file_system)

• module_index (subsystem = index)

The INFORMATION_SCHEMA INNODB_METRICS Table

2313

• module_adaptive_hash (subsystem = adaptive_hash_index)

• module_ibuf_system (subsystem = change_buffer)

• module_srv (subsystem = server)

• module_ddl (subsystem = ddl)

• module_dml (subsystem = dml)

• module_log (subsystem = recovery)

• module_icp (subsystem = icp)

• Because each counter imposes some degree of runtime overhead on the server, typically you enable
more counters on test and development servers during experimentation and benchmarking, and only
enable counters on production servers to diagnose known issues or monitor aspects that are likely to
be bottlenecks for a particular server and workload.

• Counters that are enabled by default correspond to those used by SHOW ENGINE INNODB STATUS.
Counters used by SHOW ENGINE INNODB STATUS are always “on” at a system level but you can
disable these counters for the innodb_metrics table, as required. Also, counter status is not
persistent. Unless specified otherwise, counters revert to their default enabled or disabled status
when the server is restarted.

The items represented in the innodb_metrics table are subject to change, so for the most up-to-
date list, query a running MySQL server. The following list shows items in the innodb_metrics
table as of MySQL 5.7.4.

If you run programs that would be affected by additions or changes to the innodb_metrics table, it
is recommended that you review releases notes and query the innodb_metrics table for the new
release prior to upgrading.

mysql> select name, subsystem, status from information_schema.innodb_metrics order by name;
+--+---------------------+----------+
| name | subsystem | status |
+--+---------------------+----------+
adaptive_hash_pages_added	adaptive_hash_index	disabled
adaptive_hash_pages_removed	adaptive_hash_index	disabled
adaptive_hash_rows_added	adaptive_hash_index	disabled
adaptive_hash_rows_deleted_no_hash_entry	adaptive_hash_index	disabled
adaptive_hash_rows_removed	adaptive_hash_index	disabled
adaptive_hash_rows_updated	adaptive_hash_index	disabled
adaptive_hash_searches	adaptive_hash_index	enabled
adaptive_hash_searches_btree	adaptive_hash_index	disabled
buffer_data_reads	buffer	enabled
buffer_data_written	buffer	enabled
buffer_flush_adaptive	buffer	disabled
buffer_flush_adaptive_pages	buffer	disabled
buffer_flush_adaptive_total_pages	buffer	disabled
buffer_flush_avg_page_rate	buffer	disabled
buffer_flush_background	buffer	disabled
buffer_flush_background_pages	buffer	disabled
buffer_flush_background_total_pages	buffer	disabled
buffer_flush_batches	buffer	disabled
buffer_flush_batch_num_scan	buffer	disabled
buffer_flush_batch_pages	buffer	disabled
buffer_flush_batch_scanned	buffer	disabled
buffer_flush_batch_scanned_per_call	buffer	disabled
buffer_flush_batch_total_pages	buffer	disabled
buffer_flush_lsn_avg_rate	buffer	disabled
buffer_flush_neighbor	buffer	disabled
buffer_flush_neighbor_pages	buffer	disabled
buffer_flush_neighbor_total_pages	buffer	disabled
buffer_flush_n_to_flush_requested	buffer	disabled

The INFORMATION_SCHEMA INNODB_METRICS Table

2314

buffer_flush_pct_for_dirty	buffer	disabled
buffer_flush_pct_for_lsn	buffer	disabled
buffer_flush_sync	buffer	disabled
buffer_flush_sync_pages	buffer	disabled
buffer_flush_sync_total_pages	buffer	disabled
buffer_flush_sync_waits	buffer	disabled
buffer_LRU_batches_evict	buffer	disabled
buffer_LRU_batches_flush	buffer	disabled
buffer_LRU_batch_evict_pages	buffer	disabled
buffer_LRU_batch_evict_total_pages	buffer	disabled
buffer_LRU_batch_flush_pages	buffer	disabled
buffer_LRU_batch_flush_total_pages	buffer	disabled
buffer_LRU_batch_num_scan	buffer	disabled
buffer_LRU_batch_scanned	buffer	disabled
buffer_LRU_batch_scanned_per_call	buffer	disabled
buffer_LRU_get_free_search	Buffer	disabled
buffer_LRU_search_num_scan	buffer	disabled
buffer_LRU_search_scanned	buffer	disabled
buffer_LRU_search_scanned_per_call	buffer	disabled
buffer_LRU_single_flush_failure_count	Buffer	disabled
buffer_LRU_single_flush_num_scan	buffer	disabled
buffer_LRU_single_flush_scanned	buffer	disabled
buffer_LRU_single_flush_scanned_per_call	buffer	disabled
buffer_LRU_unzip_search_num_scan	buffer	disabled
buffer_LRU_unzip_search_scanned	buffer	disabled
buffer_LRU_unzip_search_scanned_per_call	buffer	disabled
buffer_pages_created	buffer	enabled
buffer_pages_read	buffer	enabled
buffer_pages_written	buffer	enabled
buffer_page_read_blob	buffer_page_io	disabled
buffer_page_read_fsp_hdr	buffer_page_io	disabled
buffer_page_read_ibuf_bitmap	buffer_page_io	disabled
buffer_page_read_ibuf_free_list	buffer_page_io	disabled
buffer_page_read_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_read_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_read_index_inode	buffer_page_io	disabled
buffer_page_read_index_leaf	buffer_page_io	disabled
buffer_page_read_index_non_leaf	buffer_page_io	disabled
buffer_page_read_other	buffer_page_io	disabled
buffer_page_read_system_page	buffer_page_io	disabled
buffer_page_read_trx_system	buffer_page_io	disabled
buffer_page_read_undo_log	buffer_page_io	disabled
buffer_page_read_xdes	buffer_page_io	disabled
buffer_page_read_zblob	buffer_page_io	disabled
buffer_page_read_zblob2	buffer_page_io	disabled
buffer_page_written_blob	buffer_page_io	disabled
buffer_page_written_fsp_hdr	buffer_page_io	disabled
buffer_page_written_ibuf_bitmap	buffer_page_io	disabled
buffer_page_written_ibuf_free_list	buffer_page_io	disabled
buffer_page_written_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_written_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_written_index_inode	buffer_page_io	disabled
buffer_page_written_index_leaf	buffer_page_io	disabled
buffer_page_written_index_non_leaf	buffer_page_io	disabled
buffer_page_written_other	buffer_page_io	disabled
buffer_page_written_system_page	buffer_page_io	disabled
buffer_page_written_trx_system	buffer_page_io	disabled
buffer_page_written_undo_log	buffer_page_io	disabled
buffer_page_written_xdes	buffer_page_io	disabled
buffer_page_written_zblob	buffer_page_io	disabled
buffer_page_written_zblob2	buffer_page_io	disabled
buffer_pool_bytes_data	buffer	enabled
buffer_pool_bytes_dirty	buffer	enabled
buffer_pool_pages_data	buffer	enabled
buffer_pool_pages_dirty	buffer	enabled
buffer_pool_pages_free	buffer	enabled
buffer_pool_pages_misc	buffer	enabled
buffer_pool_pages_total	buffer	enabled
buffer_pool_reads	buffer	enabled
buffer_pool_read_ahead	buffer	enabled
buffer_pool_read_ahead_evicted	buffer	enabled
buffer_pool_read_requests	buffer	enabled

The INFORMATION_SCHEMA INNODB_METRICS Table

2315

buffer_pool_size	server	enabled
buffer_pool_wait_free	buffer	enabled
buffer_pool_write_requests	buffer	enabled
compression_pad_decrements	compression	disabled
compression_pad_increments	compression	disabled
compress_pages_compressed	compression	disabled
compress_pages_decompressed	compression	disabled
ddl_background_drop_indexes	ddl	disabled
ddl_background_drop_tables	ddl	disabled
ddl_online_create_index	ddl	disabled
ddl_pending_alter_table	ddl	disabled
dml_deletes	dml	enabled
dml_inserts	dml	enabled
dml_reads	dml	disabled
dml_updates	dml	enabled
file_num_open_files	file_system	enabled
ibuf_merges	change_buffer	enabled
ibuf_merges_delete	change_buffer	enabled
ibuf_merges_delete_mark	change_buffer	enabled
ibuf_merges_discard_delete	change_buffer	enabled
ibuf_merges_discard_delete_mark	change_buffer	enabled
ibuf_merges_discard_insert	change_buffer	enabled
ibuf_merges_insert	change_buffer	enabled
ibuf_size	change_buffer	enabled
icp_attempts	icp	disabled
icp_match	icp	disabled
icp_no_match	icp	disabled
icp_out_of_range	icp	disabled
index_page_discards	index	disabled
index_page_merge_attempts	index	disabled
index_page_merge_successful	index	disabled
index_page_reorg_attempts	index	disabled
index_page_reorg_successful	index	disabled
index_page_splits	index	disabled
innodb_activity_count	server	enabled
innodb_background_drop_table_usec	server	disabled
innodb_checkpoint_usec	server	disabled
innodb_dblwr_pages_written	server	enabled
innodb_dblwr_writes	server	enabled
innodb_dict_lru_usec	server	disabled
innodb_ibuf_merge_usec	server	disabled
innodb_log_flush_usec	server	disabled
innodb_master_active_loops	server	disabled
innodb_master_idle_loops	server	disabled
innodb_master_purge_usec	server	disabled
innodb_master_thread_sleeps	server	disabled
innodb_mem_validate_usec	server	disabled
innodb_page_size	server	enabled
innodb_rwlock_sx_os_waits	server	enabled
innodb_rwlock_sx_spin_rounds	server	enabled
innodb_rwlock_sx_spin_waits	server	enabled
innodb_rwlock_s_os_waits	server	enabled
innodb_rwlock_s_spin_rounds	server	enabled
innodb_rwlock_s_spin_waits	server	enabled
innodb_rwlock_x_os_waits	server	enabled
innodb_rwlock_x_spin_rounds	server	enabled
innodb_rwlock_x_spin_waits	server	enabled
lock_deadlocks	lock	enabled
lock_rec_locks	lock	disabled
lock_rec_lock_created	lock	disabled
lock_rec_lock_removed	lock	disabled
lock_rec_lock_requests	lock	disabled
lock_rec_lock_waits	lock	disabled
lock_row_lock_current_waits	lock	enabled
lock_row_lock_time	lock	enabled
lock_row_lock_time_avg	lock	enabled
lock_row_lock_time_max	lock	enabled
lock_row_lock_waits	lock	enabled
lock_table_locks	lock	disabled
lock_table_lock_created	lock	disabled
lock_table_lock_removed	lock	disabled
lock_table_lock_waits	lock	disabled

The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

2316

lock_timeouts	lock	enabled
log_checkpoints	recovery	disabled
log_lsn_buf_pool_oldest	recovery	disabled
log_lsn_checkpoint_age	recovery	disabled
log_lsn_current	recovery	disabled
log_lsn_last_checkpoint	recovery	disabled
log_lsn_last_flush	recovery	disabled
log_max_modified_age_async	recovery	disabled
log_max_modified_age_sync	recovery	disabled
log_num_log_io	recovery	disabled
log_padded	recovery	enabled
log_pending_checkpoint_writes	recovery	disabled
log_pending_log_flushes	recovery	disabled
log_waits	recovery	enabled
log_writes	recovery	enabled
log_write_requests	recovery	enabled
metadata_mem_pool_size	metadata	enabled
metadata_table_handles_closed	metadata	disabled
metadata_table_handles_opened	metadata	disabled
metadata_table_reference_count	metadata	disabled
os_data_fsyncs	os	enabled
os_data_reads	os	enabled
os_data_writes	os	enabled
os_log_bytes_written	os	enabled
os_log_fsyncs	os	enabled
os_log_pending_fsyncs	os	enabled
os_log_pending_writes	os	enabled
os_pending_reads	os	disabled
os_pending_writes	os	disabled
purge_del_mark_records	purge	disabled
purge_dml_delay_usec	purge	disabled
purge_invoked	purge	disabled
purge_resume_count	purge	disabled
purge_stop_count	purge	disabled
purge_undo_log_pages	purge	disabled
purge_upd_exist_or_extern_records	purge	disabled
trx_active_transactions	transaction	disabled
trx_commits_insert_update	transaction	disabled
trx_nl_ro_commits	transaction	disabled
trx_rollbacks	transaction	disabled
trx_rollbacks_savepoint	transaction	disabled
trx_rollback_active	transaction	disabled
trx_ro_commits	transaction	disabled
trx_rseg_current_size	transaction	disabled
trx_rseg_history_len	transaction	enabled
trx_rw_commits	transaction	disabled
trx_undo_slots_cached	transaction	disabled
trx_undo_slots_used	transaction	disabled
+--+---------------------+----------+
220 rows in set (0.02 sec)

19.30.20 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

The INNODB_FT_CONFIG table displays metadata about the FULLTEXT index and associated
processing for an InnoDB table.

This table is only accessible to users with the SUPER privilege. Before you query this table, set the
configuration variable innodb_ft_aux_table to the name (including the database name) of the table
that contains the FULLTEXT index, for example test/articles.

Table 19.19 INNODB_FT_CONFIG Columns

Column name Description

KEY The name designating an item of metadata for an InnoDB table
containing a FULLTEXT index.

VALUE The value associated with the corresponding KEY column, reflecting some
limit or current value for an aspect of a FULLTEXT index for an InnoDB
table.

The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table

2317

Notes:

• This table is only intended for internal configuration. It is not intended for statistical information
purposes.

• You must have the PROCESS privilege to query this table.

• The values for the KEY column might evolve depending on the needs for performance
tuning and debugging for InnoDB full-text processing. Currently, the key values
include optimize_checkpoint_limit, synced_doc_id, deleted_doc_count,
stopword_table_name, and use_stopword.

• For more information, see Section 12.9, “Full-Text Search Functions”.

19.30.21 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD
Table

The INNODB_FT_DEFAULT_STOPWORD table holds a list of stopwords that are used by default when
creating a FULLTEXT index on an InnoDB table.

Table 19.20 INNODB_FT_DEFAULT_STOPWORD Columns

Column name Description

value A word that is used by default as a stopword for FULLTEXT indexes
on InnoDB tables. Not used if you override the default stopword
processing with either the innodb_ft_server_stopword_table or
the innodb_ft_user_stopword_table option.

Notes:

• You must have the PROCESS privilege to query this table.

• For more information, see Section 12.9, “Full-Text Search Functions”.

19.30.22 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

The INNODB_FT_INDEX_TABLE table displays information about the inverted index used to process
text searches against the FULLTEXT index of an InnoDB table.

This table is only accessible to users with the SUPER privilege. Before you query this table, set the
configuration variable innodb_ft_aux_table to the name (including the database name) of the table
that contains the FULLTEXT index, for example test/articles.

Table 19.21 INNODB_FT_INDEX_TABLE Columns

Column name Description

WORD A word extracted from the text of the columns that are part of a
FULLTEXT.

FIRST_DOC_ID The first document ID that this word appears in in the FULLTEXT index.

LAST_DOC_ID The last document ID that this word appears in in the FULLTEXT index.

DOC_COUNT The number of rows this word appears in in the FULLTEXT index. The
same word can occur several times within the cache table, once for each
combination of DOC_ID and POSITION values.

DOC_ID The document ID of the row containing the word. This value might reflect
the value of an ID column that you defined for the underlying table, or it
can be a sequence value generated by InnoDB when the table does not
contain a suitable column.

The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

2318

Column name Description

POSITION The position of this particular instance of the word within the relevant
document identified by the DOC_ID value.

Notes:

• This table initially appears empty, until you set the value of the configuration variable
innodb_ft_aux_table.

• You must have the PROCESS privilege to query this table.

• For more information, see Section 12.9, “Full-Text Search Functions”.

19.30.23 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

The INNODB_FT_INDEX_CACHE table displays token information about newly inserted rows in a
FULLTEXT index for an InnoDB table. To avoid expensive index reorganization during DML operations
for an InnoDB FULLTEXT index, the information about newly indexed words is stored separately, and
combined with the main search index only when you issue the OPTIMIZE TABLE statement for the
InnoDB table.

This table is only accessible to users with the SUPER privilege. Before you query this table, set the
configuration variable innodb_ft_aux_table to the name (including the database name) of the table
that contains the FULLTEXT index, for example test/articles.

Table 19.22 INNODB_FT_INDEX_CACHE Columns

Column name Description

WORD A word extracted from the text of a newly inserted row.

FIRST_DOC_ID The first document ID that this word appears in in the FULLTEXT index.

LAST_DOC_ID The last document ID that this word appears in in the FULLTEXT index.

DOC_COUNT The number of rows this word appears in in the FULLTEXT index. The
same word can occur several times within the cache table, once for each
combination of DOC_ID and POSITION values.

DOC_ID The document ID of the newly inserted row. This value might reflect the
value of an ID column that you defined for the underlying table, or it can
be a sequence value generated by InnoDB when the table does not
contain a suitable column.

POSITION The position of this particular instance of the word within the relevant
document identified by the DOC_ID value. The value does not represent
an absolute position; it is an offset added to the POSITION of the
previous instance of that word.

Notes:

• This table initially appears empty, until you set the value of the configuration variable
innodb_ft_aux_table.

• You must have the PROCESS privilege to query this table.

• For more information, see Section 12.9, “Full-Text Search Functions”.

19.30.24 The INFORMATION_SCHEMA INNODB_FT_DELETED Table

The INNODB_FT_DELETED table records rows that are deleted from the FULLTEXT index for an
InnoDB table. To avoid expensive index reorganization during DML operations for an InnoDB

The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table

2319

FULLTEXT index, the information about newly deleted words is stored separately, filtered out of search
results when you do a text search, and removed from the main search index only when you issue the
OPTIMIZE TABLE statement for the InnoDB table.

This table is only accessible to users with the SUPER privilege. Before you query this table, set the
configuration variable innodb_ft_aux_table to the name (including the database name) of the table
that contains the FULLTEXT index, for example test/articles.

Table 19.23 INNODB_FT_DELETED Columns

Column name Description

DOC_ID The document ID of the newly deleted row. This value might reflect the
value of an ID column that you defined for the underlying table, or it
can be a sequence value generated by InnoDB when the table does
not contain a suitable column. This value is used to skip rows in the
innodb_ft_index_table table, when you do text searches before
data for deleted rows is physically removed from the FULLTEXT index by
an OPTIMIZE TABLE statement.

Notes:

• This table initially appears empty, until you set the value of the configuration variable
innodb_ft_aux_table.

• You must have the PROCESS privilege to query this table.

• For more information, see Section 12.9, “Full-Text Search Functions”.

19.30.25 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table

The INNODB_FT_BEING_DELETED table is a temporary work table while document IDs in the
INNODB_FT_DELETED table are being removed from an InnoDB FULLTEXT index during an
OPTIMIZE TABLE operation. Because its contents typically have a short lifetime, this table has limited
utility for monitoring or debugging.

This table is only accessible to users with the SUPER privilege. This table initially appears empty, until
you set the value of the configuration variable innodb_ft_aux_table.

Table 19.24 INNODB_FT_BEING_DELETED Columns

Column name Description

DOC_ID The document ID of the row that is in the process of being deleted. This
value might reflect the value of an ID column that you defined for the
underlying table, or it can be a sequence value generated by InnoDB
when the table does not contain a suitable column. This value is used
to skip rows in the innodb_ft_index_table table, when you do text
searches before data for deleted rows is physically removed from the
FULLTEXT index by an OPTIMIZE TABLE statement.

Notes:

• This table initially appears empty, until you set the value of the configuration variable
innodb_ft_aux_table.

• You must have the PROCESS privilege to query this table.

• For more information, see Section 12.9, “Full-Text Search Functions”.

19.30.26 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

Extensions to SHOW Statements

2320

The INNODB_TEMP_TABLE_INFO contains metadata about active temporary tables and is created
when the first select statement is run against it. The table reports on all user and system-created
temporary tables that are active within a given InnoDB instance. This table is not persisted to disk.

As of MySQL 5.7.1, InnoDB temporary table metadata is no longer stored to InnoDB system tables.
Instead, the new INNODB_TEMP_TABLE_INFO provides users with a snapshot of active temporary
tables.

Table 19.25 INNODB_TEMP_TABLE_INFO Columns

Column name Description

TABLE_ID The table ID of the active temporary table.

NAME The name of the active temporary table.

N_COLS The number of columns in the temporary table.

SPACE The tablespace identifier where the temporary table resides. As of MySQL
5.7.1, all non-compressed InnoDB temporary tables reside in a shared
temporary table tablespace. Compressed temporary tables reside in
separate dedicated tablespaces. The temporary table tablespace space-id
(also know as tablespace identifier) is always non-zero, and because it is
dynamically generated, it can vary on server restart.

PER_TABLE_SPACE Whether this table resides in the shared temporary tablespace or in a
dedicated single tablespace. A value of true indicates a dedicated single
tablespace. A value of false indicates that the temporary table resides in
the shared temporary tablespace.

IS_COMPRESSED Whether this temporary table is compressed.

Notes:

• This table is primarily useful for expert level monitoring.

• Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this
table rather than the corresponding InnoDB system table for any new monitoring application you
develop.

• You must have the PROCESS privilege to query this table.

19.31 Extensions to SHOW Statements

Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which
rows to display.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW
DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its
tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |

Extensions to SHOW Statements

2321

| EVENTS |
| FILES |
| GLOBAL_STATUS |
| GLOBAL_VARIABLES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| SESSION_STATUS |
| SESSION_VARIABLES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+
27 rows in set (0.00 sec)

SHOW COLUMNS and DESCRIBE can display information about the columns in individual
INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also permit a WHERE clause that
specifies more general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW TRIGGERS
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW
statement. For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As
an example, the following statement displays information about character sets for which the default
collation contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |

Extensions to SHOW Statements

2322

+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This statement displays the multi-byte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
euckr	EUC-KR Korean	euckr_korean_ci	2
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

2323

Chapter 20 MySQL Performance Schema

Table of Contents
20.1 Performance Schema Quick Start ... 2324
20.2 Performance Schema Configuration ... 2330

20.2.1 Performance Schema Build Configuration .. 2331
20.2.2 Performance Schema Startup Configuration ... 2332
20.2.3 Performance Schema Runtime Configuration ... 2334

20.3 Performance Schema Queries .. 2351
20.4 Performance Schema Instrument Naming Conventions .. 2352
20.5 Performance Schema Status Monitoring ... 2354
20.6 Performance Schema Atom and Molecule Events ... 2358
20.7 Performance Schema Statement Digests .. 2358
20.8 Performance Schema General Table Characteristics ... 2360
20.9 Performance Schema Table Descriptions .. 2360

20.9.1 Performance Schema Table Index ... 2360
20.9.2 Performance Schema Setup Tables ... 2363
20.9.3 Performance Schema Instance Tables ... 2367
20.9.4 Performance Schema Wait Event Tables ... 2372
20.9.5 Performance Schema Stage Event Tables ... 2376
20.9.6 Performance Schema Statement Event Tables ... 2378
20.9.7 Performance Schema Transaction Tables .. 2388
20.9.8 Performance Schema Connection Tables ... 2394
20.9.9 Performance Schema Connection Attribute Tables ... 2396
20.9.10 Performance Schema Replication Tables ... 2397
20.9.11 Performance Schema Lock Tables ... 2404
20.9.12 Performance Schema Summary Tables ... 2407
20.9.13 Performance Schema Miscellaneous Tables ... 2424

20.10 Performance Schema Option and Variable Reference ... 2431
20.11 Performance Schema Command Options .. 2434
20.12 Performance Schema System Variables ... 2435
20.13 Performance Schema Status Variables ... 2448
20.14 Performance Schema and Plugins .. 2450
20.15 Using the Performance Schema to Diagnose Problems ... 2450

The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level.
The Performance Schema has these characteristics:

• The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE_SCHEMA storage engine and the performance_schema
database. The Performance Schema focuses primarily on performance data. This differs from
INFORMATION_SCHEMA, which serves for inspection of metadata.

• The Performance Schema monitors server events. An “event” is anything the server does that takes
time and has been instrumented so that timing information can be collected. In general, an event
could be a function call, a wait for the operating system, a stage of an SQL statement execution
such as parsing or sorting, or an entire statement or group of statements. Currently, event collection
provides access to information about synchronization calls (such as for mutexes) file and table I/O,
table locks, and so forth for the server and for several storage engines.

• Performance Schema events are distinct from events written to the server's binary log (which
describe data modifications) and Event Scheduler events (which are a type of stored program).

• Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written
to the binary log.

Performance Schema Quick Start

2324

• Current events are available, as well as event histories and summaries. This enables you to
determine how many times instrumented activities were performed and how much time they took.
Event information is available to show the activities of specific threads, or activity associated with
particular objects such as a mutex or file.

• The PERFORMANCE_SCHEMA storage engine collects event data using “instrumentation points” in
server source code.

• Collected events are stored in tables in the performance_schema database. These tables can be
queried using SELECT statements like other tables.

• Performance Schema configuration can be modified dynamically by updating tables in the
performance_schema database through SQL statements. Configuration changes affect data
collection immediately.

• Tables in the performance_schema database are views or temporary tables that use no persistent
on-disk storage.

• Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply
to storage engines might not be implemented for all storage engines. Instrumentation of each third-
party engine is the responsibility of the engine maintainer. See also Section E.8, “Restrictions on
Performance Schema”.

• Data collection is implemented by modifying the server source code to add instrumentation. There
are no separate threads associated with the Performance Schema, unlike other features such as
replication or the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution
while having minimal impact on server performance. The implementation follows these design goals:

• Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAIN) to change.

• No memory allocation is done beyond that which occurs during server startup. By using early
allocation of structures with a fixed size, it is never necessary to resize or reallocate them, which is
critical for achieving good runtime performance.

• Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

• The parser is unchanged. There are no new keywords or statements.

• Execution of server code proceeds normally even if the Performance Schema fails internally.

• When there is a choice between performing processing during event collection initially or during
event retrieval later, priority is given to making collection faster. This is because collection is ongoing
whereas retrieval is on demand and might never happen at all.

• It is easy to add new instrumentation points.

• Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code will continue to work. This benefits developers of third-party plugins because it is not necessary
to upgrade each plugin to stay synchronized with the latest Performance Schema changes.

20.1 Performance Schema Quick Start
This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Section 20.15, “Using the Performance Schema to Diagnose Problems”.

Performance Schema Quick Start

2325

For the Performance Schema to be available, support for it must have been configured when
MySQL was built. You can verify whether this is the case by checking the server's help output. If the
Performance Schema is available, the output will mention several variables with names that begin with
performance_schema:

shell> mysqld --verbose --help
...
 --performance_schema
 Enable the performance schema.
 --performance_schema_events_waits_history_long_size=#
 Number of rows in events_waits_history_long.
...

If such variables do not appear in the output, your server has not been built to support the Performance
Schema. In this case, see Section 20.2, “Performance Schema Configuration”.

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it
explicitly, start the server with the performance_schema variable set to an appropriate value. For
example, use these lines in your my.cnf file:

[mysqld]
performance_schema=on

When the server starts, it sees performance_schema and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

mysql> SHOW VARIABLES LIKE 'performance_schema';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| performance_schema | ON |
+--------------------+-------+

A value of ON means that the Performance Schema initialized successfully and is ready for use. A
value of OFF means that some error occurred. Check the server error log for information about what
went wrong.

The Performance Schema is implemented as a storage engine. If this engine is available (which you
should already have checked earlier), you should see it listed with a SUPPORT value of YES in the
output from the INFORMATION_SCHEMA.ENGINES table or the SHOW ENGINES statement:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE ENGINE='PERFORMANCE_SCHEMA'\G
*************************** 1. row ***************************
 ENGINE: PERFORMANCE_SCHEMA
 SUPPORT: YES
 COMMENT: Performance Schema
TRANSACTIONS: NO
 XA: NO
 SAVEPOINTS: NO

mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

The PERFORMANCE_SCHEMA storage engine operates on tables in the performance_schema
database. You can make performance_schema the default database so that references to its tables
need not be qualified with the database name:

Performance Schema Quick Start

2326

mysql> USE performance_schema;

Many examples in this chapter assume that performance_schema is the default database.

Performance Schema tables are stored in the performance_schema database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the INFORMATION_SCHEMA database or by using SHOW statements. For example, use either of these
statements to see what Performance Schema tables exist:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'performance_schema';
+--+
| TABLE_NAME |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_thread_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_stages_summary_global_by_event_name |
| events_statements_current |
| events_statements_history |
| events_statements_history_long |
...
| file_instances |
| file_summary_by_event_name |
| file_summary_by_instance |
| host_cache |
| hosts |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |
| memory_summary_by_thread_by_event_name |
| memory_summary_by_user_by_event_name |
| memory_summary_global_by_event_name |
| metadata_locks |
| mutex_instances |
| objects_summary_global_by_type |
| performance_timers |
| replication_connection_configuration |
| replication_connection_status |
| replication_execute_configuration |
| replication_execute_status |
| replication_execute_status_by_coordinator |
| replication_execute_status_by_worker |
| rwlock_instances |
| session_account_connect_attrs |
| session_connect_attrs |
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
| socket_instances |
| socket_summary_by_event_name |
| socket_summary_by_instance |
| table_handles |
| table_io_waits_summary_by_index_usage |
| table_io_waits_summary_by_table |
| table_lock_waits_summary_by_table |
| threads |
| users |
+--+

mysql> SHOW TABLES FROM performance_schema;
+--+

Performance Schema Quick Start

2327

| Tables_in_performance_schema |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
...

The number of Performance Schema tables is expected to increase over time as implementation of
additional instrumentation proceeds.

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE setup_timers\G
*************************** 1. row ***************************
 Table: setup_timers
Create Table: CREATE TABLE `setup_timers` (
 `NAME` varchar(64) NOT NULL,
 `TIMER_NAME` enum('CYCLE','NANOSECOND','MICROSECOND','MILLISECOND','TICK')
 NOT NULL
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

Table structure is also available by selecting from tables such as INFORMATION_SCHEMA.COLUMNS or
by using statements such as SHOW COLUMNS.

Tables in the performance_schema database can be grouped according to the type of information
in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information
about the tables in each group, see Section 20.9, “Performance Schema Table Descriptions”.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect
all events. To turn all of these on and enable event timing, execute two statements (the row counts may
differ depending on MySQL version):

mysql> UPDATE setup_instruments SET ENABLED = 'YES', TIMED = 'YES';
Query OK, 560 rows affected (0.04 sec)
mysql> UPDATE setup_consumers SET ENABLED = 'YES';
Query OK, 10 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the events_waits_current table. It
contains one row per thread showing each thread's most recent monitored event:

mysql> SELECT * FROM events_waits_current\G
*************************** 1. row ***************************
 THREAD_ID: 0
 EVENT_ID: 5523
 EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK::mutex
 SOURCE: thr_lock.c:525
 TIMER_START: 201660494489586
 TIMER_END: 201660494576112
 TIMER_WAIT: 86526
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 142270668
 NESTING_EVENT_ID: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: 0
...

Performance Schema Quick Start

2328

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK::mutex, a mutex in the mysys subsystem. The first few columns provide the following
information:

• The ID columns indicate which thread the event comes from and the event number.

• EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

• The timer columns show when the event started and stopped and how long it took. If an event is
still in progress, the TIMER_END and TIMER_WAIT values are NULL. Timer values are approximate
and expressed in picoseconds. For information about timers and event time collection, see
Section 20.2.3.1, “Performance Schema Event Timing”.

The history tables contain the same kind of rows as the current-events table but have more rows and
show what the server has been doing “recently” rather than “currently.” The events_waits_history
and events_waits_history_long tables contain the most recent 10 events per thread and most
recent 10,000 events, respectively. For example, to see information for recent events produced by
thread 13, do this:

mysql> SELECT EVENT_ID, EVENT_NAME, TIMER_WAIT
 -> FROM events_waits_history WHERE THREAD_ID = 13
 -> ORDER BY EVENT_ID;
+----------+---+------------+
| EVENT_ID | EVENT_NAME | TIMER_WAIT |
+----------+---+------------+
86	wait/synch/mutex/mysys/THR_LOCK::mutex	686322
87	wait/synch/mutex/mysys/THR_LOCK_malloc	320535
88	wait/synch/mutex/mysys/THR_LOCK_malloc	339390
89	wait/synch/mutex/mysys/THR_LOCK_malloc	377100
90	wait/synch/mutex/sql/LOCK_plugin	614673
91	wait/synch/mutex/sql/LOCK_open	659925
92	wait/synch/mutex/sql/THD::LOCK_thd_data	494001
93	wait/synch/mutex/mysys/THR_LOCK_malloc	222489
94	wait/synch/mutex/mysys/THR_LOCK_malloc	214947
95	wait/synch/mutex/mysys/LOCK_alarm	312993
+----------+---+------------+

As new events are added to a history table, older events are discarded if the table is full.

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times
or have taken the most wait time, sort the events_waits_summary_global_by_event_name
table on the COUNT_STAR or SUM_TIMER_WAIT column, which correspond to a COUNT(*) or
SUM(TIMER_WAIT) value, respectively, calculated over all events:

mysql> SELECT EVENT_NAME, COUNT_STAR
 -> FROM events_waits_summary_global_by_event_name
 -> ORDER BY COUNT_STAR DESC LIMIT 10;
+---+------------+
| EVENT_NAME | COUNT_STAR |
+---+------------+
wait/synch/mutex/mysys/THR_LOCK_malloc	6419
wait/io/file/sql/FRM	452
wait/synch/mutex/sql/LOCK_plugin	337
wait/synch/mutex/mysys/THR_LOCK_open	187
wait/synch/mutex/mysys/LOCK_alarm	147
wait/synch/mutex/sql/THD::LOCK_thd_data	115
wait/io/file/myisam/kfile	102
wait/synch/mutex/sql/LOCK_global_system_variables	89
wait/synch/mutex/mysys/THR_LOCK::mutex	89
wait/synch/mutex/sql/LOCK_open	88
+---+------------+

mysql> SELECT EVENT_NAME, SUM_TIMER_WAIT
 -> FROM events_waits_summary_global_by_event_name

Performance Schema Quick Start

2329

 -> ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;
+--+----------------+
| EVENT_NAME | SUM_TIMER_WAIT |
+--+----------------+
wait/io/file/sql/MYSQL_LOG	1599816582
wait/synch/mutex/mysys/THR_LOCK_malloc	1530083250
wait/io/file/sql/binlog_index	1385291934
wait/io/file/sql/FRM	1292823243
wait/io/file/myisam/kfile	411193611
wait/io/file/myisam/dfile	322401645
wait/synch/mutex/mysys/LOCK_alarm	145126935
wait/io/file/sql/casetest	104324715
wait/synch/mutex/sql/LOCK_plugin	86027823
wait/io/file/sql/pid	72591750
+--+----------------+

These results show that the THR_LOCK_malloc mutex is “hot,” both in terms of how often it is used
and amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK_malloc mutex is used only in debug builds. In production
builds it is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when
used by the server, produces an event. These tables provide event names and explanatory notes or
status information. For example, the file_instances table lists instances of instruments for file I/O
operations and their associated files:

mysql> SELECT * FROM file_instances\G
*************************** 1. row ***************************
 FILE_NAME: /opt/mysql-log/60500/binlog.000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
*************************** 2. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/tables_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
*************************** 3. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/columns_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
...

Setup tables are used to configure and display monitoring characteristics. For example, to see which
event timers are selected, query the setup_timers tables:

mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+

setup_instruments lists the set of instruments for which events can be collected and shows which
of them are enabled:

mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
| wait/synch/mutex/sql/LOCK_global_read_lock | YES | YES |

Performance Schema Configuration

2330

wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To understand how to interpret instrument names, see Section 20.4, “Performance Schema Instrument
Naming Conventions”.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
 -> WHERE NAME = 'wait/synch/mutex/sql/LOCK_mysql_create_db';

The Performance Schema uses collected events to update tables in the performance_schema
database, which act as “consumers” of event information. The setup_consumers table lists the
available consumers and which are enabled:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

To control whether the Performance Schema maintains a consumer as a destination for event
information, set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 20.2.3.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
performance_timers lists the available event timers and their characteristics. For information about
timers, see Section 20.2.3.1, “Performance Schema Event Timing”.

20.2 Performance Schema Configuration

To use the MySQL Performance Schema, these configuration considerations apply:

• The Performance Schema must be configured into MySQL Server at build time to make it available.
Performance Schema support is included in binary MySQL distributions. If you are building

Performance Schema Build Configuration

2331

from source, you must ensure that it is configured into the build as described in Section 20.2.1,
“Performance Schema Build Configuration”.

• The Performance Schema must be enabled at server startup to enable event collection to
occur. Specific Performance Schema features can be enabled at server startup or at runtime to
control which types of event collection occur. See Section 20.2.2, “Performance Schema Startup
Configuration”, Section 20.2.3, “Performance Schema Runtime Configuration”, and Section 20.2.3.2,
“Performance Schema Event Filtering”.

20.2.1 Performance Schema Build Configuration

For the Performance Schema to be available, it must be configured into the MySQL server at build
time. Binary MySQL distributions provided by Oracle Corporation are configured to support the
Performance Schema. If you use a binary MySQL distribution from another provider, check with the
provider whether the distribution has been appropriately configured.

If you build MySQL from a source distribution, enable the Performance Schema by running CMake with
the WITH_PERFSCHEMA_STORAGE_ENGINE option enabled:

shell> cmake . -DWITH_PERFSCHEMA_STORAGE_ENGINE=1

Configuring MySQL with the -DWITHOUT_PERFSCHEMA_STORAGE_ENGINE=1 option prevents
inclusion of the Performance Schema, so if you want it included, do not use this option. See
Section 2.8.4, “MySQL Source-Configuration Options”.

As of MySQL 5.7.3, it is also possible to enable the Performance Schema but exclude certain parts of
the instrumentation. For example, to enable the Performance Schema but exclude stage and statement
instrumentation, do this:

shell> cmake . -DWITH_PERFSCHEMA_STORAGE_ENGINE=1 \
 -DDISABLE_PSI_STAGE=1 \
 -DDISABLE_PSI_STATEMENT=1

For more information, see the descriptions of the DISABLE_PSI_XXX CMake options in Section 2.8.4,
“MySQL Source-Configuration Options”.

If you install MySQL over a previous installation that was configured without the Performance Schema
(or with an older version of the Performance Schema that may not have all the current tables), run
mysql_upgrade after starting the server to ensure that the performance_schema database exists
with all current tables. Then restart the server. One indication that you need to do this is the presence
of messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'
has the wrong structure
[ERROR] Native table 'performance_schema'.'events_waits_history_long'
has the wrong structure
...

To verify whether a server was built with Performance Schema support, check its help output. If the
Performance Schema is available, the output will mention several variables with names that begin with
performance_schema:

shell> mysqld --verbose --help
...
 --performance_schema
 Enable the performance schema.
 --performance_schema_events_waits_history_long_size=#
 Number of rows in events_waits_history_long.
...

Performance Schema Startup Configuration

2332

You can also connect to the server and look for a line that names the PERFORMANCE_SCHEMA storage
engine in the output from SHOW ENGINES:

mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

If the Performance Schema was not configured into the server at build time, no row for
PERFORMANCE_SCHEMA will appear in the output from SHOW ENGINES. You might see
performance_schema listed in the output from SHOW DATABASES, but it will have no tables and you
will not be able to use it.

A line for PERFORMANCE_SCHEMA in the SHOW ENGINES output means that the Performance Schema
is available, not that it is enabled. To enable it, you must do so at server startup, as described in the
next section.

20.2.2 Performance Schema Startup Configuration

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it
explicitly, start the server with the performance_schema variable set to an appropriate value. For
example, use these lines in your my.cnf file:

[mysqld]
performance_schema=on

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets performance_schema to OFF, and the server runs
without instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.

To control an instrument at server startup, use an option of this form:

--performance-schema-instrument='instrument_name=value'

Here, instrument_name is an instrument name such as wait/synch/mutex/sql/LOCK_open,
and value is one of these values:

• off, false, or 0: Disable the instrument

• on, true, or 1: Enable and time the instrument

• counted: Enable and count (rather than time) the instrument

Each --performance-schema-instrument option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns
are permitted in instrument names to configure instruments that match the pattern. To configure all
condition synchronization instruments as enabled and counted, use this option:

--performance-schema-instrument='wait/synch/cond/%=counted'

To disable all instruments, use this option:

--performance-schema-instrument='%=off'

Performance Schema Startup Configuration

2333

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 20.2.3.4, “Naming Instruments
or Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

--performance-schema-consumer-consumer_name=value

Here, consumer_name is a consumer name such as events_waits_history, and value is one of
these values:

• off, false, or 0: Do not collect events for the consumer

• on, true, or 1: Collect events for the consumer

For example, to enable the events_waits_history consumer, use this option:

--performance-schema-consumer-events-waits-history=on

The permitted consumer names can be found by examining the setup_consumers table. Patterns
are not permitted. Consumer names in the setup_consumers table use underscores, but for
consumers set at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	200
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	100
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	1000
...

The performance_schema variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. It may
be necessary to tune the values of Performance Schema system variables to
find the number of instances that balances insufficient instrumentation against
excessive memory consumption.

To change the value of Performance Schema system variables, set them at server startup. For
example, put the following lines in a my.cnf file to change the sizes of the history tables:

[mysqld]
performance_schema

Performance Schema Runtime Configuration

2334

performance_schema_events_waits_history_size=20
performance_schema_events_waits_history_long_size=15000

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For example, it sizes the parameters that control the sizes of the events
waits tables this way. To see which parameters are sized under this policy, use mysqld --verbose
--help and look for those with a default value of –1, or see Section 20.12, “Performance Schema
System Variables”.

For each autosized parameter that is not set at server startup (or is set to –1), the Performance
Schema determines how to set its value based on the value of the following system values, which are
considered as “hints” about how you have configured your MySQL server:

max_connections
open_files_limit
table_definition_cache
table_open_cache

To override autosizing for a given parameter, set it a value other than –1 at startup. In this case, the
Performance Schema assigns it the specified value.

At runtime, SHOW VARIABLES displays the actual values that autosized parameters were set to.

If the Performance Schema is disabled, its autosized parameters remain set to –1 and SHOW
VARIABLES displays –1.

20.2.3 Performance Schema Runtime Configuration

Performance Schema setup tables contain information about monitoring configuration:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'performance_schema'
 -> AND TABLE_NAME LIKE 'setup%';
+-------------------+
| TABLE_NAME |
+-------------------+
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
+-------------------+

You can examine the contents of these tables to obtain information about Performance Schema
monitoring characteristics. If you have the UPDATE privilege, you can change Performance Schema
operation by modifying setup tables to affect how monitoring occurs. For additional details about these
tables, see Section 20.9.2, “Performance Schema Setup Tables”.

To see which event timers are selected, query the setup_timers tables:

mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+

The NAME value indicates the type of instrument to which the timer applies, and TIMER_NAME indicates
which timer applies to those instruments. The timer applies to instruments where their name begins
with a component matching the NAME value.

Performance Schema Runtime Configuration

2335

To change the timer, update the NAME value. For example, to use the NANOSECOND timer for the wait
timer:

mysql> UPDATE setup_timers SET TIMER_NAME = 'NANOSECOND'
 -> WHERE NAME = 'wait';
mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	NANOSECOND
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+

For discussion of timers, see Section 20.2.3.1, “Performance Schema Event Timing”.

The setup_instruments and setup_consumers tables list the instruments for which events can
be collected and the types of consumers for which event information actually is collected, respectively.
Other setup tables enable further modification of the monitoring configuration. Section 20.2.3.2,
“Performance Schema Event Filtering”, discusses how you can modify these tables to affect event
collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the
statements in a file and start the server with the --init-file=file_name option. This strategy can
also be useful if you have multiple monitoring configurations, each tailored to produce a different kind
of monitoring, such as casual server health monitoring, incident investigation, application behavior
troubleshooting, and so forth. Put the statements for each monitoring configuration into their own file
and specify the appropriate file as the --init-file argument when you start the server.

20.2.3.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also
possible to configure instruments not to collect timing information. This section discusses the available
timers and their characteristics, and how timing values are represented in events.

Two tables provide timer information:

• performance_timers lists the available timers and their characteristics.

• setup_timers indicates which timers are used for which instruments.

Each timer row in setup_timers must refer to one of the timers listed in performance_timers.

Timers vary in precision and the amount of overhead they involve. To see what timers are available
and their characteristics, check the performance_timers table:

mysql> SELECT * FROM performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	NULL	NULL	NULL
MICROSECOND	1000000	1	585
MILLISECOND	1035	1	738
TICK	101	1	630
+-------------+-----------------+------------------+----------------+

The TIMER_NAME column shows the names of the available timers. CYCLE refers to the timer that is
based on the CPU (processor) cycle counter. If the values associated with a given timer name are

Performance Schema Runtime Configuration

2336

NULL, that timer is not supported on your platform. The rows that do not have NULL indicate which
timers you can use in setup_timers.

TIMER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds. For TICK, the frequency may vary
by platform (for example, some use 100 ticks/second, others 1000 ticks/second).

TIMER_RESOLUTION indicates the number of timer units by which timer values increase at a time. If a
timer has a resolution of 10, its value increases by 10 each time.

TIMER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given
timer. The overhead per event is twice the value displayed because the timer is invoked at the
beginning and end of the event.

To see which timer is in effect or to change the timer, access the setup_timers table:

mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	NANOSECOND
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+

mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
 -> WHERE NAME = 'wait';
mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	MICROSECOND
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+

By default, the Performance Schema uses the best timer available for each instrument type, but you
can select a different one.

To time waits, the most important criterion is to reduce overhead, at the possible expense of the timer
accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate
measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the cycle timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1
GHz (one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using
the cycle counter is much cheaper than getting the actual time of day. For example, the standard
gettimeofday() function can take hundreds of cycles, which is an unacceptable overhead for data
gathering that may occur thousands or millions of times per second.

Cycle counters also have disadvantages:

• End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

Performance Schema Runtime Configuration

2337

• Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a
CPU slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from
cycles to real-time units is subject to error.

• Cycle counters might be unreliable or unavailable depending on the processor or the operating
system. For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C
instruction) and it is theoretically possible for the operating system to prevent user-mode programs
from using it.

• Some processor details related to out-of-order execution or multiprocessor synchronization might
cause the counter to seem fast or slow by up to 1000 cycles.

Currently, MySQL works with cycle counters on x386 (Windows, Mac OS X, Linux, Solaris, and other
Unix flavors), PowerPC, and IA-64.

The setup_instruments table has an ENABLED column to indicate the instruments for which
to collect events. The table also has a TIMED column to indicate which instruments are timed. If
an instrument is not enabled, it produces no events. If an enabled instrument is not timed, events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer
values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum,
and average time values in summary tables.

Within events, times are stored in units given by the timer in effect when event timing begins. For
display, times are shown in picoseconds (trillionths of a second) to normalize them to a standard unit,
regardless of which timer is selected.

Modifications to the setup_timers table affect monitoring immediately. Events already in progress
may use the original timer for the begin time and the new timer for the end time, which may lead to
unpredictable results. If you make timer changes, you may want to use TRUNCATE TABLE to reset
Performance Schema statistics.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TIMER_START and TIMER_END values in events represent picoseconds since the baseline.
TIMER_WAIT values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor
rate varies, there might be drift. For these reasons, it is not reasonable to look at the TIMER_START
value for an event as an accurate measure of time elapsed since server startup. On the other hand, it
is reasonable to use TIMER_START or TIMER_WAIT values in ORDER BY clauses to order events by
start time or duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.
In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary
to perform a division for every instrumentation. Division is expensive on many platforms. Multiplication
is not expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest
possible TIMER_FREQUENCY value, using a multiplier large enough to ensure that there is no major
precision loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the
decision enables overhead to be minimized.

20.2.3.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

• Instrumented code is the source for events and produces events to be collected. The
setup_instruments table lists the instruments for which events can be collected, whether they
are enabled, and (for enabled instruments) whether to collect timing information:

mysql> SELECT * FROM setup_instruments;

Performance Schema Runtime Configuration

2338

+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables
may be used as described in Section 20.2.3.3, “Event Pre-Filtering”.

• Performance Schema tables are the destinations for events and consume events. The
setup_consumers table lists the types of consumers to which event information can be sent and
whether they are enabled:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Filtering can be done at different stages of performance monitoring:

• Pre-filtering. This is done by modifying Performance Schema configuration so that only certain
types of events are collected from producers, and collected events update only certain consumers.
To do this, enable or disable instruments or consumers. Pre-filtering is done by the Performance
Schema and has a global effect that applies to all users.

Reasons to use pre-filtering:

• To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and
want to disable the timing code to eliminate timing overhead.

• To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If
you enable only file instruments with pre-filtering, no rows are collected for nonfile instruments.
With post-filtering, nonfile events are collected, leaving fewer rows for file events.

• To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about
event histories, you can disable the history table consumers to improve performance.

• Post-filtering. This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Performance Schema Runtime Configuration

2339

Reasons to use post-filtering:

• To avoid making decisions for individual users about which event information is of interest.

• To use the Performance Schema to investigate a performance issue when the restrictions to
impose using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Section 20.3, “Performance Schema Queries”.

20.2.3.3 Event Pre-Filtering

Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

• To configure pre-filtering at the producer stage, several tables can be used:

• setup_instruments indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables.
An instrument enabled in this table is permitted to produce events, subject to the contents of the
other tables.

• setup_objects controls whether the Performance Schema monitors particular table and stored
program objects.

• threads indicates whether monitoring is enabled for each server thread.

• setup_actors determines the initial monitoring state for new foreground threads.

• To configure pre-filtering at the consumer stage, modify the setup_consumers table. This
determines the destinations to which events are sent. setup_consumers also implicitly affects
event production. If a given event will not be sent to any destination (that is, will not be consumed),
the Performance Schema does not produce it.

Modifications to any of these tables affect monitoring immediately, with the exception of
setup_actors. A change to setup_actors affects only foreground threads created subsequent to
the change.

When you change the monitoring configuration, the Performance Schema does not flush the history
tables. Events already collected remain in the current-events and history tables until displaced by
newer events. If you disable instruments, you might need to wait a while before events for them are
displaced by newer events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary
tables to clear aggregate information for previously collected events. Except for
events_statements_summary_by_digest and the memory summary tables, the effect of
TRUNCATE TABLE for summary tables is to reset the summary columns to 0 or NULL, not to remove
rows.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

Pre-Filtering by Instrument

The setup_instruments table lists the available instruments:

mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+

Performance Schema Runtime Configuration

2340

...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure
whether to collect timing information for an enabled instrument, set its TIMED value to YES or
NO. Setting the TIMED column affects Performance Schema table contents as described in
Section 20.2.3.1, “Performance Schema Event Timing”.

Modifications to the setup_instruments table affect monitoring immediately.

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 20.2.3.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the setup_instruments table. These
changes, like other pre-filtering operations, affect all users. Some of these queries use the LIKE
operator and a pattern match instrument names. For additional information about specifying patterns to
select instruments, see Section 20.2.3.4, “Naming Instruments or Consumers for Filtering Operations”.

• Disable all instruments:

mysql> UPDATE setup_instruments SET ENABLED = 'NO';

Now no events will be collected.

• Disable all file instruments, adding them to the current set of disabled instruments:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
 -> WHERE NAME LIKE 'wait/io/file/%';

• Disable only file instruments, enable all other instruments:

mysql> UPDATE setup_instruments
 -> SET ENABLED = IF(NAME LIKE 'wait/io/file/%', 'NO', 'YES');

• Enable all but those instruments in the mysys library:

mysql> UPDATE setup_instruments
 -> SET ENABLED = CASE WHEN NAME LIKE '%/mysys/%' THEN 'YES' ELSE 'NO' END;

• Disable a specific instrument:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
 -> WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• To toggle the state of an instrument, “flip” its ENABLED value:

Performance Schema Runtime Configuration

2341

mysql> UPDATE setup_instruments
 -> SET ENABLED = IF(ENABLED = 'YES', 'NO', 'YES')
 -> WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• Disable timing for all events:

mysql> UPDATE setup_instruments SET TIMED = 'NO';

Pre-Filtering by Object

The setup_objects table controls whether the Performance Schema monitors particular table and
stored program objects. The initial setup_objects contents look like this:

mysql> SELECT * FROM setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

The OBJECT_TYPE column indicates the type of object to which a row applies. TABLE filtering affects
table I/O events (wait/io/table/sql/handler instrument) and table lock events (wait/lock/
table/sql/handler instrument).

The OBJECT_SCHEMA and OBJECT_NAME columns should contain a literal schema or object name, or
'%' to match any name.

The ENABLED column indicates whether matching objects are monitored, and TIMED indicates whether
to collect timing information.

The effect of the default object configuration is to instrument all objects except those in
the mysql, INFORMATION_SCHEMA, and performance_schema databases. (Tables in
the INFORMATION_SCHEMA database are not instrumented regardless of the contents of
setup_objects; the row for information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For example, with a table db1.t1, it looks in TABLE rows for a match for 'db1' and
't1', then for 'db1' and '%', then for '%' and '%'. The order in which matching occurs matters
because different matching setup_objects rows can have different ENABLED and TIMED values.

For object-related events, the Performance Schema combines the contents of setup_objects with
setup_instruments to determine whether to enable instruments and whether to time enabled
instruments:

Performance Schema Runtime Configuration

2342

• For objects that match a row in setup_objects, object instruments produce events only if they are
enabled in both setup_instruments and setup_objects.

• The TIMED values in the two tables are combined, so that timing information is collected only when
both values are YES.

Suppose that setup_objects contains the following rows that apply to db1, db2, and db3:

+-------------+---------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+---------------+-------------+---------+-------+
TABLE	db1	t1	YES	YES
TABLE	db1	t2	YES	NO
TABLE	db2	%	YES	YES
TABLE	db3	%	YES	NO
TABLE	%	%	YES	YES
+-------------+---------------+-------------+---------+-------+

If an object-related instrument in setup_instruments has a TIMED value of NO, no events for the
instrument are timed. If the TIMED value is YES, event timing occurs according to the TIMED value in
the relevant setup_objects row:

• db1.t1 events are timed

• db1.t2 events are not timed

• db2.t3 events are timed

• db3.t4 events are not timed

• db4.t5 events are timed

If a persistent table and a temporary table have the same name, matching against setup_objects
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the
other. However, each table is instrumented separately.

Pre-Filtering by Thread

The threads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a
thread, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The thread.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

The INSTRUMENTED column in the threads table indicates the monitoring state for each thread. For
foreground threads (resulting from client connections), the initial INSTRUMENTED value is determined
by whether the user account associated with the thread matches any row in the setup_actors table.
For background threads, INSTRUMENTED is YES by default and setup_actors is not consulted
because there is no associated user for background threads. For any thread, its INSTRUMENTED value
can be changed during the life of the thread.

The initial setup_actors contents look like this:

mysql> SELECT * FROM setup_actors;
+------+------+------+
| HOST | USER | ROLE |
+------+------+------+

Performance Schema Runtime Configuration

2343

| % | % | % |
+------+------+------+

The Performance Schema uses the HOST and USER columns to match each new foreground thread.
(ROLE is unused.) The INSTRUMENTED value for the thread becomes YES if any row matches, NO
otherwise. This enables instrumenting to be applied selectively per host, user, or combination of host
and user.

The HOST and USER columns should contain a literal host or user name, or '%' to match any name.
By default, monitoring is enabled for all new foreground threads because the setup_actors table
initially contains a row with '%' for both HOST and USER. To perform more limited matching such as to
enable monitoring only for some foreground threads, you must delete this row because it matches any
connection.

Suppose that you modify setup_actors as follows:

DELETE FROM setup_actors;

Now setup_actors is empty and there are no rows that could match incoming connections.
Consequently, the Performance Schema will set the INSTRUMENTED column to NO for all new
foreground threads.

Suppose that you further modify setup_actors:

INSERT INTO setup_actors (HOST,USER,ROLE) VALUES('localhost','joe','%');
INSERT INTO setup_actors (HOST,USER,ROLE) VALUES('%','sam','%');

Now the Performance Schema determines how to set the INSTRUMENTED value for new connection
threads as follows:

• If joe connects from the local host, the connection matches the first inserted row.

• If joe connects from any other host, there is no match.

• If sam connects from any host, the connection matches the second inserted row.

• For any other connection, there is no match.

Modifications to the setup_actors table do not affect existing threads.

Pre-Filtering by Consumer

The setup_consumers table lists the available consumer types and which are enabled:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES

Performance Schema Runtime Configuration

2344

+----------------------------------+---------+

Modify the setup_consumers table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES
or NO.

Modifications to the setup_consumers table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer.
For example, if you do not care about historical event information, disable the history consumers:

mysql> UPDATE setup_consumers
 -> SET ENABLED = 'NO' WHERE NAME LIKE '%history%';

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following principles apply:

• Destinations associated with a consumer receive no events unless the Performance Schema checks
the consumer and the consumer is enabled.

• A consumer is checked only if all consumers it depends on (if any) are enabled.

• If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are
not checked.

• Dependent consumers may have their own dependent consumers.

• If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Example Consumer Configurations.

Global and Thread Consumers

• global_instrumentation is the highest level consumer. If global_instrumentation is NO,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual
events are collected in the current-events or event-history tables. If global_instrumentation
is YES, the Performance Schema maintains information for global states and also checks the
thread_instrumentation consumer.

• thread_instrumentation is checked only if global_instrumentation is YES. Otherwise,
if thread_instrumentation is NO, it disables thread-specific instrumentation and all lower-
level settings are ignored. No information is maintained per thread and no individual events
are collected in the current-events or event-history tables. If thread_instrumentation
is YES, the Performance Schema maintains thread-specific information and also checks
events_xxx_current consumers.

Statement Digest Consumer

This consumer requires global_instrumentation to be YES or it is not checked. There is no
dependency on the statement event consumers, so you can obtain statistics per digest without having
to collect statistics in events_statements_current, which is advantageous in terms of overhead.

Wait Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_waits_current, if NO, disables collection of individual wait events in the
events_waits_current table. If YES, it enables wait event collection and the Performance
Schema checks the events_waits_history and events_waits_history_long consumers.

Performance Schema Runtime Configuration

2345

• events_waits_history is not checked if event_waits_current is NO. Otherwise, an
events_waits_history value of NO or YES disables or enables collection of wait events in the
events_waits_history table.

• events_waits_history_long is not checked if event_waits_current is NO. Otherwise, an
events_waits_history_long value of NO or YES disables or enables collection of wait events in
the events_waits_history_long table.

Stage Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the events_stages_history and events_stages_history_long
consumers.

• events_stages_history is not checked if event_stages_current is NO. Otherwise, an
events_stages_history value of NO or YES disables or enables collection of stage events in the
events_stages_history table.

• events_stages_history_long is not checked if event_stages_current is NO. Otherwise, an
events_stages_history_long value of NO or YES disables or enables collection of stage events
in the events_stages_history_long table.

Statement Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_statements_current, if NO, disables collection of individual statement
events in the events_statements_current table. If YES, it enables statement event
collection and the Performance Schema checks the events_statements_history and
events_statements_history_long consumers.

• events_statements_history is not checked if events_statements_current is NO.
Otherwise, an events_statements_history value of NO or YES disables or enables collection of
statement events in the events_statements_history table.

• events_statements_history_long is not checked if events_statements_current is NO.
Otherwise, an events_statements_history_long value of NO or YES disables or enables
collection of statement events in the events_statements_history_long table.

Transaction Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_transactions_current, if NO, disables collection of individual transaction
events in the events_transactions_current table. If YES, it enables transaction event
collection and the Performance Schema checks the events_transactions_history and
events_transactions_history_long consumers.

• events_transactions_history is not checked if events_transactions_current is NO.
Otherwise, an events_transactions_history value of NO or YES disables or enables collection
of transaction events in the events_transactions_history table.

• events_transactions_history_long is not checked if events_transactions_current
is NO. Otherwise, an events_transactions_history_long value of NO or YES disables or
enables collection of transaction events in the events_transactions_history_long table.

Performance Schema Runtime Configuration

2346

Example Consumer Configurations

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not
need the information provided by enabling lower-level settings, disable them and the Performance
Schema will execute less code on your behalf and you will have less information to sift through.

The setup_consumers table contains the following hierarchy of values:

global_instrumentation
 thread_instrumentation
 events_waits_current
 events_waits_history
 events_waits_history_long
 events_stages_current
 events_stages_history
 events_stages_history_long
 events_statements_current
 events_statements_history
 events_statements_history_long
 events_transactions_current
 events_transactions_history
 events_transactions_history_long

Note

In the consumer hierarchy, the consumers for waits, stages, statements,
and transactions are all at the same level. This differs from the event nesting
hierarchy, for which wait events nest within stage events, which nest within
statement events, which nest within transaction events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated
with the consumer and ignores all lower-level settings. If a given setting is YES, the Performance
Schema enables the instrumentation associated with it and checks the settings at the next lowest level.
For a description of the rules for each consumer, see Pre-Filtering by Consumer.

For example, if global_instrumentation is enabled, thread_instrumentation is
checked. If thread_instrumentation is enabled, the events_xxx_current consumers
are checked. If of these events_waits_current is enabled, events_waits_history and
events_waits_history_long are checked.

Each of the following configuration descriptions indicates which setup elements the Performance
Schema checks and which output tables it maintains (that is, for which tables it collects information).

No Instrumentation

Server configuration state:

mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, nothing is instrumented.

Performance Schema Runtime Configuration

2347

Setup elements checked:

• Table setup_consumers, consumer global_instrumentation

Output tables maintained:

• None

Global Instrumentation Only

Server configuration state:

mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumer thread_instrumentation

• Table setup_instruments

• Table setup_objects

• Table setup_timers

Additional output tables maintained, relative to the preceding configuration:

• mutex_instances

• rwlock_instances

• cond_instances

• file_instances

• users

• hosts

• accounts

• socket_summary_by_event_name

• file_summary_by_instance

• file_summary_by_event_name

• objects_summary_global_by_type

• memory_summary_global_by_event_name

• table_lock_waits_summary_by_table

• table_io_waits_summary_by_index_usage

• table_io_waits_summary_by_table

Performance Schema Runtime Configuration

2348

• events_waits_summary_by_instance

• events_waits_summary_global_by_event_name

• events_stages_summary_global_by_event_name

• events_statements_summary_global_by_event_name

• events_transactions_summary_global_by_event_name

Global and Thread Instrumentation Only

Server configuration state:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	NO
...	
events_stages_current	NO
...	
events_statements_current	NO
...	
events_transactions_current	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumers events_xxx_current, where xxx is waits, stages,
statements, transactions

• Table setup_actors

• Column threads.instrumented

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_summary_by_yyy_by_event_name, where xxx is waits, stages, statements,
transactions; and yyy is thread, user, host, account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO

Performance Schema Runtime Configuration

2349

events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. Individual events are
collected in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Consumers events_xxx_history, where xxx is waits, stages, statements, transactions

• Consumers events_xxx_history_long, where xxx is waits, stages, statements,
transactions

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_current, where xxx is waits, stages, statements, transactions

Global, Thread, Current-Event, and Event-History instrumentation

The preceding configuration collects no event history because the events_xxx_history and
events_xxx_history_long consumers are disabled. Those consumers can be enabled separately
or together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

This configuration collects event history globally, but not per thread:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	YES

Performance Schema Runtime Configuration

2350

events_statements_current	YES
events_statements_history	NO
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

This configuration collects event history per thread and globally:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

20.2.3.4 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

mysql> UPDATE setup_instruments
 -> SET ENABLED = 'NO'
 -> WHERE NAME = 'wait/synch/mutex/myisammrg/MYRG_INFO::mutex';

mysql> UPDATE setup_consumers
 -> SET ENABLED = 'NO' WHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

mysql> UPDATE setup_instruments
 -> SET ENABLED = 'NO'
 -> WHERE NAME LIKE 'wait/synch/mutex/%';

mysql> UPDATE setup_consumers
 -> SET ENABLED = 'NO' WHERE NAME LIKE '%history%';

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument
name prefix:

Performance Schema Queries

2351

... WHERE NAME LIKE 'wait/io/file/%';

A pattern of '%/file/%' will match other instruments that have a component of '/file/' anywhere
in the name. Even less suitable is the pattern '%file%' because it will match instruments with
'file' anywhere in the name, such as wait/synch/mutex/sql/LOCK_des_key_file.

To check which instrument or consumer names a pattern matches, perform a simple test:

mysql> SELECT NAME FROM setup_instruments WHERE NAME LIKE 'pattern';

mysql> SELECT NAME FROM setup_consumers WHERE NAME LIKE 'pattern';

For information about the types of names that are supported, see Section 20.4, “Performance Schema
Instrument Naming Conventions”.

20.2.3.5 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking
the setup_instruments table. For example, to see what file-related events are instrumented for the
InnoDB storage engine, use this query:

mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'wait/io/file/innodb/%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+

An exhaustive description of precisely what is instrumented is not given in this documentation, for
several reasons:

• What is instrumented is the server code. Changes to this code occur often, which also affects the set
of instruments.

• It is not practical to list all the instruments because there are hundreds of them.

• As described earlier, it is possible to find out by querying the setup_instruments table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used
by automated tools.

20.3 Performance Schema Queries

Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate
WHERE clauses that restrict what event information to select from the events available after pre-filtering
has been applied.

In Section 20.2.3.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the
event tables contain both file and nonfile information, post-filtering is another way to see information
only for file events. Add a WHERE clause to queries to restrict event selection appropriately:

mysql> SELECT THREAD_ID, NUMBER_OF_BYTES
 -> FROM events_waits_history
 -> WHERE EVENT_NAME LIKE 'wait/io/file/%'
 -> AND NUMBER_OF_BYTES IS NOT NULL;
+-----------+-----------------+
| THREAD_ID | NUMBER_OF_BYTES |

Performance Schema Instrument Naming Conventions

2352

+-----------+-----------------+
11	66
11	47
11	139
5	24
5	834
+-----------+-----------------+

20.4 Performance Schema Instrument Naming Conventions

An instrument name consists of a sequence of components separated by '/' characters. Example
names:

wait/io/file/myisam/log
wait/io/file/mysys/charset
wait/lock/table/sql/handler
wait/synch/cond/mysys/COND_alarm
wait/synch/cond/sql/BINLOG::update_cond
wait/synch/mutex/mysys/BITMAP_mutex
wait/synch/mutex/sql/LOCK_delete
wait/synch/rwlock/sql/Query_cache_query::lock
stage/sql/closing tables
stage/sql/Sorting result
statement/com/Execute
statement/com/Query
statement/sql/create_table
statement/sql/lock_tables

The instrument name space has a tree-like structure. The components of an instrument name from left
to right provide a progression from more general to more specific. The number of components a name
has depends on the type of instrument.

The interpretation of a given component in a name depends on the components to the left of it. For
example, myisam appears in both of the following names, but myisam in the first name is related to file
I/O, whereas in the second it is related to a synchronization instrument:

wait/io/file/myisam/log
wait/synch/cond/myisam/MI_SORT_INFO::cond

Instrument names consist of a prefix with a structure defined by the Performance Schema
implementation and a suffix defined by the developer implementing the instrument code. The top-
level component of an instrument prefix indicates the type of instrument. This component also
determines which event timer in the setup_timers table applies to the instrument. For the prefix part
of instrument names, the top level indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

• A name for the major component (a server module such as myisam, innodb, mysys, or sql) or a
plugin name.

• The name of a variable in the code, in the form XXX (a global variable) or CCC::MMM (a member MMM
in class CCC). Examples: COND_thread_cache, THR_LOCK_myisam, BINLOG::LOCK_index.

Top-Level Instrument Components

• idle: An instrumented idle event. This instrument has no further components.

• memory: An instrumented memory event.

• stage: An instrumented stage event.

• statement: An instrumented statement event.

Performance Schema Instrument Naming Conventions

2353

• transaction: An instrumented transaction event. This instrument has no further components.

• wait: An instrumented wait event.

Idle Instrument Components

• idle

The idle instrument. The Performance Schema generates idle events as discussed in the description
of the socket_instances.STATE column in Section 20.9.3.5, “The socket_instances Table”.

Memory Instrument Components

Memory instrumentation is disabled by default, and can be enabled or disabled dynamically by
updating the ENABLED column of the relevant instruments in the setup_instruments table. Memory
instruments have names of the form memory/code_area/instrument_name where code_area is
a value such as sql or myisam, and instrument_name is the instrument detail.

Stage Instrument Components

Stage instruments have names of the form stage/code_area/stage_name, where code_area is
a value such as sql or myisam, and stage_name indicates the stage of statement processing, such
as Sorting result or Sending data. Stages correspond to the thread states displayed by SHOW
PROCESSLIST or that are visible in the INFORMATION_SCHEMA.PROCESSLIST table.

Statement Instrument Components

• statement/abstract/*: An abstract instrument for statement operations. Abstract instruments
are used during the early stages of statement classification before the exact statement type is
known, then changed to a more specific statement instrument when the type is known. For a
description of this process, see Section 20.9.6, “Performance Schema Statement Event Tables”.

• statement/com: An instrumented command operation. These have names corresponding to
COM_xxx operations (see the mysql_com.h header file and sql/sql_parse.cc. For example,
the statement/com/Connect and statement/com/Init DB instruments correspond to the
COM_CONNECT and COM_INIT_DB commands.

• statement/scheduler/event: A single instrument to track all events executed by the Event
Scheduler. This instrument comes into play when a scheduled event begins executing.

• statement/sp: An instrumented internal instruction executed by a stored program. For example,
the statement/sp/cfetch and statement/sp/freturn instruments are used cursor fetch and
function return instructions.

• statement/sql: An instrumented SQL statement operation. For example, the statement/sql/
create_db and statement/sql/select instruments are used for CREATE DATABASE and
SELECT statements.

Wait Instrument Components

• wait/io

An instrumented I/O operation.

• wait/io/file

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a call to fwrite()). Due to caching, the physical file I/O on the disk might
not happen within this call.

• wait/io/socket

Performance Schema Status Monitoring

2354

An instrumented socket operation. Socket instruments have names of the form wait/io/
socket/sql/socket_type. The server has a listening socket for each network protocol that
it supports. The instruments associated with listening sockets for TCP/IP or Unix socket file
connections have a socket_type value of server_tcpip_socket or server_unix_socket,
respectively. When a listening socket detects a connection, the server transfers the connection to
a new socket managed by a separate thread. The instrument for the new connection thread has a
socket_type value of client_connection.

• wait/io/table

An instrumented table I/O operation. These include row-level accesses to persistent base tables
or temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view,
waits are associated with base tables referenced by the view.

Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file
I/O or memory operations. Thus, events_waits_current for a table I/O wait usually has two
rows. For more information, see Section 20.6, “Performance Schema Atom and Molecule Events”.

Some row operations might cause multiple table I/O waits. For example, an insert might activate a
trigger that causes an update.

• wait/lock

An instrumented lock operation.

• wait/lock/table

An instrumented table lock operation.

• wait/lock/metadata/sql/mdl

An instrumented metadata lock operation (disabled by default).

• wait/synch

An instrumented synchronization object. For synchronization objects, the TIMER_WAIT time includes
the amount of time blocked while attempting to acquire a lock on the object, if any.

• wait/synch/cond

A condition is used by one thread to signal to other threads that something they were waiting for
has happened. If a single thread was waiting for a condition, it can wake up and proceed with its
execution. If several threads were waiting, they can all wake up and compete for the resource for
which they were waiting.

• wait/synch/mutex

A mutual exclusion object used to permit access to a resource (such as a section of executable
code) while preventing other threads from accessing the resource.

• wait/synch/rwlock

A read/write lock object used to lock a specific variable for access while preventing its use by other
threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive
write lock can be acquired by only one thread at a time.

20.5 Performance Schema Status Monitoring
There are several status variables associated with the Performance Schema:

Performance Schema Status Monitoring

2355

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_digest_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_memory_classes_lost	0
Performance_schema_metadata_lock_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_nested_statement_lost	0
Performance_schema_program_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_session_connect_attrs_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

• Performance_schema_xxx_classes_lost indicates how many instruments of type xxx could
not be loaded.

• Performance_schema_xxx_instances_lost indicates how many instances of object type xxx
could not be created.

• Performance_schema_xxx_handles_lost indicates how many instances of object type xxx
could not be opened.

• Performance_schema_locker_lost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory
for the instrumentation at runtime, it increments Performance_schema_mutex_classes_lost.
The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it will not be collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there will be
only one instance. Other mutexes have an instance per connection, or per page in various caches
and data buffers, so the number of instances varies over time. Increasing the maximum number of
connections or the maximum size of some buffers will increase the maximum number of instances
that might be allocated at once. If the server cannot create a given instrumented mutex instance, it
increments Performance_schema_mutex_instances_lost.

Suppose that the following conditions hold:

• The server was started with the --performance_schema_max_mutex_classes=200 option and
thus has room for 200 mutex instruments.

• 150 mutex instruments have been loaded already.

• The plugin named plugin_a contains 40 mutex instruments.

Performance Schema Status Monitoring

2356

• The plugin named plugin_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how
many are available, as illustrated by the following sequence of statements:

INSTALL PLUGIN plugin_a

The server now has 150+40 = 190 mutex instruments.

UNINSTALL PLUGIN plugin_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still
available, but new events for the instruments are not collected.

INSTALL PLUGIN plugin_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

INSTALL PLUGIN plugin_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Performance_schema_mutex_classes_lost indicates the number of instruments (mutex classes)
lost:

mysql> SHOW STATUS LIKE "perf%mutex_classes_lost";
+---------------------------------------+-------+
| Variable_name | Value |
+---------------------------------------+-------+
| Performance_schema_mutex_classes_lost | 10 |
+---------------------------------------+-------+
1 row in set (0.10 sec)

The instrumentation still works and collects (partial) data for plugin_b.

When the server cannot create a mutex instrument, these results occur:

• No row for the instrument is inserted into the setup_instruments table.

• Performance_schema_mutex_classes_lost increases by 1.

• Performance_schema_mutex_instances_lost does not change. (When the mutex instrument
is not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.

A value of Performance_schema_mutex_classes_lost greater than 0 can happen in two cases:

• To save a few bytes of memory, you start the server with --
performance_schema_max_mutex_classes=N, where N is less than the default value. The
default value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but
this can be reduced if some plugins are never loaded. For example, you might choose not to load
some of the storage engines in the distribution.

• You load a third-party plugin that is instrumented for the Performance Schema but do not allow for
the plugin's instrumentation memory requirements when you start the server. Because it comes from
a third party, the instrument memory consumption of this engine is not accounted for in the default
value chosen for performance_schema_max_mutex_classes.

Performance Schema Status Monitoring

2357

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate
more using --performance_schema_max_mutex_classes=N, loading the plugin leads to
starvation of instruments.

If the value chosen for performance_schema_max_mutex_classes is too small,
no error is reported in the error log and there is no failure at runtime. However, the
content of the tables in the performance_schema database will miss events. The
Performance_schema_mutex_classes_lost status variable is the only visible sign to indicate that
some events were dropped internally due to failure to create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wait/synch/mutex/sql/LOCK_delete is the name of a mutex instrument
in the setup_instruments table. This single instrument is used when creating a mutex in the
code (in THD::LOCK_delete) however many instances of the mutex are needed as the server
runs. In this case, LOCK_delete is a mutex that is per connection (THD), so if a server has 1000
connections, there are 1000 threads, and 1000 instrumented LOCK_delete mutex instances
(THD::LOCK_delete).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments
Performance_schema_mutex_instances_lost by 200 to indicate that instances could not be
created.

A value of Performance_schema_mutex_instances_lost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for --
performance_schema_max_mutex_instances=N.

The bottom line is that if SHOW STATUS LIKE 'perf%' says that nothing was lost (all values are
zero), the Performance Schema data is accurate and can be relied upon. If something was lost, the
data is incomplete, and the Performance Schema could not record everything given the insufficient
amount of memory it was given to use. In this case, the specific Performance_schema_xxx_lost
variable indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you
do not care about performance data for file I/O, you can start the server with all Performance Schema
parameters related to file I/O set to 0. No memory will be allocated for file-related classes, instances, or
handles, and all file events will be lost.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the
Performance Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

Performance Schema Atom and Molecule Events

2358

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see Section 13.7.5.14,
“SHOW ENGINE Syntax”.

20.6 Performance Schema Atom and Molecule Events

For a table I/O event, there are usually two rows in events_waits_current, not one. For example,
a row fetch might result in rows like this:

Row# EVENT_NAME TIMER_START TIMER_END
---- ---------- ----------- ---------
 1 wait/io/file/myisam/dfile 10001 10002
 2 wait/io/table/sql/handler 10000 NULL

The row fetch causes a file read. In the example, the table I/O fetch event started before the file I/O
event but has not finished (its TIMER_END value is NULL). The file I/O event is “nested” within the table
I/O event.

This occurs because, unlike other “atomic” wait events such as for mutexes or file I/O, table I/O events
are “molecular” and include (overlap with) other events. In events_waits_current, the table I/O
event usually has two rows:

• One row for the most recent table I/O wait event

• One row for the most recent wait event of any kind

Usually, but not always, the “of any kind” wait event differs from the table I/O event. As each subsidiary
event completes, it disappears from events_waits_current. At this point, and until the next
subsidiary event begins, the table I/O wait is also the most recent wait of any kind.

20.7 Performance Schema Statement Digests

The Performance Schema maintains statement digest information. Digesting converts a SQL statement
to normalized form and computes a hash value for the result. Normalization permits statements that are
similar to be grouped and summarized to expose information about the types of statements the server
is executing and how often they occur. This section describes how statement normalizing occurs and
how it can be useful.

Statement digesting involves these Performance Schema components:

• A statement_digest consumer in the setup_consumers table controls whether the
Performance Schema maintains digest information.

• The statement event tables (events_statements_current, events_statements_history,
and events_statements_history_long) have DIGEST and DIGEST_TEXT columns that
contain digest MD5 values and the corresponding normalized statement text strings.

• A events_statements_summary_by_digest table provides aggregated statement digest
information.

Normalizing a statement transforms the statement text to a more standardized string representation
that preserves the general statement structure while removing information not essential to the
structure. Object identifiers such as database and table names are preserved. Values and comments
are removed, and whitespace is adjusted. The Performance Schema does not retain information such
as names, passwords, dates, and so forth.

Consider these statements:

SELECT * FROM orders WHERE customer_id=10 AND quantity>20

Performance Schema Statement Digests

2359

SELECT * FROM orders WHERE customer_id = 20 AND quantity > 100

To normalize these statements, the Performance Schema replaces data values by ? and adjusts
whitespace. Both statements yield the same normalized form and thus are considered “the same”:

SELECT * FROM orders WHERE customer_id = ? AND quantity > ?

The normalized statement contains less information but is still representative of the original statement.
Other similar statements that have different comparison values have the same normalized form.

Now consider these statements:

SELECT * FROM customers WHERE customer_id = 1000
SELECT * FROM orders WHERE customer_id = 1000

In this case, the statements are not “the same.” The object identifiers differ, so the statements yield
different normalized forms:

SELECT * FROM customers WHERE customer_id = ?
SELECT * FROM orders WHERE customer_id = ?

Normalized statements have a fixed length. The maximum length of a DIGEST_TEXT value is 1024
bytes. There is no option to change this maximum. If normalization produces a statement that exceeds
this length, the text ends with “...”. Long statements that differ only in the part that occurs following the
“...” are considered to be the same. Consider these statements:

SELECT * FROM mytable WHERE cola = 10 AND colb = 20
SELECT * FROM mytable WHERE cola = 10 AND colc = 20

If the cutoff happened to be right after the AND, both statements would have this normalized form:

SELECT * FROM mytable WHERE cola = ? AND ...

In this case, the difference in the second column name is lost and both statements are considered the
same.

For each normalized statement, the Performance Schema computes a hash digest value
and stores that value and the statement in the DIGEST and DIGEST_TEXT columns of the
statement event tables (events_statements_current, events_statements_history,
and events_statements_history_long). In addition, information for
statements with the same SCHEMA_NAME and DIGEST values are aggregated in the
events_statements_summary_by_digest summary table. The Performance Schema uses
MD5 hash values because they are fast to compute and have a favorable statistical distribution that
minimizes collisions.

The events_statements_summary_by_digest summary table has a fixed size, so when it
becomes full, statements that have SCHEMA_NAME and DIGEST values not matching existing values
in the table are grouped in a special row with SCHEMA_NAME and DIGEST set to NULL. This permits
all statements to be counted. However, if the special row accounts for a significant percentage of the
statements executed, it might be desirable to increase the size of the summary table. To do this, set
the performance_schema_digests_size system variable to a larger value at server startup. If
no performance_schema_digests_size value is given, the server estimates the value to use at
startup.

The statement digest summary table provides a profile of the statements executed by the server. It
shows what kinds of statements an application is executing and how often. An application developer
can use this information together with other information in the table to assess the application's
performance characteristics. For example, table columns that show wait times, lock times, or index use

Performance Schema General Table Characteristics

2360

may highlight types of queries that are inefficient. This gives the developer insight into which parts of
the application need attention.

20.8 Performance Schema General Table Characteristics

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Most tables in the performance_schema database are read only and cannot be modified. Some
of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so
TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named
with a prefix of events_waits_.

TRUNCATE TABLE can also be used with summary tables, but except for
events_statements_summary_by_digest and the memory summary tables, the effect is to reset
the summary columns to 0 or NULL, not to remove rows.

Privileges are as for other databases and tables:

• To retrieve from performance_schema tables, you must have the SELECT privilege.

• To change those columns that can be modified, you must have the UPDATE privilege.

• To truncate tables that can be truncated, you must have the DROP privilege.

20.9 Performance Schema Table Descriptions

Tables in the performance_schema database can be grouped as follows:

• Setup tables. These tables are used to configure and display monitoring characteristics.

• Current events tables. The events_waits_current table contains the most recent event for
each thread. Other similar tables contain current events at different levels of the event hierarchy:
events_stages_current for stage events, events_statements_current for statement
events, and events_transactions_current for transaction events.

• History tables. These tables have the same structure as the current events tables, but contain more
rows. For example, for wait events, events_waits_history table contains the most recent 10
events per thread. events_waits_history_long contains the most recent 10,000 events. Other
similar tables exist for stage, statement, and transaction histories.

To change the sizes of the history tables, set the appropriate system variables
at server startup. For example, to set the sizes of the wait event history
tables, set performance_schema_events_waits_history_size and
performance_schema_events_waits_history_long_size.

• Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

• Instance tables. These tables document what types of objects are instrumented. An instrumented
object, when used by the server, produces an event. These tables provide event names and
explanatory notes or status information.

• Miscellaneous tables. These do not fall into any of the other table groups.

20.9.1 Performance Schema Table Index

The following table lists each Performance Schema table and provides a short description of each one.

Performance Schema Table Index

2361

Table 20.1 Performance Schema Tables

Table Name Description

accounts Connection statistics per client account

cond_instances synchronization object instances

events_stages_current Current stage events

events_stages_history Most recent stage events for each thread

events_stages_history_long Most recent stage events overall

events_stages_summary_by_account_by_event_nameStage events per account and event name

events_stages_summary_by_host_by_event_nameStage events per host name and event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event name

events_stages_summary_by_user_by_event_nameStage events per user name and event name

events_stages_summary_global_by_event_nameStage waits per event name

events_statements_current Current statement events

events_statements_history Most recent statement events for each thread

events_statements_history_long Most recent statement events overall

events_statements_summary_by_account_by_event_nameStatement events per account and event
name

events_statements_summary_by_digest Statement events per schema and digest
value

events_statements_summary_by_host_by_event_nameStatement events per host name and event
name

events_statements_summary_by_program Statement events per stored program

events_statements_summary_by_thread_by_event_nameStatement events per thread and event name

events_statements_summary_by_user_by_event_nameStatement events per user name and event
name

events_statements_summary_global_by_event_nameStatement events per event name

events_transactions_current Current transaction events

events_transactions_history Most recent transaction events for each
thread

events_transactions_history_long Most recent transaction events overall

events_transactions_summary_by_account_by_event_nameTransaction events per account and event
name

events_transactions_summary_by_host_by_event_nameTransaction events per host name and event
name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread and event
name

events_transactions_summary_by_user_by_event_nameTransaction events per user name and event
name

events_transactions_summary_global_by_event_nameTransaction events per event name

events_waits_current Current wait events

events_waits_history Most recent wait events for each thread

events_waits_history_long Most recent wait events overall

events_waits_summary_by_account_by_event_nameWait events per account and event name

events_waits_summary_by_host_by_event_nameWait events per host name and event name

Performance Schema Table Index

2362

Table Name Description

events_waits_summary_by_instance Wait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event name

events_waits_summary_by_user_by_event_nameWait events per user name and event name

events_waits_summary_global_by_event_name Wait events per event name

file_instances File instances

file_summary_by_event_name File events per event name

file_summary_by_instance File events per file instance

host_cache Information from the internal host cache

hosts Connection statistics per client host name

memory_summary_by_account_by_event_name Memory operations per account and event
name

memory_summary_by_host_by_event_name Memory operations per host and event name

memory_summary_by_thread_by_event_name Memory operations per thread and event
name

memory_summary_by_user_by_event_name Memory operations per user and event name

memory_summary_global_by_event_name Memory operations globally per event name

metadata_locks Metadata locks and lock requests

mutex_instances Mutex synchronization object instances

objects_summary_global_by_type Object summaries

performance_timers Which event timers are available

prepared_statements_instances Prepared statement instances and statistics

replication_connection_configuration Configuration parameters for connecting to
the master

replication_connection_status Current status of the connection to the
master

replication_execute_configuration Configuration parameters for transaction
execution on the slave

replication_execute_status Current transaction execution status on the
slave

replication_execute_status_by_coordinator SQL or coordinator thread execution status

replication_execute_status_by_worker Worker thread execution status (empty
unless slave is multi-threaded)

rwlock_instances Lock synchronization object instances

session_account_connect_attrs Connection attributes per for the current
session

session_connect_attrs Connection attributes for all sessions

setup_actors How to initialize monitoring for new
foreground threads

setup_consumers Consumers for which event information can
be stored

setup_instruments Classes of instrumented objects for which
events can be collected

setup_objects Which objects should be monitored

setup_timers Current event timer

Performance Schema Setup Tables

2363

Table Name Description

socket_instances Active connection instances

socket_summary_by_event_name Socket waits and I/O per event name

socket_summary_by_instance Socket waits and I/O per instance

table_handles Table locks and lock requests

table_io_waits_summary_by_index_usage Table I/O waits per index

table_io_waits_summary_by_table Table I/O waits per table

table_lock_waits_summary_by_table Table lock waits per table

threads Information about server threads

users Connection statistics per client user name

20.9.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you
have the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree
of flexibility in modifying Performance Schema configuration. For example, you can use a single
statement with standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

• setup_actors: How to initialize monitoring for new foreground threads

• setup_consumers: The destinations to which event information can be sent and stored

• setup_instruments: The classes of instrumented objects for which events can be collected

• setup_objects: Which objects should be monitored

• setup_timers: The current event timer

20.9.2.1 The setup_actors Table

The setup_actors table contains information that determines whether to enable monitoring
for new foreground server threads; that is, threads associated with client connections. This
table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_actors_size system variable at server startup.

For each new foreground thread, the Performance Schema matches the user and host for the the
thread against the rows of the setup_actors table. Based on whether any row matches, the
INSTRUMENTED column of the threads table row for the thread is set to YES or NO. This enables
instrumenting to be applied selectively per host, user, or combination of host and user.

The initial contents of the setup_actors table match any user and host combination, so monitoring
for all foreground threads is enabled by default:

mysql> SELECT * FROM setup_actors;
+------+------+------+
| HOST | USER | ROLE |
+------+------+------+
| % | % | % |
+------+------+------+

Modifications to the setup_actors table do not affect existing threads.

Performance Schema Setup Tables

2364

For information about how to use the setup_actors table in event monitoring, see Pre-Filtering by
Thread.

The setup_actors table has these columns:

• HOST

The host name. This should be a literal name, or '%' to mean “any host.”

• USER

The user name. This should be a literal name, or '%' to mean “any user.”

• ROLE

Unused.

20.9.2.2 The setup_consumers Table

The setup_consumers table lists the types of consumers for which event information can be stored
and which are enabled:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

The consumer settings in the setup_consumers table form a hierarchy from higher levels to
lower. For detailed information about the effect of enabling different consumers, see Pre-Filtering by
Consumer.

Modifications to the setup_consumers table affect monitoring immediately.

The setup_consumers table has these columns:

• NAME

The consumer name.

• ENABLED

Whether the consumer is enabled. This column can be modified. If you disable a consumer, the
server does not spend time adding event information to it.

20.9.2.3 The setup_instruments Table

The setup_instruments table lists classes of instrumented objects for which events can be
collected:

Performance Schema Setup Tables

2365

mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

Each instrument added to the source code provides a row for this table, even when the instrumented
code is not executed. When an instrument is enabled and executed, instrumented instances are
created, which are visible in the *_instances tables.

Modifications to the setup_instruments table affect monitoring immediately.

For more information about the role of the setup_instruments table in event filtering, see
Section 20.2.3.3, “Event Pre-Filtering”.

The setup_instruments table has these columns:

• NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed
in Section 20.4, “Performance Schema Instrument Naming Conventions”. Events produced from
execution of an instrument have an EVENT_NAME value that is taken from the instrument NAME value.
(Events do not really have a “name,” but this provides a way to associate events with instruments.)

• ENABLED

Whether the instrument is enabled. This column can be modified. A disabled instrument produces no
events.

• TIMED

Whether the instrument is timed. This column can be modified.

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT
timer values. This in turn causes those values to be ignored when calculating the sum, minimum,
maximum, and average time values in summary tables.

20.9.2.4 The setup_objects Table

The setup_objects table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_objects_size system variable at server startup.

The initial setup_objects contents look like this:

Performance Schema Setup Tables

2366

mysql> SELECT * FROM setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

For object types listed in setup_objects, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT_SCHEMA and OBJECT_NAME columns. Objects for
which there is no match are not monitored.

The effect of the default object configuration is to instrument all tables except those in
the mysql, INFORMATION_SCHEMA, and performance_schema databases. (Tables in
the INFORMATION_SCHEMA database are not instrumented regardless of the contents of
setup_objects; the row for information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For example, with a table db1.t1, it looks for a match for 'db1' and 't1', then for
'db1' and '%', then for '%' and '%'. The order in which matching occurs matters because different
matching setup_objects rows can have different ENABLED and TIMED values.

Rows can be inserted into or deleted from setup_objects by users with the INSERT or DELETE
privilege on the table. For existing rows, only the ENABLED and TIMED columns can be modified, by
users with the UPDATE privilege on the table.

For more information about the role of the setup_objects table in event filtering, see
Section 20.2.3.3, “Event Pre-Filtering”.

The setup_objects table has these columns:

• OBJECT_TYPE

The type of object to instrument. The value is one of 'EVENT' (Event Scheduler event),
'FUNCTION' (stored function), 'PROCEDURE' (stored procedure), 'TABLE' (base table), or
'TRIGGER' (trigger). Before MySQL 5.7.2, the value is always 'TABLE'.

TABLE filtering affects table I/O events (wait/io/table/sql/handler instrument) and table lock
events (wait/lock/table/sql/handler instrument).

• OBJECT_SCHEMA

The schema that contains the object. This should be a literal name, or '%' to mean “any schema.”

• OBJECT_NAME

Performance Schema Instance Tables

2367

The name of the instrumented object. This should be a literal name, or '%' to mean “any object.”

• ENABLED

Whether events for the object are instrumented. This column can be modified.

• TIMED

Whether events for the object are timed. This column can be modified.

20.9.2.5 The setup_timers Table

The setup_timers table shows the currently selected event timers:

mysql> SELECT * FROM setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

The setup_timers.TIMER_NAME value can be changed to select a different timer. The value can
be any of the values in the performance_timers.TIMER_NAME column. For an explanation of how
event timing occurs, see Section 20.2.3.1, “Performance Schema Event Timing”.

Modifications to the setup_timers table affect monitoring immediately. Events already in progress
may use the original timer for the begin time and the new timer for the end time, which may lead to
unpredictable results. If you make timer changes, you may want to use TRUNCATE TABLE to reset
Performance Schema statistics.

The setup_timers table has these columns:

• NAME

The type of instrument the timer is used for.

• TIMER_NAME

The timer that applies to the instrument type. This column can be modified.

20.9.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

• cond_instances: Condition synchronization object instances

• file_instances: File instances

• mutex_instances: Mutex synchronization object instances

• rwlock_instances: Lock synchronization object instances

• socket_instances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types
of synchronization objects: cond, mutex, and rwlock. Each instance table has an EVENT_NAME or

Performance Schema Instance Tables

2368

NAME column to indicate the instrument associated with each row. Instrument names may have multiple
parts and form a hierarchy, as discussed in Section 20.4, “Performance Schema Instrument Naming
Conventions”.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. For examples of how to use them for this purpose,
see Section 20.15, “Using the Performance Schema to Diagnose Problems”

20.9.3.1 The cond_instances Table

The cond_instances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event
has happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the
thread is waiting for, but there is no immediate way to tell which other thread, or threads, will cause the
condition to happen.

The cond_instances table has these columns:

• NAME

The instrument name associated with the condition.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented condition.

20.9.3.2 The file_instances Table

The file_instances table lists all the files seen by the Performance Schema when executing file I/O
instrumentation. If a file on disk has never been opened, it will not be in file_instances. When a file
is deleted from the disk, it is also removed from the file_instances table.

The file_instances table has these columns:

• FILE_NAME

The file name.

• EVENT_NAME

The instrument name associated with the file.

• OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT will be 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT
> 0.

20.9.3.3 The mutex_instances Table

The mutex_instances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these

Performance Schema Instance Tables

2369

two threads will compete against each other, so that the first query to obtain a lock on the mutex will
cause the other query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The mutex_instances table has these columns:

• NAME

The instrument name associated with the mutex.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented mutex.

• LOCKED_BY_THREAD_ID

When a thread currently has a mutex locked, LOCKED_BY_THREAD_ID is the THREAD_ID of the
locking thread, otherwise it is NULL.

For every mutex instrumented in the code, the Performance Schema provides the following
information.

• The setup_instruments table lists the name of the instrumentation point, with the prefix wait/
synch/mutex/.

• When some code creates a mutex, a row is added to the mutex_instances table. The
OBJECT_INSTANCE_BEGIN column is a property that uniquely identifies the mutex.

• When a thread attempts to lock a mutex, the events_waits_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which
mutex is waited on (in the OBJECT_INSTANCE_BEGIN column).

• When a thread succeeds in locking a mutex:

• events_waits_current shows that the wait on the mutex is completed (in the TIMER_END and
TIMER_WAIT columns)

• The completed wait event is added to the events_waits_history and
events_waits_history_long tables

• mutex_instances shows that the mutex is now owned by the thread (in the THREAD_ID
column).

• When a thread unlocks a mutex, mutex_instances shows that the mutex now has no owner (the
THREAD_ID column is NULL).

• When a mutex object is destroyed, the corresponding row is removed from mutex_instances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

• events_waits_current, to see what mutex a thread is waiting for

• mutex_instances, to see which other thread currently owns a mutex

20.9.3.4 The rwlock_instances Table

The rwlock_instances table lists all the rwlock instances (read write locks) seen by the
Performance Schema while the server executes. An rwlock is a synchronization mechanism used in
the code to enforce that threads at a given time can have access to some common resource following
certain rules. The resource is said to be “protected” by the rwlock. The access is either shared (many

Performance Schema Instance Tables

2370

threads can have a read lock at the same time) or exclusive (only one thread can have a write lock at a
given time).

Depending on how many threads are requesting a lock, and the nature of the locks requested, access
can be either granted in shared mode, granted in exclusive mode, or not granted at all, waiting for other
threads to finish first.

The rwlock_instances table has these columns:

• NAME

The instrument name associated with the lock.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented lock.

• WRITE_LOCKED_BY_THREAD_ID

When a thread currently has an rwlock locked in exclusive (write) mode,
WRITE_LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.

• READ_LOCKED_BY_COUNT

When a thread currently has an rwlock locked in shared (read) mode, READ_LOCKED_BY_COUNT
is incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a
read lock, but it can be used to see whether there is a read contention on an rwlock, and see how
many readers are currently active.

By performing queries on both of the following tables, a monitoring application or a DBA may detect
some bottlenecks or deadlocks between threads that involve locks:

• events_waits_current, to see what rwlock a thread is waiting for

• rwlock_instances, to see which other thread currently owns an rwlock

There is a limitation: The rwlock_instances can be used only to identify the thread holding a write
lock, but not the threads holding a read lock.

20.9.3.5 The socket_instances Table

The socket_instances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information
is available in socket summary tables, including network activity such as socket operations and number
of bytes transmitted and received; see Section 20.9.12.9, “Socket Summary Tables”).

mysql> SELECT * FROM socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_unix_socket
OBJECT_INSTANCE_BEGIN: 4316619408
 THREAD_ID: 1
 SOCKET_ID: 16
 IP:
 PORT: 0
 STATE: ACTIVE
*************************** 2. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 4316644608
 THREAD_ID: 21
 SOCKET_ID: 39
 IP: 127.0.0.1
 PORT: 55233
 STATE: ACTIVE
*************************** 3. row ***************************

Performance Schema Instance Tables

2371

 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket
OBJECT_INSTANCE_BEGIN: 4316699040
 THREAD_ID: 1
 SOCKET_ID: 14
 IP: 0.0.0.0
 PORT: 50603
 STATE: ACTIVE

Socket instruments have names of the form wait/io/socket/sql/socket_type and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments
associated with listening sockets for TCP/IP or Unix socket file connections have a socket_type
value of server_tcpip_socket or server_unix_socket, respectively.

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket_type
value of client_connection.

3. When a connection terminates, the row in socket_instances corresponding to it is deleted.

The socket_instances table has these columns:

• EVENT_NAME

The name of the wait/io/socket/* instrument that produced the event. This is a NAME value
from the setup_instruments table. Instrument names may have multiple parts and form a
hierarchy, as discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.

• OBJECT_INSTANCE_BEGIN

This column uniquely identifies the socket. The value is the address of an object in memory.

• THREAD_ID

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

• SOCKET_ID

The internal file handle assigned to the socket.

• IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

• PORT

The TCP/IP port number, in the range from 0 to 65535.

• STATE

The socket status, either IDLE or ACTIVE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the idle instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event
row in socket_instances that is tracking the socket switches from a status of ACTIVE to IDLE.
The EVENT_NAME value remains wait/io/socket/*, but timing for the instrument is suspended.
Instead, an event is generated in the events_waits_current table with an EVENT_NAME value of
idle.

When the next request is received, the idle event terminates, the socket instance switches from
IDLE to ACTIVE, and timing of the socket instrument resumes.

Performance Schema Wait Event Tables

2372

The IP:PORT column combination value identifies the connection. This combination value is used in
the OBJECT_NAME column of the events_waits_xxx tables, to identify the connection from which
socket events come:

• For the Unix domain listener socket (server_unix_socket), the port is 0, and the IP is ''.

• For client connections via the Unix domain listener (client_connection), the port is 0, and the IP
is ''.

• For the TCP/IP server listener socket (server_tcpip_socket), the port is always the master port
(for example, 3306), and the IP is always 0.0.0.0.

• For client connections via the TCP/IP listener (client_connection), the port is whatever the
server assigns, but never 0. The IP is the IP of the originating host (127.0.0.1 or ::1 for the local
host)

20.9.4 Performance Schema Wait Event Tables

These tables store wait events:

• events_waits_current: Current wait events

• events_waits_history: The most recent wait events for each thread

• events_waits_history_long: The most recent wait events overall

The following sections describe those tables. There are also summary tables that aggregate
information about wait events; see Section 20.9.12.1, “Event Wait Summary Tables”.

Wait Event Configuration

The setup_instruments table contains instruments with name that begin with wait. For example:

mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'wait/io/file/innodb%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+		
mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'wait/io/socket/%';		
+--+---------+-------+		
NAME	ENABLED	TIMED
+--+---------+-------+		
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+

To modify collection of wait events, change the ENABLED and TIMING columns of the relevant
instruments. For example:

mysql> UPDATE setup_instruments SET ENABLED = 'YES', TIMED = 'YES'
 -> WHERE NAME LIKE 'wait/io/socket/sql/%';

The setup_consumers table contains consumer values with names corresponding to the current and
recent wait event table names. These consumers may be used to filter collection of wait events. By
default, the wait consumers are disabled:

mysql> SELECT * FROM setup_consumers WHERE NAME LIKE '%waits%';
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+

Performance Schema Wait Event Tables

2373

events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
+---------------------------+---------+

To enable all wait consumers, do this:

mysql> UPDATE setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%waits%';

The setup_timers table contains a row with a NAME value of wait that indicates the unit for wait
event timing. The default unit is CYCLE.

mysql> SELECT * FROM setup_timers WHERE NAME = 'wait';
+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE |
+------+------------+

To change the timing unit, modify the TIMER_NAME value:

mysql> UPDATE setup_timers SET TIMER_NAME = 'NANOSECOND'
 -> WHERE NAME = 'wait';

For additional information about configuring event collection, see Section 20.2, “Performance Schema
Configuration”.

20.9.4.1 The events_waits_current Table

The events_waits_current table contains current wait events, one row per thread showing the
current status of the thread's most recent monitored wait event.

The events_waits_current table can be truncated with TRUNCATE TABLE.

Of the tables that contain wait event rows, events_waits_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the
events_waits_history and events_waits_history_long tables are collections of the most
recent wait events, up to a fixed number of rows.

For information about configuration of wait event collection, see Section 20.9.4, “Performance Schema
Wait Event Tables”.

The events_waits_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the
row. No two rows will have the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.

• SOURCE

Performance Schema Wait Event Tables

2374

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can
check the context in which this occurs.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL.

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 20.2.3.1, “Performance Schema Event Timing”.

• SPINS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, OBJECT_INSTANCE_BEGIN

These columns identify the object “being acted on.” What that means depends on the object type.

For a synchronization object (cond, mutex, rwlock):

• OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE are NULL.

• OBJECT_INSTANCE_BEGIN is the address of the synchronization object in memory.

For a file I/O object:

• OBJECT_SCHEMA is NULL.

• OBJECT_NAME is the file name.

• OBJECT_TYPE is FILE.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a socket object:

• OBJECT_NAME is the IP:PORT value for the socket.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a table I/O object:

• OBJECT_SCHEMA is the name of the schema that contains the table.

• OBJECT_NAME is the table name.

• OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.

• OBJECT_INSTANCE_BEGIN is an address in memory.

An OBJECT_INSTANCE_BEGIN value itself has no meaning, except that different values indicate
different objects. OBJECT_INSTANCE_BEGIN can be used for debugging. For example, it can be

Performance Schema Wait Event Tables

2375

used with GROUP BY OBJECT_INSTANCE_BEGIN to see whether the load on 1,000 mutexes (that
protect, say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This
can help you correlate with other sources of information if you see the same object address in a log
file or another debugging or performance tool.

• INDEX_NAME

The name of the index used. PRIMARY indicates the table primary index. NULL means that no index
was used.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

• OPERATION

The type of operation performed, such as lock, read, or write.

• NUMBER_OF_BYTES

The number of bytes read or written by the operation. For table I/O waits, NUMBER_OF_BYTES is
NULL.

• FLAGS

Reserved for future use.

20.9.4.2 The events_waits_history Table

The events_waits_history table contains the most recent 10 wait events per thread. To change
the table size, modify the performance_schema_events_waits_history_size system variable
at server startup. Wait events are not added to the table until they have ended. As new events are
added, older events are discarded if the table is full.

The events_waits_history table has the same structure as events_waits_current. See
Section 20.9.4.1, “The events_waits_current Table”.

The events_waits_history table can be truncated with TRUNCATE TABLE.

For information about configuration of wait event collection, see Section 20.9.4, “Performance Schema
Wait Event Tables”.

20.9.4.3 The events_waits_history_long Table

The events_waits_history_long table contains the most recent 10,000 wait events. To change
the table size, modify the performance_schema_events_waits_history_long_size system
variable at server startup. Wait events are not added to the table until they have ended. As new events
are added, older events are discarded if the table is full.

The events_waits_history_long table has the same structure as events_waits_current.
See Section 20.9.4.1, “The events_waits_current Table”.

The events_waits_history_long table can be truncated with TRUNCATE TABLE.

For information about configuration of wait event collection, see Section 20.9.4, “Performance Schema
Wait Event Tables”.

Performance Schema Stage Event Tables

2376

20.9.5 Performance Schema Stage Event Tables

The Performance Schema instruments stages, which are steps during the statement-execution
process, such as parsing a statement, opening a table, or performing a filesort operation.
Stages correspond to the thread states displayed by SHOW PROCESSLIST or that are visible in the
INFORMATION_SCHEMA.PROCESSLIST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events,
which nest within transaction events.

These tables store stage events:

• events_stages_current: Current stage events

• events_stages_history: The most recent stage events for each thread

• events_stages_history_long: The most recent stage events overall

The following sections describe those tables. There are also summary tables that aggregate
information about stage events; see Section 20.9.12.2, “Stage Summary Tables”.

Stage Event Configuration

The setup_instruments table contains instruments with name that begin with stage. These
instruments are disabled by default. For example:

mysql> SELECT * FROM setup_instruments WHERE NAME RLIKE 'stage/sql/[a-c]';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/After create	NO	NO
stage/sql/allocating local table	NO	NO
stage/sql/altering table	NO	NO
stage/sql/committing alter table to storage engine	NO	NO
stage/sql/Changing master	NO	NO
stage/sql/Checking master version	NO	NO
stage/sql/checking permissions	NO	NO
stage/sql/checking privileges on cached query	NO	NO
stage/sql/checking query cache for query	NO	NO
stage/sql/cleaning up	NO	NO
stage/sql/closing tables	NO	NO
stage/sql/Connecting to master	NO	NO
stage/sql/converting HEAP to MyISAM	NO	NO
stage/sql/Copying to group table	NO	NO
stage/sql/Copying to tmp table	NO	NO
stage/sql/copy to tmp table	NO	NO
stage/sql/Creating sort index	NO	NO
stage/sql/creating table	NO	NO
stage/sql/Creating tmp table	NO	NO
+--+---------+-------+

To modify collection of stage events, change the ENABLED and TIMING columns of the relevant
instruments. For example:

mysql> UPDATE setup_instruments SET ENABLED = 'YES', TIMED = 'YES'
 -> WHERE NAME = 'stage/sql/altering table';

The setup_consumers table contains consumer values with names corresponding to the current and
recent stage event table names. These consumers may be used to filter collection of stage events. By
default, the stage consumers are disabled:

mysql> SELECT * FROM setup_consumers WHERE NAME LIKE '%stages%';
+----------------------------+---------+
| NAME | ENABLED |
+----------------------------+---------+

Performance Schema Stage Event Tables

2377

events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
+----------------------------+---------+

To enable all stage consumers, do this:

mysql> UPDATE setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%stages%';

The setup_timers table contains a row with a NAME value of stage that indicates the unit for stage
event timing. The default unit is NANOSECOND.

mysql> SELECT * FROM setup_timers WHERE NAME = 'stage';
+-------+------------+
| NAME | TIMER_NAME |
+-------+------------+
| stage | NANOSECOND |
+-------+------------+

To change the timing unit, modify the TIMER_NAME value:

mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
 -> WHERE NAME = 'stage';

For additional information about configuring event collection, see Section 20.2, “Performance Schema
Configuration”.

20.9.5.1 The events_stages_current Table

The events_stages_current table contains current stage events, one row per thread showing the
current status of the thread's most recent monitored stage event.

The events_stages_current table can be truncated with TRUNCATE TABLE.

Of the tables that contain stage event rows, events_stages_current is the most fundamental.
Other tables that contain stage event rows are logically derived from the current events. For example,
the events_stages_history and events_stages_history_long tables are collections of the
most recent stage events, up to a fixed number of rows.

For information about configuration of stage event collection, see Section 20.9.5, “Performance
Schema Stage Event Tables”.

The events_stages_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the
row. No two rows will have the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.

• SOURCE

Performance Schema Statement Event Tables

2378

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL.

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 20.2.3.1, “Performance Schema Event Timing”.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested. The nesting event for a stage
event is usually a statement event.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

20.9.5.2 The events_stages_history Table

The events_stages_history table contains the most recent 10 stage events per thread. To change
the table size, modify the performance_schema_events_stages_history_size system variable
at server startup. Stage events are not added to the table until they have ended. As new events are
added, older events are discarded if the table is full.

The events_stages_history table has the same structure as events_stages_current. See
Section 20.9.5.1, “The events_stages_current Table”.

The events_stages_history table can be truncated with TRUNCATE TABLE.

For information about configuration of stage event collection, see Section 20.9.5, “Performance
Schema Stage Event Tables”.

20.9.5.3 The events_stages_history_long Table

The events_stages_history_long table contains the most recent 10,000 stage events. To
change the table size, modify the performance_schema_events_stages_history_long_size
system variable at server startup. Stage events are not added to the table until they have ended. As
new events are added, older events are discarded if the table is full.

The events_stages_history_long table has the same structure as events_stages_current.
See Section 20.9.5.1, “The events_stages_current Table”.

The events_stages_history_long table can be truncated with TRUNCATE TABLE.

For information about configuration of stage event collection, see Section 20.9.5, “Performance
Schema Stage Event Tables”.

20.9.6 Performance Schema Statement Event Tables

The Performance Schema instruments statement execution. Statement events occur at a high level of
the event hierarchy: Wait events nest within stage events, which nest within statement events, which
nest within transaction events.

Performance Schema Statement Event Tables

2379

These tables store statement events:

• events_statements_current: Current statement events

• events_statements_history: The most recent statement events for each thread

• events_statements_history_long: The most recent statement events overall

• prepared_statements_instances: Prepared statement instances and statistics (added in
MySQL 5.7.4)

The following sections describe those tables. There are also summary tables that aggregate
information about statement events; see Section 20.9.12.3, “Statement Summary Tables”.

Statement Event Configuration

The setup_instruments table contains instruments with name that begin with statement. These
instruments are enabled by default:

mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'statement/%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
statement/sql/select	YES	YES
statement/sql/create_table	YES	YES
statement/sql/create_index	YES	YES
...		
statement/sp/stmt	YES	YES
statement/sp/set	YES	YES
statement/sp/set_trigger_field	YES	YES
statement/scheduler/event	YES	YES
statement/com/Sleep	YES	YES
statement/com/Quit	YES	YES
statement/com/Init DB	YES	YES
...		
statement/abstract/Query	YES	YES
statement/abstract/new_packet	YES	YES
statement/abstract/relay_log	YES	YES
+---+---------+-------+

To modify collection of statement events, change the ENABLED and TIMING columns of the relevant
instruments. For example:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
 -> WHERE NAME LIKE 'statement/com/%';

The setup_consumers table contains consumer values with names corresponding to the current
and recent statement event table names, and the statement digest consumer. These consumers
may be used to filter collection of statement events and statement digesting. By default, only
events_statements_current and statements_digest are enabled:

mysql> SELECT * FROM setup_consumers WHERE NAME LIKE '%statements%';
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
statements_digest	YES
+--------------------------------+---------+

To enable all statement consumers, do this:

mysql> UPDATE setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%statements%';

Performance Schema Statement Event Tables

2380

The setup_timers table contains a row with a NAME value of statement that indicates the unit for
statement event timing. The default unit is NANOSECOND.

mysql> SELECT * FROM setup_timers WHERE NAME = 'statement';
+-----------+------------+
| NAME | TIMER_NAME |
+-----------+------------+
| statement | NANOSECOND |
+-----------+------------+

To change the timing unit, modify the TIMER_NAME value:

mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
 -> WHERE NAME = 'statement';

For additional information about configuring event collection, see Section 20.2, “Performance Schema
Configuration”.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread, to
the moment when all activity has ceased. Typically, this means from the time the server gets the first
packet from the client to the time the server has finished sending the response. Before MySQL 5.7.2,
monitoring occurs only for top-level statements. Statements within stored programs and subqueries
are not seen separately. As of 5.7.2, statements within stored programs are monitored like other
statements.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it
arrives at a final instrument name.

Final instrument names correspond to server commands and SQL statements:

• Server commands correspond to the COM_xxx codes defined in the mysql_com.h header file
and processed in sql/sql_parse.cc. Examples are COM_PING and COM_QUIT. Instruments for
commands have names that begin with statement/com, such as statement/com/Ping and
statement/com/Quit.

• SQL statements are expressed as text, such as DELETE FROM t1 or SELECT * FROM
t2. Instruments for SQL statements have names that begin with statement/sql, such as
statement/sql/delete and statement/sql/select.

Some final instrument names are specific to error handling:

• statement/com/Error accounts for messages received by the server that are out of band. It
can be used to detect commands sent by clients that the server does not understand. This may be
helpful for purposes such as identifying clients that are misconfigured or using a version of MySQL
more recent than that of the server, or clients that are attempting to attack the server.

• statement/sql/error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses
but fails due to an error during execution. For example, SELECT * FROM is malformed, and the
statement/sql/error instrument is used. By contrast, SELECT * parses but fails with a No
tables used error. In this case, statement/sql/select is used and the statement event
contains information to indicate the nature of the error.

A request can be obtained from any of these sources:

• As a command or statement request from a client, which sends the request as packets

• As a statement string read from the relay log on a replication slave (as of MySQL 5.7.2)

Performance Schema Statement Event Tables

2381

• As an event from the Event Scheduler (as of MySQL 5.7.2)

The details for a request are not initially known and the Performance Schema proceeds from abstract
to specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1. When the server detects a new packet at the socket level, a new statement is started with an
abstract instrument name of statement/abstract/new_packet.

2. When the server reads the packet number, it knows more about the type of request received, and
the Performance Schema refines the instrument name. For example, if the request is a COM_PING
packet, the instrument name becomes statement/com/Ping and that is the final name. If
the request is a COM_QUERY packet, it is known to correspond to a SQL statement but not the
particular type of statement. In this case, the instrument changes from one abstract name to a more
specific but still abstract name, statement/abstract/Query, and the request requires further
classification.

3. If the request is a statement, the statement text is read and given to the parser. After parsing,
the exact statement type is known. If the request is, for example, an INSERT statement, the
Performance Schema refines the instrument name from statement/abstract/Query to
statement/sql/insert, which is the final name.

For a request read as a statement from the relay log on a replication slave:

1. Statements in the relay log are stored as text and are read as such. There is no network protocol,
so the statement/abstract/new_packet instrument is not used. Instead, the initial instrument
is statement/abstract/relay_log.

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an INSERT statement, the Performance Schema refines the instrument name from statement/
abstract/Query to statement/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table
I/O done on the slave as it processes row changes can be instrumented, but row events in the relay log
do not appear as discrete statements.

For a request received from the Event Scheduler:

The event execution is instrumented using the name statement/scheduler/event. This is the final
name.

Statements executed within the event body are instrumented using statement/sql/* names,
without use of any preceding abstract instrument. An event is a stored program, and stored programs
are precompiled in memory before execution. Consequently, there is no parsing at runtime and the
type of each statement is known by the time it executes.

Statements executed within the event body are child statements. For example, if an event executes
an INSERT statement, execution of the event itself is the parent, instrumented using statement/
scheduler/event, and the INSERT is the child, instrumented using statement/sql/insert.
The parent/child relationship holds between separate instrumented operations. This differs from the
sequence of refinement that occurs within a single instrumented operation, from abstract to final
instrument names.

For statistics to be collected for statements, it is not sufficient to enable only the final statement/
sql/* instruments used for individual statement types. The abtract statement/abstract/*
instruments must be enabled as well. This should not normally be an issue because all statement
instruments are enabled by default. However, an application that enables or disables statement
instruments selectively must take into account that disabling abstract instruments also disables
statistics collection for the individual statement instruments. For example, to collect statistics for
INSERT statements, statement/sql/insert must be enabled, but also statement/abstract/

Performance Schema Statement Event Tables

2382

new_packet and statement/abstract/Query. Similarly, for replicated statements to be
instrumented, statement/abstract/relay_log must be enabled.

No statistics are aggregated for for abstract instruments such as statement/abstract/Query
because no statement is ever classified with an abstract instrument as the final statement name.

The abstract instrument names in the preceding discussion are as of MySQL 5.7.3. In earlier 5.7
versions, there was some renaming before those names were settled on:

• statement/abstract/new_packet was statement/com/ before MySQL 5.7.3.

• statement/abstract/Query was statement/com/Query before MySQL 5.7.3.

• statement/abstract/relay_log was statement/rpl/relay_log in MySQL 5.7.2 and did
not exist before that.

20.9.6.1 The events_statements_current Table

The events_statements_current table contains current statement events, one row per thread
showing the current status of the thread's most recent monitored statement event.

The events_statements_current table can be truncated with TRUNCATE TABLE.

Of the tables that contain statement event rows, events_statements_current
is the most fundamental. Other tables that contain statement event rows are logically
derived from the current events. For example, the events_statements_history and
events_statements_history_long tables are collections of the most recent statement events, up
to a fixed number of rows.

For information about configuration of statement event collection, see Section 20.9.6, “Performance
Schema Statement Event Tables”.

The events_statements_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the
row. No two rows will have the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.

For SQL statements, the EVENT_NAME value initially is statement/com/Query until the statement
is parsed, then changes to a more appropriate value, as described in Section 20.9.6, “Performance
Schema Statement Event Tables”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Performance Schema Statement Event Tables

2383

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL.

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 20.2.3.1, “Performance Schema Event Timing”.

• LOCK_TIME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

• SQL_TEXT

The text of the SQL statement. For a command not associated with a SQL statement, the value is
NULL.

• DIGEST

The statement digest MD5 value as a string of 32 hexadecimal characters, or NULL if the
statement_digest consumer is no. For more information about statement digesting, see
Section 20.7, “Performance Schema Statement Digests”.

• DIGEST_TEXT

The normalized statement digest text, or NULL if the statement_digest consumer is no. For more
information about statement digesting, see Section 20.7, “Performance Schema Statement Digests”.

• CURRENT_SCHEMA

The default database for the statement, NULL if there is none.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE

For nested statements (stored programs), these columns contain information about the parent
statement. Otherwise they are NULL.

• OBJECT_INSTANCE_BEGIN

This column identifies the statement. The value is the address of an object in memory.

• MYSQL_ERRNO

The statement error number, from the statement diagnostics area.

• RETURNED_SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.

• MESSAGE_TEXT

The statement error message, from the statement diagnostics area.

• ERRORS

Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

Performance Schema Statement Event Tables

2384

• WARNINGS

The number of warnings, from the statement diagnostics area.

• ROWS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
Section 21.8.7.1, “mysql_affected_rows()”.

• ROWS_SENT

The number of rows returned by the statement.

• ROWS_EXAMINED

The number of rows read from storage engines during statement execution.

• CREATED_TMP_DISK_TABLES

Like the Created_tmp_disk_tables status variable, but specific to the statement.

• CREATED_TMP_TABLES

Like the Created_tmp_tables status variable, but specific to the statement.

• SELECT_FULL_JOIN

Like the Select_full_join status variable, but specific to the statement.

• SELECT_FULL_RANGE_JOIN

Like the Select_full_range_join status variable, but specific to the statement.

• SELECT_RANGE

Like the Select_range status variable, but specific to the statement.

• SELECT_RANGE_CHECK

Like the Select_range_check status variable, but specific to the statement.

• SELECT_SCAN

Like the Select_scan status variable, but specific to the statement.

• SORT_MERGE_PASSES

Like the Sort_merge_passes status variable, but specific to the statement.

• SORT_RANGE

Like the Sort_range status variable, but specific to the statement.

• SORT_ROWS

Like the Sort_rows status variable, but specific to the statement.

• SORT_SCAN

Like the Sort_scan status variable, but specific to the statement.

• NO_INDEX_USED

1 if the statement performed a table scan without using an index, 0 otherwise.

Performance Schema Statement Event Tables

2385

• NO_GOOD_INDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Extra column from EXPLAIN output for the Range checked for each
record value in Section 8.8.2, “EXPLAIN Output Format”.

• NESTING_EVENT_ID, NESTING_EVENT_TYPE, NESTING_EVENT_LEVEL

Before MySQL 5.7.2, only NESTING_EVENT_ID and NESTING_EVENT_TYPE exist and are always
NULL.

As of MySQL 5.7.2, all three columns exist and are used with other columns to provide information
as follows for top-level (unnested) statements and nested statements (executed within a stored
program).

For top level statements:

OBJECT_TYPE = NULL
OBJECT_SCHEMA = NULL
OBJECT_NAME = NULL
NESTING_EVENT_ID = NULL
NESTING_EVENT_TYPE = NULL
NESTING_LEVEL = 0

For nested statements:

OBJECT_TYPE = the parent statement object type
OBJECT_SCHEMA = the parent statement object schema
OBJECT_NAME = the parent statement object name
NESTING_EVENT_ID = the parent statement EVENT_ID
NESTING_EVENT_TYPE = 'STATEMENT'
NESTING_LEVEL = the parent statement NESTING_LEVEL plus one

20.9.6.2 The events_statements_history Table

The events_statements_history table contains the most recent
10 statement events per thread. To change the table size, modify the
performance_schema_events_statements_history_size system variable at server startup.
Statement events are not added to the table until they have ended. As new events are added, older
events are discarded if the table is full.

The events_statements_history table has the same structure as
events_statements_current. See Section 20.9.6.1, “The events_statements_current
Table”.

The events_statements_history table can be truncated with TRUNCATE TABLE.

For information about configuration of statement event collection, see Section 20.9.6, “Performance
Schema Statement Event Tables”.

20.9.6.3 The events_statements_history_long Table

The events_statements_history_long table contains the most
recent 10,000 statement events. To change the table size, modify the
performance_schema_events_statements_history_long_size system variable at server
startup. Statement events are not added to the table until they have ended. As new events are added,
older events are discarded if the table is full.

The events_statements_history_long table has the same structure as
events_statements_current. See Section 20.9.6.1, “The events_statements_current
Table”.

Performance Schema Statement Event Tables

2386

The events_statements_history_long table can be truncated with TRUNCATE TABLE.

For information about configuration of statement event collection, see Section 20.9.6, “Performance
Schema Statement Event Tables”.

20.9.6.4 The prepared_statements_instances Table

As of MySQL 5.7.4, the Performance Schema provides instrumentation for prepared statements, for
which there are two protocols:

• The binary protocol. This is accessed through the MySQL C API and maps onto underlying server
commands as shown in the following table.

C API Function Corresponding Server Command

mysql_stmt_prepare() COM_STMT_PREPARE

mysql_stmt_execute() COM_STMT_EXECUTE

mysql_stmt_close() COM_STMT_CLOSE

• The text protocol. This is accessed using SQL statements and maps onto underlying server
commands as shown in the following table.

SQL Statement Corresponding Server Command

PREPARE SQLCOM_PREPARE

EXECUTE SQLCOM_EXECUTE

DEALLOCATE PREPARE, DROP PREPARE SQLCOM_DEALLOCATE PREPARE

Performance Schema prepared statement instrumentation covers both protocols. The following
discussion refers to the server commands rather than the C API functions or SQL statements.

Information about prepared statements is available in the prepared_statements_instances
table. This table enables inspection of prepared statements used in the server and
provides aggregated statistics about them. To control the size of this table, set the
performance_schema_max_prepared_statements_instances system variable at server
startup.

Collection of prepared statement information depends on the statement instruments shown
in the following table. These instruments are enabled by default. To modify them, update the
setup_instruments table.

Server Command Instrument

statement/com/Prepare COM_STMT_PREPARE

statement/com/Execute COM_STMT_EXECUTE

statement/sql/prepare_sql SQLCOM_PREPARE

statement/sql/execute_sql SQLCOM_EXECUTE

The Performance Schema manages the contents of the prepared_statements_instances table
as follows:

• Statement preparation

A COM_STMT_PREPARE or SQLCOM_PREPARE command creates a prepared statement
in the server. If the statement is successfully instrumented, a new row is added to the
prepared_statements_instances table. If the statement cannot be instrumented,
Performance_schema_prepared_statements_lost status variable is incremented.

• Prepared statement execution

Performance Schema Statement Event Tables

2387

Execution of a COM_STMT_EXECUTE or SQLCOM_PREPARE command for an instrumented prepared
statement instance updates the corresponding prepared_statements_instances table row.

• Prepared statement deallocation

Execution of a COM_STMT_CLOSE or SQLCOM_DEALLOCATE_PREPARE command
for an instrumented prepared statement instance removes the corresponding
prepared_statements_instances table row. To avoid resource leaks, removal occurs even if
the prepared statement instruments described previously are disabled.

The prepared_statements_instances table has these columns:

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented prepared statement.

• STATEMENT_ID

The internal statement ID assigned by the server. The text and binary protocols both use statement
IDs.

• STATEMENT_NAME

For the binary protocol, this column is NULL. For the text protocol, this column is the external
statement name assigned by the user. For example, for the following SQL statement, the name of
the prepared statement is stmt:

PREPARE stmt FROM 'SELECT 1';

• SQL_TEXT

The prepared statement text, with ? placeholder markers.

• OWNER_THREAD_ID, OWNER_EVENT_ID

These columns indicate the event that created the prepared statement.

• OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME

For a prepared statement created by a client session, these columns are NULL. For a prepared
statement created by a stored program, these columns point to the stored program. A typical user
error is forgetting to deallocate prepared statements. These columns can be used to find stored
programs that leak prepared statements:

SELECT OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME,
STATEMENT_NAME, SQL_TEXT
FROM performance_schema.prepared_statements_instances
WHERE OWNER_OBJECT_TYPE IS NOT NULL;

• TIMER_PREPARE

The time spent executing the statement preparation itself.

• COUNT_REPREPARE

The number of times the statement was reprepared internally (see Section 8.9.4, “Caching of
Prepared Statements and Stored Programs”). Timing statistics for repreparation are not available
because it is counted as part of statement execution, not as a separate operation.

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Performance Schema Transaction Tables

2388

Aggregated statistics for executions of the prepared statement.

• SUM_xxx

The remaining SUM_xxx columns are the same as for the statement summary tables (see
Section 20.9.12.3, “Statement Summary Tables”).

TRUNCATE TABLE resets the statistics columns of the table.

20.9.7 Performance Schema Transaction Tables

As of MySQL 5.7.3, the Performance Schema instruments transactions. Within the event hierarchy,
wait events nest within stage events, which nest within statement events, which nest within transaction
events.

These tables store transaction events:

• events_transactions_current: Current transaction events

• events_transactions_history: The most recent transaction events for each thread

• events_transactions_history_long: The most recent transaction events overall

The following sections describe those tables. There are also summary tables that aggregate
information about transaction events; see Section 20.9.12.4, “Transaction Summary Tables”.

Transaction Event Configuration

The setup_instruments table contains an instrument named transaction. This instrument is
disabled by default:

mysql> SELECT * FROM setup_instruments WHERE NAME = 'transaction';
+-------------+---------+-------+
| NAME | ENABLED | TIMED |
+-------------+---------+-------+
| transaction | NO | NO |
+-------------+---------+-------+

To enable collection of transaction events, including timing information, do this:

mysql> UPDATE setup_instruments SET ENABLED = 'YES', TIMED = 'YES'
 -> WHERE NAME = 'transaction';

The setup_consumers table contains consumer values with names corresponding to the current and
recent transaction event table names. These consumers may be used to filter collection of transaction
events. By default, only events_transactions_current is enabled:

mysql> SELECT * FROM setup_consumers WHERE NAME LIKE '%transactions%';
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
+----------------------------------+---------+

To enable all transaction consumers, do this:

mysql> UPDATE setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%transactions%';

The setup_timers table contains a row with a NAME value of transaction that indicates the unit
for transaction event timing. The default unit is NANOSECOND.

Performance Schema Transaction Tables

2389

mysql> SELECT * FROM setup_timers WHERE NAME = 'transaction';
+-------------+------------+
| NAME | TIMER_NAME |
+-------------+------------+
| transaction | NANOSECOND |
+-------------+------------+

To change the timing unit, modify the TIMER_NAME value:

mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
 -> WHERE NAME = 'transaction';

For additional information about configuring event collection, see Section 20.2, “Performance Schema
Configuration”.

Transaction Boundaries

In MySQL Server, transactions start explicitly with these statements:

START TRANSACTION | BEGIN | XA START | XA BEGIN

Transactions also start implicitly. For example, when the autocommit system variable is enabled, the
start of each statement starts a new transaction.

When autocommit is disabled, the first statement following a committed transaction marks the start of
a new transaction. Subsequent statements are part of the transaction until it is committed.

Transactions explicitly end with these statements:

COMMIT | ROLLBACK | XA COMMIT | XA ROLLBACK

Transactions also end implicitly, by execution of DDL statements, locking statements, and server
administration statements.

In the following discussion, references to START TRANSACTION also apply to BEGIN, XA START, and
XA BEGIN. Similarly, references to COMMIT and ROLLBACK apply to XA COMMIT and XA ROLLBACK,
respectively.

The Performance Schema defines transaction boundaries similarly to that of the server. The start and
end of a transaction event closely match the corresponding state transitions in the server:

• For an explicitly started transaction, the transaction event starts during processing of the START
TRANSACTION statement.

• For an implicitly started transaction, the transaction event starts on the first statement that uses a
transactional engine after the previous transaction has ended.

• For any transaction, whether explicitly or implicitly ended, the transaction event ends when the server
transitions out of the active transaction state during the processing of COMMIT or ROLLBACK.

There are subtle implications to this approach:

• Transaction events in the Performance Schema do not fully include the statement events associated
with the corresponding START TRANSACTION, COMMIT, or ROLLBACK statements. There is a trivial
amount of timing overlap between the transaction event and these statements.

• Statements that work with nontransactional engines have no effect on the transaction state of the
connection. For implicit transactions, the transaction event begins with the first statement that uses
a transactional engine. This means that statements operating exclusively on nontransactional tables
are ignored, even following START TRANSACTION.

To illustrate, consider the following scenario:

Performance Schema Transaction Tables

2390

1. SET autocommit = OFF;
2. CREATE TABLE t1 (a INT) ENGINE = InnoDB;
3. START TRANSACTION; -- Transaction 1 START
4. INSERT INTO t1 VALUES (1), (2), (3);
5. CREATE TABLE t2 (a INT) ENGINE = MyISAM; -- Transaction 1 COMMIT
 -- (implicit; DDL forces commit)
6. INSERT INTO t2 VALUES (1), (2), (3); -- Update nontransactional table
7. UPDATE t2 SET a = a + 1; -- ... and again
8. INSERT INTO t1 VALUES (4), (5), (6); -- Write to transactional table
 -- Transaction 2 START (implicit)
9. COMMIT; -- Transaction 2 COMMIT

From the perspective of the server, Transaction 1 ends when table t2 is created. Transaction 2 does
not start until a transactional table is accessed, despite the intervening updates to nontransactional
tables.

From the perspective of the Performance Schema, Transaction 2 starts when the server transitions into
an active transaction state. Statements 6 and 7 are not included within the boundaries of Transaction 2,
which is consistent with how the server writes transactions to the binary log.

Transaction Instrumentation

Three attributes define transactions:

• Access mode (read only, read write)

• Isolation level (SERIALIZABLE, REPEATABLE READ, and so forth)

• Implicit (autocommit enabled) or explicit (autocommit disabled)

To reduce complexity of the transaction instrumentation and to ensure that the collected transaction
data provides complete, meaningful results, all transactions are instrumented independently of access
mode, isolation level, or autocommit mode.

To selectively examine transaction history, use the attribute columns in the transaction event tables:
ACCESS_MODE, ISOLATION_LEVEL, and AUTOCOMMIT.

The cost of transaction instrumentation can be reduced various ways, such as enabling or disabling
transaction instrumentation according to user, account, host, or thread (client connection).

Transactions and Nested Events

The parent of a transaction event is the event that initiated the transaction. For an explicitly started
transaction, this includes the START TRANSACTION and COMMIT AND CHAIN statements. For an
implicitly started transaction, it is the first statement that uses a transactional engine after the previous
transaction ends.

In general, a transaction is the top-level parent to all events initiated during the transaction, including
statements that explicitly end the transaction such as COMMIT and ROLLBACK. Exceptions are
statements that implicitly end a transaction, such as DDL statements, in which case the current
transaction must be committed before the new statement is executed.

Transactions and Stored Programs

Transactions and stored program events are related as follows:

• Stored Procedures

Stored procedures operate independently of transactions. A stored procedure can be started within a
transaction, and a transaction can be started or ended from within a stored procedure. If called from
within a transaction, a stored procedure can execute statements that force a commit of the parent
transaction and then start a new transaction.

Performance Schema Transaction Tables

2391

If a stored procedure is started within a transaction, that transaction is the parent of the stored
procedure event.

If a transaction is started by a stored procedure, the stored procedure is the parent of the transaction
event.

• Stored Functions

Stored functions are restricted from causing an explicit or implicit commit or rollback. Stored function
events can reside within a parent transaction event.

• Triggers

Triggers activate as part of a statement that accesses the table with which it is associated, so the
parent of a trigger event is always the statement that activates it.

Triggers cannot issue statements that cause an explicit or implicit commit or rollback of a transaction.

• Scheduled Events

The execution of the statements in the body of a scheduled event takes place in a new connection.
Nesting of a scheduled event within a parent transaction is not applicable.

Transactions and Savepoints

Savepoint statements are recorded as separate statement events. Transaction events include separate
counters for SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements issued
during the transaction.

Transactions and Errors

Errors and warnings that occur within a transaction are recorded in statement events, but not in the
corresponding transaction event. This includes transaction-specific errors and warnings, such as a
rollback on a nontransactional table or GTID consistency errors.

20.9.7.1 The events_transactions_current Table

The events_transactions_current table (added in MySQL 5.7.3) contains current transaction
events, one row per thread showing the current status of the thread's most recent monitored
transaction event. For example:

mysql> SELECT * FROM events_transactions_current LIMIT 1\G
*************************** 1. row ***************************
 THREAD_ID: 26
 EVENT_ID: 7
 END_EVENT_ID: NULL
 EVENT_NAME: transaction
 STATE: ACTIVE
 TRX_ID: NULL
 GTID: 3E11FA47-71CA-11E1-9E33-C80AA9429562:56
 XID: NULL
 XA_STATE: NULL
 SOURCE: transaction.cc:150
 TIMER_START: 420833537900000
 TIMER_END: NULL
 TIMER_WAIT: NULL
 ACCESS_MODE: READ WRITE
 ISOLATION_LEVEL: REPEATABLE READ
 AUTOCOMMIT: NO
 NUMBER_OF_SAVEPOINTS: 0
NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0
 NUMBER_OF_RELEASE_SAVEPOINT: 0
 OBJECT_INSTANCE_BEGIN: NULL
 NESTING_EVENT_ID: 6

Performance Schema Transaction Tables

2392

 NESTING_EVENT_TYPE: STATEMENT

The events_transactions_current table can be truncated with TRUNCATE TABLE.

Of the tables that contain transaction event rows, events_transactions_current
is the most fundamental. Other tables that contain transaction event rows are logically
derived from the current events. For example, the events_transactions_history and
events_transactions_history_long tables are collections of the most recent transaction
events, up to a fixed number of rows.

For information about configuration of transaction event collection, see Section 20.9.7, “Performance
Schema Transaction Tables”.

The events_transactions_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the
row. No two rows will have the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.

• STATE

The current transaction state. The value is ACTIVE (after START TRANSACTION or BEGIN),
COMMITTED (after COMMIT), or ROLLED BACK (after ROLLBACK).

• TRX_ID

Unused.

• GTID

If gtid_mode=OFF, the value is NULL. If gtid_mode=ON, this is the value of gtid_next when the
transaction started. If gtid_next=AUTOMATIC the value is AUTOMATIC, otherwise the value is a
GTID in UUID:NUMBER format.

• XID

The XA transaction identifier. It has the format described in Section 13.3.7.1, “XA Transaction SQL
Syntax”.

• XA_STATE

The state of the XA transaction. The value is ACTIVE (after XA START), IDLE (after XA END),
PREPARED (after XA PREPARE), ROLLED BACK (after XA ROLLBACK), or COMMITTED (after XA
COMMIT).

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

Performance Schema Transaction Tables

2393

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL.

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 20.2.3.1, “Performance Schema Event Timing”.

• ACCESS_MODE

The transaction access mode. The value is READ ONLY or READ WRITE.

• ISOLATION_LEVEL

The transaction isolation level. The value is REPEATABLE READ, READ COMMITTED, READ
UNCOMMITTED, or SERIALIZABLE.

• AUTOCOMMIT

Whether autcommit mode was enabled when the transaction started.

• NUMBER_OF_SAVEPOINTS, NUMBER_OF_ROLLBACK_TO_SAVEPOINT,
NUMBER_OF_RELEASE_SAVEPOINT

The number of SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements
issued during the transaction.

• OBJECT_INSTANCE_BEGIN

Unused.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT. (TRANSACTION
will not appear because transactions cannot be nested.)

20.9.7.2 The events_transactions_history Table

The events_transactions_history table (added in MySQL 5.7.3) contains the
most recent 10 transaction events per thread. To change the table size, modify the
performance_schema_events_transactions_history_size system variable at server startup.
Transaction events are not added to the table until they have ended. As new events are added, older
events are discarded if the table is full.

The events_transactions_history table has the same structure as
events_transactions_current. See Section 20.9.7.1, “The events_transactions_current
Table”.

The events_transactions_history table can be truncated with TRUNCATE TABLE.

For information about configuration of transaction event collection, see Section 20.9.7, “Performance
Schema Transaction Tables”.

Performance Schema Connection Tables

2394

20.9.7.3 The events_transactions_history_long Table

The events_transactions_history_long table (added in MySQL 5.7.3) contains
the most recent 10,000 transaction events. To change the table size, modify the
performance_schema_events_transactions_history_long_size system variable at server
startup. Transaction events are not added to the table until they have ended. As new events are added,
older events are discarded if the table is full.

The events_transactions_history_long table has the same structure as
events_transactions_current. See Section 20.9.7.1, “The events_transactions_current
Table”.

The events_transactions_history_long table can be truncated with TRUNCATE TABLE.

For information about configuration of transaction event collection, see Section 20.9.7, “Performance
Schema Transaction Tables”.

20.9.8 Performance Schema Connection Tables

The Performance Schema provides statistics about connections to the server. When a client connects,
it does so under a particular user name and from a particular host. The Performance Schema tracks
connections per account (user name plus host name) and separately per user name and per host
name, using these tables:

• accounts: Connection statistics per client account

• hosts: Connection statistics per client host name

• users: Connection statistics per client user name

There are also summary tables that aggregate information about connections. See Section 20.9.12.8,
“Connection Summary Tables”.

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables
in the mysql database, in the sense that the term refers to a combination of user and host values.
Where they differ is that in the grant tables, the host part of an account can be a pattern, whereas in
the connection tables the host value is always a specific nonpattern host name.

The connection tables all have CURRENT_CONNECTIONS and TOTAL_CONNECTIONS columns to track
the current and total number of connections per “tracking value” on which statistics are based. The
tables differ in what they use for the tracking value. The accounts table has USER and HOST columns
to track connections per user name plus host name combination. The users and hosts tables have a
USER and HOST column, respectively, to track connections per user name and per host name.

Suppose that clients named user1 and user2 each connect one time from hosta and hostb. The
Performance Schema tracks the connections as follows:

• The accounts table will have four rows, for the user1/hosta, user1/hostb, user2/hosta, and
user2/hostb account values, each row counting one connection per account.

• The users table will have two rows, for user1 and user2, each row counting two connections per
user name.

• The hosts table will have two rows, for hosta and hostb, each row counting two connections per
host name.

When a client connects, the Performance Schema determines which row in each connection table
applies to the connection, using the tracking value appropriate to each table. If there is no such row,
one is added. Then the Performance Schema increments by one the CURRENT_CONNECTIONS and
TOTAL_CONNECTIONS columns in that row.

Performance Schema Connection Tables

2395

When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTIONS
column in the row and leaves the TOTAL_CONNECTIONS column unchanged.

The Performance Schema also counts threads for internal threads and user sessions that failed to
authenticate. These are counted in rows with USER and HOST column values of NULL.

Each connection table can be truncated with TRUNCATE TABLE, which has this effect:

• Rows with CURRENT_CONNECTIONS = 0 are deleted.

• For rows with CURRENT_CONNECTIONS > 0, TOTAL_CONNECTIONS is reset to
CURRENT_CONNECTIONS.

• Connection summary tables that depend on the connection table are truncated implicitly (summary
values are set to 0). For more information about implicit truncation, see Section 20.9.12.8,
“Connection Summary Tables”.

20.9.8.1 The accounts Table

The accounts table contains a row for each account that has connected to the MySQL server. For
each account, the table counts the current and total number of connections. To change the table size,
modify the performance_schema_accounts_size system variable at server startup. To disable
account statistics, set this variable to 0.

The accounts table has the following columns. For a description of how the Performance
Schema maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 20.9.8,
“Performance Schema Connection Tables”.

• USER

The client user name for the connection, or NULL for an internal thread or user session that failed to
authenticate.

• HOST

The host name from which the client connected, or NULL for an internal thread or user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the account.

• TOTAL_CONNECTIONS

The total number of connections for the account.

20.9.8.2 The hosts Table

The hosts table contains a row for each host from which clients have connected to the MySQL server.
For each host name, the table counts the current and total number of connections. To change the table
size, modify the performance_schema_hosts_size system variable at server startup. To disable
host statistics, set this variable to 0.

The hosts table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 20.9.8,
“Performance Schema Connection Tables”.

• HOST

The host name from which the client connected, or NULL for an internal thread or user session that
failed to authenticate.

Performance Schema Connection Attribute Tables

2396

• CURRENT_CONNECTIONS

The current number of connections for the host.

• TOTAL_CONNECTIONS

The total number of connections for the host.

20.9.8.3 The users Table

The users table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. To change the table size, modify
the performance_schema_users_size system variable at server startup. To disable user statistics,
set this variable to 0.

The users table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 20.9.8,
“Performance Schema Connection Tables”.

• USER

The client user name for the connection, or NULL for an internal thread or user session that failed to
authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the user.

• TOTAL_CONNECTIONS

The total number of connections for the user.

20.9.9 Performance Schema Connection Attribute Tables

Application programs can provide key/value connection attributes to be passed to the server at connect
time, using the mysql_options() and mysql_options4() C API functions. The Performance
Schema provides tables that expose this information through SQL statements:

• session_account_connect_attrs: Connection attributes per for the current session

• session_connect_attrs: Connection attributes for all sessions

Both tables have the same columns. The difference between them is that session_connect_attrs
displays connection attributes for all sessions, whereas session_account_connect_attrs
displays connections only for your own account.

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

Performance Schema Replication Tables

2397

20.9.10 Performance Schema Replication Tables

As of MySQL 5.7.2, the Performance Schema provides tables that expose replication information. This
is similar to the information available from the SHOW SLAVE STATUS statement, but representation in
table form is more accessible and has usability benefits:

• SHOW SLAVE STATUS output is useful for visual inspection, but not so much for programmatic use.
By contrast, using the Performance Schema tables, information about slave status can be searched
using general SELECT queries, including complex WHERE conditions, joins, and so forth.

• Query results can be saved in tables for further analysis, or assigned to variables and thus used in
stored procedures.

• The replication tables provide better diagnostic information. For multi-threaded slave operation, SHOW
SLAVE STATUS reports all coordinator and worker thread errors using the Last_SQL_Errno and
Last_SQL_Error fields, so only the most recent of those errors is visible and information can be
lost. The replication tables store errors on a per-thread basis without loss of information.

• The last seen transaction is visible in the replication tables on a per-worker basis. This is information
not avilable from SHOW SLAVE STATUS.

• Developers familiar with the Performance Schema interface can extend the replication tables to
provide additional information by adding rows to the tables.

Replication Table Descriptions

The Performance Schema provides several replication-related tables:

• Tables that contain information about the connection of the slave server to the master server:

• replication_connection_configuration: Configuration parameters for connecting to the
master

• replication_connection_status: Current status of the connection to the master

• Tables that contain general (not thread-specific) information about execution of transactions received
from the master:

• replication_execute_configuration: Configuration parameters for transaction execution
on the slave

• replication_execute_status: Current transaction execution status on the slave

• Tables that contain information about specific threads responsible for execution of transactions
received from the master:

• replication_execute_status_by_coordinator: SQL thread or coordinator thread
execution status

• replication_execute_status_by_worker: Worker thread execution status (empty unless
slave is multi-threaded)

The following sections describe each replication table in more detail, including the correspondence
between the columns produced by SHOW SLAVE STATUS and the replication table columns in which
the same information appears.

The remainder of this introduction to the replication tables describes how the Performance Schema
populates them and which fields from SHOW SLAVE STATUS are not represented in the tables.

Replication Table Life Cycle

The Performance Schema populates the replication tables as follows:

Performance Schema Replication Tables

2398

• Prior to execution of CHANGE MASTER TO, the tables are empty.

• After CHANGE MASTER TO, the configuration parameters can be seen in the tables. At this time,
there are no active slave threads, so the THREAD_ID columns are NULL and the SERVICE_STATE
columns have a value of OFF.

• After START SLAVE, non-NULL THREAD_ID values can be seen. Threads that are idle or active
have a SERVICE_STATE value of ON. The thread that connects to the master server has a value of
CONNECTING while it establishes the connection, and ON thereafter as long as the connection lasts.

• After STOP SLAVE, the THREAD_ID columns become NULL and the SERVICE_STATE columns for
threads that no longer exist have a value of OFF.

• The tables are preserved after STOP SLAVE or threads dying due to an error.

• The replication_execute_status_by_worker table is nonempty only when the slave is
operating in multi-threaded mode. That is, if the slave_parallel_workers system variable is
greater than 0, this table is populated when START SLAVE is executed, and the number of rows
shows the number of workers.

SHOW SLAVE STATUS Information Not In the Replication Tables

The information in the Performance Schema replication tables differs somewhat from the information
available from SHOW SLAVE STATUS because the tables are oriented toward use of global transaction
identifiers (GTIDs), not file names and positions, and they represent server UUID values, not server
ID values. Due to these differences, several SHOW SLAVE STATUS columns are not preserved in the
Performance Schema replication tables, or are represented a different way:

• The following fields refer to file names and positions and are not preserved:

Master_Log_File
Read_Master_Log_Pos
Relay_Log_File
Relay_Log_Pos
Relay_Master_Log_File
Exec_Master_Log_Pos
Until_Condition
Until_Log_File
Until_Log_Pos

• The Master_Info_File field is not preserved. It refers to the master.info file, which has been
superseded by crash-safe slave tables.

• The following fields are based on server_id, not server_uuid [2037], and are not preserved:

Master_Server_Id
Replicate_Ignore_Server_Ids

• The Skip_Counter field is based on event counts, not GTIDs, and is not preserved.

• These error fields are aliases for Last_SQL_Errno and Last_SQL_Error, so they are not
preserved:

Last_Errno
Last_Error

In the Performance Schema, this error information is available in the LAST_ERROR_NUMBER and
LAST_ERROR_MESSAGE columns of the replication_execute_status_by_coordinator
table (and replication_execute_status_by_worker if the slave is multi-threaded). Those
tables provide more specific per-thread error information than is available from Last_Errno and
Last_Error.

Performance Schema Replication Tables

2399

• Fields that provide information about command-line filtering options is not preserved:

Replicate_Do_DB
Replicate_Ignore_DB
Replicate_Do_Table
Replicate_Ignore_Table
Replicate_Wild_Do_Table
Replicate_Wild_Ignore_Table

• The Slave_IO_State and Slave_SQL_Running_State fields are not preserved. If needed,
these values can be obtained from the process list by using the THREAD_ID column of the
appropriate replication table and joining it with the ID column in the INFORMATION_SCHEMA
PROCESSLIST table to select the STATE column of the latter table.

• The Executed_Gtid_Set field can show a large set with a great deal of text. Instead, the
Performance Schema tables show GTIDs of transactions that are currently being applied
by the slave. Alternatively, the set of executed GTIDs can be obtained from the value of the
gtid_executed system variable.

• The Seconds_Behind_Master and Relay_Log_Space fields are in to-be-decided status and are
not preserved.

20.9.10.1 The replication_connection_configuration Table

This table shows the configuration parameters used by the slave server for connecting to the master
server. Parameters stored in the table can be changed at runtime with the CHANGE MASTER TO
statement, as indicated in the column descriptions. This table was added in MySQL 5.7.2.

Compared to the replication_connection_status table,
replication_connection_configuration changes less frequently. It contains values that
define how the slave connects to the master and that remain constant during the connection, whereas
replication_connection_status contains values that change during the connection.

The replication_connection_configuration table has these columns:

• HOST

The master host that the slave is connected to. (CHANGE MASTER TO option: MASTER_HOST)

• PORT

The port used to connect to the master. (CHANGE MASTER TO option: MASTER_PORT)

• USER

The user name of the account used to connect to the master. (CHANGE MASTER TO option:
MASTER_USER)

• NETWORK_INTERFACE

The network interface that the slave is bound to, if any. (CHANGE MASTER TO option:
MASTER_BIND)

• AUTO_POSITION

1 if autopositioning is in use; otherwise 0. (CHANGE MASTER TO option: MASTER_AUTO_POSITION)

• SSL_ALLOWED, SSL_CA_FILE, SSL_CA_PATH, SSL_CERTIFICATE, SSL_CIPHER, SSL_KEY,
SSL_VERIFY_SERVER_CERTIFICATE, SSL_CRL_FILE, SSL_CRL_PATH

These columns show the SSL parameters used by the slave to connect to the master, if any.

SSL_ALLOWED has these values:

Performance Schema Replication Tables

2400

• Yes if an SSL connection to the master is permitted

• No if an SSL connection to the master is not permitted

• Ignored if an SSL connection is permitted but the slave server does not have SSL support
enabled

CHANGE MASTER TO options for the other SSL columns: MASTER_SSL_CA, MASTER_SSL_CAPATH,
MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL, MASTER_SSL_CRLPATH,
MASTER_SSL_KEY, MASTER_SSL_VERIFY_SERVER_CERT.

Prior to MySQL 5.7.4, the value of SSL_CRL_PATH was not displayed correctly. (Bug #18174719)

• CONNECTION_RETRY_INTERVAL

The number of seconds between connect retries. (CHANGE MASTER TO option:
MASTER_CONNECT_RETRY)

• CONNECTION_RETRY_COUNT

The number of times the slave can attempt to reconnect to the master in the event of a lost
connection. (CHANGE MASTER TO option: MASTER_RETRY_COUNT)

The following table shows the correspondence between
replication_connection_configuration columns and SHOW SLAVE STATUS columns.

replication_connection_configuration Column SHOW SLAVE STATUS Column

HOST Master_Host

PORT Master_Port

USER Master_User

NETWORK_INTERFACE Master_Bind

AUTO_POSITION Auto_Position

SSL_ALLOWED Master_SSL_Allowed

SSL_CA_FILE Master_SSL_CA_File

SSL_CA_PATH Master_SSL_CA_Path

SSL_CERTIFICATE Master_SSL_Cert

SSL_CIPHER Master_SSL_Cipher

SSL_KEY Master_SSL_Key

SSL_VERIFY_SERVER_CERTIFICATE Master_SSL_Verify_Server_Cert

SSL_CRL_FILE Master_SSL_Crl

SSL_CRL_PATH Master_SSL_Crlpath

CONNECTION_RETRY_INTERVAL Connect_Retry

CONNECTION_RETRY_COUNT Master_Retry_Count

20.9.10.2 The replication_connection_status Table

This table shows the current status of the I/O thread that handles the slave server connection to the
master server. This table was added in MySQL 5.7.2.

Compared to the replication_connection_configuration table,
replication_connection_status changes more frequently. It contains values that change during
the connection, whereas replication_connection_configuration contains values define how
the slave connects to the master and that remain constant during the connection.

Performance Schema Replication Tables

2401

The replication_connection_status table has these columns:

• SOURCE_UUID

The server_uuid [2037] value from the master.

• THREAD_ID

The I/O thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle), OFF (thread no longer exists), or CONNECTING (thread exists
and is connecting to the master).

• RECEIVED_TRANSACTION_SET

The set of global transaction IDs (GTIDs) corresponding to all transactions received by this slave.
Empty if GTIDs are not in use.

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the LAST_ERROR_MESSAGE
value is not empty, the error values also appear in the slave's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD HH:MM:SS format that shows when the most recent I/O error took place.

The following table shows the correspondence between replication_connection_status
columns and SHOW SLAVE STATUS columns.

replication_connection_status Column SHOW SLAVE STATUS Column

SOURCE_UUID Master_UUID

THREAD_ID None

SERVICE_STATE Slave_IO_Running

RECEIVED_TRANSACTION_SET Retrieved_Gtid_Set

LAST_ERROR_NUMBER Last_IO_Errno

LAST_ERROR_MESSAGE Last_IO_Error

LAST_ERROR_TIMESTAMP Last_IO_Error_Timestamp

20.9.10.3 The replication_execute_configuration Table

This table shows the configuration parameters that affect execution of transactions by the slave server.
Parameters stored in the table can be changed at runtime with the CHANGE MASTER TO statement, as
indicated in the column descriptions. This table was added in MySQL 5.7.2.

The replication_execute_configuration table has these columns:

• DESIRED_DELAY

The number of seconds that the slave must lag the master. (CHANGE MASTER TO option:
MASTER_DELAY)

The following table shows the correspondence between replication_execute_configuration
columns and SHOW SLAVE STATUS columns.

Performance Schema Replication Tables

2402

replication_execute_configuration Column SHOW SLAVE STATUS Column

DESIRED_DELAY SQL_Delay

20.9.10.4 The replication_execute_status Table

This table shows the current general transaction execution status on the slave server. This table was
added in MySQL 5.7.2.

Information in this table pertains to general aspects of transaction execution status
that are not specific to any thread involved. Thread-specific status information is
available in the replication_execute_status_by_coordinator table (and
replication_execute_status_by_worker if the slave is multi-threaded).

The replication_execute_status table has these columns:

• SERVICE_STATE

Reserved for future use.

• REMAINING_DELAY

If the slave is waiting for DESIRED_DELAY seconds to pass since the master executed an event,
this field contains the number of delay seconds remaining. At other times, this field is NULL. (The
DESIRED_DELAY value is stored in the replication_execute_configuration table.)

The following table shows the correspondence between replication_execute_status columns
and SHOW SLAVE STATUS columns.

replication_execute_status Column SHOW SLAVE STATUS Column

SERVICE_STATE None

REMAINING_DELAY SQL_Remaining_Delay

20.9.10.5 The replication_execute_status_by_coordinator Table

If the slave is not multi-threaded, this table shows the status of the SQL thread. Otherwise,
the slave uses multiple worker threads and a coordinator thread to manage them, and
this table shows the status of the coordinator thread. (For a multi-threaded slave, the
replication_execute_status_by_worker table shows the status of the worker threads.) This
table was added in MySQL 5.7.2.

The replication_execute_status_by_coordinator table has these columns:

• THREAD_ID

The SQL/coordinator thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the SQL/coordinator
thread to stop. An error number of 0 and message of the empty string mean “no error.” If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the slave's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Section C.3, “Server Error Codes and Messages”.

Performance Schema Replication Tables

2403

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD HH:MM:SS format that shows when the most recent SQL/coordinator error
occurred.

The following table shows the correspondence between
replication_execute_status_by_coordinator columns and SHOW SLAVE STATUS columns.

replication_execute_status_by_coordinator
Column

SHOW SLAVE STATUS Column

THREAD_ID None

SERVICE_STATE Slave_SQL_Running

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

20.9.10.6 The replication_execute_status_by_worker Table

If the slave is not multi-threaded, this table is empty. Otherwise, the slave uses multiple worker threads
and a coordinator thread to manage them, and this table shows the status of the worker threads. (For
a multi-threaded slave, the replication_execute_status_by_coordinator table shows the
status of the coordinator thread.) This table was added in MySQL 5.7.2.

The replication_execute_status_by_worker table has these columns:

• WORKER_ID

The worker identifier (same value as the id column in the mysql.slave_worker_info table).
After STOP SLAVE, the THREAD_ID column becomes NULL, but the WORKER_ID value is preserved.

• THREAD_ID

The worker thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_SEEN_TRANSACTION

The transaction that the worker has last seen. The worker has not necessarily executed this
transaction because it could still be in the process of doing so.

If the gtid_mode system variable value is OFF, this column is ANONYMOUS, indicating that
transactions do not have global transaction identifiers (GTIDs) and are identified by file and position
only.

If gtid_mode is ON, the column value is defined as follows:

• If no transaction has executed, the column is empty.

• When a transaction has executed, the column is set from gtid_next as soon as gtid_next is
set. From this moment, the column always shows a GTID.

• The GTID is preserved until the next transaction is executed. If an error occurs, the column value
is the GTID of the transaction being executed by the worker when the error occurred.

• When the next GTID log event is picked up by this worker thread, this column is updated from
gtid_next soon after gtid_next is set.

Performance Schema Lock Tables

2404

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the worker thread
to stop. An error number of 0 and message of the empty string mean “no error.” If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the slave's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Section C.3, “Server Error Codes and Messages”.

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD HH:MM:SS format that shows when the most recent worker error occurred.

The following table shows the correspondence between
replication_execute_status_by_worker columns and SHOW SLAVE STATUS columns.

replication_execute_status_by_worker Column SHOW SLAVE STATUS Column

WORKER_ID None

THREAD_ID None

SERVICE_STATE None

LAST_SEEN_TRANSACTION None

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

20.9.11 Performance Schema Lock Tables

The Performance Schema exposes lock information through these tables:

• metadata_locks: Metadata locks held and requested

• table_handles: Table locks held and requested

The following sections describe these tables in more detail.

20.9.11.1 The metadata_locks Table

As of MySQL 5.7.3, the Performance Schema exposes metadata lock information through the
metadata_locks table:

• Locks that have been granted (shows which sessions own which current metadata locks)

• Locks that have been requested but not yet granted (shows which sessions are waiting for which
metadata locks).

• Lock requests that have been killed by the deadlock detector or timed out and are waiting for the
requesting session's lock request to be discarded

This information enables you to understand metadata lock dependencies between sessions. You can
see not only which lock a session is waiting for, but which session currently holds that lock.

The metadata_locks table is read only and cannot be updated. It is autosized by default; to
configure the table size, set the performance_schema_max_metadata_locks system variable at
server startup.

Metadata lock instrumentation is disabled by default. To enable it, enable the wait/lock/metadata/
sql/mdl instrument in the setup_instruments table.

Performance Schema Lock Tables

2405

The Performance Schema maintains metadata_locks table content as follows, using the
LOCK_STATUS column to indicate the status of each lock:

• When a metadata lock is requested and obtained immediately, a row with a status of GRANTED is
inserted.

• When a metadata lock is requested and not obtained immediately, a row with a status of PENDING is
inserted.

• When a metadata lock previously requested is granted, its row status is updated to GRANTED.

• When a metadata lock is released, its row is deleted.

• When a pending lock request is canceled by the deadlock detector to break a deadlock
(ER_LOCK_DEADLOCK), its row status is updated from PENDING to VICTIM.

• When a pending lock request times out (ER_LOCK_WAIT_TIMEOUT), its row status is updated from
PENDING to TIMEOUT.

• When granted lock or pending lock request is killed, its row status is updated from GRANTED or
PENDING to KILLED.

• The VICTIM, TIMEOUT, and KILLED status values are brief and signify that the lock row is about to
be deleted.

The metadata_locks table has these columns:

• OBJECT_TYPE

The type of lock used in the metadata lock subsystem: The value is one of GLOBAL, SCHEMA, TABLE,
FUNCTION, PROCEDURE, TRIGGER (currently unused), EVENT, or COMMIT.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented object.

• LOCK_TYPE

The lock type from the metadata lock subsystem. The value is one of INTENTION_EXCLUSIVE,
SHARED, SHARED_HIGH_PRIO, SHARED_READ, SHARED_WRITE, SHARED_UPGRADABLE,
SHARED_NO_WRITE, SHARED_NO_READ_WRITE, or EXCLUSIVE.

• LOCK_DURATION

The lock duration from the metadata lock subsystem. The value is one of STATEMENT,
TRANSACTION, or EXPLICIT. The STATEMENT and TRANSACTION values are for locks that are
released at statement or transaction end, respectively. The EXPLICIT value is for locks that survive
statement or transaction end and are released explicitly, such as global locks acquired with FLUSH
TABLES WITH READ LOCK.

• LOCK_STATUS

The lock status from the metadata lock subsystem. The value is one of PENDING, GRANTED,
VICTIM, TIMEOUT, or KILLED. The Performance Schema assigns these values as described earlier
in this section.

Performance Schema Lock Tables

2406

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• OWNER_THREAD_ID

The thread requesting a metadata lock.

• OWNER_EVENT_ID

The event requesting a metadata lock.

20.9.11.2 The table_handles Table

As of MySQL 5.7.3, the Performance Schema exposes table lock information through the
table_handles table to show the table locks currently in effect for each opened table handle.
table_handles reports what is recorded by the table lock instrumentation. This information shows
which table handles the server has open, how they are locked, and by which sessions.

The table_handles table is read only and cannot be updated. It is autosized by default; to configure
the table size, set the performance_schema_max_table_handles system variable at server
startup.

The table_handles table has these columns:

• OBJECT_TYPE

The table opened by a table handle.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The table handle address in memory.

• OWNER_THREAD_ID

The thread owning the table handle.

• OWNER_EVENT_ID

The event which caused the table handle to be opened.

• INTERNAL_LOCK

The table lock used at the SQL level. The value is one of READ, READ WITH SHARED LOCKS, READ
HIGH PRIORITY, READ NO INSERT, WRITE ALLOW WRITE, WRITE CONCURRENT INSERT,
WRITE LOW PRIORITY, or WRITE. For information about these lock types, see the include/
thr_lock.h source file.

• EXTERNAL_LOCK

The table lock used at the storage engine level. The value is one of READ EXTERNAL or WRITE
EXTERNAL.

Performance Schema Summary Tables

2407

20.9.12 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this
group summarize event data in different ways.

Event Wait Summaries:

• events_waits_summary_global_by_event_name: Wait events summarized per event name

• events_waits_summary_by_instance: Wait events summarized per instance

• events_waits_summary_by_thread_by_event_name: Wait events summarized per thread and
event name

Stage Summaries:

• events_stages_summary_by_thread_by_event_name: Stage waits summarized per thread
and event name

• events_stages_summary_global_by_event_name: Stage waits summarized per event name

Statement Summaries:

• events_statements_summary_by_digest: Statement events summarized per schema and
digest value

• events_statements_summary_by_thread_by_event_name: Statement events summarized
per thread and event name

• events_statements_summary_global_by_event_name: Statement events summarized per
event name

• events_statements_summary_by_program: Statement events summarized per stored program
(stored procedures and functions, triggers, and events) (added in MySQL 5.7.2)

• prepared_statements_instances: Prepared statement instances and statistics (added in
MySQL 5.7.4)

Transaction Summaries:

• events_transactions_summary_by_account_by_event_name: Transaction events per
account and event name (added in MySQL 5.7.3)

• events_transactions_summary_by_host_by_event_name: Transaction events per host
name and event name (added in MySQL 5.7.3)

• events_transactions_summary_by_thread_by_event_name: Transaction events per thread
and event name (added in MySQL 5.7.3)

• events_transactions_summary_by_user_by_event_name: Transaction events per user
name and event name (added in MySQL 5.7.3)

• events_transactions_summary_global_by_event_name: Transaction events per event
name (added in MySQL 5.7.3)

Object Wait Summaries:

• objects_summary_global_by_type: Object summaries

File I/O Summaries:

• file_summary_by_event_name: File events summarized per event name

Performance Schema Summary Tables

2408

• file_summary_by_instance: File events summarized per file instance

Table I/O and Lock Wait Summaries:

• table_io_waits_summary_by_index_usage: Table I/O waits per index

• table_io_waits_summary_by_table: Table I/O waits per table

• table_lock_waits_summary_by_table: Table lock waits per table

Connection Summaries:

• events_waits_summary_by_account_by_event_name: Wait events summarized per account
and event name

• events_waits_summary_by_user_by_event_name: Wait events summarized per user name
and event name

• events_waits_summary_by_host_by_event_name: Wait events summarized per host name
and event name

• events_stages_summary_by_account_by_event_name: Stage events summarized per
account and event name

• events_stages_summary_by_user_by_event_name: Stage events summarized per user name
and event name

• events_stages_summary_by_host_by_event_name: Stage events summarized per host name
and event name

• events_statements_summary_by_digest: Statement events summarized per schema and
digest value

• events_statements_summary_by_account_by_event_name: Statement events summarized
per account and event name

• events_statements_summary_by_user_by_event_name: Statement events summarized per
user name and event name

• events_statements_summary_by_host_by_event_name: Statement events summarized per
host name and event name

Socket Summaries:

• socket_summary_by_instance: Socket waits and I/O summarized per instance

• socket_summary_by_event_name: Socket waits and I/O summarized per event name

Memory Summaries:

• memory_summary_global_by_event_name: Memory operations summarized globally per event
name (added in MySQL 5.7.2)

• memory_summary_by_thread_by_event_name: Memory operations summarized per thread and
event name (added in MySQL 5.7.2)

• memory_summary_by_account_by_event_name: Memory operations summarized per account
and event name (added in MySQL 5.7.2)

• memory_summary_by_user_by_event_name: Memory operations summarized per user and
event name (added in MySQL 5.7.2)

• memory_summary_by_host_by_event_name: Memory operations summarized per host and
event name (added in MySQL 5.7.2)

Performance Schema Summary Tables

2409

Each summary table has grouping columns that determine how to group the data to be aggregated,
and summary columns that contain the aggregated values. Tables that summarize events in similar
ways often have similar sets of summary columns and differ only in the grouping columns used to
determine how events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Except for
events_statements_summary_by_digest and the memory summary tables, the effect is to reset
the summary columns to 0 or NULL, not to remove rows. This enables you to clear collected values and
restart aggregation. That might be useful, for example, after you have made a runtime configuration
change.

20.9.12.1 Event Wait Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and
aggregates that information in summary tables. Section 20.9.4, “Performance Schema Wait Event
Tables” describes the events on which wait summaries are based. See that discussion for information
about the content of wait events, the current and recent wait event tables, and how to control wait event
collection.

Each event waits summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table.

• events_waits_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name. An instrument might be used to create multiple
instances of the instrumented object. For example, if there is an instrument for a mutex that is
created for each connection, there are as many instances as there are connections. The summary
row for the instrument summarizes over all these instances.

• events_waits_summary_by_instance has EVENT_NAME and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given event name and object. If an instrument is used to
create multiple instances, each instance has a unique OBJECT_INSTANCE_BEGIN value, so these
instances are summarized separately in this table.

• events_waits_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

All event waits summary tables have these summary columns containing aggregated values:

• COUNT_STAR

The number of summarized events. This value includes all events, whether timed or nontimed.

• SUM_TIMER_WAIT

The total wait time of the summarized timed events. This value is calculated only for timed
events because nontimed events have a wait time of NULL. The same is true for the other
xxx_TIMER_WAIT values.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed events.

Example wait event summary information:

Performance Schema Summary Tables

2410

mysql> SELECT * FROM events_waits_summary_global_by_event_name\G
...
*************************** 6. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/BINARY_LOG::LOCK_index
 COUNT_STAR: 8
SUM_TIMER_WAIT: 2119302
MIN_TIMER_WAIT: 196092
AVG_TIMER_WAIT: 264912
MAX_TIMER_WAIT: 569421
...
*************************** 9. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/hash_filo::lock
 COUNT_STAR: 69
SUM_TIMER_WAIT: 16848828
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 244185
MAX_TIMER_WAIT: 735345
...

TRUNCATE TABLE is permitted for wait summary tables. It resets the summary columns to zero rather
than removing rows.

20.9.12.2 Stage Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and
aggregates that information in summary tables. Section 20.9.5, “Performance Schema Stage Event
Tables” describes the events on which stage summaries are based. See that discussion for information
about the content of stage events, the current and recent stage event tables, and how to control stage
event collection.

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table.

• events_stages_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_stages_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

All stage summary tables have these summary columns containing aggregated values: COUNT_STAR,
SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT. These
columns are analogous to the columns of the same names in the event wait summary tables (see
Section 20.9.12.1, “Event Wait Summary Tables”), except that the stage summary tables aggregate
events from events_stages_current rather than events_waits_current.

Example stage event summary information:

mysql> SELECT * FROM events_stages_summary_global_by_event_name\G
...
*************************** 5. row ***************************
 EVENT_NAME: stage/sql/checking permissions
 COUNT_STAR: 57
SUM_TIMER_WAIT: 26501888880
MIN_TIMER_WAIT: 7317456
AVG_TIMER_WAIT: 464945295
MAX_TIMER_WAIT: 12858936792
...
*************************** 9. row ***************************
 EVENT_NAME: stage/sql/closing tables
 COUNT_STAR: 37
SUM_TIMER_WAIT: 662606568
MIN_TIMER_WAIT: 1593864
AVG_TIMER_WAIT: 17907891
MAX_TIMER_WAIT: 437977248
...

Performance Schema Summary Tables

2411

TRUNCATE TABLE is permitted for stage summary tables. It resets the summary columns to zero
rather than removing rows.

20.9.12.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 20.9.6, “Performance Schema Statement
Event Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and recent statement event tables, and
how to control statement event collection.

Each statement summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table.

• events_statements_summary_by_digest has SCHEMA_NAME and DIGEST columns. Each
row summarizes events for given schema/digest values. (The DIGEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor summary column.)

• events_statements_summary_by_program has OBJECT_TYPE, OBJECT_SCHEMA, and
OBJECT_NAME columns. Each row summarizes events for a given stored program (stored procedure
or function, trigger, or event).

• events_statements_summary_by_thread_by_event_name has THREAD_ID and
EVENT_NAME columns. Each row summarizes events for a given thread and event name.

• events_statements_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

• prepared_statements_instances has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given prepared statement.

Statement summary tables have these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the event wait summary tables
(see Section 20.9.12.1, “Event Wait Summary Tables”), except that the statement summary tables
aggregate events from events_statements_current rather than events_waits_current.

The prepared_statements_instances table does not have these columns.

• SUM_xxx

The aggregate of the corresponding xxx column in the events_statements_current table. For
example, the SUM_LOCK_TIME and SUM_ERRORS columns in statement summary tables are the
aggregates of the LOCK_TIME and ERRORS columns in events_statements_current table.

The events_statements_summary_by_digest table has these additional summary columns:

• FIRST_SEEN_TIMESTAMP, LAST_SEEN_TIMESTAMP

The times at which a statement with the given digest value were first seen and most recently seen.

The events_statements_summary_by_program table has these additional summary columns:

• COUNT_STATEMENTS, SUM_STATEMENTS_WAIT, MIN_STATEMENTS_WAIT,
AVG_STATEMENTS_WAIT, MAX_STATEMENTS_WAIT

Statistics about nested statements invoked during stored program execution.

The prepared_statements_instances table has these additional summary columns:

Performance Schema Summary Tables

2412

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

Example statement event summary information:

mysql> SELECT * FROM events_statements_summary_global_by_event_name\G
*************************** 1. row ***************************
 EVENT_NAME: statement/sql/select
 COUNT_STAR: 25
 SUM_TIMER_WAIT: 1535983999000
 MIN_TIMER_WAIT: 209823000
 AVG_TIMER_WAIT: 61439359000
 MAX_TIMER_WAIT: 1363397650000
 SUM_LOCK_TIME: 20186000000
 SUM_ERRORS: 0
 SUM_WARNINGS: 0
 SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 388
 SUM_ROWS_EXAMINED: 370
SUM_CREATED_TMP_DISK_TABLES: 0
 SUM_CREATED_TMP_TABLES: 0
 SUM_SELECT_FULL_JOIN: 0
 SUM_SELECT_FULL_RANGE_JOIN: 0
 SUM_SELECT_RANGE: 0
 SUM_SELECT_RANGE_CHECK: 0
 SUM_SELECT_SCAN: 6
 SUM_SORT_MERGE_PASSES: 0
 SUM_SORT_RANGE: 0
 SUM_SORT_ROWS: 0
 SUM_SORT_SCAN: 0
 SUM_NO_INDEX_USED: 6
 SUM_NO_GOOD_INDEX_USED: 0
...

TRUNCATE TABLE is permitted for statement summary tables. For
events_statements_summary_by_digest, it empties the table. For the other statement summary
tables, it resets the summary columns to zero rather than removing rows.

Statement Digest Aggregation Rules

If the statement_digest consumer is enabled, aggregation into
events_statements_summary_by_digest occurs as follows when a statement completes.
Aggregation is based on the DIGEST value computed for the statement.

• If a events_statements_summary_by_digest row already exists with the digest value for
the statement that just completed, statistics for the statement are aggregated to that row. The
LAST_SEEN column is updated to the current time.

• If no row has the digest value for the statement that just completed, and the table is not full, a new
row is created for the statement. The FIRST_SEEN and LAST_SEEN columns are initialized with the
current time.

• If no row has the statement digest value for the statement that just completed, and the table is full,
the statistics for the statement that just completed are added to a special “catch-all” row with DIGEST
= NULL, which is created if necessary. If the row is created, the FIRST_SEEN and LAST_SEEN
columns are initialized with the current time. Otherwise, the LAST_SEEN column is updated with the
current time.

The row with DIGEST = NULL is maintained because Performance Schema tables have a maximum
size due to memory constraints. The DIGEST = NULL row permits digests that do not match other rows
to be counted even if the summary table is full, using a common “other” bucket. This row helps you
estimate whether the digest summary is representative:

Performance Schema Summary Tables

2413

• A DIGEST = NULL row that has a COUNT_STAR value that represents 5% of all digests shows that
the digest summary table is very representative; the other rows cover 95% of the statements seen.

• A DIGEST = NULL row that has a COUNT_STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements
seen. Most likely the DBA should increase the maximum table size so that more of the rows counted
in the DIGEST = NULL row would be counted using more specific rows instead. To do this, set the
performance_schema_digests_size system variable to a larger value at server startup. The
default size is 200.

Stored Program Instrumentation Behavior

For stored program types for which instrumentation is enabled in the setup_objects table,
events_statements_summary_by_program maintains statistics for stored programs as follows:

• A row is added for an object when it is first used in the server.

• The row for an object is removed when the object is dropped.

• Statistics are aggregated in the row for an object as it executes.

See also Section 20.2.3.3, “Event Pre-Filtering”.

20.9.12.4 Transaction Summary Tables

As of MySQL 5.7.3, the Performance Schema maintains tables for collecting current and recent
transaction events, and aggregates that information in summary tables. Section 20.9.7, “Performance
Schema Transaction Tables” describes the events on which transaction summaries are based.
See that discussion for information about the content of transaction events, the current and recent
transaction event tables, and how to control transaction event collection, which is disabled by default.

Each transaction summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table.

• events_transactions_summary_by_account_by_event_name has USER, HOST, and
EVENT_NAME columns. Each row summarizes events for a given account and event name.

• events_transactions_summary_by_host_by_event_name has HOST and EVENT_NAME
columns. Each row summarizes events for a given host and event name.

• events_transactions_summary_by_thread_by_event_name has THREAD_ID and
EVENT_NAME columns. Each row summarizes events for a given thread and event name.

• events_transactions_summary_by_user_by_event_name has USER and EVENT_NAME
columns. Each row summarizes events for a given user and event name.

• events_transactions_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

All transaction summary tables have these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the event wait summary tables
(see Section 20.9.12.1, “Event Wait Summary Tables”), except that the transaction summary tables
aggregate events from events_transactions_current rather than events_waits_current.
These columns summarize read-write and read-only transactions.

• COUNT_READ_WRITE, SUM_TIMER_READ_WRITE, MIN_TIMER_READ_WRITE,
AVG_TIMER_READ_WRITE, MAX_TIMER_READ_WRITE

Performance Schema Summary Tables

2414

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-write
transactions only.

• COUNT_READ_ONLY, SUM_TIMER_READ_ONLY, MIN_TIMER_READ_ONLY,
AVG_TIMER_READ_ONLY, MAX_TIMER_READ_ONLY

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-only
transactions only.

Example transaction event summary information:

mysql> SELECT * FROM events_transactions_summary_global_by_event_name LIMIT 1\G
*************************** 1. row ***************************
 EVENT_NAME: transaction
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 19550092000
 MIN_TIMER_WAIT: 2954148000
 AVG_TIMER_WAIT: 3910018000
 MAX_TIMER_WAIT: 5486275000
 COUNT_READ_WRITE: 5
SUM_TIMER_READ_WRITE: 19550092000
MIN_TIMER_READ_WRITE: 2954148000
AVG_TIMER_READ_WRITE: 3910018000
MAX_TIMER_READ_WRITE: 5486275000
 COUNT_READ_ONLY: 0
 SUM_TIMER_READ_ONLY: 0
 MIN_TIMER_READ_ONLY: 0
 AVG_TIMER_READ_ONLY: 0
 MAX_TIMER_READ_ONLY: 0

TRUNCATE TABLE is permitted for transaction summary tables. It resets the summary columns to zero
rather than removing rows.

Transaction Aggregation Rules

Transaction events are collected regardless of isolation level, access mode, or autocommit mode.

Read-write transactions are generally more resource intensive than read-only transactions, therefore
transaction summary tables include separate aggregate columns for read-write and read-only
transactions.

Resource requirements may also vary with transaction isolation level. However, presuming that only
one isolation level would be used per server, aggregation by isolation level is not provided.

20.9.12.5 Object Wait Summary Table

The objects_summary_global_by_type table aggregates object wait events. It has these
grouping columns to indicate how the table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and
OBJECT_NAME. Each row summarizes events for the given object.

objects_summary_global_by_type has the same summary columns as the
events_waits_summary_by_xxx tables. See Section 20.9.12.1, “Event Wait Summary Tables”.

Example object wait event summary information:

mysql> SELECT * FROM objects_summary_global_by_type\G
...
*************************** 3. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: test
 OBJECT_NAME: t
 COUNT_STAR: 3
SUM_TIMER_WAIT: 263126976
MIN_TIMER_WAIT: 1522272
AVG_TIMER_WAIT: 87708678

Performance Schema Summary Tables

2415

MAX_TIMER_WAIT: 258428280
...
*************************** 10. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: mysql
 OBJECT_NAME: user
 COUNT_STAR: 14
SUM_TIMER_WAIT: 365567592
MIN_TIMER_WAIT: 1141704
AVG_TIMER_WAIT: 26111769
MAX_TIMER_WAIT: 334783032
...

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero
rather than removing rows.

20.9.12.6 File I/O Summary Tables

The file I/O summary tables aggregate information about I/O operations.

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table.

• file_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• file_summary_by_instance has FILE_NAME, EVENT_NAME, and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given file and event name.

All file I/O summary tables have the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for
user-defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF,
FWRITE, and PWRITE.

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other I/O operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC.
There are no byte counts for these operations.

Example file I/O event summary information:

mysql> SELECT * FROM file_summary_by_event_name\G
...
*************************** 2. row ***************************
 EVENT_NAME: wait/io/file/sql/binlog
 COUNT_STAR: 31
 SUM_TIMER_WAIT: 8243784888
 MIN_TIMER_WAIT: 0
 AVG_TIMER_WAIT: 265928484

Performance Schema Summary Tables

2416

 MAX_TIMER_WAIT: 6490658832
...
mysql> SELECT * FROM file_summary_by_instance\G
...
*************************** 2. row ***************************
 FILE_NAME: /var/mysql/share/english/errmsg.sys
 EVENT_NAME: wait/io/file/sql/ERRMSG
 EVENT_NAME: wait/io/file/sql/ERRMSG
 OBJECT_INSTANCE_BEGIN: 4686193384
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 13990154448
 MIN_TIMER_WAIT: 26349624
 AVG_TIMER_WAIT: 2798030607
 MAX_TIMER_WAIT: 8150662536
...

TRUNCATE TABLE is permitted for file I/O summary tables. It resets the summary columns to zero
rather than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from
files, so it is possible that statements you might expect to result in I/O events will not. You may be able
to ensure that I/O does occur by flushing caches or restarting the server to reset its state.

20.9.12.7 Table I/O and Lock Wait Summary Tables

The following sections describe the table I/O and lock wait summary tables:

• table_io_waits_summary_by_index_usage: Table I/O waits per index

• table_io_waits_summary_by_table: Table I/O waits per table

• table_lock_waits_summary_by_table: Table lock waits per table

The table_io_waits_summary_by_table Table

The table_io_waits_summary_by_table table aggregates all table I/O wait events, as generated
by the wait/io/table/sql/handler instrument. The grouping is by table.

The table_io_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have
the same meaning as in the events_waits_current table. They identify the table to which the row
applies.

table_io_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values
that are the same as the sum of the values of more fine-grained columns. For example, columns that
aggregate all writes hold the sum of the corresponding columns that aggregate inserts, updates, and
deletes. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
xxx_FETCH columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE

These columns aggregate all write operations. They are the same as the sum of the corresponding
xxx_INSERT, xxx_UPDATE, and xxx_DELETE columns.

Performance Schema Summary Tables

2417

• COUNT_FETCH, SUM_TIMER_FETCH, MIN_TIMER_FETCH, AVG_TIMER_FETCH,
MAX_TIMER_FETCH

These columns aggregate all fetch operations.

• COUNT_INSERT, SUM_TIMER_INSERT, MIN_TIMER_INSERT, AVG_TIMER_INSERT,
MAX_TIMER_INSERT

These columns aggregate all insert operations.

• COUNT_UPDATE, SUM_TIMER_UPDATE, MIN_TIMER_UPDATE, AVG_TIMER_UPDATE,
MAX_TIMER_UPDATE

These columns aggregate all update operations.

• COUNT_DELETE, SUM_TIMER_DELETE, MIN_TIMER_DELETE, AVG_TIMER_DELETE,
MAX_TIMER_DELETE

These columns aggregate all delete operations.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
table_io_waits_summary_by_index_usage table.

The table_io_waits_summary_by_index_usage Table

The table_io_waits_summary_by_index_usage table aggregates all table index I/O wait events,
as generated by the wait/io/table/sql/handler instrument. The grouping is by table index.

The structure of table_io_waits_summary_by_index_usage is nearly identical to
table_io_waits_summary_by_table. The only difference is the additional group column,
INDEX_NAME, which corresponds to the name of the index that was used when the table I/O wait event
was recorded:

• A value of PRIMARY indicates that table I/O used the primary index.

• A value of NULL means that table I/O used no index.

• Inserts are counted against INDEX_NAME = NULL.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. This table is also truncated by truncation of the
table_io_waits_summary_by_table table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

The table_lock_waits_summary_by_table Table

The table_lock_waits_summary_by_table table aggregates all table lock wait events, as
generated by the wait/lock/table/sql/handler instrument. The grouping is by table.

This table contains information about internal and external locks:

• An internal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to
thr_lock(). In event rows, these locks are distinguished by the OPERATION column, which will
have one of these values:

read normal
read with shared locks
read high priority
read no insert
write allow write
write concurrent insert
write delayed

Performance Schema Summary Tables

2418

write low priority
write normal

• An external lock corresponds to a lock in the storage engine layer. This is currently implemented
by a call to handler::external_lock(). In event rows, these locks are distinguished by the
OPERATION column, which will have one of these values:

read external
write external

The table_lock_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have
the same meaning as in the events_waits_current table. They identify the table to which the row
applies.

table_lock_waits_summary_by_table has the following summary columns containing
aggregated values. As indicated in the column descriptions, some columns are more general and have
values that are the same as the sum of the values of more fine-grained columns. For example, columns
that aggregate all locks hold the sum of the corresponding columns that aggregate read and write
locks. In this way, aggregations at higher levels are available directly without the need for user-defined
views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read-lock operations. They are the same as the sum
of the corresponding xxx_READ_NORMAL, xxx_READ_WITH_SHARED_LOCKS,
xxx_READ_HIGH_PRIORITY, and xxx_READ_NO_INSERT columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE

These columns aggregate all write-lock operations. They are the same as the sum of
the corresponding xxx_WRITE_ALLOW_WRITE, xxx_WRITE_CONCURRENT_INSERT,
xxx_WRITE_LOW_PRIORITY, and xxx_WRITE_NORMAL columns.

• COUNT_READ_NORMAL, SUM_TIMER_READ_NORMAL, MIN_TIMER_READ_NORMAL,
AVG_TIMER_READ_NORMAL, MAX_TIMER_READ_NORMAL

These columns aggregate internal read locks.

• COUNT_READ_WITH_SHARED_LOCKS, SUM_TIMER_READ_WITH_SHARED_LOCKS,
MIN_TIMER_READ_WITH_SHARED_LOCKS, AVG_TIMER_READ_WITH_SHARED_LOCKS,
MAX_TIMER_READ_WITH_SHARED_LOCKS

These columns aggregate internal read locks.

• COUNT_READ_HIGH_PRIORITY, SUM_TIMER_READ_HIGH_PRIORITY,
MIN_TIMER_READ_HIGH_PRIORITY, AVG_TIMER_READ_HIGH_PRIORITY,
MAX_TIMER_READ_HIGH_PRIORITY

These columns aggregate internal read locks.

• COUNT_READ_NO_INSERT, SUM_TIMER_READ_NO_INSERT, MIN_TIMER_READ_NO_INSERT,
AVG_TIMER_READ_NO_INSERT, MAX_TIMER_READ_NO_INSERT

These columns aggregate internal read locks.

Performance Schema Summary Tables

2419

• COUNT_READ_EXTERNAL, SUM_TIMER_READ_EXTERNAL, MIN_TIMER_READ_EXTERNAL,
AVG_TIMER_READ_EXTERNAL, MAX_TIMER_READ_EXTERNAL

These columns aggregate external read locks.

• COUNT_WRITE_ALLOW_WRITE, SUM_TIMER_WRITE_ALLOW_WRITE,
MIN_TIMER_WRITE_ALLOW_WRITE, AVG_TIMER_WRITE_ALLOW_WRITE,
MAX_TIMER_WRITE_ALLOW_WRITE

These columns aggregate internal write locks.

• COUNT_WRITE_CONCURRENT_INSERT, SUM_TIMER_WRITE_CONCURRENT_INSERT,
MIN_TIMER_WRITE_CONCURRENT_INSERT, AVG_TIMER_WRITE_CONCURRENT_INSERT,
MAX_TIMER_WRITE_CONCURRENT_INSERT

These columns aggregate internal write locks.

• COUNT_WRITE_LOW_PRIORITY, SUM_TIMER_WRITE_LOW_PRIORITY,
MIN_TIMER_WRITE_LOW_PRIORITY, AVG_TIMER_WRITE_LOW_PRIORITY,
MAX_TIMER_WRITE_LOW_PRIORITY

These columns aggregate internal write locks.

• COUNT_WRITE_NORMAL, SUM_TIMER_WRITE_NORMAL, MIN_TIMER_WRITE_NORMAL,
AVG_TIMER_WRITE_NORMAL, MAX_TIMER_WRITE_NORMAL

These columns aggregate internal write locks.

• COUNT_WRITE_EXTERNAL, SUM_TIMER_WRITE_EXTERNAL, MIN_TIMER_WRITE_EXTERNAL,
AVG_TIMER_WRITE_EXTERNAL, MAX_TIMER_WRITE_EXTERNAL

These columns aggregate external write locks.

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

20.9.12.8 Connection Summary Tables

The connection summary tables are similar to the corresponding
events_xxx_summary_by_thread_by_event_name tables, except that aggregation occurs per
account, user, or host, rather than by thread.

The Performance Schema maintains summary tables that aggregate connection statistics by event
name and account, user, or host. Separate groups of tables are available that aggregate wait, stage,
and statement events, which results in this set of connection summary tables:

• events_waits_summary_by_account_by_event_name: Wait events summarized per account
and event name

• events_waits_summary_by_user_by_event_name: Wait events summarized per user name
and event name

• events_waits_summary_by_host_by_event_name: Wait events summarized per host name
and event name

• events_stages_summary_by_account_by_event_name: Stage events summarized per
account and event name

• events_stages_summary_by_user_by_event_name: Stage events summarized per user name
and event name

• events_stages_summary_by_host_by_event_name: Stage events summarized per host name
and event name

Performance Schema Summary Tables

2420

• events_statements_summary_by_account_by_event_name: Statement events summarized
per account and event name

• events_statements_summary_by_user_by_event_name: Statement events summarized per
user name and event name

• events_statements_summary_by_host_by_event_name: Statement events summarized per
host name and event name

In other words, the connection summary tables have names of the form
events_xxx_summary_yyy_by_event_name, where xxx is waits, stages, or statements, and
yyy is account, user, or host.

The connection summary tables provide an intermediate aggregation level:

• xxx_summary_by_thread_by_event_name tables are more detailed than connection summary
tables

• xxx_summary_global_by_event_name tables are less detailed than connection summary tables

Each connection summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table.

• For tables with _by_account in the name, the USER, HOST, and EVENT_NAME columns group
events per account and event name.

• For tables with _by_host in the name, the HOST and EVENT_NAME columns group events per host
name and event name.

• For tables with _by_user in the name, the USER and EVENT_NAME columns group events per user
name and event name.

All connection summary tables have these summary columns containing aggregated values:
COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT.
These are similar to the columns of the same names in the events_waits_summary_by_instance
table. Connection summary tables for statements have additional SUM_xxx columns that aggregate
statement types.

TRUNCATE TABLE is permitted for connection summary tables. It resets the summary columns to
zero rather than removing rows. In addition, connection summary tables are implicitly truncated if a
connection table on which they depend is truncated. Table 20.2, “Effect of Implicit Table Truncation”,
describes the relationship between connection table truncation and implicitly truncated tables.

Table 20.2 Effect of Implicit Table Truncation

Truncated Table Implicitly Truncated Summary Tables

accounts Tables with names matching %_by_account%, %_by_thread%

hosts Tables with names matching %_by_account%, %_by_host%,
%_by_thread%

users Tables with names matching %_by_account%, %_by_user%,
%_by_thread%

20.9.12.9 Socket Summary Tables

These socket summary tables aggregate timer and byte count information for socket operations:

• socket_summary_by_instance: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instance. When a
connection terminates, the row in socket_summary_by_instance corresponding to it is deleted.

Performance Schema Summary Tables

2421

• socket_summary_by_event_name: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instrument.

The socket summary tables do not aggregate waits generated by idle events while sockets are
waiting for the next request from the client. For idle event aggregations, use the wait-event summary
tables; see Section 20.9.12.1, “Event Wait Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table.

• socket_summary_by_instance has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given object.

• socket_summary_by_event_name has an EVENT_NAME column. Each row summarizes events
for a given event name.

All socket summary tables have these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all receive operations (RECV, RECVFROM, and RECVMSG).

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all send operations (SEND, SENDTO, and SENDMSG).

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other socket operations, such as CONNECT, LISTEN, ACCEPT, CLOSE,
and SHUTDOWN. There are no byte counts for these operations.

The socket_summary_by_instance table also has an EVENT_NAME column that indicates the class
of the socket: client_connection, server_tcpip_socket, server_unix_socket. This column
can be grouped on to isolate, for example, client activity from that of the server listening sockets.

TRUNCATE TABLE is permitted for socket summary tables. Except for
events_statements_summary_by_digest, tt resets the summary columns to zero rather than
removing rows.

20.9.12.10 Memory Summary Tables

The Performance Schema instruments memory usage and aggregates memory usage statistics,
detailed by these factors:

• Type of memory used (various caches, internal buffers, and so forth)

• Thread, account, user, host indirectly performing the memory operation

The Performance Schema instruments the following aspects of memory use

• Memory sizes used

• Operation counts

• Low and high water marks

Memory sizes help to understand or tune the memory consumption of a server.

Performance Schema Summary Tables

2422

Operation counts help to understand or tune the overall pressure the server is putting on the memory
allocator, which has an impact on performance. Allocating a single byte one million times is not the
same as allocating one million bytes a single time; tracking both sizes and counts can expose the
difference.

Low and high water marks are critical to detect workload spikes, overall workload stability, and possible
memory leaks.

Each memory summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table.

• memory_summary_by_account_by_event_name has USER, HOST, and EVENT_NAME columns.
Each row summarizes events for a given account.

• memory_summary_by_host_by_event_name has HOST and EVENT_NAME columns. Each row
summarizes events for a given host.

• memory_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME columns.
Each row summarizes events for a given thread and event name.

• memory_summary_by_user_by_event_name has USER and EVENT_NAME columns. Each row
summarizes events for a given user.

• memory_summary_global_by_event_name has an EVENT_NAME column. Each row summarizes
events for a given event name.

All memory summary tables have these summary columns containing aggregated values:

• COUNT_ALLOC, COUNT_FREE

These columns aggregate the number of calls to malloc-like and free-like functions.

• SUM_NUMBER_OF_BYTES_ALLOC, SUM_NUMBER_OF_BYTES_FREE

These columns indicate the aggregate size of allocated and freed memory blocks.

• CURRENT_COUNT_USED

This column is the aggregate number of currently allocated blocks that have not been freed yet. This
is a convenience column, equal to COUNT_ALLOC – COUNT_FREE.

• CURRENT_NUMBER_OF_BYTES_USED

This column is the aggregate size of currently allocated memory blocks that have not been
freed yet. This is a convenience column, equal to SUM_NUMBER_OF_BYTES_ALLOC –
SUM_NUMBER_OF_BYTES_FREE.

• LOW_COUNT_USED, HIGH_COUNT_USED

These columns are the low and high water marks corresponding to the CURRENT_COUNT_USED
column.

• LOW_NUMBER_OF_BYTES_USED, HIGH_NUMBER_OF_BYTES_USED

These columns are the low and high water marks corresponding to the
CURRENT_NUMBER_OF_BYTES_USED column.

Example memory event summary information:

mysql> SELECT * FROM memory_summary_global_by_event_name
 -> WHERE EVENT_NAME = 'memory/sql/TABLE'\G
*************************** 1. row ***************************
 EVENT_NAME: memory/sql/TABLE
 COUNT_ALLOC: 1381

Performance Schema Summary Tables

2423

 COUNT_FREE: 924
 SUM_NUMBER_OF_BYTES_ALLOC: 2059873
 SUM_NUMBER_OF_BYTES_FREE: 1407432
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 457
 HIGH_COUNT_USED: 461
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 652441
 HIGH_NUMBER_OF_BYTES_USED: 669269

TRUNCATE TABLE is permitted for memory summary tables. It has these effects:

• In general, truncation resets the baseline for statistics, but does not change the server state. That is,
truncating a memory table does not free memory.

• COUNT_ALLOC and COUNT_FREE are reset to a new baseline, by reducing each counter by the same
value.

• Likewise, SUM_NUMBER_OF_BYTES_ALLOC and SUM_NUMBER_OF_BYTES_FREE are reset to a new
baseline.

• LOW_COUNT_USED and HIGH_COUNT_USED are reset to CURRENT_COUNT_USED.

• LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED are reset to
CURRENT_NUMBER_OF_BYTES_USED.

Memory Instrumentation Behavior

Memory instrumentation is disabled by default, and can be enabled or disabled dynamically by
updating the ENABLED column of the relevant instruments in the setup_instruments table. Memory
instruments have names of the form memory/code_area/instrument_name.

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

When a thread in the server executes a memory allocation that has been instrumented, these rules
apply:

• If the thread is not instrumented or the memory instrument is not enabled, the memory block
allocated is not instrumented.

• Otherwise (that is, both the thread and the instrument are enabled), the memory block allocated is
instrumented.

For deallocation, these rules apply:

• If a thread is instrumented, and a memory block is not instrumented, the free operation is not
instrumented; no statistics are changed.

• If a thread is not instrumented, and a memory block is instrumented, the free operation is
instrumented, and statistics are changed.

For the per-thread statistics, the following rules apply.

When an instrumented memory block of size N is allocated, the Performance Schema makes these
updates to memory summary table columns:

• COUNT_ALLOC: Incremented by 1

• CURRENT_COUNT_USED: Incremented by 1

• HIGH_COUNT_USED: Increased if CURRENT_COUNT_USED is a new maximum

• SUM_NUMBER_OF_BYTES_ALLOC: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Increased by N

Performance Schema Miscellaneous Tables

2424

• HIGH_NUMBER_OF_BYTES_USED: Increased if CURRENT_NUMBER_OF_BYTES_USED is a new
maximum

When an instrumented memory block is deallocated, the Performance Schema makes these updates
to memory summary table columns:

• COUNT_FREE: Incremented by 1

• CURRENT_COUNT_USED: Iecremented by 1

• LOW_COUNT_USED: Decreased if CURRENT_COUNT_USED is a new minimum

• SUM_NUMBER_OF_BYTES_FREE: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Decreased by N

• LOW_NUMBER_OF_BYTES_USED: Decreased if CURRENT_NUMBER_OF_BYTES_USED is a new
minimum

For higher-level aggregates (global, by account, by user, by host), the same rules apply as expected
for low and high water marks.

• LOW_COUNT_USED and LOW_NUMBER_OF_BYTES_USED are lower estimates

• HIGH_COUNT_USED and HIGH_NUMBER_OF_BYTES_USED are higher estimates

“Lower estimates” means that the value reported by the Performance Schema is guaranteed to be less
than or equal to the lowest count or size of memory effectively used at runtime.

“Higher estimates” means that the value reported by the Performance Schema is guaranteed to be
greater than or equal to the highest count or size of memory effectively used at runtime.

For lower estimates in summary tables other than memory_summary_global_by_event_name, it is
possible for values to go negative if memory ownership is transferred between threads.

Here is an example of estimate computation; but note that estimate implementation is subject to
change:

Thread 1 uses memory in the range from 1MB to 2MB during execution, as reported by
the LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED columns of the
memory_summary_by_thread_by_event_name table.

Thread 2 uses memory in the range from 10MB to 12MB during execution, as reported likewise.

When these two threads belong to the same user account, the per-account summary
estimates that this account used memory in the range from 11MB to 14MB. That
is, the LOW_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum
of each LOW_NUMBER_OF_BYTES_USED (assuming the worst case). Likewise, the
HIGH_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum of each
HIGH_NUMBER_OF_BYTES_USED (assuming the worst case).

11MB is a lower estimate that can occur only if both threads hit the low usage mark at the same time.

14MB is a higher estimate that can occur only if both threads hit the high usage mark at the same time.

The real memory usage for this account could have been in the range from 11.5MB to 13.5MB.

For capacity planning, reporting the worst case is actually the desired behavior, as it shows what can
potentially happen when sessions are uncorrelated, which is typically the case.

20.9.13 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the
preceding sections:

Performance Schema Miscellaneous Tables

2425

• host_cache: Information from the internal host cache

• performance_timers: Which event timers are available

• threads: Information about server threads

20.9.13.1 The host_cache Table

The host_cache table provides access to the contents of the host cache, which contains client host
name and IP address information and is used to avoid DNS lookups. (See Section 8.11.5.2, “DNS
Lookup Optimization and the Host Cache”.) The host_cache table exposes the contents of the
host cache so that it can be examined using SELECT statements. The Performance Schema must be
enabled or this table is empty.

FLUSH HOSTS and TRUNCATE TABLE host_cache have the same effect: They clear the host
cache. This also empties the host_cache table (because it is the visible representation of the
cache) and unblocks any blocked hosts (see Section C.5.2.6, “Host 'host_name' is blocked”.)
FLUSH HOSTS requires the RELOAD privilege. TRUNCATE TABLE requires the DROP privilege for the
host_cache table.

The host_cache table has these columns:

• IP

The IP address of the client that connected to the server, expressed as a string.

• HOST

The resolved DNS host name for that client IP, or NULL if the name is unknown.

• HOST_VALIDATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP. If
HOST_VALIDATED is YES, the HOST column is used as the host name corresponding to the IP so
that calls to DNS can be avoided. While HOST_VALIDATED is NO, DNS resolution is attempted again
for each connect, until it eventually completes with either a valid result or a permanent error. This
information enables the server to avoid caching bad or missing host names during temporary DNS
failures, which would affect clients forever.

• SUM_CONNECT_ERRORS

The number of connection errors that are deemed “blocking” (assessed against the
max_connect_errors system variable). Currently, only protocol handshake errors are counted,
and only for hosts that passed validation (HOST_VALIDATED = YES).

• COUNT_HOST_BLOCKED_ERRORS

The number of connections that were blocked because SUM_CONNECT_ERRORS exceeded the value
of the max_connect_errors system variable.

• COUNT_NAMEINFO_TRANSIENT_ERRORS

The number of transient errors during IP-to-host name DNS resolution.

• COUNT_NAMEINFO_PERMANENT_ERRORS

The number of permanent errors during IP-to-host name DNS resolution.

• COUNT_FORMAT_ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values
in the mysql.user table against host names for which one or more of the initial components of
the name are entirely numeric, such as 1.2.example.com. The client IP address is used instead.

Performance Schema Miscellaneous Tables

2426

For the rationale why this type of matching does not occur, see Section 6.2.3, “Specifying Account
Names”.

• COUNT_ADDRINFO_TRANSIENT_ERRORS

The number of transient errors during host name-to-IP reverse DNS resolution.

• COUNT_ADDRINFO_PERMANENT_ERRORS

The number of permanent errors during host name-to-IP reverse DNS resolution.

• COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-
IP DNS resolution produces an IP address that does not match the client originating IP address.

• COUNT_HOST_ACL_ERRORS

The number of errors that occur because no user from the client host can possibly log in. In such
cases, the server returns ER_HOST_NOT_PRIVILEGED and does not even ask for a user name or
password.

• COUNT_NO_AUTH_PLUGIN_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

• COUNT_AUTH_PLUGIN_ERRORS

The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root
cause of a failure. Depending on the type of error, one of these columns is
incremented: COUNT_AUTHENTICATION_ERRORS, COUNT_AUTH_PLUGIN_ERRORS,
COUNT_HANDSHAKE_ERRORS. New return codes are an optional extension to the existing plugin API.
Unknown or unexpected plugin errors are counted in the COUNT_AUTH_PLUGIN_ERRORS column.

• COUNT_HANDSHAKE_ERRORS

The number of errors detected at the wire protocol level.

• COUNT_PROXY_USER_ERRORS

The number of errors detected when a proxy user A is proxied to another user B who does not exist.

• COUNT_PROXY_USER_ACL_ERRORS

The number of errors detected when a proxy user A is proxied to another user B who does exist but
for whom A does not have the PROXY privilege.

• COUNT_AUTHENTICATION_ERRORS

The number of errors caused by failed authentication.

• COUNT_SSL_ERRORS

The number of errors due to SSL problems.

• COUNT_MAX_USER_CONNECTIONS_ERRORS

The number of errors caused by exceeding per-user connection quotas. See Section 6.3.4, “Setting
Account Resource Limits”.

• COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS

Performance Schema Miscellaneous Tables

2427

The number of errors caused by exceeding per-user connections-per-hour quotas. See
Section 6.3.4, “Setting Account Resource Limits”.

• COUNT_DEFAULT_DATABASE_ERRORS

The number of errors related to the default database. For example, the database did not exist or the
user had no privileges for accessing it.

• COUNT_INIT_CONNECT_ERRORS

The number of errors caused by execution failures of statements in the init_connect system
variable value.

• COUNT_LOCAL_ERRORS

The number of errors local to the server implementation and not related to the network,
authentication, or authorization. For example, out-of-memory conditions fall into this category.

• COUNT_UNKNOWN_ERRORS

The number of other, unknown errors not accounted for by other columns in this table. This column
is reserved for future use, in case new error conditions must be reported, and if preserving the
backward compatibility and table structure of the host_cache table is required.

• FIRST_SEEN

The timestamp of the first connection attempt seen from the client in the IP column.

• LAST_SEEN

The timestamp of the last connection attempt seen from the client in the IP column.

• FIRST_ERROR_SEEN

The timestamp of the first error seen from the client in the IP column.

• LAST_ERROR_SEEN

The timestamp of the last error seen from the client in the IP column.

20.9.13.2 The performance_timers Table

The performance_timers table shows which event timers are available:

mysql> SELECT * FROM performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	NULL	NULL	NULL
MICROSECOND	1000000	1	585
MILLISECOND	1035	1	738
TICK	101	1	630
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
The rows that do not contain NULL indicate which timers you can use in setup_timers.

The performance_timers table has these columns:

• TIMER_NAME

The name by which to refer to the timer when configuring the setup_timers table.

Performance Schema Miscellaneous Tables

2428

• TIMER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to
the CPU speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to
2400000000.

• TIMER_RESOLUTION

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10,
its value increases by 10 each time.

• TIMER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The
Performance Schema determines this value by invoking the timer 20 times during initialization
and picking the smallest value. The total overhead really is twice this amount because the
instrumentation invokes the timer at the start and end of each event. The timer code is called only for
timed events, so this overhead does not apply for nontimed events.

20.9.13.3 The threads Table

The threads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring is enabled for it:

mysql> SELECT * FROM threads\G
*************************** 1. row ***************************
 THREAD_ID: 1
 NAME: thread/sql/main
 TYPE: BACKGROUND
 PROCESSLIST_ID: NULL
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: NULL
 PROCESSLIST_TIME: 80284
 PROCESSLIST_STATE: NULL
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
...
*************************** 4. row ***************************
 THREAD_ID: 51
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 34
 PROCESSLIST_USER: paul
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: performance_schema
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0
 PROCESSLIST_STATE: Sending data
 PROCESSLIST_INFO: SELECT * FROM threads
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES
...

The initial contents of the threads table are based on the threads in existence when Performance
Schema initialization occurs. Thereafter, a new row is added each time the server creates a thread.

Removal of rows from the threads table occurs when threads end. For a thread associated with a
client session, removal occurs when the session ends. If a client has auto-reconnect enabled and the
session reconnects after a disconnect, the session will be associated with a new row in the threads
table that has a different PROCESSLIST_ID value. The initial INSTRUMENTED value for the new thread
may be different from that of the original thread: The setup_actors table may have changed in the

Performance Schema Miscellaneous Tables

2429

meantime, and if the INSTRUMENTED value for the original thread was changed after it was initialized,
that change does not carry over to the new thread.

The threads table columns with names having a prefix of PROCESSLIST_ provide information similar
to that available from the INFORMATION_SCHEMA.PROCESSLIST table or the SHOW PROCESSLIST
statement. Thus, all three sources provide thread-monitoring information. Use of threads differs from
use of the other two sources in these ways:

• Access to threads does not require a mutex and has minimal impact on server performance.
INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance
consequences because they require a mutex.

• threads provides additional information for each thread, such as whether it is a foreground or
background thread, and the location within the server associated with the thread.

• threads provides information about background threads, so it can be used to monitor activity the
other thread information sources cannot.

• You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented). To control monitoring of existing threads, set the INSTRUMENTED column of the
threads table. To control the initial INSTRUMENTED value for new foreground threads, use the
setup_actors table. (For more information about the conditions under which thread monitoring
occurs, see the description of the INSTRUMENTED column.)

For these reasons, DBAs who perform server monitoring using
INFORMATION_SCHEMA.PROCESSLIST or SHOW PROCESSLIST may wish to monitor using threads
instead.

Note

For INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST,
information about threads for other users is shown only if the current user
has the PROCESS privilege. That is not true of the threads table; all rows
are shown to any user who has the SELECT privilege for the table. Users who
should not be able to see threads for other users should not be given that
privilege.

The threads table has these columns:

• THREAD_ID

A unique thread identifier.

• NAME

The name associated with the thread instrumentation code in the server. For example, thread/
sql/one_connection corresponds to the thread function in the code responsible for handling a
user connection, and thread/sql/main stands for the main() function of the server.

• TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground
threads. Threads associated with internal server activity are background threads. Examples are
internal InnoDB threads, “binlog dump” threads sending information to slaves, and slave I/O and
SQL threads.

• PROCESSLIST_ID

For threads that are displayed in the INFORMATION_SCHEMA.PROCESSLIST table, this is the
PROCESSLIST.ID value, which is also the value that CONNECTION_ID() would return within that
thread. For background threads (threads not associated with a user connection), PROCESSLIST_ID
is NULL, so the values are not unique.

Performance Schema Miscellaneous Tables

2430

• PROCESSLIST_USER

The user associated with a foreground thread, NULL for a background thread.

• PROCESSLIST_HOST

The host name of the client associated with a foreground thread, NULL for a background thread.

• PROCESSLIST_DB

The default database for the thread, or NULL if there is none.

• PROCESSLIST_COMMAND

The type of command the thread is executing. For descriptions of thread commands, see
Section 8.12.5, “Examining Thread Information”. The value of this column corresponds to the
COM_xxx commands of the client/server protocol and Com_xxx status variables. See Section 5.1.6,
“Server Status Variables”

• PROCESSLIST_TIME

The time in seconds that the thread has been in its current state.

• PROCESSLIST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of
PROCESSLIST_STATE values, see Section 8.12.5, “Examining Thread Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

• PROCESSLIST_INFO

The statement the thread is executing, or NULL if it is not executing any statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the PROCESSLIST_INFO value shows the SELECT statement.

• PARENT_THREAD_ID

If this thread is a subthread (spawned by another thread), this is the THREAD_ID value of the
spawning thread.

• ROLE

Unused.

• INSTRUMENTED

Whether the thread is instrumented. This does not affect the threads table row for the thread, it
affects whether events executed by the thread are instrumented.

• For foreground threads, the initial INSTRUMENTED value is determined by whether the user
account associated with the thread matches any row in the setup_actors table. Matching is
based on the values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the subthread.

• For background threads, INSTRUMENTED is YES by default. setup_actors is not consulted
because there is no associated user for background threads.

• For any thread, its INSTRUMENTED value can be changed during the lifetime of the thread. This is
the only threads table column that can be modified.

Performance Schema Option and Variable Reference

2431

For monitoring of events executed by the thread to occur, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The thread.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

20.10 Performance Schema Option and Variable Reference
Table 20.3 Performance Schema Variable Reference

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-stages-
current

Yes Yes

performance-
schema-
consumer-
events-stages-
history

Yes Yes

performance-
schema-
consumer-
events-stages-
history-long

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

performance-
schema-
consumer-
events-
statements-
history-long

Yes Yes

performance-
schema-

Yes Yes

Performance Schema Option and Variable Reference

2432

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic
consumer-
events-
transactions-
current

performance-
schema-
consumer-
events-
transactions-
history

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history-long

Yes Yes

performance-
schema-
consumer-
events-waits-
current

Yes Yes

performance-
schema-
consumer-
events-waits-
history

Yes Yes

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-global-
instrumentation

Yes Yes

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

Performance Schema Option and Variable Reference

2433

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_memory_classes_lost Yes Global No

Performance_schema_metadata_lock_lost Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_nested_statement_lost Yes Global No

Performance_schema_prepared_statements_lost Yes Global No

Performance Schema Command Options

2434

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Performance_schema_program_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Performance_schema_stage_classes_lost Yes Global No

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

20.11 Performance Schema Command Options
Performance Schema parameters can be specified at server startup on the command line or in option
files to configure Performance Schema instruments and consumers. Runtime configuration is also
possible in many cases (see Section 20.2.3, “Performance Schema Runtime Configuration”), but
startup configuration must be used when runtime configuration is too late to affect instruments that
have already been initialized during the startup process.

Performance Schema consumers and instruments can be configured at startup using the following
syntax. For additional details, see Section 20.2.2, “Performance Schema Startup Configuration”.

• --performance-schema-consumer-consumer_name=value

Configure a Performance Schema consumer. Consumer names in the setup_consumers table
use underscores, but for consumers set at startup, dashes and underscores within the name are
equivalent. Options for configuring individual consumers are detailed later in this section.

• --performance-schema-instrument=instrument_name=value

Configure a Performance Schema instrument. The name may be given as a pattern to configure
instruments that match the pattern.

The following items configure individual consumers:

• --performance-schema-consumer-events-stages-current=value

Configure the events-stages-current consumer.

• --performance-schema-consumer-events-stages-history=value

Configure the events-stages-history consumer.

• --performance-schema-consumer-events-stages-history-long=value

Configure the events-stages-history-long consumer.

Performance Schema System Variables

2435

• --performance-schema-consumer-events-statements-current=value

Configure the events-statements-current consumer.

• --performance-schema-consumer-events-statements-history=value

Configure the events-statements-history consumer.

• --performance-schema-consumer-events-statements-history-long=value

Configure the events-statements-history-long consumer.

• --performance-schema-consumer-events-transactions-current=value

Configure the Performance Schema events-transactions-current consumer. This option was
added in MySQL 5.7.3.

• --performance-schema-consumer-events-transactions-history=value

Configure the Performance Schema events-transactions-history consumer. This option was
added in MySQL 5.7.3.

• --performance-schema-consumer-events-transactions-history-long=value

Configure the Performance Schema events-transactions-history-long consumer. This
option was added in MySQL 5.7.3.

• --performance-schema-consumer-events-waits-current=value

Configure the events-waits-current consumer.

• --performance-schema-consumer-events-waits-history=value

Configure the events-waits-history consumer.

• --performance-schema-consumer-events-waits-history-long=value

Configure the events-waits-history-long consumer.

• --performance-schema-consumer-global-instrumentation=value

Configure the global-instrumentation consumer.

• --performance-schema-consumer-statements-digest=value

Configure the statements-digest consumer.

• --performance-schema-consumer-thread-instrumentation=value

Configure the thread-instrumentation consumer.

20.12 Performance Schema System Variables
The Performance Schema implements several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	200
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000

Performance Schema System Variables

2436

performance_schema_events_statements_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	100
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	1000
performance_schema_max_file_classes	50
performance_schema_max_file_handles	32768
performance_schema_max_file_instances	10000
performance_schema_max_mutex_classes	200
performance_schema_max_mutex_instances	1000000
performance_schema_max_rwlock_classes	30
performance_schema_max_rwlock_instances	1000000
performance_schema_max_socket_classes	10
performance_schema_max_socket_instances	1000
performance_schema_max_stage_classes	150
performance_schema_max_statement_classes	165
performance_schema_max_table_handles	10000
performance_schema_max_table_instances	1000
performance_schema_max_thread_classes	50
performance_schema_max_thread_instances	1000
performance_schema_session_connect_attrs_size	512
performance_schema_setup_actors_size	100
performance_schema_setup_objects_size	100
performance_schema_users_size	100
+--+---------+

Performance Schema system variables can be set at server startup on the command line or in option
files, and many can be set at runtime. See Section 20.10, “Performance Schema Option and Variable
Reference”.

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For more information, see Section 20.2.2, “Performance Schema Startup
Configuration”.

Performance Schema system variables have the following meanings:

• performance_schema

Command-Line Format --performance_schema=#

Option-File Format performance_schema

System Variable Name performance_schema

Variable Scope Global

Dynamic Variable No

Permitted Values

Type boolean

Default ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON by default. At server startup, you can specify this variable with no value or a
value of ON or 1 to enable it, or with a value of OFF or 0 to disable it.

• performance_schema_accounts_size

Command-Line Format --performance_schema_accounts_size=#

Option-File Format performance_schema_accounts_size

System Variable Name performance_schema_accounts_size

Variable Scope Global

Dynamic Variable No

 Permitted Values

Performance Schema System Variables

2437

Type numeric

Default -1 (autosized)

Range -1 .. 1048576

The number of rows in the accounts table. If this variable is 0, the Performance Schema does not
maintain connection statistics in the accounts table.

• performance_schema_digests_size

Command-Line Format --performance_schema_digests_size=#

Option-File Format performance_schema_digests_size

System Variable Name performance_schema_digests_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

Range -1 .. 1048576

The maximum number of rows in the events_statements_summary_by_digest table. If
this maximum is exceeded such that a digest cannot be instrumented, the Performance Schema
increments the Performance_schema_digest_lost status variable.

• performance_schema_events_stages_history_long_size

Command-Line Format --
performance_schema_events_stages_history_long_size=#

Option-File Format performance_schema_events_stages_history_long_size

System Variable Name performance_schema_events_stages_history_long_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The number of rows in the events_stages_history_long table.

• performance_schema_events_stages_history_size

Command-Line Format --performance_schema_events_stages_history_size=#

Option-File Format performance_schema_events_stages_history_size

System Variable Name performance_schema_events_stages_history_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The number of rows per thread in the events_stages_history table.

Performance Schema System Variables

2438

• performance_schema_events_statements_history_long_size

Command-Line Format --
performance_schema_events_statements_history_long_size=#

Option-File Format performance_schema_events_statements_history_long_size

System Variable Name performance_schema_events_statements_history_long_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The number of rows in the events_statements_history_long table.

• performance_schema_events_statements_history_size

Command-Line Format --performance_schema_events_statements_history_size=#

Option-File Format performance_schema_events_statements_history_size

System Variable Name performance_schema_events_statements_history_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The number of rows per thread in the events_statements_history table.

• performance_schema_events_transactions_history_long_size

Introduced 5.7.3

Command-Line Format --
performance_schema_events_transactions_history_long_size=#

Option-File Format performance_schema_events_transactions_history_long_size

System Variable Name performance_schema_events_transactions_history_long_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 10000

The number of rows in the events_transactions_history_long table. This variable was
added in MySQL 5.7.3.

• performance_schema_events_transactions_history_size

Introduced 5.7.3

Command-Line Format --
performance_schema_events_transactions_history_size=#

Option-File Format performance_schema_events_transactions_history_size

Performance Schema System Variables

2439

System Variable Name performance_schema_events_transactions_history_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 10

The number of rows per thread in the events_transactions_history table. This variable was
added in MySQL 5.7.3.

• performance_schema_events_waits_history_long_size

Command-Line Format --performance_schema_events_waits_history_long_size=#

Option-File Format performance_schema_events_waits_history_long_size

System Variable Name performance_schema_events_waits_history_long_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The number of rows in the events_waits_history_long table.

• performance_schema_events_waits_history_size

Command-Line Format --performance_schema_events_waits_history_size=#

Option-File Format performance_schema_events_waits_history_size

System Variable Name performance_schema_events_waits_history_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The number of rows per thread in the events_waits_history table.

• performance_schema_hosts_size

Command-Line Format --performance_schema_hosts_size=#

Option-File Format performance_schema_hosts_size

System Variable Name performance_schema_hosts_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

Range -1 .. 1048576

Performance Schema System Variables

2440

The number of rows in the hosts table. If this variable is 0, the Performance Schema does not
maintain connection statistics in the hosts table.

• performance_schema_max_cond_classes

Command-Line Format --performance_schema_max_cond_classes=#

Option-File Format performance_schema_max_cond_classes

System Variable Name performance_schema_max_cond_classes

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 80

The maximum number of condition instruments.

• performance_schema_max_cond_instances

Command-Line Format --performance_schema_max_cond_instances=#

Option-File Format performance_schema_max_cond_instances

System Variable Name performance_schema_max_cond_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The maximum number of instrumented condition objects.

• performance_schema_max_file_classes

Command-Line Format --performance_schema_max_file_classes=#

Option-File Format performance_schema_max_file_classes

System Variable Name performance_schema_max_file_classes

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 50

The maximum number of file instruments.

• performance_schema_max_file_handles

Command-Line Format --performance_schema_max_file_handles=#

Option-File Format performance_schema_max_file_handles

System Variable Name performance_schema_max_file_handles

Variable Scope Global

Performance Schema System Variables

2441

Dynamic Variable No

Permitted Values

Type numeric

Default 32768

The maximum number of opened file objects.

The value of performance_schema_max_file_handles should be greater than the value of
open_files_limit: open_files_limit affects the maximum number of open file handles the
server can support and performance_schema_max_file_handles affects how many of these
file handles can be instrumented.

• performance_schema_max_file_instances

Command-Line Format --performance_schema_max_file_instances=#

Option-File Format performance_schema_max_file_instances

System Variable Name performance_schema_max_file_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The maximum number of instrumented file objects.

• performance_schema_max_memory_classes

Introduced 5.7.2

Command-Line Format --performance_schema_max_memory_classes=#

Option-File Format performance_schema_max_memory_classes

System Variable Name performance_schema_max_memory_classes

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 250

The maximum number of memory instruments. This variable was added in MySQL 5.7.2.

• performance_schema_max_metadata_locks

Introduced 5.7.3

Command-Line Format --performance_schema_max_metadata_locks=#

Option-File Format performance_schema_max_metadata_locks

System Variable Name performance_schema_max_metadata_locks

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Performance Schema System Variables

2442

Default -1 (autosized)

The maximum number of metadata lock instruments. This value controls the
size of the metadata_locks table. If this maximum is exceeded such that a
metadata lock cannot be instrumented, the Performance Schema increments the
Performance_schema_metadata_lock_lost status variable.

This variable was added in MySQL 5.7.3.

• performance_schema_max_mutex_classes

Command-Line Format --performance_schema_max_mutex_classes=#

Option-File Format performance_schema_max_mutex_classes

System Variable Name performance_schema_max_mutex_classes

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 200

The maximum number of mutex instruments.

• performance_schema_max_mutex_instances

Command-Line Format --performance_schema_max_mutex_instances=#

Option-File Format performance_schema_max_mutex_instances

System Variable Name performance_schema_max_mutex_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The maximum number of instrumented mutex objects.

• performance_schema_max_prepared_statements_instances

Introduced 5.7.4

Command-Line Format --
performance_schema_max_prepared_statements_instances=#

Option-File Format performance_schema_max_prepared_statements_instances=#

System Variable Name performance_schema_max_prepared_statements_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default (autosized)

The maximum number of rows in the prepared_statements_instances table. If this maximum
is exceeded such that a prepared statement cannot be instrumented, the Performance Schema

Performance Schema System Variables

2443

increments the Performance_schema_prepared_statements_lost status variable. The
default value of this variable is autosized based on the value of the max_prepared_stmt_count
system variable.

This variable was added in MySQL 5.7.4.

• performance_schema_max_rwlock_classes

Command-Line Format --performance_schema_max_rwlock_classes=#

Option-File Format performance_schema_max_rwlock_classes

System Variable Name performance_schema_max_rwlock_classes

Variable Scope Global

Dynamic Variable No

Permitted Values (<= 5.7.2)

Type numeric

Default 30

Permitted Values (>= 5.7.3)

Type numeric

Default 40

The maximum number of rwlock instruments.

• performance_schema_max_program_instances

Introduced 5.7.2

Command-Line Format --performance_schema_max_program_instances=#

Option-File Format performance_schema_max_program_instances

System Variable Name performance_schema_max_program_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 5000

The maximum number of stored programs for which the Performance Schema maintains
statistics. If this maximum is exceeded, the Performance Schema increments the
Performance_schema_program_lost status variable.

This variable was added in MySQL 5.7.2.

• performance_schema_max_rwlock_instances

Command-Line Format --performance_schema_max_rwlock_instances=#

Option-File Format performance_schema_max_rwlock_instances

System Variable Name performance_schema_max_rwlock_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Performance Schema System Variables

2444

Default -1 (autosized)

The maximum number of instrumented rwlock objects.

• performance_schema_max_socket_classes

Command-Line Format --performance_schema_max_socket_classes=#

Option-File Format performance_schema_max_socket_classes

System Variable Name performance_schema_max_socket_classes

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 10

The maximum number of socket instruments.

• performance_schema_max_socket_instances

Command-Line Format --performance_schema_max_socket_instances=#

Option-File Format performance_schema_max_socket_instances

System Variable Name performance_schema_max_socket_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The maximum number of instrumented socket objects.

• performance_schema_max_stage_classes

Command-Line Format --performance_schema_max_stage_classes=#

Option-File Format performance_schema_max_stage_classes

System Variable Name performance_schema_max_stage_classes

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 150

The maximum number of stage instruments.

• performance_schema_max_statement_classes

Command-Line Format --performance_schema_max_statement_classes=#

Option-File Format performance_schema_max_statement_classes

System Variable Name performance_schema_max_statement_classes

Variable Scope Global

Performance Schema System Variables

2445

Dynamic Variable No

Permitted Values

Type numeric

Default autosized

The maximum number of statement instruments. The default value is calculated at server build time
based on the number of commands in the client/server protocol and the number of SQL statement
types supported by the server.

This variable should not be changed, unless to set it to 0 to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has
no benefit; in particular, values larger than the default cause more memory to be allocated then is
needed.

• performance_schema_max_statement_stack

Introduced 5.7.2

Command-Line Format --performance_schema_max_statement_stack=#

Option-File Format performance_schema_max_statement_stack

System Variable Name performance_schema_max_statement_stack

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 10

The maximum depth of nested stored program calls for which the Performance Schema
maintains statistics. When this maximum is exceeded, the Performance Schema increments the
Performance_schema_nested_statement_lost status variable for each stored program
statement executed.

This variable was added in MySQL 5.7.2.

• performance_schema_max_table_handles

Command-Line Format --performance_schema_max_table_handles=#

Option-File Format performance_schema_max_table_handles

System Variable Name performance_schema_max_table_handles

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The maximum number of opened table objects. This value controls the size of the table_handles
table. If this maximum is exceeded such that a table handle cannot be instrumented, the
Performance Schema increments the Performance_schema_table_handles_lost status
variable.

• performance_schema_max_table_instances

Command-Line Format --performance_schema_max_table_instances=#

Performance Schema System Variables

2446

Option-File Format performance_schema_max_table_instances

System Variable Name performance_schema_max_table_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The maximum number of instrumented table objects.

• performance_schema_max_thread_classes

Command-Line Format --performance_schema_max_thread_classes=#

Option-File Format performance_schema_max_thread_classes

System Variable Name performance_schema_max_thread_classes

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 50

The maximum number of thread instruments.

• performance_schema_max_thread_instances

Command-Line Format --performance_schema_max_thread_instances=#

Option-File Format performance_schema_max_thread_instances

System Variable Name performance_schema_max_thread_instances

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

The maximum number of instrumented thread objects. The value controls the size of the threads
table. If this maximum is exceeded such that a thread cannot be instrumented, the Performance
Schema increments the Performance_schema_thread_instances_lost status variable.

The max_connections system variable affects how many threads are run in the server.
performance_schema_max_thread_instances affects how many of these running threads
can be instrumented. The default value of performance_schema_max_thread_instances is
autosized based on the value of max_connections.

• performance_schema_session_connect_attrs_size

Command-Line Format --performance_schema_session_connect_attrs_size=#

Option-File Format performance_schema_session_connect_attrs_size

System Variable Name performance_schema_session_connect_attrs_size

Variable Scope Global

Performance Schema System Variables

2447

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

Range -1 .. 1048576

The amount of preallocated memory per thread used to hold connection attribute
strings. If the connection attribute strings are larger than the reserved storage, the
Performance_schema_session_connect_attrs_lost status variable is incremented.

• performance_schema_setup_actors_size

Command-Line Format --performance_schema_setup_actors_size=#

Option-File Format performance_schema_setup_actors_size

System Variable Name performance_schema_setup_actors_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 100

The number of rows in the setup_actors table.

• performance_schema_setup_objects_size

Command-Line Format --performance_schema_setup_objects_size=#

Option-File Format performance_schema_setup_objects_size

System Variable Name performance_schema_setup_objects_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default 100

The number of rows in the setup_objects table.

• performance_schema_users_size

Command-Line Format --performance_schema_users_size=#

Option-File Format performance_schema_users_size

System Variable Name performance_schema_users_size

Variable Scope Global

Dynamic Variable No

Permitted Values

Type numeric

Default -1 (autosized)

Range -1 .. 1048576

Performance Schema Status Variables

2448

The number of rows in the users table. If this variable is 0, the Performance Schema does not
maintain connection statistics in the users table.

20.13 Performance Schema Status Variables

The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

Performance Schema status variables have the following meanings:

• Performance_schema_accounts_lost

The number of times a row could not be added to the accounts table because it was full.

• Performance_schema_cond_classes_lost

How many condition instruments could not be loaded.

• Performance_schema_cond_instances_lost

How many condition instrument instances could not be created.

• Performance_schema_digest_lost

The number of digest instances that could not be instrumented in the
events_statements_summary_by_digest table. This can be nonzero if the value of
performance_schema_digests_size is too small.

• Performance_schema_file_classes_lost

How many file instruments could not be loaded.

• Performance_schema_file_handles_lost

How many file instrument instances could not be opened.

• Performance_schema_file_instances_lost

Performance Schema Status Variables

2449

How many file instrument instances could not be created.

• Performance_schema_hosts_lost

The number of times a row could not be added to the hosts table because it was full.

• Performance_schema_locker_lost

How many events are “lost” or not recorded, due to the following conditions:

• Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).

• The depth of the nested events stack is greater than the limit imposed by the implementation.

Currently, events recorded by the Performance Schema are not recursive, so this variable should
always be 0.

• Performance_schema_memory_classes_lost

The number of times a memory instrument could not be loaded. This variable was added in MySQL
5.7.2.

• Performance_schema_metadata_lock_lost

The number of metadata locks that could not be instrumented in the metadata_locks table. This
can be nonzero if the value of performance_schema_max_metadata_locks is too small.

This variable was added in MySQL 5.7.3.

• Performance_schema_mutex_classes_lost

How many mutex instruments could not be loaded.

• Performance_schema_mutex_instances_lost

How many mutex instrument instances could not be created.

• Performance_schema_nested_statement_lost

The number of stored program statements for which statistics were lost. This can be nonzero if the
value of performance_schema_max_statement_stack is too small.

This variable was added in MySQL 5.7.2.

• Performance_schema_prepared_statements_lost

The number of prepared statements that could not be instrumented in the
prepared_statements_instances table. This can be nonzero if the value of
performance_schema_max_prepared_statements_instances is too small.

This variable was added in MySQL 5.7.4.

• Performance_schema_program_lost

The number of stored programs for which statistics were lost. This can be nonzero if the value of
performance_schema_max_program_instances is too small.

This variable was added in MySQL 5.7.2.

• Performance_schema_rwlock_classes_lost

How many rwlock instruments could not be loaded.

Performance Schema and Plugins

2450

• Performance_schema_rwlock_instances_lost

How many rwlock instrument instances could not be created.

• Performance_schema_session_connect_attrs_lost

The number of times a connection attribute string was larger than the reserved storage.

• Performance_schema_socket_classes_lost

How many socket instruments could not be loaded.

• Performance_schema_socket_instances_lost

How many socket instrument instances could not be created.

• Performance_schema_stage_classes_lost

How many stage instruments could not be loaded.

• Performance_schema_statement_classes_lost

How many statement instruments could not be loaded.

• Performance_schema_table_handles_lost

How many table instrument instances could not be opened. This can be nonzero if the value of
performance_schema_max_table_handles is too small.

• Performance_schema_table_instances_lost

How many table instrument instances could not be created.

• Performance_schema_thread_classes_lost

How many thread instruments could not be loaded.

• Performance_schema_thread_instances_lost

The number of thread instances that could not be instrumented in the threads table. This can be
nonzero if the value of performance_schema_max_thread_instances is too small.

• Performance_schema_users_lost

The number of times a row could not be added to the users table because it was full.

For information on using these variables to check Performance Schema status, see Section 20.5,
“Performance Schema Status Monitoring”.

20.14 Performance Schema and Plugins
Removing a plugin with UNINSTALL PLUGIN does not affect information already collected for code
in that plugin. Time spent executing the code while the plugin was loaded was still spent even if the
plugin is unloaded later. The associated event information, including aggregate information, remains
readable in performance_schema database tables. For additional information about the effect of
plugin installation and removal, see Section 20.5, “Performance Schema Status Monitoring”.

A plugin implementor who instruments plugin code should document its instrumentation characteristics
to enable those who load the plugin to account for its requirements. For example, a third-party storage
engine should include in its documentation how much memory the engine needs for mutex and other
instruments.

20.15 Using the Performance Schema to Diagnose Problems

Using the Performance Schema to Diagnose Problems

2451

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema
for this purpose. The discussion here relies on the use of event filtering, which is described in
Section 20.2.3.2, “Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use
case where performance is deemed “too slow” and needs optimization, and you should enable all
instrumentation (no pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis will rely heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if
analysis shows that the issue is not related to file I/O in a particular storage engine, disable the file
I/O instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

At each iteration, the Performance Schema output, particularly the
events_waits_history_long table, will contain less and less “noise” caused by nonsignificant
instruments, and given that this table has a fixed size, will contain more and more data relevant to
the analysis of the problem at hand.

At each iteration, investigation should lead closer and closer to the root cause of the problem, as
the “signal/noise” ratio will improve, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action,
such as:

• Tune the server parameters (cache sizes, memory, and so forth).

• Tune a query by writing it differently,

• Tune the database schema (tables, indexes, and so forth).

• Tune the code (this applies to storage engine or server developers only).

6. Start again at step 1, to see the effects of the changes on performance.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. This is made possible by Performance Schema
instrumentation as follows:

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM events_waits_current WHERE THREAD_ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_waits_current.OBJECT_INSTANCE_BEGIN.

3. You can determine which thread is holding mutex A:

SELECT * FROM mutex_instances WHERE OBJECT_INSTANCE_BEGIN = mutex_A;

Using the Performance Schema to Diagnose Problems

2452

Say the query result identifies that it is thread 2 holding mutex A, as found in
mutex_instances.LOCKED_BY_THREAD_ID.

4. You can see what thread 2 is doing:

SELECT * FROM events_waits_current WHERE THREAD_ID = thread_2;

2453

Chapter 21 Connectors and APIs

Table of Contents
21.1 MySQL Connector/ODBC ... 2456
21.2 MySQL Connector/Net ... 2457
21.3 MySQL Connector/J ... 2457
21.4 MySQL Connector/C++ .. 2457
21.5 MySQL Connector/C .. 2457
21.6 MySQL Connector/Python .. 2457
21.7 libmysqld, the Embedded MySQL Server Library ... 2457

21.7.1 Compiling Programs with libmysqld .. 2458
21.7.2 Restrictions When Using the Embedded MySQL Server .. 2458
21.7.3 Options with the Embedded Server .. 2459
21.7.4 Embedded Server Examples ... 2459

21.8 MySQL C API ... 2462
21.8.1 MySQL C API Implementations ... 2463
21.8.2 Simultaneous MySQL Server and MySQL Connector/C Installations 2464
21.8.3 Example C API Client Programs .. 2465
21.8.4 Building and Running C API Client Programs ... 2465
21.8.5 C API Data Structures .. 2469
21.8.6 C API Function Overview .. 2474
21.8.7 C API Function Descriptions .. 2478
21.8.8 C API Prepared Statements .. 2534
21.8.9 C API Prepared Statement Data Structures .. 2534
21.8.10 C API Prepared Statement Function Overview .. 2540
21.8.11 C API Prepared Statement Function Descriptions ... 2543
21.8.12 C API Threaded Function Descriptions ... 2565
21.8.13 C API Embedded Server Function Descriptions .. 2566
21.8.14 C API Client Plugin Functions .. 2567
21.8.15 Common Questions and Problems When Using the C API 2570
21.8.16 Controlling Automatic Reconnection Behavior ... 2572
21.8.17 C API Support for Multiple Statement Execution ... 2573
21.8.18 C API Prepared Statement Problems ... 2575
21.8.19 C API Prepared Statement Handling of Date and Time Values 2575
21.8.20 C API Support for Prepared CALL Statements .. 2577

21.9 MySQL PHP API ... 2580
21.10 MySQL Perl API .. 2581
21.11 MySQL Python API .. 2581
21.12 MySQL Ruby APIs ... 2582

21.12.1 The MySQL/Ruby API ... 2582
21.12.2 The Ruby/MySQL API ... 2582

21.13 MySQL Tcl API .. 2582
21.14 MySQL Eiffel Wrapper ... 2582

MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide low-
level access to the MySQL protocol and MySQL resources. Both Connectors and the APIs enable you
to connect and execute MySQL statements from another language or environment, including ODBC,
Java (JDBC), Perl, Python, PHP, Ruby, and native C and embedded MySQL instances.

Note

Connector version numbers do not correlate with MySQL Server version
numbers. See Table 21.2, “MySQL Connector Versions and MySQL Server
Versions”.

MySQL Connectors

2454

MySQL Connectors

Oracle develops a number of connectors:

• Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and Mac
OS X platforms.

• Connector/Net enables developers to create .NET applications that connect to MySQL. Connector/
Net implements a fully functional ADO.NET interface and provides support for use with ADO.NET
aware tools. Applications that use Connector/Net can be written in any supported .NET language.

The MySQL Visual Studio Plugin works with Connector/Net and Visual Studio 2005. The plugin is
a MySQL DDEX Provider, which means that you can use the schema and data manipulation tools
available in Visual Studio to create and edit objects within a MySQL database.

• Connector/J provides driver support for connecting to MySQL from Java applications using the
standard Java Database Connectivity (JDBC) API.

• Connector/Python provides driver support for connecting to MySQL from Python applications using
an API that is compliant with the Python DB API version 2.0. No additional Python modules or
MySQL client libraries are required.

• Connector/C++ enables C++ applications to connect to MySQL.

• Connector/C is a standalone replacement for the MySQL Client Library (libmysqlclient), to be
used for C applications.

The MySQL C API

For direct access to using MySQL natively within a C application, there are two methods:

• The C API provides low-level access to the MySQL client/server protocol through the
libmysqlclient client library. This is the primary method used to connect to an instance of
the MySQL server, and is used both by MySQL command-line clients and many of the MySQL
Connectors and third-party APIs detailed here.

libmysqlclient is included in MySQL distributions and in MySQL Connector/C distributions.

• libmysqld is an embedded MySQL server library that enables you to embed an instance of the
MySQL server into your C applications.

libmysqld is included in MySQL distributions, but not in MySQL Connector/C distributions.

See also Section 21.8.1, “MySQL C API Implementations”.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported
by the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's
utilities are available to help with the process; see Section 4.7, “MySQL Program Development
Utilities”.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using libmysqlclient or
by implementing a native driver. The two solutions offer different benefits:

• Using libmysqlclient offers complete compatibility with MySQL because it uses the same
libraries as the MySQL client applications. However, the feature set is limited to the implementation

http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/connector-net/en/connector-net-visual-studio.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://www.python.org/dev/peps/pep-0249/
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://dev.mysql.com/doc/connector-c/en/index.html

Third-Party MySQL APIs

2455

and interfaces exposed through libmysqlclient and the performance may be lower as data is
copied between the native language, and the MySQL API components.

• Native drivers are an implementation of the MySQL network protocol entirely within the host
language or environment. Native drivers are fast, as there is less copying of data between
components, and they can offer advanced functionality not available through the standard MySQL
API. Native drivers are also easier for end users to build and deploy because no copy of the MySQL
client libraries is needed to build the native driver components.

Table 21.1, “MySQL APIs and Interfaces” lists many of the libraries and interfaces available for MySQL.
Table 21.2, “MySQL Connector Versions and MySQL Server Versions” shows which MySQL Server
versions each connector supports.

Table 21.1 MySQL APIs and Interfaces

EnvironmentAPI Type Notes

Ada GNU Ada MySQL Bindings libmysqlclientSee MySQL Bindings for GNU Ada

C C API libmysqlclientSee Section 21.8, “MySQL C API”.

C Connector/C Replacement
for
libmysqlclient

See MySQL Connector/C Developer
Guide.

C++ Connector/C++ libmysqlclientSee MySQL Connector/C++ Developer
Guide.

 MySQL++ libmysqlclientSee MySQL++ Web site.

 MySQL wrapped libmysqlclientSee MySQL wrapped.

Cocoa MySQL-Cocoa libmysqlclientCompatible with the Objective-C
Cocoa environment. See http://mysql-
cocoa.sourceforge.net/

D MySQL for D libmysqlclientSee MySQL for D.

Eiffel Eiffel MySQL libmysqlclientSee Section 21.14, “MySQL Eiffel
Wrapper”.

Erlang erlang-mysql-driver libmysqlclientSee erlang-mysql-driver.

Haskell Haskell MySQL Bindings Native Driver See Brian O'Sullivan's pure Haskell
MySQL bindings.

 hsql-mysql libmysqlclientSee MySQL driver for Haskell .

Java/
JDBC

Connector/J Native Driver See MySQL Connector/J Developer
Guide.

Kaya MyDB libmysqlclientSee MyDB.

Lua LuaSQL libmysqlclientSee LuaSQL.

.NET/
Mono

Connector/Net Native Driver See MySQL Connector/Net Developer
Guide.

Objective
Caml

OBjective Caml MySQL Bindings libmysqlclientSee MySQL Bindings for Objective
Caml.

Octave Database bindings for GNU
Octave

libmysqlclientSee Database bindings for GNU
Octave.

ODBC Connector/ODBC libmysqlclientSee MySQL Connector/ODBC
Developer Guide.

Perl DBI/DBD::mysql libmysqlclientSee Section 21.10, “MySQL Perl API”.

 Net::MySQL Native Driver See Net::MySQL at CPAN

PHP mysql, ext/mysql interface
(deprecated)

libmysqlclientSee Original MySQL API (Mysql).

http://gnade.sourceforge.net/
http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://tangentsoft.net/mysql++/doc/
http://www.alhem.net/project/mysql/
http://mysql-cocoa.sourceforge.net/
http://mysql-cocoa.sourceforge.net/
http://www.steinmole.de/d/
http://code.google.com/p/erlang-mysql-driver/
http://www.serpentine.com/software/mysql
http://www.serpentine.com/software/mysql
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://kayalang.org/library/latest/MyDB
http://www.keplerproject.org/luasql/
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://raevnos.pennmush.org/code/ocaml-mysql/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://octave.sourceforge.net/database/index.html
http://octave.sourceforge.net/database/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://search.cpan.org/dist/Net-MySQL/MySQL.pm
http://dev.mysql.com/doc/apis-php/en/apis-php-mysql.html

MySQL Connector/ODBC

2456

EnvironmentAPI Type Notes

 mysqli, ext/mysqli interface libmysqlclientSee MySQL Improved Extension
(Mysqli).

 PDO_MYSQL libmysqlclientSee MySQL Functions (PDO_MYSQL)
(MySQL (PDO)).

 PDO mysqlnd Native Driver

Python Connector/Python Native Driver See MySQL Connector/Python
Developer Guide.

 MySQLdb libmysqlclientSee Section 21.11, “MySQL Python
API”.

Ruby MySQL/Ruby libmysqlclientUses libmysqlclient. See
Section 21.12.1, “The MySQL/Ruby
API”.

 Ruby/MySQL Native Driver See Section 21.12.2, “The Ruby/
MySQL API”.

Scheme Myscsh libmysqlclientSee Myscsh.

SPL sql_mysql libmysqlclientSee sql_mysql for SPL.

Tcl MySQLtcl libmysqlclientSee Section 21.13, “MySQL Tcl API”.

Table 21.2 MySQL Connector Versions and MySQL Server Versions

Connector Connector version MySQL Server version

Connector/C 6.1.0 GA 5.6, 5.5, 5.1, 5.0, 4.1

Connector/C++ 1.0.5 GA 5.6, 5.5, 5.1

Connector/J 5.1.8 5.6, 5.5, 5.1, 5.0, 4.1

Connector/Net 6.5 5.6, 5.5, 5.1, 5.0

Connector/Net 6.4 5.6, 5.5, 5.1, 5.0

Connector/Net 6.3 5.6, 5.5, 5.1, 5.0

Connector/Net 6.2 (No longer
supported)

5.6, 5.5, 5.1, 5.0

Connector/Net 6.1 (No longer
supported)

5.6, 5.5, 5.1, 5.0

Connector/Net 6.0 (No longer
supported)

5.6, 5.5, 5.1, 5.0

Connector/Net 5.2 (No longer
supported)

5.6, 5.5, 5.1, 5.0

Connector/Net 1.0 (No longer
supported)

5.0, 4.0

Connector/ODBC 5.1 5.6, 5.5, 5.1, 5.0, 4.1.1+

Connector/ODBC 3.51 (Unicode not
supported)

5.6, 5.5, 5.1, 5.0, 4.1

21.1 MySQL Connector/ODBC
The MySQL Connector/ODBC manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/ODBC Developer Guide

• Release notes: MySQL Connector/ODBC Release Notes

http://dev.mysql.com/doc/apis-php/en/apis-php-mysqli.html
http://dev.mysql.com/doc/apis-php/en/apis-php-mysqli.html
http://dev.mysql.com/doc/apis-php/en/apis-php-pdo-mysql.html
http://dev.mysql.com/doc/apis-php/en/apis-php-pdo-mysql.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://www-pu.informatik.uni-tuebingen.de/users/knauel/myscsh/
http://www.clifford.at/spl/spldoc/sql_mysql.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/relnotes/connector-odbc/en/

MySQL Connector/Net

2457

21.2 MySQL Connector/Net

The MySQL Connector/Net manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Net Developer Guide

• Release notes: MySQL Connector/Net Release Notes

21.3 MySQL Connector/J

The MySQL Connector/J manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/J Developer Guide

• Release notes: MySQL Connector/J Release Notes

21.4 MySQL Connector/C++

The MySQL Connector/C++ manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/C++ Developer Guide

• Release notes: MySQL Connector/C++ Release Notes

21.5 MySQL Connector/C

The MySQL Connector/C manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/C Developer Guide

• Release notes: MySQL Connector/C Release Notes

21.6 MySQL Connector/Python

The MySQL Connector/Python manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Python Developer Guide

• Release notes: MySQL Connector/Python Release Notes

21.7 libmysqld, the Embedded MySQL Server Library

The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a
client application. The main benefits are increased speed and more simple management for embedded
applications.

The embedded server library is based on the client/server version of MySQL, which is written in C/C++.
Consequently, the embedded server also is written in C/C++. There is no embedded server available in
other languages.

The API is identical for the embedded MySQL version and the client/server version. To change a
threaded application to use the embedded library, you normally only have to add calls to the following
functions.

http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/relnotes/connector-net/en/
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/relnotes/connector-j/en/
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/relnotes/connector-c/en/
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/relnotes/connector-python/en/

Compiling Programs with libmysqld

2458

Table 21.3 MySQL Embedded Server Library Functions

Function When to Call

mysql_library_init() Call it before any other MySQL function is called, preferably early in the
main() function.

mysql_library_end() Call it before your program exits.

mysql_thread_init() Call it in each thread you create that accesses MySQL.

mysql_thread_end() Call it before calling pthread_exit().

Then, link your code with libmysqld.a instead of libmysqlclient.a. To ensure binary
compatibility between your application and the server library, always compile your application against
headers for the same series of MySQL that was used to compile the server library. For example,
if libmysqld was compiled against MySQL 5.1 headers, do not compile your application against
MySQL 5.5 headers, or vice versa.

Because the mysql_library_xxx() functions are also included in libmysqlclient.a, you can
change between the embedded and the client/server version by just linking your application with the
right library. See Section 21.8.7.41, “mysql_library_init()”.

One difference between the embedded server and the standalone server is that for the embedded
server, authentication for connections is disabled by default.

21.7.1 Compiling Programs with libmysqld

In precompiled binary MySQL distributions that include libmysqld, the embedded server library,
MySQL builds the library using the appropriate vendor compiler if there is one.

To get a libmysqld library if you build MySQL from source yourself, you should configure MySQL
with the -DWITH_EMBEDDED_SERVER=1 option. See Section 2.8.4, “MySQL Source-Configuration
Options”.

When you link your program with libmysqld, you must also include the system-specific pthread
libraries and some libraries that the MySQL server uses. You can get the full list of libraries by
executing mysql_config --libmysqld-libs.

The correct flags for compiling and linking a threaded program must be used, even if you do not directly
call any thread functions in your code.

To compile a C program to include the necessary files to embed the MySQL server library into an
executable version of a program, the compiler will need to know where to find various files and need
instructions on how to compile the program. The following example shows how a program could be
compiled from the command line, assuming that you are using gcc, use the GNU C compiler:

gcc mysql_test.c -o mysql_test \
`/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Immediately following the gcc command is the name of the C program source file. After it, the -o
option is given to indicate that the file name that follows is the name that the compiler is to give to
the output file, the compiled program. The next line of code tells the compiler to obtain the location
of the include files and libraries and other settings for the system on which it is compiled. The
mysql_config command is contained in backticks, not single quotation marks.

On some non-gcc platforms, the embedded library depends on C++ runtime libraries and linking
against the embedded library might result in missing-symbol errors. To solve this, link using a C++
compiler or explicitly list the required libraries on the link command line.

21.7.2 Restrictions When Using the Embedded MySQL Server

The embedded server has the following limitations:

Options with the Embedded Server

2459

• No user-defined functions (UDFs).

• No stack trace on core dump.

• You cannot set this up as a master or a slave (no replication).

• Very large result sets may be unusable on low memory systems.

• You cannot connect to an embedded server from an outside process with sockets or TCP/IP.
However, you can connect to an intermediate application, which in turn can connect to an embedded
server on the behalf of a remote client or outside process.

• InnoDB is not reentrant in the embedded server and cannot be used for multiple connections, either
successively or simultaneously.

• The Event Scheduler is not available. Because of this, the event_scheduler system variable is
disabled.

Some of these limitations can be changed by editing the mysql_embed.h include file and recompiling
MySQL.

21.7.3 Options with the Embedded Server

Any options that may be given with the mysqld server daemon, may be used with an
embedded server library. Server options may be given in an array as an argument to the
mysql_library_init(), which initializes the server. They also may be given in an option file like
my.cnf. To specify an option file for a C program, use the --defaults-file option as one of the
elements of the second argument of the mysql_library_init() function. See Section 21.8.7.41,
“mysql_library_init()”, for more information on the mysql_library_init() function.

Using option files can make it easier to switch between a client/server application and one where
MySQL is embedded. Put common options under the [server] group. These are read by both
MySQL versions. Client/server-specific options should go under the [mysqld] section. Put options
specific to the embedded MySQL server library in the [embedded] section. Options specific to
applications go under section labeled [ApplicationName_SERVER]. See Section 4.2.3.3, “Using
Option Files”.

21.7.4 Embedded Server Examples

These two example programs should work without any changes on a Linux or FreeBSD system.
For other operating systems, minor changes are needed, mostly with file paths. These examples
are designed to give enough details for you to understand the problem, without the clutter that is a
necessary part of a real application. The first example is very straightforward. The second example
is a little more advanced with some error checking. The first is followed by a command-line entry for
compiling the program. The second is followed by a GNUmake file that may be used for compiling
instead.

Example 1

test1_libmysqld.c

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "mysql.h"

MYSQL *mysql;
MYSQL_RES *results;
MYSQL_ROW record;

static char *server_options[] = \
 { "mysql_test", "--defaults-file=my.cnf", NULL };
int num_elements = (sizeof(server_options) / sizeof(char *)) - 1;

Embedded Server Examples

2460

static char *server_groups[] = { "libmysqld_server",
 "libmysqld_client", NULL };

int main(void)
{
 mysql_library_init(num_elements, server_options, server_groups);
 mysql = mysql_init(NULL);
 mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
 mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);

 mysql_real_connect(mysql, NULL,NULL,NULL, "database1", 0,NULL,0);

 mysql_query(mysql, "SELECT column1, column2 FROM table1");

 results = mysql_store_result(mysql);

 while((record = mysql_fetch_row(results))) {
 printf("%s - %s \n", record[0], record[1]);
 }

 mysql_free_result(results);
 mysql_close(mysql);
 mysql_library_end();

 return 0;
}

Here is the command line for compiling the above program:

gcc test1_libmysqld.c -o test1_libmysqld \
 `/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Example 2

To try the example, create an test2_libmysqld directory at the same level as the MySQL source
directory. Save the test2_libmysqld.c source and the GNUmakefile in the directory, and run
GNU make from inside the test2_libmysqld directory.

test2_libmysqld.c

/*
 * A simple example client, using the embedded MySQL server library
*/

#include <mysql.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

MYSQL *db_connect(const char *dbname);
void db_disconnect(MYSQL *db);
void db_do_query(MYSQL *db, const char *query);

const char *server_groups[] = {
 "test2_libmysqld_SERVER", "embedded", "server", NULL
};

int
main(int argc, char **argv)
{
 MYSQL *one, *two;

 /* mysql_library_init() must be called before any other mysql
 * functions.
 *
 * You can use mysql_library_init(0, NULL, NULL), and it
 * initializes the server using groups = {
 * "server", "embedded", NULL
 * }.
 *

Embedded Server Examples

2461

 * In your $HOME/.my.cnf file, you probably want to put:

[test2_libmysqld_SERVER]
language = /path/to/source/of/mysql/sql/share/english

 * You could, of course, modify argc and argv before passing
 * them to this function. Or you could create new ones in any
 * way you like. But all of the arguments in argv (except for
 * argv[0], which is the program name) should be valid options
 * for the MySQL server.
 *
 * If you link this client against the normal mysqlclient
 * library, this function is just a stub that does nothing.
 */
 mysql_library_init(argc, argv, (char **)server_groups);

 one = db_connect("test");
 two = db_connect(NULL);

 db_do_query(one, "SHOW TABLE STATUS");
 db_do_query(two, "SHOW DATABASES");

 mysql_close(two);
 mysql_close(one);

 /* This must be called after all other mysql functions */
 mysql_library_end();

 exit(EXIT_SUCCESS);
}

static void
die(MYSQL *db, char *fmt, ...)
{
 va_list ap;
 va_start(ap, fmt);
 vfprintf(stderr, fmt, ap);
 va_end(ap);
 (void)putc('\n', stderr);
 if (db)
 db_disconnect(db);
 exit(EXIT_FAILURE);
}

MYSQL *
db_connect(const char *dbname)
{
 MYSQL *db = mysql_init(NULL);
 if (!db)
 die(db, "mysql_init failed: no memory");
 /*
 * Notice that the client and server use separate group names.
 * This is critical, because the server does not accept the
 * client's options, and vice versa.
 */
 mysql_options(db, MYSQL_READ_DEFAULT_GROUP, "test2_libmysqld_CLIENT");
 if (!mysql_real_connect(db, NULL, NULL, NULL, dbname, 0, NULL, 0))
 die(db, "mysql_real_connect failed: %s", mysql_error(db));

 return db;
}

void
db_disconnect(MYSQL *db)
{
 mysql_close(db);
}

void
db_do_query(MYSQL *db, const char *query)
{
 if (mysql_query(db, query) != 0)

MySQL C API

2462

 goto err;

 if (mysql_field_count(db) > 0)
 {
 MYSQL_RES *res;
 MYSQL_ROW row, end_row;
 int num_fields;

 if (!(res = mysql_store_result(db)))
 goto err;
 num_fields = mysql_num_fields(res);
 while ((row = mysql_fetch_row(res)))
 {
 (void)fputs(">> ", stdout);
 for (end_row = row + num_fields; row < end_row; ++row)
 (void)printf("%s\t", row ? (char*)*row : "NULL");
 (void)fputc('\n', stdout);
 }
 (void)fputc('\n', stdout);
 mysql_free_result(res);
 }
 else
 (void)printf("Affected rows: %lld\n", mysql_affected_rows(db));

 return;

err:
 die(db, "db_do_query failed: %s [%s]", mysql_error(db), query);
}

GNUmakefile

This assumes the MySQL software is installed in /usr/local/mysql
inc := /usr/local/mysql/include/mysql
lib := /usr/local/mysql/lib

If you have not installed the MySQL software yet, try this instead
#inc := $(HOME)/mysql-5.7/include
#lib := $(HOME)/mysql-5.7/libmysqld

CC := gcc
CPPFLAGS := -I$(inc) -D_THREAD_SAFE -D_REENTRANT
CFLAGS := -g -W -Wall
LDFLAGS := -static
You can change -lmysqld to -lmysqlclient to use the
client/server library
LDLIBS = -L$(lib) -lmysqld -lm -ldl -lcrypt

ifneq (,$(shell grep FreeBSD /COPYRIGHT 2>/dev/null))
FreeBSD
LDFLAGS += -pthread
else
Assume Linux
LDLIBS += -lpthread
endif

This works for simple one-file test programs
sources := $(wildcard *.c)
objects := $(patsubst %c,%o,$(sources))
targets := $(basename $(sources))

all: $(targets)

clean:
 rm -f $(targets) $(objects) *.core

21.8 MySQL C API

MySQL C API Implementations

2463

The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
libmysqlclient library. See Section 21.8.1, “MySQL C API Implementations”.

Most other client APIs use the libmysqlclient library to communicate with the MySQL server.
(Exceptions are except Connector/J and Connector/Net.) This means that, for example, you can take
advantage of many of the same environment variables that are used by other client programs because
they are referenced from the library. For a list of these variables, see Section 4.1, “Overview of MySQL
Programs”.

For instructions on building client programs using the C API, see Section 21.8.4.1, “Building C API
Client Programs”. For programming with threads, see Section 21.8.4.2, “Writing C API Threaded Client
Programs”. To create a standalone application which includes the "server" and "client" in the same
program (and does not communicate with an external MySQL server), see Section 21.7, “libmysqld, the
Embedded MySQL Server Library”.

Note

If, after an upgrade, you experience problems with compiled client programs,
such as Commands out of sync or unexpected core dumps, the programs
were probably compiled using old header or library files. In this case, check
the date of the mysql.h file and libmysqlclient.a library used for
compilation to verify that they are from the new MySQL distribution. If not,
recompile the programs with the new headers and libraries. Recompilation
might also be necessary for programs compiled against the shared client
library if the library major version number has changed (for example, from
libmysqlclient.so.17 to libmysqlclient.so.18). For additional
compatibility information, see Section 21.8.4.3, “Running C API Client
Programs”.

Clients have a maximum communication buffer size. The size of the buffer that is allocated initially
(16KB) is automatically increased up to the maximum size (16MB by default). Because buffer sizes
are increased only as demand warrants, simply increasing the maximum limit does not in itself cause
more resources to be used. This size check is mostly a precaution against erroneous statements and
communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-to-
server traffic) and one row of returned data (for server-to-client traffic). Each session's communication
buffer is dynamically enlarged to handle any query or row up to the maximum limit. For example, if
you have BLOB values that contain up to 16MB of data, you must have a communication buffer limit
of at least 16MB (in both server and client). The default maximum built into the client library is 1GB,
but the default maximum in the server is 1MB. You can increase this by changing the value of the
max_allowed_packet parameter at server startup. See Section 8.11.2, “Tuning Server Parameters”.

The MySQL server shrinks each communication buffer to net_buffer_length bytes after each
query. For clients, the size of the buffer associated with a connection is not decreased until the
connection is closed, at which time client memory is reclaimed.

21.8.1 MySQL C API Implementations

The MySQL C API is a C-based API that client applications written in C can use to communicate with
MySQL Server. Client programs refer to C API header files at compile time and link to a C API library
file at link time. The library comes in two versions, depending on how the application is intended to
communicate with the server:

• libmysqlclient: The client version of the library, used for applications that communicate over a
network connection as a client of a standalone server process.

• libmysqld: The embedded server version of the library, used for applications intended to include
an embedded MySQL server within the application itself. The application communicates with its own
private server instance.

Simultaneous MySQL Server and MySQL Connector/C Installations

2464

Both libraries have the same interface. In terms of C API calls, an application communicates with a
standalone server the same way it communicates with an embedded server. A given client can be
built to communicate with a standalone or embedded server, depending on whether it is linked against
libmysqlclient or libmysqld at build time.

There are two ways to obtain the C API header and library files required to build C API client programs:

• Install a MySQL Server distribution. Server distributions include both libmysqlclient and
libmysqld.

• Install a MySQL Connector/C distribution. Connector/C distributions include only libmysqlclient.
They do not include libmysqld.

For both MySQL Server and MySQL Connector/C, you can install a binary distribution that contains the
C API files pre-built, or you can use a source distribution and build the C API files yourself.

Normally, you install either a MySQL Server distribution or a MySQL Connector/C distribution, but not
both. For information about issues involved with simultaneous MySQL Server and MySQL Connector/C
installations, see Section 21.8.2, “Simultaneous MySQL Server and MySQL Connector/C Installations”.

The names of the library files to use when linking C API client applications depend on the library type
and platform for which a distribution is built:

• On Unix (and Unix-like) sytems, the static library is libmysqlclient.a. The dynamic library is
libmysqlclient.so on most Unix systems and libmysqlclient.dylib on Mac OS X.

For distributions that include embedded server libraries, the corresponding library names begin with
libmysqld rather than libmysqlclient.

• On Windows, the static library is mysqlclient.lib and the dynamic library is libmysql.dll.
Windows distributions also include libmysql.lib, a static import library needed for using the
dynamic library.

For distributions that include embedded server libraries, the corresponding library names are
mysqlserver.lib, libmysqld.dll, and libmysqld.lib.

Windows distributions also include a set of debug libraries. These have the same names as the
nondebug libraries, but are located in the lib/debug library. You must use the debug libraries when
compiling clients built using the debug C runtime.

On Unix, you may also see libraries that include _r in the names. Before MySQL 5.5, these were
built as thread-safe (re-entrant) libraries separately from the non-_r libraries. As of 5.5, both libraries
are the same and the _r names are symbolic links to the corresponding non-_r names. There is
no need to use the _r libraries. For example, if you use mysql_config to obtain linker flags, you
can use mysql_config --libs in all cases, even for threaded clients. There is no need to use
mysql_config --libs_r.

21.8.2 Simultaneous MySQL Server and MySQL Connector/C Installations

MySQL Server and MySQL Connector/C installation packages both provide the files needed to build
and run MySQL C API client programs. This section discusses when it is possible to install both
products on the same system. For some packaging formats, this is possible without conflict. For others,
both products cannot be installed at the same time.

This discussion assumes the use of similar package types for both products (for example, RPM
packages for both products). It does not try to describe coexistence between packaging types (for
example, use of RPM packages for one product and a tar file package for the other). Nor does it
describe coexistence of packages provided by Oracle and those provided by third-party vendors.

If you install both products, it may be necessary to adjust your development tools or runtime
environment to choose one set of header files and libraries over the other. See Section 21.8.4.1,
“Building C API Client Programs”, and Section 21.8.4.3, “Running C API Client Programs”.

Example C API Client Programs

2465

tar and Zip file packages install under the directory into which you unpack them. For example, you
can unpack MySQL Server and MySQL Connector/C tar packages under /usr/local and they will
unpack into distinct directory names without conflict.

Windows MSI installers use their own installation directory, so MySQL Server and MySQL Connector/C
installers do not conflict.

Mac OS X DMG packages install under the same parent directory but in a different subdirectory, so
there is no conflict. For example:

/usr/local/mysql-5.6.11-osx10.7-x86_64/
/usr/local/mysql-connector-c-6.1.0-osx10.7-x86/

Solaris PKG packages install under the same parent directory but in a different subdirectory, so there is
no conflict. For example:

/opt/mysql/mysql
/opt/mysql/connector-c

The Solaris MySQL Connector/C installer does not create any symlinks from system directories such
as /usr/bin or /usr/lib into the installation directory. That must be done manually if desired after
installation.

For RPM installations, there are several types of RPM packages. MySQL Server shared and
devel RPM packages are similar to the corresponding MySQL Connector/C RPM packages. These
RPM package types cannot coexist because the MySQL Server and MySQL Connector/C RPM
packages use the same installation locations for the client library-related files. This means the following
conditions hold:

• If MySQL Server shared and devel RPM packages are installed, they provide the C API headers
and libraries, and there is no need to install the MySQL Connector/C RPM packages. To install the
MySQL Connector/C packages anyway, you must first remove the corresponding MySQL Server
packages.

• To install MySQL Server RPM packages if you already have MySQL Connector/C RPM packages
installed, you must first remove the MySQL Connector/C RPM packages.

MySQL Server RPM packages other than shared and devel do not conflict with MySQL Connector/C
packages and can be installed if MySQL Connector/C is installed. This includes the main server RPM
that includes the mysqld server itself.

21.8.3 Example C API Client Programs

Many of the clients in MySQL source distributions are written in C, such as mysql, mysqladmin, and
mysqlshow. If you are looking for examples that demonstrate how to use the C API, take a look at
these clients: Obtain a source distribution and look in its client directory. See Section 2.1.3, “How to
Get MySQL”.

21.8.4 Building and Running C API Client Programs

The following sections provide information on building client programs that use the C API. Topics
include compiling and linking clients, writing threaded clients, and troubleshooting runtime problems.

21.8.4.1 Building C API Client Programs

This section provides guidelines for compiling C programs that use the MySQL C API.

Compiling MySQL Clients on Unix

You may need to specify an -I option when you compile client programs that use MySQL header
files, so that the compiler can find them. For example, if the header files are installed in /usr/local/
mysql/include, use this option in the compile command:

Building and Running C API Client Programs

2466

-I/usr/local/mysql/include

MySQL clients must be linked using the -lmysqlclient option in the link command. You may also
need to specify a -L option to tell the linker where to find the library. For example, if the library is
installed in /usr/local/mysql/lib, use these options in the link command:

-L/usr/local/mysql/lib -lmysqlclient

The path names may differ on your system. Adjust the -I and -L options as necessary.

To make it simpler to compile MySQL programs on Unix, use the mysql_config script. See
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”.

mysql_config displays the options needed for compiling or linking:

shell> mysql_config --cflags
shell> mysql_config --libs

You can run those commands to get the proper options and add them manually to compilation or link
commands. Alternatively, include the output from mysql_config directly within command lines using
backticks:

shell> gcc -c `mysql_config --cflags` progname.c
shell> gcc -o progname progname.o `mysql_config --libs`

Compiling MySQL Clients on Microsoft Windows

To specify header and library file locations, use the facilities provided by your development
environment.

To build C API clients on Windows, you must link in the C client library, as well as the Windows ws2_32
sockets library and Secur32 security library.

On Windows, you can link your code with either the dynamic or static C client library. The static library
is named mysqlclient.lib and the dynamic library is named libmysql.dll. In addition, the
libmysql.lib static import library is needed for using the dynamic library.

If you link with the static library, failure can occur unless these conditions are satisfied:

• The client application must be compiled with the same version of Visual Studio used to compile the
library.

• The client application should link the C runtime statically by using the /MT compiler option.

If the client application is built in in debug mode and uses the static debug C runtime (/MTd compiler
option), it can link to the mysqlclient.lib static library if that library was built using the same option.
If the client application uses the dynamic C runtime (/MD option, or /MDd option in debug mode), it
must must be linked to the libmysql.dll dynamic library. It cannot link to the static client library.

The MSDN page describing the link options can be found here: http://msdn.microsoft.com/en-us/
library/2kzt1wy3.aspx

Troubleshooting Problems Linking to the MySQL Client Library

In MySQL 5.7, the MySQL client library includes SSL support built in. It is unnecessary to specify either
-lssl or -lcrypto at link time. Doing so may in fact result in problems at runtime.

If the linker cannot find the MySQL client library, you might get undefined-reference errors for symbols
that start with mysql_, such as those shown here:

http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx
http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx

Building and Running C API Client Programs

2467

/tmp/ccFKsdPa.o: In function `main':
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to `mysql_init'
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to `mysql_error'
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to `mysql_close'

You should be able to solve this problem by adding -Ldir_path -lmysqlclient at the end of your
link command, where dir_path represents the path name of the directory where the client library is
located. To determine the correct directory, try this command:

shell> mysql_config --libs

The output from mysql_config might indicate other libraries that should be specified on the link
command as well. You can include mysql_config output directly in your compile or link command
using backticks. For example:

shell> gcc -o progname progname.o `mysql_config --libs`

If an error occurs at link time that the floor symbol is undefined, link to the math library by adding -
lm to the end of the compile/link line. Similarly, if you get undefined-reference errors for other functions
that should exist on your system, such as connect(), check the manual page for the function in
question to determine which libraries you should add to the link command.

If you get undefined-reference errors such as the following for functions that do not exist on your
system, it usually means that your MySQL client library was compiled on a system that is not 100%
compatible with yours:

mf_format.o(.text+0x201): undefined reference to `__lxstat'

In this case, you should download the latest MySQL or MySQL Connector/C source distribution and
compile the MySQL client library yourself. See Section 2.8, “Installing MySQL from Source”, and
MySQL Connector/C Developer Guide.

21.8.4.2 Writing C API Threaded Client Programs

The client library is almost thread-safe. The biggest problem is that the subroutines in net.c that read
from sockets are not interrupt-safe. This was done with the thought that you might want to have your
own alarm that can break a long read to a server. If you install interrupt handlers for the SIGPIPE
interrupt, socket handling should be thread-safe.

To avoid aborting the program when a connection terminates, MySQL blocks SIGPIPE on the first call
to mysql_library_init(), mysql_init(), or mysql_connect(). To use your own SIGPIPE
handler, first call mysql_library_init(), then install your handler.

If “undefined symbol” errors occur when linking against the libmysqlclient client library, in most
cases this is because you have not included the thread libraries on the link/compile command.

The client library is thread-safe per connection. You can let two threads share the same connection
with the following caveats:

• Multiple threads cannot send a query to the MySQL server at the same time on the same
connection. In particular, you must ensure that between calls to mysql_query() and
mysql_store_result() in one thread, no other thread uses the same connection. You must
have a mutex lock around your pair of mysql_query() and mysql_store_result() calls. After
mysql_store_result() returns, the lock can be released and other threads may query the same
connection.

If you use POSIX threads, you can use pthread_mutex_lock() and
pthread_mutex_unlock() to establish and release a mutex lock.

• Many threads can access different result sets that are retrieved with mysql_store_result().

http://dev.mysql.com/doc/connector-c/en/index.html

Building and Running C API Client Programs

2468

• To use mysql_use_result(), you must ensure that no other thread is using the same connection
until the result set is closed. However, it really is best for threaded clients that share the same
connection to use mysql_store_result().

You need to know the following if you have a thread that did not create the connection to the MySQL
database but is calling MySQL functions:

When you call mysql_init(), MySQL creates a thread-specific variable for the thread that is used
by the debug library (among other things). If you call a MySQL function before the thread has called
mysql_init(), the thread does not have the necessary thread-specific variables in place and you are
likely to end up with a core dump sooner or later. To avoid problems, you must do the following:

1. Call mysql_library_init() before any other MySQL functions. It is not thread-safe, so call it
before threads are created, or protect the call with a mutex.

2. Arrange for mysql_thread_init() to be called early in the thread handler before calling any
MySQL function. If you call mysql_init(), it will call mysql_thread_init() for you.

3. In the thread, call mysql_thread_end() before calling pthread_exit(). This frees the
memory used by MySQL thread-specific variables.

The preceding notes regarding mysql_init() also apply to mysql_connect(), which calls
mysql_init().

21.8.4.3 Running C API Client Programs

If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, the programs were probably compiled using old header
or library files. In this case, check the date of the mysql.h file and libmysqlclient.a library used
for compilation to verify that they are from the new MySQL distribution. If not, recompile the programs
with the new headers and libraries. Recompilation might also be necessary for programs compiled
against the shared client library if the library major version number has changed (for example, from
libmysqlclient.so.17 to libmysqlclient.so.18).

The major client library version determines compatibility. (For example, for
libmysqlclient.so.18.1.0, the major version is 18.) For this reason, the libraries shipped
with newer versions of MySQL are drop-in replacements for older versions that have the same
major number. As long as the major library version is the same, you can upgrade the library and old
applications should continue to work with it.

Undefined-reference errors might occur at runtime when you try to execute a MySQL program. If these
errors specify symbols that start with mysql_ or indicate that the libmysqlclient library cannot be
found, it means that your system cannot find the shared libmysqlclient.so library. The solution
to this problem is to tell your system to search for shared libraries in the directory where that library is
located. Use whichever of the following methods is appropriate for your system:

• Add the path of the directory where libmysqlclient.so is located to the LD_LIBRARY_PATH or
LD_LIBRARY environment variable.

• On Mac OS X, add the path of the directory where libmysqlclient.dylib is located to the
DYLD_LIBRARY_PATH environment variable.

• Copy the shared-library files (such as libmysqlclient.so) to some directory that is searched
by your system, such as /lib, and update the shared library information by executing ldconfig.
Be sure to copy all related files. A shared library might exist under several names, using symlinks to
provide the alternate names.

If the application is linked to the embedded server library, runtime error messages will indicate the
libmysqld rather than libmysqlclient library, but the solution to the problem is the same as just
described.

C API Data Structures

2469

21.8.4.4 C API Server and Client Library Versions

The string and numeric forms of the MySQL server version are available at compile time as the values
of the MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as the values of
the mysql_get_server_info() and mysql_get_server_version() functions.

As of MySQL 5.7.4 and Connector/C 6.1.3, the MySQL client library version depends on the type of
distribution that provides the library:

• For MySQL distributions, the client library version is the MySQL version. The string
and numeric forms of this version are available at compile time as the values of the
MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as the values of the
mysql_get_client_info() and mysql_get_client_version() functions.

The LIBMYSQL_VERSION and LIBMYSQL_VERSION_ID macros have the same values as
MYSQL_SERVER_VERSION and MYSQL_VERSION_ID and the two sets of macros can be used
interchangeably.

• For Connector/C distributions, the client library version is the Connector/C version. The
string and numeric forms of this version are available at compile time as the values of the
LIBMYSQL_VERSION and LIBMYSQL_VERSION_ID macros, and at runtime as the values of the
mysql_get_client_info() and mysql_get_client_version() functions.

The MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros indicate the string and numeric
forms of the MySQL version on which the Connector/C distribution is based.

Prior to MySQL 5.7.4 and Connector/C 6.1.3, the client library version is the MySQL version.
For Connector/C, this is the MySQL version on which the Connector/C distribution is based.
The string and numeric forms of this version are available at compile time as the values of the
MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as the values of the
mysql_get_client_info() and mysql_get_client_version() functions.

The LIBMYSQL_VERSION and LIBMYSQL_VERSION_ID macros are not defined before MySQL 5.7.4
and Connector/C 6.1.3.

21.8.5 C API Data Structures

This section describes C API data structures other than those used for prepared statements. For
information about the latter, see Section 21.8.9, “C API Prepared Statement Data Structures”.

• MYSQL

This structure represents a handle to one database connection. It is used for almost all MySQL
functions. Do not try to make a copy of a MYSQL structure. There is no guarantee that such a copy
will be usable.

• MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW, DESCRIBE,
EXPLAIN). The information returned from a query is called the result set in the remainder of this
section.

• MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of
counted byte strings. (You cannot treat these as null-terminated strings if field values may contain
binary data, because such values may contain null bytes internally.) Rows are obtained by calling
mysql_fetch_row().

• MYSQL_FIELD

C API Data Structures

2470

This structure contains metadata: information about a field, such as the field's name, type, and size.
Its members are described in more detail later in this section. You may obtain the MYSQL_FIELD
structures for each field by calling mysql_fetch_field() repeatedly. Field values are not part of
this structure; they are contained in a MYSQL_ROW structure.

• MYSQL_FIELD_OFFSET

This is a type-safe representation of an offset into a MySQL field list. (Used by
mysql_field_seek().) Offsets are field numbers within a row, beginning at zero.

• my_ulonglong

The type used for the number of rows and for mysql_affected_rows(), mysql_num_rows(),
and mysql_insert_id(). This type provides a range of 0 to 1.84e19.

On some systems, attempting to print a value of type my_ulonglong does not work. To print such a
value, convert it to unsigned long and use a %lu print format. Example:

printf ("Number of rows: %lu\n",
 (unsigned long) mysql_num_rows(result));

• my_bool

A boolean type, for values that are true (nonzero) or false (zero).

The MYSQL_FIELD structure contains the members described in the following list. The definitions apply
primarily for columns of result sets such as those produced by SELECT statements. In MySQL 5.7,
MYSQL_FIELD structures are also used to provide metadata for OUT and INOUT parameters returned
from stored procedures executed using prepared CALL statements. For such parameters, some of the
structure members have a meaning different from the meaning for column values.

• char * name

The name of the field, as a null-terminated string. If the field was given an alias with an AS clause,
the value of name is the alias. For a procedure parameter, the parameter name.

• char * org_name

The name of the field, as a null-terminated string. Aliases are ignored. For expressions, the value is
an empty string. For a procedure parameter, the parameter name.

• char * table

The name of the table containing this field, if it is not a calculated field. For calculated fields, the
table value is an empty string. If the column is selected from a view, table names the view. If the
table or view was given an alias with an AS clause, the value of table is the alias. For a UNION, the
value is the empty string. For a procedure parameter, the procedure name.

• char * org_table

The name of the table, as a null-terminated string. Aliases are ignored. If the column is selected from
a view, org_table names the view. For a UNION, the value is the empty string. For a procedure
parameter, the procedure name.

• char * db

The name of the database that the field comes from, as a null-terminated string. If the field is a
calculated field, db is an empty string. For a UNION, the value is the empty string. For a procedure
parameter, the name of the database containing the procedure.

• char * catalog

C API Data Structures

2471

The catalog name. This value is always "def".

• char * def

The default value of this field, as a null-terminated string. This is set only if you use
mysql_list_fields().

• unsigned long length

The width of the field. This corresponds to the display length, in bytes.

The server determines the length value before it generates the result set, so this is the minimum
length required for a data type capable of holding the largest possible value from the result column,
without knowing in advance the actual values that will be produced by the query for the result set.

• unsigned long max_length

The maximum width of the field for the result set (the length in bytes of the longest field value for the
rows actually in the result set). If you use mysql_store_result() or mysql_list_fields(),
this contains the maximum length for the field. If you use mysql_use_result(), the value of this
variable is zero.

The value of max_length is the length of the string representation of the values in the result set. For
example, if you retrieve a FLOAT column and the “widest” value is -12.345, max_length is 7 (the
length of '-12.345').

If you are using prepared statements, max_length is not set by default because for the binary
protocol the lengths of the values depend on the types of the values in the result set. (See
Section 21.8.9, “C API Prepared Statement Data Structures”.) If you want the max_length values
anyway, enable the STMT_ATTR_UPDATE_MAX_LENGTH option with mysql_stmt_attr_set()
and the lengths will be set when you call mysql_stmt_store_result(). (See Section 21.8.11.3,
“mysql_stmt_attr_set()”, and Section 21.8.11.28, “mysql_stmt_store_result()”.)

• unsigned int name_length

The length of name.

• unsigned int org_name_length

The length of org_name.

• unsigned int table_length

The length of table.

• unsigned int org_table_length

The length of org_table.

• unsigned int db_length

The length of db.

• unsigned int catalog_length

The length of catalog.

• unsigned int def_length

The length of def.

• unsigned int flags

C API Data Structures

2472

Bit-flags that describe the field. The flags value may have zero or more of the bits set that are
shown in the following table.

Flag Value Flag Description

NOT_NULL_FLAG Field cannot be NULL

PRI_KEY_FLAG Field is part of a primary key

UNIQUE_KEY_FLAG Field is part of a unique key

MULTIPLE_KEY_FLAG Field is part of a nonunique key

UNSIGNED_FLAG Field has the UNSIGNED attribute

ZEROFILL_FLAG Field has the ZEROFILL attribute

BINARY_FLAG Field has the BINARY attribute

AUTO_INCREMENT_FLAG Field has the AUTO_INCREMENT attribute

ENUM_FLAG Field is an ENUM

SET_FLAG Field is a SET

BLOB_FLAG Field is a BLOB or TEXT (deprecated)

TIMESTAMP_FLAG Field is a TIMESTAMP (deprecated)

NUM_FLAG Field is numeric; see additional notes following table

NO_DEFAULT_VALUE_FLAG Field has no default value; see additional notes following
table

Some of these flags indicate data type information and are superseded by or used in conjunction
with the MYSQL_TYPE_xxx value in the field->type member described later:

• To check for BLOB or TIMESTAMP values, check whether type is MYSQL_TYPE_BLOB or
MYSQL_TYPE_TIMESTAMP. (The BLOB_FLAG and TIMESTAMP_FLAG flags are unneeded.)

• ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

NUM_FLAG indicates that a column is numeric. This includes columns with a type of
MYSQL_TYPE_DECIMAL, MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_TINY, MYSQL_TYPE_SHORT,
MYSQL_TYPE_LONG, MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, MYSQL_TYPE_NULL,
MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, and MYSQL_TYPE_YEAR.

NO_DEFAULT_VALUE_FLAG indicates that a column has no DEFAULT clause in its definition.
This does not apply to NULL columns (because such columns have a default of NULL), or to
AUTO_INCREMENT columns (which have an implied default value).

The following example illustrates a typical use of the flags value:

if (field->flags & NOT_NULL_FLAG)
 printf("Field cannot be null\n");

You may use the convenience macros shown in the following table to determine the boolean status
of the flags value.

Flag Status Description

IS_NOT_NULL(flags) True if this field is defined as NOT NULL

IS_PRI_KEY(flags) True if this field is a primary key

IS_BLOB(flags) True if this field is a BLOB or TEXT (deprecated; test
field->type instead)

C API Data Structures

2473

• unsigned int decimals

The number of decimals for numeric fields, and the fractional seconds precision for temporal fields.

• unsigned int charsetnr

An ID number that indicates the character set/collation pair for the field.

Normally, character values in result sets are converted to the character set indicated by the
character_set_results system variable. In this case, charsetnr corresponds to the
character set indicated by that variable. Character set conversion can be suppressed by setting
character_set_results to NULL. In this case, charsetnr corresponds to the character set of
the original table column or expression. See also Section 10.1.4, “Connection Character Sets and
Collations”.

To distinguish between binary and nonbinary data for string data types, check whether the
charsetnr value is 63. If so, the character set is binary, which indicates binary rather than
nonbinary data. This enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and
the BLOB types from the TEXT types.

charsetnr values are the same as those displayed in the Id column of the SHOW COLLATION
statement or the ID column of the INFORMATION_SCHEMA COLLATIONS table. You can use those
information sources to see which character set and collation specific charsetnr values indicate:

mysql> SHOW COLLATION WHERE Id = 63;
+-----------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-----------+---------+----+---------+----------+---------+
| binary | binary | 63 | Yes | Yes | 1 |
+-----------+---------+----+---------+----------+---------+

mysql> SELECT COLLATION_NAME, CHARACTER_SET_NAME
 -> FROM INFORMATION_SCHEMA.COLLATIONS WHERE ID = 33;
+-----------------+--------------------+
| COLLATION_NAME | CHARACTER_SET_NAME |
+-----------------+--------------------+
| utf8_general_ci | utf8 |
+-----------------+--------------------+

• enum enum_field_types type

The type of the field. The type value may be one of the MYSQL_TYPE_ symbols shown in the
following table.

Type Value Type Description

MYSQL_TYPE_TINY TINYINT field

MYSQL_TYPE_SHORT SMALLINT field

MYSQL_TYPE_LONG INTEGER field

MYSQL_TYPE_INT24 MEDIUMINT field

MYSQL_TYPE_LONGLONG BIGINT field

MYSQL_TYPE_DECIMAL DECIMAL or NUMERIC field

MYSQL_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC

MYSQL_TYPE_FLOAT FLOAT field

MYSQL_TYPE_DOUBLE DOUBLE or REAL field

MYSQL_TYPE_BIT BIT field

MYSQL_TYPE_TIMESTAMP TIMESTAMP field

MYSQL_TYPE_DATE DATE field

C API Function Overview

2474

Type Value Type Description

MYSQL_TYPE_TIME TIME field

MYSQL_TYPE_DATETIME DATETIME field

MYSQL_TYPE_YEAR YEAR field

MYSQL_TYPE_STRING CHAR or BINARY field

MYSQL_TYPE_VAR_STRING VARCHAR or VARBINARY field

MYSQL_TYPE_BLOB BLOB or TEXT field (use max_length to determine the
maximum length)

MYSQL_TYPE_SET SET field

MYSQL_TYPE_ENUM ENUM field

MYSQL_TYPE_GEOMETRY Spatial field

MYSQL_TYPE_NULL NULL-type field

The MYSQL_TYPE_TIME2, MYSQL_TYPE_DATETIME2, and MYSQL_TYPE_TIMESTAMP2) type codes
are used only on the server side. Clients see the MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME,
and MYSQL_TYPE_TIMESTAMP codes.

You can use the IS_NUM() macro to test whether a field has a numeric type. Pass the type value
to IS_NUM() and it evaluates to TRUE if the field is numeric:

if (IS_NUM(field->type))
 printf("Field is numeric\n");

ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

21.8.6 C API Function Overview

The functions available in the C API are summarized here and described in greater detail in a later
section. See Section 21.8.7, “C API Function Descriptions”.

Table 21.4 C API Function Names and Descriptions

Function Description

my_init() Initialize global variables, and thread handler in thread-safe
programs

mysql_affected_rows() Returns the number of rows changed/deleted/inserted by the last
UPDATE, DELETE, or INSERT query

mysql_autocommit() Toggles autocommit mode on/off

mysql_change_user() Changes user and database on an open connection

mysql_character_set_name()Return default character set name for current connection

mysql_client_find_plugin()Return pointer to plugin

mysql_client_register_plugin()Register a plugin

mysql_close() Closes a server connection

mysql_commit() Commits the transaction

mysql_connect() Connects to a MySQL server (this function is deprecated; use
mysql_real_connect() instead)

mysql_create_db() Creates a database (this function is deprecated; use the SQL
statement CREATE DATABASE instead)

mysql_data_seek() Seeks to an arbitrary row number in a query result set

C API Function Overview

2475

Function Description

mysql_debug() Does a DBUG_PUSH with the given string

mysql_drop_db() Drops a database (this function is deprecated; use the SQL
statement DROP DATABASE instead)

mysql_dump_debug_info() Makes the server write debug information to the log

mysql_eof() Determines whether the last row of a result set has been read (this
function is deprecated; mysql_errno() or mysql_error() may
be used instead)

mysql_errno() Returns the error number for the most recently invoked MySQL
function

mysql_error() Returns the error message for the most recently invoked MySQL
function

mysql_escape_string() Escapes special characters in a string for use in an SQL statement

mysql_fetch_field() Returns the type of the next table field

mysql_fetch_field_direct()Returns the type of a table field, given a field number

mysql_fetch_fields() Returns an array of all field structures

mysql_fetch_lengths() Returns the lengths of all columns in the current row

mysql_fetch_row() Fetches the next row from the result set

mysql_field_count() Returns the number of result columns for the most recent statement

mysql_field_seek() Puts the column cursor on a specified column

mysql_field_tell() Returns the position of the field cursor used for the last
mysql_fetch_field()

mysql_free_result() Frees memory used by a result set

mysql_get_character_set_info()Return information about default character set

mysql_get_client_info() Returns client version information as a string

mysql_get_client_version()Returns client version information as an integer

mysql_get_host_info() Returns a string describing the connection

mysql_get_option() Returns the value of a mysql_options() option

mysql_get_proto_info() Returns the protocol version used by the connection

mysql_get_server_info() Returns the server version number

mysql_get_server_version()Returns version number of server as an integer

mysql_get_ssl_cipher() Return current SSL cipher

mysql_hex_string() Encode string in hexadecimal format

mysql_info() Returns information about the most recently executed query

mysql_init() Gets or initializes a MYSQL structure

mysql_insert_id() Returns the ID generated for an AUTO_INCREMENT column by the
previous query

mysql_kill() Kills a given thread

mysql_library_end() Finalize the MySQL C API library

mysql_library_init() Initialize the MySQL C API library

mysql_list_dbs() Returns database names matching a simple regular expression

mysql_list_fields() Returns field names matching a simple regular expression

mysql_list_processes() Returns a list of the current server threads

mysql_list_tables() Returns table names matching a simple regular expression

C API Function Overview

2476

Function Description

mysql_load_plugin() Load a plugin

mysql_load_plugin_v() Load a plugin

mysql_more_results() Checks whether any more results exist

mysql_next_result() Returns/initiates the next result in multiple-result executions

mysql_num_fields() Returns the number of columns in a result set

mysql_num_rows() Returns the number of rows in a result set

mysql_options() Sets connect options for mysql_real_connect()

mysql_options4() Sets connect options for mysql_real_connect()

mysql_ping() Checks whether the connection to the server is working,
reconnecting as necessary

mysql_plugin_options() Set a plugin option

mysql_query() Executes an SQL query specified as a null-terminated string

mysql_real_connect() Connects to a MySQL server

mysql_real_escape_string()Escapes special characters in a string for use in an SQL statement,
taking into account the current character set of the connection

mysql_real_query() Executes an SQL query specified as a counted string

mysql_refresh() Flush or reset tables and caches

mysql_reload() Tells the server to reload the grant tables

mysql_reset_connection() Reset connection to clear session state

mysql_rollback() Rolls back the transaction

mysql_row_seek() Seeks to a row offset in a result set, using value returned from
mysql_row_tell()

mysql_row_tell() Returns the row cursor position

mysql_select_db() Selects a database

mysql_server_end() Finalize the MySQL C API library

mysql_server_init() Initialize the MySQL C API library

mysql_session_track_get_first()Get first part of session state-change information

mysql_session_track_get_next()Get next part of session state-change information

mysql_set_character_set()Set default character set for current connection

mysql_set_local_infile_default()Set the LOAD DATA LOCAL INFILE handler callbacks to their
default values

mysql_set_local_infile_handler()Install application-specific LOAD DATA LOCAL INFILE handler
callbacks

mysql_set_server_option()Sets an option for the connection (like multi-statements)

mysql_sqlstate() Returns the SQLSTATE error code for the last error

mysql_shutdown() Shuts down the database server

mysql_ssl_set() Prepare to establish SSL connection to server

mysql_stat() Returns the server status as a string

mysql_store_result() Retrieves a complete result set to the client

mysql_thread_end() Finalize thread handler

mysql_thread_id() Returns the current thread ID

mysql_thread_init() Initialize thread handler

C API Function Overview

2477

Function Description

mysql_thread_safe() Returns 1 if the clients are compiled as thread-safe

mysql_use_result() Initiates a row-by-row result set retrieval

mysql_warning_count() Returns the warning count for the previous SQL statement

Application programs should use this general outline for interacting with MySQL:

1. Initialize the MySQL library by calling mysql_library_init(). This function exists in both the
libmysqlclient C client library and the libmysqld embedded server library, so it is used
whether you build a regular client program by linking with the -libmysqlclient flag, or an
embedded server application by linking with the -libmysqld flag.

2. Initialize a connection handler by calling mysql_init() and connect to the server by calling
mysql_real_connect().

3. Issue SQL statements and process their results. (The following discussion provides more
information about how to do this.)

4. Close the connection to the MySQL server by calling mysql_close().

5. End use of the MySQL library by calling mysql_library_end().

The purpose of calling mysql_library_init() and mysql_library_end() is to provide proper
initialization and finalization of the MySQL library. For applications that are linked with the client library,
they provide improved memory management. If you do not call mysql_library_end(), a block of
memory remains allocated. (This does not increase the amount of memory used by the application, but
some memory leak detectors will complain about it.) For applications that are linked with the embedded
server, these calls start and stop the server.

In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any
threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or
indirectly through mysql_init(). This should be done prior to any other client library call.

To connect to the server, call mysql_init() to initialize a connection handler, then call
mysql_real_connect() with that handler (along with other information such as the host name, user
name, and password). Upon connection, mysql_real_connect() sets the reconnect flag (part of
the MYSQL structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A
value of 1 for this flag indicates that if a statement cannot be performed because of a lost connection,
to try reconnecting to the server before giving up. You can use the MYSQL_OPT_RECONNECT option
to mysql_options() to control reconnection behavior. When you are done with the connection, call
mysql_close() to terminate it.

While a connection is active, the client may send SQL statements to the server using mysql_query()
or mysql_real_query(). The difference between the two is that mysql_query() expects the query
to be specified as a null-terminated string whereas mysql_real_query() expects a counted string. If
the string contains binary data (which may include null bytes), you must use mysql_real_query().

For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how many
rows were changed (affected) by calling mysql_affected_rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are
SELECT-like in that they return rows. These include SHOW, DESCRIBE, and EXPLAIN. Treat these
statements the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at
once by calling mysql_store_result(). This function acquires from the server all the rows returned

C API Function Descriptions

2478

by the query and stores them in the client. The second way is for the client to initiate a row-by-row
result set retrieval by calling mysql_use_result(). This function initializes the retrieval, but does not
actually get any rows from the server.

In both cases, you access rows by calling mysql_fetch_row(). With mysql_store_result(),
mysql_fetch_row() accesses rows that have previously been fetched from the server. With
mysql_use_result(), mysql_fetch_row() actually retrieves the row from the server. Information
about the size of the data in each row is available by calling mysql_fetch_lengths().

After you are done with a result set, call mysql_free_result() to free the memory used for it.

The two retrieval mechanisms are complementary. Choose the approach that is most appropriate for
each client application. In practice, clients tend to use mysql_store_result() more commonly.

An advantage of mysql_store_result() is that because the rows have all been fetched to the
client, you not only can access rows sequentially, you can move back and forth in the result set using
mysql_data_seek() or mysql_row_seek() to change the current row position within the result set.
You can also find out how many rows there are by calling mysql_num_rows(). On the other hand,
the memory requirements for mysql_store_result() may be very high for large result sets and you
are more likely to encounter out-of-memory conditions.

An advantage of mysql_use_result() is that the client requires less memory for the result
set because it maintains only one row at a time (and because there is less allocation overhead,
mysql_use_result() can be faster). Disadvantages are that you must process each row quickly to
avoid tying up the server, you do not have random access to rows within the result set (you can only
access rows sequentially), and the number of rows in the result set is unknown until you have retrieved
them all. Furthermore, you must retrieve all the rows even if you determine in mid-retrieval that you've
found the information you were looking for.

The API makes it possible for clients to respond appropriately to statements (retrieving rows
only as necessary) without knowing whether the statement is a SELECT. You can do this by
calling mysql_store_result() after each mysql_query() (or mysql_real_query()).
If the result set call succeeds, the statement was a SELECT and you can read the rows. If the
result set call fails, call mysql_field_count() to determine whether a result was actually
to be expected. If mysql_field_count() returns zero, the statement returned no data
(indicating that it was an INSERT, UPDATE, DELETE, and so forth), and was not expected to
return rows. If mysql_field_count() is nonzero, the statement should have returned rows,
but did not. This indicates that the statement was a SELECT that failed. See the description for
mysql_field_count() for an example of how this can be done.

Both mysql_store_result() and mysql_use_result() enable you to obtain information about
the fields that make up the result set (the number of fields, their names and types, and so forth). You
can access field information sequentially within the row by calling mysql_fetch_field() repeatedly,
or by field number within the row by calling mysql_fetch_field_direct(). The current field
cursor position may be changed by calling mysql_field_seek(). Setting the field cursor affects
subsequent calls to mysql_fetch_field(). You can also get information for fields all at once by
calling mysql_fetch_fields().

For detecting and reporting errors, MySQL provides access to error information by means of the
mysql_errno() and mysql_error() functions. These return the error code or error message for
the most recently invoked function that can succeed or fail, enabling you to determine when an error
occurred and what it was.

21.8.7 C API Function Descriptions

In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C
programming language, not a MySQL NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise,
functions returning a pointer return a non-NULL value to indicate success or a NULL value to indicate

C API Function Descriptions

2479

an error, and functions returning an integer return zero to indicate success or nonzero to indicate an
error. Note that “nonzero” means just that. Unless the function description says otherwise, do not test
against a value other than zero:

if (result) /* correct */
 ... error ...

if (result < 0) /* incorrect */
 ... error ...

if (result == -1) /* incorrect */
 ... error ...

When a function returns an error, the Errors subsection of the function description lists the possible
types of errors. You can find out which of these occurred by calling mysql_errno(). A string
representation of the error may be obtained by calling mysql_error().

21.8.7.1 mysql_affected_rows()

my_ulonglong mysql_affected_rows(MYSQL *mysql)

Description

mysql_affected_rows() may be called immediately after executing a statement with
mysql_query() or mysql_real_query(). It returns the number of rows changed, deleted, or
inserted by the last statement if it was an UPDATE, DELETE, or INSERT. For SELECT statements,
mysql_affected_rows() works like mysql_num_rows().

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If
you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld,
the affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if
the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its
current values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if an
existing row is set to its current values.

Following a CALL statement for a stored procedure, mysql_affected_rows() returns the value
that it would return for the last statement executed within the procedure, or 0 if that statement would
return -1. Within the procedure, you can use ROW_COUNT() at the SQL level to obtain the affected-
rows value for individual statements.

In MySQL 5.7, mysql_affected_rows() returns a meaningful value for a wider range of statements.
For details, see the description for ROW_COUNT() in Section 12.14, “Information Functions”.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or
that no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT
query, mysql_affected_rows() was called prior to calling mysql_store_result().

Because mysql_affected_rows() returns an unsigned value, you can check for -1 by comparing
the return value to (my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).

Errors

None.

C API Function Descriptions

2480

Example

char *stmt = "UPDATE products SET cost=cost*1.25
 WHERE group=10";
mysql_query(&mysql,stmt);
printf("%ld products updated",
 (long) mysql_affected_rows(&mysql));

21.8.7.2 mysql_autocommit()

my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)

Description

Sets autocommit mode on if mode is 1, off if mode is 0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

21.8.7.3 mysql_change_user()

my_bool mysql_change_user(MYSQL *mysql, const char *user, const char
*password, const char *db)

Description

Changes the user and causes the database specified by db to become the default (current) database
on the connection specified by mysql. In subsequent queries, this database is the default for table
references that include no explicit database specifier.

mysql_change_user() fails if the connected user cannot be authenticated or does not have
permission to use the database. In this case, the user and database are not changed.

Pass a db parameter of NULL if you do not want to have a default database.

This function resets the session state as if one had done a new connect and reauthenticated. (See
Section 21.8.16, “Controlling Automatic Reconnection Behavior”.) It always performs a ROLLBACK of
any active transactions, closes and drops all temporary tables, and unlocks all locked tables. Session
system variables are reset to the values of the corresponding global system variables. Prepared
statements are released and HANDLER variables are closed. Locks acquired with GET_LOCK() are
released. These effects occur even if the user did not change.

To reset the connection state in a more lightweight manner without changing the user, use
mysql_reset_connection().

Return Values

Zero for success. Nonzero if an error occurred.

Errors

The same that you can get from mysql_real_connect(), plus:

• CR_COMMANDS_OUT_OF_SYNC

C API Function Descriptions

2481

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• ER_UNKNOWN_COM_ERROR

The MySQL server does not implement this command (probably an old server).

• ER_ACCESS_DENIED_ERROR

The user or password was wrong.

• ER_BAD_DB_ERROR

The database did not exist.

• ER_DBACCESS_DENIED_ERROR

The user did not have access rights to the database.

• ER_WRONG_DB_NAME

The database name was too long.

Example

if (mysql_change_user(&mysql, "user", "password", "new_database"))
{
 fprintf(stderr, "Failed to change user. Error: %s\n",
 mysql_error(&mysql));
}

21.8.7.4 mysql_character_set_name()

const char *mysql_character_set_name(MYSQL *mysql)

Description

Returns the default character set name for the current connection.

Return Values

The default character set name

Errors

None.

21.8.7.5 mysql_close()

void mysql_close(MYSQL *mysql)

C API Function Descriptions

2482

Description

Closes a previously opened connection. mysql_close() also deallocates the connection
handle pointed to by mysql if the handle was allocated automatically by mysql_init() or
mysql_connect().

Return Values

None.

Errors

None.

21.8.7.6 mysql_commit()

my_bool mysql_commit(MYSQL *mysql)

Description

Commits the current transaction.

The action of this function is subject to the value of the completion_type system variable. In
particular, if the value of completion_type is RELEASE (or 2), the server performs a release after
terminating a transaction and closes the client connection. Call mysql_close() from the client
program to close the connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

21.8.7.7 mysql_connect()

MYSQL *mysql_connect(MYSQL *mysql, const char *host, const char *user, const
char *passwd)

Description

This function is deprecated. Use mysql_real_connect() instead.

mysql_connect() attempts to establish a connection to a MySQL database engine running on
host. mysql_connect() must complete successfully before you can execute any of the other API
functions, with the exception of mysql_get_client_info().

The meanings of the parameters are the same as for the corresponding parameters for
mysql_real_connect() with the difference that the connection parameter may be NULL. In this
case, the C API allocates memory for the connection structure automatically and frees it when you call
mysql_close(). The disadvantage of this approach is that you cannot retrieve an error message if
the connection fails. (To get error information from mysql_errno() or mysql_error(), you must
provide a valid MYSQL pointer.)

Return Values

Same as for mysql_real_connect().

Errors

Same as for mysql_real_connect().

C API Function Descriptions

2483

21.8.7.8 mysql_create_db()

int mysql_create_db(MYSQL *mysql, const char *db)

Description

Creates the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL CREATE
DATABASE statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_create_db(&mysql, "my_database"))
{
 fprintf(stderr, "Failed to create new database. Error: %s\n",
 mysql_error(&mysql));
}

21.8.7.9 mysql_data_seek()

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)

Description

Seeks to an arbitrary row in a query result set. The offset value is a row number. Specify a value in
the range from 0 to mysql_num_rows(result)-1.

This function requires that the result set structure contains the entire result of the query, so
mysql_data_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

None.

Errors

None.

C API Function Descriptions

2484

21.8.7.10 mysql_debug()

void mysql_debug(const char *debug)

Description

Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To use
this function, you must compile the client library to support debugging. See Section 22.4.3, “The DBUG
Package”.

Return Values

None.

Errors

None.

Example

The call shown here causes the client library to generate a trace file in /tmp/client.trace on the
client machine:

mysql_debug("d:t:O,/tmp/client.trace");

21.8.7.11 mysql_drop_db()

int mysql_drop_db(MYSQL *mysql, const char *db)

Description

Drops the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL DROP DATABASE
statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

C API Function Descriptions

2485

if(mysql_drop_db(&mysql, "my_database"))
 fprintf(stderr, "Failed to drop the database: Error: %s\n",
 mysql_error(&mysql));

21.8.7.12 mysql_dump_debug_info()

int mysql_dump_debug_info(MYSQL *mysql)

Description

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.13 mysql_eof()

my_bool mysql_eof(MYSQL_RES *result)

Description

This function is deprecated. mysql_errno() or mysql_error() may be used instead.

mysql_eof() determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to mysql_store_result(), the client receives the
entire set in one operation. In this case, a NULL return from mysql_fetch_row() always means the
end of the result set has been reached and it is unnecessary to call mysql_eof(). When used with
mysql_store_result(), mysql_eof() always returns true.

On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the rows of
the set are obtained from the server one by one as you call mysql_fetch_row() repeatedly.
Because an error may occur on the connection during this process, a NULL return value from
mysql_fetch_row() does not necessarily mean the end of the result set was reached normally. In
this case, you can use mysql_eof() to determine what happened. mysql_eof() returns a nonzero
value if the end of the result set was reached and zero if an error occurred.

Historically, mysql_eof() predates the standard MySQL error functions mysql_errno()
and mysql_error(). Because those error functions provide the same information, their use is
preferred over mysql_eof(), which is deprecated. (In fact, they provide more information, because

C API Function Descriptions

2486

mysql_eof() returns only a boolean value whereas the error functions indicate a reason for the error
when one occurs.)

Return Values

Zero for success. Nonzero if the end of the result set has been reached.

Errors

None.

Example

The following example shows how you might use mysql_eof():

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
 // do something with data
}
if(!mysql_eof(result)) // mysql_fetch_row() failed due to an error
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
 // do something with data
}
if(mysql_errno(&mysql)) // mysql_fetch_row() failed due to an error
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

21.8.7.14 mysql_errno()

unsigned int mysql_errno(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_errno() returns the error code for the most recently
invoked API function that can succeed or fail. A return value of zero means that no error occurred.
Client error message numbers are listed in the MySQL errmsg.h header file. Server error message
numbers are listed in mysqld_error.h. Errors also are listed at Appendix C, Errors, Error Codes, and
Common Problems.

Note that some functions like mysql_fetch_row() do not set mysql_errno() if they succeed.

A rule of thumb is that all functions that have to ask the server for information reset mysql_errno() if
they succeed.

MySQL-specific error numbers returned by mysql_errno() differ from SQLSTATE values
returned by mysql_sqlstate(). For example, the mysql client program displays errors using
the following format, where 1146 is the mysql_errno() value and '42S02' is the corresponding
mysql_sqlstate() value:

C API Function Descriptions

2487

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

An error code value for the last mysql_xxx() call, if it failed. zero means no error occurred.

Errors

None.

21.8.7.15 mysql_error()

const char *mysql_error(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_error() returns a null-terminated string containing
the error message for the most recently invoked API function that failed. If a function did not fail, the
return value of mysql_error() may be the previous error or an empty string to indicate no error.

A rule of thumb is that all functions that have to ask the server for information reset mysql_error() if
they succeed.

For functions that reset mysql_error(), either of these two tests can be used to check for an error:

if(*mysql_error(&mysql))
{
 // an error occurred
}

if(mysql_error(&mysql)[0])
{
 // an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client library.
Currently, you can choose error messages in several different languages. See Section 10.2, “Setting
the Error Message Language”.

Return Values

A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

21.8.7.16 mysql_escape_string()

Use mysql_real_escape_string() instead!

This function is identical to mysql_real_escape_string() except that
mysql_real_escape_string() takes a connection handler as its first argument and escapes the
string according to the current character set. mysql_escape_string() does not take a connection
argument and does not respect the current character set.

21.8.7.17 mysql_fetch_field()

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)

C API Function Descriptions

2488

Description

Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this function
repeatedly to retrieve information about all columns in the result set. mysql_fetch_field() returns
NULL when no more fields are left.

mysql_fetch_field() is reset to return information about the first field each time you execute
a new SELECT query. The field returned by mysql_fetch_field() is also affected by calls to
mysql_field_seek().

If you've called mysql_query() to perform a SELECT on a table but have not called
mysql_store_result(), MySQL returns the default blob length (8KB) if you call
mysql_fetch_field() to ask for the length of a BLOB field. (The 8KB size is chosen because
MySQL does not know the maximum length for the BLOB. This should be made configurable
sometime.) Once you've retrieved the result set, field->max_length contains the length of the
largest value for this column in the specific query.

Return Values

The MYSQL_FIELD structure for the current column. NULL if no columns are left.

Errors

None.

Example

MYSQL_FIELD *field;

while((field = mysql_fetch_field(result)))
{
 printf("field name %s\n", field->name);
}

21.8.7.18 mysql_fetch_field_direct()

MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result, unsigned int
fieldnr)

Description

Given a field number fieldnr for a column within a result set, returns that column's field definition as
a MYSQL_FIELD structure. Use this function to retrieve the definition for an arbitrary column. Specify a
value for fieldnr in the range from 0 to mysql_num_fields(result)-1.

Return Values

The MYSQL_FIELD structure for the specified column.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;

num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{

C API Function Descriptions

2489

 field = mysql_fetch_field_direct(result, i);
 printf("Field %u is %s\n", i, field->name);
}

21.8.7.19 mysql_fetch_fields()

MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)

Description

Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides the field
definition for one column of the result set.

Return Values

An array of MYSQL_FIELD structures for all columns of a result set.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;

num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{
 printf("Field %u is %s\n", i, fields[i].name);
}

21.8.7.20 mysql_fetch_lengths()

unsigned long *mysql_fetch_lengths(MYSQL_RES *result)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field
values, this length information is also useful for optimization, because you can avoid calling strlen().
In addition, if the result set contains binary data, you must use this function to determine the size of the
data, because strlen() returns incorrect results for any field containing null characters.

The length for empty columns and for columns containing NULL values is zero. To see how to
distinguish these two cases, see the description for mysql_fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminating
null characters). NULL if an error occurred.

Errors

mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL if you call
it before calling mysql_fetch_row() or after retrieving all rows in the result.

Example

MYSQL_ROW row;
unsigned long *lengths;

C API Function Descriptions

2490

unsigned int num_fields;
unsigned int i;

row = mysql_fetch_row(result);
if (row)
{
 num_fields = mysql_num_fields(result);
 lengths = mysql_fetch_lengths(result);
 for(i = 0; i < num_fields; i++)
 {
 printf("Column %u is %lu bytes in length.\n",
 i, lengths[i]);
 }
}

21.8.7.21 mysql_fetch_row()

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Description

Retrieves the next row of a result set. When used after mysql_store_result(),
mysql_fetch_row() returns NULL when there are no more rows to retrieve. When used after
mysql_use_result(), mysql_fetch_row() returns NULL when there are no more rows to retrieve
or if an error occurred.

The number of values in the row is given by mysql_num_fields(result). If row holds the
return value from a call to mysql_fetch_row(), pointers to the values are accessed as row[0] to
row[mysql_num_fields(result)-1]. NULL values in the row are indicated by NULL pointers.

The lengths of the field values in the row may be obtained by calling mysql_fetch_lengths().
Empty fields and fields containing NULL both have length 0; you can distinguish these by checking the
pointer for the field value. If the pointer is NULL, the field is NULL; otherwise, the field is empty.

Return Values

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve or if an error
occurred.

Errors

Note that error is not reset between calls to mysql_fetch_row()

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;

num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{
 unsigned long *lengths;
 lengths = mysql_fetch_lengths(result);
 for(i = 0; i < num_fields; i++)
 {
 printf("[%.*s] ", (int) lengths[i],

C API Function Descriptions

2491

 row[i] ? row[i] : "NULL");
 }
 printf("\n");
}

21.8.7.22 mysql_field_count()

unsigned int mysql_field_count(MYSQL *mysql)

Description

Returns the number of columns for the most recent query on the connection.

The normal use of this function is when mysql_store_result() returned NULL (and thus you
have no result set pointer). In this case, you can call mysql_field_count() to determine whether
mysql_store_result() should have produced a nonempty result. This enables the client program
to take proper action without knowing whether the query was a SELECT (or SELECT-like) statement.
The example shown here illustrates how this may be done.

See Section 21.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After
mysql_query() Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{
 // error
}
else // query succeeded, process any data returned by it
{
 result = mysql_store_result(&mysql);
 if (result) // there are rows
 {
 num_fields = mysql_num_fields(result);
 // retrieve rows, then call mysql_free_result(result)
 }
 else // mysql_store_result() returned nothing; should it have?
 {
 if(mysql_field_count(&mysql) == 0)
 {
 // query does not return data
 // (it was not a SELECT)
 num_rows = mysql_affected_rows(&mysql);
 }
 else // mysql_store_result() should have returned data
 {
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 }
 }
}

An alternative is to replace the mysql_field_count(&mysql) call with mysql_errno(&mysql).
In this case, you are checking directly for an error from mysql_store_result() rather than inferring
from the value of mysql_field_count() whether the statement was a SELECT.

C API Function Descriptions

2492

21.8.7.23 mysql_field_seek()

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result, MYSQL_FIELD_OFFSET
offset)

Description

Sets the field cursor to the given offset. The next call to mysql_fetch_field() retrieves the field
definition of the column associated with that offset.

To seek to the beginning of a row, pass an offset value of zero.

Return Values

The previous value of the field cursor.

Errors

None.

21.8.7.24 mysql_field_tell()

MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last mysql_fetch_field(). This value can be
used as an argument to mysql_field_seek().

Return Values

The current offset of the field cursor.

Errors

None.

21.8.7.25 mysql_free_result()

void mysql_free_result(MYSQL_RES *result)

Description

Frees the memory allocated for a result set by mysql_store_result(), mysql_use_result(),
mysql_list_dbs(), and so forth. When you are done with a result set, you must free the memory it
uses by calling mysql_free_result().

Do not attempt to access a result set after freeing it.

Return Values

None.

Errors

None.

21.8.7.26 mysql_get_character_set_info()

void mysql_get_character_set_info(MYSQL *mysql, MY_CHARSET_INFO *cs)

C API Function Descriptions

2493

Description

This function provides information about the default client character set. The default character set may
be changed with the mysql_set_character_set() function.

Example

This example shows the fields that are available in the MY_CHARSET_INFO structure:

if (!mysql_set_character_set(&mysql, "utf8"))
{
 MY_CHARSET_INFO cs;
 mysql_get_character_set_info(&mysql, &cs);
 printf("character set information:\n");
 printf("character set+collation number: %d\n", cs.number);
 printf("character set name: %s\n", cs.name);
 printf("collation name: %s\n", cs.csname);
 printf("comment: %s\n", cs.comment);
 printf("directory: %s\n", cs.dir);
 printf("multi byte character min. length: %d\n", cs.mbminlen);
 printf("multi byte character max. length: %d\n", cs.mbmaxlen);
}

21.8.7.27 mysql_get_client_info()

const char *mysql_get_client_info(void)

Description

Returns a string that represents the MySQL client library version; for example, "5.7.5".

As of MySQL 5.7.4 and Connector/C 6.1.3, the function value is the version of MySQL or Connector/
C that provides the client library. Before MySQL 5.7.4 and Connector/C 6.1.3, the function value is the
MySQL version. For Connector/C, this is the MySQL version on which the Connector/C distribution is
based. For more information, see Section 21.8.4.4, “C API Server and Client Library Versions”.

Return Values

A character string that represents the MySQL client library version.

Errors

None.

21.8.7.28 mysql_get_client_version()

unsigned long mysql_get_client_version(void)

Description

Returns an integer that represents the MySQL client library version. The value has the format XYYZZ
where X is the major version, YY is the release level (or minor version), and ZZ is the sub-version within
the release level:

major_version*10000 + release_level*100 + sub_version

For example, "5.7.5" is returned as 50705.

As of MySQL 5.7.4 and Connector/C 6.1.3, the function value is the version of MySQL or Connector/
C that provides the client library. Before MySQL 5.7.4 and Connector/C 6.1.3, the function value is the
MySQL version. For Connector/C, this is the MySQL version on which the Connector/C distribution is
based. For more information, see Section 21.8.4.4, “C API Server and Client Library Versions”.

C API Function Descriptions

2494

Return Values

An integer that represents the MySQL client library version.

Errors

None.

21.8.7.29 mysql_get_host_info()

const char *mysql_get_host_info(MYSQL *mysql)

Description

Returns a string describing the type of connection in use, including the server host name.

Return Values

A character string representing the server host name and the connection type.

Errors

None.

21.8.7.30 mysql_get_option()

int mysql_get_option(MYSQL *mysql, enum mysql_option option, const void
*arg)

Description

Returns the current value of an option settable using mysql_options(). The value should be treated
as read only. This function was added in MySQL 5.7.3.

The option argument is the option for which you want its value. The arg argument is a pointer to a
variable in which to store the option value. arg must be a pointer to a variable of the type appropriate
for the option argument. The following table shows which variable type to use for each option value.

arg Type Applicable option Values

unsigned int MYSQL_OPT_CONNECT_TIMEOUT, MYSQL_OPT_PROTOCOL,
MYSQL_OPT_READ_TIMEOUT, MYSQL_OPT_WRITE_TIMEOUT

my_bool MYSQL_ENABLE_CLEARTEXT_PLUGIN,
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS,
MYSQL_OPT_COMPRESS, MYSQL_OPT_GUESS_CONNECTION,
MYSQL_OPT_LOCAL_INFILE, MYSQL_OPT_RECONNECT,
MYSQL_OPT_SSL_ENFORCE, MYSQL_OPT_SSL_VERIFY_SERVER_CERT,
MYSQL_OPT_USE_EMBEDDED_CONNECTION,
MYSQL_OPT_USE_REMOTE_CONNECTION,
MYSQL_REPORT_DATA_TRUNCATION, MYSQL_SECURE_AUTH

const char * MYSQL_DEFAULT_AUTH, MYSQL_OPT_BIND, MYSQL_OPT_SSL_CA,
MYSQL_OPT_SSL_CAPATH , MYSQL_OPT_SSL_CERT,
MYSQL_OPT_SSL_CIPHER, MYSQL_OPT_SSL_CRL,
MYSQL_OPT_SSL_CRLPATH, MYSQL_OPT_SSL_KEY, MYSQL_PLUGIN_DIR,
MYSQL_READ_DEFAULT_FILE, MYSQL_READ_DEFAULT_GROUP,
MYSQL_SERVER_PUBLIC_KEY, MYSQL_SET_CHARSET_DIR,
MYSQL_SET_CHARSET_NAME, MYSQL_SET_CLIENT_IP,
MYSQL_SHARED_MEMORY_BASE_NAME

C API Function Descriptions

2495

arg Type Applicable option Values

cannot be queried
(error is returned)

MYSQL_INIT_COMMAND, MYSQL_OPT_CONNECT_ATTR_DELETE,
MYSQL_OPT_CONNECT_ATTR_RESET, MYSQL_OPT_NAMED_PIPE

Return Values

Zero for success. Nonzero if an error occurred; this occurs for option values that cannot be queried.

Example

The following call tests the MYSQL_OPT_RECONNECT option. After the call returns successfully, the
value of reconnect is true or false to indicate whether automatic reconnection is enabled.

my_bool reconnect;

if (mysql_get_option(mysql, MYSQL_OPT_RECONNECT, &reconnect))
 fprintf(stderr, "mysql_get_options() failed\n");

21.8.7.31 mysql_get_proto_info()

unsigned int mysql_get_proto_info(MYSQL *mysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors

None.

21.8.7.32 mysql_get_server_info()

const char *mysql_get_server_info(MYSQL *mysql)

Description

Returns a string that represents the MySQL server version; for example, "5.7.5".

Return Values

A character string that represents the MySQL server version.

Errors

None.

21.8.7.33 mysql_get_server_version()

unsigned long mysql_get_server_version(MYSQL *mysql)

Description

Returns an integer that represents the MySQL server version. The value has the format XYYZZ where
X is the major version, YY is the release level (or minor version), and ZZ is the sub-version within the
release level:

C API Function Descriptions

2496

major_version*10000 + release_level*100 + sub_version

For example, "5.7.5" is returned as 50705.

This function is useful in client programs for determining whether some version-specific server
capability exists.

Return Values

An integer that represents the MySQL server version.

Errors

None.

21.8.7.34 mysql_get_ssl_cipher()

const char *mysql_get_ssl_cipher(MYSQL *mysql)

Description

mysql_get_ssl_cipher() returns the SSL cipher used for the given connection to the server.
mysql is the connection handler returned from mysql_init().

Return Values

A string naming the SSL cipher used for the connection, or NULL if no cipher is being used.

21.8.7.35 mysql_hex_string()

unsigned long mysql_hex_string(char *to, const char *from, unsigned long
length)

Description

This function is used to create a legal SQL string that you can use in an SQL statement. See
Section 9.1.1, “String Literals”.

The string in from is encoded to hexadecimal format, with each character encoded as two
hexadecimal digits. The result is placed in to and a terminating null byte is appended.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at
least length*2+1 bytes long. When mysql_hex_string() returns, the contents of to is a null-
terminated string. The return value is the length of the encoded string, not including the terminating null
character.

The return value can be placed into an SQL statement using either 0xvalue or X'value' format.
However, the return value does not include the 0x or X'...'. The caller must supply whichever of
those is desired.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
end = strmov(end,"0x");
end += mysql_hex_string(end,"What is this",12);
end = strmov(end,",0x");
end += mysql_hex_string(end,"binary data: \0\r\n",16);
*end++ = ')';

C API Function Descriptions

2497

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The strmov() function used in the example is included in the libmysqlclient library and works
like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the value placed into to, not including the terminating null character.

Errors

None.

21.8.7.36 mysql_info()

const char *mysql_info(MYSQL *mysql)

Description

Retrieves a string providing information about the most recently executed statement, but only for the
statements listed here. For other statements, mysql_info() returns NULL. The format of the string
varies depending on the type of statement, as described here. The numbers are illustrative only; the
string contains values appropriate for the statement.

• INSERT INTO ... SELECT ...

String format: Records: 100 Duplicates: 0 Warnings: 0

• INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 3 Duplicates: 0 Warnings: 0

• LOAD DATA INFILE ...

String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

• ALTER TABLE

String format: Records: 3 Duplicates: 0 Warnings: 0

• UPDATE

String format: Rows matched: 40 Changed: 40 Warnings: 0

Note that mysql_info() returns a non-NULL value for INSERT ... VALUES only for the multiple-
row form of the statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed statement.
NULL if no information is available for the statement.

Errors

None.

21.8.7.37 mysql_init()

C API Function Descriptions

2498

MYSQL *mysql_init(MYSQL *mysql)

Description

Allocates or initializes a MYSQL object suitable for mysql_real_connect(). If mysql is a NULL
pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is initialized
and the address of the object is returned. If mysql_init() allocates a new object, it is freed when
mysql_close() is called to close the connection.

Return Values

An initialized MYSQL* handle. NULL if there was insufficient memory to allocate a new object.

Errors

In case of insufficient memory, NULL is returned.

21.8.7.38 mysql_insert_id()

my_ulonglong mysql_insert_id(MYSQL *mysql)

Description

Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE
statement. Use this function after you have performed an INSERT statement into a table that
contains an AUTO_INCREMENT field, or have used INSERT or UPDATE to set a column value with
LAST_INSERT_ID(expr).

The return value of mysql_insert_id() is always zero unless explicitly updated under one of the
following conditions:

• INSERT statements that store a value into an AUTO_INCREMENT column. This is true whether the
value is automatically generated by storing the special values NULL or 0 into the column, or is an
explicit nonspecial value.

• In the case of a multiple-row INSERT statement, mysql_insert_id() returns the first
automatically generated AUTO_INCREMENT value that was successfully inserted.

If no rows are successfully inserted, mysql_insert_id() returns 0.

• If an INSERT ... SELECT statement is executed, and no automatically generated value is
successfully inserted, mysql_insert_id() returns the ID of the last inserted row.

• If an INSERT ... SELECT statement uses LAST_INSERT_ID(expr), mysql_insert_id()
returns expr.

• INSERT statements that generate an AUTO_INCREMENT value by inserting
LAST_INSERT_ID(expr) into any column or by updating any column to
LAST_INSERT_ID(expr).

• If the previous statement returned an error, the value of mysql_insert_id() is undefined.

The return value of mysql_insert_id() can be simplified to the following sequence:

1. If there is an AUTO_INCREMENT column, and an automatically generated value was successfully
inserted, return the first such value.

2. If LAST_INSERT_ID(expr) occurred in the statement, return expr, even if there was an
AUTO_INCREMENT column in the affected table.

3. The return value varies depending on the statement used. When called after an INSERT statement:

C API Function Descriptions

2499

• If there is an AUTO_INCREMENT column in the table, and there were some explicit values for this
column that were successfully inserted into the table, return the last of the explicit values.

When called after an INSERT ... ON DUPLICATE KEY UPDATE statement:

• If there is an AUTO_INCREMENT column in the table and there were some explicit successfully
inserted values or some updated values, return the last of the inserted or updated values.

mysql_insert_id() returns 0 if the previous statement does not use an AUTO_INCREMENT value.
If you need to save the value for later, be sure to call mysql_insert_id() immediately after the
statement that generates the value.

The value of mysql_insert_id() is affected only by statements issued within the current client
connection. It is not affected by statements issued by other clients.

The LAST_INSERT_ID() SQL function will contain the value of the first automatically generated value
that was successfully inserted. LAST_INSERT_ID() is not reset between statements because the
value of that function is maintained in the server. Another difference from mysql_insert_id() is that
LAST_INSERT_ID() is not updated if you set an AUTO_INCREMENT column to a specific nonspecial
value. See Section 12.14, “Information Functions”.

mysql_insert_id() returns 0 following a CALL statement for a stored procedure that generates
an AUTO_INCREMENT value because in this case mysql_insert_id() applies to CALL and not the
statement within the procedure. Within the procedure, you can use LAST_INSERT_ID() at the SQL
level to obtain the AUTO_INCREMENT value.

The reason for the differences between LAST_INSERT_ID() and mysql_insert_id() is that
LAST_INSERT_ID() is made easy to use in scripts while mysql_insert_id() tries to provide more
exact information about what happens to the AUTO_INCREMENT column.

Return Values

Described in the preceding discussion.

Errors

None.

21.8.7.39 mysql_kill()

int mysql_kill(MYSQL *mysql, unsigned long pid)

Description

Asks the server to kill the thread specified by pid.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL KILL statement
instead.

mysql_kill() cannot handle values larger than 32 bits, but to guard against killing the wrong thread
returns an error in these cases:

• If given an ID larger than 32 bits, mysql_kill() returns a CR_INVALID_CONN_HANDLE error.

• After the server's internal thread ID counter reaches a value larger than 32 bits, it returns an
ER_DATA_OUT_OF_RANGE error for any mysql_kill() invocation and mysql_kill() fails.

Return Values

Zero for success. Nonzero if an error occurred.

C API Function Descriptions

2500

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_INVALID_CONN_HANDLE

The pid was larger than 32 bits.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• ER_DATA_OUT_OF_RANGE

The server's internal thread ID counter has reached a value larger than 32 bits, at which point it
rejects all mysql_kill() invocations.

21.8.7.40 mysql_library_end()

void mysql_library_end(void)

Description

This function finalizes the MySQL library. Call it when you are done using the library (for example, after
disconnecting from the server). The action taken by the call depends on whether your application is
linked to the MySQL client library or the MySQL embedded server library. For a client program linked
against the libmysqlclient library by using the -lmysqlclient flag, mysql_library_end()
performs some memory management to clean up. For an embedded server application linked against
the libmysqld library by using the -lmysqld flag, mysql_library_end() shuts down the
embedded server and then cleans up.

For usage information, see Section 21.8.6, “C API Function Overview”, and Section 21.8.7.41,
“mysql_library_init()”.

21.8.7.41 mysql_library_init()

int mysql_library_init(int argc, char **argv, char **groups)

Description

Call this function to initialize the MySQL library before you call any other MySQL function, whether
your application is a regular client program or uses the embedded server. If the application uses the
embedded server, this call starts the server and initializes any subsystems (mysys, InnoDB, and so
forth) that the server uses.

After your application is done using the MySQL library, call mysql_library_end() to clean up. See
Section 21.8.7.40, “mysql_library_end()”.

The choice of whether the application operates as a regular client or uses the embedded server
depends on whether you use the libmysqlclient or libmysqld library at link time to produce the
final executable. For additional information, see Section 21.8.6, “C API Function Overview”.

C API Function Descriptions

2501

In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any
threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or
indirectly through mysql_init(). Do this prior to any other client library call.

The argc and argv arguments are analogous to the arguments to main(), and enable passing of
options to the embedded server. For convenience, argc may be 0 (zero) if there are no command-
line arguments for the server. This is the usual case for applications intended for use only as regular
(nonembedded) clients, and the call typically is written as mysql_library_init(0, NULL, NULL).

#include <mysql.h>
#include <stdlib.h>

int main(void) {
 if (mysql_library_init(0, NULL, NULL)) {
 fprintf(stderr, "could not initialize MySQL library\n");
 exit(1);
 }

 /* Use any MySQL API functions here */

 mysql_library_end();

 return EXIT_SUCCESS;
}

When arguments are to be passed (argc is greater than 0), the first element of argv is ignored (it
typically contains the program name). mysql_library_init() makes a copy of the arguments so it
is safe to destroy argv or groups after the call.

For embedded applications, if you want to connect to an external server without starting the embedded
server, you have to specify a negative value for argc.

The groups argument is an array of strings that indicate the groups in option files from which to
read options. See Section 4.2.3.3, “Using Option Files”. Make the final entry in the array NULL. For
convenience, if the groups argument itself is NULL, the [server] and [embedded] groups are used
by default.

#include <mysql.h>
#include <stdlib.h>

static char *server_args[] = {
 "this_program", /* this string is not used */
 "--datadir=.",
 "--key_buffer_size=32M"
};
static char *server_groups[] = {
 "embedded",
 "server",
 "this_program_SERVER",
 (char *)NULL
};

int main(void) {
 if (mysql_library_init(sizeof(server_args) / sizeof(char *),
 server_args, server_groups)) {
 fprintf(stderr, "could not initialize MySQL library\n");
 exit(1);
 }

 /* Use any MySQL API functions here */

 mysql_library_end();

C API Function Descriptions

2502

 return EXIT_SUCCESS;
}

Return Values

Zero for success. Nonzero if an error occurred.

21.8.7.42 mysql_list_dbs()

MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of database names on the server that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters “%” or “_”, or
may be a NULL pointer to match all databases. Calling mysql_list_dbs() is similar to executing the
query SHOW DATABASES [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.43 mysql_list_fields()

MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table, const char
*wild)

Description

Returns an empty result set for which the metadata provides information aobut the columns in the
given table that match the simple regular expression specified by the wild parameter. wild may
contain the wildcard characters “%” or “_”, or may be a NULL pointer to match all fields. Calling
mysql_list_fields() is similar to executing the query SHOW COLUMNS FROM tbl_name [LIKE
wild].

It is preferable to use SHOW COLUMNS FROM tbl_name instead of mysql_list_fields().

You must free the result set with mysql_free_result().

C API Function Descriptions

2503

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

int i;
MYSQL_RES *tbl_cols = mysql_list_fields(mysql, "mytbl", "f%");

unsigned int field_cnt = mysql_num_fields(tbl_cols);
printf("Number of columns: %d\n", field_cnt);

for (i=0; i < field_cnt; ++i)
{
 /* col describes i-th column of the table */
 MYSQL_FIELD *col = mysql_fetch_field_direct(tbl_cols, i);
 printf ("Column %d: %s\n", i, col->name);
}
mysql_free_result(tbl_cols);

21.8.7.44 mysql_list_processes()

MYSQL_RES *mysql_list_processes(MYSQL *mysql)

Description

Returns a result set describing the current server threads. This is the same kind of information as that
reported by mysqladmin processlist or a SHOW PROCESSLIST query.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

C API Function Descriptions

2504

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.45 mysql_list_tables()

MYSQL_RES *mysql_list_tables(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of table names in the current database that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters “%” or “_”, or
may be a NULL pointer to match all tables. Calling mysql_list_tables() is similar to executing the
query SHOW TABLES [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.46 mysql_more_results()

my_bool mysql_more_results(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or
when you execute CALL statements, which can return multiple result sets.

mysql_more_results() true if more results exist from the currently executed statement, in which
case the application must call mysql_next_result() to fetch the results.

Return Values

TRUE (1) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call mysql_next_result() instead to test whether more results exist and
initiate retrieval if so.

See Section 21.8.17, “C API Support for Multiple Statement Execution”, and Section 21.8.7.47,
“mysql_next_result()”.

C API Function Descriptions

2505

Errors

None.

21.8.7.47 mysql_next_result()

int mysql_next_result(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or
when you use CALL statements to execute stored procedures, which can return multiple result sets.

mysql_next_result() reads the next statement result and returns a status to indicate whether
more results exist. If mysql_next_result() returns an error, there are no more results.

Before each call to mysql_next_result(), you must call mysql_free_result() for the current
statement if it is a statement that returned a result set (rather than just a result status).

After calling mysql_next_result() the state of the connection is as if you had called
mysql_real_query() or mysql_query() for the next statement. This means that you can call
mysql_store_result(), mysql_warning_count(), mysql_affected_rows(), and so forth.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS
flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition
to any result sets that might be returned by statements executed within the procedure. Because CALL
can return multiple results, process them using a loop that calls mysql_next_result() to determine
whether there are more results.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). In MySQL 5.7,
CLIENT_MULTI_RESULTS is enabled by default.

It is also possible to test whether there are more results by calling mysql_more_results().
However, this function does not change the connection state, so if it returns true, you must still call
mysql_next_result() to advance to the next result.

For an example that shows how to use mysql_next_result(), see Section 21.8.17, “C API Support
for Multiple Statement Execution”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example, if you did not call
mysql_use_result() for a previous result set.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

C API Function Descriptions

2506

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.48 mysql_num_fields()

unsigned int mysql_num_fields(MYSQL_RES *result)

To pass a MYSQL* argument instead, use unsigned int mysql_field_count(MYSQL *mysql).

Description

Returns the number of columns in a result set.

Note that you can get the number of columns either from a pointer to a result set or to a
connection handle. You would use the connection handle if mysql_store_result() or
mysql_use_result() returned NULL (and thus you have no result set pointer). In this case, you can
call mysql_field_count() to determine whether mysql_store_result() should have produced
a nonempty result. This enables the client program to take proper action without knowing whether the
query was a SELECT (or SELECT-like) statement. The example shown here illustrates how this may be
done.

See Section 21.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After
mysql_query() Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{
 // error
}
else // query succeeded, process any data returned by it
{
 result = mysql_store_result(&mysql);
 if (result) // there are rows
 {
 num_fields = mysql_num_fields(result);
 // retrieve rows, then call mysql_free_result(result)
 }
 else // mysql_store_result() returned nothing; should it have?
 {
 if (mysql_errno(&mysql))
 {
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 }
 else if (mysql_field_count(&mysql) == 0)
 {
 // query does not return data

C API Function Descriptions

2507

 // (it was not a SELECT)
 num_rows = mysql_affected_rows(&mysql);
 }
 }
}

An alternative (if you know that your query should have returned a result set) is to replace the
mysql_errno(&mysql) call with a check whether mysql_field_count(&mysql) returns 0. This
happens only if something went wrong.

21.8.7.49 mysql_num_rows()

my_ulonglong mysql_num_rows(MYSQL_RES *result)

Description

Returns the number of rows in the result set.

The use of mysql_num_rows() depends on whether you use mysql_store_result()
or mysql_use_result() to return the result set. If you use mysql_store_result(),
mysql_num_rows() may be called immediately. If you use mysql_use_result(),
mysql_num_rows() does not return the correct value until all the rows in the result set have been
retrieved.

mysql_num_rows() is intended for use with statements that return a result set, such as SELECT. For
statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
mysql_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

21.8.7.50 mysql_options()

int mysql_options(MYSQL *mysql, enum mysql_option option, const void *arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be
called multiple times to set several options.

Call mysql_options() after mysql_init() and before mysql_connect() or
mysql_real_connect().

The option argument is the option that you want to set; the arg argument is the value for the option.
If the option is an integer, specify a pointer to the value of the integer as the arg argument.

The following list describes the possible options, their effect, and how arg is used for each option.
Several of the options apply only when the application is linked against the libmysqld embedded
server library and are unused for applications linked against the libmysqlclient client library. For
option descriptions that indicate arg is unused, its value is irrelevant; it is conventional to pass 0.

• MYSQL_DEFAULT_AUTH (argument type: char *)

The name of the authentication plugin to use.

• MYSQL_ENABLE_CLEARTEXT_PLUGIN (argument type: my_bool *)

C API Function Descriptions

2508

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.5, “The
Cleartext Client-Side Authentication Plugin”.)

• MYSQL_INIT_COMMAND (argument type: char *)

SQL statement to execute when connecting to the MySQL server. Automatically re-executed if
reconnection occurs.

• MYSQL_OPT_BIND (argument: char *)

The network interface from which to connect to the server. This is used when the client host has
multiple network interfaces. The argument is a host name or IP address (specified as a string).

• MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS (argument type: my_bool *)

Indicate whether the client can handle expired passwords. For more information, see Section 6.3.7,
“Password Expiration and Sandbox Mode”.

• MYSQL_OPT_COMPRESS (argument: not used)

Use the compressed client/server protocol.

• MYSQL_OPT_CONNECT_ATTR_DELETE (argument types: char *)

Given a key name, this option deletes a key/value pair from the current set of connection attributes to
be passed to the server at connect time. The argument is a pointer to a null-terminated string naming
the key. Comparison of the key name with existing keys is case sensitive.

See also the description for the MYSQL_OPT_CONNECT_ATTR_RESET option, as well as
the description for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the
mysql_options4() function. That function description also includes a usage example.

Connection attributes are exposed through the session_connect_attrs and
session_account_connect_attrs Performance Schema tables. See Section 20.9.9,
“Performance Schema Connection Attribute Tables”.

• MYSQL_OPT_CONNECT_ATTR_RESET (argument not used)

This option resets (clears) the current set of connection attributes to be passed to the server at
connect time.

See also the description for the MYSQL_OPT_CONNECT_ATTR_DELETE option, as well as
the description for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the
mysql_options4() function. That function description also includes a usage example.

Connection attributes are exposed through the session_connect_attrs and
session_account_connect_attrs Performance Schema tables. See Section 20.9.9,
“Performance Schema Connection Attribute Tables”.

• MYSQL_OPT_CONNECT_TIMEOUT (argument type: unsigned int *)

Connect timeout in seconds.

• MYSQL_OPT_GUESS_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this enables the library
to guess whether to use the embedded server or a remote server. “Guess” means that if the
host name is set and is not localhost, it uses a remote server. This behavior is the default.
MYSQL_OPT_USE_EMBEDDED_CONNECTION and MYSQL_OPT_USE_REMOTE_CONNECTION can be
used to override it. This option is ignored for applications linked against the libmysqlclient client
library.

C API Function Descriptions

2509

• MYSQL_OPT_LOCAL_INFILE (argument type: optional pointer to unsigned int)

If no pointer is given or if pointer points to an unsigned int that has a nonzero value, the LOAD
LOCAL INFILE statement is enabled.

• MYSQL_OPT_NAMED_PIPE (argument: not used)

Use named pipes to connect to a MySQL server on Windows, if the server permits named-pipe
connections.

• MYSQL_OPT_PROTOCOL (argument type: unsigned int *)

Type of protocol to use. Specify one of the enum values of mysql_protocol_type defined in
mysql.h.

• MYSQL_OPT_READ_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to read from the server. There are retries if necessary, so
the total effective timeout value is three times the option value. You can set the value so that a lost
connection can be detected earlier than the TCP/IP Close_Wait_Timeout value of 10 minutes.

• MYSQL_OPT_RECONNECT (argument type: my_bool *)

Enable or disable automatic reconnection to the server if the connection is found to have been lost.
Reconnect is off by default; this option provides a way to set reconnection behavior explicitly.

• MYSQL_OPT_SSL_CA (argument type: char *)

The path to a file that contains a list of trusted SSL CAs.

• MYSQL_OPT_SSL_CAPATH (argument type: char *)

The path to a directory that contains trusted SSL CA certificates in PEM format.

• MYSQL_OPT_SSL_CERT (argument type: char *)

The name of the SSL certificate file to use for establishing a secure connection.

• MYSQL_OPT_SSL_CIPHER (argument type: char *)

A list of permissible ciphers to use for SSL encryption.

• MYSQL_OPT_SSL_CRL (argument type: char *)

The path to a file containing certificate revocation lists in PEM format.

• MYSQL_OPT_SSL_CRLPATH (argument type: char *)

The path to a directory that contains files containing certificate revocation lists in PEM format.

• MYSQL_OPT_SSL_ENFORCE (argument type: my_bool *)

Whether to require the connection to use SSL. If enabled and an encrypted connection cannot be
established, the connection attempt fails. This option was added in MySQL 5.7.3.

• MYSQL_OPT_SSL_KEY (argument type: char *)

The name of the SSL key file to use for establishing a secure connection.

• MYSQL_OPT_SSL_VERIFY_SERVER_CERT (argument type: my_bool *)

Enable or disable verification of the server's Common Name value in its certificate against the host
name used when connecting to the server. The connection is rejected if there is a mismatch. This
feature can be used to prevent man-in-the-middle attacks. Verification is disabled by default.

C API Function Descriptions

2510

• MYSQL_OPT_USE_EMBEDDED_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this forces the use of
the embedded server for the connection. This option is ignored for applications linked against the
libmysqlclient client library.

• MYSQL_OPT_USE_REMOTE_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this forces the use
of a remote server for the connection. This option is ignored for applications linked against the
libmysqlclient client library.

• MYSQL_OPT_USE_RESULT (argument: not used)

This option is unused.

• MYSQL_OPT_WRITE_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to write to the server. There is a retry if necessary, so the
total effective timeout value is two times the option value.

• MYSQL_PLUGIN_DIR (argument type: char *)

The directory in which to look for client plugins.

• MYSQL_READ_DEFAULT_FILE (argument type: char *)

Read options from the named option file instead of from my.cnf.

• MYSQL_READ_DEFAULT_GROUP (argument type: char *)

Read options from the named group from my.cnf or the file specified with
MYSQL_READ_DEFAULT_FILE.

• MYSQL_REPORT_DATA_TRUNCATION (argument type: my_bool *)

Enable or disable reporting of data truncation errors for prepared statements using the error
member of MYSQL_BIND structures. (Default: enabled.)

• MYSQL_SECURE_AUTH (argument type: my_bool *)

Whether to connect to a server that does not support the password hashing used in MySQL 4.1.1
and later. This option is enabled by default.

• MYSQL_SERVER_PUBLIC_KEY (argument type: char *)

The path name to a file containing the server RSA public key. The file must be in PEM format. The
public key is used for RSA encryption of the client password for connections to the server made
using accounts that authenticate with the sha256_password plugin. This option is ignored for client
accounts that do not authenticate with that plugin. It is also ignored if password encryption is not
needed, as is the case when the client connects to the server using an SSL connection.

The server sends the public key to the client as needed, so it is not necessary to use this option for
RSA password encryption to occur. It is more efficient to do so because then the server need not
send the key.

For additional discussion regarding use of the sha256_password plugin, including how to get the
RSA public key, see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

• MYSQL_SET_CHARSET_DIR (argument type: char *)

The path name to the directory that contains character set definition files.

C API Function Descriptions

2511

• MYSQL_SET_CHARSET_NAME (argument type: char *)

The name of the character set to use as the default character set. The argument can be
MYSQL_AUTODETECT_CHARSET_NAME to cause the character set to be autodetected based on the
operating system setting (see Section 10.1.4, “Connection Character Sets and Collations”).

• MYSQL_SET_CLIENT_IP (argument type: char *)

For an application linked against the libmysqld embedded server library (when libmysqld is
compiled with authentication support), this means that the user is considered to have connected from
the specified IP address (specified as a string) for authentication purposes. This option is ignored for
applications linked against the libmysqlclient client library.

• MYSQL_SHARED_MEMORY_BASE_NAME (argument type: char *)

The name of the shared-memory object for communication to the server on Windows, if the server
supports shared-memory connections. Specify the same value as the --shared-memory-base-
name option used for the mysqld server you want to connect to.

The client group is always read if you use MYSQL_READ_DEFAULT_FILE or
MYSQL_READ_DEFAULT_GROUP.

The specified group in the option file may contain the following options.

Option Description

character-sets-dir=path The directory where character sets are installed.

compress Use the compressed client/server protocol.

connect-timeout=seconds Connect timeout in seconds. On Linux this timeout is also used
for waiting for the first answer from the server.

database=db_name Connect to this database if no database was specified in the
connect command.

debug Debug options.

default-character-
set=charset_name

The default character set to use.

disable-local-infile Disable use of LOAD DATA LOCAL.

enable-cleartext-plugin Enable the mysql_clear_password cleartext authentication
plugin.

host=host_name Default host name.

init-command=stmt Statement to execute when connecting to MySQL server.
Automatically re-executed if reconnection occurs.

interactive-
timeout=seconds

Same as specifying CLIENT_INTERACTIVE to
mysql_real_connect(). See Section 21.8.7.54,
“mysql_real_connect()”.

local-infile[={0|1}] If no argument or nonzero argument, enable use of LOAD DATA
LOCAL; otherwise disable.

max_allowed_packet=bytes Maximum size of packet that client can read from server.

multi-queries, multi-
results

Enable multiple result sets from multiple-statement executions or
stored procedures.

multi-statements Enable the client to send multiple statements in a single string
(separated by “;”).

password=password Default password.

pipe Use named pipes to connect to a MySQL server on Windows.

C API Function Descriptions

2512

Option Description

port=port_num Default port number.

protocol={TCP|SOCKET|
PIPE|MEMORY}

The protocol to use when connecting to the server.

return-found-rows Tell mysql_info() to return found rows instead of updated rows
when using UPDATE.

shared-memory-base-
name=name

Shared-memory name to use to connect to server.

socket=path Default socket file.

ssl-ca=file_name Certificate Authority file.

ssl-capath=path Certificate Authority directory.

ssl-cert=file_name Certificate file.

ssl-cipher=cipher_list Permissible SSL ciphers.

ssl-key=file_name Key file.

timeout=seconds Like connect-timeout.

user Default user.

timeout has been replaced by connect-timeout, but timeout is still supported in MySQL 5.7 for
backward compatibility.

For more information about option files, see Section 4.2.3.3, “Using Option Files”.

Return Values

Zero for success. Nonzero if you specify an unknown option.

Example

The following mysql_options() calls request the use of compression in the client/server protocol,
cause options to be read from the [odbc] group of option files, and disable transaction autocommit
mode:

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
mysql_options(&mysql,MYSQL_INIT_COMMAND,"SET autocommit=0");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

This code requests that the client use the compressed client/server protocol and read the additional
options from the odbc section in the my.cnf file.

21.8.7.51 mysql_options4()

int mysql_options4(MYSQL *mysql, enum mysql_option option, const void *arg1,
const void *arg2)

Description

mysql_options4() is similar to mysql_options() but has an extra fourth argument so that two
values can be passed for the option specified in the second argument.

C API Function Descriptions

2513

The following list describes the permitted options, their effect, and how arg1 and arg2 are used.

• MYSQL_OPT_CONNECT_ATTR_ADD (argument types: char *, char *)

This option adds a key/value pair to the current set of connection attributes to be passed to the
server at connect time. Both arguments are pointers to null-terminated strings. The first and
second strings indicate the key and value, respectively. If the key already exists in the current set
of connection attributes, an error occurs. Comparison of the key name with existing keys is case
sensitive.

Key names that begin with an underscore (_) are reserved for internal use and should not be used
by application programs.

See also the descriptions for the MYSQL_OPT_CONNECT_ATTR_RESET
MYSQL_OPT_CONNECT_ATTR_DELETE options in the description of the mysql_options()
function.

Connection attributes are exposed through the session_connect_attrs and
session_account_connect_attrs Performance Schema tables. See Section 20.9.9,
“Performance Schema Connection Attribute Tables”.

Return Values

Zero for success. Nonzero if you specify an unknown option.

Example

This example demonstrates the calls that specify connection attributes:

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_CONNECT_ATTR_RESET, 0);
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key1", "value1");
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key2", "value2");
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key3", "value3");
mysql_options(&mysql,MYSQL_OPT_CONNECT_ATTR_DELETE, "key1");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}
mysql_options(&mysql,MYSQL_OPT_CONNECT_ATTR_RESET, 0);

21.8.7.52 mysql_ping()

int mysql_ping(MYSQL *mysql)

Description

Checks whether the connection to the server is working. If the connection has gone down and auto-
reconnect is enabled an attempt to reconnect is made. If the connection is down and auto-reconnect is
disabled, mysql_ping() returns an error.

Auto-reconnect is disabled by default. To enable it, call mysql_options() with the
MYSQL_OPT_RECONNECT option. For details, see Section 21.8.7.50, “mysql_options()”.

mysql_ping() can be used by clients that remain idle for a long while, to check whether the server
has closed the connection and reconnect if necessary.

If mysql_ping()) does cause a reconnect, there is no explicit indication of it. To determine whether
a reconnect occurs, call mysql_thread_id() to get the original connection identifier before calling
mysql_ping(), then call mysql_thread_id() again to see whether the identifier has changed.

C API Function Descriptions

2514

If reconnect occurs, some characteristics of the connection will have been reset. For details about
these characteristics, see Section 21.8.16, “Controlling Automatic Reconnection Behavior”.

Return Values

Zero if the connection to the server is active. Nonzero if an error occurred. A nonzero return does not
indicate whether the MySQL server itself is down; the connection might be broken for other reasons
such as network problems.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.53 mysql_query()

int mysql_query(MYSQL *mysql, const char *stmt_str)

Description

Executes the SQL statement pointed to by the null-terminated string stmt_str. Normally, the string
must consist of a single SQL statement without a terminating semicolon (“;”) or \g. If multiple-
statement execution has been enabled, the string can contain several statements separated by
semicolons. See Section 21.8.17, “C API Support for Multiple Statement Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the “\0” character, which mysql_query()
interprets as the end of the statement string.)

If you want to know whether the statement returns a result set, you can use mysql_field_count()
to check for this. See Section 21.8.7.22, “mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

C API Function Descriptions

2515

An unknown error occurred.

21.8.7.54 mysql_real_connect()

MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const char
*user, const char *passwd, const char *db, unsigned int port, const char
*unix_socket, unsigned long client_flag)

Description

mysql_real_connect() attempts to establish a connection to a MySQL database engine running on
host. mysql_real_connect() must complete successfully before you can execute any other API
functions that require a valid MYSQL connection handle structure.

The parameters are specified as follows:

• For the first parameter, specify the address of an existing MYSQL structure. Before calling
mysql_real_connect(), call mysql_init() to initialize the MYSQL structure. You can
change a lot of connect options with the mysql_options() call. See Section 21.8.7.50,
“mysql_options()”.

• The value of host may be either a host name or an IP address. If host is NULL or the string
"localhost", a connection to the local host is assumed. For Windows, the client connects
using a shared-memory connection, if the server has shared-memory connections enabled.
Otherwise, TCP/IP is used. For Unix, the client connects using a Unix socket file. For local
connections, you can also influence the type of connection to use with the MYSQL_OPT_PROTOCOL
or MYSQL_OPT_NAMED_PIPE options to mysql_options(). The type of connection must be
supported by the server. For a host value of "." on Windows, the client connects using a named
pipe, if the server has named-pipe connections enabled. If named-pipe connections are not enabled,
an error occurs.

• The user parameter contains the user's MySQL login ID. If user is NULL or the empty string "",
the current user is assumed. Under Unix, this is the current login name. Under Windows ODBC, the
current user name must be specified explicitly. See the Connector/ODBC section of Chapter 21,
Connectors and APIs.

• The passwd parameter contains the password for user. If passwd is NULL, only entries in the user
table for the user that have a blank (empty) password field are checked for a match. This enables the
database administrator to set up the MySQL privilege system in such a way that users get different
privileges depending on whether they have specified a password.

Note

Do not attempt to encrypt the password before calling
mysql_real_connect(); password encryption is handled automatically by
the client API.

• The user and passwd parameters use whatever character set has been configured for the MYSQL
object. By default, this is latin1, but can be changed by calling mysql_options(mysql,
MYSQL_SET_CHARSET_NAME, "charset_name") prior to connecting.

• db is the database name. If db is not NULL, the connection sets the default database to this value.

• If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host
parameter determines the type of the connection.

• If unix_socket is not NULL, the string specifies the socket or named pipe to use. Note that the
host parameter determines the type of the connection.

• The value of client_flag is usually 0, but can be set to a combination of the following flags to
enable certain features.

C API Function Descriptions

2516

Flag Name Flag Description

CAN_HANDLE_EXPIRED_PASSWORDSThe client can handle expired passwords. For more information,
see Section 6.3.7, “Password Expiration and Sandbox Mode”.

CLIENT_COMPRESS Use compression protocol.

CLIENT_FOUND_ROWS Return the number of found (matched) rows, not the number of
changed rows.

CLIENT_IGNORE_SIGPIPE Prevents the client library from installing a SIGPIPE signal
handler. This can be used to avoid conflicts with a handler that
the application has already installed.

CLIENT_IGNORE_SPACE Permit spaces after function names. Makes all functions names
reserved words.

CLIENT_INTERACTIVE Permit interactive_timeout seconds (instead of
wait_timeout seconds) of inactivity before closing the
connection. The client's session wait_timeout variable is set
to the value of the session interactive_timeout variable.

CLIENT_LOCAL_FILES Enable LOAD DATA LOCAL handling.

CLIENT_MULTI_RESULTS Tell the server that the client can handle multiple result sets from
multiple-statement executions or stored procedures. This flag
is automatically enabled if CLIENT_MULTI_STATEMENTS is
enabled. See the note following this table for more information
about this flag.

CLIENT_MULTI_STATEMENTS Tell the server that the client may send multiple statements in
a single string (separated by “;”). If this flag is not set, multiple-
statement execution is disabled. See the note following this
table for more information about this flag.

CLIENT_NO_SCHEMA Do not permit the db_name.tbl_name.col_name syntax. This
is for ODBC. It causes the parser to generate an error if you use
that syntax, which is useful for trapping bugs in some ODBC
programs.

CLIENT_ODBC Unused.

CLIENT_SSL Use SSL (encrypted protocol). Do not set this option within
an application program; it is set internally in the client
library. Instead, use mysql_ssl_set() before calling
mysql_real_connect().

CLIENT_REMEMBER_OPTIONS Remember options specified by calls to mysql_options().
Without this option, if mysql_real_connect() fails, you must
repeat the mysql_options() calls before trying to connect
again. With this option, the mysql_options() calls need not
be repeated.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS
flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition
to any result sets that might be returned by statements executed within the procedure. Because CALL
can return multiple results, process them using a loop that calls mysql_next_result() to determine
whether there are more results.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). In MySQL 5.7,
CLIENT_MULTI_RESULTS is enabled by default.

If you enable CLIENT_MULTI_STATEMENTS or CLIENT_MULTI_RESULTS, process the
result for every call to mysql_query() or mysql_real_query() by using a loop that calls

C API Function Descriptions

2517

mysql_next_result() to determine whether there are more results. For an example, see
Section 21.8.17, “C API Support for Multiple Statement Execution”.

For some parameters, it is possible to have the value taken from an option file rather than from
an explicit value in the mysql_real_connect() call. To do this, call mysql_options() with
the MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP option before calling
mysql_real_connect(). Then, in the mysql_real_connect() call, specify the “no-value” value
for each parameter to be read from an option file:

• For host, specify a value of NULL or the empty string ("").

• For user, specify a value of NULL or the empty string.

• For passwd, specify a value of NULL. (For the password, a value of the empty string in the
mysql_real_connect() call cannot be overridden in an option file, because the empty string
indicates explicitly that the MySQL account must have an empty password.)

• For db, specify a value of NULL or the empty string.

• For port, specify a value of 0.

• For unix_socket, specify a value of NULL.

If no value is found in an option file for a parameter, its default value is used as indicated in the
descriptions given earlier in this section.

Return Values

A MYSQL* connection handle if the connection was successful, NULL if the connection was
unsuccessful. For a successful connection, the return value is the same as the value of the first
parameter.

Errors

• CR_CONN_HOST_ERROR

Failed to connect to the MySQL server.

• CR_CONNECTION_ERROR

Failed to connect to the local MySQL server.

• CR_IPSOCK_ERROR

Failed to create an IP socket.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SOCKET_CREATE_ERROR

Failed to create a Unix socket.

• CR_UNKNOWN_HOST

Failed to find the IP address for the host name.

• CR_VERSION_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that uses a
different protocol version.

C API Function Descriptions

2518

• CR_NAMEDPIPEOPEN_ERROR

Failed to create a named pipe on Windows.

• CR_NAMEDPIPEWAIT_ERROR

Failed to wait for a named pipe on Windows.

• CR_NAMEDPIPESETSTATE_ERROR

Failed to get a pipe handler on Windows.

• CR_SERVER_LOST

If connect_timeout > 0 and it took longer than connect_timeout seconds to connect to the
server or if the server died while executing the init-command.

• CR_ALREADY_CONNECTED

The MYSQL connection handle is already connected.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

By using mysql_options() the MySQL library reads the [client] and [your_prog_name]
sections in the my.cnf file which ensures that your program works, even if someone has set up
MySQL in some nonstandard way.

Note that upon connection, mysql_real_connect() sets the reconnect flag (part of the MYSQL
structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A value of
1 for this flag indicates that if a statement cannot be performed because of a lost connection, to try
reconnecting to the server before giving up. You can use the MYSQL_OPT_RECONNECT option to
mysql_options() to control reconnection behavior.

21.8.7.55 mysql_real_escape_string()

unsigned long mysql_real_escape_string(MYSQL *mysql, char *to, const char
*from, unsigned long length)

Note that mysql must be a valid, open connection. This is needed because the escaping depends on
the character set in use by the server.

Description

This function is used to create a legal SQL string that you can use in an SQL statement. See
Section 9.1.1, “String Literals”.

The string in from is encoded to an escaped SQL string, taking into account the current character
set of the connection. The result is placed in to and a terminating null byte is appended. Characters
encoded are “\”, “'”, “"”, NUL (ASCII 0), “\n”, “\r”, and Control+Z. Strictly speaking, MySQL requires
only that backslash and the quote character used to quote the string in the query be escaped.
mysql_real_escape_string() quotes the other characters to make them easier to read in

C API Function Descriptions

2519

log files. For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in
Section 9.1.1, “String Literals”, and Section 12.5, “String Functions”.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at
least length*2+1 bytes long. (In the worst case, each character may need to be encoded as using
two bytes, and you need room for the terminating null byte.) When mysql_real_escape_string()
returns, the contents of to is a null-terminated string. The return value is the length of the encoded
string, not including the terminating null character.

If you need to change the character set of the connection, use the mysql_set_character_set()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.
mysql_set_character_set() works like SET NAMES but also affects the character set used by
mysql_real_escape_string(), which SET NAMES does not.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"What is this",12);
*end++ = '\'';
*end++ = ',';
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"binary data: \0\r\n",16);
*end++ = '\'';
*end++ = ')';

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The strmov() function used in the example is included in the libmysqlclient library and works
like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the value placed into to, not including the terminating null character.

Errors

None.

21.8.7.56 mysql_real_query()

int mysql_real_query(MYSQL *mysql, const char *stmt_str, unsigned long
length)

Description

Executes the SQL statement pointed to by stmt_str, a string length bytes long. Normally, the
string must consist of a single SQL statement without a terminating semicolon (“;”) or \g. If multiple-
statement execution has been enabled, the string can contain several statements separated by
semicolons. See Section 21.8.17, “C API Support for Multiple Statement Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the “\0” character, which mysql_query()
interprets as the end of the statement string.) In addition, mysql_real_query() is faster than
mysql_query() because it does not call strlen() on the statement string.

If you want to know whether the statement returns a result set, you can use mysql_field_count()
to check for this. See Section 21.8.7.22, “mysql_field_count()”.

C API Function Descriptions

2520

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.57 mysql_refresh()

int mysql_refresh(MYSQL *mysql, unsigned int options)

Description

This function flushes tables or caches, or resets replication server information. The connected user
must have the RELOAD privilege.

The options argument is a bit mask composed from any combination of the following values. Multiple
values can be OR'ed together to perform multiple operations with a single call.

• REFRESH_GRANT

Refresh the grant tables, like FLUSH PRIVILEGES.

• REFRESH_LOG

Flush the logs, like FLUSH LOGS.

• REFRESH_TABLES

Flush the table cache, like FLUSH TABLES.

• REFRESH_HOSTS

Flush the host cache, like FLUSH HOSTS.

• REFRESH_STATUS

Reset status variables, like FLUSH STATUS.

• REFRESH_THREADS

Flush the thread cache.

• REFRESH_SLAVE

On a slave replication server, reset the master server information and restart the slave, like RESET
SLAVE.

• REFRESH_MASTER

C API Function Descriptions

2521

On a master replication server, remove the binary log files listed in the binary log index and truncate
the index file, like RESET MASTER.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.58 mysql_reload()

int mysql_reload(MYSQL *mysql)

Description

Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD
privilege.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL FLUSH
PRIVILEGES statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.59 mysql_reset_connection()

int mysql_reset_connection(MYSQL *mysql)

C API Function Descriptions

2522

Description

Resets the connection to clear the session state. This function was added in MySQL 5.7.3.

mysql_reset_connection() has effects similar to mysql_change_user() or an auto-reconnect
except that the connection is not closed and reopened, and reauthentication is not done. See
Section 21.8.7.3, “mysql_change_user()”) and see Section 21.8.16, “Controlling Automatic
Reconnection Behavior”).

The connection-related state is affected as follows:

• Any active transactions are rolled back and autocommit mode is reset.

• All table locks are released.

• All TEMPORARY tables are closed (and dropped).

• Session system variables are reinitialized to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NAMES.

• User variable settings are lost.

• Prepared statements are released.

• HANDLER variables are closed.

• The value of LAST_INSERT_ID() is reset to 0.

• Locks acquired with GET_LOCK() are released.

Return Values

Zero for success. Nonzero if an error occurred.

21.8.7.60 mysql_rollback()

my_bool mysql_rollback(MYSQL *mysql)

Description

Rolls back the current transaction.

The action of this function is subject to the value of the completion_type system variable. In
particular, if the value of completion_type is RELEASE (or 2), the server performs a release after
terminating a transaction and closes the client connection. Call mysql_close() from the client
program to close the connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

21.8.7.61 mysql_row_seek()

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a query result set. The offset value is a row offset, typically
a value returned from mysql_row_tell() or from mysql_row_seek(). This value is not a row
number; to seek to a row within a result set by number, use mysql_data_seek() instead.

C API Function Descriptions

2523

This function requires that the result set structure contains the entire result of the query, so
mysql_row_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_row_seek().

Errors

None.

21.8.7.62 mysql_row_tell()

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql_fetch_row(). This value can be
used as an argument to mysql_row_seek().

Use mysql_row_tell() only after mysql_store_result(), not after mysql_use_result().

Return Values

The current offset of the row cursor.

Errors

None.

21.8.7.63 mysql_select_db()

int mysql_select_db(MYSQL *mysql, const char *db)

Description

Causes the database specified by db to become the default (current) database on the connection
specified by mysql. In subsequent queries, this database is the default for table references that include
no explicit database specifier.

mysql_select_db() fails unless the connected user can be authenticated as having permission to
use the database.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

C API Function Descriptions

2524

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.64 mysql_session_track_get_first()

int mysql_session_track_get_first(MYSQL *mysql, enum enum_session_state_type
type, const char **data, size_t *length)

Description

This function fetches the first session state-change information received from the server. It was added
in MySQL 5.7.4.

To control notification for changes to session state, use the session_track_state_change,
session_track_schema, and session_track_system_variables system variables (see
Section 5.1.4, “Server System Variables”).

The function parameters are used as follows. These descriptions also apply to
mysql_session_track_get_first(), which takes the same parameters.

• mysql: The connection handle.

• type: The type of information to retrieve. Permitted values for this parameter are the members of the
enum_session_state_type enumeration (defined in mysql_com.h):

enum enum_session_state_type
{
 SESSION_TRACK_SYSTEM_VARIABLES, /* Session system variables */
 SESSION_TRACK_SCHEMA, /* Current schema */
 SESSION_TRACK_STATE_CHANGE /* track session state changes */
};

To make it easy to loop over all possible types of session information, the SESSION_TRACK_BEGIN
and SESSION_TRACK_END macros are defined as the first and last members of the
enum_session_state_type enumeration. The example code shown later in this section
demonstrates this technique.

• data: The address of a const char * variable. Following a successful call, this variable points to
the returned data, which should be considered read only.

• length: The address of a size_t variable. Following a successful call, this variable contains the
length of the data pointed to by the data parameter.

Following a successful call, interpret the data and length values according to the type value, as
follows:

• SESSION_TRACK_SCHEMA: The length is the length of the new default schema name and the data is
the name.

• SESSION_TRACK_SYSTEM_VARIABLES: When a session system variable changes, two values per
variable are returned (in separate calls). For the first, the length is the length of the variable name
and the data is the name. For the second, the length is the length of the variable value and the data
is the value. Both data values are represented as strings.

• SESSION_TRACK_STATE_CHANGE: The length should be 1 and the data is a byte containing a
boolean flag that indicates whether session state changes occurred. This flag is represented as an
ASCII value, not a binary (for example, '1', not 0x01).

C API Function Descriptions

2525

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

Example

The following example shows how to call mysql_session_track_get_first() and
mysql_session_track_get_next() to retrieve and display all available session state-change
information following successful execution of a SQL statement string (represented by stmt_str).

printf("Execute: %s\n", stmt_str);

if (mysql_query(mysql, stmt_str) != 0)
{
 fprintf(stderr, "Error %u: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 return;
}

MYSQL_RES *result = mysql_store_result(mysql);
if (result) /* there is a result set to fetch */
{
 /* ... process rows here ... */
 printf("Number of rows returned: %lu\n",
 (unsigned long) mysql_num_rows(result));
 mysql_free_result(result);
}
else /* there is no result set */
{
 if (mysql_field_count(mysql) == 0)
 {
 printf("Number of rows affected: %lu\n",
 (unsigned long) mysql_affected_rows(mysql));
 }
 else /* an error occurred */
 {
 fprintf(stderr, "Error %u: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 }
}

/* extract any available session state-change information */
enum enum_session_state_type type;
for (type = SESSION_TRACK_BEGIN; type <= SESSION_TRACK_END; type++)
{
 const char *data;
 size_t length;

 if (mysql_session_track_get_first(mysql, type, &data, &length) == 0)
 {
 printf("Type=%d:\n", type);
 printf("mysql_session_track_get_first() returns: %*.*s\n",
 (int) length, (int) length, data);

 /* check for more data */
 while (mysql_session_track_get_next(mysql, type, &data, &length) == 0)
 {
 printf("mysql_session_track_get_next() returns: %*.*s\n",
 (int) length, (int) length, data);
 }
 }
}

21.8.7.65 mysql_session_track_get_next()

C API Function Descriptions

2526

int mysql_session_track_get_next(MYSQL *mysql, enum enum_session_state_type
type, const char **data, size_t *length)

Description

This function fetches session state-change information received from the server, following that
retrieved by mysql_session_track_get_first(). It was added in MySQL 5.7.4.

Following a successful call to mysql_session_track_get_first(), call
mysql_session_track_get_next() repeatedly until it returns nonzero to indicate no more
information is available. The calling sequence for mysql_session_track_get_next() is similar
to that for mysql_session_track_get_first(). For more information and an example that
demonstrates both functions, see Section 21.8.7.64, “mysql_session_track_get_first()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

21.8.7.66 mysql_set_character_set()

int mysql_set_character_set(MYSQL *mysql, const char *csname)

Description

This function is used to set the default character set for the current connection. The string csname
specifies a valid character set name. The connection collation becomes the default collation of the
character set. This function works like the SET NAMES statement, but also sets the value of mysql-
>charset, and thus affects the character set used by mysql_real_escape_string()

Return Values

Zero for success. Nonzero if an error occurred.

Example

MYSQL mysql;

mysql_init(&mysql);
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

if (!mysql_set_character_set(&mysql, "utf8"))
{
 printf("New client character set: %s\n",
 mysql_character_set_name(&mysql));
}

21.8.7.67 mysql_set_local_infile_default()

void mysql_set_local_infile_default(MYSQL *mysql);

Description

Sets the LOAD LOCAL DATA INFILE handler callback functions to the defaults
used internally by the C client library. The library calls this function automatically if

C API Function Descriptions

2527

mysql_set_local_infile_handler() has not been called or does not supply valid functions for
each of its callbacks.

Return Values

None.

Errors

None.

21.8.7.68 mysql_set_local_infile_handler()

void mysql_set_local_infile_handler(MYSQL *mysql, int (*local_infile_init)
(void **, const char *, void *), int (*local_infile_read)(void *, char *,
unsigned int), void (*local_infile_end)(void *), int (*local_infile_error)
(void *, char*, unsigned int), void *userdata);

Description

This function installs callbacks to be used during the execution of LOAD DATA LOCAL INFILE
statements. It enables application programs to exert control over local (client-side) data file reading.
The arguments are the connection handler, a set of pointers to callback functions, and a pointer to a
data area that the callbacks can use to share information.

To use mysql_set_local_infile_handler(), you must write the following callback functions:

int
local_infile_init(void **ptr, const char *filename, void *userdata);

The initialization function. This is called once to do any setup necessary, open the data file, allocate
data structures, and so forth. The first void** argument is a pointer to a pointer. You can set the
pointer (that is, *ptr) to a value that will be passed to each of the other callbacks (as a void*). The
callbacks can use this pointed-to value to maintain state information. The userdata argument is the
same value that is passed to mysql_set_local_infile_handler().

Make the initialization function return zero for success, nonzero for an error.

int
local_infile_read(void *ptr, char *buf, unsigned int buf_len);

The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where
the read data is stored, and buf_len is the maximum number of bytes that the callback can read and
store in the buffer. (It can read fewer bytes, but should not read more.)

The return value is the number of bytes read, or zero when no more data could be read (this indicates
EOF). Return a value less than zero if an error occurs.

void
local_infile_end(void *ptr)

The termination function. This is called once after local_infile_read() has returned zero (EOF)
or an error. Within this function, deallocate any memory allocated by local_infile_init() and
perform any other cleanup necessary. It is invoked even if the initialization function returns an error.

int
local_infile_error(void *ptr,
 char *error_msg,
 unsigned int error_msg_len);

C API Function Descriptions

2528

The error-handling function. This is called to get a textual error message to return to the user in case
any of your other functions returns an error. error_msg points to the buffer into which the message is
written, and error_msg_len is the length of the buffer. Write the message as a null-terminated string,
at most error_msg_len–1 bytes long.

The return value is the error number.

Typically, the other callbacks store the error message in the data structure pointed to by ptr, so that
local_infile_error() can copy the message from there into error_msg.

After calling mysql_set_local_infile_handler() in your C code and passing pointers
to your callback functions, you can then issue a LOAD DATA LOCAL INFILE statement (for
example, by using mysql_query()). The client library automatically invokes your callbacks. The
file name specified in LOAD DATA LOCAL INFILE will be passed as the second parameter to the
local_infile_init() callback.

Return Values

None.

Errors

None.

21.8.7.69 mysql_set_server_option()

int mysql_set_server_option(MYSQL *mysql, enum enum_mysql_set_option option)

Description

Enables or disables an option for the connection. option can have one of the following values.

Option Description

MYSQL_OPTION_MULTI_STATEMENTS_ON Enable multiple-statement support

MYSQL_OPTION_MULTI_STATEMENTS_OFF Disable multiple-statement support

If you enable multiple-statement support, you should retrieve results from calls to mysql_query()
or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 21.8.17, “C API Support for Multiple Statement
Execution”.

Enabling multiple-statement support with MYSQL_OPTION_MULTI_STATEMENTS_ON does not
have quite the same effect as enabling it by passing the CLIENT_MULTI_STATEMENTS flag to
mysql_real_connect(): CLIENT_MULTI_STATEMENTS also enables CLIENT_MULTI_RESULTS.
If you are using the CALL SQL statement in your programs, multiple-result support must be enabled;
this means that MYSQL_OPTION_MULTI_STATEMENTS_ON by itself is insufficient to permit the use of
CALL.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

C API Function Descriptions

2529

• CR_SERVER_LOST

The connection to the server was lost during the query.

• ER_UNKNOWN_COM_ERROR

The server did not support mysql_set_server_option() (which is the case that the server is
older than 4.1.1) or the server did not support the option one tried to set.

21.8.7.70 mysql_shutdown()

int mysql_shutdown(MYSQL *mysql, enum mysql_enum_shutdown_level
shutdown_level)

Description

Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.
MySQL 5.7 servers support only one type of shutdown; shutdown_level must be equal to
SHUTDOWN_DEFAULT. Additional shutdown levels are planned to make it possible to choose the
desired level. Dynamically linked executables which have been compiled with older versions
of the libmysqlclient headers and call mysql_shutdown() need to be used with the old
libmysqlclient dynamic library.

The shutdown process is described in Section 5.1.12, “The Shutdown Process”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.71 mysql_sqlstate()

const char *mysql_sqlstate(MYSQL *mysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the most recently executed
SQL statement. The error code consists of five characters. '00000' means “no error.” The values are
specified by ANSI SQL and ODBC. For a list of possible values, see Appendix C, Errors, Error Codes,
and Common Problems.

SQLSTATE values returned by mysql_sqlstate() differ from MySQL-specific error numbers
returned by mysql_errno(). For example, the mysql client program displays errors using the
following format, where 1146 is the mysql_errno() value and '42S02' is the corresponding
mysql_sqlstate() value:

C API Function Descriptions

2530

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Not all MySQL error numbers are mapped to SQLSTATE error codes. The value 'HY000' (general
error) is used for unmapped error numbers.

If you call mysql_sqlstate() after mysql_real_connect() fails, mysql_sqlstate() might not
return a useful value. For example, this happens if a host is blocked by the server and the connection is
closed without any SQLSTATE value being sent to the client.

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 21.8.7.14, “mysql_errno()”, Section 21.8.7.15, “mysql_error()”, and
Section 21.8.11.27, “mysql_stmt_sqlstate()”.

21.8.7.72 mysql_ssl_set()

my_bool mysql_ssl_set(MYSQL *mysql, const char *key, const char *cert, const
char *ca, const char *capath, const char *cipher)

Description

mysql_ssl_set() is used for establishing secure connections using SSL. It must be called before
mysql_real_connect().

mysql_ssl_set() does nothing unless SSL support is enabled in the client library.

mysql is the connection handler returned from mysql_init(). The other parameters are specified as
follows:

• key is the path name to the key file.

• cert is the path name to the certificate file.

• ca is the path name to the certificate authority file.

• capath is the path name to a directory that contains trusted SSL CA certificates in PEM format.

• cipher is a list of permissible ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL.

Return Values

This function always returns 0. If SSL setup is incorrect, mysql_real_connect() returns an error
when you attempt to connect.

21.8.7.73 mysql_stat()

const char *mysql_stat(MYSQL *mysql)

Description

Returns a character string containing information similar to that provided by the mysqladmin status
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.

C API Function Descriptions

2531

Return Values

A character string describing the server status. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.74 mysql_store_result()

MYSQL_RES *mysql_store_result(MYSQL *mysql)

Description

After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after
you are done with the result set.

You need not call mysql_store_result() or mysql_use_result() for other statements,
but it does not do any harm or cause any notable performance degradation if you call
mysql_store_result() in all cases. You can detect whether the statement has a result set by
checking whether mysql_store_result() returns a nonzero value (more about this later).

If you enable multiple-statement support, you should retrieve results from calls to mysql_query()
or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 21.8.17, “C API Support for Multiple Statement
Execution”.

If you want to know whether a statement should return a result set, you can use
mysql_field_count() to check for this. See Section 21.8.7.22, “mysql_field_count()”.

mysql_store_result() reads the entire result of a query to the client, allocates a MYSQL_RES
structure, and places the result into this structure.

mysql_store_result() returns a null pointer if the statement did not return a result set (for
example, if it was an INSERT statement).

mysql_store_result() also returns a null pointer if reading of the result set failed. You can
check whether an error occurred by checking whether mysql_error() returns a nonempty string,
mysql_errno() returns nonzero, or mysql_field_count() returns zero.

An empty result set is returned if there are no rows returned. (An empty result set differs from a null
pointer as a return value.)

After you have called mysql_store_result() and gotten back a result that is not a null pointer, you
can call mysql_num_rows() to find out how many rows are in the result set.

C API Function Descriptions

2532

You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek() and
mysql_row_tell() to obtain or set the current row position within the result set.

See Section 21.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After
mysql_query() Returns Success”.

Return Values

A MYSQL_RES result structure with the results. NULL (0) if an error occurred.

Errors

mysql_store_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.75 mysql_thread_id()

unsigned long mysql_thread_id(MYSQL *mysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to
mysql_kill() to kill the thread.

If the connection is lost and you reconnect with mysql_ping(), the thread ID changes. This means
you should not get the thread ID and store it for later. You should get it when you need it.

Note

This function does not work correctly if thread IDs become larger than
32 bits, which can occur on some systems. To avoid problems with
mysql_thread_id(), do not use it. To get the connection ID, execute a
SELECT CONNECTION_ID() query and retrieve the result.

Return Values

The thread ID of the current connection.

Errors

None.

21.8.7.76 mysql_use_result()

C API Function Descriptions

2533

MYSQL_RES *mysql_use_result(MYSQL *mysql)

Description

After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after
you are done with the result set.

mysql_use_result() initiates a result set retrieval but does not actually read the result set into the
client like mysql_store_result() does. Instead, each row must be retrieved individually by making
calls to mysql_fetch_row(). This reads the result of a query directly from the server without storing
it in a temporary table or local buffer, which is somewhat faster and uses much less memory than
mysql_store_result(). The client allocates memory only for the current row and a communication
buffer that may grow up to max_allowed_packet bytes.

On the other hand, you should not use mysql_use_result() if you are doing a lot of processing for
each row on the client side, or if the output is sent to a screen on which the user may type a ^S (stop
scroll). This ties up the server and prevent other threads from updating any tables from which the data
is being fetched.

When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL value is
returned, otherwise, the unfetched rows are returned as part of the result set for your next query. The C
API gives the error Commands out of sync; you can't run this command now if you forget
to do this!

You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(),
mysql_num_rows(), or mysql_affected_rows() with a result returned from
mysql_use_result(), nor may you issue other queries until mysql_use_result() has finished.
(However, after you have fetched all the rows, mysql_num_rows() accurately returns the number of
rows fetched.)

You must call mysql_free_result() once you are done with the result set.

When using the libmysqld embedded server, the memory benefits are essentially lost because
memory usage incrementally increases with each row retrieved until mysql_free_result() is
called.

Return Values

A MYSQL_RES result structure. NULL if an error occurred.

Errors

mysql_use_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

C API Prepared Statements

2534

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.7.77 mysql_warning_count()

unsigned int mysql_warning_count(MYSQL *mysql)

Description

Returns the number of errors, warnings, and notes generated during execution of the previous SQL
statement.

Return Values

The warning count.

Errors

None.

21.8.8 C API Prepared Statements

The MySQL client/server protocol provides for the use of prepared statements. This capability uses
the MYSQL_STMT statement handler data structure returned by the mysql_stmt_init() initialization
function. Prepared execution is an efficient way to execute a statement more than once. The statement
is first parsed to prepare it for execution. Then it is executed one or more times at a later time, using
the statement handle returned by the initialization function.

Prepared execution is faster than direct execution for statements executed more than once, primarily
because the query is parsed only once. In the case of direct execution, the query is parsed every time
it is executed. Prepared execution also can provide a reduction of network traffic because for each
execution of the prepared statement, it is necessary only to send the data for the parameters.

Prepared statements might not provide a performance increase in some situations. For best results,
test your application both with prepared and nonprepared statements and choose whichever yields
best performance.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

For a list of SQL statements that can be used as prepared statements, see Section 13.5, “SQL Syntax
for Prepared Statements”.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.

21.8.9 C API Prepared Statement Data Structures

Prepared statements use several data structures:

• To obtain a statement handle, pass a MYSQL connection handler to mysql_stmt_init(), which
returns a pointer to a MYSQL_STMT data structure. This structure is used for further operations with
the statement. To specify the statement to prepare, pass the MYSQL_STMT pointer and the statement
string to mysql_stmt_prepare().

• To provide input parameters for a prepared statement, set up MYSQL_BIND structures and pass
them to mysql_stmt_bind_param(). To receive output column values, set up MYSQL_BIND
structures and pass them to mysql_stmt_bind_result().

C API Prepared Statement Data Structures

2535

• The MYSQL_TIME structure is used to transfer temporal data in both directions.

The following discussion describes the prepared statement data types in detail. For examples that
show how to use them, see Section 21.8.11.10, “mysql_stmt_execute()”, and Section 21.8.11.11,
“mysql_stmt_fetch()”.

• MYSQL_STMT

This structure is a handle for a prepared statement. A handle is created by calling
mysql_stmt_init(), which returns a pointer to a MYSQL_STMT. The handle is used for all
subsequent operations with the statement until you close it with mysql_stmt_close(), at which
point the handle becomes invalid.

The MYSQL_STMT structure has no members intended for application use. Applications should not try
to copy a MYSQL_STMT structure. There is no guarantee that such a copy will be usable.

Multiple statement handles can be associated with a single connection. The limit on the number of
handles depends on the available system resources.

• MYSQL_BIND

This structure is used both for statement input (data values sent to the server) and output (result
values returned from the server):

• For input, use MYSQL_BIND structures with mysql_stmt_bind_param() to bind parameter data
values to buffers for use by mysql_stmt_execute().

• For output, use MYSQL_BIND structures with mysql_stmt_bind_result() to bind buffers to
result set columns, for use in fetching rows with mysql_stmt_fetch().

To use a MYSQL_BIND structure, zero its contents to initialize it, then set its members appropriately.
For example, to declare and initialize an array of three MYSQL_BIND structures, use this code:

MYSQL_BIND bind[3];
memset(bind, 0, sizeof(bind));

The MYSQL_BIND structure contains the following members for use by application programs. For
several of the members, the manner of use depends on whether the structure is used for input or
output.

• enum enum_field_types buffer_type

The type of the buffer. This member indicates the data type of the C language variable bound
to a statement parameter or result set column. For input, buffer_type indicates the type
of the variable containing the value to be sent to the server. For output, it indicates the type
of the variable into which a value received from the server should be stored. For permissible
buffer_type values, see Section 21.8.9.1, “C API Prepared Statement Type Codes”.

• void *buffer

A pointer to the buffer to be used for data transfer. This is the address of a C language variable.

For input, buffer is a pointer to the variable in which you store the data value for a statement
parameter. When you call mysql_stmt_execute(), MySQL use the value stored in the variable
in place of the corresponding parameter marker in the statement (specified with ? in the statement
string).

For output, buffer is a pointer to the variable in which to return a result set column value. When
you call mysql_stmt_fetch(), MySQL stores a column value from the current row of the result
set in this variable. You can access the value when the call returns.

C API Prepared Statement Data Structures

2536

To minimize the need for MySQL to perform type conversions between C language values on the
client side and SQL values on the server side, use C variables that have types similar to those of
the corresponding SQL values:

• For numeric data types, buffer should point to a variable of the proper numeric C type.
For integer variables (which can be char for single-byte values or an integer type for larger
values), you should also indicate whether the variable has the unsigned attribute by setting the
is_unsigned member, described later.

• For character (nonbinary) and binary string data types, buffer should point to a character
buffer.

• For date and time data types, buffer should point to a MYSQL_TIME structure.

For guidelines about mapping between C types and SQL types and notes about type conversions,
see Section 21.8.9.1, “C API Prepared Statement Type Codes”, and Section 21.8.9.2, “C API
Prepared Statement Type Conversions”.

• unsigned long buffer_length

The actual size of *buffer in bytes. This indicates the maximum amount of data that can be
stored in the buffer. For character and binary C data, the buffer_length value specifies the
length of *buffer when used with mysql_stmt_bind_param() to specify input values, or
the maximum number of output data bytes that can be fetched into the buffer when used with
mysql_stmt_bind_result().

• unsigned long *length

A pointer to an unsigned long variable that indicates the actual number of bytes of data stored
in *buffer. length is used for character or binary C data.

For input parameter data binding, set *length to indicate the actual length of the parameter value
stored in *buffer. This is used by mysql_stmt_execute().

For output value binding, MySQL sets *length when you call mysql_stmt_fetch(). The
mysql_stmt_fetch() return value determines how to interpret the length:

• If the return value is 0, *length indicates the actual length of the parameter value.

• If the return value is MYSQL_DATA_TRUNCATED, *length indicates the nontruncated length of
the parameter value. In this case, the minimum of *length and buffer_length indicates the
actual length of the value.

length is ignored for numeric and temporal data types because the buffer_type value
determines the length of the data value.

If you must determine the length of a returned value before fetching it, see Section 21.8.11.11,
“mysql_stmt_fetch()”, for some strategies.

• my_bool *is_null

This member points to a my_bool variable that is true if a value is NULL, false if it is not NULL.
For input, set *is_null to true to indicate that you are passing a NULL value as a statement
parameter.

is_null is a pointer to a boolean scalar, not a boolean scalar, to provide flexibility in how you
specify NULL values:

• If your data values are always NULL, use MYSQL_TYPE_NULL as the buffer_type value when
you bind the column. The other MYSQL_BIND members, including is_null, do not matter.

C API Prepared Statement Data Structures

2537

• If your data values are always NOT NULL, set is_null = (my_bool*) 0, and set the other
members appropriately for the variable you are binding.

• In all other cases, set the other members appropriately and set is_null to the address of a
my_bool variable. Set that variable's value to true or false appropriately between executions to
indicate whether the corresponding data value is NULL or NOT NULL, respectively.

For output, when you fetch a row, MySQL sets the value pointed to by is_null to true or false
according to whether the result set column value returned from the statement is or is not NULL.

• my_bool is_unsigned

This member applies for C variables with data types that can be unsigned (char, short
int, int, long long int). Set is_unsigned to true if the variable pointed to by buffer is
unsigned and false otherwise. For example, if you bind a signed char variable to buffer,
specify a type code of MYSQL_TYPE_TINY and set is_unsigned to false. If you bind an
unsigned char instead, the type code is the same but is_unsigned should be true. (For
char, it is not defined whether it is signed or unsigned, so it is best to be explicit about signedness
by using signed char or unsigned char.)

is_unsigned applies only to the C language variable on the client side. It indicates nothing
about the signedness of the corresponding SQL value on the server side. For example, if you use
an int variable to supply a value for a BIGINT UNSIGNED column, is_unsigned should be
false because int is a signed type. If you use an unsigned int variable to supply a value for
a BIGINT column, is_unsigned should be true because unsigned int is an unsigned type.
MySQL performs the proper conversion between signed and unsigned values in both directions,
although a warning occurs if truncation results.

• my_bool *error

For output, set this member to point to a my_bool variable to have truncation information
for the parameter stored there after a row fetching operation. When truncation reporting is
enabled, mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED and *error is true in
the MYSQL_BIND structures for parameters in which truncation occurred. Truncation indicates
loss of sign or significant digits, or that a string was too long to fit in a column. Truncation
reporting is enabled by default, but can be controlled by calling mysql_options() with the
MYSQL_REPORT_DATA_TRUNCATION option.

• MYSQL_TIME

This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP data
directly to and from the server. Set the buffer member to point to a MYSQL_TIME structure,
and set the buffer_type member of a MYSQL_BIND structure to one of the temporal types
(MYSQL_TYPE_TIME, MYSQL_TYPE_DATE, MYSQL_TYPE_DATETIME, MYSQL_TYPE_TIMESTAMP).

The MYSQL_TIME structure contains the members listed in the following table.

Member Description

unsigned int year The year

unsigned int month The month of the year

unsigned int day The day of the month

unsigned int hour The hour of the day

unsigned int minute The minute of the hour

unsigned int second The second of the minute

my_bool neg A boolean flag indicating whether the time is negative

C API Prepared Statement Data Structures

2538

Member Description

unsigned long second_part The fractional part of the second in microseconds

Only those parts of a MYSQL_TIME structure that apply to a given type of temporal value are used.
The year, month, and day elements are used for DATE, DATETIME, and TIMESTAMP values. The
hour, minute, and second elements are used for TIME, DATETIME, and TIMESTAMP values. See
Section 21.8.19, “C API Prepared Statement Handling of Date and Time Values”.

21.8.9.1 C API Prepared Statement Type Codes

The buffer_type member of MYSQL_BIND structures indicates the data type of the C language
variable bound to a statement parameter or result set column. For input, buffer_type indicates the
type of the variable containing the value to be sent to the server. For output, it indicates the type of the
variable into which a value received from the server should be stored.

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for input values sent to the server. The table shows the C variable types that you can use,
the corresponding type codes, and the SQL data types for which the supplied value can be used
without conversion. Choose the buffer_type value according to the data type of the C language
variable that you are binding. For the integer types, you should also set the is_unsigned member to
indicate whether the variable is signed or unsigned.

Input Variable C Type buffer_type Value SQL Type of Destination Value

signed char MYSQL_TYPE_TINY TINYINT

short int MYSQL_TYPE_SHORT SMALLINT

int MYSQL_TYPE_LONG INT

long long int MYSQL_TYPE_LONGLONG BIGINT

float MYSQL_TYPE_FLOAT FLOAT

double MYSQL_TYPE_DOUBLE DOUBLE

MYSQL_TIME MYSQL_TYPE_TIME TIME

MYSQL_TIME MYSQL_TYPE_DATE DATE

MYSQL_TIME MYSQL_TYPE_DATETIME DATETIME

MYSQL_TIME MYSQL_TYPE_TIMESTAMP TIMESTAMP

char[] MYSQL_TYPE_STRING TEXT, CHAR, VARCHAR

char[] MYSQL_TYPE_BLOB BLOB, BINARY, VARBINARY

 MYSQL_TYPE_NULL NULL

Use MYSQL_TYPE_NULL as indicated in the description for the is_null member in Section 21.8.9, “C
API Prepared Statement Data Structures”.

For input string data, use MYSQL_TYPE_STRING or MYSQL_TYPE_BLOB depending on whether the
value is a character (nonbinary) or binary string:

• MYSQL_TYPE_STRING indicates character input string data. The value is assumed to be in the
character set indicated by the character_set_client system variable. If the server stores the
value into a column with a different character set, it converts the value to that character set.

• MYSQL_TYPE_BLOB indicates binary input string data. The value is treated as having the binary
character set. That is, it is treated as a byte string and no conversion occurs.

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for output values received from the server. The table shows the SQL types of received
values, the corresponding type codes that such values have in result set metadata, and the
recommended C language data types to bind to the MYSQL_BIND structure to receive the SQL values
without conversion. Choose the buffer_type value according to the data type of the C language

C API Prepared Statement Data Structures

2539

variable that you are binding. For the integer types, you should also set the is_unsigned member to
indicate whether the variable is signed or unsigned.

SQL Type of Received
Value

buffer_type Value Output Variable C Type

TINYINT MYSQL_TYPE_TINY signed char

SMALLINT MYSQL_TYPE_SHORT short int

MEDIUMINT MYSQL_TYPE_INT24 int

INT MYSQL_TYPE_LONG int

BIGINT MYSQL_TYPE_LONGLONG long long int

FLOAT MYSQL_TYPE_FLOAT float

DOUBLE MYSQL_TYPE_DOUBLE double

DECIMAL MYSQL_TYPE_NEWDECIMAL char[]

YEAR MYSQL_TYPE_SHORT short int

TIME MYSQL_TYPE_TIME MYSQL_TIME

DATE MYSQL_TYPE_DATE MYSQL_TIME

DATETIME MYSQL_TYPE_DATETIME MYSQL_TIME

TIMESTAMP MYSQL_TYPE_TIMESTAMP MYSQL_TIME

CHAR, BINARY MYSQL_TYPE_STRING char[]

VARCHAR, VARBINARY MYSQL_TYPE_VAR_STRING char[]

TINYBLOB, TINYTEXT MYSQL_TYPE_TINY_BLOB char[]

BLOB, TEXT MYSQL_TYPE_BLOB char[]

MEDIUMBLOB, MEDIUMTEXT MYSQL_TYPE_MEDIUM_BLOB char[]

LONGBLOB, LONGTEXT MYSQL_TYPE_LONG_BLOB char[]

BIT MYSQL_TYPE_BIT char[]

21.8.9.2 C API Prepared Statement Type Conversions

Prepared statements transmit data between the client and server using C language variables on the
client side that correspond to SQL values on the server side. If there is a mismatch between the C
variable type on the client side and the corresponding SQL value type on the server side, MySQL
performs implicit type conversions in both directions.

MySQL knows the type code for the SQL value on the server side. The buffer_type value in the
MYSQL_BIND structure indicates the type code of the C variable that holds the value on the client
side. The two codes together tell MySQL what conversion must be performed, if any. Here are some
examples:

• If you use MYSQL_TYPE_LONG with an int variable to pass an integer value to the server that is to
be stored into a FLOAT column, MySQL converts the value to floating-point format before storing it.

• If you fetch an SQL MEDIUMINT column value, but specify a buffer_type value of
MYSQL_TYPE_LONGLONG and use a C variable of type long long int as the destination buffer,
MySQL converts the MEDIUMINT value (which requires less than 8 bytes) for storage into the long
long int (an 8-byte variable).

• If you fetch a numeric column with a value of 255 into a char[4] character array and specify a
buffer_type value of MYSQL_TYPE_STRING, the resulting value in the array is a 4-byte string
'255\0'.

• MySQL returns DECIMAL values as the string representation of the original server-side value,
which is why the corresponding C type is char[]. For example, 12.345 is returned to the client as

C API Prepared Statement Function Overview

2540

'12.345'. If you specify MYSQL_TYPE_NEWDECIMAL and bind a string buffer to the MYSQL_BIND
structure, mysql_stmt_fetch() stores the value in the buffer as a string without conversion. If
instead you specify a numeric variable and type code, mysql_stmt_fetch() converts the string-
format DECIMAL value to numeric form.

• For the MYSQL_TYPE_BIT type code, BIT values are returned into a string buffer, which is why the
corresponding C type is char[]. The value represents a bit string that requires interpretation on the
client side. To return the value as a type that is easier to deal with, you can cause the value to be
cast to integer using either of the following types of expressions:

SELECT bit_col + 0 FROM t
SELECT CAST(bit_col AS UNSIGNED) FROM t

To retrieve the value, bind an integer variable large enough to hold the value and specify the
appropriate corresponding integer type code.

Before binding variables to the MYSQL_BIND structures that are to be used for fetching column
values, you can check the type codes for each column of the result set. This might be desirable if you
want to determine which variable types would be best to use to avoid type conversions. To get the
type codes, call mysql_stmt_result_metadata() after executing the prepared statement with
mysql_stmt_execute(). The metadata provides access to the type codes for the result set as
described in Section 21.8.11.23, “mysql_stmt_result_metadata()”, and Section 21.8.5, “C API
Data Structures”.

To determine whether output string values in a result set returned from the server contain binary
or nonbinary data, check whether the charsetnr value of the result set metadata is 63 (see
Section 21.8.5, “C API Data Structures”). If so, the character set is binary, which indicates binary
rather than nonbinary data. This enables you to distinguish BINARY from CHAR, VARBINARY from
VARCHAR, and the BLOB types from the TEXT types.

If you cause the max_length member of the MYSQL_FIELD column metadata structures to be set
(by calling mysql_stmt_attr_set()), be aware that the max_length values for the result set
indicate the lengths of the longest string representation of the result values, not the lengths of the
binary representation. That is, max_length does not necessarily correspond to the size of the buffers
needed to fetch the values with the binary protocol used for prepared statements. Choose the size
of the buffers according to the types of the variables into which you fetch the values. For example,
a TINYINT column containing the value -128 might have a max_length value of 4. But the binary
representation of any TINYINT value requires only 1 byte for storage, so you can supply a signed
char variable in which to store the value and set is_unsigned to indicate that values are signed.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.

21.8.10 C API Prepared Statement Function Overview

The functions available for prepared statement processing are summarized here and described
in greater detail in a later section. See Section 21.8.11, “C API Prepared Statement Function
Descriptions”.

Function Description

mysql_stmt_affected_rows()Returns the number of rows changed, deleted, or inserted by
prepared UPDATE, DELETE, or INSERT statement

mysql_stmt_attr_get() Gets value of an attribute for a prepared statement

mysql_stmt_attr_set() Sets an attribute for a prepared statement

mysql_stmt_bind_param() Associates application data buffers with the parameter markers in a
prepared SQL statement

mysql_stmt_bind_result() Associates application data buffers with columns in a result set

C API Prepared Statement Function Overview

2541

Function Description

mysql_stmt_close() Frees memory used by a prepared statement

mysql_stmt_data_seek() Seeks to an arbitrary row number in a statement result set

mysql_stmt_errno() Returns the error number for the last statement execution

mysql_stmt_error() Returns the error message for the last statement execution

mysql_stmt_execute() Executes a prepared statement

mysql_stmt_fetch() Fetches the next row of data from a result set and returns data for all
bound columns

mysql_stmt_fetch_column()Fetch data for one column of the current row of a result set

mysql_stmt_field_count() Returns the number of result columns for the most recent statement

mysql_stmt_free_result() Free the resources allocated to a statement handle

mysql_stmt_init() Allocates memory for a MYSQL_STMT structure and initializes it

mysql_stmt_insert_id() Returns the ID generated for an AUTO_INCREMENT column by a
prepared statement

mysql_stmt_next_result() Returns/initiates the next result in a multiple-result execution

mysql_stmt_num_rows() Returns the row count from a buffered statement result set

mysql_stmt_param_count() Returns the number of parameters in a prepared statement

mysql_stmt_param_metadata()(Return parameter metadata in the form of a result set) Currently,
this function does nothing

mysql_stmt_prepare() Prepares an SQL statement string for execution

mysql_stmt_reset() Resets the statement buffers in the server

mysql_stmt_result_metadata()Returns prepared statement metadata in the form of a result set

mysql_stmt_row_seek() Seeks to a row offset in a statement result set, using value returned
from mysql_stmt_row_tell()

mysql_stmt_row_tell() Returns the statement row cursor position

mysql_stmt_send_long_data()Sends long data in chunks to server

mysql_stmt_sqlstate() Returns the SQLSTATE error code for the last statement execution

mysql_stmt_store_result()Retrieves a complete result set to the client

Call mysql_stmt_init() to create a statement handle, then mysql_stmt_prepare()
to prepare the statement string, mysql_stmt_bind_param() to supply the parameter
data, and mysql_stmt_execute() to execute the statement. You can repeat the
mysql_stmt_execute() by changing parameter values in the respective buffers supplied through
mysql_stmt_bind_param().

You can send text or binary data in chunks to server using mysql_stmt_send_long_data(). See
Section 21.8.11.26, “mysql_stmt_send_long_data()”.

If the statement is a SELECT or any other statement that produces a result set,
mysql_stmt_prepare() also returns the result set metadata information in the form of a
MYSQL_RES result set through mysql_stmt_result_metadata().

You can supply the result buffers using mysql_stmt_bind_result(), so that the
mysql_stmt_fetch() automatically returns data to these buffers. This is row-by-row fetching.

When statement execution has been completed, close the statement handle using
mysql_stmt_close() so that all resources associated with it can be freed.

If you obtained a SELECT statement's result set metadata by calling
mysql_stmt_result_metadata(), you should also free the metadata using
mysql_free_result().

C API Prepared Statement Function Overview

2542

Execution Steps

To prepare and execute a statement, an application follows these steps:

1. Create a prepared statement handle with mysql_stmt_init(). To prepare the statement on the
server, call mysql_stmt_prepare() and pass it a string containing the SQL statement.

2. If the statement will produce a result set, call mysql_stmt_result_metadata() to obtain the
result set metadata. This metadata is itself in the form of result set, albeit a separate one from the
one that contains the rows returned by the query. The metadata result set indicates how many
columns are in the result and contains information about each column.

3. Set the values of any parameters using mysql_stmt_bind_param(). All parameters must be
set. Otherwise, statement execution returns an error or produces unexpected results.

4. Call mysql_stmt_execute() to execute the statement.

5. If the statement produces a result set, bind the data buffers to use for retrieving the row values by
calling mysql_stmt_bind_result().

6. Fetch the data into the buffers row by row by calling mysql_stmt_fetch() repeatedly until no
more rows are found.

7. Repeat steps 3 through 6 as necessary, by changing the parameter values and re-executing the
statement.

When mysql_stmt_prepare() is called, the MySQL client/server protocol performs these actions:

• The server parses the statement and sends the okay status back to the client by assigning a
statement ID. It also sends total number of parameters, a column count, and its metadata if it is a
result set oriented statement. All syntax and semantics of the statement are checked by the server
during this call.

• The client uses this statement ID for the further operations, so that the server can identify the
statement from among its pool of statements.

When mysql_stmt_execute() is called, the MySQL client/server protocol performs these actions:

• The client uses the statement handle and sends the parameter data to the server.

• The server identifies the statement using the ID provided by the client, replaces the parameter
markers with the newly supplied data, and executes the statement. If the statement produces a result
set, the server sends the data back to the client. Otherwise, it sends an okay status and the number
of rows changed, deleted, or inserted.

When mysql_stmt_fetch() is called, the MySQL client/server protocol performs these actions:

• The client reads the data from the current row of the result set and places it into the application data
buffers by doing the necessary conversions. If the application buffer type is same as that of the field
type returned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error number, error message, and SQLSTATE code using
mysql_stmt_errno(), mysql_stmt_error(), and mysql_stmt_sqlstate(), respectively.

Prepared Statement Logging

For prepared statements that are executed with the mysql_stmt_prepare() and
mysql_stmt_execute() C API functions, the server writes Prepare and Execute lines to the
general query log so that you can tell when statements are prepared and executed.

Suppose that you prepare and execute a statement as follows:

1. Call mysql_stmt_prepare() to prepare the statement string "SELECT ?".

2. Call mysql_stmt_bind_param() to bind the value 3 to the parameter in the prepared statement.

C API Prepared Statement Function Descriptions

2543

3. Call mysql_stmt_execute() to execute the prepared statement.

As a result of the preceding calls, the server writes the following lines to the general query log:

Prepare [1] SELECT ?
Execute [1] SELECT 3

Each Prepare and Execute line in the log is tagged with a [N] statement identifier so that you can
keep track of which prepared statement is being logged. N is a positive integer. If there are multiple
prepared statements active simultaneously for the client, N may be greater than 1. Each Execute lines
shows a prepared statement after substitution of data values for ? parameters.

21.8.11 C API Prepared Statement Function Descriptions

To prepare and execute queries, use the functions described in detail in the following sections.

All functions that operate with a MYSQL_STMT structure begin with the prefix mysql_stmt_.

To create a MYSQL_STMT handle, use the mysql_stmt_init() function.

21.8.11.1 mysql_stmt_affected_rows()

my_ulonglong mysql_stmt_affected_rows(MYSQL_STMT *stmt)

Description

mysql_stmt_affected_rows() may be called immediately after executing a statement with
mysql_stmt_execute(). It is like mysql_affected_rows() but for prepared statements. For
a description of what the affected-rows value returned by this function means, See Section 21.8.7.1,
“mysql_affected_rows()”.

Errors

None.

Example

See the Example in Section 21.8.11.10, “mysql_stmt_execute()”.

21.8.11.2 mysql_stmt_attr_get()

my_bool mysql_stmt_attr_get(MYSQL_STMT *stmt, enum enum_stmt_attr_type
option, void *arg)

Description

Can be used to get the current value for a statement attribute.

The option argument is the option that you want to get; the arg should point to a variable that should
contain the option value. If the option is an integer, arg should point to the value of the integer.

See Section 21.8.11.3, “mysql_stmt_attr_set()”, for a list of options and option types.

Return Values

Zero for success. Nonzero if option is unknown.

Errors

None.

21.8.11.3 mysql_stmt_attr_set()

my_bool mysql_stmt_attr_set(MYSQL_STMT *stmt, enum enum_stmt_attr_type
option, const void *arg)

C API Prepared Statement Function Descriptions

2544

Description

Can be used to affect behavior for a prepared statement. This function may be called multiple times to
set several options.

The option argument is the option that you want to set. The arg argument is the value for the option.
arg should point to a variable that is set to the desired attribute value. The variable type is as indicated
in the following table.

The following table shows the possible option values.

Option Argument Type Function

STMT_ATTR_UPDATE_MAX_LENGTH my_bool * If set to 1, causes
mysql_stmt_store_result() to
update the metadata MYSQL_FIELD-
>max_length value.

STMT_ATTR_CURSOR_TYPE unsigned long
*

Type of cursor to open for statement
when mysql_stmt_execute()
is invoked. *arg can be
CURSOR_TYPE_NO_CURSOR
(the default) or
CURSOR_TYPE_READ_ONLY.

STMT_ATTR_PREFETCH_ROWS unsigned long
*

Number of rows to fetch from server
at a time when using a cursor. *arg
can be in the range from 1 to the
maximum value of unsigned long.
The default is 1.

If you use the STMT_ATTR_CURSOR_TYPE option with CURSOR_TYPE_READ_ONLY, a cursor is
opened for the statement when you invoke mysql_stmt_execute(). If there is already an open
cursor from a previous mysql_stmt_execute() call, it closes the cursor before opening a new one.
mysql_stmt_reset() also closes any open cursor before preparing the statement for re-execution.
mysql_stmt_free_result() closes any open cursor.

If you open a cursor for a prepared statement, mysql_stmt_store_result() is unnecessary,
because that function causes the result set to be buffered on the client side.

Return Values

Zero for success. Nonzero if option is unknown.

Errors

None.

Example

The following example opens a cursor for a prepared statement and sets the number of rows to fetch at
a time to 5:

MYSQL_STMT *stmt;
int rc;
unsigned long type;
unsigned long prefetch_rows = 5;

stmt = mysql_stmt_init(mysql);
type = (unsigned long) CURSOR_TYPE_READ_ONLY;
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_CURSOR_TYPE, (void*) &type);
/* ... check return value ... */
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_PREFETCH_ROWS,
 (void*) &prefetch_rows);

C API Prepared Statement Function Descriptions

2545

/* ... check return value ... */

21.8.11.4 mysql_stmt_bind_param()

my_bool mysql_stmt_bind_param(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_param() is used to bind input data for the parameter markers in the SQL
statement that was passed to mysql_stmt_prepare(). It uses MYSQL_BIND structures to supply the
data. bind is the address of an array of MYSQL_BIND structures. The client library expects the array to
contain one element for each ? parameter marker that is present in the query.

Suppose that you prepare the following statement:

INSERT INTO mytbl VALUES(?,?,?)

When you bind the parameters, the array of MYSQL_BIND structures must contain three elements, and
can be declared like this:

MYSQL_BIND bind[3];

Section 21.8.9, “C API Prepared Statement Data Structures”, describes the members of each
MYSQL_BIND element and how they should be set to provide input values.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 21.8.11.10, “mysql_stmt_execute()”.

21.8.11.5 mysql_stmt_bind_result()

my_bool mysql_stmt_bind_result(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_result() is used to associate (that is, bind) output columns in the result set
to data buffers and length buffers. When mysql_stmt_fetch() is called to fetch data, the MySQL
client/server protocol places the data for the bound columns into the specified buffers.

All columns must be bound to buffers prior to calling mysql_stmt_fetch(). bind is the
address of an array of MYSQL_BIND structures. The client library expects the array to contain one
element for each column of the result set. If you do not bind columns to MYSQL_BIND structures,
mysql_stmt_fetch() simply ignores the data fetch. The buffers should be large enough to hold the
data values, because the protocol does not return data values in chunks.

C API Prepared Statement Function Descriptions

2546

A column can be bound or rebound at any time, even after a result set has been partially retrieved.
The new binding takes effect the next time mysql_stmt_fetch() is called. Suppose that an
application binds the columns in a result set and calls mysql_stmt_fetch(). The client/server
protocol returns data in the bound buffers. Then suppose that the application binds the columns to a
different set of buffers. The protocol places data into the newly bound buffers when the next call to
mysql_stmt_fetch() occurs.

To bind a column, an application calls mysql_stmt_bind_result() and passes the type, address,
and length of the output buffer into which the value should be stored. Section 21.8.9, “C API Prepared
Statement Data Structures”, describes the members of each MYSQL_BIND element and how they
should be set to receive output values.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 21.8.11.11, “mysql_stmt_fetch()”.

21.8.11.6 mysql_stmt_close()

my_bool mysql_stmt_close(MYSQL_STMT *)

Description

Closes the prepared statement. mysql_stmt_close() also deallocates the statement handle pointed
to by stmt.

If the current statement has pending or unread results, this function cancels them so that the next
query can be executed.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 21.8.11.10, “mysql_stmt_execute()”.

C API Prepared Statement Function Descriptions

2547

21.8.11.7 mysql_stmt_data_seek()

void mysql_stmt_data_seek(MYSQL_STMT *stmt, my_ulonglong offset)

Description

Seeks to an arbitrary row in a statement result set. The offset value is a row number and should be
in the range from 0 to mysql_stmt_num_rows(stmt)-1.

This function requires that the statement result set structure contains the entire result of the
last executed query, so mysql_stmt_data_seek() may be used only in conjunction with
mysql_stmt_store_result().

Return Values

None.

Errors

None.

21.8.11.8 mysql_stmt_errno()

unsigned int mysql_stmt_errno(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_errno() returns the error code for the most
recently invoked statement API function that can succeed or fail. A return value of zero means that no
error occurred. Client error message numbers are listed in the MySQL errmsg.h header file. Server
error message numbers are listed in mysqld_error.h. Errors also are listed at Appendix C, Errors,
Error Codes, and Common Problems.

Return Values

An error code value. Zero if no error occurred.

Errors

None.

21.8.11.9 mysql_stmt_error()

const char *mysql_stmt_error(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string
containing the error message for the most recently invoked statement API function that can succeed or
fail. An empty string ("") is returned if no error occurred. Either of these two tests can be used to check
for an error:

if(*mysql_stmt_errno(stmt))
{
 // an error occurred
}

if (mysql_stmt_error(stmt)[0])
{
 // an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client library.
Currently, you can choose error messages in several different languages.

C API Prepared Statement Function Descriptions

2548

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

21.8.11.10 mysql_stmt_execute()

int mysql_stmt_execute(MYSQL_STMT *stmt)

Description

mysql_stmt_execute() executes the prepared query associated with the statement handle. The
currently bound parameter marker values are sent to server during this call, and the server replaces the
markers with this newly supplied data.

Statement processing following mysql_stmt_execute() depends on the type of statement:

• For an UPDATE, DELETE, or INSERT, the number of changed, deleted, or inserted rows can be found
by calling mysql_stmt_affected_rows().

• For a statement such as SELECT that generates a result set, you must call mysql_stmt_fetch()
to fetch the data prior to calling any other functions that result in query processing. For more
information on how to fetch the results, refer to Section 21.8.11.11, “mysql_stmt_fetch()”.

Do not following invocation of mysql_stmt_execute() with a call to mysql_store_result()
or mysql_use_result(). Those functions are not intended for processing results from prepared
statements.

For statements that generate a result set, you can request that mysql_stmt_execute() open a
cursor for the statement by calling mysql_stmt_attr_set() before executing the statement. If you
execute a statement multiple times, mysql_stmt_execute() closes any open cursor before opening
a new one.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

C API Prepared Statement Function Descriptions

2549

Example

The following example demonstrates how to create and populate a table using mysql_stmt_init(),
mysql_stmt_prepare(), mysql_stmt_param_count(), mysql_stmt_bind_param(),
mysql_stmt_execute(), and mysql_stmt_affected_rows(). The mysql variable is
assumed to be a valid connection handle. For an example that shows how to retrieve data, see
Section 21.8.11.11, “mysql_stmt_fetch()”.

#define STRING_SIZE 50

#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\
 col2 VARCHAR(40),\
 col3 SMALLINT,\
 col4 TIMESTAMP)"
#define INSERT_SAMPLE "INSERT INTO \
 test_table(col1,col2,col3) \
 VALUES(?,?,?)"

MYSQL_STMT *stmt;
MYSQL_BIND bind[3];
my_ulonglong affected_rows;
int param_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
unsigned long str_length;
my_bool is_null;

if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{
 fprintf(stderr, " DROP TABLE failed\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

if (mysql_query(mysql, CREATE_SAMPLE_TABLE))
{
 fprintf(stderr, " CREATE TABLE failed\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; the server */
/* sets it to the current date and time) */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_SAMPLE, strlen(INSERT_SAMPLE)))
{
 fprintf(stderr, " mysql_stmt_prepare(), INSERT failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}
fprintf(stdout, " prepare, INSERT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);

if (param_count != 3) /* validate parameter count */
{
 fprintf(stderr, " invalid parameter count returned by MySQL\n");
 exit(0);
}

C API Prepared Statement Function Descriptions

2550

/* Bind the data for all 3 parameters */

memset(bind, 0, sizeof(bind));

/* INTEGER PARAM */
/* This is a number type, so there is no need
 to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;

/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;

/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
 fprintf(stderr, " mysql_stmt_bind_param() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Specify the data values for the first row */
int_data= 10; /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string */
str_length= strlen(str_data);

/* INSERT SMALLINT data as NULL */
is_null= 1;

/* Execute the INSERT statement - 1*/
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute(), 1 failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get the number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %lu\n",
 (unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
 fprintf(stderr, " invalid affected rows by MySQL\n");
 exit(0);
}

/* Specify data values for second row,
 then re-execute the statement */
int_data= 1000;
strncpy(str_data, "
 The most popular Open Source database",
 STRING_SIZE);
str_length= strlen(str_data);
small_data= 1000; /* smallint */
is_null= 0; /* reset */

/* Execute the INSERT statement - 2*/
if (mysql_stmt_execute(stmt))

C API Prepared Statement Function Descriptions

2551

{
 fprintf(stderr, " mysql_stmt_execute, 2 failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %lu\n",
 (unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
 fprintf(stderr, " invalid affected rows by MySQL\n");
 exit(0);
}

/* Close the statement */
if (mysql_stmt_close(stmt))
{
 fprintf(stderr, " failed while closing the statement\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

Note

For complete examples on the use of prepared statement functions, refer to the
file tests/mysql_client_test.c. This file can be obtained from a MySQL
source distribution or from the Bazaar source repository.

21.8.11.11 mysql_stmt_fetch()

int mysql_stmt_fetch(MYSQL_STMT *stmt)

Description

mysql_stmt_fetch() returns the next row in the result set. It can be called only while the result set
exists; that is, after a call to mysql_stmt_execute() for a statement such as SELECT that produces
a result set.

mysql_stmt_fetch() returns row data using the buffers bound by mysql_stmt_bind_result().
It returns the data in those buffers for all the columns in the current row set and the lengths are
returned to the length pointer. All columns must be bound by the application before it calls
mysql_stmt_fetch().

By default, result sets are fetched unbuffered a row at a time from the server. To buffer the entire result
set on the client, call mysql_stmt_store_result() after binding the data buffers and before calling
mysql_stmt_fetch().

If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_BIND
structure contains TRUE (1). Otherwise, the data and its length are returned in the *buffer and
*length elements based on the buffer type specified by the application. Each numeric and temporal
type has a fixed length, as listed in the following table. The length of the string types depends on the
length of the actual data value, as indicated by data_length.

Type Length

MYSQL_TYPE_TINY 1

MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4

MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4

MYSQL_TYPE_DOUBLE 8

C API Prepared Statement Function Descriptions

2552

Type Length

MYSQL_TYPE_TIME sizeof(MYSQL_TIME)

MYSQL_TYPE_DATE sizeof(MYSQL_TIME)

MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)

MYSQL_TYPE_STRING data length

MYSQL_TYPE_BLOB data_length

In some cases you might want to determine the length of a column value before fetching it with
mysql_stmt_fetch(). For example, the value might be a long string or BLOB value for which you
want to know how much space must be allocated. To accomplish this, you can use these strategies:

• Before invoking mysql_stmt_fetch() to retrieve individual rows, pass
STMT_ATTR_UPDATE_MAX_LENGTH to mysql_stmt_attr_set(), then invoke
mysql_stmt_store_result() to buffer the entire result on the client side. Setting
the STMT_ATTR_UPDATE_MAX_LENGTH attribute causes the maximal length of column
values to be indicated by the max_length member of the result set metadata returned by
mysql_stmt_result_metadata().

• Invoke mysql_stmt_fetch() with a zero-length buffer for the column in question and a pointer in
which the real length can be stored. Then use the real length with mysql_stmt_fetch_column().

real_length= 0;

bind[0].buffer= 0;
bind[0].buffer_length= 0;
bind[0].length= &real_length
mysql_stmt_bind_result(stmt, bind);

mysql_stmt_fetch(stmt);
if (real_length > 0)
{
 data= malloc(real_length);
 bind[0].buffer= data;
 bind[0].buffer_length= real_length;
 mysql_stmt_fetch_column(stmt, bind, 0, 0);
}

Return Values

Return Value Description

0 Successful, the data has been fetched to application data buffers.

1 Error occurred. Error code and message can be obtained by
calling mysql_stmt_errno() and mysql_stmt_error().

MYSQL_NO_DATA No more rows/data exists

MYSQL_DATA_TRUNCATED Data truncation occurred

MYSQL_DATA_TRUNCATED is returned when truncation reporting is enabled. To determine which
column values were truncated when this value is returned, check the error members of the
MYSQL_BIND structures used for fetching values. Truncation reporting is enabled by default, but can be
controlled by calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION option.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

C API Prepared Statement Function Descriptions

2553

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• CR_UNSUPPORTED_PARAM_TYPE

The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or
MYSQL_TYPE_TIMESTAMP, but the data type is not DATE, TIME, DATETIME, or TIMESTAMP.

• All other unsupported conversion errors are returned from mysql_stmt_bind_result().

Example

The following example demonstrates how to fetch data from a table using
mysql_stmt_result_metadata(), mysql_stmt_bind_result(), and mysql_stmt_fetch().
(This example expects to retrieve the two rows inserted by the example shown in Section 21.8.11.10,
“mysql_stmt_execute()”.) The mysql variable is assumed to be a valid connection handle.

#define STRING_SIZE 50

#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 \
 FROM test_table"

MYSQL_STMT *stmt;
MYSQL_BIND bind[4];
MYSQL_RES *prepare_meta_result;
MYSQL_TIME ts;
unsigned long length[4];
int param_count, column_count, row_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
my_bool is_null[4];
my_bool error[4];

/* Prepare a SELECT query to fetch data from test_table */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))
{
 fprintf(stderr, " mysql_stmt_prepare(), SELECT failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}
fprintf(stdout, " prepare, SELECT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);

if (param_count != 0) /* validate parameter count */
{
 fprintf(stderr, " invalid parameter count returned by MySQL\n");

C API Prepared Statement Function Descriptions

2554

 exit(0);
}

/* Fetch result set meta information */
prepare_meta_result = mysql_stmt_result_metadata(stmt);
if (!prepare_meta_result)
{
 fprintf(stderr,
 " mysql_stmt_result_metadata(), \
 returned no meta information\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout,
 " total columns in SELECT statement: %d\n",
 column_count);

if (column_count != 4) /* validate column count */
{
 fprintf(stderr, " invalid column count returned by MySQL\n");
 exit(0);
}

/* Execute the SELECT query */
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute(), failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Bind the result buffers for all 4 columns before fetching them */

memset(bind, 0, sizeof(bind));

/* INTEGER COLUMN */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];
bind[0].error= &error[0];

/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];
bind[1].error= &error[1];

/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];
bind[2].error= &error[2];

/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];
bind[3].error= &error[3];

/* Bind the result buffers */
if (mysql_stmt_bind_result(stmt, bind))
{
 fprintf(stderr, " mysql_stmt_bind_result() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));

C API Prepared Statement Function Descriptions

2555

 exit(0);
}

/* Now buffer all results to client (optional step) */
if (mysql_stmt_store_result(stmt))
{
 fprintf(stderr, " mysql_stmt_store_result() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Fetch all rows */
row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_stmt_fetch(stmt))
{
 row_count++;
 fprintf(stdout, " row %d\n", row_count);

 /* column 1 */
 fprintf(stdout, " column1 (integer) : ");
 if (is_null[0])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %d(%ld)\n", int_data, length[0]);

 /* column 2 */
 fprintf(stdout, " column2 (string) : ");
 if (is_null[1])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %s(%ld)\n", str_data, length[1]);

 /* column 3 */
 fprintf(stdout, " column3 (smallint) : ");
 if (is_null[2])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %d(%ld)\n", small_data, length[2]);

 /* column 4 */
 fprintf(stdout, " column4 (timestamp): ");
 if (is_null[3])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",
 ts.year, ts.month, ts.day,
 ts.hour, ts.minute, ts.second,
 length[3]);
 fprintf(stdout, "\n");
}

/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{
 fprintf(stderr, " MySQL failed to return all rows\n");
 exit(0);
}

/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);

/* Close the statement */
if (mysql_stmt_close(stmt))
{
 fprintf(stderr, " failed while closing the statement\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

C API Prepared Statement Function Descriptions

2556

21.8.11.12 mysql_stmt_fetch_column()

int mysql_stmt_fetch_column(MYSQL_STMT *stmt, MYSQL_BIND *bind, unsigned int
column, unsigned long offset)

Description

Fetch one column from the current result set row. bind provides the buffer where data should be
placed. It should be set up the same way as for mysql_stmt_bind_result(). column indicates
which column to fetch. The first column is numbered 0. offset is the offset within the data value at
which to begin retrieving data. This can be used for fetching the data value in pieces. The beginning of
the value is offset 0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_INVALID_PARAMETER_NO

Invalid column number.

• CR_NO_DATA

The end of the result set has already been reached.

21.8.11.13 mysql_stmt_field_count()

unsigned int mysql_stmt_field_count(MYSQL_STMT *stmt)

Description

Returns the number of columns for the most recent statement for the statement handler. This value is
zero for statements such as INSERT or DELETE that do not produce result sets.

mysql_stmt_field_count() can be called after you have prepared a statement by invoking
mysql_stmt_prepare().

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

21.8.11.14 mysql_stmt_free_result()

my_bool mysql_stmt_free_result(MYSQL_STMT *stmt)

Description

Releases memory associated with the result set produced by execution of the prepared statement. If
there is a cursor open for the statement, mysql_stmt_free_result() closes it.

Return Values

Zero for success. Nonzero if an error occurred.

C API Prepared Statement Function Descriptions

2557

Errors

21.8.11.15 mysql_stmt_init()

MYSQL_STMT *mysql_stmt_init(MYSQL *mysql)

Description

Create a MYSQL_STMT handle. The handle should be freed with mysql_stmt_close(MYSQL_STMT
*).

See also Section 21.8.9, “C API Prepared Statement Data Structures”, for more information.

Return Values

A pointer to a MYSQL_STMT structure in case of success. NULL if out of memory.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

21.8.11.16 mysql_stmt_insert_id()

my_ulonglong mysql_stmt_insert_id(MYSQL_STMT *stmt)

Description

Returns the value generated for an AUTO_INCREMENT column by the prepared INSERT or UPDATE
statement. Use this function after you have executed a prepared INSERT statement on a table which
contains an AUTO_INCREMENT field.

See Section 21.8.7.38, “mysql_insert_id()”, for more information.

Return Values

Value for AUTO_INCREMENT column which was automatically generated or explicitly set during
execution of prepared statement, or value generated by LAST_INSERT_ID(expr) function. Return
value is undefined if statement does not set AUTO_INCREMENT value.

Errors

None.

21.8.11.17 mysql_stmt_next_result()

int mysql_stmt_next_result(MYSQL_STMT *mysql)

Description

This function is used when you use prepared CALL statements to execute stored procedures, which
can return multiple result sets. Use a loop that calls mysql_stmt_next_result() to determine
whether there are more results. If a procedure has OUT or INOUT parameters, their values will be
returned as a single-row result set following any other result sets. The values will appear in the order in
which they are declared in the procedure parameter list.

mysql_stmt_next_result() returns a status to indicate whether more results exist. If
mysql_stmt_next_result() returns an error, there are no more results.

Before each call to mysql_stmt_next_result(), you must call mysql_stmt_free_result() for
the current result if it produced a result set (rather than just a result status).

C API Prepared Statement Function Descriptions

2558

After calling mysql_stmt_next_result() the state of the connection is as if you had called
mysql_stmt_execute(). This means that you can call mysql_stmt_bind_result(),
mysql_stmt_affected_rows(), and so forth.

It is also possible to test whether there are more results by calling mysql_more_results().
However, this function does not change the connection state, so if it returns true, you must still call
mysql_stmt_next_result() to advance to the next result.

For an example that shows how to use mysql_stmt_next_result(), see Section 21.8.20, “C API
Support for Prepared CALL Statements”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.11.18 mysql_stmt_num_rows()

my_ulonglong mysql_stmt_num_rows(MYSQL_STMT *stmt)

Description

Returns the number of rows in the result set.

The use of mysql_stmt_num_rows() depends on whether you used
mysql_stmt_store_result() to buffer the entire result set in the statement handle. If you use
mysql_stmt_store_result(), mysql_stmt_num_rows() may be called immediately. Otherwise,
the row count is unavailable unless you count the rows as you fetch them.

mysql_stmt_num_rows() is intended for use with statements that return a result set, such as
SELECT. For statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be
obtained with mysql_stmt_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

C API Prepared Statement Function Descriptions

2559

21.8.11.19 mysql_stmt_param_count()

unsigned long mysql_stmt_param_count(MYSQL_STMT *stmt)

Description

Returns the number of parameter markers present in the prepared statement.

Return Values

An unsigned long integer representing the number of parameters in a statement.

Errors

None.

Example

See the Example in Section 21.8.11.10, “mysql_stmt_execute()”.

21.8.11.20 mysql_stmt_param_metadata()

MYSQL_RES *mysql_stmt_param_metadata(MYSQL_STMT *stmt)

This function currently does nothing.

Description

Return Values

Errors

21.8.11.21 mysql_stmt_prepare()

int mysql_stmt_prepare(MYSQL_STMT *stmt, const char *stmt_str, unsigned long
length)

Description

Given the statement handle returned by mysql_stmt_init(), prepares the SQL statement pointed
to by the string stmt_str and returns a status value. The string length should be given by the length
argument. The string must consist of a single SQL statement. You should not add a terminating
semicolon (“;”) or \g to the statement.

The application can include one or more parameter markers in the SQL statement by embedding
question mark (?) characters into the SQL string at the appropriate positions.

The markers are legal only in certain places in SQL statements. For example, they are permitted in
the VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison
with a column in a WHERE clause to specify a comparison value. However, they are not permitted for
identifiers (such as table or column names), or to specify both operands of a binary operator such
as the = equal sign. The latter restriction is necessary because it would be impossible to determine
the parameter type. In general, parameters are legal only in Data Manipulation Language (DML)
statements, and not in Data Definition Language (DDL) statements.

The parameter markers must be bound to application variables using mysql_stmt_bind_param()
before executing the statement.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.

C API Prepared Statement Function Descriptions

2560

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql_stmt_prepare() returns nonzero), the
error message can be obtained by calling mysql_stmt_error().

Example

See the Example in Section 21.8.11.10, “mysql_stmt_execute()”.

21.8.11.22 mysql_stmt_reset()

my_bool mysql_stmt_reset(MYSQL_STMT *stmt)

Description

Resets a prepared statement on client and server to state after prepare. It resets the statement on the
server, data sent using mysql_stmt_send_long_data(), unbuffered result sets and current errors.
It does not clear bindings or stored result sets. Stored result sets will be cleared when executing the
prepared statement (or closing it).

To re-prepare the statement with another query, use mysql_stmt_prepare().

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

C API Prepared Statement Function Descriptions

2561

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.11.23 mysql_stmt_result_metadata()

MYSQL_RES *mysql_stmt_result_metadata(MYSQL_STMT *stmt)

Description

If a statement passed to mysql_stmt_prepare() is one that produces a result set,
mysql_stmt_result_metadata() returns the result set metadata in the form of a pointer to a
MYSQL_RES structure that can be used to process the meta information such as number of fields and
individual field information. This result set pointer can be passed as an argument to any of the field-
based API functions that process result set metadata, such as:

• mysql_num_fields()

• mysql_fetch_field()

• mysql_fetch_field_direct()

• mysql_fetch_fields()

• mysql_field_count()

• mysql_field_seek()

• mysql_field_tell()

• mysql_free_result()

The result set structure should be freed when you are done with it, which you can do by passing it
to mysql_free_result(). This is similar to the way you free a result set obtained from a call to
mysql_store_result().

The result set returned by mysql_stmt_result_metadata() contains only metadata. It
does not contain any row results. The rows are obtained by using the statement handle with
mysql_stmt_fetch().

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared query.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 21.8.11.11, “mysql_stmt_fetch()”.

21.8.11.24 mysql_stmt_row_seek()

MYSQL_ROW_OFFSET mysql_stmt_row_seek(MYSQL_STMT *stmt, MYSQL_ROW_OFFSET
offset)

C API Prepared Statement Function Descriptions

2562

Description

Sets the row cursor to an arbitrary row in a statement result set. The offset value is a row offset that
should be a value returned from mysql_stmt_row_tell() or from mysql_stmt_row_seek().
This value is not a row number; if you want to seek to a row within a result set by number, use
mysql_stmt_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_stmt_row_seek() may be used only in conjunction with mysql_stmt_store_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_stmt_row_seek().

Errors

None.

21.8.11.25 mysql_stmt_row_tell()

MYSQL_ROW_OFFSET mysql_stmt_row_tell(MYSQL_STMT *stmt)

Description

Returns the current position of the row cursor for the last mysql_stmt_fetch(). This value can be
used as an argument to mysql_stmt_row_seek().

You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().

Return Values

The current offset of the row cursor.

Errors

None.

21.8.11.26 mysql_stmt_send_long_data()

my_bool mysql_stmt_send_long_data(MYSQL_STMT *stmt, unsigned int
parameter_number, const char *data, unsigned long length)

Description

Enables an application to send parameter data to the server in pieces (or “chunks”). Call this function
after mysql_stmt_bind_param() and before mysql_stmt_execute(). It can be called multiple
times to send the parts of a character or binary data value for a column, which must be one of the TEXT
or BLOB data types.

parameter_number indicates which parameter to associate the data with. Parameters are numbered
beginning with 0. data is a pointer to a buffer containing data to be sent, and length indicates the
number of bytes in the buffer.

Note

The next mysql_stmt_execute() call ignores the bind buffer for all
parameters that have been used with mysql_stmt_send_long_data()
since last mysql_stmt_execute() or mysql_stmt_reset().

If you want to reset/forget the sent data, you can do it with mysql_stmt_reset(). See
Section 21.8.11.22, “mysql_stmt_reset()”.

C API Prepared Statement Function Descriptions

2563

The max_allowed_packet system variable controls the maximum size of parameter values that can
be sent with mysql_stmt_send_long_data().

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_INVALID_BUFFER_USE

The parameter does not have a string or binary type.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the
data value 'MySQL - The most popular Open Source database' into the text_column
column. The mysql variable is assumed to be a valid connection handle.

#define INSERT_QUERY "INSERT INTO \
 test_long_data(text_column) VALUES(?)"

MYSQL_BIND bind[1];
long length;

stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_QUERY, strlen(INSERT_QUERY)))
{
 fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}
 memset(bind, 0, sizeof(bind));
 bind[0].buffer_type= MYSQL_TYPE_STRING;
 bind[0].length= &length;
 bind[0].is_null= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
 fprintf(stderr, "\n param bind failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

C API Prepared Statement Function Descriptions

2564

 /* Supply data in chunks to server */
 if (mysql_stmt_send_long_data(stmt,0,"MySQL",5))
{
 fprintf(stderr, "\n send_long_data failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

 /* Supply the next piece of data */
 if (mysql_stmt_send_long_data(stmt,0,
 " - The most popular Open Source database",40))
{
 fprintf(stderr, "\n send_long_data failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

 /* Now, execute the query */
 if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, "\n mysql_stmt_execute failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

21.8.11.27 mysql_stmt_sqlstate()

const char *mysql_stmt_sqlstate(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated string
containing the SQLSTATE error code for the most recently invoked prepared statement API function
that can succeed or fail. The error code consists of five characters. "00000" means “no error.” The
values are specified by ANSI SQL and ODBC. For a list of possible values, see Appendix C, Errors,
Error Codes, and Common Problems.

Note that not all MySQL errors are yet mapped to SQLSTATE codes. The value "HY000" (general
error) is used for unmapped errors.

Return Values

A null-terminated character string containing the SQLSTATE error code.

21.8.11.28 mysql_stmt_store_result()

int mysql_stmt_store_result(MYSQL_STMT *stmt)

Description

Result sets are produced by calling mysql_stmt_execute() to executed prepared
statements for SQL statements such as SELECT, SHOW, DESCRIBE, and EXPLAIN. By default,
result sets for successfully executed prepared statements are not buffered on the client and
mysql_stmt_fetch() fetches them one at a time from the server. To cause the complete result
set to be buffered on the client, call mysql_stmt_store_result() after binding data buffers with
mysql_stmt_bind_result() and before calling mysql_stmt_fetch() to fetch rows. (For an
example, see Section 21.8.11.11, “mysql_stmt_fetch()”.)

mysql_stmt_store_result() is optional for result set processing, unless you will call
mysql_stmt_data_seek(), mysql_stmt_row_seek(), or mysql_stmt_row_tell(). Those
functions require a seekable result set.

It is unnecessary to call mysql_stmt_store_result() after executing an SQL statement
that does not produce a result set, but if you do, it does not harm or cause any notable

C API Threaded Function Descriptions

2565

performance problem. You can detect whether the statement produced a result set by checking if
mysql_stmt_result_metadata() returns NULL. For more information, refer to Section 21.8.11.23,
“mysql_stmt_result_metadata()”.

Note

MySQL does not by default calculate MYSQL_FIELD->max_length for
all columns in mysql_stmt_store_result() because calculating this
would slow down mysql_stmt_store_result() considerably and
most applications do not need max_length. If you want max_length
to be updated, you can call mysql_stmt_attr_set(MYSQL_STMT,
STMT_ATTR_UPDATE_MAX_LENGTH, &flag) to enable this. See
Section 21.8.11.3, “mysql_stmt_attr_set()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

21.8.12 C API Threaded Function Descriptions

To create a threaded client, use the functions described in the following sections. See also
Section 21.8.4.2, “Writing C API Threaded Client Programs”.

21.8.12.1 my_init()

void my_init(void)

Description

my_init() initializes some global variables that MySQL needs. It also calls mysql_thread_init()
for this thread.

It is necessary for my_init() to be called early in the initialization phase of a program's
use of the MySQL library. However, my_init() is automatically called by mysql_init(),
mysql_library_init(), mysql_server_init(), and mysql_connect(). If you ensure that
your program invokes one of those functions before any other MySQL calls, there is no need to invoke
my_init() explicitly.

To access the prototype for my_init(), your program should include these header files:

C API Embedded Server Function Descriptions

2566

#include <my_global.h>
#include <my_sys.h>

Return Values

None.

21.8.12.2 mysql_thread_end()

void mysql_thread_end(void)

Description

This function needs to be called before calling pthread_exit() to free memory allocated by
mysql_thread_init().

mysql_thread_end() is not invoked automatically by the client library. It must be called explicitly to
avoid a memory leak.

Return Values

None.

21.8.12.3 mysql_thread_init()

my_bool mysql_thread_init(void)

Description

This function must be called early within each created thread to initialize thread-specific variables.
However, you may not necessarily need to invoke it explicitly: mysql_thread_init() is
automatically called by my_init(), which itself is automatically called by mysql_init(),
mysql_library_init(), mysql_server_init(), and mysql_connect(). If you invoke any of
those functions, mysql_thread_init() will be called for you.

Return Values

Zero for success. Nonzero if an error occurred.

21.8.12.4 mysql_thread_safe()

unsigned int mysql_thread_safe(void)

Description

This function indicates whether the client library is compiled as thread-safe.

Return Values

1 if the client library is thread-safe, 0 otherwise.

21.8.13 C API Embedded Server Function Descriptions

MySQL applications can be written to use an embedded server. See Section 21.7, “libmysqld,
the Embedded MySQL Server Library”. To write such an application, you must link it against the
libmysqld library by using the -lmysqld flag rather than linking it against the libmysqlclient
client library by using the -lmysqlclient flag. However, the calls to initialize and finalize the library
are the same whether you write a client application or one that uses the embedded server: Call

C API Client Plugin Functions

2567

mysql_library_init() to initialize the library and mysql_library_end() when you are done
with it. See Section 21.8.6, “C API Function Overview”.

21.8.13.1 mysql_server_init()

int mysql_server_init(int argc, char **argv, char **groups)

Description

This function initializes the MySQL library, which must be done before you call any other
MySQL function. However, mysql_server_init() is deprecated and you should call
mysql_library_init() instead. See Section 21.8.7.41, “mysql_library_init()”.

Return Values

Zero for success. Nonzero if an error occurred.

21.8.13.2 mysql_server_end()

void mysql_server_end(void)

Description

This function finalizes the MySQL library, which should be done when you are done using the library.
However, mysql_server_end() is deprecated and mysql_library_end() should be used
instead. See Section 21.8.7.40, “mysql_library_end()”.

Return Values

None.

21.8.14 C API Client Plugin Functions

This section describes functions used for the client-side plugin API. They enable management of client
plugins. For a description of the st_mysql_client_plugin structure used by these functions, see
Client Plugin Descriptors.

It is unlikely that a client program needs to call the functions in this section. For example, a client
that supports the use of authentication plugins normally causes a plugin to be loaded by calling
mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable
users to override the default values.

21.8.14.1 mysql_client_find_plugin()

struct st_mysql_client_plugin *mysql_client_find_plugin(MYSQL *mysql, const
char *name, int type)

Description

Returns a pointer to a loaded plugin, loading the plugin first if necessary. An error occurs if the type is
invalid or the plugin cannot be found or loaded.

C API Client Plugin Functions

2568

Specify the parameters as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

• name: The plugin name.

• type: The plugin type.

Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 21.8.7.15,
“mysql_error()”, and Section 21.8.7.14, “mysql_errno()”.

Example

MYSQL mysql;
struct st_mysql_client_plugin *p;

if ((p = mysql_client_find_plugin(&mysql, "myplugin",
 MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0)))
{
 printf("Plugin version: %d.%d.%d\n", p->version[0], p->version[1], p->version[2]);
}

21.8.14.2 mysql_client_register_plugin()

struct st_mysql_client_plugin *mysql_client_register_plugin(MYSQL *mysql,
struct st_mysql_client_plugin *plugin)

Description

Adds a plugin structure to the list of loaded plugins. An error occurs if the plugin is already loaded.

Specify the parameters as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

• plugin: A pointer to the plugin structure.

Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 21.8.7.15,
“mysql_error()”, and Section 21.8.7.14, “mysql_errno()”.

21.8.14.3 mysql_load_plugin()

struct st_mysql_client_plugin *mysql_load_plugin(MYSQL *mysql, const char
*name, int type, int argc, ...)

C API Client Plugin Functions

2569

Description

Loads a MySQL client plugin, specified by name and type. An error occurs if the type is invalid or the
plugin cannot be loaded.

It is not possible to load multiple plugins of the same type. An error occurs if you try to load a plugin of
a type already loaded.

Specify the parameters as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

• name: The name of the plugin to load.

• type: The type of plugin to load, or –1 to disable type checking. If type is not –1, only plugins
matching the type are considered for loading.

• argc: The number of following arguments (0 if there are none). Interpretation of any following
arguments depends on the plugin type.

Another way to cause plugins to be loaded is to set the LIBMYSQL_PLUGINS environment variable to a
semicolon-separated list of plugin names. For example:

shell> export LIBMYSQL_PLUGINS="myplugin1;myplugin2"

Plugins named by LIBMYSQL_PLUGINS are loaded when the client program calls
mysql_library_init(). No error is reported if problems occur loading these plugins.

As of MySQL 5.7.1, the LIBMYSQL_PLUGIN_DIR environment variable can be set to the path name of
the directory in which to look for client plugins. This variable is used in two ways:

• During client plugin preloading, the value of the --plugin-dir option is not available, so client
plugin loading fails unless the plugins are located in the hardwired default directory. If the plugins are
located elsewhere, LIBMYSQL_PLUGIN_DIR environment variable can be set to the proper directory
to enable plugin preloading to succeed.

• For explicit client plugin loading, the mysql_load_plugin() and mysql_load_plugin_v() C
API functions use the LIBMYSQL_PLUGIN_DIR value if it exists and the --plugin-dir option was
not given. If --plugin-dir is given, mysql_load_plugin() and mysql_load_plugin_v()
ignore LIBMYSQL_PLUGIN_DIR.

Return Values

A pointer to the plugin if it was loaded successfully. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 21.8.7.15,
“mysql_error()”, and Section 21.8.7.14, “mysql_errno()”.

Example

MYSQL mysql;

if(!mysql_load_plugin(&mysql, "myplugin",
 MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0))
{

Common Questions and Problems When Using the C API

2570

 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 exit(-1);
}

See Also

See also Section 21.8.14.3, “mysql_load_plugin()”, Section 21.8.7.15, “mysql_error()”,
Section 21.8.7.14, “mysql_errno()”.

21.8.14.4 mysql_load_plugin_v()

struct st_mysql_client_plugin *mysql_load_plugin_v(MYSQL *mysql, const char
*name, int type, int argc, va_list args)

Description

This function is equivalent to mysql_load_plugin(), but it accepts a va_list instead of a variable
list of parameters.

See Also

See also Section 21.8.14.3, “mysql_load_plugin()”.

21.8.14.5 mysql_plugin_options()

int mysql_plugin_options(struct st_mysql_client_plugin *plugin, const char
*option, const void *value)

Description

Passes an option type and value to a plugin. This function can be called multiple times to set several
options. If the plugin does not have an option handler, an error occurs.

Specify the parameters as follows:

• plugin: A pointer to the plugin structure.

• option: The option to be set.

• value: A pointer to the option value.

Return Values

Zero for success, 1 if an error occurred. If the plugin has an option handler, that handler should also
return zero for success and 1 if an error occurred.

21.8.15 Common Questions and Problems When Using the C API

21.8.15.1 Why mysql_store_result() Sometimes Returns NULL After mysql_query()
Returns Success

It is possible for mysql_store_result() to return NULL following a successful call to
mysql_query(). When this happens, it means one of the following conditions occurred:

• There was a malloc() failure (for example, if the result set was too large).

• The data could not be read (an error occurred on the connection).

• The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).

Common Questions and Problems When Using the C API

2571

You can always check whether the statement should have produced a nonempty result by calling
mysql_field_count(). If mysql_field_count() returns zero, the result is empty and the
last query was a statement that does not return values (for example, an INSERT or a DELETE). If
mysql_field_count() returns a nonzero value, the statement should have produced a nonempty
result. See the description of the mysql_field_count() function for an example.

You can test for an error by calling mysql_error() or mysql_errno().

21.8.15.2 What Results You Can Get from a Query

In addition to the result set returned by a query, you can also get the following information:

• mysql_affected_rows() returns the number of rows affected by the last query when doing an
INSERT, UPDATE, or DELETE.

For a fast re-create, use TRUNCATE TABLE.

• mysql_num_rows() returns the number of rows in a result set. With mysql_store_result(),
mysql_num_rows() may be called as soon as mysql_store_result() returns. With
mysql_use_result(), mysql_num_rows() may be called only after you have fetched all the
rows with mysql_fetch_row().

• mysql_insert_id() returns the ID generated by the last query that inserted a row into a table with
an AUTO_INCREMENT index. See Section 21.8.7.38, “mysql_insert_id()”.

• Some queries (LOAD DATA INFILE ..., INSERT INTO ... SELECT ..., UPDATE)
return additional information. The result is returned by mysql_info(). See the description for
mysql_info() for the format of the string that it returns. mysql_info() returns a NULL pointer if
there is no additional information.

21.8.15.3 How to Get the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO_INCREMENT column, you can obtain the value
stored into that column by calling the mysql_insert_id() function.

You can check from your C applications whether a value was stored in an AUTO_INCREMENT column
by executing the following code (which assumes that you've checked that the statement succeeded). It
determines whether the query was an INSERT with an AUTO_INCREMENT index:

if ((result = mysql_store_result(&mysql)) == 0 &&
 mysql_field_count(&mysql) == 0 &&
 mysql_insert_id(&mysql) != 0)
{
 used_id = mysql_insert_id(&mysql);
}

When a new AUTO_INCREMENT value has been generated, you can also obtain it by executing a
SELECT LAST_INSERT_ID() statement with mysql_query() and retrieving the value from the
result set returned by the statement.

When inserting multiple values, the last automatically incremented value is returned.

For LAST_INSERT_ID(), the most recently generated ID is maintained in the server on a per-
connection basis. It is not changed by another client. It is not even changed if you update another
AUTO_INCREMENT column with a nonmagic value (that is, a value that is not NULL and not 0). Using
LAST_INSERT_ID() and AUTO_INCREMENT columns simultaneously from multiple clients is perfectly
valid. Each client will receive the last inserted ID for the last statement that client executed.

If you want to use the ID that was generated for one table and insert it into a second table, you can use
SQL statements like this:

Controlling Automatic Reconnection Behavior

2572

INSERT INTO foo (auto,text)
 VALUES(NULL,'text'); # generate ID by inserting NULL
INSERT INTO foo2 (id,text)
 VALUES(LAST_INSERT_ID(),'text'); # use ID in second table

Note that mysql_insert_id() returns the value stored into an AUTO_INCREMENT column, whether
that value is automatically generated by storing NULL or 0 or was specified as an explicit value.
LAST_INSERT_ID() returns only automatically generated AUTO_INCREMENT values. If you store an
explicit value other than NULL or 0, it does not affect the value returned by LAST_INSERT_ID().

For more information on obtaining the last ID in an AUTO_INCREMENT column:

• For information on LAST_INSERT_ID(), which can be used within an SQL statement, see
Section 12.14, “Information Functions”.

• For information on mysql_insert_id(), the function you use from within the C API, see
Section 21.8.7.38, “mysql_insert_id()”.

• For information on obtaining the auto-incremented value when using Connector/J, see Retrieving
AUTO_INCREMENT Column Values through JDBC.

• For information on obtaining the auto-incremented value when using Connector/ODBC, see
Obtaining Auto-Increment Values.

21.8.16 Controlling Automatic Reconnection Behavior

The MySQL client library can perform an automatic reconnection to the server if it finds that the
connection is down when you attempt to send a statement to the server to be executed. If auto-
reconnect is enabled, the library tries once to reconnect to the server and send the statement again.

In MySQL 5.7, auto-reconnect is disabled by default.

If it is important for your application to know that the connection has been dropped (so that is can exit
or take action to adjust for the loss of state information), be sure that auto-reconnect is disabled. To
ensure this, call mysql_options() with the MYSQL_OPT_RECONNECT option:

my_bool reconnect = 0;
mysql_options(&mysql, MYSQL_OPT_RECONNECT, &reconnect);

If the connection has gone down, the effect of mysql_ping() depends on the auto-reconnect state. If
auto-reconnect is enabled, mysql_ping() performs a reconnect. Otherwise, it returns an error.

Some client programs might provide the capability of controlling automatic reconnection. For example,
mysql reconnects by default, but the --skip-reconnect option can be used to suppress this
behavior.

If an automatic reconnection does occur (for example, as a result of calling mysql_ping()), there
is no explicit indication of it. To check for reconnection, call mysql_thread_id() to get the original
connection identifier before calling mysql_ping(), then call mysql_thread_id() again to see
whether the identifier changed.

Automatic reconnection can be convenient because you need not implement your own reconnect code,
but if a reconnection does occur, several aspects of the connection state are reset on the server side
and your application will not be notified.

The connection-related state is affected as follows:

• Any active transactions are rolled back and autocommit mode is reset.

• All table locks are released.

http://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
http://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

C API Support for Multiple Statement Execution

2573

• All TEMPORARY tables are closed (and dropped).

• Session system variables are reinitialized to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NAMES.

• User variable settings are lost.

• Prepared statements are released.

• HANDLER variables are closed.

• The value of LAST_INSERT_ID() is reset to 0.

• Locks acquired with GET_LOCK() are released.

• The association of the client with the Performance Schema threads table row that determines
connection thread instrumentation is lost. If the client reconnects after a disconnect, the session is
associated with a new row in the threads table and the thread monitoring state may be different.
See Section 20.9.13.3, “The threads Table”.

If the connection drops, it is possible that the session associated with the connection on the server side
will still be running if the server has not yet detected that the client is no longer connected. In this case,
any locks held by the original connection still belong to that session, so you may want to kill it by calling
mysql_kill().

21.8.17 C API Support for Multiple Statement Execution

By default, mysql_query() and mysql_real_query() interpret their statement string argument
as a single statement to be executed, and you process the result according to whether the statement
produces a result set (a set of rows, as for SELECT) or an affected-rows count (as for INSERT,
UPDATE, and so forth).

MySQL 5.7 also supports the execution of a string containing multiple statements separated by
semicolon (“;”) characters. This capability is enabled by special options that are specified either
when you connect to the server with mysql_real_connect() or after connecting by calling`
mysql_set_server_option().

Executing a multiple-statement string can produce multiple result sets or row-count indicators.
Processing these results involves a different approach than for the single-statement case: After
handling the result from the first statement, it is necessary to check whether more results exist
and process them in turn if so. To support multiple-result processing, the C API includes the
mysql_more_results() and mysql_next_result() functions. These functions are used at the
end of a loop that iterates as long as more results are available. Failure to process the result this way
may result in a dropped connection to the server.

Multiple-result processing also is required if you execute CALL statements for stored procedures.
Results from a stored procedure have these characteristics:

• Statements within the procedure may produce result sets (for example, if it executes SELECT
statements). These result sets are returned in the order that they are produced as the procedure
executes.

In general, the caller cannot know how many result sets a procedure will return. Procedure execution
may depend on loops or conditional statements that cause the execution path to differ from one call
to the next. Therefore, you must be prepared to retrieve multiple results.

• The final result from the procedure is a status result that includes no result set. The status indicates
whether the procedure succeeded or an error occurred.

The multiple statement and result capabilities can be used only with mysql_query() or
mysql_real_query(). They cannot be used with the prepared statement interface. Prepared

C API Support for Multiple Statement Execution

2574

statement handles are defined to work only with strings that contain a single statement. See
Section 21.8.8, “C API Prepared Statements”.

To enable multiple-statement execution and result processing, the following options may be used:

• The mysql_real_connect() function has a flags argument for which two option values are
relevant:

• CLIENT_MULTI_RESULTS enables the client program to process multiple results. This option
must be enabled if you execute CALL statements for stored procedures that produce result
sets. Otherwise, such procedures result in an error Error 1312 (0A000): PROCEDURE
proc_name can't return a result set in the given context. In MySQL 5.7,
CLIENT_MULTI_RESULTS is enabled by default.

• CLIENT_MULTI_STATEMENTS enables mysql_query() and mysql_real_query()
to execute statement strings containing multiple statements separated by semicolons.
This option also enables CLIENT_MULTI_RESULTS implicitly, so a flags argument
of CLIENT_MULTI_STATEMENTS to mysql_real_connect() is equivalent to an
argument of CLIENT_MULTI_STATEMENTS | CLIENT_MULTI_RESULTS. That is,
CLIENT_MULTI_STATEMENTS is sufficient to enable multiple-statement execution and all multiple-
result processing.

• After the connection to the server has been established, you can use the
mysql_set_server_option() function to enable or disable multiple-statement
execution by passing it an argument of MYSQL_OPTION_MULTI_STATEMENTS_ON or
MYSQL_OPTION_MULTI_STATEMENTS_OFF. Enabling multiple-statement execution with this
function also enables processing of “simple” results for a multiple-statement string where each
statement produces a single result, but is not sufficient to permit processing of stored procedures
that produce result sets.

The following procedure outlines a suggested strategy for handling multiple statements:

1. Pass CLIENT_MULTI_STATEMENTS to mysql_real_connect(), to fully enable multiple-
statement execution and multiple-result processing.

2. After calling mysql_query() or mysql_real_query() and verifying that it succeeds, enter a
loop within which you process statement results.

3. For each iteration of the loop, handle the current statement result, retrieving either a result set or an
affected-rows count. If an error occurs, exit the loop.

4. At the end of the loop, call mysql_next_result() to check whether another result exists and
initiate retrieval for it if so. If no more results are available, exit the loop.

One possible implementation of the preceding strategy is shown following. The final part of the loop
can be reduced to a simple test of whether mysql_next_result() returns nonzero. The code as
written distinguishes between no more results and an error, which enables a message to be printed for
the latter occurrence.

/* connect to server with the CLIENT_MULTI_STATEMENTS option */
if (mysql_real_connect (mysql, host_name, user_name, password,
 db_name, port_num, socket_name, CLIENT_MULTI_STATEMENTS) == NULL)
{
 printf("mysql_real_connect() failed\n");
 mysql_close(mysql);
 exit(1);
}

/* execute multiple statements */
status = mysql_query(mysql,
 "DROP TABLE IF EXISTS test_table;\
 CREATE TABLE test_table(id INT);\
 INSERT INTO test_table VALUES(10);\

C API Prepared Statement Problems

2575

 UPDATE test_table SET id=20 WHERE id=10;\
 SELECT * FROM test_table;\
 DROP TABLE test_table");
if (status)
{
 printf("Could not execute statement(s)");
 mysql_close(mysql);
 exit(0);
}

/* process each statement result */
do {
 /* did current statement return data? */
 result = mysql_store_result(mysql);
 if (result)
 {
 /* yes; process rows and free the result set */
 process_result_set(mysql, result);
 mysql_free_result(result);
 }
 else /* no result set or error */
 {
 if (mysql_field_count(mysql) == 0)
 {
 printf("%lld rows affected\n",
 mysql_affected_rows(mysql));
 }
 else /* some error occurred */
 {
 printf("Could not retrieve result set\n");
 break;
 }
 }
 /* more results? -1 = no, >0 = error, 0 = yes (keep looping) */
 if ((status = mysql_next_result(mysql)) > 0)
 printf("Could not execute statement\n");
} while (status == 0);

mysql_close(mysql);

21.8.18 C API Prepared Statement Problems

Here follows a list of the currently known problems with prepared statements:

• TIME, TIMESTAMP, and DATETIME do not support parts of seconds (for example, from
DATE_FORMAT()).

• When converting an integer to string, ZEROFILL is honored with prepared statements in some
cases where the MySQL server does not print the leading zeros. (For example, with MIN(number-
with-zerofill)).

• When converting a floating-point number to a string in the client, the rightmost digits of the converted
value may differ slightly from those of the original value.

• Prepared statements use the query cache under the conditions described in Section 8.9.3.1, “How
the Query Cache Operates”.

• Prepared statements do not support multi-statements (that is, multiple statements within a single
string separated by “;” characters).

• The capabilities of prepared CALL statements are described in Section 21.8.20, “C API Support for
Prepared CALL Statements”.

21.8.19 C API Prepared Statement Handling of Date and Time Values

The binary (prepared statement) protocol enables you to send and receive date and time values (DATE,
TIME, DATETIME, and TIMESTAMP), using the MYSQL_TIME structure. The members of this structure
are described in Section 21.8.9, “C API Prepared Statement Data Structures”.

C API Prepared Statement Handling of Date and Time Values

2576

To send temporal data values, create a prepared statement using mysql_stmt_prepare(). Then,
before calling mysql_stmt_execute() to execute the statement, use the following procedure to set
up each temporal parameter:

1. In the MYSQL_BIND structure associated with the data value, set the buffer_type member to
the type that indicates what kind of temporal value you're sending. For DATE, TIME, DATETIME,
or TIMESTAMP values, set buffer_type to MYSQL_TYPE_DATE, MYSQL_TYPE_TIME,
MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respectively.

2. Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME structure
in which you pass the temporal value.

3. Fill in the members of the MYSQL_TIME structure that are appropriate for the type of temporal value
to be passed.

Use mysql_stmt_bind_param() to bind the parameter data to the statement. Then you can call
mysql_stmt_execute().

To retrieve temporal values, the procedure is similar, except that you set the buffer_type member
to the type of value you expect to receive, and the buffer member to the address of a MYSQL_TIME
structure into which the returned value should be placed. Use mysql_stmt_bind_result() to bind
the buffers to the statement after calling mysql_stmt_execute() and before fetching the results.

Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable is
assumed to be a valid connection handle.

 MYSQL_TIME ts;
 MYSQL_BIND bind[3];
 MYSQL_STMT *stmt;

 strmov(query, "INSERT INTO test_table(date_field, time_field, \
 timestamp_field) VALUES(?,?,?");

 stmt = mysql_stmt_init(mysql);
 if (!stmt)
 {
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
 }
 if (mysql_stmt_prepare(mysql, query, strlen(query)))
 {
 fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
 }

 /* set up input buffers for all 3 parameters */
 bind[0].buffer_type= MYSQL_TYPE_DATE;
 bind[0].buffer= (char *)&ts;
 bind[0].is_null= 0;
 bind[0].length= 0;
 ...
 bind[1]= bind[2]= bind[0];
 ...

 mysql_stmt_bind_param(stmt, bind);

 /* supply the data to be sent in the ts structure */
 ts.year= 2002;
 ts.month= 02;
 ts.day= 03;

 ts.hour= 10;
 ts.minute= 45;
 ts.second= 20;

 mysql_stmt_execute(stmt);

C API Support for Prepared CALL Statements

2577

 ..

21.8.20 C API Support for Prepared CALL Statements

This section describes prepared-statement support in the C API for stored procedures executed using
CALL statements:

In MySQL 5.7, stored procedures executed using prepared CALL statements can be used in the
following ways:

• A stored procedure can produce any number of result sets. The number of columns and the data
types of the columns need not be the same for all result sets.

• The final values of OUT and INOUT parameters are available to the calling application after the
procedure returns. These parameters are returned as an extra single-row result set following any
result sets produced by the procedure itself. The row contains the values of the OUT and INOUT
parameters in the order in which they are declared in the procedure parameter list.

The following discussion shows how to use these capabilities through the C API for prepared
statements. To use prepared CALL statements through the PREPARE and EXECUTE statements, see
Section 13.2.1, “CALL Syntax”.

If an application might be compiled or executed in a context where a version of MySQL older than 5.5.3
is used, prepared CALL capabilities for multiple result sets and OUT or INOUT parameters might not be
available:

• For the client side, the application will not compile unless the libraries are from MySQL 5.5.3 or
higher (the API function and symbols introduced in that version will not be present).

• To verify at runtime that the server is recent enough, a client can use this test:

if (mysql_get_server_version(mysql) < 50503)
{
 fprintf(stderr,
 "Server does not support required CALL capabilities\n");
 mysql_close(mysql);
 exit (1);
}

An application that executes a prepared CALL statement should use a loop that fetches a result and
then invokes mysql_stmt_next_result() to determine whether there are more results. The
results consist of any result sets produced by the stored procedure followed by a final status value that
indicates whether the procedure terminated successfully.

If the procedure has OUT or INOUT parameters, the result set preceding the final status value
contains their values. To determine whether a result set contains parameter values, test whether
the SERVER_PS_OUT_PARAMS bit is set in the server_status member of the MYSQL connection
handler:

mysql->server_status & SERVER_PS_OUT_PARAMS

The following example uses a prepared CALL statement to execute a stored procedure that produces
multiple result sets and that provides parameter values back to the caller by means of OUT and INOUT
parameters. The procedure takes parameters of all three types (IN, OUT, INOUT), displays their initial
values, assigns new values, displays the updated values, and returns. The expected return information
from the procedure therefore consists of multiple result sets and a final status:

• One result set from a SELECT that displays the initial parameter values: 10, NULL, 30. (The OUT
parameter is assigned a value by the caller, but this assignment is expected to be ineffective: OUT
parameters are seen as NULL within a procedure until assigned a value within the procedure.)

• One result set from a SELECT that displays the modified parameter values: 100, 200, 300.

C API Support for Prepared CALL Statements

2578

• One result set containing the final OUT and INOUT parameter values: 200, 300.

• A final status packet.

The code to execute the procedure:

MYSQL_STMT *stmt;
MYSQL_BIND ps_params[3]; /* input parameter buffers */
int int_data[3]; /* input/output values */
my_bool is_null[3]; /* output value nullability */
int status;

/* set up stored procedure */
status = mysql_query(mysql, "DROP PROCEDURE IF EXISTS p1");
test_error(mysql, status);

status = mysql_query(mysql,
 "CREATE PROCEDURE p1("
 " IN p_in INT, "
 " OUT p_out INT, "
 " INOUT p_inout INT) "
 "BEGIN "
 " SELECT p_in, p_out, p_inout; "
 " SET p_in = 100, p_out = 200, p_inout = 300; "
 " SELECT p_in, p_out, p_inout; "
 "END");
test_error(mysql, status);

/* initialize and prepare CALL statement with parameter placeholders */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 printf("Could not initialize statement\n");
 exit(1);
}
status = mysql_stmt_prepare(stmt, "CALL p1(?, ?, ?)", 16);
test_stmt_error(stmt, status);

/* initialize parameters: p_in, p_out, p_inout (all INT) */
memset(ps_params, 0, sizeof (ps_params));

ps_params[0].buffer_type = MYSQL_TYPE_LONG;
ps_params[0].buffer = (char *) &int_data[0];
ps_params[0].length = 0;
ps_params[0].is_null = 0;

ps_params[1].buffer_type = MYSQL_TYPE_LONG;
ps_params[1].buffer = (char *) &int_data[1];
ps_params[1].length = 0;
ps_params[1].is_null = 0;

ps_params[2].buffer_type = MYSQL_TYPE_LONG;
ps_params[2].buffer = (char *) &int_data[2];
ps_params[2].length = 0;
ps_params[2].is_null = 0;

/* bind parameters */
status = mysql_stmt_bind_param(stmt, ps_params);
test_stmt_error(stmt, status);

/* assign values to parameters and execute statement */
int_data[0]= 10; /* p_in */
int_data[1]= 20; /* p_out */
int_data[2]= 30; /* p_inout */

status = mysql_stmt_execute(stmt);
test_stmt_error(stmt, status);

/* process results until there are no more */
do {
 int i;

C API Support for Prepared CALL Statements

2579

 int num_fields; /* number of columns in result */
 MYSQL_FIELD *fields; /* for result set metadata */
 MYSQL_BIND *rs_bind; /* for output buffers */

 /* the column count is > 0 if there is a result set */
 /* 0 if the result is only the final status packet */
 num_fields = mysql_stmt_field_count(stmt);

 if (num_fields > 0)
 {
 /* there is a result set to fetch */
 printf("Number of columns in result: %d\n", (int) num_fields);

 /* what kind of result set is this? */
 printf("Data: ");
 if(mysql->server_status & SERVER_PS_OUT_PARAMS)
 printf("this result set contains OUT/INOUT parameters\n");
 else
 printf("this result set is produced by the procedure\n");

 MYSQL_RES *rs_metadata = mysql_stmt_result_metadata(stmt);
 test_stmt_error(stmt, rs_metadata == NULL);

 fields = mysql_fetch_fields(rs_metadata);

 rs_bind = (MYSQL_BIND *) malloc(sizeof (MYSQL_BIND) * num_fields);
 if (!rs_bind)
 {
 printf("Cannot allocate output buffers\n");
 exit(1);
 }
 memset(rs_bind, 0, sizeof (MYSQL_BIND) * num_fields);

 /* set up and bind result set output buffers */
 for (i = 0; i < num_fields; ++i)
 {
 rs_bind[i].buffer_type = fields[i].type;
 rs_bind[i].is_null = &is_null[i];

 switch (fields[i].type)
 {
 case MYSQL_TYPE_LONG:
 rs_bind[i].buffer = (char *) &(int_data[i]);
 rs_bind[i].buffer_length = sizeof (int_data);
 break;

 default:
 fprintf(stderr, "ERROR: unexpected type: %d.\n", fields[i].type);
 exit(1);
 }
 }

 status = mysql_stmt_bind_result(stmt, rs_bind);
 test_stmt_error(stmt, status);

 /* fetch and display result set rows */
 while (1)
 {
 status = mysql_stmt_fetch(stmt);

 if (status == 1 || status == MYSQL_NO_DATA)
 break;

 for (i = 0; i < num_fields; ++i)
 {
 switch (rs_bind[i].buffer_type)
 {
 case MYSQL_TYPE_LONG:
 if (*rs_bind[i].is_null)
 printf(" val[%d] = NULL;", i);
 else
 printf(" val[%d] = %ld;",

MySQL PHP API

2580

 i, (long) *((int *) rs_bind[i].buffer));
 break;

 default:
 printf(" unexpected type (%d)\n",
 rs_bind[i].buffer_type);
 }
 }
 printf("\n");
 }

 mysql_free_result(rs_metadata); /* free metadata */
 free(rs_bind); /* free output buffers */
 }
 else
 {
 /* no columns = final status packet */
 printf("End of procedure output\n");
 }

 /* more results? -1 = no, >0 = error, 0 = yes (keep looking) */
 status = mysql_stmt_next_result(stmt);
 if (status > 0)
 test_stmt_error(stmt, status);
} while (status == 0);

mysql_stmt_close(stmt);

Execution of the procedure should produce the following output:

Number of columns in result: 3
Data: this result set is produced by the procedure
 val[0] = 10; val[1] = NULL; val[2] = 30;
Number of columns in result: 3
Data: this result set is produced by the procedure
 val[0] = 100; val[1] = 200; val[2] = 300;
Number of columns in result: 2
Data: this result set contains OUT/INOUT parameters
 val[0] = 200; val[1] = 300;
End of procedure output

The code uses two utility routines, test_error() and test_stmt_error(), to check for errors and
terminate after printing diagnostic information if an error occurred:

static void test_error(MYSQL *mysql, int status)
{
 if (status)
 {
 fprintf(stderr, "Error: %s (errno: %d)\n",
 mysql_error(mysql), mysql_errno(mysql));
 exit(1);
 }
}

static void test_stmt_error(MYSQL_STMT *stmt, int status)
{
 if (status)
 {
 fprintf(stderr, "Error: %s (errno: %d)\n",
 mysql_stmt_error(stmt), mysql_stmt_errno(stmt));
 exit(1);
 }
}

21.9 MySQL PHP API

The MySQL PHP API manual is now published in standalone form, not as part of the MySQL
Reference Manual. See MySQL and PHP.

http://dev.mysql.com/doc/apis-php/en/index.html

MySQL Perl API

2581

21.10 MySQL Perl API

The Perl DBI module provides a generic interface for database access. You can write a DBI script
that works with many different database engines without change. To use DBI with MySQL, install the
following:

1. The DBI module.

2. The DBD::mysql module. This is the DataBase Driver (DBD) module for Perl.

3. Optionally, the DBD module for any other type of database server you want to access.

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which
should be considered obsolete.

These sections contain information about using Perl with MySQL and writing MySQL applications in
Perl:

• For installation instructions for Perl DBI support, see Section 2.12, “Perl Installation Notes”.

• For an example of reading options from option files, see Section 5.3.4, “Using Client Programs in a
Multiple-Server Environment”.

• For secure coding tips, see Section 6.1.1, “Security Guidelines”.

• For debugging tips, see Section 22.4.1.4, “Debugging mysqld under gdb”.

• For some Perl-specific environment variables, see Section 2.11, “Environment Variables”.

• For considerations for running on Mac OS X, see Section 2.4.5, “Using the Bundled MySQL on Mac
OS X Server”.

• For ways to quote string literals, see Section 9.1.1, “String Literals”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about them at
the command line with the perldoc command:

shell> perldoc DBI
shell> perldoc DBI::FAQ
shell> perldoc DBD::mysql

You can also use pod2man, pod2html, and so on to translate this information into other formats.

• For online information about Perl DBI, visit the DBI Web site, http://dbi.perl.org/. That site hosts
a general DBI mailing list. Oracle Corporation hosts a list specifically about DBD::mysql; see
Section 1.6.1, “MySQL Mailing Lists”.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes and
Tim Bunce, O'Reilly & Associates, 2000). Information about the book is available at the DBI Web
site, http://dbi.perl.org/.

For information that focuses specifically on using DBI with MySQL, see MySQL and Perl for the Web
(Paul DuBois, New Riders, 2001). This book's Web site is http://www.kitebird.com/mysql-perl/.

21.11 MySQL Python API

MySQLdb is a third-party driver that provides MySQL support for Python, compliant with the Python DB
API version 2.0. It can be found at http://sourceforge.net/projects/mysql-python/.

http://dbi.perl.org/
http://dbi.perl.org/
http://www.kitebird.com/mysql-perl/
http://sourceforge.net/projects/mysql-python/

MySQL Ruby APIs

2582

The new MySQL Connector/Python component provides an interface to the same Python API, and is
built into the MySQL Server and supported by Oracle. See MySQL Connector/Python Developer Guide
for details on the Connector, as well as coding guidelines for Python applications and sample Python
code.

21.12 MySQL Ruby APIs

Two APIs are available for Ruby programmers developing MySQL applications:

• The MySQL/Ruby API is based on the libmysqlclient API library. For information on installing
and using the MySQL/Ruby API, see Section 21.12.1, “The MySQL/Ruby API”.

• The Ruby/MySQL API is written to use the native MySQL network protocol (a native driver). For
information on installing and using the Ruby/MySQL API, see Section 21.12.2, “The Ruby/MySQL
API”.

For background and syntax information about the Ruby language, see Ruby Programming Language.

21.12.1 The MySQL/Ruby API

The MySQL/Ruby module provides access to MySQL databases using Ruby through
libmysqlclient.

For information on installing the module, and the functions exposed, see MySQL/Ruby.

21.12.2 The Ruby/MySQL API

The Ruby/MySQL module provides access to MySQL databases using Ruby through a native driver
interface using the MySQL network protocol.

For information on installing the module, and the functions exposed, see Ruby/MySQL.

21.13 MySQL Tcl API

MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming
language. It can be found at http://www.xdobry.de/mysqltcl/.

21.14 MySQL Eiffel Wrapper

Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language,
written by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

http://dev.mysql.com/doc/connector-python/en/index.html
http://www.ruby-lang.org
http://tmtm.org/en/mysql/ruby/
http://tmtm.org/en/ruby/mysql/README_en.html
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://www.xdobry.de/mysqltcl/
http://en.wikipedia.org/wiki/Eiffel_(programming_language)
http://efsa.sourceforge.net/archive/ravits/mysql.htm

2583

Chapter 22 Extending MySQL

Table of Contents
22.1 MySQL Internals .. 2583

22.1.1 MySQL Threads .. 2583
22.1.2 The MySQL Test Suite .. 2584

22.2 The MySQL Plugin API .. 2584
22.2.1 Plugin API Characteristics ... 2585
22.2.2 Plugin API Components .. 2586
22.2.3 Types of Plugins ... 2587
22.2.4 Writing Plugins .. 2590
22.2.5 MySQL Services for Plugins .. 2638

22.3 Adding New Functions to MySQL ... 2639
22.3.1 Features of the User-Defined Function Interface ... 2640
22.3.2 Adding a New User-Defined Function .. 2640
22.3.3 Adding a New Native Function .. 2650

22.4 Debugging and Porting MySQL .. 2651
22.4.1 Debugging a MySQL Server .. 2652
22.4.2 Debugging a MySQL Client ... 2658
22.4.3 The DBUG Package ... 2658

22.1 MySQL Internals

This chapter describes a lot of things that you need to know when working on the MySQL code.
To track or contribute to MySQL development, follow the instructions in Section 2.8.3, “Installing
MySQL Using a Development Source Tree”. If you are interested in MySQL internals, you should
also subscribe to our internals mailing list. This list has relatively low traffic. For details on how
to subscribe, please see Section 1.6.1, “MySQL Mailing Lists”. Many MySQL developers at Oracle
Corporation are on the internals list and we help other people who are working on the MySQL code.
Feel free to use this list both to ask questions about the code and to send patches that you would like
to contribute to the MySQL project!

22.1.1 MySQL Threads

The MySQL server creates the following threads:

• Connection manager threads handle client connection requests on the network interfaces that
the server listens to. On all platforms, one manager thread handles TCP/IP connection requests.
On Unix, this manager thread also handles Unix socket file connection requests. On Windows, a
manager thread handles shared-memory connection requests, and another handles named-pipe
connection requests. The server does not create threads to handle interfaces that it does not listen
to. For example, a Windows server that does not have support for named-pipe connections enabled
does not create a thread to handle them.

• Connection manager threads associate each client connection with a thread dedicated to it that
handles authentication and request processing for that connection. Manager threads create a new
thread when necessary but try to avoid doing so by consulting the thread cache first to see whether
it contains a thread that can be used for the connection. When a connection ends, its thread is
returned to the thread cache if the cache is not full.

For information about tuning the parameters that control thread resources, see Section 8.11.5.1,
“How MySQL Uses Threads for Client Connections”.

• On a master replication server, connections from slave servers are handled like client connections:
There is one thread per connected slave.

The MySQL Test Suite

2584

• On a slave replication server, an I/O thread is started to connect to the master server and read
updates from it. An SQL thread is started to apply updates read from the master. These two threads
run independently and can be started and stopped independently.

• A signal thread handles all signals. This thread also normally handles alarms and calls
process_alarm() to force timeouts on connections that have been idle too long.

• If InnoDB is used, there will be additional read and write threads by default. The number of these are
controlled by the innodb_read_io_threads and innodb_write_io_threads parameters. See
Section 14.2.13, “InnoDB Startup Options and System Variables”.

• If the server is started with the --flush_time=val option, a dedicated thread is created to flush all
tables every val seconds.

• If the event scheduler is active, there is one thread for the scheduler, and a thread for each event
currently running. See Section 18.4.1, “Event Scheduler Overview”.

mysqladmin processlist only shows the connection, replication, and event threads.

22.1.2 The MySQL Test Suite

The test system that is included in Unix source and binary distributions makes it possible for users and
developers to perform regression tests on the MySQL code. These tests can be run on Unix.

You can also write your own test cases. For information about the MySQL Test Framework, including
system requirements, see the manual available at http://dev.mysql.com/doc/mysqltest/2.0/en/.

The current set of test cases doesn't test everything in MySQL, but it should catch most obvious
bugs in the SQL processing code, operating system or library issues, and is quite thorough in testing
replication. Our goal is to have the tests cover 100% of the code. We welcome contributions to our test
suite. You may especially want to contribute tests that examine the functionality critical to your system
because this ensures that all future MySQL releases work well with your applications.

The test system consists of a test language interpreter (mysqltest), a Perl script to run all tests
(mysql-test-run.pl), the actual test cases written in a special test language, and their expected
results. To run the test suite on your system after a build, type make test from the source root
directory, or change location to the mysql-test directory and type ./mysql-test-run.pl. If you
have installed a binary distribution, change location to the mysql-test directory under the installation
root directory (for example, /usr/local/mysql/mysql-test), and run ./mysql-test-run.pl.
All tests should succeed. If any do not, feel free to try to find out why and report the problem if it
indicates a bug in MySQL. See Section 1.7, “How to Report Bugs or Problems”.

If one test fails, you should run mysql-test-run.pl with the --force option to check whether any
other tests fail.

If you have a copy of mysqld running on the machine where you want to run the test suite, you do
not have to stop it, as long as it is not using ports 9306 or 9307. If either of those ports is taken, you
should set the MTR_BUILD_THREAD environment variable to an appropriate value, and the test suite
will use a different set of ports for master, slave, and NDB). For example:

shell> export MTR_BUILD_THREAD=31
shell> ./mysql-test-run.pl [options] [test_name]

In the mysql-test directory, you can run an individual test case with ./mysql-test-run.pl
test_name.

If you have a question about the test suite, or have a test case to contribute, send an email message to
the MySQL internals mailing list. See Section 1.6.1, “MySQL Mailing Lists”.

22.2 The MySQL Plugin API

http://dev.mysql.com/doc/mysqltest/2.0/en/

Additional Resources

2585

MySQL supports a plugin API that enables creation of server components. Plugins can be loaded at
server startup, or loaded and unloaded at runtime without restarting the server. The API is generic and
does not specify what plugins can do. The components supported by this interface include, but are not
limited to, storage engines, full-text parser plugins, and server extensions.

For example, full-text parser plugins can be used to replace or augment the built-in full-text parser.
A plugin can parse text into words using rules that differ from those used by the built-in parser. This
can be useful if you need to parse text with characteristics different from those expected by the built-in
parser.

The plugin interface is more general than the older user-defined function (UDF) interface.

The plugin interface uses the plugin table in the mysql database to record information about plugins
that have been installed permanently with the INSTALL PLUGIN statement. This table is created as
part of the MySQL installation process. Plugins can also be installed for a single server invocation with
the --plugin-load option. Plugins installed this way are not recorded in the plugin table. See
Section 5.1.8.1, “Installing and Uninstalling Plugins”.

MySQL 5.7 supports an API for client plugins in addition to that for server plugins. This is used, for
example, by authentication plugins where a server-side plugin and a client-side plugin cooperate to
enable clients to connect to the server through a variety of authentication methods.

Additional Resources

The book MySQL 5.1 Plugin Development by Sergei Golubchik and Andrew Hutchings provides a
wealth of detail about the plugin API. Despite the fact that the book's title refers to MySQL Server 5.1,
most of the information in it applies to later versions as well.

22.2.1 Plugin API Characteristics

The server plugin API has these characteristics:

• All plugins have several things in common.

Each plugin has a name that it can be referred to in SQL statements, as well as other metadata such
as an author and a description that provide other information. This information can be examined in
the INFORMATION_SCHEMA.PLUGINS table or using the SHOW PLUGINS statement.

• The plugin framework is extendable to accommodate different kinds of plugins.

Although some aspects of the plugin API are common to all types of plugins, the API also permits
type-specific interface elements so that different types of plugins can be created. A plugin with one
purpose can have an interface most appropriate to its own requirements and not the requirements of
some other plugin type.

Interfaces for several types of plugins exist, such as storage engines, full-text parser, and
INFORMATION_SCHEMA tables. Others can be added.

• Plugins can expose information to users.

A plugin can implement system and status variables that are available through the SHOW
VARIABLES and SHOW STATUS statements.

• The plugin API includes versioning information.

The version information included in the plugin API enables a plugin library and each plugin that it
contains to be self-identifying with respect to the API version that was used to build the library. If the
API changes over time, the version numbers will change, but a server can examine a given plugin
library's version information to determine whether it supports the plugins in the library.

There are two types of version numbers. The first is the version for the general plugin framework
itself. Each plugin library includes this kind of version number. The second type of version applies

Plugin API Components

2586

to individual plugins. Each specific type of plugin has a version for its interface, so each plugin in a
library has a type-specific version number. For example, a library containing a full-text parser plugin
has a general plugin API version number, and the plugin has a version number specific to the full-text
plugin interface.

• The plugin API implements security restrictions.

A plugin library must be installed in a specific dedicated directory for which the location is controlled
by the server and cannot be changed at runtime. Also, the library must contain specific symbols that
identify it as a plugin library. The server will not load something as a plugin if it was not built as a
plugin.

• Plugins have access to server services.

The services interface exposes server functionality that plugins can access using ordinary function
calls. For details, see Section 22.2.5, “MySQL Services for Plugins”.

In some respects, the server plugin API is similar to the older user-defined function (UDF) API that it
supersedes, but the plugin API has several advantages over the older interface. For example, UDFs
had no versioning information. Also, the newer plugin interface eliminates the security issues of the
older UDF interface. The older interface for writing nonplugin UDFs permitted libraries to be loaded
from any directory searched by the system's dynamic linker, and the symbols that identified the UDF
library were relatively nonspecific.

The client plugin API has similar architectural characteristics, but client plugins have no direct access to
the server the way server plugins do.

22.2.2 Plugin API Components

The server plugin implementation comprises several components.

SQL statements:

• INSTALL PLUGIN registers a plugin in the mysql.plugin table and loads the plugin code.

• UNINSTALL PLUGIN unregisters a plugin from the mysql.plugin table and unloads the plugin
code.

• The WITH PARSER clause for full-text index creation associates a full-text parser plugin with a given
FULLTEXT index.

• SHOW PLUGINS displays information about server plugins.

Command-line options and system variables:

• The --plugin-load option enables plugins to be loaded at server startup time.

• The plugin_dir system variable indicates the location of the directory where all plugins must be
installed. The value of this variable can be specified at server startup with a --plugin_dir=path
option. mysql_config --plugindir displays the default plugin directory path name.

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

Plugin-related tables:

• The INFORMATION_SCHEMA.PLUGINS table contains plugin information.

• The mysql.plugin table lists each plugin that was installed with INSTALL PLUGIN and is required
for plugin use. For new MySQL installations, this table is created during the installation process.

The client plugin implementation is simpler:

Types of Plugins

2587

• For the mysql_options() C API function, the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR
options enable client programs to load authentication plugins.

• There are C API functions that enable management of client plugins.

To examine how MySQL implements plugins, consult the following source files in a MySQL source
distribution:

• In the include/mysql directory, plugin.h exposes the public plugin API. This file should be
examined by anyone who wants to write a plugin library. plugin_xxx.h files provide additional
information that pertains to specific types of plugins. client_plugin.h contains information
specific to client plugins.

• In the sql directory, sql_plugin.h and sql_plugin.cc comprise the internal plugin
implementation. sql_acl.cc is where the server uses authentication plugins. These files need not
be consulted by plugin developers. They may be of interest for those who want to know more about
how the server handles plugins.

• In the sql-common directory, client_plugin.h implements the C API client plugin functions, and
client.c implements client authentication support. These files need not be consulted by plugin
developers. They may be of interest for those who want to know more about how the server handles
plugins.

22.2.3 Types of Plugins

The plugin API enables creation of plugins that implement several capabilities:

• Storage engines

• Full-text parsers

• Daemons

• INFORMATION_SCHEMA tables

• Semisynchronous replication

• Auditing

• Authentication

The following sections provide an overview of these plugin types.

22.2.3.1 Storage Engine Plugins

The pluggable storage engine architecture used by MySQL Server enables storage engines to be
written as plugins and loaded into and unloaded from a running server. For a description of this
architecture, see Section 14.12, “Overview of MySQL Storage Engine Architecture”.

For information on how to use the plugin API to write storage engines, see MySQL Internals: Writing a
Custom Storage Engine.

22.2.3.2 Full-Text Parser Plugins

MySQL has a built-in parser that it uses by default for full-text operations (parsing text to be indexed,
or parsing a query string to determine the terms to be used for a search). For full-text processing,
“parsing” means extracting words from text or a query string based on rules that define which character
sequences make up a word and where word boundaries lie.

When parsing for indexing purposes, the parser passes each word to the server, which adds it to a full-
text index. When parsing a query string, the parser passes each word to the server, which accumulates
the words for use in a search.

http://dev.mysql.com/doc/internals/en/custom-engine.html
http://dev.mysql.com/doc/internals/en/custom-engine.html

Types of Plugins

2588

The parsing properties of the built-in full-text parser are described in Section 12.9, “Full-Text Search
Functions”. These properties include rules for determining how to extract words from text. The
parser is influenced by certain system variables such as innodb_ft_min_token_size and
innodb_ft_max_token_size for InnoDB or ft_min_word_len and ft_max_word_len for
MyISAM that cause words shorter or longer to be excluded, and by the stopword list that identifies
common words to be ignored.

The plugin API enables you to provide a full-text parser of your own so that you have control over the
basic duties of a parser. A parser plugin can operate in either of two roles:

• The plugin can replace the built-in parser. In this role, the plugin reads the input to be parsed, splits it
up into words, and passes the words to the server (either for indexing or for word accumulation).

One reason to use a parser this way is that you need to use different rules from those of the built-
in parser for determining how to split up input into words. For example, the built-in parser considers
the text “case-sensitive” to consist of two words “case” and “sensitive,” whereas an application might
need to treat the text as a single word.

• The plugin can act in conjunction with the built-in parser by serving as a front end for it. In this
role, the plugin extracts text from the input and passes the text to the parser, which splits up the
text into words using its normal parsing rules. In particular, this parsing will be affected by the
innodb_ft_xxx or ft_xxx system variables and the stopword list.

One reason to use a parser this way is that you need to index content such as PDF documents, XML
documents, or .doc files. The built-in parser is not intended for those types of input but a plugin can
pull out the text from these input sources and pass it to the built-in parser.

It is also possible for a parser plugin to operate in both roles. That is, it could extract text from
nonplaintext input (the front end role), and also parse the text into words (thus replacing the built-in
parser).

A full-text plugin is associated with full-text indexes on a per-index basis. That is, when you install a
parser plugin initially, that does not cause it to be used for any full-text operations. It simply becomes
available. For example, a full-text parser plugin becomes available to be named in a WITH PARSER
clause when creating individual FULLTEXT indexes. To create such an index at table-creation time, do
this:

CREATE TABLE t
(
 doc CHAR(255),
 FULLTEXT INDEX (doc) WITH PARSER my_parser
) ENGINE=InnoDB;

Or you can add the index after the table has been created:

ALTER TABLE t ADD FULLTEXT INDEX (doc) WITH PARSER my_parser;

The only SQL change for associating the parser with the index is the WITH PARSER clause. Searches
are specified as before, with no changes needed for queries.

When you associate a parser plugin with a FULLTEXT index, the plugin is required for using the index.
If the parser plugin is dropped, any index associated with it becomes unusable. Any attempt to use a
table for which a plugin is not available results in an error, although DROP TABLE is still possible.

For more information about full-text plugins, see Section 22.2.4.4, “Writing Full-Text Parser Plugins”.
MySQL 5.7 supports full-text plugins with MyISAM. As of MySQL 5.7.3, full-text plugins are also
supported with InnoDB.

22.2.3.3 Daemon Plugins

Types of Plugins

2589

A daemon plugin is a simple type of plugin used for code that should be run by the server but that does
not communicate with it. MySQL distributions include an example daemon plugin that writes periodic
heartbeat messages to a file.

For more information about daemon plugins, see Section 22.2.4.5, “Writing Daemon Plugins”.

22.2.3.4 INFORMATION_SCHEMA Plugins

INFORMATION_SCHEMA plugins enable the creation of tables containing server metadata that
are exposed to users through the INFORMATION_SCHEMA database. For example, InnoDB uses
INFORMATION_SCHEMA plugins to provide tables that contain information about current transactions
and locks.

For more information about INFORMATION_SCHEMA plugins, see Section 22.2.4.6, “Writing
INFORMATION_SCHEMA Plugins”.

22.2.3.5 Semisynchronous Replication Plugins

MySQL replication is asynchronous by default. With semisynchronous replication, a commit performed
on the master side blocks before returning to the session that performed the transaction until
at least one slave acknowledges that it has received and logged the events for the transaction.
Semisynchronous replication is implemented through complementary master and client plugins. See
Section 16.3.8, “Semisynchronous Replication”.

For more information about semisynchronous replication plugins, see Section 22.2.4.7, “Writing
Semisynchronous Replication Plugins”.

22.2.3.6 Audit Plugins

In MySQL 5.7, the server provides a pluggable audit interface that enables information about server
operations to be reported to interested parties. Currently, audit notification occurs for these operations
(although the interface is general and the server could be modified to report others):

• Write a message to the general query log (if the log is enabled)

• Write a message to the error log

• Send a query result to a client

Audit plugins may register with the audit interface to receive notification about server operations. When
an auditable event occurs within the server, the server determines whether notification is needed. For
each registered audit plugin, the server checks the event against those event classes in which the
plugin is interested and passes the event to the plugin if there is a match.

This interface enables audit plugins to receive notifications only about operations in event classes they
consider significant and to ignore others. The interface provides for categorization of operations into
event classes and further division into event subclasses within each class.

When an audit plugin is notified of an auditable event, it receives a pointer to the current THD structure
and a pointer to a structure that contains information about the event. The plugin can examine the
event and perform whatever auditing actions are appropriate. For example, the plugin can see what
statement produced a result set or was logged, the number of rows in a result, who the current user
was for an operation, or the error code for failed operations.

For more information about audit plugins, see Section 22.2.4.8, “Writing Audit Plugins”.

22.2.3.7 Authentication Plugins

MySQL 5.7 supports pluggable authentication. Authentication plugins exist on both the server and
client sides. Plugins on the server side implement authentication methods for use by clients when they
connect to the server. A plugin on the client side communicates with a server-side plugin to provide the
authentication information that it requires. A client-side plugin may interact with the user, performing

Writing Plugins

2590

tasks such as soliciting a password or other authentication credentials to be sent to the server. See
Section 6.3.8, “Pluggable Authentication”.

Pluggable authentication also enables proxy user capability, in which one user takes the identity of
another user. A server-side authentication plugin can return to the server the name of the user whose
identity the connecting user should have. See Section 6.3.10, “Proxy Users”.

For more information about authentication plugins, see Section 22.2.4.9, “Writing Authentication
Plugins”.

22.2.3.8 Password-Validation Plugins

In MySQL 5.7, the server provides an interface for writing plugins that test passwords. Such a plugin
implements two capabilities:

• Rejection of too-weak passwords in statements that assign passwords (such as CREATE USER,
GRANT, and SET PASSWORD statements), and passwords given as arguments to the PASSWORD()
and OLD_PASSWORD() functions.

• Assessing the strength of potential passwords for the VALIDATE_PASSWORD_STRENGTH() SQL
function.

For information about writing this type of plugin, see Section 22.2.4.10, “Writing Password-Validation
Plugins”.

22.2.3.9 Protocol Trace Plugins

MySQL 5.7 supports the use of protocol trace plugins: client-side plugins that implement tracing of
communication between a client and the server that takes place using the client/server protocol. This
capability can be used in MySQL 5.7.2 and up.

For more information about protocol trace plugins, see Section 22.2.4.11, “Writing Protocol Trace
Plugins”.

22.2.4 Writing Plugins

To create a plugin library, you must provide the required descriptor information that indicates what
plugins the library file contains, and write the interface functions for each plugin.

Every server plugin must have a general descriptor that provides information to the plugin API, and a
type-specific descriptor that provides information about the plugin interface for a given type of plugin.
The structure of the general descriptor is the same for all plugin types. The structure of the type-
specific descriptor varies among plugin types and is determined by the requirements of what the plugin
needs to do. The server plugin interface also enables plugins to expose status and system variables.
These variables become visible through the SHOW STATUS and SHOW VARIABLES statements and the
corresponding INFORMATION_SCHEMA tables.

For client-side plugins, the architecture is a bit different. Each plugin must have a descriptor, but there
is no division into separate general and type-specific descriptors. Instead, the descriptor begins with a
fixed set of members common to all client plugin types, and the common members are followed by any
additional members required to implement the specific plugin type.

You can write plugins in C or C++ (or another language that can use C calling conventions). Plugins
are loaded and unloaded dynamically, so your operating system must support dynamic loading and you
must have compiled the calling application dynamically (not statically). For server plugins, this means
that mysqld must be compiled dynamically.

A server plugin contains code that becomes part of the running server, so when you write the plugin,
you are bound by any and all constraints that otherwise apply to writing server code. For example, you
may have problems if you attempt to use functions from the libstdc++ library. These constraints may
change in future versions of the server, so it is possible that server upgrades will require revisions to

Writing Plugins

2591

plugins originally written for older servers. For information about these constraints, see Section 2.8.4,
“MySQL Source-Configuration Options”, and Section 2.8.5, “Dealing with Problems Compiling MySQL”.

Client plugin writers should avoid dependencies on what symbols the calling application has because
you cannot be sure what applications will use the plugin.

22.2.4.1 Overview of Plugin Writing

The following procedure provides an overview of the steps needed to create a plugin library. The next
sections provide additional details on setting plugin data structures and writing specific types of plugins.

1. In the plugin source file, include the header files that the plugin library needs. The plugin.h file is
required, and the library might require other files as well. For example:

#include <stdlib.h>
#include <ctype.h>
#include <mysql/plugin.h>

2. Set up the descriptor information for the plugin library file. For server plugins, write the library
descriptor, which must contain the general plugin descriptor for each server plugin in the file. For
more information, see Server Plugin Library and Plugin Descriptors. In addition, set up the type-
specific descriptor for each server plugin in the library. Each plugin's general descriptor points to its
type-specific descriptor.

For client plugins, write the client descriptor. For more information, see Client Plugin Descriptors.

3. Write the plugin interface functions for each plugin. For example, each plugin's general plugin
descriptor points to the initialization and deinitialization functions that the server should invoke when
it loads and unloads the plugin. The plugin's type-specific description may also point to interface
functions.

4. For server plugins, set up the status and system variables, if there are any.

5. Compile the plugin library as a shared library and install it in the plugin directory. For more
information, see Section 22.2.4.3, “Compiling and Installing Plugin Libraries”.

6. For server plugins, register the plugin with the server. For more information, see Section 5.1.8.1,
“Installing and Uninstalling Plugins”.

7. Test the plugin to verify that it works properly.

22.2.4.2 Plugin Data Structures

A plugin library file includes descriptor information to indicate what plugins it contains.

If the plugin library contains any server plugins, it must include the following descriptor information:

• A library descriptor indicates the general server plugin API version number used by the library and
contains a general plugin descriptor for each server plugin in the library. To provide the framework
for this descriptor, invoke two macros from the plugin.h header file:

mysql_declare_plugin(name)
 ... one or more server plugin descriptors here ...
mysql_declare_plugin_end;

The macros expand to provide a declaration for the API version automatically. You must provide the
plugin descriptors.

• Within the library descriptor, each general server plugin is described by a st_mysql_plugin
structure. This plugin descriptor structure contains information that is common to every type of server
plugin: A value that indicates the plugin type; the plugin name, author, description, and license type;
pointers to the initialization and deinitialization functions that the server invokes when it loads and
unloads the plugin, and pointers to any status or system variables the plugin implements.

Writing Plugins

2592

• Each general server plugin descriptor within the library descriptor also contains a pointer to a type-
specific plugin descriptor. The structure of the type-specific descriptors varies from one plugin type to
another because each type of plugin can have its own API. A type-specific plugin descriptor contains
a type-specific API version number and pointers to the functions that are needed to implement that
plugin type. For example, a full-text parser plugin has initialization and deinitialization functions, and
a main parsing function. The server invokes these functions when it uses the plugin to parse text.

The plugin library also contains the interface functions that are referenced by the general and type-
specific descriptors for each plugin in the library.

If the plugin library contains a client plugin, it must include a descriptor for the plugin. The descriptor
begins with a fixed set of members common to all client plugins, followed by any members specific to
the plugin type. To provide the descriptor framework, invoke two macros from the client_plugin.h
header file:

mysql_declare_client_plugin(plugin_type)
 ... members common to all client plugins ...
 ... type-specific extra members ...
mysql_end_client_plugin;

The plugin library also contains any interface functions referenced by the client descriptor.

The mysql_declare_plugin() and mysql_declare_client_plugin() macros differ somewhat
in how they can be invoked, which has implications for the contents of plugin libraries. The following
guidelines summarize the rules:

• mysql_declare_plugin() and mysql_declare_client_plugin() can both be used in
the same source file, which means that a plugin library can contain both server and client plugins.
However, each of mysql_declare_plugin() and mysql_declare_client_plugin() can be
used at most once.

• mysql_declare_plugin() permits multiple server plugin declarations, so a plugin library can
contain multiple server plugins.

• mysql_declare_client_plugin() permits only a single client plugin declaration. To create
multiple client plugins, separate plugin libraries must be used.

When a client program looks for a client plugin that is in a plugin library and not built into
libmysqlclient, it looks for a file with a basename that is the same as the plugin name. For
example, if a program needs to use a client authentication plugin named auth_xxx on a system that
uses .so as the library suffix, it looks in the file named auth_xxx.so. (On Mac OS X, the program
looks first for auth_xxx.dylib, then for auth_xxx.so.) For this reason, if a plugin library contains a
client plugin, the library must have the same basename as that plugin.

The same is not true for a library that contains server plugins. The --plugin-load option and the
INSTALL PLUGIN statement provide the library file name explicitly, so there need be no explicit
relationship between the library name and the name of any server plugins it contains.

Server Plugin Library and Plugin Descriptors

Every plugin library that contains server plugins must include a library descriptor that contains the
general plugin descriptor for each server plugin in the file. This section discusses how to write the
library and general descriptors for server plugins.

The library descriptor must define two symbols:

• _mysql_plugin_interface_version_ specifies the version number of the general plugin
framework. This is given by the MYSQL_PLUGIN_INTERFACE_VERSION symbol, which is defined in
the plugin.h file.

• _mysql_plugin_declarations_ defines an array of plugin declarations, terminated by a
declaration with all members set to 0. Each declaration is an instance of the st_mysql_plugin

Writing Plugins

2593

structure (also defined in plugin.h). There must be one of these for each server plugin in the
library.

If the server does not find those two symbols in a library, it does not accept it as a legal plugin library
and rejects it with an error. This prevents use of a library for plugin purposes unless it was built
specifically as a plugin library.

The conventional way to define the two required symbols is by using the mysql_declare_plugin()
and mysql_declare_plugin_end macros from the plugin.h file:

mysql_declare_plugin(name)
 ... one or more server plugin descriptors here ...
mysql_declare_plugin_end;

Each server plugin must have a general descriptor that provides information to the server plugin API.
The general descriptor has the same structure for all plugin types. The st_mysql_plugin structure in
the plugin.h file defines this descriptor:

struct st_mysql_plugin
{
 int type; /* the plugin type (a MYSQL_XXX_PLUGIN value) */
 void *info; /* pointer to type-specific plugin descriptor */
 const char *name; /* plugin name */
 const char *author; /* plugin author (for I_S.PLUGINS) */
 const char *descr; /* general descriptive text (for I_S.PLUGINS) */
 int license; /* the plugin license (PLUGIN_LICENSE_XXX) */
 int (*init)(void *); /* the function to invoke when plugin is loaded */
 int (*deinit)(void *);/* the function to invoke when plugin is unloaded */
 unsigned int version; /* plugin version (for I_S.PLUGINS) */
 struct st_mysql_show_var *status_vars;
 struct st_mysql_sys_var **system_vars;
 void * __reserved1; /* reserved for dependency checking */
 unsigned long flags; /* flags for plugin */
};

The st_mysql_plugin descriptor structure members are used as follows. char * members should
be specified as null-terminated strings.

• type: The plugin type. This must be one of the plugin-type values from plugin.h:

/*
 The allowable types of plugins
*/
#define MYSQL_UDF_PLUGIN 0 /* User-defined function */
#define MYSQL_STORAGE_ENGINE_PLUGIN 1 /* Storage Engine */
#define MYSQL_FTPARSER_PLUGIN 2 /* Full-text parser plugin */
#define MYSQL_DAEMON_PLUGIN 3 /* The daemon/raw plugin type */
#define MYSQL_INFORMATION_SCHEMA_PLUGIN 4 /* The I_S plugin type */
#define MYSQL_AUDIT_PLUGIN 5 /* The Audit plugin type */
#define MYSQL_REPLICATION_PLUGIN 6 /* The replication plugin type */
#define MYSQL_AUTHENTICATION_PLUGIN 7 /* The authentication plugin type */
...

For example, for a full-text parser plugin, the type value is MYSQL_FTPARSER_PLUGIN.

• info: A pointer to the type-specific descriptor for the plugin. This descriptor's structure depends on
the particular type of plugin, unlike that of the general plugin descriptor structure. For version-control
purposes, the first member of the type-specific descriptor for every plugin type is expected to be the
interface version for the type. This enables the server to check the type-specific version for every
plugin no matter its type. Following the version number, the descriptor includes any other members
needed, such as callback functions and other information needed by the server to invoke the plugin
properly. Later sections on writing particular types of server plugins describe the structure of their
type-specific descriptors.

Writing Plugins

2594

• name: A string that gives the plugin name. This is the name that will be listed in the mysql.plugin
table and by which you refer to the plugin in SQL statements such as INSTALL PLUGIN and
UNINSTALL PLUGIN, or with the --plugin-load option. The name is also visible in the
INFORMATION_SCHEMA.PLUGINS table or the output from SHOW PLUGINS.

The plugin name should not begin with the name of any server option. If it does, the server will fail
to initialize it. For example, the server has a --socket option, so you should not use a plugin name
such as socket, socket_plugin, and so forth.

• author: A string naming the plugin author. This can be whatever you like.

• desc: A string that provides a general description of the plugin. This can be whatever you like.

• license: The plugin license type. The value can be one of PLUGIN_LICENSE_PROPRIETARY,
PLUGIN_LICENSE_GPL, or PLUGIN_LICENSE_BSD.

• init: A once-only initialization function, or NULL if there is no such function. The server executes
this function when it loads the plugin, which happens for INSTALL PLUGIN or, for plugins listed
in the mysql.plugin table, at server startup. The function takes one argument that points to the
internal structure used to identify the plugin. It returns zero for success and nonzero for failure.

• deinit: A once-only deinitialization function, or NULL if there is no such function. The server
executes this function when it unloads the plugin, which happens for UNINSTALL PLUGIN or, for
plugins listed in the mysql.plugin table, at server shutdown. The function takes one argument that
points to the internal structure used to identify the plugin It returns zero for success and nonzero for
failure.

• version: The plugin version number. When the plugin is installed, this value can be retrieved from
the INFORMATION_SCHEMA.PLUGINS table. The value includes major and minor numbers. If you
write the value as a hex constant, the format is 0xMMNN, where MM and NN are the major and minor
numbers, respectively. For example, 0x0302 represents version 3.2.

• status_vars: A pointer to a structure for status variables associated with the plugin, or NULL if
there are no such variables. When the plugin is installed, these variables are displayed in the output
of the SHOW STATUS statement.

The status_vars member, if not NULL, points to an array of st_mysql_show_var structures that
describe status variables. See Server Plugin Status and System Variables.

• system_vars: A pointer to a structure for system variables associated with the plugin, or NULL
if there are no such variables. These options and system variables can be used to help initialize
variables within the plugin.

The system_vars member, if not NULL, points to an array of st_mysql_sys_var structures that
describe system variables. See Server Plugin Status and System Variables.

• __reserved1: A placeholder for the future. Currently, it should be set to NULL.

• flags: Plugin flags. Individual bits correspond to different flags. The value should be set to the OR
of the applicable flags. These flags are available:

#define PLUGIN_OPT_NO_INSTALL 1UL /* Not dynamically loadable */
#define PLUGIN_OPT_NO_UNINSTALL 2UL /* Not dynamically unloadable */

PLUGIN_OPT_NO_INSTALL indicates that the plugin cannot be loaded at runtime with the INSTALL
PLUGIN statement. This is appropriate for plugins that must be loaded at server startup with the --
plugin-load option. PLUGIN_OPT_NO_UNINSTALL indicates that the plugin cannot be unloaded
at runtime with the UNINSTALL PLUGIN statement.

The server invokes the init and deinit functions in the general plugin descriptor only when loading
and unloading the plugin. They have nothing to do with use of the plugin such as happens when an
SQL statement causes the plugin to be invoked.

Writing Plugins

2595

For example, the descriptor information for a library that contains a single full-text parser plugin named
simple_parser looks like this:

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 "simple_parser", /* name */
 "Oracle Corporation", /* author */
 "Simple Full-Text Parser", /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

For a full-text parser plugin, the type must be MYSQL_FTPARSER_PLUGIN. This is the value that
identifies the plugin as being legal for use in a WITH PARSER clause when creating a FULLTEXT index.
(No other plugin type is legal for this clause.)

plugin.h defines the mysql_declare_plugin() and mysql_declare_plugin_end macros like
this:

#ifndef MYSQL_DYNAMIC_PLUGIN
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
MYSQL_PLUGIN_EXPORT int VERSION= MYSQL_PLUGIN_INTERFACE_VERSION; \
MYSQL_PLUGIN_EXPORT int PSIZE= sizeof(struct st_mysql_plugin); \
MYSQL_PLUGIN_EXPORT struct st_mysql_plugin DECLS[]= {
#else
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
MYSQL_PLUGIN_EXPORT int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION; \
MYSQL_PLUGIN_EXPORT int _mysql_sizeof_struct_st_plugin_= sizeof(struct st_mysql_plugin); \
MYSQL_PLUGIN_EXPORT struct st_mysql_plugin _mysql_plugin_declarations_[]= {
#endif

#define mysql_declare_plugin(NAME) \
__MYSQL_DECLARE_PLUGIN(NAME, \
 builtin_ ## NAME ## _plugin_interface_version, \
 builtin_ ## NAME ## _sizeof_struct_st_plugin, \
 builtin_ ## NAME ## _plugin)

#define mysql_declare_plugin_end ,{0,0,0,0,0,0,0,0,0,0,0,0,0}}

Note

Those declarations define the _mysql_plugin_interface_version_
symbol only if the MYSQL_DYNAMIC_PLUGIN symbol is defined. This means
that -DMYSQL_DYNAMIC_PLUGIN must be provided as part of the compilation
command to build the plugin as a shared library.

When the macros are used as just shown, they expand to the following code, which
defines both of the required symbols (_mysql_plugin_interface_version_ and
_mysql_plugin_declarations_):

int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION;
int _mysql_sizeof_struct_st_plugin_= sizeof(struct st_mysql_plugin);
struct st_mysql_plugin _mysql_plugin_declarations_[]= {
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 "simple_parser", /* name */
 "Oracle Corporation", /* author */

Writing Plugins

2596

 "Simple Full-Text Parser", /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
 ,{0,0,0,0,0,0,0,0,0,0,0,0}}
};

The preceding example declares a single plugin in the general descriptor, but it is possible to declare
multiple plugins. List the declarations one after the other between mysql_declare_plugin() and
mysql_declare_plugin_end, separated by commas.

MySQL server plugins can be written in C or C++ (or another language that can use C calling
conventions). If you write a C++ plugin, one C++ feature that you should not use is nonconstant
variables to initialize global structures. Members of structures such as the st_mysql_plugin
structure should be initialized only with constant variables. The simple_parser descriptor shown
earlier is permissible in a C++ plugin because it satisfies that requirement:

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 "simple_parser", /* name */
 "Oracle Corporation", /* author */
 "Simple Full-Text Parser", /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

Here is another valid way to write the general descriptor. It uses constant variables to indicate the
plugin name, author, and description:

const char *simple_parser_name = "simple_parser";
const char *simple_parser_author = "Oracle Corporation";
const char *simple_parser_description = "Simple Full-Text Parser";

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 simple_parser_name, /* name */
 simple_parser_author, /* author */
 simple_parser_description, /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

However, the following general descriptor is invalid. It uses structure members to indicate the plugin
name, author, and description, but structures are not considered constant initializers in C++:

Writing Plugins

2597

typedef struct
{
 const char *name;
 const char *author;
 const char *description;
} plugin_info;

plugin_info parser_info = {
 "simple_parser",
 "Oracle Corporation",
 "Simple Full-Text Parser"
};

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 parser_info.name, /* name */
 parser_info.author, /* author */
 parser_info.description, /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

Server Plugin Status and System Variables

The server plugin interface enables plugins to expose status and system variables using the
status_vars and system_vars members of the general plugin descriptor.

The status_vars member of the general plugin descriptor, if not 0, points to an array of
st_mysql_show_var structures, each of which describes one status variable, followed by a structure
with all members set to 0. The st_mysql_show_var structure has this definition:

struct st_mysql_show_var {
 const char *name;
 char *value;
 enum enum_mysql_show_type type;
};

When the plugin is installed, the plugin name and the name value are joined with an underscore to form
the name displayed by SHOW STATUS.

The following table shows the permissible status variable type values and what the corresponding
variable should be.

Table 22.1 Server Plugin Status Variable Types

Variable Type Meaning

SHOW_BOOL Pointer to a boolean variable

SHOW_INT Pointer to an integer variable

SHOW_LONG Pointer to a long integer variable

SHOW_LONGLONG Pointer to a longlong integer variable

SHOW_CHAR A string

SHOW_CHAR_PTR Pointer to a string

SHOW_ARRAY Pointer to another st_mysql_show_var array

Writing Plugins

2598

Variable Type Meaning

SHOW_FUNC Pointer to a function

SHOW_DOUBLE Pointer to a double

For the SHOW_FUNC type, the function is called and fills in its out parameter, which then provides
information about the variable to be displayed. The function has this signature:

#define SHOW_VAR_FUNC_BUFF_SIZE 1024

typedef int (*mysql_show_var_func) (void *thd,
 struct st_mysql_show_var *out,
 char *buf);

The system_vars member, if not 0, points to an array of st_mysql_sys_var structures, each of
which describes one system variable (which can also be set from the command-line or configuration
file), followed by a structure with all members set to 0. The st_mysql_sys_var structure is defined as
follows:

struct st_mysql_sys_var {
 int flags;
 const char *name, *comment;
 int (*check)(THD*, struct st_mysql_sys_var *, void*, st_mysql_value*);
 void (*update)(THD*, struct st_mysql_sys_var *, void*, const void*);
};

Additional fields are append as required depending upon the flags.

For convenience, a number of macros are defined that make creating new system variables within a
plugin much simpler.

Throughout the macros, the following fields are available:

• name: An unquoted identifier for the system variable.

• varname: The identifier for the static variable. Where not available, it is the same as the name field.

• opt: Additional use flags for the system variable. The following table shows the permissible flags.

Table 22.2 Server Plugin System Variable Flags

Flag Value Description

PLUGIN_VAR_READONLYThe system variable is read only

PLUGIN_VAR_NOSYSVARThe system variable is not user visible at runtime

PLUGIN_VAR_NOCMDOPTThe system variable is not configurable from the command line

PLUGIN_VAR_NOCMDARGNo argument is required at the command line (typically used for boolean
variables)

PLUGIN_VAR_RQCMDARGAn argument is required at the command line (this is the default)

PLUGIN_VAR_OPCMDARGAn argument is optional at the command line

PLUGIN_VAR_MEMALLOCUsed for string variables; indicates that memory is to be allocated for
storage of the string

• comment: A descriptive comment to be displayed in the server help message. NULL if this variable is
to be hidden.

• check: The check function, NULL for default.

• update: The update function, NULL for default.

• default: The variable default value.

Writing Plugins

2599

• minimum: The variable minimum value.

• maximum: The variable maximum value.

• blocksize: The variable block size. When the value is set, it is rounded to the nearest multiple of
blocksize.

A system variable may be accessed either by using the static variable directly or by using the
SYSVAR()accessor macro. The SYSVAR() macro is provided for completeness. Usually it should be
used only when the code cannot directly access the underlying variable.

For example:

static int my_foo;
static MYSQL_SYSVAR_INT(foo_var, my_foo,
 PLUGIN_VAR_RQCMDARG, "foo comment",
 NULL, NULL, 0, 0, INT_MAX, 0);
 ...
 SYSVAR(foo_var)= value;
 value= SYSVAR(foo_var);
 my_foo= value;
 value= my_foo;

Session variables may be accessed only through the THDVAR() accessor macro. For example:

static MYSQL_THDVAR_BOOL(some_flag,
 PLUGIN_VAR_NOCMDARG, "flag comment",
 NULL, NULL, FALSE);
 ...
 if (THDVAR(thd, some_flag))
 {
 do_something();
 THDVAR(thd, some_flag)= FALSE;
 }

All global and session system variables must be published to mysqld before use. This is done by
constructing a NULL-terminated array of the variables and linking to it in the plugin public interface. For
example:

static struct st_mysql_sys_var *my_plugin_vars[]= {
 MYSQL_SYSVAR(foo_var),
 MYSQL_SYSVAR(some_flag),
 NULL
};
mysql_declare_plugin(fooplug)
{
 MYSQL_..._PLUGIN,
 &plugin_data,
 "fooplug",
 "foo author",
 "This does foo!",
 PLUGIN_LICENSE_GPL,
 foo_init,
 foo_fini,
 0x0001,
 NULL,
 my_plugin_vars,
 NULL,
 0
}
mysql_declare_plugin_end;

The following convenience macros enable you to declare different types of system variables:

• Boolean system variables of type my_bool, which is a 1-byte boolean. (0 = FALSE, 1 = TRUE)

Writing Plugins

2600

MYSQL_THDVAR_BOOL(name, opt, comment, check, update, default)
MYSQL_SYSVAR_BOOL(name, varname, opt, comment, check, update, default)

• String system variables of type char*, which is a pointer to a null-terminated string.

MYSQL_THDVAR_STR(name, opt, comment, check, update, default)
MYSQL_SYSVAR_STR(name, varname, opt, comment, check, update, default)

• Integer system variables, of which there are several varieties.

• An int system variable, which is typically a 4-byte signed word.

MYSQL_THDVAR_INT(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_INT(name, varname, opt, comment, check, update, default,
 minimum, maximum, blocksize)

• An unsigned int system variable, which is typically a 4-byte unsigned word.

MYSQL_THDVAR_UINT(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_UINT(name, varname, opt, comment, check, update, default,
 minimum, maximum, blocksize)

• A long system variable, which is typically either a 4- or 8-byte signed word.

MYSQL_THDVAR_LONG(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_LONG(name, varname, opt, comment, check, update, default,
 minimum, maximum, blocksize)

• An unsigned long system variable, which is typically either a 4- or 8-byte unsigned word.

MYSQL_THDVAR_ULONG(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_ULONG(name, varname, opt, comment, check, update, default,
 minimum, maximum, blocksize)

• A long long system variable, which is typically an 8-byte signed word.

MYSQL_THDVAR_LONGLONG(name, opt, comment, check, update,
 default, minimum, maximum, blocksize)
MYSQL_SYSVAR_LONGLONG(name, varname, opt, comment, check, update,
 default, minimum, maximum, blocksize)

• An unsigned long long system variable, which is typically an 8-byte unsigned word.

MYSQL_THDVAR_ULONGLONG(name, opt, comment, check, update,
 default, minimum, maximum, blocksize)
MYSQL_SYSVAR_ULONGLONG(name, varname, opt, comment, check, update,
 default, minimum, maximum, blocksize)

• A double system variable, which is typically an 8-byte signed word. These accessor macros were
added in MySQL 5.7.2.

MYSQL_THDVAR_DOUBLE(name, opt, comment, check, update,
 default, minimum, maximum, blocksize)
MYSQL_SYSVAR_DOUBLE(name, varname, opt, comment, check, update,
 default, minimum, maximum, blocksize)

• An unsigned long system variable, which is typically either a 4- or 8-byte unsigned word. The
range of possible values is an ordinal of the number of elements in the typelib, starting from 0.

MYSQL_THDVAR_ENUM(name, opt, comment, check, update, default, typelib)

Writing Plugins

2601

MYSQL_SYSVAR_ENUM(name, varname, opt, comment, check, update,
 default, typelib)

• An unsigned long long system variable, which is typically an 8-byte unsigned word. Each bit
represents an element in the typelib.

MYSQL_THDVAR_SET(name, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR_SET(name, varname, opt, comment, check, update,
 default, typelib)

Internally, all mutable and plugin system variables are stored in a HASH structure.

Display of the server command-line help text is handled by compiling a DYNAMIC_ARRAY of all
variables relevant to command-line options, sorting them, and then iterating through them to display
each option.

When a command-line option has been handled, it is then removed from the argv by the
handle_option() function (my_getopt.c); in effect, it is consumed.

The server processes command-line options during the plugin installation process, immediately after
the plugin has been successfully loaded but before the plugin initialization function has been called

Plugins loaded at runtime do not benefit from any configuration options and must have usable defaults.
Once they are installed, they are loaded at mysqld initialization time and configuration options can be
set at the command line or within my.cnf.

Plugins should consider the thd parameter to be read only.

Client Plugin Descriptors

Each client plugin must have a descriptor that provides information to the client plugin API. The
descriptor structure begins with a fixed set of members common to all client plugins, followed by any
members specific to the plugin type.

The st_mysql_client_plugin structure in the client_plugin.h file defines a “generic”
descriptor that contains the common members:

struct st_mysql_client_plugin
{
 int type;
 unsigned int interface_version;
 const char *name;
 const char *author;
 const char *desc;
 unsigned int version[3];
 const char *license;
 void *mysql_api;
 int (*init)(char *, size_t, int, va_list);
 int (*deinit)();
 int (*options)(const char *option, const void *);
};

The common st_mysql_client_plugin descriptor structure members are used as follows. char *
members should be specified as null-terminated strings.

• type: The plugin type. This must be one of the plugin-type values from client_plugin.h, such as
MYSQL_CLIENT_AUTHENTICATION_PLUGIN.

• interface_version: The plugin interface version. For example, this is
MYSQL_CLIENT_AUTHENTICATION_PLUGIN_INTERFACE_VERSION for an authentication plugin.

• name: A string that gives the plugin name. This is the name by which you refer to the plugin when
you call mysql_options() with the MYSQL_DEFAULT_AUTH option or specify the --default-
auth option to a MySQL client program.

Writing Plugins

2602

• author: A string naming the plugin author. This can be whatever you like.

• desc: A string that provides a general description of the plugin. This can be whatever you like.

• version: The plugin version as an array of three integers indicating the major, minor, and teeny
versions. For example, {1,2,3} indicates version 1.2.3.

• license: A string that specifies the license type.

• mysql_api: For internal use. Specify it as NULL in the plugin descriptor.

• init: A once-only initialization function, or NULL if there is no such function. The client library
executes this function when it loads the plugin. The function returns zero for success and nonzero for
failure.

The init function uses its first two arguments to return an error message if an error occurs. The first
argument is a pointer to a char buffer, and the second argument indicates the buffer length. Any
message returned by the init function must be null-terminated, so the maximum message length is
the buffer length minus one. The next arguments are passed to mysql_load_plugin(). The first
indicates how many more arguments there are (0 if none), followed by any remaining arguments.

• deinit: A once-only deinitialization function, or NULL if there is no such function. The client library
executes this function when it unloads the plugin. The function takes no arguments. It returns zero
for success and nonzero for failure.

• options: A function for handling options passed to the plugin, or NULL if there is no such function.
The function takes two arguments representing the option name and a pointer to its value. The
function returns zero for success and nonzero for failure.

For a given client plugin type, the common descriptor members may be followed by
additional members necessary to implement plugins of that type. For example, the
st_mysql_client_plugin_AUTHENTICATION structure for authentication plugins has a function at
the end that the client library calls to perform authentication.

To declare a plugin, use the mysql_declare_client_plugin() and
mysql_end_client_plugin macros:

mysql_declare_client_plugin(plugin_type)
 ... members common to all client plugins ...
 ... type-specific extra members ...
mysql_end_client_plugin;

Do not specify the type or interface_version member explicitly. The
mysql_declare_client_plugin() macro uses the plugin_type argument to generate their
values automatically. For example, declare an authentication client plugin like this:

mysql_declare_client_plugin(AUTHENTICATION)
 "my_auth_plugin",
 "Author Name",
 "My Client Authentication Plugin",
 {1,0,0},
 "GPL",
 NULL,
 my_auth_init,
 my_auth_deinit,
 my_auth_options,
 my_auth_main
mysql_end_client_plugin;

This declaration uses the AUTHENTICATION argument to set the type and
interface_version members to MYSQL_CLIENT_AUTHENTICATION_PLUGIN and
MYSQL_CLIENT_AUTHENTICATION_PLUGIN_INTERFACE_VERSION.

Writing Plugins

2603

Depending on the plugin type, the descriptor may have other members following the common
members. For example, for an authentication plugin, there is a function (my_auth_main() in the
descriptor just shown) that handles communication with the server. See Section 22.2.4.9, “Writing
Authentication Plugins”.

Normally, a client program that supports the use of authentication plugins causes a plugin to be loaded
by calling mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable
users to override the default values.

Should a client program require lower-level plugin management, the client library contains functions
that take an st_mysql_client_plugin argument. See Section 21.8.14, “C API Client Plugin
Functions”.

22.2.4.3 Compiling and Installing Plugin Libraries

After your plugin is written, you must compile it and install it. The procedure for compiling shared
objects varies from system to system. If you build your library using CMake, it should be able to
generate the correct compilation commands for your system. If the library is named somepluglib, you
should end up with a shared object file that has a name something like somepluglib.so. (The file
name might have a different suffix on your system.)

To use CMake, you'll need to set up the configuration files to enable the plugin to be compiled and
installed. Use the plugin examples under the plugin directory of a MySQL source distribution as a
guide.

Create CMakeLists.txt, which should look something like this:

MYSQL_ADD_PLUGIN(somepluglib somepluglib.c
 MODULE_ONLY MODULE_OUTPUT_NAME "somepluglib")

When CMake generates the Makefile, it should take care of passing to the compilation command
the -DMYSQL_DYNAMIC_PLUGIN flag, and passing to the linker the -lmysqlservices flag, which
is needed to link in any functions from services provided through the plugin services interface. See
Section 22.2.5, “MySQL Services for Plugins”.

Run CMake, then run make:

shell> cmake .
shell> make

If you need to specify configuration options to CMake, see Section 2.8.4, “MySQL Source-Configuration
Options”, for a list. For example, you might want to specify CMAKE_INSTALL_PREFIX to indicate the
MySQL base directory under which the plugin should be installed. You can see what value to use for
this option with SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'basedir';
+---------------+------------------+
| Variable_name | Value |
+---------------+------------------+
| base | /usr/local/mysql |
+---------------+------------------+

Writing Plugins

2604

The location of the plugin directory where you should install the library is given by the plugin_dir
system variable. For example:

mysql> SHOW VARIABLES LIKE 'plugin_dir';
+---------------+-----------------------------------+
| Variable_name | Value |
+---------------+-----------------------------------+
| plugin_dir | /usr/local/mysql/lib/mysql/plugin |
+---------------+-----------------------------------+

To install the plugin library, use make:

shell> make install

Verify that make install installed the plugin library in the proper directory. After installing it, make
sure that the library permissions permit it to be executed by the server.

22.2.4.4 Writing Full-Text Parser Plugins

MySQL 5.7 supports full-text parser plugins with MyISAM. Full-text parser plugins are supported
with InnoDB as of MySQL 5.7.3. For introductory information about full-text parser plugins, see
Section 22.2.3.2, “Full-Text Parser Plugins”.

A full-text parser server plugin can be used to replace or modify the built-in full-text parser. This section
describes how to write a full-text parser plugin named simple_parser. This plugin performs parsing
based on simpler rules than those used by the MySQL built-in full-text parser: Words are nonempty
runs of whitespace characters.

The instructions use the source code in the plugin/fulltext directory of MySQL source
distributions, so change location into that directory. The following procedure describes how the plugin
library is created:

1. To write a full-text parser plugin, include the following header file in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin.h>

plugin.h defines the MYSQL_FTPARSER_PLUGIN server plugin type and the data structures
needed to declare the plugin.

2. Set up the library descriptor for the plugin library file.

This descriptor contains the general plugin descriptor for the server plugin. For a full-text parser
plugin, the type must be MYSQL_FTPARSER_PLUGIN. This is the value that identifies the plugin as
being legal for use in a WITH PARSER clause when creating a FULLTEXT index. (No other plugin
type is legal for this clause.)

For example, the library descriptor for a library that contains a single full-text parser plugin named
simple_parser looks like this:

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 "simple_parser", /* name */
 "Oracle Corporation", /* author */
 "Simple Full-Text Parser", /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */

Writing Plugins

2605

 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

The name member (simple_parser) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed
by SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

For more information, see Server Plugin Library and Plugin Descriptors.

3. Set up the type-specific plugin descriptor.

Each general plugin descriptor in the library descriptor points to a type-specific descriptor. For a full-
text parser plugin, the type-specific descriptor is an instance of the st_mysql_ftparser structure
in the plugin.h file:

struct st_mysql_ftparser
{
 int interface_version;
 int (*parse)(MYSQL_FTPARSER_PARAM *param);
 int (*init)(MYSQL_FTPARSER_PARAM *param);
 int (*deinit)(MYSQL_FTPARSER_PARAM *param);
};

As shown by the structure definition, the descriptor has an interface version number and contains
pointers to three functions.

The interface version number is specified using a symbol, which is in the form:
MYSQL_xxx_INTERFACE_VERSION. For full-text parser plugins, the symbol is
“MYSQL_FTPARSER_INTERFACE_VERSION”. In the source code, you will find the actual interface
version number for the full-text parser plugin defined in include/mysql/plugin_ftparser.h.
With the introduction of full-text parser plugin support for InnoDB, the interface version number has
been incremented in MySQL 5.7.3 from 0x0100 to 0x0101.

The init and deinit members should point to a function or be set to 0 if the function is not
needed. The parse member must point to the function that performs the parsing.

In the simple_parser declaration, that descriptor is indicated by
&simple_parser_descriptor. The descriptor specifies the version number for the full-text
plugin interface (as given by MYSQL_FTPARSER_INTERFACE_VERSION), and the plugin's parsing,
initialization, and deinitialization functions:

static struct st_mysql_ftparser simple_parser_descriptor=
{
 MYSQL_FTPARSER_INTERFACE_VERSION, /* interface version */
 simple_parser_parse, /* parsing function */
 simple_parser_init, /* parser init function */
 simple_parser_deinit /* parser deinit function */
};

A full-text parser plugin is used in two different contexts, indexing and searching. In both contexts,
the server calls the initialization and deinitialization functions at the beginning and end of
processing each SQL statement that causes the plugin to be invoked. However, during statement
processing, the server calls the main parsing function in context-specific fashion:

• For indexing, the server calls the parser for each column value to be indexed.

• For searching, the server calls the parser to parse the search string. The parser might also be
called for rows processed by the statement. In natural language mode, there is no need for the

Writing Plugins

2606

server to call the parser. For boolean mode phrase searches or natural language searches with
query expansion, the parser is used to parse column values for information that is not in the
index. Also, if a boolean mode search is done for a column that has no FULLTEXT index, the
built-in parser will be called. (Plugins are associated with specific indexes. If there is no index, no
plugin is used.)

The plugin declaration in the general plugin descriptor has init and deinit members that point
initialization and deinitialization functions, and so does the type-specific plugin descriptor to which
it points. However, these pairs of functions have different purposes and are invoked for different
reasons:

• For the plugin declaration in the general plugin descriptor, the initialization and deinitialization
functions are invoked when the plugin is loaded and unloaded.

• For the type-specific plugin descriptor, the initialization and deinitialization functions are invoked
per SQL statement for which the plugin is used.

Each interface function named in the plugin descriptor should return zero for success or nonzero
for failure, and each of them receives an argument that points to a MYSQL_FTPARSER_PARAM
structure containing the parsing context. The structure has this definition:

typedef struct st_mysql_ftparser_param
{
 int (*mysql_parse)(struct st_mysql_ftparser_param *,
 char *doc, int doc_len);
 int (*mysql_add_word)(struct st_mysql_ftparser_param *,
 char *word, int word_len,
 MYSQL_FTPARSER_BOOLEAN_INFO *boolean_info);
 void *ftparser_state;
 void *mysql_ftparam;
 struct charset_info_st *cs;
 char *doc;
 int length;
 int flags;
 enum enum_ftparser_mode mode;
} MYSQL_FTPARSER_PARAM;

The structure members are used as follows:

• mysql_parse: A pointer to a callback function that invokes the server's built-in parser. Use
this callback when the plugin acts as a front end to the built-in parser. That is, when the plugin
parsing function is called, it should process the input to extract the text and pass the text to the
mysql_parse callback.

The first parameter for this callback function should be the param value itself:

param->mysql_parse(param, ...);

A front end plugin can extract text and pass it all at once to the built-in parser, or it can extract
and pass text to the built-in parser a piece at a time. However, in this case, the built-in parser
treats the pieces of text as though there are implicit word breaks between them.

• mysql_add_word: A pointer to a callback function that adds a word to a full-text index or to the
list of search terms. Use this callback when the parser plugin replaces the built-in parser. That
is, when the plugin parsing function is called, it should parse the input into words and invoke the
mysql_add_word callback for each word.

The first parameter for this callback function should be the param value itself:

param->mysql_add_word(param, ...);

Writing Plugins

2607

• ftparser_state: This is a generic pointer. The plugin can set it to point to information to be
used internally for its own purposes.

• mysql_ftparam: This is set by the server. It is passed as the first argument to the
mysql_parse or mysql_add_word callback.

• cs: A pointer to information about the character set of the text, or 0 if no information is available.

• doc: A pointer to the text to be parsed.

• length: The length of the text to be parsed, in bytes.

• flags: Parser flags. This is zero if there are no special flags. Currently, the only nonzero flag
is MYSQL_FTFLAGS_NEED_COPY, which means that mysql_add_word() must save a copy of
the word (that is, it cannot use a pointer to the word because the word is in a buffer that will be
overwritten.) This member was added in MySQL 5.1.12.

This flag might be set or reset by MySQL before calling the parser plugin, by the parser plugin
itself, or by the mysql_parse() function.

• mode: The parsing mode. This value will be one of the following constants:

• MYSQL_FTPARSER_SIMPLE_MODE: Parse in fast and simple mode, which is used for indexing
and for natural language queries. The parser should pass to the server only those words that
should be indexed. If the parser uses length limits or a stopword list to determine which words
to ignore, it should not pass such words to the server.

• MYSQL_FTPARSER_WITH_STOPWORDS: Parse in stopword mode. This is used in boolean
searches for phrase matching. The parser should pass all words to the server, even stopwords
or words that are outside any normal length limits.

• MYSQL_FTPARSER_FULL_BOOLEAN_INFO: Parse in boolean mode. This is used for parsing
boolean query strings. The parser should recognize not only words but also boolean-
mode operators and pass them to the server as tokens using the mysql_add_word
callback. To tell the server what kind of token is being passed, the plugin needs to fill in a
MYSQL_FTPARSER_BOOLEAN_INFO structure and pass a pointer to it.

Note

For MyISAM, the stopword list and ft_min_word_len and
ft_max_word_len are checked inside the tokenizer. For InnoDB,
the stopword list and equivalent word length variable settings
(innodb_ft_min_token_size and innodb_ft_max_token_size)
are checked outside of the tokenizer. As a result, InnoDB plugin parsers
do not need to check the stopword list, innodb_ft_min_token_size,
or innodb_ft_max_token_size. Instead, it is recommended that all
words be returned to InnoDB. However, if you want to check stopwords
within your plugin parser, use MYSQL_FTPARSER_SIMPLE_MODE,
which is for full-text search index and natural language
search. For MYSQL_FTPARSER_WITH_STOPWORDS and
MYSQL_FTPARSER_FULL_BOOLEAN_INFO modes, it is recommended that
all words be returned to InnoDB including stopwords, in case of phrase
searches.

If the parser is called in boolean mode, the param->mode value will be
MYSQL_FTPARSER_FULL_BOOLEAN_INFO. The MYSQL_FTPARSER_BOOLEAN_INFO structure that
the parser uses for passing token information to the server looks like this:

typedef struct st_mysql_ftparser_boolean_info

Writing Plugins

2608

{
 enum enum_ft_token_type type;
 int yesno;
 int weight_adjust;
 char wasign;
 char trunc;
 int position;
 /* These are parser state and must be removed. */
 char prev;
 char *quot;
} MYSQL_FTPARSER_BOOLEAN_INFO;

The parser should fill in the structure members as follows:

• type: The token type. The following table shows the permissible types.

Table 22.3 Full-Text Parser Token Types

Token Value Meaning

FT_TOKEN_EOF End of data

FT_TOKEN_WORD A regular word

FT_TOKEN_LEFT_PAREN The beginning of a group or subexpression

FT_TOKEN_RIGHT_PAREN The end of a group or subexpression

FT_TOKEN_STOPWORD A stopword

• yesno: Whether the word must be present for a match to occur. 0 means that the word is
optional but increases the match relevance if it is present. Values larger than 0 mean that the
word must be present. Values smaller than 0 mean that the word must not be present.

• weight_adjust: A weighting factor that determines how much a match for the word counts. It
can be used to increase or decrease the word's importance in relevance calculations. A value of
zero indicates no weight adjustment. Values greater than or less than zero mean higher or lower
weight, respectively. The examples at Section 12.9.2, “Boolean Full-Text Searches”, that use the
< and > operators illustrate how weighting works.

• wasign: The sign of the weighting factor. A negative value acts like the ~ boolean-search
operator, which causes the word's contribution to the relevance to be negative.

• trunc: Whether matching should be done as if the boolean-mode * truncation operator had
been given.

• position: Start position of the word in the document, in bytes. Used by InnoDB full-text search
(FTS). The position member is new as of MySQL 5.7.3. For existing plugins that are called in
boolean mode, support must be added for the position member.

Plugins should not use the prev and quot members of the MYSQL_FTPARSER_BOOLEAN_INFO
structure.

Note

The boolean operator, @ distance, is not supported by the current plugin
parser framework. For information about boolean full-text search operators,
see Section 12.9.2, “Boolean Full-Text Searches”.

4. Set up the plugin interface functions.

The general plugin descriptor in the library descriptor names the initialization and deinitialization
functions that the server should invoke when it loads and unloads the plugin. For simple_parser,
these functions do nothing but return zero to indicate that they succeeded:

Writing Plugins

2609

static int simple_parser_plugin_init(void *arg __attribute__((unused)))
{
 return(0);
}

static int simple_parser_plugin_deinit(void *arg __attribute__((unused)))
{
 return(0);
}

Because those functions do not actually do anything, you could omit them and specify 0 for each of
them in the plugin declaration.

The type-specific plugin descriptor for simple_parser names the initialization, deinitialization,
and parsing functions that the server invokes when the plugin is used. For simple_parser, the
initialization and deinitialization functions do nothing:

static int simple_parser_init(MYSQL_FTPARSER_PARAM *param
 __attribute__((unused)))
{
 return(0);
}

static int simple_parser_deinit(MYSQL_FTPARSER_PARAM *param
 __attribute__((unused)))
{
 return(0);
}

Here too, because those functions do nothing, you could omit them and specify 0 for each of them
in the plugin descriptor.

The main parsing function, simple_parser_parse(), acts as a replacement for the built-in
full-text parser, so it needs to split text into words and pass each word to the server. The parsing
function's first argument is a pointer to a structure that contains the parsing context. This structure
has a doc member that points to the text to be parsed, and a length member that indicates how
long the text is. The simple parsing done by the plugin considers nonempty runs of whitespace
characters to be words, so it identifies words like this:

static int simple_parser_parse(MYSQL_FTPARSER_PARAM *param)
{
 char *end, *start, *docend= param->doc + param->length;

 for (end= start= param->doc;; end++)
 {
 if (end == docend)
 {
 if (end > start)
 add_word(param, start, end - start);
 break;
 }
 else if (isspace(*end))
 {
 if (end > start)
 add_word(param, start, end - start);
 start= end + 1;
 }
 }
 return(0);
}

As the parser finds each word, it invokes a function add_word() to pass the word to the server.
add_word() is a helper function only; it is not part of the plugin interface. The parser passes the
parsing context pointer to add_word(), as well as a pointer to the word and a length value:

Writing Plugins

2610

static void add_word(MYSQL_FTPARSER_PARAM *param, char *word, size_t len)
{
 MYSQL_FTPARSER_BOOLEAN_INFO bool_info=
 { FT_TOKEN_WORD, 0, 0, 0, 0, ' ', 0 };

 param->mysql_add_word(param, word, len, &bool_info);
}

For boolean-mode parsing, add_word() fills in the members of the bool_info structure as
described earlier in the discussion of the st_mysql_ftparser_boolean_info structure.

5. Set up the status variables. For the simple_parser plugin, the following status variable array sets
up one status variable with a value that is static text, and another with a value that is stored in a
long integer variable:

long number_of_calls= 0;

struct st_mysql_show_var simple_status[]=
{
 {"static", (char *)"just a static text", SHOW_CHAR},
 {"called", (char *)&number_of_calls, SHOW_LONG},
 {0,0,0}
};

When the plugin is installed, the plugin name and the name value are joined with an underscore to
form the name displayed by SHOW STATUS. For the array just shown, the resulting status variable
names are simple_parser_static and simple_parser_called. This convention means that
you can easily display the variables for a plugin using its name:

mysql> SHOW STATUS LIKE 'simple_parser%';
+----------------------+--------------------+
| Variable_name | Value |
+----------------------+--------------------+
| simple_parser_static | just a static text |
| simple_parser_called | 0 |
+----------------------+--------------------+

6. To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling
and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory
(the directory named by the plugin_dir system variable). For the simple_parser plugin,
it is compiled and installed when you build MySQL from source. It is also included in binary
distributions. The build process produces a shared object library with a name of mypluglib.so
(the suffix might differ depending on your platform).

7. To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement (changing the suffix as necessary):

mysql> INSTALL PLUGIN simple_parser SONAME 'mypluglib.so';

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

8. To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement.

9. Test the plugin to verify that it works properly.

Create a table that contains a string column and associate the parser plugin with a FULLTEXT index
on the column:

mysql> CREATE TABLE t (c VARCHAR(255),
 -> FULLTEXT (c) WITH PARSER simple_parser
 ->) ENGINE=MyISAM;

Writing Plugins

2611

Query OK, 0 rows affected (0.01 sec)

Insert some text into the table and try some searches. These should verify that the parser plugin
treats all nonwhitespace characters as word characters:

mysql> INSERT INTO t VALUES
 -> ('latin1_general_cs is a case-sensitive collation'),
 -> ('I\'d like a case of oranges'),
 -> ('this is sensitive information'),
 -> ('another row'),
 -> ('yet another row');
Query OK, 5 rows affected (0.02 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT c FROM t;
+---+
| c |
+---+
| latin1_general_cs is a case-sensitive collation |
| I'd like a case of oranges |
| this is sensitive information |
| another row |
| yet another row |
+---+
5 rows in set (0.00 sec)

mysql> SELECT MATCH(c) AGAINST('case') FROM t;
+--------------------------+
| MATCH(c) AGAINST('case') |
+--------------------------+
| 0 |
| 1.2968142032623 |
| 0 |
| 0 |
| 0 |
+--------------------------+
5 rows in set (0.00 sec)

mysql> SELECT MATCH(c) AGAINST('sensitive') FROM t;
+-------------------------------+
| MATCH(c) AGAINST('sensitive') |
+-------------------------------+
| 0 |
| 0 |
| 1.3253291845322 |
| 0 |
| 0 |
+-------------------------------+
5 rows in set (0.01 sec)

mysql> SELECT MATCH(c) AGAINST('case-sensitive') FROM t;
+------------------------------------+
| MATCH(c) AGAINST('case-sensitive') |
+------------------------------------+
| 1.3109166622162 |
| 0 |
| 0 |
| 0 |
| 0 |
+------------------------------------+
5 rows in set (0.01 sec)

mysql> SELECT MATCH(c) AGAINST('I\'d') FROM t;
+--------------------------+
| MATCH(c) AGAINST('I\'d') |
+--------------------------+
| 0 |
| 1.2968142032623 |
| 0 |
| 0 |
| 0 |

Writing Plugins

2612

+--------------------------+
5 rows in set (0.01 sec)

Note how neither “case” nor “insensitive” match “case-insensitive” the way that they would for the
built-in parser.

22.2.4.5 Writing Daemon Plugins

A daemon plugin is a simple type of plugin used for code that should be run by the server but
that does not communicate with it. This section describes how to write a daemon server plugin,
using the example plugin found in the plugin/daemon_example directory of MySQL source
distributions. That directory contains the daemon_example.cc source file for a daemon plugin
named daemon_example that writes a heartbeat string at regular intervals to a file named mysql-
heartbeat.log in the data directory.

To write a daemon plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#include <mysql/plugin.h>

plugin.h defines the MYSQL_DAEMON_PLUGIN server plugin type and the data structures needed to
declare the plugin.

The daemon_example.cc file sets up the library descriptor as follows. The library descriptor includes
a single general server plugin descriptor.

mysql_declare_plugin(daemon_example)
{
 MYSQL_DAEMON_PLUGIN,
 &daemon_example_plugin,
 "daemon_example",
 "Brian Aker",
 "Daemon example, creates a heartbeat beat file in mysql-heartbeat.log",
 PLUGIN_LICENSE_GPL,
 daemon_example_plugin_init, /* Plugin Init */
 daemon_example_plugin_deinit, /* Plugin Deinit */
 0x0100 /* 1.0 */,
 NULL, /* status variables */
 NULL, /* system variables */
 NULL, /* config options */
 0, /* flags */
}
mysql_declare_plugin_end;

The name member (daemon_example) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

The second member of the plugin descriptor, daemon_example_plugin, points to the type-specific
daemon plugin descriptor. This structure consists only of the type-specific API version number:

struct st_mysql_daemon daemon_example_plugin=
{ MYSQL_DAEMON_INTERFACE_VERSION };

The type-specific structure has no interface functions. There is no communication between the server
and the plugin, except that the server calls the initialization and deinitialization functions from the
general plugin descriptor to start and stop the plugin:

• daemon_example_plugin_init() opens the heartbeat file and spawns a thread that wakes up
periodically and writes the next message to the file.

• daemon_example_plugin_deinit() closes the file and performs other cleanup.

Writing Plugins

2613

To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling
and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the
directory named by the plugin_dir system variable). For the daemon_example plugin, it is compiled
and installed when you build MySQL from source. It is also included in binary distributions. The build
process produces a shared object library with a name of libdaemon_example.so (the suffix might
differ depending on your platform).

To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement (change the suffix as necessary):

mysql> INSTALL PLUGIN daemon_example SONAME 'libdaemon_example.so';

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement.

While the plugin is loaded, it writes a heartbeat string at regular intervals to a file named mysql-
heartbeat.log in the data directory. This file grows without limit, so after you have satistifed yourself
that the plugin operates correctly, unload it:

mysql> UNINSTALL PLUGIN daemon_example;

22.2.4.6 Writing INFORMATION_SCHEMA Plugins

This section describes how to write an INFORMATION_SCHEMA table server plugin. For example code
that implements such plugins, see the sql/sql_show.cc file of a MySQL source distribution. You
can also look at the example plugins found in the InnoDB source. See the handler/i_s.cc and
handler/ha_innodb.cc files within the InnoDB source tree (in the storage/innobase directory).

To write an INFORMATION_SCHEMA table plugin, include the following header files in the plugin source
file. Other MySQL or general header files might also be needed, depending on the plugin capabilities
and requirements.

#include <sql_class.h>
#include <table.h>

These header files are located in the sql directory of MySQL source distributions. They contain C++
structures, so the source file for an INFORMATION_SCHEMA plugin must be compiled as C++ (not C)
code.

The source file for the example plugin developed here is named simple_i_s_table.cc. It creates a
simple INFORMATION_SCHEMA table named SIMPLE_I_S_TABLE that has two columns named NAME
and VALUE. The general descriptor for a plugin library that implements the table looks like this:

mysql_declare_plugin(simple_i_s_library)
{
 MYSQL_INFORMATION_SCHEMA_PLUGIN,
 &simple_table_info, /* type-specific descriptor */
 "SIMPLE_I_S_TABLE", /* table name */
 "Author Name", /* author */
 "Simple INFORMATION_SCHEMA table", /* description */
 PLUGIN_LICENSE_GPL, /* license type */
 simple_table_init, /* init function */
 NULL,
 0x0100, /* version = 1.0 */
 NULL, /* no status variables */
 NULL, /* no system variables */
 NULL, /* no reserved information */
 0 /* no flags */
}

Writing Plugins

2614

mysql_declare_plugin_end;

The name member (SIMPLE_I_S_TABLE) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

The simple_table_info member of the general descriptor points to the type-specific descriptor,
which consists only of the type-specific API version number:

static struct st_mysql_information_schema simple_table_info =
{ MYSQL_INFORMATION_SCHEMA_INTERFACE_VERSION };

The general descriptor points to the initialization and deinitialization functions:

• The initialization function provides information about the table structure and a function that populates
the table.

• The deinitialization function performs any required cleanup. If no cleanup is needed, this descriptor
member can be NULL (as in the example shown).

The initialization function should return 0 for success, 1 if an error occurs. The function receives a
generic pointer, which it should interpret as a pointer to the table structure:

static int table_init(void *ptr)
{
 ST_SCHEMA_TABLE *schema_table= (ST_SCHEMA_TABLE*)ptr;

 schema_table->fields_info= simple_table_fields;
 schema_table->fill_table= simple_fill_table;
 return 0;
}

The function should set these two members of the table structure:

• fields_info: An array of ST_FIELD_INFO structures that contain information about each column.

• fill_table: A function that populates the table.

The array pointed to by fields_info should contain one element per column of the
INFORMATION_SCHEMA plus a terminating element. The following simple_table_fields array for
the example plugin indicates that SIMPLE_I_S_TABLE has two columns. NAME is string-valued with a
length of 10 and VALUE is integer-valued with a display width of 20. The last structure marks the end of
the array.

static ST_FIELD_INFO simple_table_fields[]=
{
 {"NAME", 10, MYSQL_TYPE_STRING, 0, 0 0, 0},
 {"VALUE", 6, MYSQL_TYPE_LONG, 0, MY_I_S_UNSIGNED, 0, 0},
 {0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
};

For more information about the column information structure, see the definition of ST_FIELD_INFO in
the table.h header file. The permissible MYSQL_TYPE_xxx type values are those used in the C API;
see Section 21.8.5, “C API Data Structures”.

The fill_table member should be set to a function that populates the table and returns 0 for
success, 1 if an error occurs. For the example plugin, the simple_fill_table() function looks like
this:

static int simple_fill_table(THD *thd, TABLE_LIST *tables, Item *cond)
{
 TABLE *table= tables->table;

Writing Plugins

2615

 table->field[0]->store("Name 1", 6, system_charset_info);
 table->field[1]->store(1);
 if (schema_table_store_record(thd, table))
 return 1;
 table->field[0]->store("Name 2", 6, system_charset_info);
 table->field[1]->store(2);
 if (schema_table_store_record(thd, table))
 return 1;
 return 0;
}

For each row of the INFORMATION_SCHEMA table, this function initializes each column, then calls
schema_table_store_record() to install the row. The store() method arguments depend on
the type of value to be stored. For column 0 (NAME, a string), store() takes a pointer to a string, its
length, and information about the character set of the string:

store(const char *to, uint length, CHARSET_INFO *cs);

For column 1 (VALUE, an integer), store() takes the value and a flag indicating whether it is
unsigned:

store(longlong nr, bool unsigned_value);

For other examples of how to populate INFORMATION_SCHEMA tables, search for instances of
schema_table_store_record() in sql_show.cc.

To compile and install a plugin library object file, see the instructions in Section 22.2.4.3, “Compiling
and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the
directory named by the plugin_dir system variable).

To test the plugin, install it:

mysql> INSTALL PLUGIN SIMPLE_I_S_TABLE SONAME 'simple_i_s_table.so';

Verify that the table is present:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_NAME = 'SIMPLE_I_S_TABLE';
+------------------+
| TABLE_NAME |
+------------------+
| SIMPLE_I_S_TABLE |
+------------------+

Try to select from it:

mysql> SELECT * FROM INFORMATION_SCHEMA.SIMPLE_I_S_TABLE;
+--------+-------+
| NAME | VALUE |
+--------+-------+
| Name 1 | 1 |
| Name 2 | 2 |
+--------+-------+

Uninstall it:

mysql> UNINSTALL PLUGIN SIMPLE_I_S_TABLE;

22.2.4.7 Writing Semisynchronous Replication Plugins

This section describes how to write semisynchronous replication server plugins, using the example
plugins found in the plugin/semisync directory of MySQL source distributions. That directory

Writing Plugins

2616

contains the source files for master and slave plugins named rpl_semi_sync_master and
rpl_semi_sync_slave. The information here covers only how to set up the plugin framework. For
details about how the plugins implement replication functions, see the source.

To write a semisynchronous replication plugin, include the following header file in the plugin source file.
Other MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin.h>

plugin.h defines the MYSQL_REPLICATION_PLUGIN server plugin type and the data structures
needed to declare the plugin.

For the master side, semisync_master_plugin.cc contains this general descriptor for a plugin
named rpl_semi_sync_master:

mysql_declare_plugin(semi_sync_master)
{
 MYSQL_REPLICATION_PLUGIN,
 &semi_sync_master_plugin,
 "rpl_semi_sync_master",
 "He Zhenxing",
 "Semi-synchronous replication master",
 PLUGIN_LICENSE_GPL,
 semi_sync_master_plugin_init, /* Plugin Init */
 semi_sync_master_plugin_deinit, /* Plugin Deinit */
 0x0100 /* 1.0 */,
 semi_sync_master_status_vars, /* status variables */
 semi_sync_master_system_vars, /* system variables */
 NULL, /* config options */
 0, /* flags */
}
mysql_declare_plugin_end;

For the slave side, semisync_slave_plugin.cc contains this general descriptor for a plugin named
rpl_semi_sync_slave:

mysql_declare_plugin(semi_sync_slave)
{
 MYSQL_REPLICATION_PLUGIN,
 &semi_sync_slave_plugin,
 "rpl_semi_sync_slave",
 "He Zhenxing",
 "Semi-synchronous replication slave",
 PLUGIN_LICENSE_GPL,
 semi_sync_slave_plugin_init, /* Plugin Init */
 semi_sync_slave_plugin_deinit, /* Plugin Deinit */
 0x0100 /* 1.0 */,
 semi_sync_slave_status_vars, /* status variables */
 semi_sync_slave_system_vars, /* system variables */
 NULL, /* config options */
 0, /* flags */
}
mysql_declare_plugin_end;

For both the master and slave plugins, the general descriptor has pointers to the type-specific
descriptor, the initialization and deinitialization functions, and to the status and system variables
implemented by the plugin. For information about variable setup, see Server Plugin Status and
System Variables. The following remarks discuss the type-specific descriptor and the initialization and
deinitialization functions for the master plugin but apply similarly to the slave plugin.

The semi_sync_master_plugin member of the master general descriptor points to the type-specific
descriptor, which consists only of the type-specific API version number:

Writing Plugins

2617

struct Mysql_replication semi_sync_master_plugin= {
 MYSQL_REPLICATION_INTERFACE_VERSION
};

The initialization and deinitialization function declarations look like this:

static int semi_sync_master_plugin_init(void *p);
static int semi_sync_master_plugin_deinit(void *p);

The initialization function uses the pointer to register transaction and binary logging “observers”
with the server. After successful initialization, the server takes care of invoking the observers at the
appropriate times. (For details on the observers, see the source files.) The deinitialization function
cleans up by deregistering the observers. Each function returns 0 for success or 1 if an error occurs.

To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling
and Installing Plugin Libraries”. To use the library files, they must be installed in the plugin directory
(the directory named by the plugin_dir system variable). For the rpl_semi_sync_master and
rpl_semi_sync_slave plugins, they are compiled and installed when you build MySQL from source.
They are also included in binary distributions. The build process produces shared object libraries with
names of semisync_master.so and semisync_slave.so (the suffix might differ depending on
your platform).

22.2.4.8 Writing Audit Plugins

This section describes how to write an audit server plugin, using the example plugin found in the
plugin/audit_null directory of MySQL source distributions. The audit_null.c source file in that
directory implements a simple example audit plugin named NULL_AUDIT.

Within the server, the pluggable audit interface is implemented in the sql_audit.h and
sql_audit.cc files in the sql directory of MySQL source distributions. Additionally, several places
in the server are modified to call the audit interface when an auditable event occurs, so that registered
audit plugins can be notified about the event if necessary. To see where such calls occur, look for
invocations of functions with names of the form mysql_audit_xxx(). Audit notification occurs for
server operations such as these:

• Writing a message to the general query log (if the log is enabled)

• Writing a message to the error log

• Sending a query result to a client

• Client connect and disconnect events

To write an audit plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#include <mysql/plugin_audit.h>

plugin_audit.h includes plugin.h, so you need not include the latter file explicitly. plugin.h
defines the MYSQL_AUDIT_PLUGIN server plugin type and the data structures needed to declare the
plugin. plugin_audit.h defines data structures specific to audit plugins.

An audit plugin, like any MySQL server plugin, has a general plugin descriptor (see Server Plugin
Library and Plugin Descriptors). In audit_null.c, the general descriptor looks like this:

mysql_declare_plugin(audit_null)
{
 MYSQL_AUDIT_PLUGIN, /* type */
 &audit_null_descriptor, /* descriptor */
 "NULL_AUDIT", /* name */

Writing Plugins

2618

 "Oracle Corp", /* author */
 "Simple NULL Audit", /* description */
 PLUGIN_LICENSE_GPL,
 audit_null_plugin_init, /* init function (when loaded) */
 audit_null_plugin_deinit, /* deinit function (when unloaded) */
 0x0003, /* version */
 simple_status, /* status variables */
 NULL, /* system variables */
 NULL,
 0,
}
mysql_declare_plugin_end;

The name member (NULL_AUDIT) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.

The general descriptor also refers to simple_status, a structure that exposes several status
variables to the SHOW STATUS statement:

static struct st_mysql_show_var simple_status[]=
{
 { "Audit_null_called",
 (char *) &number_of_calls,
 SHOW_INT },
 { "Audit_null_general_log",
 (char *) &number_of_calls_general_log,
 SHOW_INT },
 { "Audit_null_general_error",
 (char *) &number_of_calls_general_error,
 SHOW_INT },
 { "Audit_null_general_result",
 (char *) &number_of_calls_general_result,
 SHOW_INT },
 { "Audit_null_general_status",
 (char *) &number_of_calls_general_status,
 SHOW_INT },
 { "Audit_null_connection_connect",
 (char *) &number_of_calls_connection_connect,
 SHOW_INT },
 { "Audit_null_connection_disconnect",
 (char *) &number_of_calls_connection_disconnect,
 SHOW_INT },
 { "Audit_null_connection_change_user",
 (char *) &number_of_calls_connection_change_user,
 SHOW_INT },
 { 0, 0, 0}
};

The audit_null_plugin_init initialization function sets the status variables to zero when the
plugin is loaded. The audit_null_plugin_deinit function performs cleanup with the plugin
is unloaded. During operation, the plugin increments the first status variable for each notification it
receives. It also increments the others according to the event class and subclass. In effect, the first
variable is the aggregate of the counts for the event subclasses.

The audit_null_descriptor value in the general descriptor points to the type-specific descriptor.
For audit plugins, this descriptor has the following structure:

struct st_mysql_audit
{
 int interface_version;
 void (*release_thd)(MYSQL_THD);
 void (*event_notify)(MYSQL_THD, unsigned int, const void *);
 unsigned long class_mask[MYSQL_AUDIT_CLASS_MASK_SIZE];
};

The type-specific descriptor has these members:

Writing Plugins

2619

• interface_version: By convention, type-specific plugin descriptors begin with the interface
version for the given plugin type. The server checks interface_version when it loads
the plugin to see whether the plugin is compatible with it. For audit plugins, the value of
the interface_version member is MYSQL_AUDIT_INTERFACE_VERSION (defined in
plugin_audit.h).

• release_thd: A function that the server calls to inform the plugin that it is being dissociated from its
thread context. This should be NULL if there is no such function.

• event_notify: A function that the server calls to notify the plugin that an auditable event has
occurred. This function should not be NULL; that would not make sense because no auditing would
occur.

• class_mask: A bit mask that indicates the event classes for which the plugin wants to receive
notification. If this value is 0, the server passes no events to the plugin.

The server uses the event_notify and release_thd functions together. They are called within
the context of a specific thread, and a thread might perform an activity that produces several event
notifications. The first time the server calls event_notify for a thread, it creates a binding of the
plugin to the thread. The plugin cannot be uninstalled while this binding exists. When no more events
for the thread will occur, the server informs the plugin of this by calling the release_thd function,
and then destroys the binding. For example, when a client issues a statement, the thread processing
the statement might notify audit plugins about the result set produced by the statement and about the
statement being logged. After these notifications occur, the server releases the plugin before putting
the thread to sleep until the client issues another statement.

This design enables the plugin to allocate resources needed for a given thread in the first call to the
event_notify function and release them in the release_thd function:

event_notify function:
 if memory is needed to service the thread
 allocate memory
 ... rest of notification processing ...

release_thd function:
 if memory was allocated
 release memory
 ... rest of release processing ...

That is more efficient than allocating and releasing memory repeatedly in the notification function.

For the NULL_AUDIT example audit plugin, the type-specific descriptor looks like this:

static struct st_mysql_audit audit_null_descriptor=
{
 MYSQL_AUDIT_INTERFACE_VERSION, /* interface version */
 NULL, /* release_thd function */
 audit_null_notify, /* notify function */
 { (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK |
 MYSQL_AUDIT_CONNECTION_CLASSMASK } /* class mask */
};

The server calls audit_null_notify to pass audit event information to the plugin. There is no
release_thd function.

The event class mask indicates an interest in all events of the “general” and “connection” classes.
plugin_audit.h defines symbols for these classes and their corresponding class masks:

#define MYSQL_AUDIT_GENERAL_CLASS 0
#define MYSQL_AUDIT_GENERAL_CLASSMASK (1 << MYSQL_AUDIT_GENERAL_CLASS)

#define MYSQL_AUDIT_CONNECTION_CLASS 1

Writing Plugins

2620

#define MYSQL_AUDIT_CONNECTION_CLASSMASK (1 << MYSQL_AUDIT_CONNECTION_CLASS)

In the type-specific descriptor, the second and third parameters of the event_notify function
prototype represent the event class and a generic pointer to an event structure:

void (*event_notify)(MYSQL_THD, unsigned int, const void *);

Events in different classes may have different structures, so the notification function should use the
event class value to determine how to interpret the pointer to the event structure.

If the server calls the notification function with an event class of MYSQL_AUDIT_GENERAL_CLASS, it
passes the event structure as a pointer to a mysql_event_general structure:

struct mysql_event_general
{
 unsigned int event_subclass;
 int general_error_code;
 unsigned long general_thread_id;
 const char *general_user;
 unsigned int general_user_length;
 const char *general_command;
 unsigned int general_command_length;
 const char *general_query;
 unsigned int general_query_length;
 struct charset_info_st *general_charset;
 unsigned long long general_time;
 unsigned long long general_rows;
 MYSQL_LEX_STRING general_host;
 MYSQL_LEX_STRING general_sql_command;
 MYSQL_LEX_STRING general_external_user;
 MYSQL_LEX_STRING general_ip;
};

Audit plugins can interpret mysql_event_general members as follows:

• event_subclass: The event subclass, one of the following values:

#define MYSQL_AUDIT_GENERAL_LOG 0
#define MYSQL_AUDIT_GENERAL_ERROR 1
#define MYSQL_AUDIT_GENERAL_RESULT 2
#define MYSQL_AUDIT_GENERAL_STATUS 3

• general_error_code: The error code. This is a value like that returned by the mysql_errno() C
API function; 0 means “no error.”

• general_thread_id: The ID of the thread for which the event occurred.

• general_user: The current user for the event.

• general_user_length: The length of general_user, in bytes.

• general_command: For general query log events, the type of operation. Examples: Connect,
Query, Shutdown. For error log events, the error message. This is a value like that returned by the
mysql_error() C API function; an empty string means “no error.” For result events, this is empty.

• general_command_length: The length of general_command, in bytes.

• general_query: The SQL statement that was logged or produced a result.

• general_query_length: The length of general_query, in bytes.

• general_charset: Character set information for the event.

• general_time: A TIMESTAMP value indicating the time just before the notification function was
called.

Writing Plugins

2621

• general_rows: For general query log events, zero. For error log events, the row number at which
an error occurred. For result events, the number of rows in the result plus one. For statements that
produce no result set, the value is 0. This encoding enables statements that produce no result set to
be distinguished from those that produce an empty result set. For example, for a DELETE statement,
this value is 0. For a SELECT, the result is always 1 or more, where 1 represents an empty result set.

• general_host: For general query log events, a string representing the client host name.

• general_sql_command: For general query log events, a string that indicates the type of action
performed, such as connect or drop_table.

• general_external_user: For general query log events, a string representing the external user
(empty if none).

• general_ip: For general query log events, a string representing the client IP address.

The general_host, general_sql_command, general_external_user, and general_ip
members are MYSQL_LEX_STRING structures that pair a string and its length. For example, if
event_general is a pointer to a general event, you can access the members of the general_host
value as follows:

event_general->general_host.length
event_general->general_host.str

If the server calls the notification function with an event class of MYSQL_AUDIT_CONNECTION_CLASS,
it passes the event structure as a pointer to a mysql_event_connection structure, which is similar
to and interpreted much the same way as the mysql_event_general structure.

The NULL_AUDIT plugin notification function is quite simple. It increments a global event counter,
determines the event class, then looks at the event subclass to determine which subclass counter to
increment:

static void audit_null_notify(MYSQL_THD thd __attribute__((unused)),
 unsigned int event_class,
 const void *event)
{
 /* prone to races, oh well */
 number_of_calls++;
 if (event_class == MYSQL_AUDIT_GENERAL_CLASS)
 {
 const struct mysql_event_general *event_general=
 (const struct mysql_event_general *) event;
 switch (event_general->event_subclass)
 {
 case MYSQL_AUDIT_GENERAL_LOG:
 number_of_calls_general_log++;
 break;
 case MYSQL_AUDIT_GENERAL_ERROR:
 number_of_calls_general_error++;
 break;
 case MYSQL_AUDIT_GENERAL_RESULT:
 number_of_calls_general_result++;
 break;
 case MYSQL_AUDIT_GENERAL_STATUS:
 number_of_calls_general_status++;
 break;
 default:
 break;
 }
 }
 else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS)
 {
 const struct mysql_event_connection *event_connection=
 (const struct mysql_event_connection *) event;
 switch (event_connection->event_subclass)
 {

Writing Plugins

2622

 case MYSQL_AUDIT_CONNECTION_CONNECT:
 number_of_calls_connection_connect++;
 break;
 case MYSQL_AUDIT_CONNECTION_DISCONNECT:
 number_of_calls_connection_disconnect++;
 break;
 case MYSQL_AUDIT_CONNECTION_CHANGE_USER:
 number_of_calls_connection_change_user++;
 break;
 default:
 break;
 }
 }
}

To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling
and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the
directory named by the plugin_dir system variable). For the AUDIT_NULL plugin, it is compiled
and installed when you build MySQL from source. It is also included in binary distributions. The
build process produces a shared object library with a name of adt_null.so (the suffix might differ
depending on your platform).

To register the plugin at runtime, use this statement (change the suffix as necessary):

mysql> INSTALL PLUGIN NULL_AUDIT SONAME 'adt_null.so';

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement.

While the audit plugin is installed, it exposes status variables that indicate the events for which the
plugin has been called:

mysql> SHOW STATUS LIKE 'Audit_null%';
+-----------------------------------+-------+
| Variable_name | Value |
+-----------------------------------+-------+
Audit_null_called	1388
Audit_null_connection_change_user	0
Audit_null_connection_connect	22
Audit_null_connection_disconnect	21
Audit_null_general_error	1
Audit_null_general_log	513
Audit_null_general_result	415
Audit_null_general_status	416
+-----------------------------------+-------+

Audit_null_called counts all events, and the other variables count instances of event subclasses.
For example, the preceding SHOW STATUS statement causes the server to send a result to the client
and to write a message to the general query log if that log is enabled. Thus, a client that issues the
statement repeatedly causes Audit_null_called and Audit_null_general_result to be
incremented each time, and Audit_null_general_log to be incremented if the log is enabled.

To disable the plugin after testing it, use this statement to unload it:

mysql> UNINSTALL PLUGIN NULL_AUDIT;

22.2.4.9 Writing Authentication Plugins

MySQL supports pluggable authentication, in which plugins are invoked to authenticate client
connections. Authentication plugins enable the use of authentication methods other than the built-in
method of passwords stored in the mysql.user table. For example, plugins can be written to access

Writing Plugins

2623

external authentication methods. Also, authentication plugins can support the proxy user capability,
such that the connecting user is a proxy for another user and is treated, for purposes of access control,
as having the privileges of a different user. For more information, see Section 6.3.8, “Pluggable
Authentication”, and Section 6.3.10, “Proxy Users”.

An authentication plugin can be written for the server side or the client side. Server-side plugins use the
same plugin API that is used for the other server plugin types such as full-text parser or audit plugins
(although with a different type-specific descriptor). Client-side plugins use the client plugin API.

Several header files contain information relevant to authentication plugins:

• plugin.h: Defines the MYSQL_AUTHENTICATION_PLUGIN server plugin type.

• client_plugin.h: Defines the API for client plugins. This includes the client plugin descriptor
and function prototypes for client plugin C API calls (see Section 21.8.14, “C API Client Plugin
Functions”).

• plugin_auth.h: Defines the part of the server plugin API specific to authentication plugins.
This includes the type-specific descriptor for server-side authentication plugins and the
MYSQL_SERVER_AUTH_INFO structure.

• plugin_auth_common.h: Contains common elements of client and server authentication plugins.
This includes return value definitions and the MYSQL_PLUGIN_VIO structure.

To write an authentication plugin, include the following header files in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

• For a source file that implements a server authentication plugin, include this file:

#include <mysql/plugin_auth.h>

• For a source file that implements a client authentication plugin, or both client and server plugins,
include these files:

#include <mysql/plugin_auth.h>
#include <mysql/client_plugin.h>
#include <mysql.h>

plugin_auth.h includes plugin.h and plugin_auth_common.h, so you need not include the
latter files explicitly.

This section describes how to write a pair of simple server and client authentication plugins that work
together.

Warning

These plugins accept any non-empty password and the password is sent in
clear text. This is insecure, so the plugins should not be used in production
environments.

The server-side and client-side plugins developed here both are named auth_simple. As described
in Section 22.2.4.2, “Plugin Data Structures”, the plugin library file must have the same basename
as the client plugin, so the source file name is auth_simple.c and produces a library named
auth_simple.so (assuming that your system uses .so as the suffix for library files).

In MySQL source distributions, authentication plugin source is located in the plugin/auth directory
and can be examined as a guide to writing other authentication plugins. Also, to see how the built-
in authentication plugins are implemented, see sql/sql_acl.cc for plugins that are built in to the
MySQL server and sql-common/client.c for plugins that are built in to the libmysqlclient
client library. (For the built-in client plugins, note that the auth_plugin_t structures used there differ

Writing Plugins

2624

from the structures used with the usual client plugin declaration macros. In particular, the first two
members are provided explicitly, not by declaration macros.)

Writing the Server-Side Authentication Plugin

Declare the server-side plugin with the usual general descriptor format that is used for all server plugin
types (see Server Plugin Library and Plugin Descriptors). For the auth_simple plugin, the descriptor
looks like this:

mysql_declare_plugin(auth_simple)
{
 MYSQL_AUTHENTICATION_PLUGIN,
 &auth_simple_handler, /* type-specific descriptor */
 "auth_simple", /* plugin name */
 "Author Name", /* author */
 "Any-password authentication plugin", /* description */
 PLUGIN_LICENSE_GPL, /* license type */
 NULL, /* no init function */
 NULL, /* no deinit function */
 0x0100, /* version = 1.0 */
 NULL, /* no status variables */
 NULL, /* no system variables */
 NULL, /* no reserved information */
 0 /* no flags */
}
mysql_declare_plugin_end;

The name member (auth_simple) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

The auth_simple_handler member of the general descriptor points to the type-specific descriptor.
For an authentication plugin, the type-specific descriptor is an instance of the st_mysql_auth
structure (defined in plugin_auth.h):

struct st_mysql_auth
{
 int interface_version;
 const char *client_auth_plugin;
 int (*authenticate_user)(MYSQL_PLUGIN_VIO *vio, MYSQL_SERVER_AUTH_INFO *info);
};

The st_mysql_auth structure has three members: The type-specific API version number, the
client plugin name, and a pointer to the main plugin function that communicates with the client. The
client_auth_plugin member should indicate the name of the client plugin if a specific plugin is
required. A value of NULL means “any plugin.” In the latter case, whatever plugin the client uses will do.
This is useful if the server plugin does not care about the client plugin or what user name or password
it sends. For example, this might be true if the server plugin authenticates only local clients and uses
some property of the operating system rather than the information sent by the client plugin.

For auth_simple, the type-specific descriptor looks like this:

static struct st_mysql_auth auth_simple_handler =
{
 MYSQL_AUTHENTICATION_INTERFACE_VERSION,
 "auth_simple", /* required client-side plugin name */
 auth_simple_server /* server-side plugin main function */
};

The main function takes two arguments representing an I/O structure and a
MYSQL_SERVER_AUTH_INFO structure. The structure definition is found in plugin_auth.h. It looks
like this:

Writing Plugins

2625

typedef struct st_mysql_server_auth_info
{
 char *user_name;
 unsigned int user_name_length;
 const char *auth_string;
 unsigned long auth_string_length;
 char authenticated_as[MYSQL_USERNAME_LENGTH+1];
 char external_user[512];
 int password_used;
 const char *host_or_ip;
 unsigned int host_or_ip_length;
} MYSQL_SERVER_AUTH_INFO;

The character set for string members is UTF-8. If there is a _length member associated with a string,
it indicates the string length in bytes. Strings are also null-terminated.

When an authentication plugin is invoked by the server, it should interpret the
MYSQL_SERVER_AUTH_INFO structure members as follows. Some of these are used to set the value
of SQL functions or system variables within the client session, as indicated.

• user_name: The user name sent by the client. The value becomes the USER() function value.

• user_name_length: The length of user_name in bytes.

• auth_string: The value of the authentication_string column of the mysql.user table row
for the matching account name (that is, the row that matches the client user name and host name
and that the server uses to determine how to authenticate the client).

Suppose that you create an account using the following statement:

CREATE USER 'my_user'@'localhost'
 IDENTIFIED WITH my_plugin AS 'my_auth_string';

When my_user connects from the local host, the server invokes my_plugin and passes
'my_auth_string' to it as the auth_string value.

• auth_string_length: The length of auth_string in bytes.

• authenticated_as: The server sets this to the user name (the value of user_name). The plugin
can alter it to indicate that the client should have the privileges of a different user. For example, if
the plugin supports proxy users, the initial value is the name of the connecting (proxy) user, and
the plugin can change this member to the proxied user name. The server then treats the proxy
user as having the privileges of the proxied user (assuming that the other conditions for proxy user
support are satisfied; see Implementing Proxy User Support in Authentication Plugins). The value is
represented as a string at most MYSQL_USER_NAME_LENGTH bytes long, plus a terminating null. The
value becomes the CURRENT_USER() function value.

• external_user: The server sets this to the empty string (null terminated). Its value becomes the
external_user system variable value. If the plugin wants that system variable to have a different
value, it should set this member accordingly; for example, to the connecting user name. The value is
represented as a string at most 511 bytes long, plus a terminating null.

• password_used: This member applies when authentication fails. The plugin can set it or ignore it.
The value is used to construct the failure error message of Authentication fails. Password
used: %s. The value of password_used determines how %s is handled, as shown in the following
table.

password_used %s Handling

0 NO

1 YES

2 There will be no %s

Writing Plugins

2626

• host_or_ip: The name of the client host if it can be resolved, or the IP address otherwise.

• host_or_ip_length: The length of host_or_ip in bytes.

The auth_simple main function, auth_simple_server(), reads the password (a null-terminated
string) from the client and succeeds if the password is nonempty (first byte not null):

static int auth_simple_server (MYSQL_PLUGIN_VIO *vio,
 MYSQL_SERVER_AUTH_INFO *info)
{
 unsigned char *pkt;
 int pkt_len;

 /* read the password as null-terminated string, fail on error */
 if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
 return CR_ERROR;

 /* fail on empty password */
 if (!pkt_len || *pkt == '\0')
 {
 info->password_used= PASSWORD_USED_NO;
 return CR_ERROR;
 }

 /* accept any nonempty password */
 info->password_used= PASSWORD_USED_YES;

 return CR_OK;
}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR_OK Success

CR_OK_HANDSHAKE_COMPLETEDo not send a status packet back to client

CR_ERROR Error

CR_AUTH_USER_CREDENTIALSAuthentication failure

CR_AUTH_HANDSHAKE Authentication handshake failure

CR_AUTH_PLUGIN_ERRORInternal plugin error

For an example of how the handshake works, see the plugin/auth/dialog.c source file.

The server counts plugin errors in the Performance Schema host_cache table.

auth_simple_server_main() is so basic that it does not use the authentication information
structure except to set the member that indicates whether a password was received.

A plugin that supports proxy users must return to the server the name of the proxied user (the
MySQL user whose privileges the client user should get). To do this, the plugin must set the info-
>authenticated_as member to the proxied user name. For information about proxying, see
Section 6.3.10, “Proxy Users”, and Implementing Proxy User Support in Authentication Plugins.

Writing the Client-Side Authentication Plugin

Declare the client-side plugin descriptor with the mysql_declare_client_plugin() and
mysql_end_client_plugin macros (see Client Plugin Descriptors). For the auth_simple plugin,
the descriptor looks like this:

mysql_declare_client_plugin(AUTHENTICATION)
 "auth_simple", /* plugin name */
 "Author Name", /* author */
 "Any-password authentication plugin", /* description */

Writing Plugins

2627

 {1,0,0}, /* version = 1.0.0 */
 "GPL", /* license type */
 NULL, /* for internal use */
 NULL, /* no init function */
 NULL, /* no deinit function */
 NULL, /* no option-handling function */
 auth_simple_client /* main function */
mysql_end_client_plugin;

The descriptor members from the plugin name through the option-handling function are common to all
client plugin types. (For descriptions, see Client Plugin Descriptors.) Following the common members,
the descriptor has an additional member specific to authentication plugins. This is the “main” function,
which handles communication with the server. The function takes two arguments representing an I/
O structure and a connection handler. For our simple any-password plugin, the main function does
nothing but write to the server the password provided by the user:

static int auth_simple_client (MYSQL_PLUGIN_VIO *vio, MYSQL *mysql)
{
 int res;

 /* send password as null-terminated string in clear text */
 res= vio->write_packet(vio, (const unsigned char *) mysql->passwd,
 strlen(mysql->passwd) + 1);

 return res ? CR_ERROR : CR_OK;
}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR_OK Success

CR_OK_HANDSHAKE_COMPLETESuccess, client done

CR_ERROR Error

CR_OK_HANDSHAKE_COMPLETE indicates that the client has done its part successfully and has read
the last packet. A client plugin may return CR_OK_HANDSHAKE_COMPLETE if the number of round
trips in the authentication protocol is not known in advance and the plugin must read another packet to
determine whether authentication is finished.

Using the Authentication Plugins

To compile and install a plugin library object file, see the instructions in Section 22.2.4.3, “Compiling
and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the
directory named by the plugin_dir system variable).

Register the server-side plugin with the server. For example, to load the plugin at server startup, use a
--plugin-load=auth_simple.so option (change the library suffix as necessary for your system).

Create a user for whom the server will use the auth_simple plugin for authentication:

mysql> CREATE USER 'x'@'localhost'
 -> IDENTIFIED WITH auth_simple;

Use a client program to connect to the server as user x. The server-side auth_simple plugin
communicates with the client program that it should use the client-side auth_simple plugin, and
the latter sends the password to the server. The server plugin should reject connections that send an
empty password and accept connections that send a nonempty password. Invoke the client program
each way to verify this:

shell> mysql --user=x --skip-password
ERROR 1045 (28000): Access denied for user 'x'@'localhost' (using password: NO)

Writing Plugins

2628

shell> mysql --user=x --password=abc
mysql>

Because the server plugin accepts any nonempty password, it should be considered insecure. After
testing the plugin to verify that it works, restart the server without the --plugin-load option so as not
to indavertently leave the server running with an insecure authentication plugin loaded. Also, drop the
user with DROP USER 'x'@'localhost'.

For additional information about loading and using authentication plugins, see Section 5.1.8.1,
“Installing and Uninstalling Plugins”, and Section 6.3.8, “Pluggable Authentication”.

If you are writing a client program that supports the use of authentication plugins, normally
such a program causes a plugin to be loaded by calling mysql_options() to set the
MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable
users to override the default values.

Should a client program require lower-level plugin management, the client library contains functions
that take an st_mysql_client_plugin argument. See Section 21.8.14, “C API Client Plugin
Functions”.

Implementing Proxy User Support in Authentication Plugins

One of the capabilities that pluggable authentication makes possible is proxy users (see
Section 6.3.10, “Proxy Users”). For a server-side authentication plugin to participate in proxy user
support, these conditions must be satisfied:

• When a connecting client should be treated as a proxy user, the plugin must return a different name
in the authenticated_as member of the MYSQL_SERVER_AUTH_INFO structure, to indicate the
proxied user name. It may also optionally set the external_user member, to set the value of the
external_user system variable.

• Proxy user accounts must be set up to be authenticated by the plugin. Use the CREATE USER or
GRANT statement to associate accounts with plugins.

• Proxy user accounts must have the PROXY privilege for the proxied accounts. Use the GRANT
statement to grant this privilege.

In other words, the only aspect of proxy user support required of the plugin is that it set
authenticated_as to the proxied user name. The rest is optional (setting external_user) or done
by the DBA using SQL statements.

How does an authentication plugin determine which proxied user to return when the proxy user
connects? That depends on the plugin. Typically, the plugin maps clients to proxied users based on the
authentication string passed to it by the server. This string comes from the AS part of the IDENTIFIED
WITH clause of the CREATE USER statement that specifies use of the plugin for authentication.

The plugin developer determines the syntax rules for the authentication string and implements the
plugin according to those rules. Suppose that a plugin takes a comma-separated list of pairs that map
external users to MySQL users. For example:

CREATE USER ''@'%.example.com'

Writing Plugins

2629

 IDENTIFIED WITH my_plugin AS 'extuser1=mysqlusera, extuser2=mysqluserb'
CREATE USER ''@'%.example.org'
 IDENTIFIED WITH my_plugin AS 'extuser1=mysqluserc, extuser2=mysqluserd'

When the server invokes a plugin to authenticate a client, it passes the appropriate authentication
string to the plugin. The plugin is responsible to:

1. Parse the string into its components to determine the mapping to use

2. Compare the client user name to the mapping

3. Return the proper MySQL user name

For example, if extuser2 connects from an example.com host, the server passes
'extuser1=mysqlusera, extuser2=mysqluserb' to the plugin, and the plugin should copy
mysqluserb into authenticated_as, with a terminating null byte. If extuser2 connects from an
example.org host, the server passes 'extuser1=mysqluserc, extuser2=mysqluserd', and
the plugin should copy mysqluserd instead.

If there is no match in the mapping, the action depends on the plugin. If a match is required, the plugin
likely will return an error. Or the plugin might simply return the client name; in this case, it should not
change authenticated_as, and the server will not treat the client as a proxy.

The following example demonstrates how to handle proxy users using a plugin named
auth_simple_proxy. Like the auth_simple plugin described earlier, auth_simple_proxy
accepts any nonempty password as valid (and thus should not be used in production environments). In
addition, it examines the auth_string authentication string member and uses these very simple rules
for interpreting it:

• If the string is empty, the plugin returns the user name as given and no proxying occurs. That is, the
plugin leaves the value of authenticated_as unchanged.

• If the string is nonempty, the plugin treats it as the name of the proxied user and copies it to
authenticated_as so that proxying occurs.

For testing, set up one account that is not proxied according to the preceding rules, and one that is.
This means that one account has no AS clause, and one includes an AS clause that names the proxied
user:

CREATE USER 'plugin_user1'@'localhost'
 IDENTIFIED WITH auth_simple_proxy;
CREATE USER 'plugin_user2'@'localhost'
 IDENTIFIED WITH auth_simple_proxy AS 'proxied_user';

In addition, create an account for the proxied user and grant plugin_user2 the PROXY privilege for it:

CREATE USER 'proxied_user'@'localhost'
 IDENTIFIED BY 'proxied_user_pass';
GRANT PROXY
 ON 'proxied_user'@'localhost'
 TO 'plugin_user2'@'localhost';

Before the server invokes an authentication plugin, it sets authenticated_as to the client user
name. To indicate that the user is a proxy, the plugin should set authenticated_as to the proxied
user name. For auth_simple_proxy, this means that it must examine the auth_string value, and,
if the value is nonempty, copy it to the authenticated_as member to return it as the name of the
proxied user. In addition, when proxying occurs, the plugin sets the external_user member to the
client user name; this becomes the value of the external_user system variable.

static int auth_simple_proxy_server (MYSQL_PLUGIN_VIO *vio,
 MYSQL_SERVER_AUTH_INFO *info)
{

Writing Plugins

2630

 unsigned char *pkt;
 int pkt_len;

 /* read the password as null-terminated string, fail on error */
 if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
 return CR_ERROR;

 /* fail on empty password */
 if (!pkt_len || *pkt == '\0')
 {
 info->password_used= PASSWORD_USED_NO;
 return CR_ERROR;
 }

 /* accept any nonempty password */
 info->password_used= PASSWORD_USED_YES;

 /* if authentication string is nonempty, use as proxied user name */
 /* and use client name as external_user value */
 if (info->auth_string_length > 0)
 {
 strcpy (info->authenticated_as, info->auth_string);
 strcpy (info->external_user, info->user_name);
 }

 return CR_OK;
}

After a successful connection, the USER() function should indicate the connecting client user and host
name, and CURRENT_USER() should indicate the account whose privileges apply during the session.
The latter value should be the connecting user account if no proxying occurs or the proxied account if
proxying does occur.

Compile and install the plugin, then test it. First, connect as plugin_user1:

shell> mysql --user=plugin_user1 --password=x

In this case, there should be no proxying:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user, @@external_user\G
*************************** 1. row ***************************
 USER(): plugin_user1@localhost
 CURRENT_USER(): plugin_user1@localhost
 @@proxy_user: NULL
@@external_user: NULL

Then connect as plugin_user2:

shell> mysql --user=plugin_user2 --password=x

In this case, plugin_user2 should be proxied to proxied_user:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user, @@external_user\G
*************************** 1. row ***************************
 USER(): plugin_user2@localhost
 CURRENT_USER(): proxied_user@localhost
 @@proxy_user: 'plugin_user2'@'localhost'
@@external_user: 'plugin_user2'@'localhost'

22.2.4.10 Writing Password-Validation Plugins

This section describes how to write a password-validation server plugin. The instructions are based
on the source code in the plugin/password_validation directory of MySQL source distributions.
The validate_password.cc source file in that directory implements the the plugin named
validate_password.

Writing Plugins

2631

To write a password-validation plugin, include the following header file in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin_validate_password.h>

plugin_validate_password.h includes plugin.h, so you need not include the latter file
explicitly. plugin.h defines the MYSQL_VALIDATE_PASSWORD_PLUGIN server plugin type and
the data structures needed to declare the plugin. plugin_validate_password.h defines data
structures specific to password-validation plugins.

A password-validation plugin, like any MySQL server plugin, has a general plugin descriptor (see
Server Plugin Library and Plugin Descriptors). In validate_password.cc, the general descriptor
looks like this:

mysql_declare_plugin(validate_password)
{
 MYSQL_VALIDATE_PASSWORD_PLUGIN, /* type */
 &validate_password_descriptor, /* descriptor */
 "validate_password", /* name */
 "Oracle Corporation", /* author */
 "check password strength", /* description */
 PLUGIN_LICENSE_GPL,
 validate_password_init, /* init function (when loaded) */
 validate_password_deinit, /* deinit function (when unloaded) */
 0x0100, /* version */
 NULL,
 validate_password_system_variables, /* system variables */
 NULL,
 0,
}
mysql_declare_plugin_end;

The name member (validate_password) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.

The general descriptor also refers to validate_password_system_variables, a structure that
exposes several system variables to the SHOW VARIABLES statement:

static struct st_mysql_sys_var* validate_password_system_variables[]= {
 MYSQL_SYSVAR(length),
 MYSQL_SYSVAR(number_count),
 MYSQL_SYSVAR(mixed_case_count),
 MYSQL_SYSVAR(special_char_count),
 MYSQL_SYSVAR(policy),
 MYSQL_SYSVAR(dictionary_file),
 NULL
};

The validate_password_init initialization function reads the dictionary file if one was specified,
and the validate_password_deinit function frees data structures associated with the file.

The validate_password_descriptor value in the general descriptor points to the type-specific
descriptor. For password-validation plugins, this descriptor has the following structure:

struct st_mysql_validate_password
{
 int interface_version;
 /*
 This function returns TRUE for passwords which satisfy the password
 policy (as chosen by plugin variable) and FALSE for all other
 password
 */

Writing Plugins

2632

 int (*validate_password)(mysql_string_handle password);
 /*
 This function returns the password strength (0-100) depending
 upon the policies
 */
 int (*get_password_strength)(mysql_string_handle password);
};

The type-specific descriptor has these members:

• interface_version: By convention, type-specific plugin descriptors begin with the interface
version for the given plugin type. The server checks interface_version when it loads the plugin
to see whether the plugin is compatible with it. For password-validation plugins, the value of the
interface_version member is MYSQL_VALIDATE_PASSWORD_INTERFACE_VERSION (defined
in plugin_validate_password.h).

• validate_password: A function that the server calls to test whether a password satisfies the
current password policy. It returns 1 if the password is okay and 0 otherwise. The argument
is the password, passed as a mysql_string_handle value. This data type is implemented
by the mysql_string server service. For details, see the string_service.h and
string_service.cc source files in the sql directory.

• get_password_strength: A function that the server calls to assess the strength of a password.
It returns a value from 0 (weak) to 100 (strong). The argument is the password, passed as a
mysql_string_handle value.

For the validate_password plugin, the type-specific descriptor looks like this:

static struct st_mysql_validate_password validate_password_descriptor=
{
 MYSQL_VALIDATE_PASSWORD_INTERFACE_VERSION,
 validate_password, /* validate function */
 get_password_strength /* validate strength function */
};

To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling
and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the
directory named by the plugin_dir system variable). For the validate_password plugin, it is
compiled and installed when you build MySQL from source. It is also included in binary distributions.
The build process produces a shared object library with a name of validate_password.so (the
extension might be different depending on your platform).

To register the plugin at runtime, use this statement (change the extension as necessary):

mysql> INSTALL PLUGIN validate_password SONAME 'validate_password.so';

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement.

While the validate_password plugin is installed, it exposes system variables that indicate the
password-checking parameters:

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	8
validate_password_mixed_case_count	1
validate_password_number_count	1

Writing Plugins

2633

| validate_password_policy | MEDIUM |
| validate_password_special_char_count | 1 |
+--------------------------------------+--------+

For descriptions of these variables, see Password Validation Plugin Options and Variables.

To disable the plugin after testing it, use this statement to unload it:

mysql> UNINSTALL PLUGIN validate_password;

22.2.4.11 Writing Protocol Trace Plugins

MySQL supports the use of protocol trace plugins: client-side plugins that implement tracing of
communication between a client and the server that takes place using the client/server protocol. This
capability can be used in MySQL 5.7.2 and up.

Using the Test Protocol Trace Plugin

MySQL includes a test protocol trace plugin that serves to illustrate the information available from such
plugins, and as a guide to writing other protocol trace plugins. To see how the test plugin works, use a
MySQL source distribution; binary distributions are built with the test plugin disabled.

Enable the test protocol trace plugin by configuring MySQL with the WITH_TEST_TRACE_PLUGIN
CMake option enabled. This causes the test trace plugin to be built and MySQL client programs to load
it, but the plugin has no effect by default. Control the plugin using these environment variables:

• MYSQL_TEST_TRACE_DEBUG: Set this variable to a value other than 0 to cause the test plugin to
produce diagnostic output on stderr.

• MYSQL_TRACE_TRACE_CRASH: Set this variable to a value other than 0 to cause the test plugin to
abort the client program if it detects an invalid trace event.

Caution

Diagnostic output from the test protocol trace plugin can disclose passwords
and other sensitive information.

Given a MySQL installation built from source with the test plugin enabled, you can see a trace of the
communication between the mysql client and the MySQL server as follows:

shell> export MYSQL_TEST_TRACE_DEBUG=1
shqll> mysql
test_trace: Test trace plugin initialized
test_trace: Starting tracing in stage CONNECTING
test_trace: stage: CONNECTING, event: CONNECTING
test_trace: stage: CONNECTING, event: CONNECTED
test_trace: stage: WAIT_FOR_INIT_PACKET, event: READ_PACKET
test_trace: stage: WAIT_FOR_INIT_PACKET, event: PACKET_RECEIVED
test_trace: packet received: 87 bytes
 0A 35 2E 37 2E 33 2D 6D 31 33 2D 64 65 62 75 67 .5.7.3-m13-debug
 2D 6C 6F 67 00 04 00 00 00 2B 7C 4F 55 3F 79 67 -log.....+|OU?yg
test_trace: 004: stage: WAIT_FOR_INIT_PACKET, event: INIT_PACKET_RECEIVED
test_trace: 004: stage: AUTHENTICATE, event: AUTH_PLUGIN
test_trace: 004: Using authentication plugin: mysql_native_password
test_trace: 004: stage: AUTHENTICATE, event: SEND_AUTH_RESPONSE
test_trace: 004: sending packet: 188 bytes
 85 A6 7F 00 00 00 00 01 21 00 00 00 00 00 00 00 .?......!.......
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
mysql> quit
test_trace: 008: stage: READY_FOR_COMMAND, event: SEND_COMMAND
test_trace: 008: QUIT
test_trace: 008: stage: READY_FOR_COMMAND, event: PACKET_SENT
test_trace: 008: packet sent: 0 bytes
test_trace: 008: stage: READY_FOR_COMMAND, event: DISCONNECTED

Writing Plugins

2634

test_trace: 008: Connection closed
test_trace: 008: Tracing connection has ended
Bye
test_trace: Test trace plugin de-initialized

To disable trace output, do this:

shell> MYSQL_TEST_TRACE_DEBUG=

Using Your Own Protocol Trace Plugins

Note

To use your own protocol trace plugins, you must configure MySQL with the
WITH_TEST_TRACE_PLUGIN CMake option disabled because only one protocol
trace plugin can be loaded at a time and an error occurs for attempts to load a
second one. If you have already built MySQL with the test protocol trace plugin
enabled to see how it works, you must rebuild MySQL without it before you can
use your own plugins.

This section discusses how to write a basic protocol trace plugin named simple_trace. This
plugin provides a framework showing how to set up the client plugin descriptor and create
the trace-related callback functions. In simple_trace, these functions are rudimentary and
do little other than illustrate the arguments required. To see in detail how a trace plugin can
make use of trace event information, check the source file for the test protocol trace plugin
(test_trace_plugin.cc in the libmysql directory of a MySQL source distribution). However, note
that the st_mysql_client_plugin_TRACE structure used there differs from the structures used with
the usual client plugin declaration macros. In particular, the first two members are defined explicitly, not
implicitly by declaration macros.

Several header files contain information relevant to protocol trace plugins:

• client_plugin.h: Defines the API for client plugins. This includes the client plugin descriptor
and function prototypes for client plugin C API calls (see Section 21.8.14, “C API Client Plugin
Functions”).

• plugin_trace.h: Contains declarations for client-side plugins of type
MYSQL_CLIENT_TRACE_PLUGIN. It also contains descriptions of the permitted protocol stages,
transitions between stages, and the types of events permitted at each stage.

To write a protocol trace plugin, include the following header files in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin_trace.h>
#include <mysql.h>

plugin_trace.h includes client_plugin.h, so you need not include the latter file explicitly.

Declare the client-side plugin descriptor with the mysql_declare_client_plugin() and
mysql_end_client_plugin macros (see Client Plugin Descriptors). For the simple_trace plugin,
the descriptor looks like this:

mysql_declare_client_plugin(TRACE)
 "simple_trace", /* plugin name */
 "Author Name", /* author */
 "Simple protocol trace plugin", /* description */
 {1,0,0}, /* version = 1.0.0 */
 "GPL", /* license type */
 NULL, /* for internal use */
 plugin_init, /* initialization function */
 plugin_deinit, /* deinitialization function */

Writing Plugins

2635

 plugin_options, /* option-handling function */
 trace_start, /* start-trace function */
 trace_stop, /* stop-trace function */
 trace_event /* event-handling function */
mysql_end_client_plugin;

The descriptor members from the plugin name through the option-handling function are common to all
client plugin types. The members following the common members implement trace event handling.

Function members for which the plugin needs no processing can be declared as NULL in the
descriptor, in which case you need not write any corresponding function. For illustration purposes and
to show the argument syntax, the following discussion implements all functions listed in the descriptor,
even though some of them do nothing,

The initialization, deinitialization, and options functions common to all client plugins are declared as
follows. For a description of the arguments and return values, see Client Plugin Descriptors.

static int
plugin_init(char *errbuf, size_t errbuf_len, int argc, va_list args)
{
 return 0;
}

static int
plugin_deinit()
{
 return 0;
}

static int
plugin_options(const char *option, const void *value)
{
 return 0;
}

The trace-specific members of the client plugin descriptor are callback functions. The following
descriptions provide more detail on how they are used. Each has a first argument that is a pointer to
the plugin instance in case your implementation needs to access it.

trace_start(): This function is called at the start of each traced connection (each connection that
starts after the plugin is loaded). It is passed the connection handler and the protocol stage at which
tracing starts. trace_start() allocates memory needed by the trace_event() function, if any,
and returns a pointer to it. If no memory is needed, this function returns NULL.

static void*
trace_start(struct st_mysql_client_plugin_TRACE *self,
 MYSQL *conn,
 enum protocol_stage stage)
{
 struct st_trace_data *plugin_data= malloc(sizeof(struct st_trace_data));

 fprintf(stderr, "Initializing trace: stage %d\n", stage);
 if (plugin_data)
 {
 memset(plugin_data, 0, sizeof(struct st_trace_data));
 fprintf(stderr, "Trace initialized\n");
 return plugin_data;
 }
 fprintf(stderr, "Could not initialize trace\n");
 exit(1);
}

trace_stop(): This function is called when tracing of the connection ends. That usually happens
when the connection is closed, but can happen earlier. For example, trace_event() can return a
nonzero value at any time and that causes tracing of the connection to terminate. trace_stop() is
then called even though the connection has not ended.

Writing Plugins

2636

trace_stop() is passed the connection handler and a pointer to the memory allocated by
trace_start() (NULL if none). If the pointer is non-NULL, trace_stop() should deallocate the
memory. This function returns no value.

static void
trace_stop(struct st_mysql_client_plugin_TRACE *self,
 MYSQL *conn,
 void *plugin_data)
{
 fprintf(stderr, "Terminating trace\n");
 if (plugin_data)
 free(plugin_data);
}

trace_event(): This function is called for each event occurrence. It is passed a pointer to the
memory allocated by trace_start() (NULL if none), the connection handler, the current protocol
stage and event codes, and event data. This function returns 0 to continue tracing, nonzero if tracing
should stop.

static int
trace_event(struct st_mysql_client_plugin_TRACE *self,
 void *plugin_data,
 MYSQL *conn,
 enum protocol_stage stage,
 enum trace_event event,
 struct st_trace_event_args args)
{
 fprintf(stderr, "Trace event received: stage %d, event %d\n", stage, event);
 if (event == TRACE_EVENT_DISCONNECTED)
 fprintf(stderr, "Connection closed\n");
 return 0;
}

The tracing framework shuts down tracing of the connection when the connection ends, so
trace_event() should return nonzero only if you want to terminate tracing of the connection early.
Suppose that you want to trace only connections for a certain MySQL account. After authentication,
you can check the user name for the connection and stop tracing if it is not the user in whom you are
interested.

For each call to trace_event(), the st_trace_event_args structure contains the event data. It
has this definition:

struct st_trace_event_args
{
 const char *plugin_name;
 int cmd;
 const unsigned char *hdr;
 size_t hdr_len;
 const unsigned char *pkt;
 size_t pkt_len;
};

For different event types, the st_trace_event_args structure contains the information described
following. All lengths are in bytes. Unused members are set to 0/NULL.

AUTH_PLUGIN event:

plugin_name The name of the plugin

SEND_COMMAND event:

cmd The command code
hdr Pointer to the command packet header

Writing Plugins

2637

hdr_len Length of the header
pkt Pointer to the command arguments
pkt_len Length of the arguments

Other SEND_xxx and xxx_RECEIVED events:

pkt Pointer to the data sent or received
pkt_len Length of the data

PACKET_SENT event:

pkt_len Number of bytes sent

To compile and install a plugin library object file, see the instructions in Section 22.2.4.3, “Compiling
and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the
directory named by the plugin_dir system variable).

After the plugin library file is compiled and installed in the plugin directory, you can test it easily by
setting the LIBMYSQL_PLUGINS environment variable to the plugin name, which affects any client
program that uses that variable. mysql is one such program:

shell> export LIBMYSQL_PLUGINS=simple_trace
shqll> mysql
Initializing trace: stage 0
Trace initialized
Trace event received: stage 0, event 1
Trace event received: stage 0, event 2
...
Welcome to the MySQL monitor. Commands end with ; or \g.
Trace event received
Trace event received
...
mysql> SELECT 1;
Trace event received: stage 4, event 12
Trace event received: stage 4, event 16
...
Trace event received: stage 8, event 14
Trace event received: stage 8, event 15
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

mysql> quit
Trace event received: stage 4, event 12
Trace event received: stage 4, event 16
Trace event received: stage 4, event 3
Connection closed
Terminating trace
Bye

To stop the trace plugin from being loaded, do this:

shell> LIBMYSQL_PLUGINS=

It is also possible to write client programs that directly load the plugin. You can tell the client where the
plugin directory is located by calling mysql_options() to set the MYSQL_PLUGIN_DIR option:

char *plugin_dir = "path_to_plugin_dir";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);

MySQL Services for Plugins

2638

Typically, the program will also accept a --plugin-dir option that enables users to override the
default value.

Should a client program require lower-level plugin management, the client library contains functions
that take an st_mysql_client_plugin argument. See Section 21.8.14, “C API Client Plugin
Functions”.

22.2.5 MySQL Services for Plugins

MySQL server plugins have access to server “services.” The services interface exposes server
functionality that plugins can call. It complements the plugin API and has these characteristics:

• Services enable plugins to access code inside the server using ordinary function calls.

• Services are portable and work on multiple platforms.

• The interface includes a versioning mechanism so that service versions supported by the server
can be checked at load time against plugin versions. Versioning protects against incompatibilities
between the version of a service that the server provides and the version of the service expected or
required by a plugin.

Current services include the following, and others can be implemented:

• my_plugin_log_service: A service that enables plugins to report errors and specify error
messages. The server writes the messages to the error log.

• my_snprintf: A string-formatting service that produces consistent results across platforms.

• my_thd_scheduler: A service for plugins to select a thread scheduler.

• mysql_string: A service for string manipulation.

• thd_alloc: A memory-allocation service.

• thd_wait: A service for plugins to report when they are going to sleep or stall.

The plugin services interface differs from the plugin API as follows:

• The plugin API enables plugins to be used by the server. The calling initiative lies with the server to
invoke plugins. This enables plugins to extend server functionality or register to receive notifications
about server processing.

• The plugin services interface enables plugins to call code inside the server. The calling initiative lies
with plugins to invoke service functions. This enables functionality already implemented in the server
to be used by many plugins; they need not individually implement it themselves.

For developers who wish to modify the server to add a new service, see MySQL Services for Plugins.

The remainder of this section describes how a plugin uses server functionality that is available as a
service. See also the source for the “daemon” example plugin, which uses the my_snprintf service.
Within a MySQL source distribution, that plugin is located in the plugin/daemon_example directory.

To determine what services exist and what functions they provide, look in the include/mysql
directory of a MySQL source distribution. The relevant files are:

• plugin.h includes services.h.

• services.h is the “umbrella” header that includes all available service-specific header files.

• Service-specific headers have names like service_my_snprintf.h or service_thd_alloc.h.

Each service-specific header should contain comments that provide full usage documentation for a
given service, including what service functions are available, their calling sequences, and return values.

http://dev.mysql.com/doc/internals/en/mysql-services-for-plugins.html

Adding New Functions to MySQL

2639

To use a service or services from within a plugin, the plugin source file must include the plugin.h
header file to access service-related information:

#include <mysql/plugin.h>

This does not represent any additional setup cost. A plugin must include that file anyway because it
contains definitions and structures that every plugin needs.

To access a service, a plugin calls service functions like any other function. For example, to format a
string into a buffer for printing, call the my_snprintf() function provided by the service of the same
name:

char buffer[BUFFER_SIZE];

my_snprintf(buffer, sizeof(buffer), format_string, argument_to_format, ...);

To report an error that the server will write to the error log, first choose an error level. mysql/
service_my_plugin_log.h defines these levels:

enum plugin_log_level
{
 MY_ERROR_LEVEL,
 MY_WARNING_LEVEL,
 MY_INFORMATION_LEVEL
};

Then invoke my_plugin_log_message():

int my_plugin_log_message(MYSQL_PLUGIN *plugin, enum plugin_log_level level,
 const char *format, ...);

For example:

my_plugin_log_message(plugin_ptr, MY_ERROR_LEVEL, "Cannot initialize plugin");

When you build your plugin, you must link in the libmysqlservices library. Use the -
lmysqlservices flag at link time. For example, for CMake, put this in the top-level CMakeLists.txt
file:

FIND_LIBRARY(MYSQLSERVICES_LIB mysqlservices
 PATHS "${MYSQL_SRCDIR}/libservices" NO_DEFAULT_PATH)

Put this in the CMakeLists.txt file in the directory containing the plugin source:

the plugin needs the mysql services library for error logging
TARGET_LINK_LIBRARIES (your_plugin_library_name ${MYSQLSERVICES_LIB})

22.3 Adding New Functions to MySQL

There are three ways to add new functions to MySQL:

• You can add functions through the user-defined function (UDF) interface. User-defined functions
are compiled as object files and then added to and removed from the server dynamically using the
CREATE FUNCTION and DROP FUNCTION statements. See Section 13.7.3.1, “CREATE FUNCTION
Syntax for User-Defined Functions”.

• You can add functions as native (built-in) MySQL functions. Native functions are compiled into the
mysqld server and become available on a permanent basis.

Features of the User-Defined Function Interface

2640

• Another way to add functions is by creating stored functions. These are written using SQL
statements rather than by compiling object code. The syntax for writing stored functions is not
covered here. See Section 18.2, “Using Stored Routines (Procedures and Functions)”.

Each method of creating compiled functions has advantages and disadvantages:

• If you write user-defined functions, you must install object files in addition to the server itself. If you
compile your function into the server, you don't need to do that.

• Native functions require you to modify a source distribution. UDFs do not. You can add UDFs to a
binary MySQL distribution. No access to MySQL source is necessary.

• If you upgrade your MySQL distribution, you can continue to use your previously installed UDFs,
unless you upgrade to a newer version for which the UDF interface changes. For native functions,
you must repeat your modifications each time you upgrade.

Whichever method you use to add new functions, they can be invoked in SQL statements just like
native functions such as ABS() or SOUNDEX().

See Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

The following sections describe features of the UDF interface, provide instructions for writing UDFs,
discuss security precautions that MySQL takes to prevent UDF misuse, and describe how to add native
MySQL functions.

For example source code that illustrates how to write UDFs, take a look at the sql/udf_example.c
file that is provided in MySQL source distributions.

22.3.1 Features of the User-Defined Function Interface

The MySQL interface for user-defined functions provides the following features and capabilities:

• Functions can return string, integer, or real values and can accept arguments of those same types.

• You can define simple functions that operate on a single row at a time, or aggregate functions that
operate on groups of rows.

• Information is provided to functions that enables them to check the number, types, and names of the
arguments passed to them.

• You can tell MySQL to coerce arguments to a given type before passing them to a function.

• You can indicate that a function returns NULL or that an error occurred.

22.3.2 Adding a New User-Defined Function

For the UDF mechanism to work, functions must be written in C or C++ and your operating system
must support dynamic loading. MySQL source distributions include a file sql/udf_example.c that
defines five UDF functions. Consult this file to see how UDF calling conventions work. The include/
mysql_com.h header file defines UDF-related symbols and data structures, although you need not
include this header file directly; it is included by mysql.h.

A UDF contains code that becomes part of the running server, so when you write a UDF, you are
bound by any and all constraints that apply to writing server code. For example, you may have
problems if you attempt to use functions from the libstdc++ library. These constraints may change
in future versions of the server, so it is possible that server upgrades will require revisions to UDFs that
were originally written for older servers. For information about these constraints, see Section 2.8.4,
“MySQL Source-Configuration Options”, and Section 2.8.5, “Dealing with Problems Compiling MySQL”.

To be able to use UDFs, you must link mysqld dynamically. If you want to use a UDF that needs to
access symbols from mysqld (for example, the metaphone function in sql/udf_example.c uses
default_charset_info), you must link the program with -rdynamic (see man dlopen).

Adding a New User-Defined Function

2641

For each function that you want to use in SQL statements, you should define corresponding C (or C
++) functions. In the following discussion, the name “xxx” is used for an example function name. To
distinguish between SQL and C/C++ usage, XXX() (uppercase) indicates an SQL function call, and
xxx() (lowercase) indicates a C/C++ function call.

Note

When using C++ you can encapsulate your C functions within:

extern "C" { ... }

This ensures that your C++ function names remain readable in the completed
UDF.

The following list describes the C/C++ functions that you write to implement the interface for a function
named XXX(). The main function, xxx(), is required. In addition, a UDF requires at least one of the
other functions described here, for reasons discussed in Section 22.3.2.6, “User-Defined Function
Security Precautions”.

• xxx()

The main function. This is where the function result is computed. The correspondence between the
SQL function data type and the return type of your C/C++ function is shown here.

SQL Type C/C++ Type

STRING char *

INTEGER long long

REAL double

It is also possible to declare a DECIMAL function, but currently the value is returned as a string, so
you should write the UDF as though it were a STRING function. ROW functions are not implemented.

• xxx_init()

The initialization function for xxx(). If present, it can be used for the following purposes:

• To check the number of arguments to XXX().

• To verify that the arguments are of a required type or, alternatively, to tell MySQL to coerce
arguments to the required types when the main function is called.

• To allocate any memory required by the main function.

• To specify the maximum length of the result.

• To specify (for REAL functions) the maximum number of decimal places in the result.

• To specify whether the result can be NULL.

• xxx_deinit()

The deinitialization function for xxx(). If present, it should deallocate any memory allocated by the
initialization function.

When an SQL statement invokes XXX(), MySQL calls the initialization function xxx_init() to let
it perform any required setup, such as argument checking or memory allocation. If xxx_init()
returns an error, MySQL aborts the SQL statement with an error message and does not call the main
or deinitialization functions. Otherwise, MySQL calls the main function xxx() once for each row. After
all rows have been processed, MySQL calls the deinitialization function xxx_deinit() so that it can
perform any required cleanup.

Adding a New User-Defined Function

2642

For aggregate functions that work like SUM(), you must also provide the following functions:

• xxx_clear()

Reset the current aggregate value but do not insert the argument as the initial aggregate value for a
new group.

• xxx_add()

Add the argument to the current aggregate value.

MySQL handles aggregate UDFs as follows:

1. Call xxx_init() to let the aggregate function allocate any memory it needs for storing results.

2. Sort the table according to the GROUP BY expression.

3. Call xxx_clear() for the first row in each new group.

4. Call xxx_add() for each row that belongs in the same group.

5. Call xxx() to get the result for the aggregate when the group changes or after the last row has
been processed.

6. Repeat steps 3 to 5 until all rows has been processed

7. Call xxx_deinit() to let the UDF free any memory it has allocated.

All functions must be thread-safe. This includes not just the main function, but the initialization and
deinitialization functions as well, and also the additional functions required by aggregate functions. A
consequence of this requirement is that you are not permitted to allocate any global or static variables
that change! If you need memory, you should allocate it in xxx_init() and free it in xxx_deinit().

22.3.2.1 UDF Calling Sequences for Simple Functions

This section describes the different functions that you need to define when you create a simple UDF.
Section 22.3.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls
these functions.

The main xxx() function should be declared as shown in this section. Note that the return type and
parameters differ, depending on whether you declare the SQL function XXX() to return STRING,
INTEGER, or REAL in the CREATE FUNCTION statement:

For STRING functions:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,
 char *result, unsigned long *length,
 char *is_null, char *error);

For INTEGER functions:

long long xxx(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

For REAL functions:

double xxx(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

DECIMAL functions return string values and should be declared the same way as STRING functions.
ROW functions are not implemented.

Adding a New User-Defined Function

2643

The initialization and deinitialization functions are declared like this:

my_bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *message);

void xxx_deinit(UDF_INIT *initid);

The initid parameter is passed to all three functions. It points to a UDF_INIT structure that is
used to communicate information between functions. The UDF_INIT structure members follow. The
initialization function should fill in any members that it wishes to change. (To use the default for a
member, leave it unchanged.)

• my_bool maybe_null

xxx_init() should set maybe_null to 1 if xxx() can return NULL. The default value is 1 if any of
the arguments are declared maybe_null.

• unsigned int decimals

The number of decimal digits to the right of the decimal point. The default value is the maximum
number of decimal digits in the arguments passed to the main function. For example, if the function is
passed 1.34, 1.345, and 1.3, the default would be 3, because 1.345 has 3 decimal digits.

For arguments that have no fixed number of decimals, the decimals value is set to 31, which is 1
more than the maximum number of decimals permitted for the DECIMAL, FLOAT, and DOUBLE data
types. In MySQL 5.7, this value is available as the constant NOT_FIXED_DEC in the mysql_com.h
header file.

A decimals value of 31 is used for arguments in cases such as a FLOAT or DOUBLE column
declared without an explicit number of decimals (for example, FLOAT rather than FLOAT(10,3))
and for floating-point constants such as 1345E-3. It is also used for string and other nonnumber
arguments that might be converted within the function to numeric form.

The value to which the decimals member is initialized is only a default. It can be changed within the
function to reflect the actual calculation performed. The default is determined such that the largest
number of decimals of the arguments is used. If the number of decimals is NOT_FIXED_DEC for even
one of the arguments, that is the value used for decimals.

• unsigned int max_length

The maximum length of the result. The default max_length value differs depending on the result
type of the function. For string functions, the default is the length of the longest argument. For integer
functions, the default is 21 digits. For real functions, the default is 13 plus the number of decimal
digits indicated by initid->decimals. (For numeric functions, the length includes any sign or
decimal point characters.)

If you want to return a blob value, you can set max_length to 65KB or 16MB. This memory is not
allocated, but the value is used to decide which data type to use if there is a need to temporarily
store the data.

• char *ptr

A pointer that the function can use for its own purposes. For example, functions can use initid-
>ptr to communicate allocated memory among themselves. xxx_init() should allocate the
memory and assign it to this pointer:

initid->ptr = allocated_memory;

In xxx() and xxx_deinit(), refer to initid->ptr to use or deallocate the memory.

• my_bool const_item

Adding a New User-Defined Function

2644

xxx_init() should set const_item to 1 if xxx() always returns the same value and to 0
otherwise.

22.3.2.2 UDF Calling Sequences for Aggregate Functions

This section describes the different functions that you need to define when you create an aggregate
UDF. Section 22.3.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls
these functions.

• xxx_reset()

This function is called when MySQL finds the first row in a new group. It should reset any internal
summary variables and then use the given UDF_ARGS argument as the first value in your internal
summary value for the group. Declare xxx_reset() as follows:

void xxx_reset(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

xxx_reset() is not needed or used in MySQL 5.7, in which the UDF interface uses xxx_clear()
instead. However, you can define both xxx_reset() and xxx_clear() if you want to have your
UDF work with older versions of the server. (If you do include both functions, the xxx_reset()
function in many cases can be implemented internally by calling xxx_clear() to reset all variables,
and then calling xxx_add() to add the UDF_ARGS argument as the first value in the group.)

• xxx_clear()

This function is called when MySQL needs to reset the summary results. It is called at the beginning
for each new group but can also be called to reset the values for a query where there were no
matching rows. Declare xxx_clear() as follows:

void xxx_clear(UDF_INIT *initid, char *is_null, char *error);

is_null is set to point to CHAR(0) before calling xxx_clear().

If something went wrong, you can store a value in the variable to which the error argument points.
error points to a single-byte variable, not to a string buffer.

xxx_clear() is required by MySQL 5.7.

• xxx_add()

This function is called for all rows that belong to the same group. You should use it to add the value
in the UDF_ARGS argument to your internal summary variable.

void xxx_add(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

The xxx() function for an aggregate UDF should be declared the same way as for a nonaggregate
UDF. See Section 22.3.2.1, “UDF Calling Sequences for Simple Functions”.

For an aggregate UDF, MySQL calls the xxx() function after all rows in the group have been
processed. You should normally never access its UDF_ARGS argument here but instead return a value
based on your internal summary variables.

Return value handling in xxx() should be done the same way as for a nonaggregate UDF. See
Section 22.3.2.4, “UDF Return Values and Error Handling”.

The xxx_reset() and xxx_add() functions handle their UDF_ARGS argument the same way as
functions for nonaggregate UDFs. See Section 22.3.2.3, “UDF Argument Processing”.

Adding a New User-Defined Function

2645

The pointer arguments to is_null and error are the same for all calls to xxx_reset(),
xxx_clear(), xxx_add() and xxx(). You can use this to remember that you got an error or
whether the xxx() function should return NULL. You should not store a string into *error! error
points to a single-byte variable, not to a string buffer.

*is_null is reset for each group (before calling xxx_clear()). *error is never reset.

If *is_null or *error are set when xxx() returns, MySQL returns NULL as the result for the group
function.

22.3.2.3 UDF Argument Processing

The args parameter points to a UDF_ARGS structure that has the members listed here:

• unsigned int arg_count

The number of arguments. Check this value in the initialization function if you require your function to
be called with a particular number of arguments. For example:

if (args->arg_count != 2)
{
 strcpy(message,"XXX() requires two arguments");
 return 1;
}

For other UDF_ARGS member values that are arrays, array references are zero-based. That is, refer
to array members using index values from 0 to args->arg_count – 1.

• enum Item_result *arg_type

A pointer to an array containing the types for each argument. The possible type values are
STRING_RESULT, INT_RESULT, REAL_RESULT, and DECIMAL_RESULT.

To make sure that arguments are of a given type and return an error if they are not, check the
arg_type array in the initialization function. For example:

if (args->arg_type[0] != STRING_RESULT ||
 args->arg_type[1] != INT_RESULT)
{
 strcpy(message,"XXX() requires a string and an integer");
 return 1;
}

Arguments of type DECIMAL_RESULT are passed as strings, so you should handle them the same
way as STRING_RESULT values.

As an alternative to requiring your function's arguments to be of particular types, you can use the
initialization function to set the arg_type elements to the types you want. This causes MySQL to
coerce arguments to those types for each call to xxx(). For example, to specify that the first two
arguments should be coerced to string and integer, respectively, do this in xxx_init():

args->arg_type[0] = STRING_RESULT;
args->arg_type[1] = INT_RESULT;

Exact-value decimal arguments such as 1.3 or DECIMAL column values are passed with a type of
DECIMAL_RESULT. However, the values are passed as strings. If you want to receive a number, use
the initialization function to specify that the argument should be coerced to a REAL_RESULT value:

args->arg_type[2] = REAL_RESULT;

• char **args

Adding a New User-Defined Function

2646

args->args communicates information to the initialization function about the general nature of
the arguments passed to your function. For a constant argument i, args->args[i] points to the
argument value. (See later for instructions on how to access the value properly.) For a nonconstant
argument, args->args[i] is 0. A constant argument is an expression that uses only constants,
such as 3 or 4*7-2 or SIN(3.14). A nonconstant argument is an expression that refers to
values that may change from row to row, such as column names or functions that are called with
nonconstant arguments.

For each invocation of the main function, args->args contains the actual arguments that are
passed for the row currently being processed.

If argument i represents NULL, args->args[i] is a null pointer (0). If the argument is not NULL,
functions can refer to it as follows:

• An argument of type STRING_RESULT is given as a string pointer plus a length, to enable handling
of binary data or data of arbitrary length. The string contents are available as args->args[i]
and the string length is args->lengths[i]. Do not assume that the string is null-terminated.

• For an argument of type INT_RESULT, you must cast args->args[i] to a long long value:

long long int_val;
int_val = *((long long*) args->args[i]);

• For an argument of type REAL_RESULT, you must cast args->args[i] to a double value:

double real_val;
real_val = *((double*) args->args[i]);

• For an argument of type DECIMAL_RESULT, the value is passed as a string and should be
handled like a STRING_RESULT value.

• ROW_RESULT arguments are not implemented.

• unsigned long *lengths

For the initialization function, the lengths array indicates the maximum string length for each
argument. You should not change these. For each invocation of the main function, lengths
contains the actual lengths of any string arguments that are passed for the row currently being
processed. For arguments of types INT_RESULT or REAL_RESULT, lengths still contains the
maximum length of the argument (as for the initialization function).

• char *maybe_null

For the initialization function, the maybe_null array indicates for each argument whether the
argument value might be null (0 if no, 1 if yes).

• char **attributes

args->attributes communicates information about the names of the UDF arguments. For
argument i, the attribute name is available as a string in args->attributes[i] and the attribute
length is args->attribute_lengths[i]. Do not assume that the string is null-terminated.

By default, the name of a UDF argument is the text of the expression used to specify the argument.
For UDFs, an argument may also have an optional [AS] alias_name clause, in which case the
argument name is alias_name. The attributes value for each argument thus depends on
whether an alias was given.

Suppose that a UDF my_udf() is invoked as follows:

Adding a New User-Defined Function

2647

SELECT my_udf(expr1, expr2 AS alias1, expr3 alias2);

In this case, the attributes and attribute_lengths arrays will have these values:

args->attributes[0] = "expr1"
args->attribute_lengths[0] = 5

args->attributes[1] = "alias1"
args->attribute_lengths[1] = 6

args->attributes[2] = "alias2"
args->attribute_lengths[2] = 6

• unsigned long *attribute_lengths

The attribute_lengths array indicates the length of each argument name.

22.3.2.4 UDF Return Values and Error Handling

The initialization function should return 0 if no error occurred and 1 otherwise. If an error occurs,
xxx_init() should store a null-terminated error message in the message parameter. The message
is returned to the client. The message buffer is MYSQL_ERRMSG_SIZE characters long, but you should
try to keep the message to less than 80 characters so that it fits the width of a standard terminal
screen.

The return value of the main function xxx() is the function value, for long long and double
functions. A string function should return a pointer to the result and set *length to the length (in bytes)
of the return value. For example:

memcpy(result, "result string", 13);
*length = 13;

MySQL passes a buffer to the xxx() function using the result parameter. This buffer is sufficiently
long to hold 255 characters, which can be multi-byte characters. The xxx() function can store the
result in this buffer if it fits, in which case the return value should be a pointer to the buffer. If the
function stores the result in a different buffer, it should return a pointer to that buffer.

If your string function does not use the supplied buffer (for example, if it needs to return a string
longer than 255 characters), you must allocate the space for your own buffer with malloc() in your
xxx_init() function or your xxx() function and free it in your xxx_deinit() function. You can
store the allocated memory in the ptr slot in the UDF_INIT structure for reuse by future xxx() calls.
See Section 22.3.2.1, “UDF Calling Sequences for Simple Functions”.

To indicate a return value of NULL in the main function, set *is_null to 1:

*is_null = 1;

To indicate an error return in the main function, set *error to 1:

*error = 1;

If xxx() sets *error to 1 for any row, the function value is NULL for the current row and for any
subsequent rows processed by the statement in which XXX() was invoked. (xxx() is not even called
for subsequent rows.)

22.3.2.5 Compiling and Installing User-Defined Functions

Files implementing UDFs must be compiled and installed on the host where the server runs. This
process is described below for the example UDF file sql/udf_example.c that is included in MySQL
source distributions.

Adding a New User-Defined Function

2648

If a UDF will be referred to in statements that will be replicated to slave servers, you must ensure that
every slave also has the function available. Otherwise, replication will fail on the slaves when they
attempt to invoke the function.

The immediately following instructions are for Unix. Instructions for Windows are given later in this
section.

The udf_example.c file contains the following functions:

• metaphon() returns a metaphon string of the string argument. This is something like a soundex
string, but it is more tuned for English.

• myfunc_double() returns the sum of the ASCII values of the characters in its arguments, divided
by the sum of the length of its arguments.

• myfunc_int() returns the sum of the length of its arguments.

• sequence([const int]) returns a sequence starting from the given number or 1 if no number
has been given.

• lookup() returns the IP address for a host name.

• reverse_lookup() returns the host name for an IP address. The function may be called either
with a single string argument of the form 'xxx.xxx.xxx.xxx' or with four numbers.

• avgcost() returns an average cost. This is an aggregate function.

A dynamically loadable file should be compiled as a sharable object file, using a command something
like this:

shell> gcc -shared -o udf_example.so udf_example.c

If you are using gcc with CMake (which is how MySQL is configured), you should be able to create
udf_example.so with a simpler command:

shell> make udf_example

After you compile a shared object containing UDFs, you must install it and tell MySQL about
it. Compiling a shared object from udf_example.c using gcc directly produces a file named
udf_example.so. Copy the shared object to the server's plugin directory and name it
udf_example.so. This directory is given by the value of the plugin_dir system variable.

On some systems, the ldconfig program that configures the dynamic linker does not recognize
a shared object unless its name begins with lib. In this case you should rename a file such as
udf_example.so to libudf_example.so.

On Windows, you can compile user-defined functions by using the following procedure:

1. Obtain a MySQL source distribution. See Section 2.1.3, “How to Get MySQL”.

2. Obtain the CMake build utility, if necessary, from http://www.cmake.org. (Version 2.6 or later is
required).

3. In the source tree, look in the sql directory. There are files named udf_example.def
udf_example.c there. Copy both files from this directory to your working directory.

4. Create a CMake makefile (CMakeLists.txt) with these contents:

PROJECT(udf_example)

http://www.cmake.org

Adding a New User-Defined Function

2649

Path for MySQL include directory
INCLUDE_DIRECTORIES("c:/mysql/include")

ADD_DEFINITIONS("-DHAVE_DLOPEN")
ADD_LIBRARY(udf_example MODULE udf_example.c udf_example.def)
TARGET_LINK_LIBRARIES(udf_example wsock32)

5. Create the VC project and solution files:

cmake -G "<Generator>"

Invoking cmake --help shows you a list of valid Generators.

6. Create udf_example.dll:

devenv udf_example.sln /build Release

After the shared object file has been installed, notify mysqld about the new functions with the following
statements. If object files have a suffix different from .so on your system, substitute the correct suffix
throughout (for example, .dll on Windows).

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION sequence RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION lookup RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION reverse_lookup
 -> RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE AGGREGATE FUNCTION avgcost
 -> RETURNS REAL SONAME 'udf_example.so';

To delete functions, use DROP FUNCTION:

mysql> DROP FUNCTION metaphon;
mysql> DROP FUNCTION myfunc_double;
mysql> DROP FUNCTION myfunc_int;
mysql> DROP FUNCTION sequence;
mysql> DROP FUNCTION lookup;
mysql> DROP FUNCTION reverse_lookup;
mysql> DROP FUNCTION avgcost;

The CREATE FUNCTION and DROP FUNCTION statements update the func system table in the
mysql database. The function's name, type and shared library name are saved in the table. You must
have the INSERT or DELETE privilege for the mysql database to create or drop functions, respectively.

You should not use CREATE FUNCTION to add a function that has previously been created. If you
need to reinstall a function, you should remove it with DROP FUNCTION and then reinstall it with
CREATE FUNCTION. You would need to do this, for example, if you recompile a new version of your
function, so that mysqld gets the new version. Otherwise, the server continues to use the old version.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld
with the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are
unavailable.

22.3.2.6 User-Defined Function Security Precautions

MySQL takes several measures to prevent misuse of user-defined functions.

UDF object files cannot be placed in arbitrary directories. They must be located in the server's plugin
directory. This directory is given by the value of the plugin_dir system variable.

Adding a New Native Function

2650

To use CREATE FUNCTION or DROP FUNCTION, you must have the INSERT or DELETE privilege,
respectively, for the mysql database. This is necessary because those statements add and delete
rows from the mysql.func table.

UDFs should have at least one symbol defined in addition to the xxx symbol that corresponds to the
main xxx() function. These auxiliary symbols correspond to the xxx_init(), xxx_deinit(),
xxx_reset(), xxx_clear(), and xxx_add() functions. mysqld also supports an --allow-
suspicious-udfs option that controls whether UDFs that have only an xxx symbol can be loaded.
By default, the option is off, to prevent attempts at loading functions from shared object files other than
those containing legitimate UDFs. If you have older UDFs that contain only the xxx symbol and that
cannot be recompiled to include an auxiliary symbol, it may be necessary to specify the --allow-
suspicious-udfs option. Otherwise, you should avoid enabling this capability.

22.3.3 Adding a New Native Function

To add a new native MySQL function, use the procedure described here, which requires that you use
a source distribution. You cannot add native functions to a binary distribution because it is necessary
to modify MySQL source code and compile MySQL from the modified source. If you migrate to another
version of MySQL (for example, when a new version is released), you must repeat the procedure with
the new version.

If the new native function will be referred to in statements that will be replicated to slave servers, you
must ensure that every slave server also has the function available. Otherwise, replication will fail on
the slaves when they attempt to invoke the function.

To add a new native function, follow these steps to modify source files in the sql directory:

1. Create a subclass for the function in item_create.cc:

• If the function takes a fixed number of arguments, create a subclass of Create_func_arg0,
Create_func_arg1, Create_func_arg2, or Create_func_arg3, respectively, depending
on whether the function takes zero, one, two, or three arguments. For examples, see the
Create_func_uuid, Create_func_abs, Create_func_pow, and Create_func_lpad
classes.

• If the function takes a variable number of arguments, create a subclass of
Create_native_func. For an example, see Create_func_concat.

2. To provide a name by which the function can be referred to in SQL statements, register the name in
item_create.cc by adding a line to this array:

static Native_func_registry func_array[]

You can register several names for the same function. For example, see the lines for "LCASE" and
"LOWER", which are aliases for Create_func_lcase.

3. In item_func.h, declare a class inheriting from Item_num_func or Item_str_func, depending
on whether your function returns a number or a string.

4. In item_func.cc, add one of the following declarations, depending on whether you are defining a
numeric or string function:

double Item_func_newname::val()
longlong Item_func_newname::val_int()
String *Item_func_newname::Str(String *str)

If you inherit your object from any of the standard items (like Item_num_func), you probably only
have to define one of these functions and let the parent object take care of the other functions. For
example, the Item_str_func class defines a val() function that executes atof() on the value
returned by ::str().

Debugging and Porting MySQL

2651

5. If the function is nondeterministic, include the following statement in the item constructor to indicate
that function results should not be cached:

current_thd->lex->safe_to_cache_query=0;

A function is nondeterministic if, given fixed values for its arguments, it can return different results
for different invocations.

6. You should probably also define the following object function:

void Item_func_newname::fix_length_and_dec()

This function should at least calculate max_length based on the given arguments. max_length
is the maximum number of characters the function may return. This function should also set
maybe_null = 0 if the main function can't return a NULL value. The function can check whether
any of the function arguments can return NULL by checking the arguments' maybe_null variable.
Look at Item_func_mod::fix_length_and_dec for a typical example of how to do this.

All functions must be thread-safe. In other words, do not use any global or static variables in the
functions without protecting them with mutexes.

If you want to return NULL from ::val(), ::val_int(), or ::str(), you should set null_value
to 1 and return 0.

For ::str() object functions, there are additional considerations to be aware of:

• The String *str argument provides a string buffer that may be used to hold the result. (For more
information about the String type, take a look at the sql_string.h file.)

• The ::str() function should return the string that holds the result, or (char*) 0 if the result is
NULL.

• All current string functions try to avoid allocating any memory unless absolutely necessary!

22.4 Debugging and Porting MySQL

This section helps you port MySQL to other operating systems. Do check the list of currently supported
operating systems first. See http://www.mysql.com/support/supportedplatforms/database.html. If you
have created a new port of MySQL, please let us know so that we can list it here and on our Web site
(http://www.mysql.com/), recommending it to other users.

Note

If you create a new port of MySQL, you are free to copy and distribute it under
the GPL license, but it does not make you a copyright holder of MySQL.

A working POSIX thread library is needed for the server.

To build MySQL from source, your system must satisfy the tool requirements listed at Section 2.8,
“Installing MySQL from Source”.

If you run into problems with a new port, you may have to do some debugging of MySQL! See
Section 22.4.1, “Debugging a MySQL Server”.

Note

Before you start debugging mysqld, first get the test program mysys/
thr_lock to work. This ensures that your thread installation has even a remote
chance to work!

http://www.mysql.com/support/supportedplatforms/database.html

Debugging a MySQL Server

2652

22.4.1 Debugging a MySQL Server

If you are using some functionality that is very new in MySQL, you can try to run mysqld with the --
skip-new (which disables all new, potentially unsafe functionality). See Section C.5.4.2, “What to Do If
MySQL Keeps Crashing”.

If mysqld doesn't want to start, you should verify that you don't have any my.cnf files that interfere
with your setup! You can check your my.cnf arguments with mysqld --print-defaults and avoid
using them by starting with mysqld --no-defaults

If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin processlist
status to find out if someone is executing a query that takes a long time. It may be a good idea to run
mysqladmin -i10 processlist status in some window if you are experiencing performance
problems or problems when new clients can't connect.

The command mysqladmin debug dumps some information about locks in use, used memory and
query usage to the MySQL log file. This may help solve some problems. This command also provides
some useful information even if you haven't compiled MySQL for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table
with OPTIMIZE TABLE or myisamchk. See Chapter 5, MySQL Server Administration. You should also
check the slow queries with EXPLAIN.

You should also read the OS-specific section in this manual for problems that may be unique to your
environment. See Section 2.1, “General Installation Guidance”.

22.4.1.1 Compiling MySQL for Debugging

If you have some very specific problem, you can always try to debug MySQL. To do this you must
configure MySQL with the -DWITH_DEBUG=1 option. You can check whether MySQL was compiled
with debugging by doing: mysqld --help. If the --debug flag is listed with the options then you have
debugging enabled. mysqladmin ver also lists the mysqld version as mysql ... --debug in this
case.

If mysqld stops crashing when you configure it with the -DWITH_DEBUG=1 CMake option, you
probably have found a compiler bug or a timing bug within MySQL. In this case, you can try to add -g
using the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options and not use -DWITH_DEBUG=1.
If mysqld dies, you can at least attach to it with gdb or use gdb on the core file to find out what
happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check
functions that monitor the health of mysqld. If they find something “unexpected,” an entry is written
to stderr, which mysqld_safe directs to the error log! This also means that if you are having some
unexpected problems with MySQL and are using a source distribution, the first thing you should do is to
configure MySQL for debugging! (The second thing is to send mail to a MySQL mailing list and ask for
help. See Section 1.6.1, “MySQL Mailing Lists”. If you believe that you have found a bug, please use
the instructions at Section 1.7, “How to Report Bugs or Problems”.

In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace files.

22.4.1.2 Creating Trace Files

If the mysqld server doesn't start or if you can cause it to crash quickly, you can try to create a trace
file to find the problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check
this by executing mysqld -V. If the version number ends with -debug, it is compiled with support for
trace files. (On Windows, the debugging server is named mysqld-debug rather than mysqld as of
MySQL 4.1.)

Debugging a MySQL Server

2653

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or \mysqld.trace on
Windows:

shell> mysqld --debug

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a
console window, use this command:

C:\> mysqld-debug --debug --standalone

After this, you can use the mysql.exe command-line tool in a second console window to reproduce
the problem. You can stop the mysqld server with mysqladmin shutdown.

The trace file can become very large! To generate a smaller trace file, you can use debugging options
something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you make a bug report about this, please only send the lines from the trace file to the appropriate
mailing list where something seems to go wrong! If you can't locate the wrong place, you can open a
bug report and upload the trace file to the report, so that a MySQL developer can take a look at it. For
instructions, see Section 1.7, “How to Report Bugs or Problems”.

The trace file is made with the DBUG package by Fred Fish. See Section 22.4.3, “The DBUG
Package”.

22.4.1.3 Using pdb to create a Windows crashdump

Program Database files (extension pdb) are included in the Noinstall distribution of MySQL. These files
provide information for debugging your MySQL installation in the event of a problem.

The PDB file contains more detailed information about mysqld and other tools that enables more
detailed trace and dump files to be created. You can use these with Dr Watson, WinDbg and Visual
Studio to debug mysqld.

For more information on PDB files, see Microsoft Knowledge Base Article 121366. For more
information on the debugging options available, see Debugging Tools for Windows.

Dr Watson is installed with all Windows distributions, but if you have installed Windows development
tools, Dr Watson may have been replaced with WinDbg, the debugger included with Visual Studio, or
the debugging tools provided with Borland or Delphi.

To generate a crash file using Dr Watson, follow these steps:

1. Start Dr Watson by running drwtsn32.exe interactively using the -i option:

C:\> drwtsn32 -i

2. Set the Log File Path to the directory where you want to store trace files.

3. Make sure Dump All Thread Contexts and Append To Existing Log File.

4. Uncheck Dump Symbol Table, Visual Notification, Sound Notification and Create Crash Dump
File.

5. Set the Number of Instructions to a suitable value to capture enough calls in the stacktrace. A
value of at 25 should be enough.

http://support.microsoft.com/kb/121366/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Debugging a MySQL Server

2654

Note that the file generated can become very large.

22.4.1.4 Debugging mysqld under gdb

On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able
to debug mysqld threads. In this case, you can only have one thread active at a time. It is best to
upgrade to gdb 5.1 because thread debugging works much better with this version!

NPTL threads (the new thread library on Linux) may cause problems while running mysqld under gdb.
Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

In this case, you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace to
be able to catch segfaults within gdb.

In MySQL 4.0.14 and above you should use the --gdb option to mysqld. This installs an interrupt
handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and disable stack tracing and
core file handling.

It is very hard to debug MySQL under gdb if you do a lot of new connections the whole time as
gdb doesn't free the memory for old threads. You can avoid this problem by starting mysqld with
thread_cache_size set to a value equal to max_connections + 1. In most cases just using --
thread_cache_size=5' helps a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld
with the --core-file option. This core file can be used to make a backtrace that may help you find
out why mysqld died:

shell> gdb mysqld core
gdb> backtrace full
gdb> quit

See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.

If you are using gdb 4.17.x or above on Linux, you should install a .gdb file, with the following
information, in your current directory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

If you have problems debugging threads with gdb, you should download gdb 5.x and try this instead.
The new gdb version has very improved thread handling!

Here is an example how to debug mysqld:

Debugging a MySQL Server

2655

shell> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the preceding output in a bug report, which you can file using the instructions in Section 1.7,
“How to Report Bugs or Problems”.

If mysqld hangs, you can try to use some system tools like strace or /usr/proc/bin/pstack to
examine where mysqld has hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the trace
method or by setting the DBI_TRACE environment variable.

22.4.1.5 Using a Stack Trace

On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can
use this to find out where (and maybe why) mysqld died. See Section 5.2.2, “The Error Log”. To get
a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to gcc. See
Section 22.4.1.1, “Compiling MySQL for Debugging”.

A stack trace in the error log looks something like this:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
mysqld(my_print_stacktrace+0x32)[0x9da402]
mysqld(handle_segfault+0x28a)[0x6648e9]
/lib/libpthread.so.0[0x7f1a5af000f0]
/lib/libc.so.6(strcmp+0x2)[0x7f1a5a10f0f2]
mysqld(_Z21check_change_passwordP3THDPKcS2_Pcj+0x7c)[0x7412cb]
mysqld(_ZN16set_var_password5checkEP3THD+0xd0)[0x688354]
mysqld(_Z17sql_set_variablesP3THDP4ListI12set_var_baseE+0x68)[0x688494]
mysqld(_Z21mysql_execute_commandP3THD+0x41a0)[0x67a170]
mysqld(_Z11mysql_parseP3THDPKcjPS2_+0x282)[0x67f0ad]
mysqld(_Z16dispatch_command19enum_server_commandP3THDPcj+0xbb7[0x67fdf8]
mysqld(_Z10do_commandP3THD+0x24d)[0x6811b6]
mysqld(handle_one_connection+0x11c)[0x66e05e]

If resolution of function names for the trace fails, the trace contains less information:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
[0x9da402]
[0x6648e9]
[0x7f1a5af000f0]
[0x7f1a5a10f0f2]
[0x7412cb]
[0x688354]
[0x688494]
[0x67a170]
[0x67f0ad]
[0x67fdf8]
[0x6811b6]
[0x66e05e]

Debugging a MySQL Server

2656

In the latter case, you can use the resolve_stack_dump utility to determine where mysqld died by
using the following procedure:

1. Copy the numbers from the stack trace to a file, for example mysqld.stack. The numbers should
not include the surrounding square brackets:

0x9da402
0x6648e9
0x7f1a5af000f0
0x7f1a5a10f0f2
0x7412cb
0x688354
0x688494
0x67a170
0x67f0ad
0x67fdf8
0x6811b6
0x66e05e

2. Make a symbol file for the mysqld server:

shell> nm -n libexec/mysqld > /tmp/mysqld.sym

If mysqld is not linked statically, use the following command instead:

shell> nm -D -n libexec/mysqld > /tmp/mysqld.sym

If you want to decode C++ symbols, use the --demangle, if available, to nm. If your version of nm
does not have this option, you will need to use the c++filt command after the stack dump has
been produced to demangle the C++ names.

3. Execute the following command:

shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack

If you were not able to include demangled C++ names in your symbol file, process the
resolve_stack_dump output using c++filt:

shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack | c++filt

This prints out where mysqld died. If that does not help you find out why mysqld died, you should
create a bug report and include the output from the preceding command with the bug report.

However, in most cases it does not help us to have just a stack trace to find the reason for the
problem. To be able to locate the bug or provide a workaround, in most cases we need to know the
statement that killed mysqld and preferably a test case so that we can repeat the problem! See
Section 1.7, “How to Report Bugs or Problems”.

Newer versions of glibc stack trace functions also print the address as relative to the object. On
glibc-based systems (Linux), the trace for a crash within a plugin looks something like:

plugin/auth/auth_test_plugin.so(+0x9a6)[0x7ff4d11c29a6]

To translate the relative address (+0x9a6) into a file name and line number, use this command:

shell> addr2line -fie auth_test_plugin.so 0x9a6
auth_test_plugin
mysql-trunk/plugin/auth/test_plugin.c:65

The addr2line utility is part of the binutils package on Linux.

Debugging a MySQL Server

2657

On Solaris, the procedure is similar. The Solaris printstack() already prints relative addresses:

plugin/auth/auth_test_plugin.so:0x1510

To translate, use this command:

shell> gaddr2line -fie auth_test_plugin.so 0x1510
mysql-trunk/plugin/auth/test_plugin.c:88

Windows already prints the address, function name and line:

000007FEF07E10A4 auth_test_plugin.dll!auth_test_plugin()[test_plugin.c:72]

22.4.1.6 Using Server Logs to Find Causes of Errors in mysqld

Note that before starting mysqld with the general query log enabled, you should check all your tables
with myisamchk. See Chapter 5, MySQL Server Administration.

If mysqld dies or hangs, you should start mysqld with the general query log enabled. See
Section 5.2.3, “The General Query Log”. When mysqld dies again, you can examine the end of the log
file for the query that killed mysqld.

If you use the default general query log file, the log is stored in the database directory as
host_name.log In most cases it is the last query in the log file that killed mysqld, but if possible you
should verify this by restarting mysqld and executing the found query from the mysql command-line
tools. If this works, you should also test all complicated queries that didn't complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure
that mysqld is using indexes properly. See Section 13.8.2, “EXPLAIN Syntax”.

You can find the queries that take a long time to execute by starting mysqld with the slow query log
enabled. See Section 5.2.5, “The Slow Query Log”.

If you find the text mysqld restarted in the error log file (normally named hostname.err) you
probably have found a query that causes mysqld to fail. If this happens, you should check all your
tables with myisamchk (see Chapter 5, MySQL Server Administration), and test the queries in the
MySQL log files to see whether one fails. If you find such a query, try first upgrading to the newest
MySQL version. If this doesn't help and you can't find anything in the mysql mail archive, you should
report the bug to a MySQL mailing list. The mailing lists are described at http://lists.mysql.com/, which
also has links to online list archives.

If you have started mysqld with --myisam-recover-options, MySQL automatically checks and
tries to repair MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens,
MySQL writes an entry in the hostname.err file 'Warning: Checking table ...' which is
followed by Warning: Repairing table if the table needs to be repaired. If you get a lot of these
errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be
investigated further. See Section 5.1.3, “Server Command Options”.

In MySQL 5.7, when the server detects MyISAM table corruption, it writes additional information to
the error log, such as the name and line number of the source file, and the list of threads accessing
the table. Example: Got an error from thread_id=1, mi_dynrec.c:368. This is useful
information to include in bug reports.

It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the
Checking table... messages, but instead try to find out why mysqld died.

22.4.1.7 Making a Test Case If You Experience Table Corruption

If you get corrupted tables or if mysqld always fails after some update commands, you can test
whether this bug is reproducible by doing the following:

http://lists.mysql.com/

Debugging a MySQL Client

2658

• Take down the MySQL daemon (with mysqladmin shutdown).

• Make a backup of the tables (to guard against the very unlikely case that the repair does something
bad).

• Check all tables with myisamchk -s database/*.MYI. Repair any wrong tables with myisamchk
-r database/table.MYI.

• Make a second backup of the tables.

• Remove (or move away) any old log files from the MySQL data directory if you need more space.

• Start mysqld with the binary log enabled. If you want to find a query that crashes mysqld, you
should start the server with both the general query log enabled as well. See Section 5.2.3, “The
General Query Log”, and Section 5.2.4, “The Binary Log”.

• When you have gotten a crashed table, stop the mysqld server.

• Restore the backup.

• Restart the mysqld server without the binary log enabled.

• Re-execute the commands with mysqlbinlog binary-log-file | mysql. The binary log is
saved in the MySQL database directory with the name hostname-bin.NNNNNN.

• If the tables are corrupted again or you can get mysqld to die with the above command, you have
found reproducible bug that should be easy to fix! FTP the tables and the binary log to our bugs
database using the instructions given in Section 1.7, “How to Report Bugs or Problems”. If you are a
support customer, you can use the MySQL Customer Support Center https://support.mysql.com/ to
alert the MySQL team about the problem and have it fixed as soon as possible.

22.4.2 Debugging a MySQL Client

To be able to debug a MySQL client with the integrated debug package, you should configure MySQL
with -DWITH_DEBUG=1. See Section 2.8.4, “MySQL Source-Configuration Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

If you have problems with your own client code, you should attempt to connect to the server and
run your query using a client that is known to work. Do this by running mysql in debugging mode
(assuming that you have compiled MySQL with debugging on):

shell> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.7, “How to Report Bugs
or Problems”.

If your client crashes at some 'legal' looking code, you should check that your mysql.h include file
matches your MySQL library file. A very common mistake is to use an old mysql.h file from an old
MySQL installation with new MySQL library.

22.4.3 The DBUG Package

The MySQL server and most MySQL clients are compiled with the DBUG package originally created by
Fred Fish. When you have configured MySQL for debugging, this package makes it possible to get a
trace file of what the program is doing. See Section 22.4.1.2, “Creating Trace Files”.

https://support.mysql.com/

The DBUG Package

2659

This section summarizes the argument values that you can specify in debug options on the command
line for MySQL programs that have been built with debugging support. For more information about
programming with the DBUG package, see the DBUG manual in the dbug directory of MySQL source
distributions. It's best to use a recent distribution to get the most updated DBUG manual.

The DBUG package can be used by invoking a program with the --debug[=debug_options] or -#
[debug_options] option. If you specify the --debug or -# option without a debug_options value,
most MySQL programs use a default value. The server default is d:t:i:o,/tmp/mysqld.trace on
Unix and d:t:i:O,\mysqld.trace on Windows. The effect of this default is:

• d: Enable output for all debug macros

• t: Trace function calls and exits

• i: Add PID to output lines

• o,/tmp/mysqld.trace, O,\mysqld.trace: Set the debug output file.

Most client programs use a default debug_options value of d:t:o,/tmp/program_name.trace,
regardless of platform.

Here are some example debug control strings as they might be specified on a shell command line:

--debug=d:t
--debug=d:f,main,subr1:F:L:t,20
--debug=d,input,output,files:n
--debug=d:t:i:O,\\mysqld.trace

For mysqld, it is also possible to change DBUG settings at runtime by setting the debug system
variable. This variable has global and session values:

mysql> SET GLOBAL debug = 'debug_options';
mysql> SET SESSION debug = 'debug_options';

Changes at runtime require the SUPER privilege, even for the session value.

The debug_options value is a sequence of colon-separated fields:

field_1:field_2:...:field_N

Each field within the value consists of a mandatory flag character, optionally preceded by a + or -
character, and optionally followed by a comma-delimited list of modifiers:

[+|-]flag[,modifier,modifier,...,modifier]

The following table describes the permitted flag characters. Unrecognized flag characters are silently
ignored.

Flag Description

d Enable output from DBUG_XXX macros for the current state. May be followed by a list of
keywords, which enables output only for the DBUG macros with that keyword. An empty list of
keywords enables output for all macros.

In MySQL, common debug macro keywords to enable are enter, exit, error, warning,
info, and loop.

D Delay after each debugger output line. The argument is the delay, in tenths of seconds,
subject to machine capabilities. For example, D,20 specifies a delay of two seconds.

The DBUG Package

2660

f Limit debugging, tracing, and profiling to the list of named functions. An empty list enables all
functions. The appropriate d or t flags must still be given; this flag only limits their actions if
they are enabled.

F Identify the source file name for each line of debug or trace output.

i Identify the process with the PID or thread ID for each line of debug or trace output.

L Identify the source file line number for each line of debug or trace output.

n Print the current function nesting depth for each line of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the specified file. The default output is stderr.

O Like o, but the file is really flushed between each write. When needed, the file is closed and
reopened between each write.

p Limit debugger actions to specified processes. A process must be identified with the
DBUG_PROCESS macro and match one in the list for debugger actions to occur.

P Print the current process name for each line of debug or trace output.

r When pushing a new state, do not inherit the previous state's function nesting level. Useful
when the output is to start at the left margin.

S Do function _sanity(_file_,_line_) at each debugged function until _sanity()
returns something that differs from 0.

t Enable function call/exit trace lines. May be followed by a list (containing only one modifier)
giving a numeric maximum trace level, beyond which no output occurs for either debugging or
tracing macros. The default is a compile time option.

The leading + or - character and trailing list of modifiers are used for flag characters such as d or f
that can enable a debug operation for all applicable modifiers or just some of them:

• With no leading + or -, the flag value is set to exactly the modifier list as given.

• With a leading + or -, the modifiers in the list are added to or subtracted from the current modifier list.

The following examples show how this works for the d flag. An empty d list enabled output for all debug
macros. A nonempty list enables output only for the macro keywords in the list.

These statements set the d value to the modifier list as given:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+
mysql> SET debug = 'd,error,warning';
mysql> SELECT @@debug;
+-----------------+
| @@debug |
+-----------------+
| d,error,warning |
+-----------------+

A leading + or - adds to or subtracts from the current d value:

mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+----------------------+
| @@debug |
+----------------------+
| d,error,warning,loop |

The DBUG Package

2661

+----------------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+-----------+
| @@debug |
+-----------+
| d,warning |
+-----------+

Adding to “all macros enabled” results in no change:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+
mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+

Disabling all enabled macros disables the d flag entirely:

mysql> SET debug = 'd,error,loop';
mysql> SELECT @@debug;
+--------------+
| @@debug |
+--------------+
| d,error,loop |
+--------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| |
+---------+

Note

Prior to MySQL 5.7.2, the + and - modifiers were not always handled correctly
and could leave a flag value in an incorrect state. Verify your debug-setting
sequence in advance or set it without using + or -.

2662

2663

Chapter 23 MySQL Enterprise Edition

Table of Contents
23.1 MySQL Enterprise Monitor ... 2663
23.2 MySQL Enterprise Backup ... 2664
23.3 MySQL Enterprise Security .. 2664
23.4 MySQL Enterprise Audit ... 2665
23.5 MySQL Enterprise Thread Pool .. 2665

MySQL Enterprise Edition is a commercial product. Like MySQL Community Edition, MySQL
Enterprise Edition includes MySQL Server, a fully integrated transaction-safe, ACID-compliant
database with full commit, rollback, crash-recovery, and row-level locking capabilities. In addition,
MySQL Enterprise Edition includes the following components designed to provide monitoring and
online backup, as well as improved security and scalability:

The following sections briefly discuss each of these components and indicate where to find more
detailed information. To learn more about commercial products, see http://www.mysql.com/products/.

• MySQL Enterprise Monitor

• MySQL Enterprise Backup

• MySQL Enterprise Security

• MySQL Enterprise Audit

• MySQL Enterprise Thread Pool

23.1 MySQL Enterprise Monitor

MySQL Enterprise Monitor is an enterprise monitoring system for MySQL that keeps an eye on your
MySQL servers, notifies you of potential issues and problems, and advises you how to fix the issues.
MySQL Enterprise Monitor can monitor all kinds of configurations, from a single MySQL server that is
important to your business, all the way up to a huge farm of MySQL servers powering a busy web site.

The following discussion briefly summarizes the basic components that make up the MySQL Enterprise
Monitor product. For more information, see the MySQL Enterprise Monitor manual, available at http://
dev.mysql.com/doc/mysql-monitor/en/.

MySQL Enterprise Monitor components can be installed in various configurations depending on your
database and network topology, to give you the best combination of reliable and responsive monitoring
data, with minimal overhead on the database server machines. A typical MySQL Enterprise Monitor
installation consists of:

• One or more MySQL servers to monitor. MySQL Enterprise Monitor can monitor both Community
and Enterprise MySQL server releases.

• A MySQL Enterprise Monitor Agent for each monitored MySQL server.

• A single MySQL Enterprise Service Manager, which collates information from the agents and
provides the user interface to the collected data.

MySQL Enterprise Monitor is designed to monitor one or more MySQL servers. The monitoring
information is collected by using an agent, MySQL Enterprise Monitor Agent. The agent communicates
with the MySQL server that it monitors, collecting variables, status and health information, and sending
this information to the MySQL Enterprise Service Manager. If you have multiple MySQL servers, then
you have multiple MySQL Enterprise Monitor Agent processes monitoring each MySQL server.

http://dev.mysql.com/doc/mysql-monitor/en/
http://dev.mysql.com/doc/mysql-monitor/en/

MySQL Enterprise Backup

2664

The information collected by the agent about each MySQL server you are monitoring is sent to the
MySQL Enterprise Service Manager. This server collates all of the information from the agents. As it
collates the information sent by the agents, the MySQL Enterprise Service Manager continually tests
the collected data, comparing the status of the server to reasonable values. When thresholds are
reached, the server can trigger an event (including an alarm and notification) to highlight a potential
issue, such as low memory, high CPU usage, or more complex conditions such insufficient buffer sizes
and status information. We call each test, with its associated threshold value, a rule.

These rules, and the alarms and notifications, are each known as a MySQL Enterprise Advisor.
Advisors form a critical part of the MySQL Enterprise Service Manager, as they provide warning
information and troubleshooting advice about potential problems.

The MySQL Enterprise Service Manager includes a web server, and you interact with it through
any web browser. This interface, the MySQL Enterprise Monitor User Interface, displays all of the
information collected by the agents, and lets you view all of your servers and their current status as a
group or individually. You control and configure all aspects of the service using the MySQL Enterprise
Monitor User Interface.

The information supplied by the MySQL Enterprise Monitor Agent processes also includes statistical
and query information, which you can view in the form of graphs. For example, you can view aspects
such as server load, query numbers, or index usage information as a graph over time. The graph
lets you pinpoint problems or potential issues on your server, and can help diagnose the impact from
database or external problems (such as external system or network failure) by examining the data from
a specific time interval.

The MySQL Enterprise Monitor Agent can also be configured to collect detailed information about
the queries executed on your server, including the row counts and performance times for executing
each query. You can correlate the detailed query data with the graphical information to identify which
queries were executing when you experienced a particularly high load, index or other issue. The query
data is supported by a system called Query Analyzer, and the data can be presented in different ways
depending on your needs.

23.2 MySQL Enterprise Backup
MySQL Enterprise Backup performs hot backup operations for MySQL databases. The product is
architected for efficient and reliable backups of tables created by the InnoDB storage engine. For
completeness, it can also back up tables from MyISAM and other storage engines.

The following discussion briefly summarizes MySQL Enterprise Backup. For more information, see the
MySQL Enterprise Backup manual, available at http://dev.mysql.com/doc/mysql-enterprise-backup/en/.

Hot backups are performed while the database is running and applications are reading and writing
to it. This type of backup does not block normal database operations, and it captures even changes
that occur while the backup is happening. For these reasons, hot backups are desirable when your
database “grows up” -- when the data is large enough that the backup takes significant time, and when
your data is important enough to your business that you must capture every last change, without taking
your application, web site, or web service offline.

MySQL Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For
tables using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the
database continues to run, but those tables cannot be modified while being backed up. For efficient
backup operations, you can designate InnoDB as the default storage engine for new tables, or convert
existing tables to use the InnoDB storage engine.

23.3 MySQL Enterprise Security
MySQL Enterprise Edition provides plugins that implement authentication using external services:

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a

http://dev.mysql.com/doc/mysql-enterprise-backup/en/

MySQL Enterprise Audit

2665

standard interface to access various kinds of authentication methods, such as Unix passwords or an
LDAP directory.

• MySQL Enterprise Edition includes an authentication plugin that performs external authentication
on Windows, enabling MySQL Server to use native Windows services to authenticate client
connections. Users who have logged in to Windows can connect from MySQL client programs to the
server based on the information in their environment without specifying an additional password.

For more information, see The PAM Authentication Plugin, and The Windows Native Authentication
Plugin.

23.4 MySQL Enterprise Audit

MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin.
MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring
and logging of connection and query activity executed on specific MySQL servers. Designed to meet
the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy to use auditing
and compliance solution for applications that are governed by both internal and external regulatory
guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

For more information, see Section 6.3.13, “MySQL Enterprise Audit Log Plugin”.

23.5 MySQL Enterprise Thread Pool

MySQL Enterprise Edition includes the MySQL Thread Pool, implemented using a server plugin. The
default thread-handling model in MySQL Server executes statements using one thread per client
connection. As more clients connect to the server and execute statements, overall performance
degrades. In MySQL Enterprise Edition, a thread pool plugin provides an alternative thread-handling
model designed to reduce overhead and improve performance. The plugin implements a thread pool
that increases server performance by efficiently managing statement execution threads for large
numbers of client connections.

For more information, see The Thread Pool Plugin.

http://dev.mysql.com/doc/refman/5.6/en/pam-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.6/en/windows-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.6/en/windows-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.6/en/thread-pool-plugin.html

2666

2667

Chapter 24 MySQL Workbench
MySQL Workbench provides a graphical tool for working with MySQL Servers and databases. MySQL
Workbench fully supports MySQL Server versions 5.1 and above. It is also compatible with MySQL
Server 5.0, but not every feature of 5.0 may be supported. It does not support MySQL Server versions
4.x.

The following discussion briefly describes MySQL Workbench capabilities. For more information, see
the MySQL Workbench manual, available at http://dev.mysql.com/doc/workbench/en/.

MySQL Workbench provides five main areas of functionality:

• SQL Development: Enables you to create and manage connections to database servers. As well
as enabling you to configure connection parameters, MySQL Workbench provides the capability to
execute SQL queries on the database connections using the built-in SQL Editor. This functionality
replaces that previously provided by the Query Browser standalone application.

• Data Modeling: Enables you to create models of your database schema graphically, reverse and
forward engineer between a schema and a live database, and edit all aspects of your database using
the comprehensive Table Editor. The Table Editor provides easy-to-use facilities for editing Tables,
Columns, Indexes, Triggers, Partitioning, Options, Inserts and Privileges, Routines and Views.

• Server Administration: Enables you to create and administer server instances.

• Data Migration: Allows you to migrate from Microsoft SQL Server, Sybase ASE, SQLite, SQL
Anywhere, PostreSQL, and other RDBMS tables, objects and data to MySQL. Migration also
supports migrating from earlier versions of MySQL to the latest releases.

• MySQL Enterprise Support: Support for Enterprise products such as MySQL Enterprise Backup
and MySQL Audit.

MySQL Workbench is available in two editions, the Community Edition and the Commercial Edition.
The Community Edition is available free of charge. The Commercial Edition provides additional
Enterprise features, such as database documentation generation, at low cost.

http://dev.mysql.com/doc/workbench/en/

2668

2669

Chapter 25 Introduction

Table of Contents
25.1 Installing and Configuring ... 2669
25.2 Edit MySQL Data in Excel ... 2671
25.3 Import MySQL Data into Excel ... 2673
25.4 Append Excel Data into MySQL ... 2676
25.5 Export Excel Data into MySQL ... 2679
25.6 What Is New In MySQL for Excel ... 2682
25.7 MySQL for Excel FAQ ... 2683

MySQL for Excel enables you to work with a MySQL database from within Microsoft Excel. MySQL
data can be imported into Excel, Excel data can be exported into MySQL as a new table or appended
to a current table, and MySQL for Excel enables you to edit the MySQL data directly from within Excel.

Visit the MySQL for Excel forum for additional MySQL for Excel help and support.

For release notes detailing the changes in each release of MySQL for Excel, see MySQL for Excel
Release Notes.

25.1 Installing and Configuring

MySQL for Excel is a product for Microsoft Windows, and it is installed with MySQL Installer. And
typically you will not be required to install or configure additional tools to use MySQL for Excel.

Note

To install, download and execute the MySQL Installer. Select the MySQL for
Excel product and then proceed with the installation. See the MySQL Installer
manual for additional details.

MySQL for Excel Requirements

The MySQL Installer installation process will check if these requirements are met, or notify you if further
action is required before proceeding with the installation.

• .NET Framework 4.0 (Client or Full Profile).

• Microsoft Office Excel 2007 or greater, for Microsoft Windows.

• Visual Studio Tools for Office 4.0, and MySQL Installer may install this for you.

• An available MySQL Server connection.

MySQL for Excel is loaded and executed by selecting the Data menu tab in Excel, and then choosing
the "MySQL for Excel" Database icon. This opens a new Excel sidebar with the available MySQL for
Excel options. The navigation bar with the MySQL for Excel icon is shown in the following screenshot:

http://forums.mysql.com/list.php?172
http://dev.mysql.com/doc/relnotes/mysql-for-excel/en/
http://dev.mysql.com/doc/relnotes/mysql-for-excel/en/
http://dev.mysql.com/downloads/installer/

Configuration

2670

Figure 25.1 The MySQL for Excel navigation bar

Configuration

While each action, such as Import MySQL Data, has its own set of options, this section describes the
global options that affect the entire plugin.

Edit MySQL Data in Excel

2671

Figure 25.2 The MySQL for Excel configuration: Global Options

• Connection Options:

• Wait [] seconds for a connection to the server before timing out. Defaults to 15.

• Wait [] seconds for a database query to execute before timing out. Defaults to 60.

• SQL Queries Options:

• [] Use optimistic updates on all Edit Data sessions. Enabled by default.

• () Do not show SQL statements sent to the server. Enabled by default.

• () Preview SQL statements before they are sent to the server. Disabled by default.

• () Show executed SQL statements along with their results. Disabled by default.

• Edit Session Options:

• [] Restore saved Edit sessions when opening an Excel workbook. Enabled by default.

• () Reuse Excel worksheets matching their names with the session table names. Enabled by
default.

• () Create new Excel worksheets for the restored Edit sessions. Disabled by default.

25.2 Edit MySQL Data in Excel
MySQL for Excel enables you to load and edit MySQL data directly from Microsoft Excel. Changes are
immediately committed if the Auto-Commit option is enabled, or done manually by pressing Commit
Changes.

The example below uses the category table of the example sakila database, but the screen will
look the same for any table. Within MySQL for Excel, Open a MySQL Connection, click the sakila
schema, Next, select the category table, click Edit MySQL Data, then choose Import to import the
data into a new Microsoft Excel worksheet for editing.

Edit MySQL Data in Excel

2672

Note

For additional information about the importing procedure, see Section 25.3,
“Import MySQL Data into Excel”.

Figure 25.3 Editing table data with MySQL for Excel

The background color represents the status of each cell, and there are four distinct colors that are used
while editing table data:

Note

The Green and Blue colors were switched in MySQL for Excel 1.2.0.

Table 25.1 Background cell colors

Color Description

White Default color for all cells. This is either the original data, or the data after Refresh
from DB is clicked.

Green Cells that were committed with success.

Blue Cells that were modified but have not yet been committed.

Red Cells that generated an error when a commit was attempted. An error dialog is
also displayed while the commit is attempted.

Import MySQL Data into Excel

2673

Color Description

Orange Cells that had a commit attempted, but the commit failed due to detected
changes from external sources. For example, a different user made a change to
a field after it was imported into Excel. This is a feature of Optimistic Updates.

Yellow Cells that accept new data. Data entered here is inserted into the MySQL table.

In our example, the green "Drama" field was changed and then committed first, then the blue "Gaming"
field was changed but not committed, and then Auto-Commit was enabled before changing the "9"
to a "10" in column 10, which generated an error because this commit would have added a duplicate
value as primary key.

25.3 Import MySQL Data into Excel

Data can be imported from MySQL into a Microsoft Excel spreadsheet by using the Import MySQL
Data option after selecting either a table, view, or procedure to import.

Choosing columns to import

By default, all columns are selected and will be imported. Specific columns may be selected (or
unselected) using the standard Microsoft Windows method of either Control + Mouse click to toggle
the selection of individual columns, or Shift + Mouse click to select a range of columns.

The background color of a column shows the status of each column. The color white means that the
column has been selected, and therefore it will be imported. Conversely, a gray background means
that the column will not be imported.

Right-clicking anywhere in the preview grid opens a context-menu with either a Select None or
Select All option, depending on the current status.

Importing a table

The dialog while importing a table includes the following options:

• Include Column Names as Headers: Enabled by default, this inserts the column names at the top
of the Microsoft Excel spreadsheet as a "headers" row.

• Limit to ___ Rows and Start with Row ___: Disabled by default, this limits the range of imported
data. The Limit to option defaults to 1, and defines the number of rows to import. The Start
with Row option defaults to 1 (the first row), and defines where the import begins. Each option has
a maximum value of COUNT(rows) in the table.

The Advanced Options include:

Importing a table

2674

Figure 25.4 Importing table data with MySQL for Excel: Advanced options

General Options:

• Use the first [] rows to preview the MySQL tables data. Defaults to 10.

• [] Escape text values that start with "=" so Excel does not treat them as formulas. Enabled by default.

Excel Table Options:

• [] Create an Excel table for the imported MySQL table data. Enabled by default.

• Use style [] for the new Excel table. Defaults to MySqlDefault.

• [] Prefix Excel tables with the following text: _______. Disabled by default.

Importing a table displays a dialog similar to the following:

Importing a view or procedure

2675

Figure 25.5 Importing table data with MySQL for Excel

Importing a view or procedure

Importing a view or procedure displays a similar dialogue, but with the following options:

• Include Column Names as Headers: Enabled by default, this will insert the column names at the
top of the Excel spreadsheet as a "headers" row.

• Import: Because a procedure might return multiple result sets, the import options include:

• Selected Result Set: Imports the selected tab sheet. This is the default behavior.

• All Result Sets - Arranged Horizontally: Imports all result sets into the Excel Worksheet
horizontally, and inserts one empty column between each result set.

• All Result Sets - Arranged Vertically: Imports all result sets into the Excel Worksheet vertically, and
inserts one empty row between each result set.

For example, a dialogue like the following is displayed after importing a procedure and pressing the
Call button to invoke the stored procedure:

Append Excel Data into MySQL

2676

Figure 25.6 Importing called stored procedure data with MySQL for Excel

25.4 Append Excel Data into MySQL

Data from a Microsoft Excel spreadsheet can be appended to a MySQL database table by using the
Append Excel MySQL Data to Table option.

Column mappings

Mapping the Excel columns to the MySQL columns can be executed automatically (default), manually,
or by using a stored mapping routine. An automatic mapping routine is the default, and can be can
be tweaked if every column cannot be matched automatically. The following screenshot shows two
columns of Excel data, and the preview dialog after choosing Append Excel Data to Table:

General mapping information

2677

Figure 25.7 Appending Excel data to MySQL (Automatic mapping)

General mapping information

It is common to tweak the column mappings. A few notes about the manual mapping process:

• Manual mapping is performed by dragging a column from the upper source grid (Excel spreadsheet)
and dropping it into the lower target column MySQL table grid. Click anywhere within the column to
initiate this dragging routine.

• The color of the header field for each column defines the current mapping status of the column. The
colors include:

• Green: A source column is mapped to a target column.

• Red: A target column is not mapped.

• Gray: A source column is not mapped.

• A source column may be mapped to multiple target columns, although this action generates a
warning dialog.

Mapping methods

2678

• Right-clicking a target column shows a context menu with options to either Remove Column Mapping
for a single column, or to Clear All Mappings for all columns. Dragging a target column outside of the
grid removes the mapping.

Mapping methods

The three mapping methods are described below:

• Automatic: The automatic mapping method attempts to match the Excel source column names with
the MySQL target table column names. It is then possible to manually tweak the mapping afterwards.

If the automatic process finds zero columns to match, then a simple 1 to 1 matching routine is
attempted. Meaning, SourceColumn #1 to TargetColumn #1, SourceColumn #2 to TargetColumn #2,
and so on.

• Manual: The source column names are manually dragged (matched) with the target column names.
Manual dragging can also be performed after the Automatic method is selected.

• Stored: Manual mapping styles may be saved using the Store Mapping button, which will also
prompt for a name and then save it using a "name (dbname.tablename)" naming scheme. The saved
mapping style will then be available alongside the Automatic and Manual options.

Stored mappings may be deleted or renamed within the Advanced Options dialog.

Advanced Options

There are several advanced options that are configured and stored between sessions for each Excel
user. The dialog looks similar to:

Figure 25.8 Appending Excel data to MySQL (Advanced Options)

Export Excel Data into MySQL

2679

The advanced Mapping Options:

• Perform an automatic mapping when dialog opens: Automatically attempt to map the
target and source when the Append Data dialog is opened. This feature is enabled by default.

• Automatically store the column mapping for the given table: Stores each
mapping routine after executing the Append operation. The mapping routine is saved using the
"tablenameMapping (dbname.tablename)" format. This may also be performed manually using the
Store Mapping button. It is enabled by default, and this feature was added in MySQL for Excel 1.1.0.

• Reload stored column mapping for the selected table automatically: If a stored
mapping routine exists that matches all column names in the source grid with the target grid, then
it is automatically be loaded. This is enabled by default, and this feature was added in MySQL for
Excel 1.1.0.

The advanced Field Data Options:

• Use the first 100 (default) Excel data rows to preview and calculate data types. This determines the
number of rows that the preview displays, and the values that affect the automatic mapping feature.

• Use formatted values: The data from Excel is treated as Text, Double, or Date. This is enabled
by default. When disabled, data is never treated as a Date type, so for example, this means that a
date would be represented as a number.

The advanced SQL Queries Options:

• Disable table indexes to speed-up rows insertion: This option is disabled by default,
since you must make sure that if unique indexes are present, that the data mapped to that column
does not contain duplicate data. This option was added in MySQL for Excel 1.2.1.

The Stored Column Mappings is a list of saved column mappings that were saved with the
"Automatically store the column mapping for the given table" feature, or manually with the Store
Mapping option.

25.5 Export Excel Data into MySQL

Data from a Microsoft Excel spreadsheet can be exported to a new MySQL database table by using the
Export Excel Data to New Table option. Exporting data looks like so:

Advanced Export options

2680

Figure 25.9 Exporting Excel data to MySQL

Advanced Export options

Several advanced options enables you to tweak the exported data. The advanced options dialog looks
like so:

Advanced Export options

2681

Figure 25.10 Exporting Excel data to MySQL (Advanced options)

• Column Datatype Options:

• Use the first 100 (default) Excel data rows to preview and calculate data types: This determines
the number of rows that the preview displays, and the values that affect the automatic mapping
feature.

• Analyze and try to detect correct datatype based on column field contents: Attempts to analyze
the data and determine the data type for the column. The column type is defined as VARCHAR if it
contains multiple types.

• Add additional buffer to VARCHAR length (round up to 12, 25, 45, 125, 255): When the data type is
automatically detected and is set to VARCHAR, then it calculates the maximum length for all rows
within the column, and rounds up the maximum length to one of the defined lengths above.

If disabled, then the VARCHAR length is set to the length of the longest entry in the Excel
spreadsheet.

• Automatically check the Index checkbox for Integer columns: If enabled (default), columns with an
Integer data type will have the Create Index option enabled by default.

• Automatically check the Allow Empty checkbox for columns without an index: If enabled (default),
columns without the Create Index checkbox checked will automatically enable the Allow Empty
configuration option.

• Field Data options:

• Use formatted values: When enabled (default), the data from Excel is treated as Text, Double, or
Date. When disabled, data is never treated as a Date type, so for example this means that a date
would be represented as a number.

• Other options:

• Create table's secondary indexes after data has been exported to speed-up rows insertion: This
saves disk I/O for bulk inserts (thousands of rows) since reindexing will not happen every time a
row is inserted, but only once at the end of the data insertion. This option is enabled by default,
and was added in MySQL for Excel 1.2.1.

What Is New In MySQL for Excel

2682

• Note: This option was Removed in MySQL for Excel 1.2.1. Now, the default behavior is to always
remove empty columns from the calculations.

Remove columns that contain no data, otherwise flag them as "Excluded": If enabled, columns
without data in Excel are removed and not shown in the preview panel. If disabled (default),
these columns will exist but have the Exclude Column option checked. This option was added in
MySQL for Excel 1.1.0.

25.6 What Is New In MySQL for Excel

Version 1.2.0

• Edit Connections: MySQL connections can now be edited from within the MySQL for Excel
plugin by right-clicking and choosing Edit Connection. Before, these connections could only be
edited with MySQL Workbench.

• Optimistic Updates: Previously, only "Pessimistic Updates" were used, which means that
pressing Commit Changes would overwrite changes performed outside of MySQL for Excel for the
edited cells.

Both options remain available today, and optimistic updates are enabled by default. This update type
can be set either as a preference, or toggled per session.

• The Append Data dialog will now notify you of incompatible types (with visual warnings) when
mapping source Excel columns to target MySQL columns.

If a mismatch is discovered, then the column in the source grid that contains the mapped Excel data
turns red, and selecting this column displays a warning with text explaining that the source data is
not suitable for the mapped target column's data type.

• New preview preferences allow you to enable one of the following three options:

• Preview SQL statements before they are sent to the Server: View (and optionally) edit the
MySQL UPDATE/INSERT statements before they are committed.

• Show executed SQL statements along with the results: View the statements after they are
committed, which is the current behavior.

• Do not show the MySQL statements: Only show summary information, such as number of
affected rows, and not MySQL statements. This is enabled by default.

• Create Table: The Data Export feature now has the option to only create the table without inserting
the data.

To execute, toggle the Export Data button to Create Table, and then click.

• The selected schema name is now displayed on top of the MySQL for Excel Database Object
Selection panel.

• The Advanced Options dialogs opened from the Import, Export and Append Data windows now
immediately apply the option changes, when before the Advanced Options dialog had to be
reopened before the changes could be previewed.

• Edit Data sessions can now be saved: Using the new Edit Session preferences, these sessions
were automatically closed after closing an Excel workbook. This data, such as the Workbench
connection ID, MySQL schema, and MySQL table name, can now be preserved if the Excel
workbook is saved to disk, and available when the Excel workbook is reopened.

• Excel tables are automatically created for any data imported from MySQL to an Excel worksheet,
with a name like "Schema.DB-Object-name". The DB object name can be a MySQL table, view, or

MySQL for Excel FAQ

2683

stored procedure. Options for this feature are listed under Import Data, Advanced Options. The
newly created Excel tables can be referenced for data analysis in Pivot Tables or reports.

25.7 MySQL for Excel FAQ

Frequently Asked Questions, with Answers.

Questions

• 26.7.1: [2683] I installed the MySQL for Excel plugin, but can't find it in Microsoft Excel. How do I
start it?

• 26.7.2: [2683] I click on Edit Data and after importing the table data into Excel, I can't sort or move
columns around. How can I do that?

• 26.7.3: [2683] When editing a MySQL table's data, the Excel worksheet where the data is dumped
is protected. How can unprotect it?

• 26.7.4: [2683] The MySQL Workbench connections that use SSH tunneling appear grayed out
(disabled) in MySQL for Excel. How can I use a SSH connection?

Questions and Answers

26.7.1: I installed the MySQL for Excel plugin, but can't find it in Microsoft Excel. How do I start
it?

The MySQL for Excel plugin is automatically added to Microsoft Excel's data menu when it is installed.
Look for the MySQL for Excel icon, by default it will be listed on the right side of the main menu.

If it's not there, then you might have to reinstall the plugin. But before doing so, first check if it's listed
under "Add/Remove Programs" in Microsoft Windows. If not, then it has not been installed. Next, check
the Excel Add-Ins list. For Office 2007 this is found by clicking the Office logo in Excel (top left corner),
click Excel Options, then select Add-Ins. Is MySQL for Excel listed as a COM Add-in? If so, then
consider filing a bug report (bugs.mysql.com), or attempt to reinstall the plugin.

26.7.2: I click on Edit Data and after importing the table data into Excel, I can't sort or move
columns around. How can I do that?

In order to maintain the mapping of rows and columns in the Excel Worksheet against the rows and
columns in the MySQL table, no alteration is permitted on the worksheet (i.e. sorting, deleting rows,
deleting columns). If you need to alter the data there you can do that by right-clicking the Edit Data
window and selecting Exit Edit Mode.

26.7.3: When editing a MySQL table's data, the Excel worksheet where the data is dumped is
protected. How can unprotect it?

The Excel worksheet is protected to not allow alterations to the order of rows and columns. The
password used for the protection is a GUID auto-generated at runtime so that the protection is not
violated in any way. If you wish to unprotect the worksheet to manipulate your data, you can do that by
right-clicking the Edit Data window and selecting Exit Edit Mode.

26.7.4: The MySQL Workbench connections that use SSH tunneling appear grayed out
(disabled) in MySQL for Excel. How can I use a SSH connection?

This is a known limitation of MySQL for Excel. MySQL for Excel uses MySQL Connector/NET to
connect and communicate with MySQL databases. Connector/NET does not have SSH support, so the
behavior will change if Connector/NET supports it in the future.

2684

2685

Appendix A Licenses for Third-Party Components

Table of Contents
A.1 Artistic License (Perl) 1.0 .. 2687
A.2 Boost Library License .. 2689
A.3 dtoa.c License .. 2689
A.4 Editline Library (libedit) License .. 2690
A.5 Expect.pm License .. 2693
A.6 Facebook Fast Checksum Patch License ... 2699
A.7 Facebook Patches License .. 2700
A.8 FindGTest.cmake License .. 2701
A.9 Fred Fish's Dbug Library License ... 2701
A.10 getarg License .. 2702
A.11 GLib License (for MySQL Proxy) .. 2703
A.12 GNU General Public License Version 2.0, June 1991 .. 2703
A.13 GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library
Exception Version 3.1, 31 March 2009 ... 2708
A.14 GNU Lesser General Public License Version 2.1, February 1999 2719
A.15 GNU Readline License .. 2727
A.16 GNU Standard C++ Library (libstdc++) License ... 2727
A.17 Google Controlling Master Thread I/O Rate Patch License .. 2728
A.18 Google Perftools (TCMalloc utility) License ... 2729
A.19 Google SMP Patch License ... 2729
A.20 lib_sql.cc License .. 2730
A.21 Libaio License ... 2730
A.22 libevent License .. 2730
A.23 Libiconv License .. 2732
A.24 libintl License .. 2732
A.25 Linux-PAM License ... 2733
A.26 LPeg Library License .. 2734
A.27 Lua (liblua) License ... 2734
A.28 LuaFileSystem Library License ... 2735
A.29 md5 (Message-Digest Algorithm 5) License .. 2735
A.30 MeCab License ... 2735
A.31 memcached License .. 2736
A.32 Memcached.pm License .. 2736
A.33 mkpasswd.pl License .. 2737
A.34 nt_servc (Windows NT Service class library) License .. 2740
A.35 OpenPAM License .. 2740
A.36 OpenSSL v1.0 License .. 2741
A.37 PCRE License .. 2743
A.38 Percona Multiple I/O Threads Patch License .. 2744
A.39 Red HAT RPM Spec File License .. 2744
A.40 RegEX-Spencer Library License .. 2744
A.41 Richard A. O'Keefe String Library License .. 2745
A.42 SHA-1 in C License .. 2745
A.43 Unicode Data Files .. 2745
A.44 zlib License .. 2746

The following is a list of the libraries we have included with the MySQL Server source and components
used to test MySQL. We are thankful to all individuals that have created these. Some of the
components require that their licensing terms be included in the documentation of products that include
them. Cross references to these licensing terms are given with the applicable items in the list.

• GroupLens Research Project

MySQL 5.7

2686

The MySQL Quality Assurance team would like to acknowledge the use of the MovieLens Data Sets
(10 million ratings and 100,000 tags for 10681 movies by 71567 users) to help test MySQL products
and to thank the GroupLens Research Project at the University of Minnesota for making the data
sets available.

MySQL 5.7

• Section A.1, “Artistic License (Perl) 1.0”

• Section A.2, “Boost Library License”

• Section A.3, “dtoa.c License”

• Section A.4, “Editline Library (libedit) License”

• Section A.5, “Expect.pm License”

• Section A.6, “Facebook Fast Checksum Patch License”

• Section A.7, “Facebook Patches License”

• Section A.8, “FindGTest.cmake License”

• Section A.9, “Fred Fish's Dbug Library License”

• Section A.10, “getarg License”

• Section A.12, “GNU General Public License Version 2.0, June 1991”

• Section A.13, “GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library
Exception Version 3.1, 31 March 2009”

• Section A.14, “GNU Lesser General Public License Version 2.1, February 1999”

• Section A.15, “GNU Readline License”

• Section A.16, “GNU Standard C++ Library (libstdc++) License”

• Section A.17, “Google Controlling Master Thread I/O Rate Patch License”

• Section A.18, “Google Perftools (TCMalloc utility) License”

• Section A.19, “Google SMP Patch License”

• Section A.20, “lib_sql.cc License”

• Section A.21, “Libaio License”

• Section A.22, “libevent License”

• Section A.25, “Linux-PAM License”

• Section A.29, “md5 (Message-Digest Algorithm 5) License”

• Section A.30, “MeCab License”

• Section A.31, “memcached License”

• Section A.32, “Memcached.pm License”

• Section A.33, “mkpasswd.pl License”

• Section A.34, “nt_servc (Windows NT Service class library) License”

• Section A.35, “OpenPAM License”

• Section A.36, “OpenSSL v1.0 License”

MySQL Proxy

2687

• Section A.38, “Percona Multiple I/O Threads Patch License”

• Section A.39, “Red HAT RPM Spec File License”

• Section A.40, “RegEX-Spencer Library License”

• Section A.41, “Richard A. O'Keefe String Library License”

• Section A.42, “SHA-1 in C License”

• Section A.43, “Unicode Data Files”

• Section A.44, “zlib License”

MySQL Proxy

• Section A.11, “GLib License (for MySQL Proxy)”

• Section A.14, “GNU Lesser General Public License Version 2.1, February 1999”

• Section A.22, “libevent License”

• Section A.23, “Libiconv License”

• Section A.24, “libintl License”

• Section A.26, “LPeg Library License”

• Section A.27, “Lua (liblua) License”

• Section A.28, “LuaFileSystem Library License”

• Section A.37, “PCRE License”

A.1 Artistic License (Perl) 1.0

The "Artistic License"

Preamble

The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to make
reasonable modifications.

Definitions:

 "Package" refers to the collection of files distributed by the
 Copyright Holder, and derivatives of that collection of files
 created through textual modification.

 "Standard Version" refers to such a Package if it has not been
 modified, or has been modified in accordance with the wishes
 of the Copyright Holder as specified below.

 "Copyright Holder" is whoever is named in the copyright or
 copyrights for the package.

 "You" is you, if you're thinking about copying or distributing
 this Package.

 "Reasonable copying fee" is whatever you can justify on the
 basis of media cost, duplication charges, time of people involved,
 and so on. (You will not be required to justify it to the
 Copyright Holder, but only to the computing community at large
 as a market that must bear the fee.)

Artistic License (Perl) 1.0

2688

 "Freely Available" means that no fee is charged for the item
 itself, though there may be fees involved in handling the item.
 It also means that recipients of the item may redistribute it
 under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that you
duplicate all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A Package
modified in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following:

 a) place your modifications in the Public Domain or otherwise make them
 Freely Available, such as by posting said modifications to Usenet or
 an equivalent medium, or placing the modifications on a major archive
 site such as uunet.uu.net, or by allowing the Copyright Holder to include
 your modifications in the Standard Version of the Package.

 b) use the modified Package only within your corporation or organization.

 c) rename any non-standard executables so the names do not conflict
 with standard executables, which must also be provided, and provide
 a separate manual page for each non-standard executable that clearly
 documents how it differs from the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:

 a) distribute a Standard Version of the executables and library files,
 together with instructions (in the manual page or equivalent) on where
 to get the Standard Version.

 b) accompany the distribution with the machine-readable source of
 the Package with your modifications.

 c) give non-standard executables non-standard names, and clearly
 document the differences in manual pages (or equivalent), together
 with instructions on where to get the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this
Package. You may charge any fee you choose for support of this
Package. You may not charge a fee for this Package itself. However,
you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software
distribution provided that you do not advertise this Package as a
product of your own. You may embed this Package's interpreter within
an executable of yours (by linking); this shall be construed as a mere
form of aggregation, provided that the complete Standard Version of the
interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whoever generated
them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing a
binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you do
not represent such an executable image as a Standard Version of this
Package.

Boost Library License

2689

7. C subroutines (or comparably compiled subroutines in other
languages) supplied by you and linked into this Package in order to
emulate subroutines and variables of the language defined by this
Package shall not be considered part of this Package, but are the
equivalent of input as in Paragraph 6, provided these subroutines do
not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written
permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

 The End

A.2 Boost Library License
The following software may be included in this product:

Boost C++ Libraries

Use of any of this software is governed by the terms of the license below:

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit
third-parties to whom the Software is furnished to do so, all
subject to the following:

The copyright notices in the Software and this entire statement,
including the above license grant, this restriction and the
following disclaimer, must be included in all copies of the
Software, in whole or in part, and all derivative works of the
Software, unless such copies or derivative works are solely in the
form of machine-executable object code generated by a source
language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER
LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

A.3 dtoa.c License
The following software may be included in this product:

dtoa.c

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Editline Library (libedit) License

2690

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this entire
notice is included in all copies of any software which is or includes
a copy or modification of this software and in all copies of the
supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT
MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
PURPOSE.

A.4 Editline Library (libedit) License
The following software may be included in this product:

Editline Library (libedit)

Some files are:

Copyright (c) 1992, 1993
The Regents of the University of California. All rights reserved.

This code is derived from software contributed to
Berkeley by Christos Zoulas of Cornell University.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the
 above copyright notice, this list of conditions
 and the following disclaimer.
2. Redistributions in binary form must reproduce the
 above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or
 other materials provided with the distribution.
3. Neither the name of the University nor the names of
 its contributors may be used to endorse or promote
 products derived from this software without specific
 prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Some files are:

Copyright (c) 2001 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD Foundation

by Anthony Mallet.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

Editline Library (libedit) License

2691

1. Redistributions of source code must retain the
 above copyright notice, this list of conditions
 and the following disclaimer.
2. Redistributions in binary form must reproduce the
 above copyright notice, this list of conditions and the
 following disclaimer in the documentation and/or
 other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC.
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Some files are:

Copyright (c) 1997 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD Foundation

by Jaromir Dolecek.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the
 above copyright notice, this list of conditions
 and the following disclaimer.
2. Redistributions in binary form must reproduce
 the above copyright notice, this list of conditions
 and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC.
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Some files are:

Copyright (c) 1998 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this
software for any purpose with or without fee is hereby
granted, provided that the above copyright notice and
this permission notice appear in all copies.

Editline Library (libedit) License

2692

THE SOFTWARE IS PROVIDED "AS IS" AND TODD C. MILLER
DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL TODD C. MILLER BE LIABLE
FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Some files are:

Copyright (c) 1998 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD
Foundation by Christos Zoulas.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Some files are:

Copyright (c) 2009 The NetBSD Foundation, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the
 distribution.
3. All advertising materials mentioning features or use of this
 software must display the following acknowledgement:
 This product includes software developed by the NetBSD
 Foundation, Inc. and its contributors.
4. Neither the name of The NetBSD Foundation nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Expect.pm License

2693

DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.5 Expect.pm License

The following software may be included in this product:

Expect.pm Perl module

Expect.pm is licensed under the Perl license, which is essentially a dual
license.

Oracle may use, redistribute and/or modify this code under the terms of
either:

 a) the GNU General Public License as published by the Free Software
Foundation; either version 1, or (at your option) any later version, or

 b) the "Artistic License" which comes with the Expect/pr code.

Oracle elects to use the GPLv2 for version of MySQL that are licensed under
the GPL.

Oracle elects to use the Artistic license for all other (commercial) versions
of MySQL.

A copy of the GPLv2 and the Artistic License (Perl) 1.0 must be included with
any distribution:

The GNU General Public License (GPL-2.0)
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public License applies to
most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you

Expect.pm License

2694

must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The "Program", below, refers to any such
program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included
without limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the Program's source code
as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

 c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else,
saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not
normally print such an announcement, your work based on the Program is not
required to print an announcement.)

Expect.pm License

2695

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),

Expect.pm License

2696

the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of
the rights granted herein. You are not responsible for enforcing compliance
by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both
it and this License would be to refrain entirely from distribution of the
Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee
cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any later
version", you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License,
you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND

Expect.pm License

2697

PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

 One line to give the program's name and a brief idea of what it does.
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

 This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

 You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author Gnomovision
comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free
software, and you are welcome to redistribute it under certain conditions;
type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

 signature of Ty Coon, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public

Expect.pm License

2698

License instead of this License.

__

The "Artistic License"

Preamble

The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to make
reasonable modifications.

Definitions:

 "Package" refers to the collection of files distributed by the
 Copyright Holder, and derivatives of that collection of files
 created through textual modification.

 "Standard Version" refers to such a Package if it has not been
 modified, or has been modified in accordance with the wishes
 of the Copyright Holder as specified below.

 "Copyright Holder" is whoever is named in the copyright or
 copyrights for the package.

 "You" is you, if you're thinking about copying or distributing
 this Package.

 "Reasonable copying fee" is whatever you can justify on the
 basis of media cost, duplication charges, time of people involved,
 and so on. (You will not be required to justify it to the
 Copyright Holder, but only to the computing community at large
 as a market that must bear the fee.)

 "Freely Available" means that no fee is charged for the item
 itself, though there may be fees involved in handling the item.
 It also means that recipients of the item may redistribute it
 under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that you
duplicate all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A Package
modified in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following:

 a) place your modifications in the Public Domain or otherwise make them
 Freely Available, such as by posting said modifications to Usenet or
 an equivalent medium, or placing the modifications on a major archive
 site such as uunet.uu.net, or by allowing the Copyright Holder to include
 your modifications in the Standard Version of the Package.

 b) use the modified Package only within your corporation or organization.

 c) rename any non-standard executables so the names do not conflict
 with standard executables, which must also be provided, and provide
 a separate manual page for each non-standard executable that clearly
 documents how it differs from the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:

Facebook Fast Checksum Patch License

2699

 a) distribute a Standard Version of the executables and library files,
 together with instructions (in the manual page or equivalent) on where
 to get the Standard Version.

 b) accompany the distribution with the machine-readable source of
 the Package with your modifications.

 c) give non-standard executables non-standard names, and clearly
 document the differences in manual pages (or equivalent), together
 with instructions on where to get the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this
Package. You may charge any fee you choose for support of this
Package. You may not charge a fee for this Package itself. However,
you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software
distribution provided that you do not advertise this Package as a
product of your own. You may embed this Package's interpreter within
an executable of yours (by linking); this shall be construed as a mere
form of aggregation, provided that the complete Standard Version of the
interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whoever generated
them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing a
binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you do
not represent such an executable image as a Standard Version of this
Package.

7. C subroutines (or comparably compiled subroutines in other
languages) supplied by you and linked into this Package in order to
emulate subroutines and variables of the language defined by this
Package shall not be considered part of this Package, but are the
equivalent of input as in Paragraph 6, provided these subroutines do
not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written
permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

 The End

A.6 Facebook Fast Checksum Patch License

The following software may be included in this product:

Facebook Fast Checksum Patch

Copyright (C) 2009-2010 Facebook, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without

Facebook Patches License

2700

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY FACEBOOK, INC. “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL FACEBOOK, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Also included:

crc32.c -- compute the CRC-32 of a buf stream
Copyright (C) 1995-2005 Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu

A.7 Facebook Patches License

The following software may be included in this product:

Copyright (c) 2012, Facebook, Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

FindGTest.cmake License

2701

A.8 FindGTest.cmake License
The following software may be included in this product:

FindGTest.cmake helper script (part of CMake)

Copyright 2009 Kitware, Inc.
Copyright 2009 Philip Lowman
Copyright 2009 Daniel Blezek

Distributed under the OSI-approved BSD License (the "License");
see accompanying file Copyright.txt for details.

This software is distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the License for more information.
==
(To distributed this file outside of CMake, substitute the full
 License text for the above reference.)

Thanks to Daniel Blezek for the GTEST_ADD_TESTS code

Text of Copyright.txt mentioned above:

CMake - Cross Platform Makefile Generator
Copyright 2000-2009 Kitware, Inc., Insight Software Consortium
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

* Neither the names of Kitware, Inc., the Insight Software Consortium,
 nor the names of their contributors may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.9 Fred Fish's Dbug Library License
The following software may be included in this product:

Fred Fish's Dbug Library

 N O T I C E

 Copyright Abandoned, 1987, Fred Fish

getarg License

2702

 This previously copyrighted work has been placed into the public

 domain by the author and may be freely used for any purpose,

 private or commercial.

 Because of the number of inquiries I was receiving about the use

 of this product in commercially developed works I have decided to

 simply make it public domain to further its unrestricted use. I

 specifically would be most happy to see this material become a

 part of the standard Unix distributions by AT&T and the Berkeley

 Computer Science Research Group, and a standard part of the GNU

 system from the Free Software Foundation.

 I would appreciate it, as a courtesy, if this notice is left in

 all copies and derivative works. Thank you.

 The author makes no warranty of any kind with respect to this

 product and explicitly disclaims any implied warranties of mer-

 chantability or fitness for any particular purpose.

The dbug_analyze.c file is subject to the following notice:

 Copyright June 1987, Binayak Banerjee
 All rights reserved.

 This program may be freely distributed under the same terms and
 conditions as Fred Fish's Dbug package.

A.10 getarg License

The following software may be included in this product:

getarg Function (getarg.h, getarg.c files)

Copyright (c) 1997 – 2000 Kungliga Tekniska Högskolan
(Royal Institute of Technology, Stockholm, Sweden).
All rights reserved.

Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above
 copyright notice, this list of conditions and the
 following disclaimer.
2. Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials
 provided with the distribution.
3. Neither the name of the Institute nor the names of its
 contributors may be used to endorse or promote products
 derived from this software without specific prior written

GLib License (for MySQL Proxy)

2703

 permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

A.11 GLib License (for MySQL Proxy)
The following software may be included in this product:

GLib

You are receiving a copy of the GLib library in both source
and object code in the following [proxy install dir]/lib/ and
[proxy install dir]/licenses/lgpl folders. The terms of the
Oracle license do NOT apply to the GLib library; it is licensed
under the following license, separately from the Oracle programs
you receive. If you do not wish to install this library, you may
create an "exclude" file and run tar with the X option, as in
the following example, but the Oracle program might not operate
properly or at all without the library:
 tar -xvfX <package-tar-file> <exclude-file>
where the exclude-file contains, e.g.:
 <package-name>/lib/libglib-2.0.so.0.1600.6
 <package-name>/lib/libglib-2.0.so.0
 ...

Example:
tar -xvfX mysql-proxy-0.8.1-solaris10-x86-64bit.tar.gz Exclude

Exclude File:
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libglib-2.0.so
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libglib-2.0.so.0
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libglib-2.0.so.0.1600.6
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgmodule-2.0.so
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgmodule-2.0.so.0
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgmodule-2.0.so.0.1600.6
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgthread-2.0.so
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgthread-2.0.so.0
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgthread-2.0.so.0.1600.6
mysql-proxy-0.8.1-solaris10-x86-64bit/licenses/lgpl/glib-2.16.6.tar.gz

This component is licensed under Section A.14, “GNU Lesser General Public License Version 2.1,
February 1999”.

A.12 GNU General Public License Version 2.0, June 1991

The following applies to all products licensed under the GNU General
Public License, Version 2.0: You may not use the identified files
except in compliance with the GNU General Public License, Version
2.0 (the "License.") You may obtain a copy of the License at
http://www.gnu.org/licenses/gpl-2.0.txt. A copy of the license is
also reproduced below. Unless required by applicable law or agreed
to in writing, software distributed under the License is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language

GNU General Public License Version 2.0, June 1991

2704

governing permissions and limitations under the License.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not
allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original,
so that any problems introduced by others will not reflect on the
original authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in

GNU General Public License Version 2.0, June 1991

2705

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software
 interchange; or,

GNU General Public License Version 2.0, June 1991

2706

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as
a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other

GNU General Public License Version 2.0, June 1991

2707

circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever
published by the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2708

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it
 does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version
 2 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
 type 'show w'. This is free software, and you are welcome
 to redistribute it under certain conditions; type 'show c'
 for details.

The hypothetical commands 'show w' and 'show c' should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than 'show w' and
'show c'; they could even be mouse-clicks or menu items--whatever
suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 program 'Gnomovision' (which makes passes at compilers) written
 by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License.

A.13 GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2709

Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are
designed to take away your freedom to share and change the works.
By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program--to make
sure it remains free software for all its users. We, the Free
Software Foundation, use the GNU General Public License for most
of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and
charge for them if you wish), that you receive source code or can
get it if you want it, that you can change the software or use
pieces of it in new free programs, and that you know you can do
these things.

 To protect your rights, we need to prevent others from denying
you these rights or asking you to surrender the rights. Therefore,
you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the
freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these
terms so they know their rights.

 Developers that use the GNU GPL protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this
License giving you legal permission to copy, distribute and/or
modify it.

 For the developers' and authors' protection, the GPL clearly
explains that there is no warranty for this free software. For
both users' and authors' sake, the GPL requires that modified
versions be marked as changed, so that their problems will not be
attributed erroneously to authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with
the aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially
in other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.

 Finally, every program is threatened constantly by software
patents. States should not allow patents to restrict development
and use of software on general-purpose computers, but in those that
do, we wish to avoid the special danger that patents applied to a
free program could make it effectively proprietary. To prevent
this, the GPL assures that patents cannot be used to render the
program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2710

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the
work in a fashion requiring copyright permission, other than the
making of an exact copy. The resulting work is called a "modified
version" of the earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it
on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available
to the public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may convey
the work under this License, and how to view a copy of this License.
If the interface presents a list of user commands or options, such
as a menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case
of interfaces specified for a particular programming language, one
that is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form
of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts
to control those activities. However, it does not include the
work's System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing
those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2711

libraries and dynamically linked subprograms that the work is
specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the
work.

 The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running
a covered work is covered by this License only if the output, given
its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright
law.

 You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in
force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for
which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf,
under your direction and control, on terms that prohibit them from
making any copies of your copyrighted material outside their
relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section
10 makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit operation
or modification of the work as a means of enforcing, against the
work's users, your or third parties' legal rights to forbid
circumvention of technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive
terms added in accord with section 7 apply to the code; keep intact
all notices of the absence of any warranty; and give all recipients
a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications
to produce it from the Program, in the form of source code under

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2712

the terms of section 4, provided that you also meet all of these
conditions:

 a) The work must carry prominent notices stating that you
 modified it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under
 section 7. This requirement modifies the requirement in
 section 4 to "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has
 interactive interfaces that do not display Appropriate Legal
 Notices, your work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called
an "aggregate" if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation's
users beyond what the individual works permit. Inclusion of a
covered work in an aggregate does not cause this License to apply
to the other parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of
these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that
 product model, to give anyone who possesses the object code
 either (1) a copy of the Corresponding Source for all the
 software in the product that is covered by this License, on a
 durable physical medium customarily used for software
 interchange, for a price no more than your reasonable cost
 of physically performing this conveying of source, or (2)
 access to copy the Corresponding Source from a network server
 at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in
 accord with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to
 the Corresponding Source in the same way through the same place
 at no further charge. You need not require recipients to copy
 the Corresponding Source along with the object code. If the
 place to copy the object code is a network server, the
 Corresponding Source may be on a different server (operated

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2713

 by you or a third party) that supports equivalent copying
 facilities, provided you maintain clear directions next to the
 object code saying where to find the Corresponding Source.
 Regardless of what server hosts the Corresponding Source, you
 remain obligated to ensure that it is available for as long
 as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission,
 provided you inform other peers where the object code and
 Corresponding Source of the work are being offered to the
 general public at no charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means
any tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product
is a consumer product, doubtful cases shall be resolved in favor
of coverage. For a particular product received by a particular
user, "normally used" refers to a typical or common use of that
class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product
regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that
User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning
of the modified object code is in no case prevented or interfered
with solely because modification has been made.

 If you convey an object code work under this section in, or with,
or specifically for use in, a User Product, and the conveying occurs
as part of a transaction in which the right of possession and use
of the User Product is transferred to the recipient in perpetuity
or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be
accompanied by the Installation Information. But this requirement
does not apply if neither you nor any third party retains the ability
to install modified object code on the User Product (for example,
the work has been installed in ROM).

 The requirement to provide Installation Information does not include
a requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified
or installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of
this License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program
shall be treated as though they were included in this License, to
the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2714

used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional
permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material
you add to a covered work, you may (if authorized by the copyright
holders of that material) supplement the terms of this License with
terms:

 a) Disclaiming warranty or limiting liability differently from
 the terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices
 or author attributions in that material or in the Appropriate
 Legal Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material,
 or requiring that modified versions of such material be marked
 in reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors
 or authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions
 of it) with contractual assumptions of liability to the
 recipient, for any liability that these contractual assumptions
 directly impose on those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as
you received it, or any part of it, contains a notice stating that
it is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed
by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in
the form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate
or modify it is void, and will automatically terminate your rights
under this License (including any patent licenses granted under the
third paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2715

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.

 Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from you
under this License. If your rights have been terminated and not
permanently reinstated, you do not qualify to receive new licenses
for the same material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you
may not impose a license fee, royalty, or other charge for exercise
of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit)
alleging that any patent claim is infringed by making, using,
selling, offering for sale, or importing the Program or any portion
of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired
or hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as
a consequence of further modification of the contributor version.
For purposes of this definition, "control" includes the right to
grant patent sublicenses in a manner consistent with the requirements
of this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify
and propagate the contents of its contributor version.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2716

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or
covenant not to sue for patent infringement). To "grant" such a
patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible
means, then you must either (1) cause the Corresponding Source to
be so available, or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or (3) arrange, in
a manner consistent with the requirements of this License, to extend
the patent license to downstream recipients. "Knowingly relying"
means you have actual knowledge that, but for the patent license,
your conveying the covered work in a country, or your recipient's
use of the covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to believe
are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of,
a covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the
patent license you grant is automatically extended to all recipients
of the covered work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is conditioned
on the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if
you are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to
the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you
cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations,
then as a consequence you may not convey it at all. For example,
if you agree to terms that obligate you to collect a royalty for
further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a
single combined work, and to convey the resulting work. The terms
of this License will continue to apply to the part which is the
covered work, but the special requirements of the GNU Affero General
Public License, section 13, concerning interaction through a network
will apply to the combination as such.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2717

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of
the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow
a later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make
it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

2718

the "copyright" line and a pointer to where the full notice is
found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation, either version 3
 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see
 <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the
appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you
would use an "about box".

 You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program,
if necessary. For more information on this, and how to apply and
follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License. But
first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
==

==
GCC RUNTIME LIBRARY EXCEPTION

Version 3.1, 31 March 2009

Copyright © 2009 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

This GCC Runtime Library Exception ("Exception") is an additional
permission under section 7 of the GNU General Public License, version
3 ("GPLv3"). It applies to a given file (the "Runtime Library")
that bears a notice placed by the copyright holder of the file
stating that the file is governed by GPLv3 along with this Exception.

When you use GCC to compile a program, GCC may combine portions of
certain GCC header files and runtime libraries with the compiled
program. The purpose of this Exception is to allow compilation of
non-GPL (including proprietary) programs to use, in this way, the
header files and runtime libraries covered by this Exception.

0. Definitions.

GNU Lesser General Public License Version 2.1, February 1999

2719

A file is an "Independent Module" if it either requires the Runtime
Library for execution after a Compilation Process, or makes use of
an interface provided by the Runtime Library, but is not otherwise
based on the Runtime Library.

"GCC" means a version of the GNU Compiler Collection, with or without
modifications, governed by version 3 (or a specified later version)
of the GNU General Public License (GPL) with the option of using
any subsequent versions published by the FSF.

"GPL-compatible Software" is software whose conditions of propagation,
modification and use would permit combination with GCC in accord
with the license of GCC.

"Target Code" refers to output from any compiler for a real or
virtual target processor architecture, in executable form or suitable
for input to an assembler, loader, linker and/or execution phase.
Notwithstanding that, Target Code does not include data in any
format that is used as a compiler intermediate representation, or
used for producing a compiler intermediate representation.

The "Compilation Process" transforms code entirely represented in
non-intermediate languages designed for human-written code, and/or
in Java Virtual Machine byte code, into Target Code. Thus, for
example, use of source code generators and preprocessors need not
be considered part of the Compilation Process, since the Compilation
Process can be understood as starting with the output of the
generators or preprocessors.

A Compilation Process is "Eligible" if it is done using GCC, alone
or with other GPL-compatible software, or if it is done without
using any work based on GCC. For example, using non-GPL-compatible
Software to optimize any GCC intermediate representations would not
qualify as an Eligible Compilation Process.

1. Grant of Additional Permission.

You have permission to propagate a work of Target Code formed by
combining the Runtime Library with Independent Modules, even if
such propagation would otherwise violate the terms of GPLv3, provided
that all Target Code was generated by Eligible Compilation Processes.
You may then convey such a combination under terms of your choice,
consistent with the licensing of the Independent Modules.

2. No Weakening of GCC Copyleft.

The availability of this Exception does not imply any general
presumption that third-party software is unaffected by the copyleft
requirements of the license of GCC.
==

A.14 GNU Lesser General Public License Version 2.1, February
1999

The following applies to all products licensed under the
GNU Lesser General Public License, Version 2.1: You may
not use the identified files except in compliance with
the GNU Lesser General Public License, Version 2.1 (the
"License"). You may obtain a copy of the License at
http://www.gnu.org/licenses/lgpl-2.1.html. A copy of the
license is also reproduced below. Unless required by
applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing
permissions and limitations under the License.

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

GNU Lesser General Public License Version 2.1, February 1999

2720

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

 To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

 Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

 When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a

GNU Lesser General Public License Version 2.1, February 1999

2721

combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

 We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

 For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it
becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that
a free library does the same job as widely used non-free libraries.
In this case, there is little to gain by limiting the free library
to free software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

 Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

 The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

 GNU LESSER GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control
compilation and installation of the library.

 Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for

GNU Lesser General Public License Version 2.1, February 1999

2722

writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

 2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices
 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no
 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
 table of data to be supplied by an application program that uses
 the facility, other than as an argument passed when the facility
 is invoked, then you must make a good faith effort to ensure that,
 in the event an application does not supply such function or
 table, the facility still operates, and performs whatever part of
 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has
 a purpose that is entirely well-defined independent of the
 application. Therefore, Subsection 2d requires that any
 application-supplied function or table used by this function must
 be optional: if the application does not supply it, the square
 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

GNU Lesser General Public License Version 2.1, February 1999

2723

 Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

 This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

 4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

 a) Accompany the work with the complete corresponding
 machine-readable source code for the Library including whatever
 changes were used in the work (which must be distributed under
 Sections 1 and 2 above); and, if the work is an executable linked
 with the Library, with the complete machine-readable "work that

GNU Lesser General Public License Version 2.1, February 1999

2724

 uses the Library", as object code and/or source code, so that the
 user can modify the Library and then relink to produce a modified
 executable containing the modified Library. (It is understood
 that the user who changes the contents of definitions files in the
 Library will not necessarily be able to recompile the application
 to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the
 Library. A suitable mechanism is one that (1) uses at run time a
 copy of the library already present on the user's computer system,
 rather than copying library functions into the executable, and (2)
 will operate properly with a modified version of the library, if
 the user installs one, as long as the modified version is
 interface-compatible with the version that the work was made with.

 c) Accompany the work with a written offer, valid for at
 least three years, to give the same user the materials
 specified in Subsection 6a, above, for a charge no more
 than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy
 from a designated place, offer equivalent access to copy the above
 specified materials from the same place.

 e) Verify that the user has already received a copy of these
 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

 It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

 7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library
 facilities. This must be distributed under the terms of the
 Sections above.

 b) Give prominent notice with the combined library of the fact
 that part of it is a work based on the Library, and explaining
 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and

GNU Lesser General Public License Version 2.1, February 1999

2725

all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply, and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

GNU Lesser General Public License Version 2.1, February 1999

2726

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms
of the ordinary General Public License).

 To apply these terms, attach the following notices to the library.
It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full
notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James
 Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice

That's all there is to it!

GNU Readline License

2727

A.15 GNU Readline License
The following software may be included in this product:

GNU Readline Library

GNU Readline Library
With respect to MySQL Server/Cluster software licensed
under GNU General Public License, you are receiving a
copy of the GNU Readline Library in source code. The
terms of any Oracle license that might accompany the
Oracle programs do NOT apply to the GNU Readline Library;
it is licensed under the following license, separately
from the Oracle programs you receive. Oracle elects to
use GNU General Public License version 2 (GPL) for any
software where a choice of GPL license versions are
made available with the language indicating that GPLv2
or any later version may be used, or where a choice of
which version of the GPL is applied is unspecified.

This component is licensed under Section A.12, “GNU General Public License Version 2.0, June 1991”

A.16 GNU Standard C++ Library (libstdc++) License
The following software may be included in this product: GNU Standard C++ Library (libstdc++)

This component is licensed under Section A.13, “GNU General Public License Version 3.0, 29 June
2007 and GCC Runtime Library Exception Version 3.1, 31 March 2009”.

Additional notices:

==
 Copyright (c) 1994
 Hewlett-Packard Company

 Permission to use, copy, modify, distribute and sell this software
 and its documentation for any purpose is hereby granted without fee,
 provided that the above copyright notice appear in all copies and
 that both that copyright notice and this permission notice appear
 in supporting documentation. Hewlett-Packard Company makes no
 representations about the suitability of this software for any
 purpose. It is provided "as is" without express or implied
 warranty.
==

==
 Copyright (c) 1996,1997
 Silicon Graphics Computer Systems, Inc.

 Permission to use, copy, modify, distribute and sell this software
 and its documentation for any purpose is hereby granted without fee,
 provided that the above copyright notice appear in all copies and
 that both that copyright notice and this permission notice appear
 in supporting documentation. Silicon Graphics makes no
 representations about the suitability of this software for any
 purpose. It is provided "as is" without express or implied
 warranty.
==

==
 shared_count.hpp
@ Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.

 shared_ptr.hpp
 Copyright (C) 1998, 1999 Greg Colvin and Beman Dawes.
 Copyright (C) 2001, 2002, 2003 Peter Dimov

 weak_ptr.hpp

Google Controlling Master Thread I/O Rate Patch License

2728

 Copyright (C) 2001, 2002, 2003 Peter Dimov

 enable_shared_from_this.hpp
 Copyright (C) 2002 Peter Dimov

Distributed under the Boost Software License, Version 1.0.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit
third-parties to whom the Software is furnished to do so, all subject
to the following:

The copyright notices in the Software and this entire statement,
including the above license grant, this restriction and the following
disclaimer, must be included in all copies of the Software, in whole
or in part, and all derivative works of the Software, unless such
copies or derivative works are solely in the form of machine-executable
object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER
LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
==

==
Copyright (C) 2004 Ami Tavory and Vladimir Dreizin, IBM-HRL.

Permission to use, copy, modify, sell, and distribute this software
is hereby granted without fee, provided that the above copyright
notice appears in all copies, and that both that copyright notice
and this permission notice appear in supporting documentation. None
of the above authors, nor IBM Haifa Research Laboratories, make any
representation about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.
==

A.17 Google Controlling Master Thread I/O Rate Patch License

The following software may be included in this product:

Google Controlling master thread I/O rate patch

Copyright (c) 2009, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the Google Inc. nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

Google Perftools (TCMalloc utility) License

2729

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.18 Google Perftools (TCMalloc utility) License
The following software may be included in this product:

Google Perftools (TCMalloc utility)

Copyright (c) 1998-2006, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

 * Redistributions of source code must retain the above
 copyright notice, this list of conditions and the following
 disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.
 * Neither the name of Google Inc. nor the names of its
 contributors may be used to endorse or promote products
 derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.19 Google SMP Patch License
The following software may be included in this product:

Google SMP Patch

Google SMP patch

Copyright (c) 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the Google Inc. nor the names of its contributors

lib_sql.cc License

2730

 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.20 lib_sql.cc License
The following software may be included in this product:

lib_sql.cc

Copyright (c) 2000
SWsoft company

This material is provided "as is", with absolutely no warranty
expressed or implied. Any use is at your own risk.

Permission to use or copy this software for any purpose is hereby
granted without fee, provided the above notices are retained on
all copies. Permission to modify the code and to distribute modified
code is granted, provided the above notices are retained, and a
notice that the code was modified is included with the above copyright
notice.

This code was modified by the MySQL team.

A.21 Libaio License
The following software may be included in this product:

libaio

This component is licensed under Section A.14, “GNU Lesser General Public License Version 2.1,
February 1999”.

A.22 libevent License
The following software may be included in this product:

libevent

Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

libevent License

2731

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

==
Parts developed by Adam Langley
==

==
log.c
Based on err.c, which was adapted from OpenBSD libc *err*warncode.

Copyright (c) 2005 Nick Mathewson
Copyright (c) 2000 Dug Song
Copyright (c) 1993 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. Neither the name of the University nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
==

==
min_heap.h

Copyright (c) 2006 Maxim Yegorushkin
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

Libiconv License

2732

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

==
win32.c

Copyright 2000-2002 Niels Provos
Copyright 2003 Michael A. Davis
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

A.23 Libiconv License

The following software may be included in this product:

Libiconv

You are receiving a copy of the GNU LIBICONV Library. The terms of the Oracle
license do NOT apply to the GNU LIBICONV Library; it is licensed under the
following license, separately from the Oracle programs you receive. If you do
not wish to install this program, you may delete [agent install
dir]/lib/libiconv.* and [agent install dir]/licenses/lgpl/iconv files.

This component is licensed under Section A.14, “GNU Lesser General Public License Version 2.1,
February 1999”.

A.24 libintl License

The following software may be included in this product:

libintl

Copyright (C) 1994 X Consortium

Linux-PAM License

2733

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from the X Consortium.

FSF changes to this file are in the public domain.
 .
Copyright 1996-2007 Free Software Foundation, Inc. Taken from GNU libtool, 2001

Originally by Gordon Matzigkeit <gord@gnu.ai.mit.edu>, 1996

This file is free software; the Free Software Foundation gives unlimited
permission to copy and/or distribute it, with or without modifications, as long
as this notice is preserved.
.
You are receiving a copy of the libintl library. The terms of the Oracle license
do NOT apply to the libintl library; it is licensed under the following license,
separately from the Oracle programs you receive. If you do not wish to install
this program, you may create an "exclude" file and run tar with the X option.

This component is licensed under Section A.14, “GNU Lesser General Public License Version 2.1, February 1999”.

A.25 Linux-PAM License

The following software may be included in this product:

Linux-PAM (pam-devel, Pluggable authentication modules for Linux)

Copyright Theodore Ts'o, 1996. All rights reserved.

(For the avoidance of doubt, Oracle uses and distributes this
component under the terms below and elects not to do so under
the GPL even though the GPL is referenced as an option below.)

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright
 notice, and the entire permission notice in its entirety,
 including the disclaimer of warranties.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

ALTERNATIVELY, this product may be distributed under the terms
of the GNU Public License, in which case the provisions of the
GPL are required INSTEAD OF the above restrictions. (This clause
is necessary due to a potential bad interaction between the GPL

LPeg Library License

2734

and the restrictions contained in a BSD-style copyright.)

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

A.26 LPeg Library License
The following software may be included in this product:

LPeg

Use of any of this software is governed by the terms of the license below:

Copyright © 2008 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

A.27 Lua (liblua) License
The following software may be included in this product:

Lua (liblua)

Copyright © 1994–2008 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

LuaFileSystem Library License

2735

A.28 LuaFileSystem Library License
The following software may be included in this product:

LuaFileSystem

Copyright © 2003 Kepler Project.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

A.29 md5 (Message-Digest Algorithm 5) License
The following software may be included in this product:

md5 (Message-Digest Algorithm 5)

 This code implements the MD5 message-digest algorithm.
 The algorithm is due to Ron Rivest. This code was
 written by Colin Plumb in 1993, no copyright is claimed.
 This code is in the public domain; do with it what you wish.

 Equivalent code is available from RSA Data Security, Inc.
 This code has been tested against that, and is equivalent,
 except that you don't need to include two pages of legalese
 with every copy.

 The code has been modified by Mikael Ronstroem to handle
 calculating a hash value of a key that is always a multiple
 of 4 bytes long. Word 0 of the calculated 4-word hash value
 is returned as the hash value.

A.30 MeCab License
The following software may be included in this product:

Copyright (c) 2001-2008, Taku Kudo
Copyright (c) 2004-2008, Nippon Telegraph and Telephone Corporation
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above
 copyright notice, this list of conditions and the
 following disclaimer.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the
 following disclaimer in the documentation and/or other

memcached License

2736

 materials provided with the distribution.

 * Neither the name of the Nippon Telegraph and Telegraph Corporation
 nor the names of its contributors may be used to endorse or
 promote products derived from this software without specific
 prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.31 memcached License
The following software may be included in this product:

memcached

Copyright (c) 2003, Danga Interactive, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

 * Neither the name of the Danga Interactive nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.32 Memcached.pm License
The following software may be included in this product:

Memcached.pm

Memcached.pm is licensed under the Perl license.

Oracle may use, redistribute and/or modify this code under the terms of
either:

mkpasswd.pl License

2737

 a) the GNU General Public License as published by the Free Software
Foundation; either version 1, or (at your option) any later version, or

 b) the "Artistic License" which comes with the Expect/pr code.

Oracle elects to use the GPLv2 for version of MySQL that are licensed under
the GPL.

Oracle elects to use the Artistic license for all other (commercial) versions
of MySQL.

A copy of the GPLv2 and the Artistic License (Perl) 1.0 must be included with
any distribution.

This component is licensed under Section A.12, “GNU General Public License Version 2.0, June 1991”

This component is licensed under Section A.1, “Artistic License (Perl) 1.0”

A.33 mkpasswd.pl License
The following software may be included in this product:

mkpasswd.pl Perl module

Copyright (C) 2003-2004 by Chris Grau

This library is free software; you can redistribute it and/or modify it under
the same terms as Perl itself, either Perl version 5.8.1 or, at your option,
any later version of Perl 5 you may have available.

The Perl 5.8.1 license (from http://www.cpan.org/src/5.0/perl-5.8.1.tar.gz - main readme file):

 Perl Kit, Version 5

 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998
 1999, 2000, 2001, by Larry Wall and others

 All rights reserved.

 This program is free software; you can redistribute it and/or modify
 it under the terms of either:

a) the GNU General Public License as published by the Free
Software Foundation; either version 1, or (at your option) any
later version, or

b) the "Artistic License" which comes with this Kit.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See either
 the GNU General Public License or the Artistic License for more details.

 You should have received a copy of the Artistic License with this
 Kit, in the file named "Artistic". If not, I'll be glad to provide one.

 You should also have received a copy of the GNU General Public License
 along with this program in the file named "Copying". If not, write to the

 Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 02111-1307, USA or visit their web page on the internet at
 http://www.gnu.org/copyleft/gpl.html.

 For those of you that choose to use the GNU General Public License,
 my interpretation of the GNU General Public License is that no Perl
 script falls under the terms of the GPL unless you explicitly put
 said script under the terms of the GPL yourself. Furthermore, any
 object code linked with perl does not automatically fall under the
 terms of the GPL, provided such object code only adds definitions

mkpasswd.pl License

2738

 of subroutines and variables, and does not otherwise impair the
 resulting interpreter from executing any standard Perl script. I
 consider linking in C subroutines in this manner to be the moral
 equivalent of defining subroutines in the Perl language itself. You
 may sell such an object file as proprietary provided that you provide
 or offer to provide the Perl source, as specified by the GNU General
 Public License. (This is merely an alternate way of specifying input
 to the program.) You may also sell a binary produced by the dumping of
 a running Perl script that belongs to you, provided that you provide or
 offer to provide the Perl source as specified by the GPL. (The
 fact that a Perl interpreter and your code are in the same binary file
 is, in this case, a form of mere aggregation.) This is my interpretation
 of the GPL. If you still have concerns or difficulties understanding
 my intent, feel free to contact me. Of course, the Artistic License
 spells all this out for your protection, so you may prefer to use that.

--

Perl is a language that combines some of the features of C, sed, awk
and shell. See the manual page for more hype. There are also many Perl
books available, covering a wide variety of topics, from various publishers.
See pod/perlbook.pod for more information.

Please read all the directions below before you proceed any further, and
then follow them carefully.

After you have unpacked your kit, you should have all the files listed
in MANIFEST.

Installation

1) Detailed instructions are in the file "INSTALL", which you should
read if you are either installing on a system resembling Unix
or porting perl to another platform. For non-Unix platforms, see the
corresponding README.

2) Read the manual entries before running perl.

3) IMPORTANT! Help save the world! Communicate any problems and suggested
patches to perlbug@perl.org so we can keep the world in sync.
If you have a problem, there's someone else out there who either has had
or will have the same problem. It's usually helpful if you send the
output of the "myconfig" script in the main perl directory.

If you've succeeded in compiling perl, the perlbug script in the "utils"
subdirectory can be used to help mail in a bug report.

If possible, send in patches such that the patch program will apply them.
Context diffs are the best, then normal diffs. Don't send ed scripts--
I've probably changed my copy since the version you have.

The latest versions of perl are always available on the various CPAN
(Comprehensive Perl Archive Network) sites around the world.
See <URL:http://www.cpan.org/src/>.

Just a personal note: I want you to know that I create nice things like this
because it pleases the Author of my story. If this bothers you, then your
notion of Authorship needs some revision. But you can use perl anyway. :-)

The author.
===

The "Artistic License"

Preamble

The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to make

mkpasswd.pl License

2739

reasonable modifications.

Definitions:

"Package" refers to the collection of files distributed by the
Copyright Holder, and derivatives of that collection of files
created through textual modification.

"Standard Version" refers to such a Package if it has not been
modified, or has been modified in accordance with the wishes
of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or
copyrights for the package.

"You" is you, if you're thinking about copying or distributing
this Package.

"Reasonable copying fee" is whatever you can justify on the
basis of media cost, duplication charges, time of people involved,
and so on. (You will not be required to justify it to the
Copyright Holder, but only to the computing community at large
as a market that must bear the fee.)

"Freely Available" means that no fee is charged for the item
itself, though there may be fees involved in handling the item.
It also means that recipients of the item may redistribute it
under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that you
duplicate all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A Package
modified in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following:

 a) place your modifications in the Public Domain or otherwise make them
 Freely Available, such as by posting said modifications to Usenet or
 an equivalent medium, or placing the modifications on a major archive
 site such as uunet.uu.net, or by allowing the Copyright Holder to include
 your modifications in the Standard Version of the Package.

 b) use the modified Package only within your corporation or organization.

 c) rename any non-standard executables so the names do not conflict
 with standard executables, which must also be provided, and provide
 a separate manual page for each non-standard executable that clearly
 documents how it differs from the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:

 a) distribute a Standard Version of the executables and library files,
 together with instructions (in the manual page or equivalent) on where
 to get the Standard Version.

 b) accompany the distribution with the machine-readable source of
 the Package with your modifications.

 c) give non-standard executables non-standard names, and clearly
 document the differences in manual pages (or equivalent), together
 with instructions on where to get the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

nt_servc (Windows NT Service class library) License

2740

5. You may charge a reasonable copying fee for any distribution of this
Package. You may charge any fee you choose for support of this
Package. You may not charge a fee for this Package itself. However,
you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software
distribution provided that you do not advertise this Package as a
product of your own. You may embed this Package's interpreter within
an executable of yours (by linking); this shall be construed as a mere
form of aggregation, provided that the complete Standard Version of the
interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whoever generated
them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing a
binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you do
not represent such an executable image as a Standard Version of this
Package.

7. C subroutines (or comparably compiled subroutines in other
languages) supplied by you and linked into this Package in order to
emulate subroutines and variables of the language defined by this
Package shall not be considered part of this Package, but are the
equivalent of input as in Paragraph 6, provided these subroutines do
not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written
permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The End

A.34 nt_servc (Windows NT Service class library) License
The following software may be included in this product:

nt_servc (Windows NT Service class library)

Windows NT Service class library
Copyright Abandoned 1998 Irena Pancirov - Irnet Snc
This file is public domain and comes with NO WARRANTY of any kind

A.35 OpenPAM License
The following software may be included in this product:

OpenPAM

Copyright (c) 2002-2003 Networks Associates Technology, Inc.
Copyright (c) 2004-2007 Dag-Erling Smørgrav
All rights reserved.

OpenSSL v1.0 License

2741

This software was developed for the FreeBSD Project by
ThinkSec AS and Network Associates Laboratories, the
Security Research Division of Network Associates, Inc.
under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"),
as part of the DARPA CHATS research program.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above
 copyright notice, this list of conditions and the
 following disclaimer.
2. Redistributions in binary form must reproduce the
 above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or
 other materials provided with the distribution.
3. The name of the author may not be used to endorse or
 promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.36 OpenSSL v1.0 License

The following software may be included in this product:

NOTE: Does not apply to GPL licensed server (OpenSSL is not shipped with it)

OpenSSL v1.0

LICENSE ISSUES
==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit. See
below for the actual license texts. Actually both licenses are BSD-style Open
Source licenses. In case of any license issues related to OpenSSL please
contact openssl-core@openssl.org.

OpenSSL License

/ ==
Copyright (c) 1998-2008 The OpenSSL Project.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
.
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must
display the following acknowledgment: "This product includes software
developed by the OpenSSL Project for use in the OpenSSL Toolkit. (Link1 /)"
.
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without prior written

OpenSSL v1.0 License

2742

permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may
"OpenSSL" appear in their names without prior written permission of the
OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following
acknowledgment: "This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit (Link2 /)"
.
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

Original SSLeay License

/ Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.
This package is an SSL implementation written by Eric Young
(eay@cryptsoft.com). The implementation was written so as to conform with
Netscapes SSL. This library is free for commercial and non-commercial use
as long as the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA, lhash,
DES, etc., code; not just the SSL code. The SSL documentation included with
this distribution is covered by the same copyright terms except that the
holder is Tim Hudson (tjh@cryptsoft.com). Copyright remains Eric Young's,
and as such any Copyright notices in the code are not to be removed. If this
package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual)
provided with the package. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the
following conditions are met: 1. Redistributions of source code must retain
the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. 3. All advertising
materials mentioning features or use of this software must display the
following acknowledgement: "This product includes cryptographic software
written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be
left out if the routines from the library being used are not cryptographic
related :-). 4. If you include any Windows specific code (or a derivative
thereof) from the apps directory (application code) you must include an
acknowledgement: "This product includes software written by Tim Hudson
(tjh@cryptsoft.com)" THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The
license and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution license [including the GNU Public
License.]

PCRE License

2743

A.37 PCRE License

The following software may be included in this product:

PCRE (Perl Compatible Regular Expressions) Library

PCRE LICENCE

PCRE is a library of functions to support regular expressions
whose syntax and semantics are as close as possible to those
of the Perl 5 language.

Release 7 of PCRE is distributed under the terms of the "BSD"
licence, as specified below. The documentation for PCRE,
supplied in the "doc" directory, is distributed under the same
terms as the software itself.

The basic library functions are written in C and are
freestanding. Also included in the distribution is a set
of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England. Phone: +44 1223 334714.

Copyright (c) 1997-2006 University of Cambridge
All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2006, Google Inc.
All rights reserved.

THE "BSD" LICENCE

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above
 copyright notice, this list of conditions and the
 following disclaimer.
* Redistributions in binary form must reproduce the
 above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or
 other materials provided with the distribution.
* Neither the name of the University of Cambridge nor
 the name of Google Inc. nor the names of their contributors
 may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

Percona Multiple I/O Threads Patch License

2744

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

End

A.38 Percona Multiple I/O Threads Patch License
The following software may be included in this product:

Percona Multiple I/O threads patch

Copyright (c) 2008, 2009 Percona Inc
All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of Percona Inc. nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission of Percona Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.39 Red HAT RPM Spec File License
The following software may be included in this product:

Red Hat RPM Spec File

You are receiving a copy of the Red Hat spec file. The terms of the Oracle
license do NOT apply to the Red Hat spec file; it is licensed under the
following license, separately from the Oracle programs you receive.

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[for rest of text, see following link]

This component is licensed under Section A.12, “GNU General Public License Version 2.0, June 1991”

A.40 RegEX-Spencer Library License
The following software may be included in this product: Henry Spencer's Regular-Expression Library
(RegEX-Spencer)

Richard A. O'Keefe String Library License

2745

Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on
any computer system, and to alter it and redistribute it, subject
to the following restrictions:

1. The author is not responsible for the consequences of use of this
 software, no matter how awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by
 explicit claim or by omission. Since few users ever read sources,
 credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be
 misrepresented as being the original software. Since few users
 ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

A.41 Richard A. O'Keefe String Library License

The following software may be included in this product:

Richard A. O'Keefe String Library

The Richard O’Keefe String Library is subject to the following notice:

These files are in the public domain. This includes getopt.c, which
is the work of Henry Spencer, University of Toronto Zoology, who
says of it "None of this software is derived from Bell software. I
had no access to the source for Bell's versions at the time I wrote
it. This software is hereby explicitly placed in the public domain.
It may be used for any purpose on any machine by anyone." I would
greatly prefer it if *my* material received no military use.

The t_ctype.h file is subject to the following notice:

Copyright (C) 1998, 1999 by Pruet Boonma, all rights reserved.
Copyright (C) 1998 by Theppitak Karoonboonyanan, all rights reserved.

 Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the above
copyright notice appear in all copies.

 Smaphan Raruenrom and Pruet Boonma makes no representations about
the suitability of this software for any purpose. It is provided
"as is" without express or implied warranty.

A.42 SHA-1 in C License

The following software may be included in this product:

SHA-1 in C

SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain

A.43 Unicode Data Files

The following software may be included in this product:

Unicode Data Files

zlib License

2746

Copyright 2001-2009 Unicode, Inc.

 Disclaimer

This source code is provided as is by Unicode, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any
kind are expressed or implied. The recipient agrees to determine
applicability of information provided. If this file has been
purchased on magnetic or optical media from Unicode, Inc., the
sole remedy for any claim will be exchange of defective media
within 90 days of receipt.

 Limitations on Rights to Redistribute This Code

Unicode, Inc. hereby grants the right to freely use the information
supplied in this file in the creation of products supporting the
Unicode Standard, and to make copies of this file in any form
for internal or external distribution as long as this notice
remains attached.

A.44 zlib License

The following software may be included in this product:

zlib

Oracle gratefully acknowledges the contributions of Jean-loup Gailly and Mark Adler in creating the zlib
general purpose compression library which is used in this product.

zlib.h -- interface of the 'zlib' general purpose compression library
Copyright (C) 1995-2004 Jean-loup Gailly and Mark Adler

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.3, July 18th, 2005
Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.5, April 19th, 2010
Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software. Permission is granted to anyone to use this software
for any purpose,including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would
 be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not
 be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu

2747

Appendix B MySQL 5.7 Frequently Asked Questions

Table of Contents
B.1 MySQL 5.7 FAQ: General ... 2747
B.2 MySQL 5.7 FAQ: Storage Engines .. 2749
B.3 MySQL 5.7 FAQ: Server SQL Mode .. 2749
B.4 MySQL 5.7 FAQ: Stored Procedures and Functions ... 2750
B.5 MySQL 5.7 FAQ: Triggers ... 2754
B.6 MySQL 5.7 FAQ: Views .. 2757
B.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA ... 2758
B.8 MySQL 5.7 FAQ: Migration .. 2758
B.9 MySQL 5.7 FAQ: Security ... 2759
B.10 MySQL 5.7 FAQ: MySQL Cluster ... 2760
B.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 2760
B.12 MySQL 5.7 FAQ: Connectors & APIs ... 2773
B.13 MySQL 5.7 FAQ: Replication ... 2773

B.1 MySQL 5.7 FAQ: General
Questions

• B.1.1: [2747] Which version of MySQL is production-ready (GA)?

• B.1.2: [2748] What is the state of development (non-GA) versions?

• B.1.3: [2748] Can MySQL 5.7 do subqueries?

• B.1.4: [2748] Can MySQL 5.7 perform multiple-table inserts, updates, and deletes?

• B.1.5: [2748] Does MySQL 5.7 have a Query Cache? Does it work on Server, Instance or
Database?

• B.1.6: [2748] Does MySQL 5.7 have Sequences?

• B.1.7: [2748] Does MySQL 5.7 have a NOW() function with fractions of seconds?

• B.1.8: [2748] Does MySQL 5.7 work with multi-core processors?

• B.1.9: [2748] Why do I see multiple processes for mysqld?

• B.1.10: [2749] Have there been there any improvements in error reporting when foreign keys fail?
Does MySQL now report which column and reference failed?

• B.1.11: [2749] Can MySQL 5.7 perform ACID transactions?

Questions and Answers

B.1.1: Which version of MySQL is production-ready (GA)?

MySQL 5.6, MySQL 5.5, MySQL 5.1, and MySQL 5.0 are supported for production use.

MySQL 5.6 achieved General Availability (GA) status with MySQL 5.6.10, which was released for
production use on 5 February 2013.

MySQL 5.5 achieved General Availability (GA) status with MySQL 5.5.8, which was released for
production use on 3 December 2010.

MySQL 5.1 achieved General Availability (GA) status with MySQL 5.1.30, which was released for
production use on 14 November 2008.

MySQL 5.7 FAQ: General

2748

MySQL 5.0 achieved General Availability (GA) status with MySQL 5.0.15, which was released for
production use on 19 October 2005. Note that active development for MySQL 5.0 has ended.

B.1.2: What is the state of development (non-GA) versions?

MySQL follows a milestone release model that introduces pre-production-quality features and stabilizes
them to release quality (see http://dev.mysql.com/doc/mysql-development-cycle/en/index.html). This
process then repeats, so releases cycle between pre-production and release quality status. Please
check the change logs to identify the status of a given release.

MySQL 5.4 was a development series. Work on this series has ceased.

MySQL 5.7 is being actively developed using the milestone release methodology described above.

MySQL 6.0 was a development series. Work on this series has ceased.

B.1.3: Can MySQL 5.7 do subqueries?

Yes. See Section 13.2.10, “Subquery Syntax”.

B.1.4: Can MySQL 5.7 perform multiple-table inserts, updates, and deletes?

Yes. For the syntax required to perform multiple-table updates, see Section 13.2.11, “UPDATE Syntax”;
for that required to perform multiple-table deletes, see Section 13.2.2, “DELETE Syntax”.

A multiple-table insert can be accomplished using a trigger whose FOR EACH ROW clause contains
multiple INSERT statements within a BEGIN ... END block. See Section 18.3, “Using Triggers”.

B.1.5: Does MySQL 5.7 have a Query Cache? Does it work on Server, Instance or Database?

Yes. The query cache operates on the server level, caching complete result sets matched with the
original query string. If an exactly identical query is made (which often happens, particularly in web
applications), no parsing or execution is necessary; the result is sent directly from the cache. Various
tuning options are available. See Section 8.9.3, “The MySQL Query Cache”.

B.1.6: Does MySQL 5.7 have Sequences?

No. However, MySQL has an AUTO_INCREMENT system, which in MySQL 5.7 can also handle
inserts in a multi-master replication setup. With the auto_increment_increment and
auto_increment_offset system variables, you can set each server to generate auto-increment
values that don't conflict with other servers. The auto_increment_increment value should be
greater than the number of servers, and each server should have a unique offset.

B.1.7: Does MySQL 5.7 have a NOW() function with fractions of seconds?

No. This is on the MySQL roadmap as a “rolling feature”. This means that it is not a flagship feature,
but will be implemented, development time permitting. Specific customer demand may change this
scheduling.

However, MySQL does parse time strings with a fractional component. See Section 11.3.2, “The TIME
Type”.

B.1.8: Does MySQL 5.7 work with multi-core processors?

Yes. MySQL is fully multi-threaded, and will make use of multiple CPUs, provided that the operating
system supports them.

B.1.9: Why do I see multiple processes for mysqld?

When using LinuxThreads, you should see a minimum of three mysqld processes running. These are
in fact threads. There is one thread for the LinuxThreads manager, one thread to handle connections,
and one thread to handle alarms and signals.

http://dev.mysql.com/doc/mysql-development-cycle/en/index.html

MySQL 5.7 FAQ: Storage Engines

2749

B.1.10: Have there been there any improvements in error reporting when foreign keys fail?
Does MySQL now report which column and reference failed?

The foreign key support in InnoDB has seen improvements in each major version of MySQL. Foreign
key support generic to all storage engines is scheduled for MySQL 6.x; this should resolve any
inadequacies in the current storage engine specific implementation.

B.1.11: Can MySQL 5.7 perform ACID transactions?

Yes. All current MySQL versions support transactions. The InnoDB storage engine offers full ACID
transactions with row-level locking, multi-versioning, nonlocking repeatable reads, and all four SQL
standard isolation levels.

The NDB storage engine supports the READ COMMITTED transaction isolation level only.

B.2 MySQL 5.7 FAQ: Storage Engines
Questions

• B.2.1: [2749] Where can I obtain complete documentation for MySQL storage engines?

• B.2.2: [2749] Are there any new storage engines in MySQL 5.7?

• B.2.3: [2749] Have any storage engines been removed in MySQL 5.7?

• B.2.4: [2749] What are the unique benefits of the ARCHIVE storage engine?

• B.2.5: [2749] Do the new features in MySQL 5.7 apply to all storage engines?

Questions and Answers

B.2.1: Where can I obtain complete documentation for MySQL storage engines?

See Chapter 14, Storage Engines. That chapter contains information about all MySQL storage engines
except for the NDB storage engine used for MySQL Cluster; NDB is covered in MySQL Cluster NDB 7.3.

B.2.2: Are there any new storage engines in MySQL 5.7?

The features from the optional InnoDB Plugin from MySQL 5.1 are folded into the built-in InnoDB
storage engine, so you can take advantage of features such as the Barracuda file format, InnoDB
table compression, and the new configuration options for performance. See Section 14.2, “The InnoDB
Storage Engine” for details. InnoDB also becomes the default storage engine for new tables. See
Section 14.2.1.1, “InnoDB as the Default MySQL Storage Engine” for details.

B.2.3: Have any storage engines been removed in MySQL 5.7?

No.

B.2.4: What are the unique benefits of the ARCHIVE storage engine?

The ARCHIVE storage engine is ideally suited for storing large amounts of data without indexes; it
has a very small footprint, and performs selects using table scans. See Section 14.6, “The ARCHIVE
Storage Engine”, for details.

B.2.5: Do the new features in MySQL 5.7 apply to all storage engines?

The general new features such as views, stored procedures, triggers, INFORMATION_SCHEMA,
precision math (DECIMAL column type), and the BIT column type, apply to all storage engines. There
are also additions and changes for specific storage engines.

B.3 MySQL 5.7 FAQ: Server SQL Mode
Questions

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL 5.7 FAQ: Stored Procedures and Functions

2750

• B.3.1: [2750] What are server SQL modes?

• B.3.2: [2750] How many server SQL modes are there?

• B.3.3: [2750] How do you determine the server SQL mode?

• B.3.4: [2750] Is the mode dependent on the database or connection?

• B.3.5: [2750] Can the rules for strict mode be extended?

• B.3.6: [2750] Does strict mode impact performance?

• B.3.7: [2750] What is the default server SQL mode when MySQL 5.7 is installed?

Questions and Answers

B.3.1: What are server SQL modes?

Server SQL modes define what SQL syntax MySQL should support and what kind of data validation
checks it should perform. This makes it easier to use MySQL in different environments and to use
MySQL together with other database servers. The MySQL Server apply these modes individually to
different clients. For more information, see Section 5.1.7, “Server SQL Modes”.

B.3.2: How many server SQL modes are there?

Each mode can be independently switched on and off. See Section 5.1.7, “Server SQL Modes”, for a
complete list of available modes.

B.3.3: How do you determine the server SQL mode?

You can set the default SQL mode (for mysqld startup) with the --sql-mode option. Using the
statement SET [GLOBAL|SESSION] sql_mode='modes', you can change the settings from within
a connection, either locally to the connection, or to take effect globally. You can retrieve the current
mode by issuing a SELECT @@sql_mode statement.

B.3.4: Is the mode dependent on the database or connection?

A mode is not linked to a particular database. Modes can be set locally to the session (connection),
or globally for the server. you can change these settings using SET [GLOBAL|SESSION]
sql_mode='modes'.

B.3.5: Can the rules for strict mode be extended?

When we refer to strict mode, we mean a mode where at least one of the modes TRADITIONAL,
STRICT_TRANS_TABLES, or STRICT_ALL_TABLES is enabled. Options can be combined, so you can
add restrictions to a mode. See Section 5.1.7, “Server SQL Modes”, for more information.

B.3.6: Does strict mode impact performance?

The intensive validation of input data that some settings requires more time than if the validation is not
done. While the performance impact is not that great, if you do not require such validation (perhaps
your application already handles all of this), then MySQL gives you the option of leaving strict mode
disabled. However—if you do require it—strict mode can provide such validation.

B.3.7: What is the default server SQL mode when MySQL 5.7 is installed?

The default SQL mode is NO_ENGINE_SUBSTITUTION. See Section 5.1.7, “Server SQL Modes”, for
information about all available modes and MySQL's default behavior.

B.4 MySQL 5.7 FAQ: Stored Procedures and Functions
Questions

MySQL 5.7 FAQ: Stored Procedures and Functions

2751

• B.4.1: [2751] Does MySQL 5.7 support stored procedures and functions?

• B.4.2: [2752] Where can I find documentation for MySQL stored procedures and stored functions?

• B.4.3: [2752] Is there a discussion forum for MySQL stored procedures?

• B.4.4: [2752] Where can I find the ANSI SQL 2003 specification for stored procedures?

• B.4.5: [2752] How do you manage stored routines?

• B.4.6: [2752] Is there a way to view all stored procedures and stored functions in a given database?

• B.4.7: [2752] Where are stored procedures stored?

• B.4.8: [2752] Is it possible to group stored procedures or stored functions into packages?

• B.4.9: [2752] Can a stored procedure call another stored procedure?

• B.4.10: [2752] Can a stored procedure call a trigger?

• B.4.11: [2752] Can a stored procedure access tables?

• B.4.12: [2753] Do stored procedures have a statement for raising application errors?

• B.4.13: [2753] Do stored procedures provide exception handling?

• B.4.14: [2753] Can MySQL 5.7 stored routines return result sets?

• B.4.15: [2753] Is WITH RECOMPILE supported for stored procedures?

• B.4.16: [2753] Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk
directly to a stored procedure in the database?

• B.4.17: [2753] Can I pass an array as input to a stored procedure?

• B.4.18: [2753] Can I pass a cursor as an IN parameter to a stored procedure?

• B.4.19: [2753] Can I return a cursor as an OUT parameter from a stored procedure?

• B.4.20: [2753] Can I print out a variable's value within a stored routine for debugging purposes?

• B.4.21: [2753] Can I commit or roll back transactions inside a stored procedure?

• B.4.22: [2753] Do MySQL 5.7 stored procedures and functions work with replication?

• B.4.23: [2753] Are stored procedures and functions created on a master server replicated to a
slave?

• B.4.24: [2753] How are actions that take place inside stored procedures and functions replicated?

• B.4.25: [2754] Are there special security requirements for using stored procedures and functions
together with replication?

• B.4.26: [2754] What limitations exist for replicating stored procedure and function actions?

• B.4.27: [2754] Do the preceding limitations affect MySQL's ability to do point-in-time recovery?

• B.4.28: [2754] What is being done to correct the aforementioned limitations?

Questions and Answers

B.4.1: Does MySQL 5.7 support stored procedures and functions?

Yes. MySQL 5.7 supports two types of stored routines—stored procedures and stored functions.

MySQL 5.7 FAQ: Stored Procedures and Functions

2752

B.4.2: Where can I find documentation for MySQL stored procedures and stored functions?

See Section 18.2, “Using Stored Routines (Procedures and Functions)”.

B.4.3: Is there a discussion forum for MySQL stored procedures?

Yes. See http://forums.mysql.com/list.php?98.

B.4.4: Where can I find the ANSI SQL 2003 specification for stored procedures?

Unfortunately, the official specifications are not freely available (ANSI makes them available for
purchase). However, there are books—such as SQL-99 Complete, Really by Peter Gulutzan and
Trudy Pelzer—which give a comprehensive overview of the standard, including coverage of stored
procedures.

B.4.5: How do you manage stored routines?

It is always good practice to use a clear naming scheme for your stored routines. You can manage
stored procedures with CREATE [FUNCTION|PROCEDURE], ALTER [FUNCTION|PROCEDURE],
DROP [FUNCTION|PROCEDURE], and SHOW CREATE [FUNCTION|PROCEDURE]. You can obtain
information about existing stored procedures using the ROUTINES table in the INFORMATION_SCHEMA
database (see Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”).

B.4.6: Is there a way to view all stored procedures and stored functions in a given database?

Yes. For a database named dbname, use this query on the INFORMATION_SCHEMA.ROUTINES table:

SELECT ROUTINE_TYPE, ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_SCHEMA='dbname';

For more information, see Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”.

The body of a stored routine can be viewed using SHOW CREATE FUNCTION (for a stored function)
or SHOW CREATE PROCEDURE (for a stored procedure). See Section 13.7.5.9, “SHOW CREATE
PROCEDURE Syntax”, for more information.

B.4.7: Where are stored procedures stored?

In the proc table of the mysql system database. However, you should not access the tables in
the system database directly. Instead, use SHOW CREATE FUNCTION to obtain information about
stored functions, and SHOW CREATE PROCEDURE to obtain information about stored procedures. See
Section 13.7.5.9, “SHOW CREATE PROCEDURE Syntax”, for more information about these statements.

You can also query the ROUTINES table in the INFORMATION_SCHEMA database—see Section 19.19,
“The INFORMATION_SCHEMA ROUTINES Table”, for information about this table.

B.4.8: Is it possible to group stored procedures or stored functions into packages?

No. This is not supported in MySQL 5.7.

B.4.9: Can a stored procedure call another stored procedure?

Yes.

B.4.10: Can a stored procedure call a trigger?

A stored procedure can execute an SQL statement, such as an UPDATE, that causes a trigger to
activate.

B.4.11: Can a stored procedure access tables?

Yes. A stored procedure can access one or more tables as required.

http://forums.mysql.com/list.php?98

MySQL 5.7 FAQ: Stored Procedures and Functions

2753

B.4.12: Do stored procedures have a statement for raising application errors?

Yes. MySQL 5.7 implements the SQL standard SIGNAL and RESIGNAL statements. See
Section 13.6.7, “Condition Handling”.

B.4.13: Do stored procedures provide exception handling?

MySQL implements HANDLER definitions according to the SQL standard. See Section 13.6.7.2,
“DECLARE ... HANDLER Syntax”, for details.

B.4.14: Can MySQL 5.7 stored routines return result sets?

Stored procedures can, but stored functions cannot. If you perform an ordinary SELECT inside a stored
procedure, the result set is returned directly to the client. You need to use the MySQL 4.1 (or above)
client/server protocol for this to work. This means that—for instance—in PHP, you need to use the
mysqli extension rather than the old mysql extension.

B.4.15: Is WITH RECOMPILE supported for stored procedures?

Not in MySQL 5.7.

B.4.16: Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk
directly to a stored procedure in the database?

There is no equivalent in MySQL 5.7.

B.4.17: Can I pass an array as input to a stored procedure?

Not in MySQL 5.7.

B.4.18: Can I pass a cursor as an IN parameter to a stored procedure?

In MySQL 5.7, cursors are available inside stored procedures only.

B.4.19: Can I return a cursor as an OUT parameter from a stored procedure?

In MySQL 5.7, cursors are available inside stored procedures only. However, if you do not open a
cursor on a SELECT, the result will be sent directly to the client. You can also SELECT INTO variables.
See Section 13.2.9, “SELECT Syntax”.

B.4.20: Can I print out a variable's value within a stored routine for debugging purposes?

Yes, you can do this in a stored procedure, but not in a stored function. If you perform an ordinary
SELECT inside a stored procedure, the result set is returned directly to the client. You will need to use
the MySQL 4.1 (or above) client/server protocol for this to work. This means that—for instance—in
PHP, you need to use the mysqli extension rather than the old mysql extension.

B.4.21: Can I commit or roll back transactions inside a stored procedure?

Yes. However, you cannot perform transactional operations within a stored function.

B.4.22: Do MySQL 5.7 stored procedures and functions work with replication?

Yes, standard actions carried out in stored procedures and functions are replicated from a master
MySQL server to a slave server. There are a few limitations that are described in detail in Section 18.7,
“Binary Logging of Stored Programs”.

B.4.23: Are stored procedures and functions created on a master server replicated to a slave?

Yes, creation of stored procedures and functions carried out through normal DDL statements on a
master server are replicated to a slave, so the objects will exist on both servers. ALTER and DROP
statements for stored procedures and functions are also replicated.

B.4.24: How are actions that take place inside stored procedures and functions replicated?

MySQL 5.7 FAQ: Triggers

2754

MySQL records each DML event that occurs in a stored procedure and replicates those individual
actions to a slave server. The actual calls made to execute stored procedures are not replicated.

Stored functions that change data are logged as function invocations, not as the DML events that occur
inside each function.

B.4.25: Are there special security requirements for using stored procedures and functions
together with replication?

Yes. Because a slave server has authority to execute any statement read from a master's binary log,
special security constraints exist for using stored functions with replication. If replication or binary
logging in general (for the purpose of point-in-time recovery) is active, then MySQL DBAs have two
security options open to them:

1. Any user wishing to create stored functions must be granted the SUPER privilege.

2. Alternatively, a DBA can set the log_bin_trust_function_creators system variable to 1,
which enables anyone with the standard CREATE ROUTINE privilege to create stored functions.

B.4.26: What limitations exist for replicating stored procedure and function actions?

Nondeterministic (random) or time-based actions embedded in stored procedures may not
replicate properly. By their very nature, randomly produced results are not predictable and cannot
be exactly reproduced, and therefore, random actions replicated to a slave will not mirror those
performed on a master. Note that declaring stored functions to be DETERMINISTIC or setting the
log_bin_trust_function_creators system variable to 0 will not allow random-valued operations
to be invoked.

In addition, time-based actions cannot be reproduced on a slave because the timing of such actions in
a stored procedure is not reproducible through the binary log used for replication. It records only DML
events and does not factor in timing constraints.

Finally, nontransactional tables for which errors occur during large DML actions (such as bulk inserts)
may experience replication issues in that a master may be partially updated from DML activity, but no
updates are done to the slave because of the errors that occurred. A workaround is for a function's
DML actions to be carried out with the IGNORE keyword so that updates on the master that cause
errors are ignored and updates that do not cause errors are replicated to the slave.

B.4.27: Do the preceding limitations affect MySQL's ability to do point-in-time recovery?

The same limitations that affect replication do affect point-in-time recovery.

B.4.28: What is being done to correct the aforementioned limitations?

You can choose either statement-based replication or row-based replication. The original replication
implementation is based on statement-based binary logging. Row-based binary logging resolves the
limitations mentioned earlier.

Mixed replication is also available (by starting the server with --binlog-format=mixed). This
hybrid, “smart” form of replication “knows” whether statement-level replication can safely be used, or
row-level replication is required.

For additional information, see Section 16.1.2, “Replication Formats”.

B.5 MySQL 5.7 FAQ: Triggers

Questions

• B.5.1: [2755] Where can I find the documentation for MySQL 5.7 triggers?

• B.5.2: [2755] Is there a discussion forum for MySQL Triggers?

MySQL 5.7 FAQ: Triggers

2755

• B.5.3: [2755] Does MySQL 5.7 have statement-level or row-level triggers?

• B.5.4: [2755] Are there any default triggers?

• B.5.5: [2755] How are triggers managed in MySQL?

• B.5.6: [2755] Is there a way to view all triggers in a given database?

• B.5.7: [2756] Where are triggers stored?

• B.5.8: [2756] Can a trigger call a stored procedure?

• B.5.9: [2756] Can triggers access tables?

• B.5.10: [2756] Can a table have multiple triggers with the same trigger event and action time?

• B.5.11: [2756] Can triggers call an external application through a UDF?

• B.5.12: [2756] Is it possible for a trigger to update tables on a remote server?

• B.5.13: [2756] Do triggers work with replication?

• B.5.14: [2756] How are actions carried out through triggers on a master replicated to a slave?

Questions and Answers

B.5.1: Where can I find the documentation for MySQL 5.7 triggers?

See Section 18.3, “Using Triggers”.

B.5.2: Is there a discussion forum for MySQL Triggers?

Yes. It is available at http://forums.mysql.com/list.php?99.

B.5.3: Does MySQL 5.7 have statement-level or row-level triggers?

In MySQL 5.7, all triggers are FOR EACH ROW—that is, the trigger is activated for each row that is
inserted, updated, or deleted. MySQL 5.7 does not support triggers using FOR EACH STATEMENT.

B.5.4: Are there any default triggers?

Not explicitly. MySQL does have specific special behavior for some TIMESTAMP columns, as well as
for columns which are defined using AUTO_INCREMENT.

B.5.5: How are triggers managed in MySQL?

In MySQL 5.7, triggers can be created using the CREATE TRIGGER statement, and dropped using
DROP TRIGGER. See Section 13.1.15, “CREATE TRIGGER Syntax”, and Section 13.1.24, “DROP
TRIGGER Syntax”, for more about these statements.

Information about triggers can be obtained by querying the INFORMATION_SCHEMA.TRIGGERS table.
See Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”.

B.5.6: Is there a way to view all triggers in a given database?

Yes. You can obtain a listing of all triggers defined on database dbname using a query on the
INFORMATION_SCHEMA.TRIGGERS table such as the one shown here:

SELECT TRIGGER_NAME, EVENT_MANIPULATION, EVENT_OBJECT_TABLE, ACTION_STATEMENT
 FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='dbname';

For more information about this table, see Section 19.27, “The INFORMATION_SCHEMA TRIGGERS
Table”.

http://forums.mysql.com/list.php?99

MySQL 5.7 FAQ: Triggers

2756

You can also use the SHOW TRIGGERS statement, which is specific to MySQL. See Section 13.7.5.37,
“SHOW TRIGGERS Syntax”.

B.5.7: Where are triggers stored?

Triggers for a table are currently stored in .TRG files, with one such file one per table.

B.5.8: Can a trigger call a stored procedure?

Yes.

B.5.9: Can triggers access tables?

A trigger can access both old and new data in its own table. A trigger can also affect other tables, but
it is not permitted to modify a table that is already being used (for reading or writing) by the statement
that invoked the function or trigger.

B.5.10: Can a table have multiple triggers with the same trigger event and action time?

As of MySQL 5.7.2, it is possible to define multiple triggers for a given table that have the same trigger
event and action time. For example, you can have two BEFORE UPDATE triggers for a table. By default,
triggers that have the same trigger event and action time activate in the order they were created. To
affect trigger order, specify a clause after FOR EACH ROW that indicates FOLLOWS or PRECEDES and
the name of an existing trigger that also has the same trigger event and action time. With FOLLOWS,
the new trigger activates after the existing trigger. With PRECEDES, the new trigger activates before the
existing trigger.

B.5.11: Can triggers call an external application through a UDF?

Yes. For example, a trigger could invoke the sys_exec() UDF.

B.5.12: Is it possible for a trigger to update tables on a remote server?

Yes. A table on a remote server could be updated using the FEDERATED storage engine. (See
Section 14.9, “The FEDERATED Storage Engine”).

B.5.13: Do triggers work with replication?

Yes. However, the way in which they work depends whether you are using MySQL's “classic”
statement-based replication available in all versions of MySQL, or the row-based replication format
introduced in MySQL 5.1.

When using statement-based replication, triggers on the slave are executed by statements that are
executed on the master (and replicated to the slave).

When using row-based replication, triggers are not executed on the slave due to statements that were
run on the master and then replicated to the slave. Instead, when using row-based replication, the
changes caused by executing the trigger on the master are applied on the slave.

For more information, see Section 16.4.1.32, “Replication and Triggers”.

B.5.14: How are actions carried out through triggers on a master replicated to a slave?

Again, this depends on whether you are using statement-based or row-based replication.

Statement-based replication. First, the triggers that exist on a master must be re-created on the
slave server. Once this is done, the replication flow works as any other standard DML statement that
participates in replication. For example, consider a table EMP that has an AFTER insert trigger, which
exists on a master MySQL server. The same EMP table and AFTER insert trigger exist on the slave
server as well. The replication flow would be:

1. An INSERT statement is made to EMP.

MySQL 5.7 FAQ: Views

2757

2. The AFTER trigger on EMP activates.

3. The INSERT statement is written to the binary log.

4. The replication slave picks up the INSERT statement to EMP and executes it.

5. The AFTER trigger on EMP that exists on the slave activates.

Row-based replication. When you use row-based replication, the changes caused by executing
the trigger on the master are applied on the slave. However, the triggers themselves are not actually
executed on the slave under row-based replication. This is because, if both the master and the slave
applied the changes from the master and—in addition—the trigger causing these changes were applied
on the slave, the changes would in effect be applied twice on the slave, leading to different data on the
master and the slave.

In most cases, the outcome is the same for both row-based and statement-based replication. However,
if you use different triggers on the master and slave, you cannot use row-based replication. (This is
because the row-based format replicates the changes made by triggers executing on the master to the
slaves, rather than the statements that caused the triggers to execute, and the corresponding triggers
on the slave are not executed.) Instead, any statements causing such triggers to be executed must be
replicated using statement-based replication.

For more information, see Section 16.4.1.32, “Replication and Triggers”.

B.6 MySQL 5.7 FAQ: Views
Questions

• B.6.1: [2757] Where can I find documentation covering MySQL Views?

• B.6.2: [2757] Is there a discussion forum for MySQL Views?

• B.6.3: [2757] What happens to a view if an underlying table is dropped or renamed?

• B.6.4: [2757] Does MySQL 5.7 have table snapshots?

• B.6.5: [2757] Does MySQL 5.7 have materialized views?

• B.6.6: [2758] Can you insert into views that are based on joins?

Questions and Answers

B.6.1: Where can I find documentation covering MySQL Views?

See Section 18.5, “Using Views”.

B.6.2: Is there a discussion forum for MySQL Views?

Yes. See http://forums.mysql.com/list.php?100

B.6.3: What happens to a view if an underlying table is dropped or renamed?

After a view has been created, it is possible to drop or alter a table or view to which the definition
refers. To check a view definition for problems of this kind, use the CHECK TABLE statement. (See
Section 13.7.2.2, “CHECK TABLE Syntax”.)

B.6.4: Does MySQL 5.7 have table snapshots?

No.

B.6.5: Does MySQL 5.7 have materialized views?

No.

http://forums.mysql.com/list.php?100

MySQL 5.7 FAQ: INFORMATION_SCHEMA

2758

B.6.6: Can you insert into views that are based on joins?

It is possible, provided that your INSERT statement has a column list that makes it clear there is only
one table involved.

You cannot insert into multiple tables with a single insert on a view.

B.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA
Questions

• B.7.1: [2758] Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

• B.7.2: [2758] Is there a discussion forum for INFORMATION_SCHEMA?

• B.7.3: [2758] Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

• B.7.4: [2758] What is the difference between the Oracle Data Dictionary and MySQL's
INFORMATION_SCHEMA?

• B.7.5: [2758] Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA
database?

Questions and Answers

B.7.1: Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See Chapter 19, INFORMATION_SCHEMA Tables

B.7.2: Is there a discussion forum for INFORMATION_SCHEMA?

See http://forums.mysql.com/list.php?101.

B.7.3: Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available
for purchase.) However, there are books available—such as SQL-99 Complete, Really by Peter
Gulutzan and Trudy Pelzer—which give a comprehensive overview of the standard, including
INFORMATION_SCHEMA.

B.7.4: What is the difference between the Oracle Data Dictionary and MySQL's
INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different table
names and column names. MySQL's implementation is more similar to those found in DB2 and SQL
Server, which also support INFORMATION_SCHEMA as defined in the SQL standard.

B.7.5: Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA
database?

No. Since applications may rely on a certain standard structure, this should not be modified. For this
reason, we cannot support bugs or other issues which result from modifying INFORMATION_SCHEMA
tables or data.

B.8 MySQL 5.7 FAQ: Migration
Questions

• B.8.1: [2759] Where can I find information on how to migrate from MySQL 5.6 to MySQL 5.7?

• B.8.2: [2759] How has storage engine (table type) support changed in MySQL 5.7 from previous
versions?

http://forums.mysql.com/list.php?101

MySQL 5.7 FAQ: Security

2759

Questions and Answers

B.8.1: Where can I find information on how to migrate from MySQL 5.6 to MySQL 5.7?

For detailed upgrade information, see Section 2.10.1, “Upgrading MySQL”. Do not skip a major version
when upgrading, but rather complete the process in steps, upgrading from one major version to the
next in each step. This may seem more complicated, but it will you save time and trouble—if you
encounter problems during the upgrade, their origin will be easier to identify, either by you or—if you
have a MySQL Enterprise subscription—by MySQL support.

B.8.2: How has storage engine (table type) support changed in MySQL 5.7 from previous
versions?

Storage engine support has changed as follows:

• Support for ISAM tables was removed in MySQL 5.0 and you should now use the MyISAM storage
engine in place of ISAM. To convert a table tblname from ISAM to MyISAM, simply issue a
statement such as this one:

ALTER TABLE tblname ENGINE=MYISAM;

• Internal RAID for MyISAM tables was also removed in MySQL 5.0. This was formerly used to allow
large tables in file systems that did not support file sizes greater than 2GB. All modern file systems
allow for larger tables; in addition, there are now other solutions such as MERGE tables and views.

• The VARCHAR column type now retains trailing spaces in all storage engines.

• MEMORY tables (formerly known as HEAP tables) can also contain VARCHAR columns.

B.9 MySQL 5.7 FAQ: Security

Questions

• B.9.1: [2759] Where can I find documentation that addresses security issues for MySQL?

• B.9.2: [2760] Does MySQL 5.7 have native support for SSL?

• B.9.3: [2760] Is SSL support be built into MySQL binaries, or must I recompile the binary myself to
enable it?

• B.9.4: [2760] Does MySQL 5.7 have built-in authentication against LDAP directories?

• B.9.5: [2760] Does MySQL 5.7 include support for Roles Based Access Control (RBAC)?

Questions and Answers

B.9.1: Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 6, Security.

Other portions of the MySQL Documentation which you may find useful with regard to specific security
concerns include the following:

• Section 6.1.1, “Security Guidelines”.

• Section 6.1.3, “Making MySQL Secure Against Attackers”.

• Section C.5.4.1, “How to Reset the Root Password”.

• Section 6.1.5, “How to Run MySQL as a Normal User”.

• Section 22.3.2.6, “User-Defined Function Security Precautions”.

MySQL 5.7 FAQ: MySQL Cluster

2760

• Section 6.1.4, “Security-Related mysqld Options and Variables”.

• Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.

• Section 2.9, “Postinstallation Setup and Testing”.

• Section 6.3.11.1, “Basic SSL Concepts”.

B.9.2: Does MySQL 5.7 have native support for SSL?

Most 5.7 binaries have support for SSL connections between the client and server. See Section 6.3.11,
“Using SSL for Secure Connections”.

You can also tunnel a connection using SSH, if (for example) the client application does not support
SSL connections. For an example, see Section 6.3.12, “Connecting to MySQL Remotely from Windows
with SSH”.

B.9.3: Is SSL support be built into MySQL binaries, or must I recompile the binary myself to
enable it?

Most 5.7 binaries have SSL enabled for client-server connections that are secured, authenticated, or
both. See Section 6.3.11, “Using SSL for Secure Connections”.

B.9.4: Does MySQL 5.7 have built-in authentication against LDAP directories?

Not at this time.

B.9.5: Does MySQL 5.7 include support for Roles Based Access Control (RBAC)?

Not at this time.

B.10 MySQL 5.7 FAQ: MySQL Cluster

Questions

• B.10.1: [2760] Which versions of the MySQL software support Cluster? Do I have to compile from
source?

Questions and Answers

B.10.1: Which versions of the MySQL software support Cluster? Do I have to compile from
source?

MySQL Cluster is not supported in MySQL Server 5.7 releases. Instead, MySQL Cluster is released
as a separate product, available as MySQL Cluster NDB 7.2 and MySQL Cluster NDB 7.3. You should
use MySQL Cluster NDB 7.3 for new deployments, and plan to upgrade if you are using a previous
version of MySQL Cluster. For an overview of improvements made in MySQL Cluster NDB 7.2, see
MySQL Cluster Development in MySQL Cluster NDB 7.2; for information about improvements made in
MySQL Cluster NDB 7.3, see MySQL Cluster Development in MySQL Cluster NDB 7.3.

For detailed information about deploying and using MySQL Cluster, see MySQL Cluster NDB 7.2 and
MySQL Cluster NDB 7.3.

B.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean
Character Sets

This set of Frequently Asked Questions derives from the experience of MySQL's Support and
Development groups in handling many inquiries about CJK (Chinese-Japanese-Korean) issues.

Questions

http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-development-5-5-ndb-7-2.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-development-5-6-ndb-7-3.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2761

• B.11.1: [2761] What CJK character sets are available in MySQL?

• B.11.2: [2762] I have inserted CJK characters into my table. Why does SELECT display them as “?”
characters?

• B.11.3: [2764] What problems should I be aware of when working with the Big5 Chinese character
set?

• B.11.4: [2764] Why do Japanese character set conversions fail?

• B.11.5: [2765] What should I do if I want to convert SJIS 81CA to cp932?

• B.11.6: [2765] How does MySQL represent the Yen (¥) sign?

• B.11.7: [2765] Does MySQL plan to make a separate character set where 5C is the Yen sign, as at
least one other major DBMS does?

• B.11.8: [2765] Of what issues should I be aware when working with Korean character sets in
MySQL?

• B.11.9: [2766] Why do I get Incorrect string value error messages?

• B.11.10: [2766] Why does my GUI front end or browser not display CJK characters correctly in my
application using Access, PHP, or another API?

• B.11.11: [2767] I've upgraded to MySQL 5.7. How can I revert to behavior like that in MySQL 4.0
with regard to character sets?

• B.11.12: [2769] Why do some LIKE and FULLTEXT searches with CJK characters fail?

• B.11.13: [2769] How do I know whether character X is available in all character sets?

• B.11.14: [2770] Why do CJK strings sort incorrectly in Unicode? (I)

• B.11.15: [2771] Why do CJK strings sort incorrectly in Unicode? (II)

• B.11.16: [2772] Why are my supplementary characters rejected by MySQL?

• B.11.17: [2772] Shouldn't it be “CJKV”?

• B.11.18: [2772] Does MySQL allow CJK characters to be used in database and table names?

• B.11.19: [2772] Where can I find translations of the MySQL Manual into Chinese, Japanese, and
Korean?

• B.11.20: [2772] Where can I get help with CJK and related issues in MySQL?

Questions and Answers

B.11.1: What CJK character sets are available in MySQL?

The list of CJK character sets may vary depending on your MySQL version. For example,
the eucjpms character set was not supported prior to MySQL 5.0.3. However, since the
name of the applicable language appears in the DESCRIPTION column for every entry in the
INFORMATION_SCHEMA.CHARACTER_SETS table, you can obtain a current list of all the non-Unicode
CJK character sets using this query:

mysql> SELECT CHARACTER_SET_NAME, DESCRIPTION
 -> FROM INFORMATION_SCHEMA.CHARACTER_SETS
 -> WHERE DESCRIPTION LIKE '%Chinese%'
 -> OR DESCRIPTION LIKE '%Japanese%'
 -> OR DESCRIPTION LIKE '%Korean%'
 -> ORDER BY CHARACTER_SET_NAME;

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2762

+--------------------+---------------------------+
| CHARACTER_SET_NAME | DESCRIPTION |
+--------------------+---------------------------+
big5	Big5 Traditional Chinese
cp932	SJIS for Windows Japanese
eucjpms	UJIS for Windows Japanese
euckr	EUC-KR Korean
gb2312	GB2312 Simplified Chinese
gbk	GBK Simplified Chinese
sjis	Shift-JIS Japanese
ujis	EUC-JP Japanese
+--------------------+---------------------------+
8 rows in set (0.01 sec)

(See Section 19.1, “The INFORMATION_SCHEMA CHARACTER_SETS Table”, for more information.)

MySQL supports the two common variants of the GB (Guojia Biaozhun, or National Standard, or
Simplified Chinese) character sets which are official in the People's Republic of China: gb2312
and gbk. Sometimes people try to insert gbk characters into gb2312, and it works most of the time
because gbk is a superset of gb2312—but eventually they try to insert a rarer Chinese character and it
doesn't work. (See Bug #16072 for an example).

Here, we try to clarify exactly what characters are legitimate in gb2312 or gbk, with reference to the
official documents. Please check these references before reporting gb2312 or gbk bugs.

• For a complete listing of the gb2312 characters, ordered according to the gb2312_chinese_ci
collation: gb2312

• MySQL's gbk is in reality “Microsoft code page 936”. This differs from the official gbk for characters
A1A4 (middle dot), A1AA (em dash), A6E0-A6F5, and A8BB-A8C0.

• For a listing of gbk/Unicode mappings, see http://www.unicode.org/Public/MAPPINGS/VENDORS/
MICSFT/WINDOWS/CP936.TXT.

• For MySQL's listing of gbk characters, see gbk.

B.11.2: I have inserted CJK characters into my table. Why does SELECT display them as “?”
characters?

This problem is usually due to a setting in MySQL that doesn't match the settings for the application
program or the operating system. Here are some common steps for correcting these types of issues:

• Be certain of what MySQL version you are using.

Use the statement SELECT VERSION(); to determine this.

• Make sure that the database is actually using the desired character set.

People often think that the client character set is always the same as either the server character set
or the character set used for display purposes. However, both of these are false assumptions. You
can make sure by checking the result of SHOW CREATE TABLE tablename or—better yet—by
using this statement:

SELECT character_set_name, collation_name
 FROM information_schema.columns
 WHERE table_schema = your_database_name
 AND table_name = your_table_name
 AND column_name = your_column_name;

• Determine the hexadecimal value of the character or characters that are not being displayed
correctly.

You can obtain this information for a column column_name in the table table_name using the
following query:

http://www.collation-charts.org/mysql60/by-charset.html#gb2312
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.collation-charts.org/mysql60/by-charset.html#gbk

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2763

SELECT HEX(column_name)
FROM table_name;

3F is the encoding for the ? character; this means that ? is the character actually stored in the
column. This most often happens because of a problem converting a particular character from your
client character set to the target character set.

• Make sure that a round trip possible—that is, when you select literal (or _introducer
hexadecimal-value), you obtain literal as a result.

For example, the Japanese Katakana character Pe (ペ') exists in all CJK character sets, and has
the code point value (hexadecimal coding) 0x30da. To test a round trip for this character, use this
query:

SELECT 'ペ' AS `ペ`; /* or SELECT _ucs2 0x30da; */

If the result is not also ペ, then the round trip has failed.

For bug reports regarding such failures, we might ask you to follow up with SELECT HEX('ペ');.
Then we can determine whether the client encoding is correct.

• Make sure that the problem is not with the browser or other application, rather than with MySQL.

Use the mysql client program (on Windows: mysql.exe) to accomplish this task. If mysql displays
correctly but your application doesn't, then your problem is probably due to system settings.

To find out what your settings are, use the SHOW VARIABLES statement, whose output should
resemble what is shown here:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.03 sec)

These are typical character-set settings for an international-oriented client (notice the use of utf8
Unicode) connected to a server in the West (latin1 is a West Europe character set and a default
for MySQL).

Although Unicode (usually the utf8 variant on Unix, and the ucs2 variant on Windows) is preferable
to Latin, it is often not what your operating system utilities support best. Many Windows users find
that a Microsoft character set, such as cp932 for Japanese Windows, is suitable.

If you cannot control the server settings, and you have no idea what your underlying computer is,
then try changing to a common character set for the country that you're in (euckr = Korea; gb2312
or gbk = People's Republic of China; big5 = Taiwan; sjis, ujis, cp932, or eucjpms = Japan;
ucs2 or utf8 = anywhere). Usually it is necessary to change only the client and connection and
results settings. There is a simple statement which changes all three at once: SET NAMES. For
example:

SET NAMES 'big5';

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2764

Once the setting is correct, you can make it permanent by editing my.cnf or my.ini. For example
you might add lines looking like these:

[mysqld]
character-set-server=big5
[client]
default-character-set=big5

It is also possible that there are issues with the API configuration setting being used in your
application; see Why does my GUI front end or browser not display CJK characters correctly...? for
more information.

B.11.3: What problems should I be aware of when working with the Big5 Chinese character set?

MySQL supports the Big5 character set which is common in Hong Kong and Taiwan (Republic of
China). MySQL's big5 is in reality Microsoft code page 950, which is very similar to the original big5
character set. We changed to this character set starting with MySQL version 4.1.16 / 5.0.16 (as a result
of Bug #12476). For example, the following statements work in current versions of MySQL, but not in
old versions:

mysql> CREATE TABLE big5 (BIG5 CHAR(1) CHARACTER SET BIG5);
Query OK, 0 rows affected (0.13 sec)

mysql> INSERT INTO big5 VALUES (0xf9dc);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM big5;
+------+
| big5 |
+------+
| 嫺 |
+------+
1 row in set (0.02 sec)

A feature request for adding HKSCS extensions has been filed. People who need this extension may
find the suggested patch for Bug #13577 to be of interest.

B.11.4: Why do Japanese character set conversions fail?

MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A
common need is to convert between character sets. For example, there might be a Unix server
(typically with sjis or ujis) and a Windows client (typically with cp932).

In the following conversion table, the ucs2 column represents the source, and the sjis, cp932, ujis,
and eucjpms columns represent the destinations—that is, the last 4 columns provide the hexadecimal
result when we use CONVERT(ucs2) or we assign a ucs2 column containing the value to an sjis,
cp932, ujis, or eucjpms column.

Character Name ucs2 sjis cp932 ujis eucjpms

BROKEN BAR 00A6 3F 3F 8FA2C3 3F

FULLWIDTH BROKEN BAR FFE4 3F FA55 3F 8FA2

YEN SIGN 00A5 3F 3F 20 3F

FULLWIDTH YEN SIGN FFE5 818F 818F A1EF 3F

TILDE 007E 7E 7E 7E 7E

OVERLINE 203E 3F 3F 20 3F

HORIZONTAL BAR 2015 815C 815C A1BD A1BD

EM DASH 2014 3F 3F 3F 3F

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2765

Character Name ucs2 sjis cp932 ujis eucjpms

REVERSE SOLIDUS 005C 815F 5C 5C 5C

FULLWIDTH "" FF3C 3F 815F 3F A1C0

WAVE DASH 301C 8160 3F A1C1 3F

FULLWIDTH TILDE FF5E 3F 8160 3F A1C1

DOUBLE VERTICAL LINE 2016 8161 3F A1C2 3F

PARALLEL TO 2225 3F 8161 3F A1C2

MINUS SIGN 2212 817C 3F A1DD 3F

FULLWIDTH HYPHEN-MINUS FF0D 3F 817C 3F A1DD

CENT SIGN 00A2 8191 3F A1F1 3F

FULLWIDTH CENT SIGN FFE0 3F 8191 3F A1F1

POUND SIGN 00A3 8192 3F A1F2 3F

FULLWIDTH POUND SIGN FFE1 3F 8192 3F A1F2

NOT SIGN 00AC 81CA 3F A2CC 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA 3F A2CC

Now consider the following portion of the table.

 ucs2 sjis cp932

NOT SIGN 00AC 81CA 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA

This means that MySQL converts the NOT SIGN (Unicode U+00AC) to sjis code point 0x81CA and to
cp932 code point 3F. (3F is the question mark (“?”)—this is what is always used when the conversion
cannot be performed.

B.11.5: What should I do if I want to convert SJIS 81CA to cp932?

Our answer is: “?”. There are serious complaints about this: many people would prefer a “loose”
conversion, so that 81CA (NOT SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in cp932.
We are considering a change to this behavior.

B.11.6: How does MySQL represent the Yen (¥) sign?

A problem arises because some versions of Japanese character sets (both sjis and euc) treat 5C as
a reverse solidus (\—also known as a backslash), and others treat it as a yen sign (¥).

MySQL follows only one version of the JIS (Japanese Industrial Standards) standard description. In
MySQL, 5C is always the reverse solidus (\).

B.11.7: Does MySQL plan to make a separate character set where 5C is the Yen sign, as at least
one other major DBMS does?

This is one possible solution to the Yen sign issue; however, this will not happen in MySQL 5.1 or 6.0.

B.11.8: Of what issues should I be aware when working with Korean character sets in MySQL?

In theory, while there have been several versions of the euckr (Extended Unix Code Korea) character
set, only one problem has been noted.

We use the “ASCII” variant of EUC-KR, in which the code point 0x5c is REVERSE SOLIDUS, that is
\, instead of the “KS-Roman” variant of EUC-KR, in which the code point 0x5c is WON SIGN(₩). This
means that you cannot convert Unicode U+20A9 to euckr:

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2766

mysql> SELECT
 -> CONVERT('₩' USING euckr) AS euckr,

 -> HEX(CONVERT('₩' USING euckr)) AS hexeuckr;
+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ? | 3F |
+-------+----------+
1 row in set (0.00 sec)

MySQL's graphic Korean chart is here: euckr.

B.11.9: Why do I get Incorrect string value error messages?

For illustration, we'll create a table with one Unicode (ucs2) column and one Chinese (gb2312)
column.

mysql> CREATE TABLE ch
 -> (ucs2 CHAR(3) CHARACTER SET ucs2,
 -> gb2312 CHAR(3) CHARACTER SET gb2312);
Query OK, 0 rows affected (0.05 sec)

We'll try to place the rare character 汌 in both columns.

mysql> INSERT INTO ch VALUES ('A汌B','A汌B');
Query OK, 1 row affected, 1 warning (0.00 sec)

Ah, there is a warning. Use the following statement to see what it is:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1366
Message: Incorrect string value: '\xE6\xB1\x8CB' for column 'gb2312' at row 1
1 row in set (0.00 sec)

So it is a warning about the gb2312 column only.

mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;
+-------+--------------+--------+-------------+
| ucs2 | HEX(ucs2) | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A汌B | 00416C4C0042 | A?B | 413F42 |
+-------+--------------+--------+-------------+
1 row in set (0.00 sec)

Several things need explanation here:

1. The fact that it is a “warning” rather than an “error” is characteristic of MySQL. We like to try to do
what we can, to get the best fit, rather than give up.

2. The 汌 character is not in the gb2312 character set. We described that problem earlier.

3. If you are using an old version of MySQL, you will probably see a different message.

4. With sql_mode=TRADITIONAL, there would be an error message, rather than a warning.

B.11.10: Why does my GUI front end or browser not display CJK characters correctly in my
application using Access, PHP, or another API?

Obtain a direct connection to the server using the mysql client (Windows: mysql.exe), and try the
same query there. If mysql responds correctly, then the trouble may be that your application interface

http://www.collation-charts.org/mysql60/by-charset.html#euckr

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2767

requires initialization. Use mysql to tell you what character set or sets it uses with the statement SHOW
VARIABLES LIKE 'char%';. If you are using Access, then you are most likely connecting with
Connector/ODBC. In this case, you should check Configuring Connector/ODBC. If, for instance, you
use big5, you would enter SET NAMES 'big5'. (Note that no ; is required in this case). If you are
using ASP, you might need to add SET NAMES in the code. Here is an example that has worked in the
past:

<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=server;uid=username;" \
 & "pwd=password;database=database;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open strConnection
%>

In much the same way, if you are using any character set other than latin1 with Connector/Net,
then you must specify the character set in the connection string. See Connecting to MySQL Using
Connector/Net, for more information.

If you are using PHP, try this:

<?php
 $link = mysql_connect($host, $usr, $pwd);

 mysql_select_db($db);

 if(mysql_error()) { print "Database ERROR: " . mysql_error(); }
 mysql_query("SET NAMES 'utf8'", $link);
?>

In this case, we used SET NAMES to change character_set_client and
character_set_connection and character_set_results.

We encourage the use of the newer mysqli extension, rather than mysql. Using mysqli, the
previous example could be rewritten as shown here:

<?php
 $link = new mysqli($host, $usr, $pwd, $db);

 if(mysqli_connect_errno())
 {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
 }

 $link->query("SET NAMES 'utf8'");
?>

Another issue often encountered in PHP applications has to do with assumptions made by the
browser. Sometimes adding or changing a <meta> tag suffices to correct the problem: for example,
to insure that the user agent interprets page content as UTF-8, you should include <meta http-
equiv="Content-Type" content="text/html; charset=utf-8"> in the <head> of the
HTML page.

If you are using Connector/J, see Using Character Sets and Unicode.

B.11.11: I've upgraded to MySQL 5.7. How can I revert to behavior like that in MySQL 4.0 with
regard to character sets?

In MySQL Version 4.0, there was a single “global” character set for both server and client, and the
decision as to which character to use was made by the server administrator. This changed starting with

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-charsets.html

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2768

MySQL Version 4.1. What happens now is a “handshake”, as described in Section 10.1.4, “Connection
Character Sets and Collations”:

When a client connects, it sends to the server the name of the character set that
it wants to use. The server uses the name to set the character_set_client,
character_set_results, and character_set_connection system variables.
In effect, the server performs a SET NAMES operation using the character set name.

The effect of this is that you cannot control the client character set by starting mysqld with --
character-set-server=utf8. However, some of our Asian customers have said that they prefer
the MySQL 4.0 behavior. To make it possible to retain this behavior, we added a mysqld switch, --
character-set-client-handshake, which can be turned off with --skip-character-set-
client-handshake. If you start mysqld with --skip-character-set-client-handshake,
then, when a client connects, it sends to the server the name of the character set that it wants to use—
however, the server ignores this request from the client.

By way of example, suppose that your favorite server character set is latin1 (unlikely in a CJK area,
but this is the default value). Suppose further that the client uses utf8 because this is what the client's
operating system supports. Now, start the server with latin1 as its default character set:

mysqld --character-set-server=latin1

And then start the client with the default character set utf8:

mysql --default-character-set=utf8

The current settings can be seen by viewing the output of SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.01 sec)

Now stop the client, and then stop the server using mysqladmin. Then start the server again, but this
time tell it to skip the handshake like so:

mysqld --character-set-server=utf8 --skip-character-set-client-handshake

Start the client with utf8 once again as the default character set, then display the current settings:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_filesystem	binary
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2769

+--------------------------+--+
8 rows in set (0.01 sec)

As you can see by comparing the differing results from SHOW VARIABLES, the server ignores the
client's initial settings if the --skip-character-set-client-handshake is used.

B.11.12: Why do some LIKE and FULLTEXT searches with CJK characters fail?

There is a very simple problem with LIKE searches on BINARY and BLOB columns: we need to know
the end of a character. With multi-byte character sets, different characters might have different octet
lengths. For example, in utf8, A requires one byte but ペ requires three bytes, as shown here:

+-------------------------+---------------------------+
| OCTET_LENGTH(_utf8 'A') | OCTET_LENGTH(_utf8 'ペ') |
+-------------------------+---------------------------+
| 1 | 3 |
+-------------------------+---------------------------+
1 row in set (0.00 sec)

If we don't know where the first character ends, then we don't know where the second character
begins, in which case even very simple searches such as LIKE '_A%' fail. The solution is to use a
regular CJK character set in the first place, or to convert to a CJK character set before comparing.

This is one reason why MySQL cannot allow encodings of nonexistent characters. If it is not strict about
rejecting bad input, then it has no way of knowing where characters end.

For FULLTEXT searches, we need to know where words begin and end. With Western languages,
this is rarely a problem because most (if not all) of these use an easy-to-identify word boundary—
the space character. However, this is not usually the case with Asian writing. We could use arbitrary
halfway measures, like assuming that all Han characters represent words, or (for Japanese) depending
on changes from Katakana to Hiragana due to grammatical endings. However, the only sure solution
requires a comprehensive word list, which means that we would have to include a dictionary in the
server for each Asian language supported. This is simply not feasible.

B.11.13: How do I know whether character X is available in all character sets?

The majority of simplified Chinese and basic nonhalfwidth Japanese Kana characters appear in all
CJK character sets. This stored procedure accepts a UCS-2 Unicode character, converts it to all other
character sets, and displays the results in hexadecimal.

DELIMITER //

CREATE PROCEDURE p_convert(ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN

CREATE TABLE tj
 (ucs2 CHAR(1) character set ucs2,
 utf8 CHAR(1) character set utf8,
 big5 CHAR(1) character set big5,
 cp932 CHAR(1) character set cp932,
 eucjpms CHAR(1) character set eucjpms,
 euckr CHAR(1) character set euckr,
 gb2312 CHAR(1) character set gb2312,
 gbk CHAR(1) character set gbk,
 sjis CHAR(1) character set sjis,
 ujis CHAR(1) character set ujis);

INSERT INTO tj (ucs2) VALUES (ucs2_char);

UPDATE tj SET utf8=ucs2,
 big5=ucs2,
 cp932=ucs2,
 eucjpms=ucs2,
 euckr=ucs2,

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2770

 gb2312=ucs2,
 gbk=ucs2,
 sjis=ucs2,
 ujis=ucs2;

/* If there is a conversion problem, UPDATE will produce a warning. */

SELECT hex(ucs2) AS ucs2,
 hex(utf8) AS utf8,
 hex(big5) AS big5,
 hex(cp932) AS cp932,
 hex(eucjpms) AS eucjpms,
 hex(euckr) AS euckr,
 hex(gb2312) AS gb2312,
 hex(gbk) AS gbk,
 hex(sjis) AS sjis,
 hex(ujis) AS ujis
FROM tj;

DROP TABLE tj;

END//

The input can be any single ucs2 character, or it can be the code point value (hexadecimal
representation) of that character. For example, from Unicode's list of ucs2 encodings and names
(http://www.unicode.org/Public/UNIDATA/UnicodeData.txt), we know that the Katakana character Pe
appears in all CJK character sets, and that its code point value is 0x30da. If we use this value as the
argument to p_convert(), the result is as shown here:

mysql> CALL p_convert(0x30da)//
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8 | big5 | cp932 | eucjpms | euckr | gb2312 | gbk | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379 | A5DA | ABDA | A5DA | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+
1 row in set (0.04 sec)

Since none of the column values is 3F—that is, the question mark character (?)—we know that every
conversion worked.

B.11.14: Why do CJK strings sort incorrectly in Unicode? (I)

Sometimes people observe that the result of a utf8_unicode_ci or ucs2_unicode_ci search,
or of an ORDER BY sort is not what they think a native would expect. Although we never rule out the
possibility that there is a bug, we have found in the past that many people do not read correctly the
standard table of weights for the Unicode Collation Algorithm. MySQL uses the table found at http://
www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. This is not the first table you will find by navigating
from the unicode.org home page, because MySQL uses the older 4.0.0 “allkeys” table, rather than
the more recent 4.1.0 table. (The newer '520' collations in MySQL 5.6 use the 5.2 “allkeys” table.)
This is because we are very wary about changing ordering which affects indexes, lest we bring about
situations such as that reported in Bug #16526, illustrated as follows:

mysql< CREATE TABLE tj (s1 CHAR(1) CHARACTER SET utf8 COLLATE utf8_unicode_ci);
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO tj VALUES ('が'),('か');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM tj WHERE s1 = 'か';
+------+
| s1 |
+------+
| が |

| か |
+------+

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2771

2 rows in set (0.00 sec)

The character in the first result row is not the one that we searched for. Why did MySQL retrieve it?
First we look for the Unicode code point value, which is possible by reading the hexadecimal number
for the ucs2 version of the characters:

mysql> SELECT s1, HEX(CONVERT(s1 USING ucs2)) FROM tj;
+------+-----------------------------+
| s1 | HEX(CONVERT(s1 USING ucs2)) |
+------+-----------------------------+
| が | 304C |

| か | 304B |
+------+-----------------------------+
2 rows in set (0.03 sec)

Now we search for 304B and 304C in the 4.0.0 allkeys table, and find these lines:

304B ; [.1E57.0020.000E.304B] # HIRAGANA LETTER KA
304C ; [.1E57.0020.000E.304B][.0000.0140.0002.3099] # HIRAGANA LETTER GA; QQCM

The official Unicode names (following the “#” mark) tell us the Japanese syllabary (Hiragana),
the informal classification (letter, digit, or punctuation mark), and the Western identifier (KA or GA,
which happen to be voiced and unvoiced components of the same letter pair). More importantly, the
primary weight (the first hexadecimal number inside the square brackets) is 1E57 on both lines. For
comparisons in both searching and sorting, MySQL pays attention to the primary weight only, ignoring
all the other numbers. This means that we are sorting が and か correctly according to the Unicode
specification. If we wanted to distinguish them, we'd have to use a non-UCA (Unicode Collation
Algorithm) collation (utf8_bin or utf8_general_ci), or to compare the HEX() values, or use
ORDER BY CONVERT(s1 USING sjis). Being correct “according to Unicode” isn't enough, of
course: the person who submitted the bug was equally correct. We plan to add another collation for
Japanese according to the JIS X 4061 standard, in which voiced/unvoiced letter pairs like KA/GA are
distinguishable for ordering purposes.

B.11.15: Why do CJK strings sort incorrectly in Unicode? (II)

If you are using Unicode (ucs2 or utf8), and you know what the Unicode sort order is (see
Section B.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”), but MySQL
still seems to sort your table incorrectly, then you should first verify the table character set:

mysql> SHOW CREATE TABLE t\G
******************** 1. row ******************
Table: t
Create Table: CREATE TABLE `t` (
`s1` char(1) CHARACTER SET ucs2 DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Since the character set appears to be correct, let's see what information the
INFORMATION_SCHEMA.COLUMNS table can provide about this column:

mysql> SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
 -> FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE COLUMN_NAME = 's1'
 -> AND TABLE_NAME = 't';
+-------------+--------------------+-----------------+
| COLUMN_NAME | CHARACTER_SET_NAME | COLLATION_NAME |
+-------------+--------------------+-----------------+
| s1 | ucs2 | ucs2_general_ci |
+-------------+--------------------+-----------------+
1 row in set (0.01 sec)

(See Section 19.4, “The INFORMATION_SCHEMA COLUMNS Table”, for more information.)

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2772

You can see that the collation is ucs2_general_ci instead of ucs2_unicode_ci. The reason why
this is so can be found using SHOW CHARSET, as shown here:

mysql> SHOW CHARSET LIKE 'ucs2%';
+---------+---------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
+---------+---------------+-------------------+--------+
1 row in set (0.00 sec)

For ucs2 and utf8, the default collation is “general”. To specify a Unicode collation, use COLLATE
ucs2_unicode_ci.

B.11.16: Why are my supplementary characters rejected by MySQL?

Before MySQL 5.5.3, MySQL does not support supplementary characters—that is, characters which
need more than 3 bytes—for UTF-8. We support only what Unicode calls the Basic Multilingual Plane /
Plane 0. Only a few very rare Han characters are supplementary; support for them is uncommon. This
has led to reports such as that found in Bug #12600, which we rejected as “not a bug”. With utf8,
we must truncate an input string when we encounter bytes that we don't understand. Otherwise, we
wouldn't know how long the bad multi-byte character is.

One possible workaround is to use ucs2 instead of utf8, in which case the “bad” characters are
changed to question marks; however, no truncation takes place. You can also change the data type to
BLOB or BINARY, which perform no validity checking.

As of MySQL 5.5.3, Unicode support is extended to include supplementary characters by means of
additional Unicode character sets: utf16, utf32, and 4-byte utf8mb4. These character sets support
supplementary Unicode characters outside the Basic Multilingual Plane (BMP).

B.11.17: Shouldn't it be “CJKV”?

No. The term “CJKV” (Chinese Japanese Korean Vietnamese) refers to Vietnamese character sets
which contain Han (originally Chinese) characters. MySQL has no plan to support the old Vietnamese
script using Han characters. MySQL does of course support the modern Vietnamese script with
Western characters.

As of MySQL 5.6, there are Vietnamese collations for Unicode character sets, as described in
Section 10.1.14.1, “Unicode Character Sets”.

B.11.18: Does MySQL allow CJK characters to be used in database and table names?

This issue is fixed in MySQL 5.1, by automatically rewriting the names of the corresponding directories
and files.

For example, if you create a database named 楮 on a server whose operating system does not support
CJK in directory names, MySQL creates a directory named @0w@00a5@00ae. which is just a fancy way
of encoding E6A5AE—that is, the Unicode hexadecimal representation for the 楮 character. However, if
you run a SHOW DATABASES statement, you can see that the database is listed as 楮.

B.11.19: Where can I find translations of the MySQL Manual into Chinese, Japanese, and
Korean?

A Simplified Chinese version of the Manual, current for MySQL 5.1.12, can be found at http://
dev.mysql.com/doc/. The Japanese translation of the MySQL 4.1 manual can be downloaded from
http://dev.mysql.com/doc/.

B.11.20: Where can I get help with CJK and related issues in MySQL?

The following resources are available:

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

MySQL 5.7 FAQ: Connectors & APIs

2773

• A listing of MySQL user groups can be found at http://dev.mysql.com/user-groups/.

• View feature requests relating to character set issues at http://tinyurl.com/y6xcuf.

• Visit the MySQL Character Sets, Collation, Unicode Forum. We are also in the process of adding
foreign-language forums at http://forums.mysql.com/.

B.12 MySQL 5.7 FAQ: Connectors & APIs
For common questions, issues, and answers relating to the MySQL Connectors and other APIs, see
the following areas of the Manual:

• Section 21.8.15, “Common Questions and Problems When Using the C API”

• Common Problems with MySQL and PHP

• Connector/ODBC Notes and Tips

• Connector/Net Programming

• MySQL Connector/J Developer Guide

B.13 MySQL 5.7 FAQ: Replication
In the following section, we provide answers to questions that are most frequently asked about MySQL
Replication.

Questions

• B.13.1: [2774] Must the slave be connected to the master all the time?

• B.13.2: [2774] Must I enable networking on my master and slave to enable replication?

• B.13.3: [2774] How do I know how late a slave is compared to the master? In other words, how do I
know the date of the last statement replicated by the slave?

• B.13.4: [2774] How do I force the master to block updates until the slave catches up?

• B.13.5: [2775] What issues should I be aware of when setting up two-way replication?

• B.13.6: [2775] How can I use replication to improve performance of my system?

• B.13.7: [2775] What should I do to prepare client code in my own applications to use performance-
enhancing replication?

• B.13.8: [2775] When and how much can MySQL replication improve the performance of my
system?

• B.13.9: [2776] How can I use replication to provide redundancy or high availability?

• B.13.10: [2776] How do I tell whether a master server is using statement-based or row-based binary
logging format?

• B.13.11: [2776] How do I tell a slave to use row-based replication?

• B.13.12: [2776] How do I prevent GRANT and REVOKE statements from replicating to slave
machines?

• B.13.13: [2777] Does replication work on mixed operating systems (for example, the master runs on
Linux while slaves run on Mac OS X and Windows)?

• B.13.14: [2777] Does replication work on mixed hardware architectures (for example, the master
runs on a 64-bit machine while slaves run on 32-bit machines)?

http://dev.mysql.com/user-groups/
http://tinyurl.com/y6xcuf
http://forums.mysql.com/list.php?103
http://forums.mysql.com/
http://dev.mysql.com/doc/apis-php/en/apis-php-problems.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming.html
http://dev.mysql.com/doc/connector-j/en/index.html

MySQL 5.7 FAQ: Replication

2774

Questions and Answers

B.13.1: Must the slave be connected to the master all the time?

No, it does not. The slave can go down or stay disconnected for hours or even days, and then
reconnect and catch up on updates. For example, you can set up a master/slave relationship over a
dial-up link where the link is up only sporadically and for short periods of time. The implication of this is
that, at any given time, the slave is not guaranteed to be in synchrony with the master unless you take
some special measures.

To ensure that catchup can occur for a slave that has been disconnected, you must not remove
binary log files from the master that contain information that has not yet been replicated to the slaves.
Asynchronous replication can work only if the slave is able to continue reading the binary log from the
point where it last read events.

B.13.2: Must I enable networking on my master and slave to enable replication?

Yes, networking must be enabled on the master and slave. If networking is not enabled, the slave
cannot connect to the master and transfer the binary log. Check that the skip-networking option
has not been enabled in the configuration file for either server.

B.13.3: How do I know how late a slave is compared to the master? In other words, how do I
know the date of the last statement replicated by the slave?

Check the Seconds_Behind_Master column in the output from SHOW SLAVE STATUS. See
Section 16.1.5.1, “Checking Replication Status”.

When the slave SQL thread executes an event read from the master, it modifies its own time to the
event timestamp. (This is why TIMESTAMP is well replicated.) In the Time column in the output of SHOW
PROCESSLIST, the number of seconds displayed for the slave SQL thread is the number of seconds
between the timestamp of the last replicated event and the real time of the slave machine. You can use
this to determine the date of the last replicated event. Note that if your slave has been disconnected
from the master for one hour, and then reconnects, you may immediately see large Time values such
as 3600 for the slave SQL thread in SHOW PROCESSLIST. This is because the slave is executing
statements that are one hour old. See Section 16.2.1, “Replication Implementation Details”.

B.13.4: How do I force the master to block updates until the slave catches up?

Use the following procedure:

1. On the master, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Record the replication coordinates (the current binary log file name and position) from the output of
the SHOW statement.

2. On the slave, issue the following statement, where the arguments to the MASTER_POS_WAIT()
function are the replication coordinate values obtained in the previous step:

mysql> SELECT MASTER_POS_WAIT('log_name', log_pos);

The SELECT statement blocks until the slave reaches the specified log file and position. At that
point, the slave is in synchrony with the master and the statement returns.

3. On the master, issue the following statement to enable the master to begin processing updates
again:

mysql> UNLOCK TABLES;

MySQL 5.7 FAQ: Replication

2775

B.13.5: What issues should I be aware of when setting up two-way replication?

MySQL replication currently does not support any locking protocol between master and slave to
guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible for client
A to make an update to co-master 1, and in the meantime, before it propagates to co-master 2, client
B could make an update to co-master 2 that makes the update of client A work differently than it did
on co-master 1. Thus, when the update of client A makes it to co-master 2, it produces tables that
are different from what you have on co-master 1, even after all the updates from co-master 2 have
also propagated. This means that you should not chain two servers together in a two-way replication
relationship unless you are sure that your updates can safely happen in any order, or unless you take
care of mis-ordered updates somehow in the client code.

You should also realize that two-way replication actually does not improve performance very much (if
at all) as far as updates are concerned. Each server must do the same number of updates, just as you
would have a single server do. The only difference is that there is a little less lock contention because
the updates originating on another server are serialized in one slave thread. Even this benefit might be
offset by network delays.

B.13.6: How can I use replication to improve performance of my system?

Set up one server as the master and direct all writes to it. Then configure as many slaves as you
have the budget and rackspace for, and distribute the reads among the master and the slaves. You
can also start the slaves with the --skip-innodb, --low-priority-updates, and --delay-
key-write=ALL options to get speed improvements on the slave end. In this case, the slave
uses nontransactional MyISAM tables instead of InnoDB tables to get more speed by eliminating
transactional overhead.

B.13.7: What should I do to prepare client code in my own applications to use performance-
enhancing replication?

See the guide to using replication as a scale-out solution, Section 16.3.3, “Using Replication for Scale-
Out”.

B.13.8: When and how much can MySQL replication improve the performance of my system?

MySQL replication is most beneficial for a system that processes frequent reads and infrequent writes.
In theory, by using a single-master/multiple-slave setup, you can scale the system by adding more
slaves until you either run out of network bandwidth, or your update load grows to the point that the
master cannot handle it.

To determine how many slaves you can use before the added benefits begin to level out, and how
much you can improve performance of your site, you must know your query patterns, and determine
empirically by benchmarking the relationship between the throughput for reads and writes on a typical
master and a typical slave. The example here shows a rather simplified calculation of what you can
get with replication for a hypothetical system. Let reads and writes denote the number of reads and
writes per second, respectively.

Let's say that system load consists of 10% writes and 90% reads, and we have determined by
benchmarking that reads is 1200 - 2 * writes. In other words, the system can do 1,200 reads per
second with no writes, the average write is twice as slow as the average read, and the relationship is
linear. Suppose that the master and each slave have the same capacity, and that we have one master
and N slaves. Then we have for each server (master or slave):

reads = 1200 - 2 * writes

reads = 9 * writes / (N + 1) (reads are split, but writes replicated to all slaves)

9 * writes / (N + 1) + 2 * writes = 1200

writes = 1200 / (2 + 9/(N + 1))

MySQL 5.7 FAQ: Replication

2776

The last equation indicates the maximum number of writes for N slaves, given a maximum possible
read rate of 1,200 per second and a ratio of nine reads per write.

This analysis yields the following conclusions:

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109 writes
per second.

• If N = 1, we get up to 184 writes per second.

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close to 600
writes per second, increasing system throughput about 5.5 times. However, with only eight servers,
we increase it nearly four times.

Note that these computations assume infinite network bandwidth and neglect several other factors that
could be significant on your system. In many cases, you may not be able to perform a computation
similar to the one just shown that accurately predicts what will happen on your system if you add N
replication slaves. However, answering the following questions should help you decide whether and by
how much replication will improve the performance of your system:

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many slaves do you have bandwidth available on your network?

B.13.9: How can I use replication to provide redundancy or high availability?

How you implement redundancy is entirely dependent on your application and circumstances. High-
availability solutions (with automatic failover) require active monitoring and either custom scripts or third
party tools to provide the failover support from the original MySQL server to the slave.

To handle the process manually, you should be able to switch from a failed master to a pre-configured
slave by altering your application to talk to the new server or by adjusting the DNS for the MySQL
server from the failed server to the new server.

For more information and some example solutions, see Section 16.3.6, “Switching Masters During
Failover”.

B.13.10: How do I tell whether a master server is using statement-based or row-based binary
logging format?

Check the value of the binlog_format system variable:

mysql> SHOW VARIABLES LIKE 'binlog_format';

The value shown will be one of STATEMENT, ROW, or MIXED. For MIXED mode, row-based logging is
preferred but replication switches automatically to statement-based logging under certain conditions;
for information about when this may occur, see Section 5.2.4.3, “Mixed Binary Logging Format”.

B.13.11: How do I tell a slave to use row-based replication?

Slaves automatically know which format to use.

B.13.12: How do I prevent GRANT and REVOKE statements from replicating to slave machines?

Start the server with the --replicate-wild-ignore-table=mysql.% option to ignore replication
for tables in the mysql database.

MySQL 5.7 FAQ: Replication

2777

B.13.13: Does replication work on mixed operating systems (for example, the master runs on
Linux while slaves run on Mac OS X and Windows)?

Yes.

B.13.14: Does replication work on mixed hardware architectures (for example, the master runs
on a 64-bit machine while slaves run on 32-bit machines)?

Yes.

2778

2779

Appendix C Errors, Error Codes, and Common Problems

Table of Contents
C.1 Sources of Error Information ... 2779
C.2 Types of Error Values ... 2779
C.3 Server Error Codes and Messages .. 2780
C.4 Client Error Codes and Messages ... 2843
C.5 Problems and Common Errors .. 2847

C.5.1 How to Determine What Is Causing a Problem .. 2847
C.5.2 Common Errors When Using MySQL Programs ... 2849
C.5.3 Installation-Related Issues .. 2861
C.5.4 Administration-Related Issues ... 2862
C.5.5 Query-Related Issues ... 2869
C.5.6 Optimizer-Related Issues .. 2876
C.5.7 Table Definition-Related Issues ... 2876
C.5.8 Known Issues in MySQL .. 2877

This appendix lists common problems and errors that may occur and potential resolutions, in addition
to listing the errors that may appear when you call MySQL from any host language. The first section
covers problems and resolutions. Detailed information on errors is provided: One list displays server
error messages. Another list displays client program messages.

C.1 Sources of Error Information
There are several sources of error information in MySQL:

• Each SQL statement executed results in an error code, an SQLSTATE value, and an error message,
as described in Section C.2, “Types of Error Values”. These errors are returned from the server side;
see Section C.3, “Server Error Codes and Messages”.

• Errors can occur on the client side, usually involving problems communicating with the server; see
Section C.4, “Client Error Codes and Messages”.

• SQL statement warning and error information is available through the SHOW WARNINGS and
SHOW ERRORS statements. The warning_count system variable indicates the number of errors,
warnings, and notes. The error_count system variable indicates the number of errors. Its value
excludes warnings and notes.

• The GET DIAGNOSTICS statement may be used to inspect the diagnostic information in the
diagnostics area. See Section 13.6.7.3, “GET DIAGNOSTICS Syntax”.

• SHOW SLAVE STATUS statement output includes information about replication errors occurring on
the slave side.

• SHOW ENGINE INNODB STATUS statement output includes information about the most recent
foreign key error if a CREATE TABLE statement for an InnoDB table fails.

• The perror program provides information from the command line about error numbers. See
Section 4.8.1, “perror — Explain Error Codes”.

Descriptions of server and client errors are provided later in this Appendix. For information about errors
related to InnoDB, see Section 14.2.17.4, “InnoDB Error Handling”.

C.2 Types of Error Values
When an error occurs in MySQL, the server returns two types of error values:

• A MySQL-specific error code. This value is numeric. It is not portable to other database systems.

Server Error Codes and Messages

2780

• An SQLSTATE value. The value is a five-character string (for example, '42S02'). The values are
taken from ANSI SQL and ODBC and are more standardized.

A message string that provides a textual description of the error is also available.

When an error occurs, the MySQL error code, SQLSTATE value, and message string are available
using C API functions:

• MySQL error code: Call mysql_errno()

• SQLSTATE value: Call mysql_sqlstate()

• Error message: Call mysql_error()

For prepared statements, the corresponding error functions are mysql_stmt_errno(),
mysql_stmt_sqlstate(), and mysql_stmt_error(). All error functions are described in
Section 21.8, “MySQL C API”.

The number of errors, warnings, and notes for the previous statement can be obtained by calling
mysql_warning_count(). See Section 21.8.7.77, “mysql_warning_count()”.

The first two characters of an SQLSTATE value indicate the error class:

• Class = '00' indicates success.

• Class = '01' indicates a warning.

• Class = '02' indicates “not found.” This is relevant within the context of cursors and is used to
control what happens when a cursor reaches the end of a data set. This condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• Class > '02' indicates an exception.

C.3 Server Error Codes and Messages
MySQL programs have access to several types of error information when the server returns an error.
For example, the mysql client program displays errors using the following format:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

The message displayed contains three types of information:

• A numeric error code (1146). This number is MySQL-specific and is not portable to other database
systems.

• A five-character SQLSTATE value ('42S02'). The values are taken from ANSI SQL and ODBC and
are more standardized. Not all MySQL error numbers have corresponding SQLSTATE values. In
these cases, 'HY000' (general error) is used.

• A message string that provides a textual description of the error.

For error checking, use error codes, not error messages. Error messages do not change often, but it is
possible. Also if the database administrator changes the language setting, that affects the language of
error messages.

Error codes are stable across GA releases of a given MySQL series. Before a series reaches GA
status, new codes may still be under development and subject to change.

Server error information comes from the following source files. For details about the way that error
information is defined, see the MySQL Internals Manual.

• Error message information is listed in the share/errmsg.txt file. %d and %s represent numbers
and strings, respectively, that are substituted into the Message values when they are displayed.

http://dev.mysql.com/doc/internals/en

Server Error Codes and Messages

2781

• The Error values listed in share/errmsg.txt are used to generate the definitions in the include/
mysqld_error.h and include/mysqld_ername.h MySQL source files.

• The SQLSTATE values listed in share/errmsg.txt are used to generate the definitions in the
include/sql_state.h MySQL source file.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

• Error: 1000 SQLSTATE: HY000 (ER_HASHCHK)

Message: hashchk

Unused.

• Error: 1001 SQLSTATE: HY000 (ER_NISAMCHK)

Message: isamchk

Unused.

• Error: 1002 SQLSTATE: HY000 (ER_NO)

Message: NO

Used in the construction of other messages.

• Error: 1003 SQLSTATE: HY000 (ER_YES)

Message: YES

Used in the construction of other messages.

Extended EXPLAIN format generates Note messages. ER_YES is used in the Code column for these
messages in subsequent SHOW WARNINGS output.

• Error: 1004 SQLSTATE: HY000 (ER_CANT_CREATE_FILE)

Message: Can't create file '%s' (errno: %d - %s)

Occurs for failure to copy an .frm file to a new location, during execution of a CREATE TABLE dst
LIKE src statement when the server tries to copy the source table .frm file to the destination table
.frm file.

Possible causes: Permissions problem for source .frm file; destination .frm file already exists but
is not writeable.

• Error: 1005 SQLSTATE: HY000 (ER_CANT_CREATE_TABLE)

Message: Can't create table '%s' (errno: %d)

• Error: 1006 SQLSTATE: HY000 (ER_CANT_CREATE_DB)

Message: Can't create database '%s' (errno: %d)

• Error: 1007 SQLSTATE: HY000 (ER_DB_CREATE_EXISTS)

Message: Can't create database '%s'; database exists

An attempt to create a database failed because the database already exists.

Drop the database first if you really want to replace an existing database, or add an IF NOT
EXISTS clause to the CREATE DATABASE statement if to retain an existing database without having
the statement produce an error.

Server Error Codes and Messages

2782

• Error: 1008 SQLSTATE: HY000 (ER_DB_DROP_EXISTS)

Message: Can't drop database '%s'; database doesn't exist

• Error: 1009 SQLSTATE: HY000 (ER_DB_DROP_DELETE)

Message: Error dropping database (can't delete '%s', errno: %d)

• Error: 1010 SQLSTATE: HY000 (ER_DB_DROP_RMDIR)

Message: Error dropping database (can't rmdir '%s', errno: %d)

• Error: 1011 SQLSTATE: HY000 (ER_CANT_DELETE_FILE)

Message: Error on delete of '%s' (errno: %d - %s)

• Error: 1012 SQLSTATE: HY000 (ER_CANT_FIND_SYSTEM_REC)

Message: Can't read record in system table

Returned by InnoDB for attempts to access InnoDB INFORMATION_SCHEMA tables when InnoDB
is unavailable.

• Error: 1013 SQLSTATE: HY000 (ER_CANT_GET_STAT)

Message: Can't get status of '%s' (errno: %d - %s)

• Error: 1014 SQLSTATE: HY000 (ER_CANT_GET_WD)

Message: Can't get working directory (errno: %d - %s)

• Error: 1015 SQLSTATE: HY000 (ER_CANT_LOCK)

Message: Can't lock file (errno: %d - %s)

• Error: 1016 SQLSTATE: HY000 (ER_CANT_OPEN_FILE)

Message: Can't open file: '%s' (errno: %d - %s)

• Error: 1017 SQLSTATE: HY000 (ER_FILE_NOT_FOUND)

Message: Can't find file: '%s' (errno: %d - %s)

• Error: 1018 SQLSTATE: HY000 (ER_CANT_READ_DIR)

Message: Can't read dir of '%s' (errno: %d - %s)

• Error: 1019 SQLSTATE: HY000 (ER_CANT_SET_WD)

Message: Can't change dir to '%s' (errno: %d - %s)

• Error: 1020 SQLSTATE: HY000 (ER_CHECKREAD)

Message: Record has changed since last read in table '%s'

• Error: 1021 SQLSTATE: HY000 (ER_DISK_FULL)

Message: Disk full (%s); waiting for someone to free some space... (errno: %d - %s)

• Error: 1022 SQLSTATE: 23000 (ER_DUP_KEY)

Message: Can't write; duplicate key in table '%s'

• Error: 1023 SQLSTATE: HY000 (ER_ERROR_ON_CLOSE)

Server Error Codes and Messages

2783

Message: Error on close of '%s' (errno: %d - %s)

• Error: 1024 SQLSTATE: HY000 (ER_ERROR_ON_READ)

Message: Error reading file '%s' (errno: %d - %s)

• Error: 1025 SQLSTATE: HY000 (ER_ERROR_ON_RENAME)

Message: Error on rename of '%s' to '%s' (errno: %d - %s)

• Error: 1026 SQLSTATE: HY000 (ER_ERROR_ON_WRITE)

Message: Error writing file '%s' (errno: %d - %s)

• Error: 1027 SQLSTATE: HY000 (ER_FILE_USED)

Message: '%s' is locked against change

• Error: 1028 SQLSTATE: HY000 (ER_FILSORT_ABORT)

Message: Sort aborted

• Error: 1029 SQLSTATE: HY000 (ER_FORM_NOT_FOUND)

Message: View '%s' doesn't exist for '%s'

• Error: 1030 SQLSTATE: HY000 (ER_GET_ERRNO)

Message: Got error %d from storage engine

Check the %d value to see what the OS error means. For example, 28 indicates that you have run
out of disk space.

• Error: 1031 SQLSTATE: HY000 (ER_ILLEGAL_HA)

Message: Table storage engine for '%s' doesn't have this option

• Error: 1032 SQLSTATE: HY000 (ER_KEY_NOT_FOUND)

Message: Can't find record in '%s'

• Error: 1033 SQLSTATE: HY000 (ER_NOT_FORM_FILE)

Message: Incorrect information in file: '%s'

• Error: 1034 SQLSTATE: HY000 (ER_NOT_KEYFILE)

Message: Incorrect key file for table '%s'; try to repair it

• Error: 1035 SQLSTATE: HY000 (ER_OLD_KEYFILE)

Message: Old key file for table '%s'; repair it!

• Error: 1036 SQLSTATE: HY000 (ER_OPEN_AS_READONLY)

Message: Table '%s' is read only

• Error: 1037 SQLSTATE: HY001 (ER_OUTOFMEMORY)

Message: Out of memory; restart server and try again (needed %d bytes)

• Error: 1038 SQLSTATE: HY001 (ER_OUT_OF_SORTMEMORY)

Message: Out of sort memory, consider increasing server sort buffer size

Server Error Codes and Messages

2784

• Error: 1039 SQLSTATE: HY000 (ER_UNEXPECTED_EOF)

Message: Unexpected EOF found when reading file '%s' (errno: %d - %s)

• Error: 1040 SQLSTATE: 08004 (ER_CON_COUNT_ERROR)

Message: Too many connections

• Error: 1041 SQLSTATE: HY000 (ER_OUT_OF_RESOURCES)

Message: Out of memory; check if mysqld or some other process uses all available memory; if not,
you may have to use 'ulimit' to allow mysqld to use more memory or you can add more swap space

• Error: 1042 SQLSTATE: 08S01 (ER_BAD_HOST_ERROR)

Message: Can't get hostname for your address

• Error: 1043 SQLSTATE: 08S01 (ER_HANDSHAKE_ERROR)

Message: Bad handshake

• Error: 1044 SQLSTATE: 42000 (ER_DBACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' to database '%s'

• Error: 1045 SQLSTATE: 28000 (ER_ACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' (using password: %s)

• Error: 1046 SQLSTATE: 3D000 (ER_NO_DB_ERROR)

Message: No database selected

• Error: 1047 SQLSTATE: 08S01 (ER_UNKNOWN_COM_ERROR)

Message: Unknown command

• Error: 1048 SQLSTATE: 23000 (ER_BAD_NULL_ERROR)

Message: Column '%s' cannot be null

• Error: 1049 SQLSTATE: 42000 (ER_BAD_DB_ERROR)

Message: Unknown database '%s'

• Error: 1050 SQLSTATE: 42S01 (ER_TABLE_EXISTS_ERROR)

Message: Table '%s' already exists

• Error: 1051 SQLSTATE: 42S02 (ER_BAD_TABLE_ERROR)

Message: Unknown table '%s'

• Error: 1052 SQLSTATE: 23000 (ER_NON_UNIQ_ERROR)

Message: Column '%s' in %s is ambiguous

%s = column name
%s = location of column (for example, "field list")

Likely cause: A column appears in a query without appropriate qualification, such as in a select list or
ON clause.

Examples:

Server Error Codes and Messages

2785

mysql> SELECT i FROM t INNER JOIN t AS t2;
ERROR 1052 (23000): Column 'i' in field list is ambiguous

mysql> SELECT * FROM t LEFT JOIN t AS t2 ON i = i;
ERROR 1052 (23000): Column 'i' in on clause is ambiguous

Resolution:

• Qualify the column with the appropriate table name:

mysql> SELECT t2.i FROM t INNER JOIN t AS t2;

• Modify the query to avoid the need for qualification:

mysql> SELECT * FROM t LEFT JOIN t AS t2 USING (i);

• Error: 1053 SQLSTATE: 08S01 (ER_SERVER_SHUTDOWN)

Message: Server shutdown in progress

• Error: 1054 SQLSTATE: 42S22 (ER_BAD_FIELD_ERROR)

Message: Unknown column '%s' in '%s'

• Error: 1055 SQLSTATE: 42000 (ER_WRONG_FIELD_WITH_GROUP)

Message: '%s' isn't in GROUP BY

• Error: 1056 SQLSTATE: 42000 (ER_WRONG_GROUP_FIELD)

Message: Can't group on '%s'

• Error: 1057 SQLSTATE: 42000 (ER_WRONG_SUM_SELECT)

Message: Statement has sum functions and columns in same statement

• Error: 1058 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT)

Message: Column count doesn't match value count

• Error: 1059 SQLSTATE: 42000 (ER_TOO_LONG_IDENT)

Message: Identifier name '%s' is too long

• Error: 1060 SQLSTATE: 42S21 (ER_DUP_FIELDNAME)

Message: Duplicate column name '%s'

• Error: 1061 SQLSTATE: 42000 (ER_DUP_KEYNAME)

Message: Duplicate key name '%s'

• Error: 1062 SQLSTATE: 23000 (ER_DUP_ENTRY)

Message: Duplicate entry '%s' for key %d

The message returned with this error uses the format string for ER_DUP_ENTRY_WITH_KEY_NAME.

• Error: 1063 SQLSTATE: 42000 (ER_WRONG_FIELD_SPEC)

Message: Incorrect column specifier for column '%s'

Server Error Codes and Messages

2786

• Error: 1064 SQLSTATE: 42000 (ER_PARSE_ERROR)

Message: %s near '%s' at line %d

• Error: 1065 SQLSTATE: 42000 (ER_EMPTY_QUERY)

Message: Query was empty

• Error: 1066 SQLSTATE: 42000 (ER_NONUNIQ_TABLE)

Message: Not unique table/alias: '%s'

• Error: 1067 SQLSTATE: 42000 (ER_INVALID_DEFAULT)

Message: Invalid default value for '%s'

• Error: 1068 SQLSTATE: 42000 (ER_MULTIPLE_PRI_KEY)

Message: Multiple primary key defined

• Error: 1069 SQLSTATE: 42000 (ER_TOO_MANY_KEYS)

Message: Too many keys specified; max %d keys allowed

• Error: 1070 SQLSTATE: 42000 (ER_TOO_MANY_KEY_PARTS)

Message: Too many key parts specified; max %d parts allowed

• Error: 1071 SQLSTATE: 42000 (ER_TOO_LONG_KEY)

Message: Specified key was too long; max key length is %d bytes

• Error: 1072 SQLSTATE: 42000 (ER_KEY_COLUMN_DOES_NOT_EXITS)

Message: Key column '%s' doesn't exist in table

• Error: 1073 SQLSTATE: 42000 (ER_BLOB_USED_AS_KEY)

Message: BLOB column '%s' can't be used in key specification with the used table type

• Error: 1074 SQLSTATE: 42000 (ER_TOO_BIG_FIELDLENGTH)

Message: Column length too big for column '%s' (max = %lu); use BLOB or TEXT instead

• Error: 1075 SQLSTATE: 42000 (ER_WRONG_AUTO_KEY)

Message: Incorrect table definition; there can be only one auto column and it must be defined as a
key

• Error: 1076 SQLSTATE: HY000 (ER_READY)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d

• Error: 1077 SQLSTATE: HY000 (ER_NORMAL_SHUTDOWN)

Message: %s: Normal shutdown

• Error: 1078 SQLSTATE: HY000 (ER_GOT_SIGNAL)

Message: %s: Got signal %d. Aborting!

• Error: 1079 SQLSTATE: HY000 (ER_SHUTDOWN_COMPLETE)

Message: %s: Shutdown complete

Server Error Codes and Messages

2787

• Error: 1080 SQLSTATE: 08S01 (ER_FORCING_CLOSE)

Message: %s: Forcing close of thread %ld user: '%s'

• Error: 1081 SQLSTATE: 08S01 (ER_IPSOCK_ERROR)

Message: Can't create IP socket

• Error: 1082 SQLSTATE: 42S12 (ER_NO_SUCH_INDEX)

Message: Table '%s' has no index like the one used in CREATE INDEX; recreate the table

• Error: 1083 SQLSTATE: 42000 (ER_WRONG_FIELD_TERMINATORS)

Message: Field separator argument is not what is expected; check the manual

• Error: 1084 SQLSTATE: 42000 (ER_BLOBS_AND_NO_TERMINATED)

Message: You can't use fixed rowlength with BLOBs; please use 'fields terminated by'

• Error: 1085 SQLSTATE: HY000 (ER_TEXTFILE_NOT_READABLE)

Message: The file '%s' must be in the database directory or be readable by all

• Error: 1086 SQLSTATE: HY000 (ER_FILE_EXISTS_ERROR)

Message: File '%s' already exists

• Error: 1087 SQLSTATE: HY000 (ER_LOAD_INFO)

Message: Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld

• Error: 1088 SQLSTATE: HY000 (ER_ALTER_INFO)

Message: Records: %ld Duplicates: %ld

• Error: 1089 SQLSTATE: HY000 (ER_WRONG_SUB_KEY)

Message: Incorrect prefix key; the used key part isn't a string, the used length is longer than the key
part, or the storage engine doesn't support unique prefix keys

• Error: 1090 SQLSTATE: 42000 (ER_CANT_REMOVE_ALL_FIELDS)

Message: You can't delete all columns with ALTER TABLE; use DROP TABLE instead

• Error: 1091 SQLSTATE: 42000 (ER_CANT_DROP_FIELD_OR_KEY)

Message: Can't DROP '%s'; check that column/key exists

• Error: 1092 SQLSTATE: HY000 (ER_INSERT_INFO)

Message: Records: %ld Duplicates: %ld Warnings: %ld

• Error: 1093 SQLSTATE: HY000 (ER_UPDATE_TABLE_USED)

Message: You can't specify target table '%s' for update in FROM clause

• Error: 1094 SQLSTATE: HY000 (ER_NO_SUCH_THREAD)

Message: Unknown thread id: %lu

• Error: 1095 SQLSTATE: HY000 (ER_KILL_DENIED_ERROR)

Message: You are not owner of thread %lu

Server Error Codes and Messages

2788

• Error: 1096 SQLSTATE: HY000 (ER_NO_TABLES_USED)

Message: No tables used

• Error: 1097 SQLSTATE: HY000 (ER_TOO_BIG_SET)

Message: Too many strings for column %s and SET

• Error: 1098 SQLSTATE: HY000 (ER_NO_UNIQUE_LOGFILE)

Message: Can't generate a unique log-filename %s.(1-999)

• Error: 1099 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED_FOR_WRITE)

Message: Table '%s' was locked with a READ lock and can't be updated

• Error: 1100 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED)

Message: Table '%s' was not locked with LOCK TABLES

• Error: 1101 SQLSTATE: 42000 (ER_BLOB_CANT_HAVE_DEFAULT)

Message: BLOB/TEXT column '%s' can't have a default value

• Error: 1102 SQLSTATE: 42000 (ER_WRONG_DB_NAME)

Message: Incorrect database name '%s'

• Error: 1103 SQLSTATE: 42000 (ER_WRONG_TABLE_NAME)

Message: Incorrect table name '%s'

• Error: 1104 SQLSTATE: 42000 (ER_TOO_BIG_SELECT)

Message: The SELECT would examine more than MAX_JOIN_SIZE rows; check your WHERE and
use SET SQL_BIG_SELECTS=1 or SET MAX_JOIN_SIZE=# if the SELECT is okay

• Error: 1105 SQLSTATE: HY000 (ER_UNKNOWN_ERROR)

Message: Unknown error

• Error: 1106 SQLSTATE: 42000 (ER_UNKNOWN_PROCEDURE)

Message: Unknown procedure '%s'

• Error: 1107 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_PROCEDURE)

Message: Incorrect parameter count to procedure '%s'

• Error: 1108 SQLSTATE: HY000 (ER_WRONG_PARAMETERS_TO_PROCEDURE)

Message: Incorrect parameters to procedure '%s'

• Error: 1109 SQLSTATE: 42S02 (ER_UNKNOWN_TABLE)

Message: Unknown table '%s' in %s

• Error: 1110 SQLSTATE: 42000 (ER_FIELD_SPECIFIED_TWICE)

Message: Column '%s' specified twice

• Error: 1111 SQLSTATE: HY000 (ER_INVALID_GROUP_FUNC_USE)

Message: Invalid use of group function

Server Error Codes and Messages

2789

• Error: 1112 SQLSTATE: 42000 (ER_UNSUPPORTED_EXTENSION)

Message: Table '%s' uses an extension that doesn't exist in this MySQL version

• Error: 1113 SQLSTATE: 42000 (ER_TABLE_MUST_HAVE_COLUMNS)

Message: A table must have at least 1 column

• Error: 1114 SQLSTATE: HY000 (ER_RECORD_FILE_FULL)

Message: The table '%s' is full

• Error: 1115 SQLSTATE: 42000 (ER_UNKNOWN_CHARACTER_SET)

Message: Unknown character set: '%s'

• Error: 1116 SQLSTATE: HY000 (ER_TOO_MANY_TABLES)

Message: Too many tables; MySQL can only use %d tables in a join

• Error: 1117 SQLSTATE: HY000 (ER_TOO_MANY_FIELDS)

Message: Too many columns

• Error: 1118 SQLSTATE: 42000 (ER_TOO_BIG_ROWSIZE)

Message: Row size too large. The maximum row size for the used table type, not counting BLOBs, is
%ld. This includes storage overhead, check the manual. You have to change some columns to TEXT
or BLOBs

• Error: 1119 SQLSTATE: HY000 (ER_STACK_OVERRUN)

Message: Thread stack overrun: Used: %ld of a %ld stack. Use 'mysqld --thread_stack=#' to specify
a bigger stack if needed

• Error: 1120 SQLSTATE: 42000 (ER_WRONG_OUTER_JOIN)

Message: Cross dependency found in OUTER JOIN; examine your ON conditions

• Error: 1121 SQLSTATE: 42000 (ER_NULL_COLUMN_IN_INDEX)

Message: Table handler doesn't support NULL in given index. Please change column '%s' to be NOT
NULL or use another handler

• Error: 1122 SQLSTATE: HY000 (ER_CANT_FIND_UDF)

Message: Can't load function '%s'

• Error: 1123 SQLSTATE: HY000 (ER_CANT_INITIALIZE_UDF)

Message: Can't initialize function '%s'; %s

• Error: 1124 SQLSTATE: HY000 (ER_UDF_NO_PATHS)

Message: No paths allowed for shared library

• Error: 1125 SQLSTATE: HY000 (ER_UDF_EXISTS)

Message: Function '%s' already exists

• Error: 1126 SQLSTATE: HY000 (ER_CANT_OPEN_LIBRARY)

Message: Can't open shared library '%s' (errno: %d %s)

Server Error Codes and Messages

2790

• Error: 1127 SQLSTATE: HY000 (ER_CANT_FIND_DL_ENTRY)

Message: Can't find symbol '%s' in library

• Error: 1128 SQLSTATE: HY000 (ER_FUNCTION_NOT_DEFINED)

Message: Function '%s' is not defined

• Error: 1129 SQLSTATE: HY000 (ER_HOST_IS_BLOCKED)

Message: Host '%s' is blocked because of many connection errors; unblock with 'mysqladmin flush-
hosts'

• Error: 1130 SQLSTATE: HY000 (ER_HOST_NOT_PRIVILEGED)

Message: Host '%s' is not allowed to connect to this MySQL server

• Error: 1131 SQLSTATE: 42000 (ER_PASSWORD_ANONYMOUS_USER)

Message: You are using MySQL as an anonymous user and anonymous users are not allowed to
change passwords

• Error: 1132 SQLSTATE: 42000 (ER_PASSWORD_NOT_ALLOWED)

Message: You must have privileges to update tables in the mysql database to be able to change
passwords for others

• Error: 1133 SQLSTATE: 42000 (ER_PASSWORD_NO_MATCH)

Message: Can't find any matching row in the user table

• Error: 1134 SQLSTATE: HY000 (ER_UPDATE_INFO)

Message: Rows matched: %ld Changed: %ld Warnings: %ld

• Error: 1135 SQLSTATE: HY000 (ER_CANT_CREATE_THREAD)

Message: Can't create a new thread (errno %d); if you are not out of available memory, you can
consult the manual for a possible OS-dependent bug

• Error: 1136 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT_ON_ROW)

Message: Column count doesn't match value count at row %ld

• Error: 1137 SQLSTATE: HY000 (ER_CANT_REOPEN_TABLE)

Message: Can't reopen table: '%s'

• Error: 1138 SQLSTATE: 22004 (ER_INVALID_USE_OF_NULL)

Message: Invalid use of NULL value

• Error: 1139 SQLSTATE: 42000 (ER_REGEXP_ERROR)

Message: Got error '%s' from regexp

• Error: 1140 SQLSTATE: 42000 (ER_MIX_OF_GROUP_FUNC_AND_FIELDS)

Message: Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP columns is illegal
if there is no GROUP BY clause

• Error: 1141 SQLSTATE: 42000 (ER_NONEXISTING_GRANT)

Message: There is no such grant defined for user '%s' on host '%s'

Server Error Codes and Messages

2791

• Error: 1142 SQLSTATE: 42000 (ER_TABLEACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for table '%s'

• Error: 1143 SQLSTATE: 42000 (ER_COLUMNACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for column '%s' in table '%s'

• Error: 1144 SQLSTATE: 42000 (ER_ILLEGAL_GRANT_FOR_TABLE)

Message: Illegal GRANT/REVOKE command; please consult the manual to see which privileges can
be used

• Error: 1145 SQLSTATE: 42000 (ER_GRANT_WRONG_HOST_OR_USER)

Message: The host or user argument to GRANT is too long

• Error: 1146 SQLSTATE: 42S02 (ER_NO_SUCH_TABLE)

Message: Table '%s.%s' doesn't exist

• Error: 1147 SQLSTATE: 42000 (ER_NONEXISTING_TABLE_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on table '%s'

• Error: 1148 SQLSTATE: 42000 (ER_NOT_ALLOWED_COMMAND)

Message: The used command is not allowed with this MySQL version

• Error: 1149 SQLSTATE: 42000 (ER_SYNTAX_ERROR)

Message: You have an error in your SQL syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use

• Error: 1150 SQLSTATE: HY000 (ER_UNUSED1)

Message: Delayed insert thread couldn't get requested lock for table %s

• Error: 1151 SQLSTATE: HY000 (ER_UNUSED2)

Message: Too many delayed threads in use

• Error: 1152 SQLSTATE: 08S01 (ER_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' (%s)

• Error: 1153 SQLSTATE: 08S01 (ER_NET_PACKET_TOO_LARGE)

Message: Got a packet bigger than 'max_allowed_packet' bytes

• Error: 1154 SQLSTATE: 08S01 (ER_NET_READ_ERROR_FROM_PIPE)

Message: Got a read error from the connection pipe

• Error: 1155 SQLSTATE: 08S01 (ER_NET_FCNTL_ERROR)

Message: Got an error from fcntl()

• Error: 1156 SQLSTATE: 08S01 (ER_NET_PACKETS_OUT_OF_ORDER)

Message: Got packets out of order

• Error: 1157 SQLSTATE: 08S01 (ER_NET_UNCOMPRESS_ERROR)

Message: Couldn't uncompress communication packet

Server Error Codes and Messages

2792

• Error: 1158 SQLSTATE: 08S01 (ER_NET_READ_ERROR)

Message: Got an error reading communication packets

• Error: 1159 SQLSTATE: 08S01 (ER_NET_READ_INTERRUPTED)

Message: Got timeout reading communication packets

• Error: 1160 SQLSTATE: 08S01 (ER_NET_ERROR_ON_WRITE)

Message: Got an error writing communication packets

• Error: 1161 SQLSTATE: 08S01 (ER_NET_WRITE_INTERRUPTED)

Message: Got timeout writing communication packets

• Error: 1162 SQLSTATE: 42000 (ER_TOO_LONG_STRING)

Message: Result string is longer than 'max_allowed_packet' bytes

• Error: 1163 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_BLOB)

Message: The used table type doesn't support BLOB/TEXT columns

• Error: 1164 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_AUTO_INCREMENT)

Message: The used table type doesn't support AUTO_INCREMENT columns

• Error: 1165 SQLSTATE: HY000 (ER_UNUSED3)

Message: INSERT DELAYED can't be used with table '%s' because it is locked with LOCK TABLES

• Error: 1166 SQLSTATE: 42000 (ER_WRONG_COLUMN_NAME)

Message: Incorrect column name '%s'

• Error: 1167 SQLSTATE: 42000 (ER_WRONG_KEY_COLUMN)

Message: The used storage engine can't index column '%s'

• Error: 1168 SQLSTATE: HY000 (ER_WRONG_MRG_TABLE)

Message: Unable to open underlying table which is differently defined or of non-MyISAM type or
doesn't exist

• Error: 1169 SQLSTATE: 23000 (ER_DUP_UNIQUE)

Message: Can't write, because of unique constraint, to table '%s'

• Error: 1170 SQLSTATE: 42000 (ER_BLOB_KEY_WITHOUT_LENGTH)

Message: BLOB/TEXT column '%s' used in key specification without a key length

• Error: 1171 SQLSTATE: 42000 (ER_PRIMARY_CANT_HAVE_NULL)

Message: All parts of a PRIMARY KEY must be NOT NULL; if you need NULL in a key, use UNIQUE
instead

• Error: 1172 SQLSTATE: 42000 (ER_TOO_MANY_ROWS)

Message: Result consisted of more than one row

• Error: 1173 SQLSTATE: 42000 (ER_REQUIRES_PRIMARY_KEY)

Message: This table type requires a primary key

Server Error Codes and Messages

2793

• Error: 1174 SQLSTATE: HY000 (ER_NO_RAID_COMPILED)

Message: This version of MySQL is not compiled with RAID support

• Error: 1175 SQLSTATE: HY000 (ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE)

Message: You are using safe update mode and you tried to update a table without a WHERE that
uses a KEY column

• Error: 1176 SQLSTATE: 42000 (ER_KEY_DOES_NOT_EXITS)

Message: Key '%s' doesn't exist in table '%s'

• Error: 1177 SQLSTATE: 42000 (ER_CHECK_NO_SUCH_TABLE)

Message: Can't open table

• Error: 1178 SQLSTATE: 42000 (ER_CHECK_NOT_IMPLEMENTED)

Message: The storage engine for the table doesn't support %s

• Error: 1179 SQLSTATE: 25000 (ER_CANT_DO_THIS_DURING_AN_TRANSACTION)

Message: You are not allowed to execute this command in a transaction

• Error: 1180 SQLSTATE: HY000 (ER_ERROR_DURING_COMMIT)

Message: Got error %d during COMMIT

• Error: 1181 SQLSTATE: HY000 (ER_ERROR_DURING_ROLLBACK)

Message: Got error %d during ROLLBACK

• Error: 1182 SQLSTATE: HY000 (ER_ERROR_DURING_FLUSH_LOGS)

Message: Got error %d during FLUSH_LOGS

• Error: 1183 SQLSTATE: HY000 (ER_ERROR_DURING_CHECKPOINT)

Message: Got error %d during CHECKPOINT

• Error: 1184 SQLSTATE: 08S01 (ER_NEW_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' host: '%s' (%s)

• Error: 1185 SQLSTATE: HY000 (ER_DUMP_NOT_IMPLEMENTED)

Message: The storage engine for the table does not support binary table dump

• Error: 1186 SQLSTATE: HY000 (ER_FLUSH_MASTER_BINLOG_CLOSED)

Message: Binlog closed, cannot RESET MASTER

• Error: 1187 SQLSTATE: HY000 (ER_INDEX_REBUILD)

Message: Failed rebuilding the index of dumped table '%s'

• Error: 1188 SQLSTATE: HY000 (ER_MASTER)

Message: Error from master: '%s'

• Error: 1189 SQLSTATE: 08S01 (ER_MASTER_NET_READ)

Message: Net error reading from master

• Error: 1190 SQLSTATE: 08S01 (ER_MASTER_NET_WRITE)

Server Error Codes and Messages

2794

Message: Net error writing to master

• Error: 1191 SQLSTATE: HY000 (ER_FT_MATCHING_KEY_NOT_FOUND)

Message: Can't find FULLTEXT index matching the column list

• Error: 1192 SQLSTATE: HY000 (ER_LOCK_OR_ACTIVE_TRANSACTION)

Message: Can't execute the given command because you have active locked tables or an active
transaction

• Error: 1193 SQLSTATE: HY000 (ER_UNKNOWN_SYSTEM_VARIABLE)

Message: Unknown system variable '%s'

• Error: 1194 SQLSTATE: HY000 (ER_CRASHED_ON_USAGE)

Message: Table '%s' is marked as crashed and should be repaired

• Error: 1195 SQLSTATE: HY000 (ER_CRASHED_ON_REPAIR)

Message: Table '%s' is marked as crashed and last (automatic?) repair failed

• Error: 1196 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK)

Message: Some non-transactional changed tables couldn't be rolled back

• Error: 1197 SQLSTATE: HY000 (ER_TRANS_CACHE_FULL)

Message: Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage;
increase this mysqld variable and try again

• Error: 1198 SQLSTATE: HY000 (ER_SLAVE_MUST_STOP)

Message: This operation cannot be performed with a running slave; run STOP SLAVE first

• Error: 1199 SQLSTATE: HY000 (ER_SLAVE_NOT_RUNNING)

Message: This operation requires a running slave; configure slave and do START SLAVE

• Error: 1200 SQLSTATE: HY000 (ER_BAD_SLAVE)

Message: The server is not configured as slave; fix in config file or with CHANGE MASTER TO

• Error: 1201 SQLSTATE: HY000 (ER_MASTER_INFO)

Message: Could not initialize master info structure; more error messages can be found in the MySQL
error log

• Error: 1202 SQLSTATE: HY000 (ER_SLAVE_THREAD)

Message: Could not create slave thread; check system resources

• Error: 1203 SQLSTATE: 42000 (ER_TOO_MANY_USER_CONNECTIONS)

Message: User %s already has more than 'max_user_connections' active connections

• Error: 1204 SQLSTATE: HY000 (ER_SET_CONSTANTS_ONLY)

Message: You may only use constant expressions with SET

• Error: 1205 SQLSTATE: HY000 (ER_LOCK_WAIT_TIMEOUT)

Message: Lock wait timeout exceeded; try restarting transaction

Server Error Codes and Messages

2795

• Error: 1206 SQLSTATE: HY000 (ER_LOCK_TABLE_FULL)

Message: The total number of locks exceeds the lock table size

• Error: 1207 SQLSTATE: 25000 (ER_READ_ONLY_TRANSACTION)

Message: Update locks cannot be acquired during a READ UNCOMMITTED transaction

• Error: 1208 SQLSTATE: HY000 (ER_DROP_DB_WITH_READ_LOCK)

Message: DROP DATABASE not allowed while thread is holding global read lock

• Error: 1209 SQLSTATE: HY000 (ER_CREATE_DB_WITH_READ_LOCK)

Message: CREATE DATABASE not allowed while thread is holding global read lock

• Error: 1210 SQLSTATE: HY000 (ER_WRONG_ARGUMENTS)

Message: Incorrect arguments to %s

• Error: 1211 SQLSTATE: 42000 (ER_NO_PERMISSION_TO_CREATE_USER)

Message: '%s'@'%s' is not allowed to create new users

• Error: 1212 SQLSTATE: HY000 (ER_UNION_TABLES_IN_DIFFERENT_DIR)

Message: Incorrect table definition; all MERGE tables must be in the same database

• Error: 1213 SQLSTATE: 40001 (ER_LOCK_DEADLOCK)

Message: Deadlock found when trying to get lock; try restarting transaction

• Error: 1214 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_FT)

Message: The used table type doesn't support FULLTEXT indexes

• Error: 1215 SQLSTATE: HY000 (ER_CANNOT_ADD_FOREIGN)

Message: Cannot add foreign key constraint

• Error: 1216 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW)

Message: Cannot add or update a child row: a foreign key constraint fails

• Error: 1217 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED)

Message: Cannot delete or update a parent row: a foreign key constraint fails

• Error: 1218 SQLSTATE: 08S01 (ER_CONNECT_TO_MASTER)

Message: Error connecting to master: %s

• Error: 1219 SQLSTATE: HY000 (ER_QUERY_ON_MASTER)

Message: Error running query on master: %s

• Error: 1220 SQLSTATE: HY000 (ER_ERROR_WHEN_EXECUTING_COMMAND)

Message: Error when executing command %s: %s

• Error: 1221 SQLSTATE: HY000 (ER_WRONG_USAGE)

Message: Incorrect usage of %s and %s

• Error: 1222 SQLSTATE: 21000 (ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)

Server Error Codes and Messages

2796

Message: The used SELECT statements have a different number of columns

• Error: 1223 SQLSTATE: HY000 (ER_CANT_UPDATE_WITH_READLOCK)

Message: Can't execute the query because you have a conflicting read lock

• Error: 1224 SQLSTATE: HY000 (ER_MIXING_NOT_ALLOWED)

Message: Mixing of transactional and non-transactional tables is disabled

• Error: 1225 SQLSTATE: HY000 (ER_DUP_ARGUMENT)

Message: Option '%s' used twice in statement

• Error: 1226 SQLSTATE: 42000 (ER_USER_LIMIT_REACHED)

Message: User '%s' has exceeded the '%s' resource (current value: %ld)

• Error: 1227 SQLSTATE: 42000 (ER_SPECIFIC_ACCESS_DENIED_ERROR)

Message: Access denied; you need (at least one of) the %s privilege(s) for this operation

• Error: 1228 SQLSTATE: HY000 (ER_LOCAL_VARIABLE)

Message: Variable '%s' is a SESSION variable and can't be used with SET GLOBAL

• Error: 1229 SQLSTATE: HY000 (ER_GLOBAL_VARIABLE)

Message: Variable '%s' is a GLOBAL variable and should be set with SET GLOBAL

• Error: 1230 SQLSTATE: 42000 (ER_NO_DEFAULT)

Message: Variable '%s' doesn't have a default value

• Error: 1231 SQLSTATE: 42000 (ER_WRONG_VALUE_FOR_VAR)

Message: Variable '%s' can't be set to the value of '%s'

• Error: 1232 SQLSTATE: 42000 (ER_WRONG_TYPE_FOR_VAR)

Message: Incorrect argument type to variable '%s'

• Error: 1233 SQLSTATE: HY000 (ER_VAR_CANT_BE_READ)

Message: Variable '%s' can only be set, not read

• Error: 1234 SQLSTATE: 42000 (ER_CANT_USE_OPTION_HERE)

Message: Incorrect usage/placement of '%s'

• Error: 1235 SQLSTATE: 42000 (ER_NOT_SUPPORTED_YET)

Message: This version of MySQL doesn't yet support '%s'

• Error: 1236 SQLSTATE: HY000 (ER_MASTER_FATAL_ERROR_READING_BINLOG)

Message: Got fatal error %d from master when reading data from binary log: '%s'

• Error: 1237 SQLSTATE: HY000 (ER_SLAVE_IGNORED_TABLE)

Message: Slave SQL thread ignored the query because of replicate-*-table rules

• Error: 1238 SQLSTATE: HY000 (ER_INCORRECT_GLOBAL_LOCAL_VAR)

Message: Variable '%s' is a %s variable

Server Error Codes and Messages

2797

• Error: 1239 SQLSTATE: 42000 (ER_WRONG_FK_DEF)

Message: Incorrect foreign key definition for '%s': %s

• Error: 1240 SQLSTATE: HY000 (ER_KEY_REF_DO_NOT_MATCH_TABLE_REF)

Message: Key reference and table reference don't match

• Error: 1241 SQLSTATE: 21000 (ER_OPERAND_COLUMNS)

Message: Operand should contain %d column(s)

• Error: 1242 SQLSTATE: 21000 (ER_SUBQUERY_NO_1_ROW)

Message: Subquery returns more than 1 row

• Error: 1243 SQLSTATE: HY000 (ER_UNKNOWN_STMT_HANDLER)

Message: Unknown prepared statement handler (%.*s) given to %s

• Error: 1244 SQLSTATE: HY000 (ER_CORRUPT_HELP_DB)

Message: Help database is corrupt or does not exist

• Error: 1245 SQLSTATE: HY000 (ER_CYCLIC_REFERENCE)

Message: Cyclic reference on subqueries

• Error: 1246 SQLSTATE: HY000 (ER_AUTO_CONVERT)

Message: Converting column '%s' from %s to %s

• Error: 1247 SQLSTATE: 42S22 (ER_ILLEGAL_REFERENCE)

Message: Reference '%s' not supported (%s)

• Error: 1248 SQLSTATE: 42000 (ER_DERIVED_MUST_HAVE_ALIAS)

Message: Every derived table must have its own alias

• Error: 1249 SQLSTATE: 01000 (ER_SELECT_REDUCED)

Message: Select %u was reduced during optimization

• Error: 1250 SQLSTATE: 42000 (ER_TABLENAME_NOT_ALLOWED_HERE)

Message: Table '%s' from one of the SELECTs cannot be used in %s

• Error: 1251 SQLSTATE: 08004 (ER_NOT_SUPPORTED_AUTH_MODE)

Message: Client does not support authentication protocol requested by server; consider upgrading
MySQL client

• Error: 1252 SQLSTATE: 42000 (ER_SPATIAL_CANT_HAVE_NULL)

Message: All parts of a SPATIAL index must be NOT NULL

• Error: 1253 SQLSTATE: 42000 (ER_COLLATION_CHARSET_MISMATCH)

Message: COLLATION '%s' is not valid for CHARACTER SET '%s'

• Error: 1254 SQLSTATE: HY000 (ER_SLAVE_WAS_RUNNING)

Message: Slave is already running

Server Error Codes and Messages

2798

• Error: 1255 SQLSTATE: HY000 (ER_SLAVE_WAS_NOT_RUNNING)

Message: Slave already has been stopped

• Error: 1256 SQLSTATE: HY000 (ER_TOO_BIG_FOR_UNCOMPRESS)

Message: Uncompressed data size too large; the maximum size is %d (probably, length of
uncompressed data was corrupted)

• Error: 1257 SQLSTATE: HY000 (ER_ZLIB_Z_MEM_ERROR)

Message: ZLIB: Not enough memory

• Error: 1258 SQLSTATE: HY000 (ER_ZLIB_Z_BUF_ERROR)

Message: ZLIB: Not enough room in the output buffer (probably, length of uncompressed data was
corrupted)

• Error: 1259 SQLSTATE: HY000 (ER_ZLIB_Z_DATA_ERROR)

Message: ZLIB: Input data corrupted

• Error: 1260 SQLSTATE: HY000 (ER_CUT_VALUE_GROUP_CONCAT)

Message: Row %u was cut by GROUP_CONCAT()

• Error: 1261 SQLSTATE: 01000 (ER_WARN_TOO_FEW_RECORDS)

Message: Row %ld doesn't contain data for all columns

• Error: 1262 SQLSTATE: 01000 (ER_WARN_TOO_MANY_RECORDS)

Message: Row %ld was truncated; it contained more data than there were input columns

• Error: 1263 SQLSTATE: 22004 (ER_WARN_NULL_TO_NOTNULL)

Message: Column set to default value; NULL supplied to NOT NULL column '%s' at row %ld

• Error: 1264 SQLSTATE: 22003 (ER_WARN_DATA_OUT_OF_RANGE)

Message: Out of range value for column '%s' at row %ld

• Error: 1265 SQLSTATE: 01000 (WARN_DATA_TRUNCATED)

Message: Data truncated for column '%s' at row %ld

• Error: 1266 SQLSTATE: HY000 (ER_WARN_USING_OTHER_HANDLER)

Message: Using storage engine %s for table '%s'

• Error: 1267 SQLSTATE: HY000 (ER_CANT_AGGREGATE_2COLLATIONS)

Message: Illegal mix of collations (%s,%s) and (%s,%s) for operation '%s'

• Error: 1268 SQLSTATE: HY000 (ER_DROP_USER)

Message: Cannot drop one or more of the requested users

• Error: 1269 SQLSTATE: HY000 (ER_REVOKE_GRANTS)

Message: Can't revoke all privileges for one or more of the requested users

• Error: 1270 SQLSTATE: HY000 (ER_CANT_AGGREGATE_3COLLATIONS)

Message: Illegal mix of collations (%s,%s), (%s,%s), (%s,%s) for operation '%s'

Server Error Codes and Messages

2799

• Error: 1271 SQLSTATE: HY000 (ER_CANT_AGGREGATE_NCOLLATIONS)

Message: Illegal mix of collations for operation '%s'

• Error: 1272 SQLSTATE: HY000 (ER_VARIABLE_IS_NOT_STRUCT)

Message: Variable '%s' is not a variable component (can't be used as XXXX.variable_name)

• Error: 1273 SQLSTATE: HY000 (ER_UNKNOWN_COLLATION)

Message: Unknown collation: '%s'

• Error: 1274 SQLSTATE: HY000 (ER_SLAVE_IGNORED_SSL_PARAMS)

Message: SSL parameters in CHANGE MASTER are ignored because this MySQL slave was
compiled without SSL support; they can be used later if MySQL slave with SSL is started

• Error: 1275 SQLSTATE: HY000 (ER_SERVER_IS_IN_SECURE_AUTH_MODE)

Message: Server is running in --secure-auth mode, but '%s'@'%s' has a password in the old format;
please change the password to the new format

• Error: 1276 SQLSTATE: HY000 (ER_WARN_FIELD_RESOLVED)

Message: Field or reference '%s%s%s%s%s' of SELECT #%d was resolved in SELECT #%d

• Error: 1277 SQLSTATE: HY000 (ER_BAD_SLAVE_UNTIL_COND)

Message: Incorrect parameter or combination of parameters for START SLAVE UNTIL

• Error: 1278 SQLSTATE: HY000 (ER_MISSING_SKIP_SLAVE)

Message: It is recommended to use --skip-slave-start when doing step-by-step replication with
START SLAVE UNTIL; otherwise, you will get problems if you get an unexpected slave's mysqld
restart

• Error: 1279 SQLSTATE: HY000 (ER_UNTIL_COND_IGNORED)

Message: SQL thread is not to be started so UNTIL options are ignored

• Error: 1280 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_INDEX)

Message: Incorrect index name '%s'

• Error: 1281 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_CATALOG)

Message: Incorrect catalog name '%s'

• Error: 1282 SQLSTATE: HY000 (ER_WARN_QC_RESIZE)

Message: Query cache failed to set size %lu; new query cache size is %lu

• Error: 1283 SQLSTATE: HY000 (ER_BAD_FT_COLUMN)

Message: Column '%s' cannot be part of FULLTEXT index

• Error: 1284 SQLSTATE: HY000 (ER_UNKNOWN_KEY_CACHE)

Message: Unknown key cache '%s'

• Error: 1285 SQLSTATE: HY000 (ER_WARN_HOSTNAME_WONT_WORK)

Message: MySQL is started in --skip-name-resolve mode; you must restart it without this switch for
this grant to work

Server Error Codes and Messages

2800

• Error: 1286 SQLSTATE: 42000 (ER_UNKNOWN_STORAGE_ENGINE)

Message: Unknown storage engine '%s'

• Error: 1287 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX)

Message: '%s' is deprecated and will be removed in a future release. Please use %s instead

• Error: 1288 SQLSTATE: HY000 (ER_NON_UPDATABLE_TABLE)

Message: The target table %s of the %s is not updatable

• Error: 1289 SQLSTATE: HY000 (ER_FEATURE_DISABLED)

Message: The '%s' feature is disabled; you need MySQL built with '%s' to have it working

• Error: 1290 SQLSTATE: HY000 (ER_OPTION_PREVENTS_STATEMENT)

Message: The MySQL server is running with the %s option so it cannot execute this statement

• Error: 1291 SQLSTATE: HY000 (ER_DUPLICATED_VALUE_IN_TYPE)

Message: Column '%s' has duplicated value '%s' in %s

• Error: 1292 SQLSTATE: 22007 (ER_TRUNCATED_WRONG_VALUE)

Message: Truncated incorrect %s value: '%s'

• Error: 1293 SQLSTATE: HY000 (ER_TOO_MUCH_AUTO_TIMESTAMP_COLS)

Message: Incorrect table definition; there can be only one TIMESTAMP column with
CURRENT_TIMESTAMP in DEFAULT or ON UPDATE clause

• Error: 1294 SQLSTATE: HY000 (ER_INVALID_ON_UPDATE)

Message: Invalid ON UPDATE clause for '%s' column

• Error: 1295 SQLSTATE: HY000 (ER_UNSUPPORTED_PS)

Message: This command is not supported in the prepared statement protocol yet

• Error: 1296 SQLSTATE: HY000 (ER_GET_ERRMSG)

Message: Got error %d '%s' from %s

• Error: 1297 SQLSTATE: HY000 (ER_GET_TEMPORARY_ERRMSG)

Message: Got temporary error %d '%s' from %s

• Error: 1298 SQLSTATE: HY000 (ER_UNKNOWN_TIME_ZONE)

Message: Unknown or incorrect time zone: '%s'

• Error: 1299 SQLSTATE: HY000 (ER_WARN_INVALID_TIMESTAMP)

Message: Invalid TIMESTAMP value in column '%s' at row %ld

• Error: 1300 SQLSTATE: HY000 (ER_INVALID_CHARACTER_STRING)

Message: Invalid %s character string: '%s'

• Error: 1301 SQLSTATE: HY000 (ER_WARN_ALLOWED_PACKET_OVERFLOWED)

Message: Result of %s() was larger than max_allowed_packet (%ld) - truncated

Server Error Codes and Messages

2801

• Error: 1302 SQLSTATE: HY000 (ER_CONFLICTING_DECLARATIONS)

Message: Conflicting declarations: '%s%s' and '%s%s'

• Error: 1303 SQLSTATE: 2F003 (ER_SP_NO_RECURSIVE_CREATE)

Message: Can't create a %s from within another stored routine

• Error: 1304 SQLSTATE: 42000 (ER_SP_ALREADY_EXISTS)

Message: %s %s already exists

• Error: 1305 SQLSTATE: 42000 (ER_SP_DOES_NOT_EXIST)

Message: %s %s does not exist

• Error: 1306 SQLSTATE: HY000 (ER_SP_DROP_FAILED)

Message: Failed to DROP %s %s

• Error: 1307 SQLSTATE: HY000 (ER_SP_STORE_FAILED)

Message: Failed to CREATE %s %s

• Error: 1308 SQLSTATE: 42000 (ER_SP_LILABEL_MISMATCH)

Message: %s with no matching label: %s

• Error: 1309 SQLSTATE: 42000 (ER_SP_LABEL_REDEFINE)

Message: Redefining label %s

• Error: 1310 SQLSTATE: 42000 (ER_SP_LABEL_MISMATCH)

Message: End-label %s without match

• Error: 1311 SQLSTATE: 01000 (ER_SP_UNINIT_VAR)

Message: Referring to uninitialized variable %s

• Error: 1312 SQLSTATE: 0A000 (ER_SP_BADSELECT)

Message: PROCEDURE %s can't return a result set in the given context

• Error: 1313 SQLSTATE: 42000 (ER_SP_BADRETURN)

Message: RETURN is only allowed in a FUNCTION

• Error: 1314 SQLSTATE: 0A000 (ER_SP_BADSTATEMENT)

Message: %s is not allowed in stored procedures

• Error: 1315 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_IGNORED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE
has been ignored.

• Error: 1316 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_TRANSLATED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE
has been translated to SET SQL_LOG_BIN.

• Error: 1317 SQLSTATE: 70100 (ER_QUERY_INTERRUPTED)

Message: Query execution was interrupted

Server Error Codes and Messages

2802

• Error: 1318 SQLSTATE: 42000 (ER_SP_WRONG_NO_OF_ARGS)

Message: Incorrect number of arguments for %s %s; expected %u, got %u

• Error: 1319 SQLSTATE: 42000 (ER_SP_COND_MISMATCH)

Message: Undefined CONDITION: %s

• Error: 1320 SQLSTATE: 42000 (ER_SP_NORETURN)

Message: No RETURN found in FUNCTION %s

• Error: 1321 SQLSTATE: 2F005 (ER_SP_NORETURNEND)

Message: FUNCTION %s ended without RETURN

• Error: 1322 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_QUERY)

Message: Cursor statement must be a SELECT

• Error: 1323 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_SELECT)

Message: Cursor SELECT must not have INTO

• Error: 1324 SQLSTATE: 42000 (ER_SP_CURSOR_MISMATCH)

Message: Undefined CURSOR: %s

• Error: 1325 SQLSTATE: 24000 (ER_SP_CURSOR_ALREADY_OPEN)

Message: Cursor is already open

• Error: 1326 SQLSTATE: 24000 (ER_SP_CURSOR_NOT_OPEN)

Message: Cursor is not open

• Error: 1327 SQLSTATE: 42000 (ER_SP_UNDECLARED_VAR)

Message: Undeclared variable: %s

• Error: 1328 SQLSTATE: HY000 (ER_SP_WRONG_NO_OF_FETCH_ARGS)

Message: Incorrect number of FETCH variables

• Error: 1329 SQLSTATE: 02000 (ER_SP_FETCH_NO_DATA)

Message: No data - zero rows fetched, selected, or processed

• Error: 1330 SQLSTATE: 42000 (ER_SP_DUP_PARAM)

Message: Duplicate parameter: %s

• Error: 1331 SQLSTATE: 42000 (ER_SP_DUP_VAR)

Message: Duplicate variable: %s

• Error: 1332 SQLSTATE: 42000 (ER_SP_DUP_COND)

Message: Duplicate condition: %s

• Error: 1333 SQLSTATE: 42000 (ER_SP_DUP_CURS)

Message: Duplicate cursor: %s

• Error: 1334 SQLSTATE: HY000 (ER_SP_CANT_ALTER)

Server Error Codes and Messages

2803

Message: Failed to ALTER %s %s

• Error: 1335 SQLSTATE: 0A000 (ER_SP_SUBSELECT_NYI)

Message: Subquery value not supported

• Error: 1336 SQLSTATE: 0A000 (ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: %s is not allowed in stored function or trigger

• Error: 1337 SQLSTATE: 42000 (ER_SP_VARCOND_AFTER_CURSHNDLR)

Message: Variable or condition declaration after cursor or handler declaration

• Error: 1338 SQLSTATE: 42000 (ER_SP_CURSOR_AFTER_HANDLER)

Message: Cursor declaration after handler declaration

• Error: 1339 SQLSTATE: 20000 (ER_SP_CASE_NOT_FOUND)

Message: Case not found for CASE statement

• Error: 1340 SQLSTATE: HY000 (ER_FPARSER_TOO_BIG_FILE)

Message: Configuration file '%s' is too big

• Error: 1341 SQLSTATE: HY000 (ER_FPARSER_BAD_HEADER)

Message: Malformed file type header in file '%s'

• Error: 1342 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_COMMENT)

Message: Unexpected end of file while parsing comment '%s'

• Error: 1343 SQLSTATE: HY000 (ER_FPARSER_ERROR_IN_PARAMETER)

Message: Error while parsing parameter '%s' (line: '%s')

• Error: 1344 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER)

Message: Unexpected end of file while skipping unknown parameter '%s'

• Error: 1345 SQLSTATE: HY000 (ER_VIEW_NO_EXPLAIN)

Message: EXPLAIN/SHOW can not be issued; lacking privileges for underlying table

• Error: 1346 SQLSTATE: HY000 (ER_FRM_UNKNOWN_TYPE)

Message: File '%s' has unknown type '%s' in its header

• Error: 1347 SQLSTATE: HY000 (ER_WRONG_OBJECT)

Message: '%s.%s' is not %s

• Error: 1348 SQLSTATE: HY000 (ER_NONUPDATEABLE_COLUMN)

Message: Column '%s' is not updatable

• Error: 1349 SQLSTATE: HY000 (ER_VIEW_SELECT_DERIVED)

Message: View's SELECT contains a subquery in the FROM clause

• Error: 1350 SQLSTATE: HY000 (ER_VIEW_SELECT_CLAUSE)

Message: View's SELECT contains a '%s' clause

Server Error Codes and Messages

2804

• Error: 1351 SQLSTATE: HY000 (ER_VIEW_SELECT_VARIABLE)

Message: View's SELECT contains a variable or parameter

• Error: 1352 SQLSTATE: HY000 (ER_VIEW_SELECT_TMPTABLE)

Message: View's SELECT refers to a temporary table '%s'

• Error: 1353 SQLSTATE: HY000 (ER_VIEW_WRONG_LIST)

Message: View's SELECT and view's field list have different column counts

• Error: 1354 SQLSTATE: HY000 (ER_WARN_VIEW_MERGE)

Message: View merge algorithm can't be used here for now (assumed undefined algorithm)

• Error: 1355 SQLSTATE: HY000 (ER_WARN_VIEW_WITHOUT_KEY)

Message: View being updated does not have complete key of underlying table in it

• Error: 1356 SQLSTATE: HY000 (ER_VIEW_INVALID)

Message: View '%s.%s' references invalid table(s) or column(s) or function(s) or definer/invoker of
view lack rights to use them

• Error: 1357 SQLSTATE: HY000 (ER_SP_NO_DROP_SP)

Message: Can't drop or alter a %s from within another stored routine

• Error: 1358 SQLSTATE: HY000 (ER_SP_GOTO_IN_HNDLR)

Message: GOTO is not allowed in a stored procedure handler

• Error: 1359 SQLSTATE: HY000 (ER_TRG_ALREADY_EXISTS)

Message: Trigger already exists

• Error: 1360 SQLSTATE: HY000 (ER_TRG_DOES_NOT_EXIST)

Message: Trigger does not exist

• Error: 1361 SQLSTATE: HY000 (ER_TRG_ON_VIEW_OR_TEMP_TABLE)

Message: Trigger's '%s' is view or temporary table

• Error: 1362 SQLSTATE: HY000 (ER_TRG_CANT_CHANGE_ROW)

Message: Updating of %s row is not allowed in %strigger

• Error: 1363 SQLSTATE: HY000 (ER_TRG_NO_SUCH_ROW_IN_TRG)

Message: There is no %s row in %s trigger

• Error: 1364 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_FIELD)

Message: Field '%s' doesn't have a default value

• Error: 1365 SQLSTATE: 22012 (ER_DIVISION_BY_ZERO)

Message: Division by 0

• Error: 1366 SQLSTATE: HY000 (ER_TRUNCATED_WRONG_VALUE_FOR_FIELD)

Message: Incorrect %s value: '%s' for column '%s' at row %ld

• Error: 1367 SQLSTATE: 22007 (ER_ILLEGAL_VALUE_FOR_TYPE)

Server Error Codes and Messages

2805

Message: Illegal %s '%s' value found during parsing

• Error: 1368 SQLSTATE: HY000 (ER_VIEW_NONUPD_CHECK)

Message: CHECK OPTION on non-updatable view '%s.%s'

• Error: 1369 SQLSTATE: HY000 (ER_VIEW_CHECK_FAILED)

Message: CHECK OPTION failed '%s.%s'

• Error: 1370 SQLSTATE: 42000 (ER_PROCACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for routine '%s'

• Error: 1371 SQLSTATE: HY000 (ER_RELAY_LOG_FAIL)

Message: Failed purging old relay logs: %s

• Error: 1372 SQLSTATE: HY000 (ER_PASSWD_LENGTH)

Message: Password hash should be a %d-digit hexadecimal number

• Error: 1373 SQLSTATE: HY000 (ER_UNKNOWN_TARGET_BINLOG)

Message: Target log not found in binlog index

• Error: 1374 SQLSTATE: HY000 (ER_IO_ERR_LOG_INDEX_READ)

Message: I/O error reading log index file

• Error: 1375 SQLSTATE: HY000 (ER_BINLOG_PURGE_PROHIBITED)

Message: Server configuration does not permit binlog purge

• Error: 1376 SQLSTATE: HY000 (ER_FSEEK_FAIL)

Message: Failed on fseek()

• Error: 1377 SQLSTATE: HY000 (ER_BINLOG_PURGE_FATAL_ERR)

Message: Fatal error during log purge

• Error: 1378 SQLSTATE: HY000 (ER_LOG_IN_USE)

Message: A purgeable log is in use, will not purge

• Error: 1379 SQLSTATE: HY000 (ER_LOG_PURGE_UNKNOWN_ERR)

Message: Unknown error during log purge

• Error: 1380 SQLSTATE: HY000 (ER_RELAY_LOG_INIT)

Message: Failed initializing relay log position: %s

• Error: 1381 SQLSTATE: HY000 (ER_NO_BINARY_LOGGING)

Message: You are not using binary logging

• Error: 1382 SQLSTATE: HY000 (ER_RESERVED_SYNTAX)

Message: The '%s' syntax is reserved for purposes internal to the MySQL server

• Error: 1383 SQLSTATE: HY000 (ER_WSAS_FAILED)

Message: WSAStartup Failed

Server Error Codes and Messages

2806

• Error: 1384 SQLSTATE: HY000 (ER_DIFF_GROUPS_PROC)

Message: Can't handle procedures with different groups yet

• Error: 1385 SQLSTATE: HY000 (ER_NO_GROUP_FOR_PROC)

Message: Select must have a group with this procedure

• Error: 1386 SQLSTATE: HY000 (ER_ORDER_WITH_PROC)

Message: Can't use ORDER clause with this procedure

• Error: 1387 SQLSTATE: HY000 (ER_LOGGING_PROHIBIT_CHANGING_OF)

Message: Binary logging and replication forbid changing the global server %s

• Error: 1388 SQLSTATE: HY000 (ER_NO_FILE_MAPPING)

Message: Can't map file: %s, errno: %d

• Error: 1389 SQLSTATE: HY000 (ER_WRONG_MAGIC)

Message: Wrong magic in %s

• Error: 1390 SQLSTATE: HY000 (ER_PS_MANY_PARAM)

Message: Prepared statement contains too many placeholders

• Error: 1391 SQLSTATE: HY000 (ER_KEY_PART_0)

Message: Key part '%s' length cannot be 0

• Error: 1392 SQLSTATE: HY000 (ER_VIEW_CHECKSUM)

Message: View text checksum failed

• Error: 1393 SQLSTATE: HY000 (ER_VIEW_MULTIUPDATE)

Message: Can not modify more than one base table through a join view '%s.%s'

• Error: 1394 SQLSTATE: HY000 (ER_VIEW_NO_INSERT_FIELD_LIST)

Message: Can not insert into join view '%s.%s' without fields list

• Error: 1395 SQLSTATE: HY000 (ER_VIEW_DELETE_MERGE_VIEW)

Message: Can not delete from join view '%s.%s'

• Error: 1396 SQLSTATE: HY000 (ER_CANNOT_USER)

Message: Operation %s failed for %s

• Error: 1397 SQLSTATE: XAE04 (ER_XAER_NOTA)

Message: XAER_NOTA: Unknown XID

• Error: 1398 SQLSTATE: XAE05 (ER_XAER_INVAL)

Message: XAER_INVAL: Invalid arguments (or unsupported command)

• Error: 1399 SQLSTATE: XAE07 (ER_XAER_RMFAIL)

Message: XAER_RMFAIL: The command cannot be executed when global transaction is in the %s
state

• Error: 1400 SQLSTATE: XAE09 (ER_XAER_OUTSIDE)

Server Error Codes and Messages

2807

Message: XAER_OUTSIDE: Some work is done outside global transaction

• Error: 1401 SQLSTATE: XAE03 (ER_XAER_RMERR)

Message: XAER_RMERR: Fatal error occurred in the transaction branch - check your data for
consistency

• Error: 1402 SQLSTATE: XA100 (ER_XA_RBROLLBACK)

Message: XA_RBROLLBACK: Transaction branch was rolled back

• Error: 1403 SQLSTATE: 42000 (ER_NONEXISTING_PROC_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on routine '%s'

• Error: 1404 SQLSTATE: HY000 (ER_PROC_AUTO_GRANT_FAIL)

Message: Failed to grant EXECUTE and ALTER ROUTINE privileges

• Error: 1405 SQLSTATE: HY000 (ER_PROC_AUTO_REVOKE_FAIL)

Message: Failed to revoke all privileges to dropped routine

• Error: 1406 SQLSTATE: 22001 (ER_DATA_TOO_LONG)

Message: Data too long for column '%s' at row %ld

• Error: 1407 SQLSTATE: 42000 (ER_SP_BAD_SQLSTATE)

Message: Bad SQLSTATE: '%s'

• Error: 1408 SQLSTATE: HY000 (ER_STARTUP)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d %s

• Error: 1409 SQLSTATE: HY000 (ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR)

Message: Can't load value from file with fixed size rows to variable

• Error: 1410 SQLSTATE: 42000 (ER_CANT_CREATE_USER_WITH_GRANT)

Message: You are not allowed to create a user with GRANT

• Error: 1411 SQLSTATE: HY000 (ER_WRONG_VALUE_FOR_TYPE)

Message: Incorrect %s value: '%s' for function %s

• Error: 1412 SQLSTATE: HY000 (ER_TABLE_DEF_CHANGED)

Message: Table definition has changed, please retry transaction

• Error: 1413 SQLSTATE: 42000 (ER_SP_DUP_HANDLER)

Message: Duplicate handler declared in the same block

• Error: 1414 SQLSTATE: 42000 (ER_SP_NOT_VAR_ARG)

Message: OUT or INOUT argument %d for routine %s is not a variable or NEW pseudo-variable in
BEFORE trigger

• Error: 1415 SQLSTATE: 0A000 (ER_SP_NO_RETSET)

Message: Not allowed to return a result set from a %s

• Error: 1416 SQLSTATE: 22003 (ER_CANT_CREATE_GEOMETRY_OBJECT)

Server Error Codes and Messages

2808

Message: Cannot get geometry object from data you send to the GEOMETRY field

• Error: 1417 SQLSTATE: HY000 (ER_FAILED_ROUTINE_BREAK_BINLOG)

Message: A routine failed and has neither NO SQL nor READS SQL DATA in its declaration and
binary logging is enabled; if non-transactional tables were updated, the binary log will miss their
changes

• Error: 1418 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_ROUTINE)

Message: This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA
in its declaration and binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

• Error: 1419 SQLSTATE: HY000 (ER_BINLOG_CREATE_ROUTINE_NEED_SUPER)

Message: You do not have the SUPER privilege and binary logging is enabled (you *might* want to
use the less safe log_bin_trust_function_creators variable)

• Error: 1420 SQLSTATE: HY000 (ER_EXEC_STMT_WITH_OPEN_CURSOR)

Message: You can't execute a prepared statement which has an open cursor associated with it.
Reset the statement to re-execute it.

• Error: 1421 SQLSTATE: HY000 (ER_STMT_HAS_NO_OPEN_CURSOR)

Message: The statement (%lu) has no open cursor.

• Error: 1422 SQLSTATE: HY000 (ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: Explicit or implicit commit is not allowed in stored function or trigger.

• Error: 1423 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_VIEW_FIELD)

Message: Field of view '%s.%s' underlying table doesn't have a default value

• Error: 1424 SQLSTATE: HY000 (ER_SP_NO_RECURSION)

Message: Recursive stored functions and triggers are not allowed.

• Error: 1425 SQLSTATE: 42000 (ER_TOO_BIG_SCALE)

Message: Too big scale %d specified for column '%s'. Maximum is %lu.

• Error: 1426 SQLSTATE: 42000 (ER_TOO_BIG_PRECISION)

Message: Too big precision %d specified for column '%s'. Maximum is %lu.

• Error: 1427 SQLSTATE: 42000 (ER_M_BIGGER_THAN_D)

Message: For float(M,D), double(M,D) or decimal(M,D), M must be >= D (column '%s').

• Error: 1428 SQLSTATE: HY000 (ER_WRONG_LOCK_OF_SYSTEM_TABLE)

Message: You can't combine write-locking of system tables with other tables or lock types

• Error: 1429 SQLSTATE: HY000 (ER_CONNECT_TO_FOREIGN_DATA_SOURCE)

Message: Unable to connect to foreign data source: %s

• Error: 1430 SQLSTATE: HY000 (ER_QUERY_ON_FOREIGN_DATA_SOURCE)

Message: There was a problem processing the query on the foreign data source. Data source error:
%s

Server Error Codes and Messages

2809

• Error: 1431 SQLSTATE: HY000 (ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST)

Message: The foreign data source you are trying to reference does not exist. Data source error: %s

• Error: 1432 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE)

Message: Can't create federated table. The data source connection string '%s' is not in the correct
format

• Error: 1433 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID)

Message: The data source connection string '%s' is not in the correct format

• Error: 1434 SQLSTATE: HY000 (ER_CANT_CREATE_FEDERATED_TABLE)

Message: Can't create federated table. Foreign data src error: %s

• Error: 1435 SQLSTATE: HY000 (ER_TRG_IN_WRONG_SCHEMA)

Message: Trigger in wrong schema

• Error: 1436 SQLSTATE: HY000 (ER_STACK_OVERRUN_NEED_MORE)

Message: Thread stack overrun: %ld bytes used of a %ld byte stack, and %ld bytes needed. Use
'mysqld --thread_stack=#' to specify a bigger stack.

• Error: 1437 SQLSTATE: 42000 (ER_TOO_LONG_BODY)

Message: Routine body for '%s' is too long

• Error: 1438 SQLSTATE: HY000 (ER_WARN_CANT_DROP_DEFAULT_KEYCACHE)

Message: Cannot drop default keycache

• Error: 1439 SQLSTATE: 42000 (ER_TOO_BIG_DISPLAYWIDTH)

Message: Display width out of range for column '%s' (max = %lu)

• Error: 1440 SQLSTATE: XAE08 (ER_XAER_DUPID)

Message: XAER_DUPID: The XID already exists

• Error: 1441 SQLSTATE: 22008 (ER_DATETIME_FUNCTION_OVERFLOW)

Message: Datetime function: %s field overflow

• Error: 1442 SQLSTATE: HY000 (ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG)

Message: Can't update table '%s' in stored function/trigger because it is already used by statement
which invoked this stored function/trigger.

• Error: 1443 SQLSTATE: HY000 (ER_VIEW_PREVENT_UPDATE)

Message: The definition of table '%s' prevents operation %s on table '%s'.

• Error: 1444 SQLSTATE: HY000 (ER_PS_NO_RECURSION)

Message: The prepared statement contains a stored routine call that refers to that same statement.
It's not allowed to execute a prepared statement in such a recursive manner

• Error: 1445 SQLSTATE: HY000 (ER_SP_CANT_SET_AUTOCOMMIT)

Message: Not allowed to set autocommit from a stored function or trigger

Server Error Codes and Messages

2810

• Error: 1446 SQLSTATE: HY000 (ER_MALFORMED_DEFINER)

Message: Definer is not fully qualified

• Error: 1447 SQLSTATE: HY000 (ER_VIEW_FRM_NO_USER)

Message: View '%s'.'%s' has no definer information (old table format). Current user is used as
definer. Please recreate the view!

• Error: 1448 SQLSTATE: HY000 (ER_VIEW_OTHER_USER)

Message: You need the SUPER privilege for creation view with '%s'@'%s' definer

• Error: 1449 SQLSTATE: HY000 (ER_NO_SUCH_USER)

Message: The user specified as a definer ('%s'@'%s') does not exist

• Error: 1450 SQLSTATE: HY000 (ER_FORBID_SCHEMA_CHANGE)

Message: Changing schema from '%s' to '%s' is not allowed.

• Error: 1451 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED_2)

Message: Cannot delete or update a parent row: a foreign key constraint fails (%s)

• Error: 1452 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW_2)

Message: Cannot add or update a child row: a foreign key constraint fails (%s)

• Error: 1453 SQLSTATE: 42000 (ER_SP_BAD_VAR_SHADOW)

Message: Variable '%s' must be quoted with `...`, or renamed

• Error: 1454 SQLSTATE: HY000 (ER_TRG_NO_DEFINER)

Message: No definer attribute for trigger '%s'.'%s'. The trigger will be activated under the
authorization of the invoker, which may have insufficient privileges. Please recreate the trigger.

• Error: 1455 SQLSTATE: HY000 (ER_OLD_FILE_FORMAT)

Message: '%s' has an old format, you should re-create the '%s' object(s)

• Error: 1456 SQLSTATE: HY000 (ER_SP_RECURSION_LIMIT)

Message: Recursive limit %d (as set by the max_sp_recursion_depth variable) was exceeded for
routine %s

• Error: 1457 SQLSTATE: HY000 (ER_SP_PROC_TABLE_CORRUPT)

Message: Failed to load routine %s. The table mysql.proc is missing, corrupt, or contains bad data
(internal code %d)

• Error: 1458 SQLSTATE: 42000 (ER_SP_WRONG_NAME)

Message: Incorrect routine name '%s'

• Error: 1459 SQLSTATE: HY000 (ER_TABLE_NEEDS_UPGRADE)

Message: Table upgrade required. Please do "REPAIR TABLE `%s`" or dump/reload to fix it!

• Error: 1460 SQLSTATE: 42000 (ER_SP_NO_AGGREGATE)

Message: AGGREGATE is not supported for stored functions

• Error: 1461 SQLSTATE: 42000 (ER_MAX_PREPARED_STMT_COUNT_REACHED)

Server Error Codes and Messages

2811

Message: Can't create more than max_prepared_stmt_count statements (current value: %lu)

• Error: 1462 SQLSTATE: HY000 (ER_VIEW_RECURSIVE)

Message: `%s`.`%s` contains view recursion

• Error: 1463 SQLSTATE: 42000 (ER_NON_GROUPING_FIELD_USED)

Message: Non-grouping field '%s' is used in %s clause

• Error: 1464 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_SPKEYS)

Message: The used table type doesn't support SPATIAL indexes

• Error: 1465 SQLSTATE: HY000 (ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA)

Message: Triggers can not be created on system tables

• Error: 1466 SQLSTATE: HY000 (ER_REMOVED_SPACES)

Message: Leading spaces are removed from name '%s'

• Error: 1467 SQLSTATE: HY000 (ER_AUTOINC_READ_FAILED)

Message: Failed to read auto-increment value from storage engine

• Error: 1468 SQLSTATE: HY000 (ER_USERNAME)

Message: user name

• Error: 1469 SQLSTATE: HY000 (ER_HOSTNAME)

Message: host name

• Error: 1470 SQLSTATE: HY000 (ER_WRONG_STRING_LENGTH)

Message: String '%s' is too long for %s (should be no longer than %d)

• Error: 1471 SQLSTATE: HY000 (ER_NON_INSERTABLE_TABLE)

Message: The target table %s of the %s is not insertable-into

• Error: 1472 SQLSTATE: HY000 (ER_ADMIN_WRONG_MRG_TABLE)

Message: Table '%s' is differently defined or of non-MyISAM type or doesn't exist

• Error: 1473 SQLSTATE: HY000 (ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT)

Message: Too high level of nesting for select

• Error: 1474 SQLSTATE: HY000 (ER_NAME_BECOMES_EMPTY)

Message: Name '%s' has become ''

• Error: 1475 SQLSTATE: HY000 (ER_AMBIGUOUS_FIELD_TERM)

Message: First character of the FIELDS TERMINATED string is ambiguous; please use non-optional
and non-empty FIELDS ENCLOSED BY

• Error: 1476 SQLSTATE: HY000 (ER_FOREIGN_SERVER_EXISTS)

Message: The foreign server, %s, you are trying to create already exists.

• Error: 1477 SQLSTATE: HY000 (ER_FOREIGN_SERVER_DOESNT_EXIST)

Server Error Codes and Messages

2812

Message: The foreign server name you are trying to reference does not exist. Data source error: %s

• Error: 1478 SQLSTATE: HY000 (ER_ILLEGAL_HA_CREATE_OPTION)

Message: Table storage engine '%s' does not support the create option '%s'

• Error: 1479 SQLSTATE: HY000 (ER_PARTITION_REQUIRES_VALUES_ERROR)

Message: Syntax error: %s PARTITIONING requires definition of VALUES %s for each partition

• Error: 1480 SQLSTATE: HY000 (ER_PARTITION_WRONG_VALUES_ERROR)

Message: Only %s PARTITIONING can use VALUES %s in partition definition

• Error: 1481 SQLSTATE: HY000 (ER_PARTITION_MAXVALUE_ERROR)

Message: MAXVALUE can only be used in last partition definition

• Error: 1482 SQLSTATE: HY000 (ER_PARTITION_SUBPARTITION_ERROR)

Message: Subpartitions can only be hash partitions and by key

• Error: 1483 SQLSTATE: HY000 (ER_PARTITION_SUBPART_MIX_ERROR)

Message: Must define subpartitions on all partitions if on one partition

• Error: 1484 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_PART_ERROR)

Message: Wrong number of partitions defined, mismatch with previous setting

• Error: 1485 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_SUBPART_ERROR)

Message: Wrong number of subpartitions defined, mismatch with previous setting

• Error: 1486 SQLSTATE: HY000 (ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR)

Message: Constant, random or timezone-dependent expressions in (sub)partitioning function are not
allowed

• Error: 1487 SQLSTATE: HY000 (ER_NO_CONST_EXPR_IN_RANGE_OR_LIST_ERROR)

Message: Expression in RANGE/LIST VALUES must be constant

• Error: 1488 SQLSTATE: HY000 (ER_FIELD_NOT_FOUND_PART_ERROR)

Message: Field in list of fields for partition function not found in table

• Error: 1489 SQLSTATE: HY000 (ER_LIST_OF_FIELDS_ONLY_IN_HASH_ERROR)

Message: List of fields is only allowed in KEY partitions

• Error: 1490 SQLSTATE: HY000 (ER_INCONSISTENT_PARTITION_INFO_ERROR)

Message: The partition info in the frm file is not consistent with what can be written into the frm file

• Error: 1491 SQLSTATE: HY000 (ER_PARTITION_FUNC_NOT_ALLOWED_ERROR)

Message: The %s function returns the wrong type

• Error: 1492 SQLSTATE: HY000 (ER_PARTITIONS_MUST_BE_DEFINED_ERROR)

Message: For %s partitions each partition must be defined

• Error: 1493 SQLSTATE: HY000 (ER_RANGE_NOT_INCREASING_ERROR)

Server Error Codes and Messages

2813

Message: VALUES LESS THAN value must be strictly increasing for each partition

• Error: 1494 SQLSTATE: HY000 (ER_INCONSISTENT_TYPE_OF_FUNCTIONS_ERROR)

Message: VALUES value must be of same type as partition function

• Error: 1495 SQLSTATE: HY000 (ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR)

Message: Multiple definition of same constant in list partitioning

• Error: 1496 SQLSTATE: HY000 (ER_PARTITION_ENTRY_ERROR)

Message: Partitioning can not be used stand-alone in query

• Error: 1497 SQLSTATE: HY000 (ER_MIX_HANDLER_ERROR)

Message: The mix of handlers in the partitions is not allowed in this version of MySQL

• Error: 1498 SQLSTATE: HY000 (ER_PARTITION_NOT_DEFINED_ERROR)

Message: For the partitioned engine it is necessary to define all %s

• Error: 1499 SQLSTATE: HY000 (ER_TOO_MANY_PARTITIONS_ERROR)

Message: Too many partitions (including subpartitions) were defined

• Error: 1500 SQLSTATE: HY000 (ER_SUBPARTITION_ERROR)

Message: It is only possible to mix RANGE/LIST partitioning with HASH/KEY partitioning for
subpartitioning

• Error: 1501 SQLSTATE: HY000 (ER_CANT_CREATE_HANDLER_FILE)

Message: Failed to create specific handler file

• Error: 1502 SQLSTATE: HY000 (ER_BLOB_FIELD_IN_PART_FUNC_ERROR)

Message: A BLOB field is not allowed in partition function

• Error: 1503 SQLSTATE: HY000 (ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF)

Message: A %s must include all columns in the table's partitioning function

• Error: 1504 SQLSTATE: HY000 (ER_NO_PARTS_ERROR)

Message: Number of %s = 0 is not an allowed value

• Error: 1505 SQLSTATE: HY000 (ER_PARTITION_MGMT_ON_NONPARTITIONED)

Message: Partition management on a not partitioned table is not possible

• Error: 1506 SQLSTATE: HY000 (ER_FOREIGN_KEY_ON_PARTITIONED)

Message: Foreign key clause is not yet supported in conjunction with partitioning

• Error: 1507 SQLSTATE: HY000 (ER_DROP_PARTITION_NON_EXISTENT)

Message: Error in list of partitions to %s

• Error: 1508 SQLSTATE: HY000 (ER_DROP_LAST_PARTITION)

Message: Cannot remove all partitions, use DROP TABLE instead

• Error: 1509 SQLSTATE: HY000 (ER_COALESCE_ONLY_ON_HASH_PARTITION)

Server Error Codes and Messages

2814

Message: COALESCE PARTITION can only be used on HASH/KEY partitions

• Error: 1510 SQLSTATE: HY000 (ER_REORG_HASH_ONLY_ON_SAME_NO)

Message: REORGANIZE PARTITION can only be used to reorganize partitions not to change their
numbers

• Error: 1511 SQLSTATE: HY000 (ER_REORG_NO_PARAM_ERROR)

Message: REORGANIZE PARTITION without parameters can only be used on auto-partitioned
tables using HASH PARTITIONs

• Error: 1512 SQLSTATE: HY000 (ER_ONLY_ON_RANGE_LIST_PARTITION)

Message: %s PARTITION can only be used on RANGE/LIST partitions

• Error: 1513 SQLSTATE: HY000 (ER_ADD_PARTITION_SUBPART_ERROR)

Message: Trying to Add partition(s) with wrong number of subpartitions

• Error: 1514 SQLSTATE: HY000 (ER_ADD_PARTITION_NO_NEW_PARTITION)

Message: At least one partition must be added

• Error: 1515 SQLSTATE: HY000 (ER_COALESCE_PARTITION_NO_PARTITION)

Message: At least one partition must be coalesced

• Error: 1516 SQLSTATE: HY000 (ER_REORG_PARTITION_NOT_EXIST)

Message: More partitions to reorganize than there are partitions

• Error: 1517 SQLSTATE: HY000 (ER_SAME_NAME_PARTITION)

Message: Duplicate partition name %s

• Error: 1518 SQLSTATE: HY000 (ER_NO_BINLOG_ERROR)

Message: It is not allowed to shut off binlog on this command

• Error: 1519 SQLSTATE: HY000 (ER_CONSECUTIVE_REORG_PARTITIONS)

Message: When reorganizing a set of partitions they must be in consecutive order

• Error: 1520 SQLSTATE: HY000 (ER_REORG_OUTSIDE_RANGE)

Message: Reorganize of range partitions cannot change total ranges except for last partition where it
can extend the range

• Error: 1521 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_FAILURE)

Message: Partition function not supported in this version for this handler

• Error: 1522 SQLSTATE: HY000 (ER_PART_STATE_ERROR)

Message: Partition state cannot be defined from CREATE/ALTER TABLE

• Error: 1523 SQLSTATE: HY000 (ER_LIMITED_PART_RANGE)

Message: The %s handler only supports 32 bit integers in VALUES

• Error: 1524 SQLSTATE: HY000 (ER_PLUGIN_IS_NOT_LOADED)

Message: Plugin '%s' is not loaded

Server Error Codes and Messages

2815

• Error: 1525 SQLSTATE: HY000 (ER_WRONG_VALUE)

Message: Incorrect %s value: '%s'

• Error: 1526 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE)

Message: Table has no partition for value %s

• Error: 1527 SQLSTATE: HY000 (ER_FILEGROUP_OPTION_ONLY_ONCE)

Message: It is not allowed to specify %s more than once

• Error: 1528 SQLSTATE: HY000 (ER_CREATE_FILEGROUP_FAILED)

Message: Failed to create %s

• Error: 1529 SQLSTATE: HY000 (ER_DROP_FILEGROUP_FAILED)

Message: Failed to drop %s

• Error: 1530 SQLSTATE: HY000 (ER_TABLESPACE_AUTO_EXTEND_ERROR)

Message: The handler doesn't support autoextend of tablespaces

• Error: 1531 SQLSTATE: HY000 (ER_WRONG_SIZE_NUMBER)

Message: A size parameter was incorrectly specified, either number or on the form 10M

• Error: 1532 SQLSTATE: HY000 (ER_SIZE_OVERFLOW_ERROR)

Message: The size number was correct but we don't allow the digit part to be more than 2 billion

• Error: 1533 SQLSTATE: HY000 (ER_ALTER_FILEGROUP_FAILED)

Message: Failed to alter: %s

• Error: 1534 SQLSTATE: HY000 (ER_BINLOG_ROW_LOGGING_FAILED)

Message: Writing one row to the row-based binary log failed

• Error: 1535 SQLSTATE: HY000 (ER_BINLOG_ROW_WRONG_TABLE_DEF)

Message: Table definition on master and slave does not match: %s

• Error: 1536 SQLSTATE: HY000 (ER_BINLOG_ROW_RBR_TO_SBR)

Message: Slave running with --log-slave-updates must use row-based binary logging to be able to
replicate row-based binary log events

• Error: 1537 SQLSTATE: HY000 (ER_EVENT_ALREADY_EXISTS)

Message: Event '%s' already exists

• Error: 1538 SQLSTATE: HY000 (ER_EVENT_STORE_FAILED)

Message: Failed to store event %s. Error code %d from storage engine.

• Error: 1539 SQLSTATE: HY000 (ER_EVENT_DOES_NOT_EXIST)

Message: Unknown event '%s'

• Error: 1540 SQLSTATE: HY000 (ER_EVENT_CANT_ALTER)

Message: Failed to alter event '%s'

Server Error Codes and Messages

2816

• Error: 1541 SQLSTATE: HY000 (ER_EVENT_DROP_FAILED)

Message: Failed to drop %s

• Error: 1542 SQLSTATE: HY000 (ER_EVENT_INTERVAL_NOT_POSITIVE_OR_TOO_BIG)

Message: INTERVAL is either not positive or too big

• Error: 1543 SQLSTATE: HY000 (ER_EVENT_ENDS_BEFORE_STARTS)

Message: ENDS is either invalid or before STARTS

• Error: 1544 SQLSTATE: HY000 (ER_EVENT_EXEC_TIME_IN_THE_PAST)

Message: Event execution time is in the past. Event has been disabled

• Error: 1545 SQLSTATE: HY000 (ER_EVENT_OPEN_TABLE_FAILED)

Message: Failed to open mysql.event

• Error: 1546 SQLSTATE: HY000 (ER_EVENT_NEITHER_M_EXPR_NOR_M_AT)

Message: No datetime expression provided

• Error: 1547 SQLSTATE: HY000 (ER_OBSOLETE_COL_COUNT_DOESNT_MATCH_CORRUPTED)

Message: Column count of mysql.%s is wrong. Expected %d, found %d. The table is probably
corrupted

• Error: 1548 SQLSTATE: HY000 (ER_OBSOLETE_CANNOT_LOAD_FROM_TABLE)

Message: Cannot load from mysql.%s. The table is probably corrupted

• Error: 1549 SQLSTATE: HY000 (ER_EVENT_CANNOT_DELETE)

Message: Failed to delete the event from mysql.event

• Error: 1550 SQLSTATE: HY000 (ER_EVENT_COMPILE_ERROR)

Message: Error during compilation of event's body

• Error: 1551 SQLSTATE: HY000 (ER_EVENT_SAME_NAME)

Message: Same old and new event name

• Error: 1552 SQLSTATE: HY000 (ER_EVENT_DATA_TOO_LONG)

Message: Data for column '%s' too long

• Error: 1553 SQLSTATE: HY000 (ER_DROP_INDEX_FK)

Message: Cannot drop index '%s': needed in a foreign key constraint

• Error: 1554 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX_WITH_VER)

Message: The syntax '%s' is deprecated and will be removed in MySQL %s. Please use %s instead

• Error: 1555 SQLSTATE: HY000 (ER_CANT_WRITE_LOCK_LOG_TABLE)

Message: You can't write-lock a log table. Only read access is possible

• Error: 1556 SQLSTATE: HY000 (ER_CANT_LOCK_LOG_TABLE)

Message: You can't use locks with log tables.

Server Error Codes and Messages

2817

• Error: 1557 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY_OLD_UNUSED)

Message: Upholding foreign key constraints for table '%s', entry '%s', key %d would lead to a
duplicate entry

• Error: 1558 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE)

Message: Column count of mysql.%s is wrong. Expected %d, found %d. Created with MySQL %d,
now running %d. Please use mysql_upgrade to fix this error.

• Error: 1559 SQLSTATE: HY000 (ER_TEMP_TABLE_PREVENTS_SWITCH_OUT_OF_RBR)

Message: Cannot switch out of the row-based binary log format when the session has open
temporary tables

• Error: 1560 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_FORMAT)

Message: Cannot change the binary logging format inside a stored function or trigger

• Error: 1561 SQLSTATE: HY000 (ER_NDB_CANT_SWITCH_BINLOG_FORMAT)

Message: The NDB cluster engine does not support changing the binlog format on the fly yet

• Error: 1562 SQLSTATE: HY000 (ER_PARTITION_NO_TEMPORARY)

Message: Cannot create temporary table with partitions

• Error: 1563 SQLSTATE: HY000 (ER_PARTITION_CONST_DOMAIN_ERROR)

Message: Partition constant is out of partition function domain

• Error: 1564 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_IS_NOT_ALLOWED)

Message: This partition function is not allowed

• Error: 1565 SQLSTATE: HY000 (ER_DDL_LOG_ERROR)

Message: Error in DDL log

• Error: 1566 SQLSTATE: HY000 (ER_NULL_IN_VALUES_LESS_THAN)

Message: Not allowed to use NULL value in VALUES LESS THAN

• Error: 1567 SQLSTATE: HY000 (ER_WRONG_PARTITION_NAME)

Message: Incorrect partition name

• Error: 1568 SQLSTATE: 25001 (ER_CANT_CHANGE_TX_CHARACTERISTICS)

Message: Transaction characteristics can't be changed while a transaction is in progress

• Error: 1569 SQLSTATE: HY000 (ER_DUP_ENTRY_AUTOINCREMENT_CASE)

Message: ALTER TABLE causes auto_increment resequencing, resulting in duplicate entry '%s' for
key '%s'

• Error: 1570 SQLSTATE: HY000 (ER_EVENT_MODIFY_QUEUE_ERROR)

Message: Internal scheduler error %d

• Error: 1571 SQLSTATE: HY000 (ER_EVENT_SET_VAR_ERROR)

Message: Error during starting/stopping of the scheduler. Error code %u

Server Error Codes and Messages

2818

• Error: 1572 SQLSTATE: HY000 (ER_PARTITION_MERGE_ERROR)

Message: Engine cannot be used in partitioned tables

• Error: 1573 SQLSTATE: HY000 (ER_CANT_ACTIVATE_LOG)

Message: Cannot activate '%s' log

• Error: 1574 SQLSTATE: HY000 (ER_RBR_NOT_AVAILABLE)

Message: The server was not built with row-based replication

• Error: 1575 SQLSTATE: HY000 (ER_BASE64_DECODE_ERROR)

Message: Decoding of base64 string failed

• Error: 1576 SQLSTATE: HY000 (ER_EVENT_RECURSION_FORBIDDEN)

Message: Recursion of EVENT DDL statements is forbidden when body is present

• Error: 1577 SQLSTATE: HY000 (ER_EVENTS_DB_ERROR)

Message: Cannot proceed because system tables used by Event Scheduler were found damaged at
server start

• Error: 1578 SQLSTATE: HY000 (ER_ONLY_INTEGERS_ALLOWED)

Message: Only integers allowed as number here

• Error: 1579 SQLSTATE: HY000 (ER_UNSUPORTED_LOG_ENGINE)

Message: This storage engine cannot be used for log tables"

• Error: 1580 SQLSTATE: HY000 (ER_BAD_LOG_STATEMENT)

Message: You cannot '%s' a log table if logging is enabled

• Error: 1581 SQLSTATE: HY000 (ER_CANT_RENAME_LOG_TABLE)

Message: Cannot rename '%s'. When logging enabled, rename to/from log table must rename two
tables: the log table to an archive table and another table back to '%s'

• Error: 1582 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT)

Message: Incorrect parameter count in the call to native function '%s'

• Error: 1583 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_NATIVE_FCT)

Message: Incorrect parameters in the call to native function '%s'

• Error: 1584 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_STORED_FCT)

Message: Incorrect parameters in the call to stored function %s

• Error: 1585 SQLSTATE: HY000 (ER_NATIVE_FCT_NAME_COLLISION)

Message: This function '%s' has the same name as a native function

• Error: 1586 SQLSTATE: 23000 (ER_DUP_ENTRY_WITH_KEY_NAME)

Message: Duplicate entry '%s' for key '%s'

The format string for this error is also used with ER_DUP_ENTRY.

• Error: 1587 SQLSTATE: HY000 (ER_BINLOG_PURGE_EMFILE)

Server Error Codes and Messages

2819

Message: Too many files opened, please execute the command again

• Error: 1588 SQLSTATE: HY000 (ER_EVENT_CANNOT_CREATE_IN_THE_PAST)

Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The
event was dropped immediately after creation.

• Error: 1589 SQLSTATE: HY000 (ER_EVENT_CANNOT_ALTER_IN_THE_PAST)

Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The
event was not changed. Specify a time in the future.

• Error: 1590 SQLSTATE: HY000 (ER_SLAVE_INCIDENT)

Message: The incident %s occured on the master. Message: %s

• Error: 1591 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT)

Message: Table has no partition for some existing values

• Error: 1592 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_STATEMENT)

Message: Unsafe statement written to the binary log using statement format since
BINLOG_FORMAT = STATEMENT. %s

• Error: 1593 SQLSTATE: HY000 (ER_SLAVE_FATAL_ERROR)

Message: Fatal error: %s

• Error: 1594 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_READ_FAILURE)

Message: Relay log read failure: %s

• Error: 1595 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_WRITE_FAILURE)

Message: Relay log write failure: %s

• Error: 1596 SQLSTATE: HY000 (ER_SLAVE_CREATE_EVENT_FAILURE)

Message: Failed to create %s

• Error: 1597 SQLSTATE: HY000 (ER_SLAVE_MASTER_COM_FAILURE)

Message: Master command %s failed: %s

• Error: 1598 SQLSTATE: HY000 (ER_BINLOG_LOGGING_IMPOSSIBLE)

Message: Binary logging not possible. Message: %s

• Error: 1599 SQLSTATE: HY000 (ER_VIEW_NO_CREATION_CTX)

Message: View `%s`.`%s` has no creation context

• Error: 1600 SQLSTATE: HY000 (ER_VIEW_INVALID_CREATION_CTX)

Message: Creation context of view `%s`.`%s' is invalid

• Error: 1601 SQLSTATE: HY000 (ER_SR_INVALID_CREATION_CTX)

Message: Creation context of stored routine `%s`.`%s` is invalid

• Error: 1602 SQLSTATE: HY000 (ER_TRG_CORRUPTED_FILE)

Message: Corrupted TRG file for table `%s`.`%s`

Server Error Codes and Messages

2820

• Error: 1603 SQLSTATE: HY000 (ER_TRG_NO_CREATION_CTX)

Message: Triggers for table `%s`.`%s` have no creation context

• Error: 1604 SQLSTATE: HY000 (ER_TRG_INVALID_CREATION_CTX)

Message: Trigger creation context of table `%s`.`%s` is invalid

• Error: 1605 SQLSTATE: HY000 (ER_EVENT_INVALID_CREATION_CTX)

Message: Creation context of event `%s`.`%s` is invalid

• Error: 1606 SQLSTATE: HY000 (ER_TRG_CANT_OPEN_TABLE)

Message: Cannot open table for trigger `%s`.`%s`

• Error: 1607 SQLSTATE: HY000 (ER_CANT_CREATE_SROUTINE)

Message: Cannot create stored routine `%s`. Check warnings

• Error: 1608 SQLSTATE: HY000 (ER_NEVER_USED)

Message: Ambiguous slave modes combination. %s

• Error: 1609 SQLSTATE: HY000
(ER_NO_FORMAT_DESCRIPTION_EVENT_BEFORE_BINLOG_STATEMENT)

Message: The BINLOG statement of type `%s` was not preceded by a format description BINLOG
statement.

• Error: 1610 SQLSTATE: HY000 (ER_SLAVE_CORRUPT_EVENT)

Message: Corrupted replication event was detected

• Error: 1611 SQLSTATE: HY000 (ER_LOAD_DATA_INVALID_COLUMN)

Message: Invalid column reference (%s) in LOAD DATA

• Error: 1612 SQLSTATE: HY000 (ER_LOG_PURGE_NO_FILE)

Message: Being purged log %s was not found

• Error: 1613 SQLSTATE: XA106 (ER_XA_RBTIMEOUT)

Message: XA_RBTIMEOUT: Transaction branch was rolled back: took too long

• Error: 1614 SQLSTATE: XA102 (ER_XA_RBDEADLOCK)

Message: XA_RBDEADLOCK: Transaction branch was rolled back: deadlock was detected

• Error: 1615 SQLSTATE: HY000 (ER_NEED_REPREPARE)

Message: Prepared statement needs to be re-prepared

• Error: 1616 SQLSTATE: HY000 (ER_DELAYED_NOT_SUPPORTED)

Message: DELAYED option not supported for table '%s'

• Error: 1617 SQLSTATE: HY000 (WARN_NO_MASTER_INFO)

Message: The master info structure does not exist

• Error: 1618 SQLSTATE: HY000 (WARN_OPTION_IGNORED)

Message: <%s> option ignored

Server Error Codes and Messages

2821

• Error: 1619 SQLSTATE: HY000 (WARN_PLUGIN_DELETE_BUILTIN)

Message: Built-in plugins cannot be deleted

WARN_PLUGIN_DELETE_BUILTIN was removed after 5.7.4.

• Error: 1619 SQLSTATE: HY000 (ER_PLUGIN_DELETE_BUILTIN)

Message: Built-in plugins cannot be deleted

ER_PLUGIN_DELETE_BUILTIN was introduced in 5.7.5.

• Error: 1620 SQLSTATE: HY000 (WARN_PLUGIN_BUSY)

Message: Plugin is busy and will be uninstalled on shutdown

• Error: 1621 SQLSTATE: HY000 (ER_VARIABLE_IS_READONLY)

Message: %s variable '%s' is read-only. Use SET %s to assign the value

• Error: 1622 SQLSTATE: HY000 (ER_WARN_ENGINE_TRANSACTION_ROLLBACK)

Message: Storage engine %s does not support rollback for this statement. Transaction rolled back
and must be restarted

• Error: 1623 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_FAILURE)

Message: Unexpected master's heartbeat data: %s

• Error: 1624 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE)

Message: The requested value for the heartbeat period is either negative or exceeds the maximum
allowed (%s seconds).

• Error: 1625 SQLSTATE: HY000 (ER_NDB_REPLICATION_SCHEMA_ERROR)

Message: Bad schema for mysql.ndb_replication table. Message: %s

• Error: 1626 SQLSTATE: HY000 (ER_CONFLICT_FN_PARSE_ERROR)

Message: Error in parsing conflict function. Message: %s

• Error: 1627 SQLSTATE: HY000 (ER_EXCEPTIONS_WRITE_ERROR)

Message: Write to exceptions table failed. Message: %s"

• Error: 1628 SQLSTATE: HY000 (ER_TOO_LONG_TABLE_COMMENT)

Message: Comment for table '%s' is too long (max = %lu)

• Error: 1629 SQLSTATE: HY000 (ER_TOO_LONG_FIELD_COMMENT)

Message: Comment for field '%s' is too long (max = %lu)

• Error: 1630 SQLSTATE: 42000 (ER_FUNC_INEXISTENT_NAME_COLLISION)

Message: FUNCTION %s does not exist. Check the 'Function Name Parsing and Resolution' section
in the Reference Manual

• Error: 1631 SQLSTATE: HY000 (ER_DATABASE_NAME)

Message: Database

• Error: 1632 SQLSTATE: HY000 (ER_TABLE_NAME)

Server Error Codes and Messages

2822

Message: Table

• Error: 1633 SQLSTATE: HY000 (ER_PARTITION_NAME)

Message: Partition

• Error: 1634 SQLSTATE: HY000 (ER_SUBPARTITION_NAME)

Message: Subpartition

• Error: 1635 SQLSTATE: HY000 (ER_TEMPORARY_NAME)

Message: Temporary

• Error: 1636 SQLSTATE: HY000 (ER_RENAMED_NAME)

Message: Renamed

• Error: 1637 SQLSTATE: HY000 (ER_TOO_MANY_CONCURRENT_TRXS)

Message: Too many active concurrent transactions

• Error: 1638 SQLSTATE: HY000 (WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED)

Message: Non-ASCII separator arguments are not fully supported

• Error: 1639 SQLSTATE: HY000 (ER_DEBUG_SYNC_TIMEOUT)

Message: debug sync point wait timed out

• Error: 1640 SQLSTATE: HY000 (ER_DEBUG_SYNC_HIT_LIMIT)

Message: debug sync point hit limit reached

• Error: 1641 SQLSTATE: 42000 (ER_DUP_SIGNAL_SET)

Message: Duplicate condition information item '%s'

• Error: 1642 SQLSTATE: 01000 (ER_SIGNAL_WARN)

Message: Unhandled user-defined warning condition

• Error: 1643 SQLSTATE: 02000 (ER_SIGNAL_NOT_FOUND)

Message: Unhandled user-defined not found condition

• Error: 1644 SQLSTATE: HY000 (ER_SIGNAL_EXCEPTION)

Message: Unhandled user-defined exception condition

• Error: 1645 SQLSTATE: 0K000 (ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER)

Message: RESIGNAL when handler not active

• Error: 1646 SQLSTATE: HY000 (ER_SIGNAL_BAD_CONDITION_TYPE)

Message: SIGNAL/RESIGNAL can only use a CONDITION defined with SQLSTATE

• Error: 1647 SQLSTATE: HY000 (WARN_COND_ITEM_TRUNCATED)

Message: Data truncated for condition item '%s'

• Error: 1648 SQLSTATE: HY000 (ER_COND_ITEM_TOO_LONG)

Message: Data too long for condition item '%s'

Server Error Codes and Messages

2823

• Error: 1649 SQLSTATE: HY000 (ER_UNKNOWN_LOCALE)

Message: Unknown locale: '%s'

• Error: 1650 SQLSTATE: HY000 (ER_SLAVE_IGNORE_SERVER_IDS)

Message: The requested server id %d clashes with the slave startup option --replicate-same-server-
id

• Error: 1651 SQLSTATE: HY000 (ER_QUERY_CACHE_DISABLED)

Message: Query cache is disabled; restart the server with query_cache_type=1 to enable it

• Error: 1652 SQLSTATE: HY000 (ER_SAME_NAME_PARTITION_FIELD)

Message: Duplicate partition field name '%s'

• Error: 1653 SQLSTATE: HY000 (ER_PARTITION_COLUMN_LIST_ERROR)

Message: Inconsistency in usage of column lists for partitioning

• Error: 1654 SQLSTATE: HY000 (ER_WRONG_TYPE_COLUMN_VALUE_ERROR)

Message: Partition column values of incorrect type

• Error: 1655 SQLSTATE: HY000 (ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR)

Message: Too many fields in '%s'

• Error: 1656 SQLSTATE: HY000 (ER_MAXVALUE_IN_VALUES_IN)

Message: Cannot use MAXVALUE as value in VALUES IN

• Error: 1657 SQLSTATE: HY000 (ER_TOO_MANY_VALUES_ERROR)

Message: Cannot have more than one value for this type of %s partitioning

• Error: 1658 SQLSTATE: HY000 (ER_ROW_SINGLE_PARTITION_FIELD_ERROR)

Message: Row expressions in VALUES IN only allowed for multi-field column partitioning

• Error: 1659 SQLSTATE: HY000 (ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD)

Message: Field '%s' is of a not allowed type for this type of partitioning

• Error: 1660 SQLSTATE: HY000 (ER_PARTITION_FIELDS_TOO_LONG)

Message: The total length of the partitioning fields is too large

• Error: 1661 SQLSTATE: HY000 (ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since both row-incapable
engines and statement-incapable engines are involved.

• Error: 1662 SQLSTATE: HY000 (ER_BINLOG_ROW_MODE_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT =
ROW and at least one table uses a storage engine limited to statement-based logging.

• Error: 1663 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since statement is unsafe,
storage engine is limited to statement-based logging, and BINLOG_FORMAT = MIXED. %s

• Error: 1664 SQLSTATE: HY000 (ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE)

Server Error Codes and Messages

2824

Message: Cannot execute statement: impossible to write to binary log since statement is in row
format and at least one table uses a storage engine limited to statement-based logging.

• Error: 1665 SQLSTATE: HY000 (ER_BINLOG_STMT_MODE_AND_ROW_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT =
STATEMENT and at least one table uses a storage engine limited to row-based logging.%s

• Error: 1666 SQLSTATE: HY000 (ER_BINLOG_ROW_INJECTION_AND_STMT_MODE)

Message: Cannot execute statement: impossible to write to binary log since statement is in row
format and BINLOG_FORMAT = STATEMENT.

• Error: 1667 SQLSTATE: HY000
(ER_BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since more than one engine is
involved and at least one engine is self-logging.

• Error: 1668 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_LIMIT)

Message: The statement is unsafe because it uses a LIMIT clause. This is unsafe because the set of
rows included cannot be predicted.

• Error: 1669 SQLSTATE: HY000 (ER_UNUSED4)

Message: The statement is unsafe because it uses INSERT DELAYED. This is unsafe because the
times when rows are inserted cannot be predicted.

• Error: 1670 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_TABLE)

Message: The statement is unsafe because it uses the general log, slow query log, or
performance_schema table(s). This is unsafe because system tables may differ on slaves.

• Error: 1671 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AUTOINC_COLUMNS)

Message: Statement is unsafe because it invokes a trigger or a stored function that inserts into an
AUTO_INCREMENT column. Inserted values cannot be logged correctly.

• Error: 1672 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_UDF)

Message: Statement is unsafe because it uses a UDF which may not return the same value on the
slave.

• Error: 1673 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_VARIABLE)

Message: Statement is unsafe because it uses a system variable that may have a different value on
the slave.

• Error: 1674 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_FUNCTION)

Message: Statement is unsafe because it uses a system function that may return a different value on
the slave.

• Error: 1675 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS)

Message: Statement is unsafe because it accesses a non-transactional table after accessing a
transactional table within the same transaction.

• Error: 1676 SQLSTATE: HY000 (ER_MESSAGE_AND_STATEMENT)

Message: %s Statement: %s

Server Error Codes and Messages

2825

• Error: 1677 SQLSTATE: HY000 (ER_SLAVE_CONVERSION_FAILED)

Message: Column %d of table '%s.%s' cannot be converted from type '%s' to type '%s'

• Error: 1678 SQLSTATE: HY000 (ER_SLAVE_CANT_CREATE_CONVERSION)

Message: Can't create conversion table for table '%s.%s'

• Error: 1679 SQLSTATE: HY000
(ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_FORMAT)

Message: Cannot modify @@session.binlog_format inside a transaction

• Error: 1680 SQLSTATE: HY000 (ER_PATH_LENGTH)

Message: The path specified for %s is too long.

• Error: 1681 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX_NO_REPLACEMENT)

Message: '%s' is deprecated and will be removed in a future release.

• Error: 1682 SQLSTATE: HY000 (ER_WRONG_NATIVE_TABLE_STRUCTURE)

Message: Native table '%s'.'%s' has the wrong structure

• Error: 1683 SQLSTATE: HY000 (ER_WRONG_PERFSCHEMA_USAGE)

Message: Invalid performance_schema usage.

• Error: 1684 SQLSTATE: HY000 (ER_WARN_I_S_SKIPPED_TABLE)

Message: Table '%s'.'%s' was skipped since its definition is being modified by concurrent DDL
statement

• Error: 1685 SQLSTATE: HY000
(ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_DIRECT)

Message: Cannot modify @@session.binlog_direct_non_transactional_updates inside a transaction

• Error: 1686 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_DIRECT)

Message: Cannot change the binlog direct flag inside a stored function or trigger

• Error: 1687 SQLSTATE: 42000 (ER_SPATIAL_MUST_HAVE_GEOM_COL)

Message: A SPATIAL index may only contain a geometrical type column

• Error: 1688 SQLSTATE: HY000 (ER_TOO_LONG_INDEX_COMMENT)

Message: Comment for index '%s' is too long (max = %lu)

• Error: 1689 SQLSTATE: HY000 (ER_LOCK_ABORTED)

Message: Wait on a lock was aborted due to a pending exclusive lock

• Error: 1690 SQLSTATE: 22003 (ER_DATA_OUT_OF_RANGE)

Message: %s value is out of range in '%s'

• Error: 1691 SQLSTATE: HY000 (ER_WRONG_SPVAR_TYPE_IN_LIMIT)

Message: A variable of a non-integer based type in LIMIT clause

• Error: 1692 SQLSTATE: HY000
(ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE)

Server Error Codes and Messages

2826

Message: Mixing self-logging and non-self-logging engines in a statement is unsafe.

• Error: 1693 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_MIXED_STATEMENT)

Message: Statement accesses nontransactional table as well as transactional or temporary table,
and writes to any of them.

• Error: 1694 SQLSTATE: HY000 (ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_SQL_LOG_BIN)

Message: Cannot modify @@session.sql_log_bin inside a transaction

• Error: 1695 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_SQL_LOG_BIN)

Message: Cannot change the sql_log_bin inside a stored function or trigger

• Error: 1696 SQLSTATE: HY000 (ER_FAILED_READ_FROM_PAR_FILE)

Message: Failed to read from the .par file

• Error: 1697 SQLSTATE: HY000 (ER_VALUES_IS_NOT_INT_TYPE_ERROR)

Message: VALUES value for partition '%s' must have type INT

• Error: 1698 SQLSTATE: 28000 (ER_ACCESS_DENIED_NO_PASSWORD_ERROR)

Message: Access denied for user '%s'@'%s'

• Error: 1699 SQLSTATE: HY000 (ER_SET_PASSWORD_AUTH_PLUGIN)

Message: SET PASSWORD has no significance for users authenticating via plugins

• Error: 1700 SQLSTATE: HY000 (ER_GRANT_PLUGIN_USER_EXISTS)

Message: GRANT with IDENTIFIED WITH is illegal because the user %-.*s already exists

• Error: 1701 SQLSTATE: 42000 (ER_TRUNCATE_ILLEGAL_FK)

Message: Cannot truncate a table referenced in a foreign key constraint (%s)

• Error: 1702 SQLSTATE: HY000 (ER_PLUGIN_IS_PERMANENT)

Message: Plugin '%s' is force_plus_permanent and can not be unloaded

• Error: 1703 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MIN)

Message: The requested value for the heartbeat period is less than 1 millisecond. The value is reset
to 0, meaning that heartbeating will effectively be disabled.

• Error: 1704 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MAX)

Message: The requested value for the heartbeat period exceeds the value of `slave_net_timeout'
seconds. A sensible value for the period should be less than the timeout.

• Error: 1705 SQLSTATE: HY000 (ER_STMT_CACHE_FULL)

Message: Multi-row statements required more than 'max_binlog_stmt_cache_size' bytes of storage;
increase this mysqld variable and try again

• Error: 1706 SQLSTATE: HY000 (ER_MULTI_UPDATE_KEY_CONFLICT)

Message: Primary key/partition key update is not allowed since the table is updated both as '%s' and
'%s'.

• Error: 1707 SQLSTATE: HY000 (ER_TABLE_NEEDS_REBUILD)

Server Error Codes and Messages

2827

Message: Table rebuild required. Please do "ALTER TABLE `%s` FORCE" or dump/reload to fix it!

• Error: 1708 SQLSTATE: HY000 (WARN_OPTION_BELOW_LIMIT)

Message: The value of '%s' should be no less than the value of '%s'

• Error: 1709 SQLSTATE: HY000 (ER_INDEX_COLUMN_TOO_LONG)

Message: Index column size too large. The maximum column size is %lu bytes.

• Error: 1710 SQLSTATE: HY000 (ER_ERROR_IN_TRIGGER_BODY)

Message: Trigger '%s' has an error in its body: '%s'

• Error: 1711 SQLSTATE: HY000 (ER_ERROR_IN_UNKNOWN_TRIGGER_BODY)

Message: Unknown trigger has an error in its body: '%s'

• Error: 1712 SQLSTATE: HY000 (ER_INDEX_CORRUPT)

Message: Index %s is corrupted

• Error: 1713 SQLSTATE: HY000 (ER_UNDO_RECORD_TOO_BIG)

Message: Undo log record is too big.

• Error: 1714 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT)

Message: INSERT IGNORE... SELECT is unsafe because the order in which rows are retrieved by
the SELECT determines which (if any) rows are ignored. This order cannot be predicted and may
differ on master and the slave.

• Error: 1715 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE)

Message: INSERT... SELECT... ON DUPLICATE KEY UPDATE is unsafe because the order in
which rows are retrieved by the SELECT determines which (if any) rows are updated. This order
cannot be predicted and may differ on master and the slave.

• Error: 1716 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_REPLACE_SELECT)

Message: REPLACE... SELECT is unsafe because the order in which rows are retrieved by the
SELECT determines which (if any) rows are replaced. This order cannot be predicted and may differ
on master and the slave.

• Error: 1717 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT)

Message: CREATE... IGNORE SELECT is unsafe because the order in which rows are retrieved by
the SELECT determines which (if any) rows are ignored. This order cannot be predicted and may
differ on master and the slave.

• Error: 1718 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT)

Message: CREATE... REPLACE SELECT is unsafe because the order in which rows are retrieved
by the SELECT determines which (if any) rows are replaced. This order cannot be predicted and
may differ on master and the slave.

• Error: 1719 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_UPDATE_IGNORE)

Message: UPDATE IGNORE is unsafe because the order in which rows are updated determines
which (if any) rows are ignored. This order cannot be predicted and may differ on master and the
slave.

• Error: 1720 SQLSTATE: HY000 (ER_PLUGIN_NO_UNINSTALL)

Server Error Codes and Messages

2828

Message: Plugin '%s' is marked as not dynamically uninstallable. You have to stop the server to
uninstall it.

• Error: 1721 SQLSTATE: HY000 (ER_PLUGIN_NO_INSTALL)

Message: Plugin '%s' is marked as not dynamically installable. You have to stop the server to install
it.

• Error: 1722 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT)

Message: Statements writing to a table with an auto-increment column after selecting from another
table are unsafe because the order in which rows are retrieved determines what (if any) rows will be
written. This order cannot be predicted and may differ on master and the slave.

• Error: 1723 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC)

Message: CREATE TABLE... SELECT... on a table with an auto-increment column is unsafe
because the order in which rows are retrieved by the SELECT determines which (if any) rows are
inserted. This order cannot be predicted and may differ on master and the slave.

• Error: 1724 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_TWO_KEYS)

Message: INSERT... ON DUPLICATE KEY UPDATE on a table with more than one UNIQUE KEY is
unsafe

• Error: 1725 SQLSTATE: HY000 (ER_TABLE_IN_FK_CHECK)

Message: Table is being used in foreign key check.

• Error: 1726 SQLSTATE: HY000 (ER_UNSUPPORTED_ENGINE)

Message: Storage engine '%s' does not support system tables. [%s.%s]

• Error: 1727 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST)

Message: INSERT into autoincrement field which is not the first part in the composed primary key is
unsafe.

• Error: 1728 SQLSTATE: HY000 (ER_CANNOT_LOAD_FROM_TABLE_V2)

Message: Cannot load from %s.%s. The table is probably corrupted

• Error: 1729 SQLSTATE: HY000 (ER_MASTER_DELAY_VALUE_OUT_OF_RANGE)

Message: The requested value %s for the master delay exceeds the maximum %u

• Error: 1730 SQLSTATE: HY000
(ER_ONLY_FD_AND_RBR_EVENTS_ALLOWED_IN_BINLOG_STATEMENT)

Message: Only Format_description_log_event and row events are allowed in BINLOG statements
(but %s was provided)

• Error: 1731 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_DIFFERENT_OPTION)

Message: Non matching attribute '%s' between partition and table

• Error: 1732 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_PART_TABLE)

Message: Table to exchange with partition is partitioned: '%s'

• Error: 1733 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_TEMP_TABLE)

Message: Table to exchange with partition is temporary: '%s'

Server Error Codes and Messages

2829

• Error: 1734 SQLSTATE: HY000 (ER_PARTITION_INSTEAD_OF_SUBPARTITION)

Message: Subpartitioned table, use subpartition instead of partition

• Error: 1735 SQLSTATE: HY000 (ER_UNKNOWN_PARTITION)

Message: Unknown partition '%s' in table '%s'

• Error: 1736 SQLSTATE: HY000 (ER_TABLES_DIFFERENT_METADATA)

Message: Tables have different definitions

• Error: 1737 SQLSTATE: HY000 (ER_ROW_DOES_NOT_MATCH_PARTITION)

Message: Found a row that does not match the partition

• Error: 1738 SQLSTATE: HY000 (ER_BINLOG_CACHE_SIZE_GREATER_THAN_MAX)

Message: Option binlog_cache_size (%lu) is greater than max_binlog_cache_size (%lu); setting
binlog_cache_size equal to max_binlog_cache_size.

• Error: 1739 SQLSTATE: HY000 (ER_WARN_INDEX_NOT_APPLICABLE)

Message: Cannot use %s access on index '%s' due to type or collation conversion on field '%s'

• Error: 1740 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_FOREIGN_KEY)

Message: Table to exchange with partition has foreign key references: '%s'

• Error: 1741 SQLSTATE: HY000 (ER_NO_SUCH_KEY_VALUE)

Message: Key value '%s' was not found in table '%s.%s'

• Error: 1742 SQLSTATE: HY000 (ER_RPL_INFO_DATA_TOO_LONG)

Message: Data for column '%s' too long

• Error: 1743 SQLSTATE: HY000 (ER_NETWORK_READ_EVENT_CHECKSUM_FAILURE)

Message: Replication event checksum verification failed while reading from network.

• Error: 1744 SQLSTATE: HY000 (ER_BINLOG_READ_EVENT_CHECKSUM_FAILURE)

Message: Replication event checksum verification failed while reading from a log file.

• Error: 1745 SQLSTATE: HY000 (ER_BINLOG_STMT_CACHE_SIZE_GREATER_THAN_MAX)

Message: Option binlog_stmt_cache_size (%lu) is greater than max_binlog_stmt_cache_size (%lu);
setting binlog_stmt_cache_size equal to max_binlog_stmt_cache_size.

• Error: 1746 SQLSTATE: HY000 (ER_CANT_UPDATE_TABLE_IN_CREATE_TABLE_SELECT)

Message: Can't update table '%s' while '%s' is being created.

• Error: 1747 SQLSTATE: HY000 (ER_PARTITION_CLAUSE_ON_NONPARTITIONED)

Message: PARTITION () clause on non partitioned table

• Error: 1748 SQLSTATE: HY000 (ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET)

Message: Found a row not matching the given partition set

• Error: 1749 SQLSTATE: HY000 (ER_NO_SUCH_PARTITION__UNUSED)

Message: partition '%s' doesn't exist

Server Error Codes and Messages

2830

• Error: 1750 SQLSTATE: HY000 (ER_CHANGE_RPL_INFO_REPOSITORY_FAILURE)

Message: Failure while changing the type of replication repository: %s.

• Error: 1751 SQLSTATE: HY000
(ER_WARNING_NOT_COMPLETE_ROLLBACK_WITH_CREATED_TEMP_TABLE)

Message: The creation of some temporary tables could not be rolled back.

• Error: 1752 SQLSTATE: HY000
(ER_WARNING_NOT_COMPLETE_ROLLBACK_WITH_DROPPED_TEMP_TABLE)

Message: Some temporary tables were dropped, but these operations could not be rolled back.

• Error: 1753 SQLSTATE: HY000 (ER_MTS_FEATURE_IS_NOT_SUPPORTED)

Message: %s is not supported in multi-threaded slave mode. %s

• Error: 1754 SQLSTATE: HY000 (ER_MTS_UPDATED_DBS_GREATER_MAX)

Message: The number of modified databases exceeds the maximum %d; the database names will
not be included in the replication event metadata.

• Error: 1755 SQLSTATE: HY000 (ER_MTS_CANT_PARALLEL)

Message: Cannot execute the current event group in the parallel mode. Encountered event %s,
relay-log name %s, position %s which prevents execution of this event group in parallel mode.
Reason: %s.

• Error: 1756 SQLSTATE: HY000 (ER_MTS_INCONSISTENT_DATA)

Message: %s

• Error: 1757 SQLSTATE: HY000 (ER_FULLTEXT_NOT_SUPPORTED_WITH_PARTITIONING)

Message: FULLTEXT index is not supported for partitioned tables.

• Error: 1758 SQLSTATE: 35000 (ER_DA_INVALID_CONDITION_NUMBER)

Message: Invalid condition number

• Error: 1759 SQLSTATE: HY000 (ER_INSECURE_PLAIN_TEXT)

Message: Sending passwords in plain text without SSL/TLS is extremely insecure.

• Error: 1760 SQLSTATE: HY000 (ER_INSECURE_CHANGE_MASTER)

Message: Storing MySQL user name or password information in the master info repository is not
secure and is therefore not recommended. Please consider using the USER and PASSWORD
connection options for START SLAVE; see the 'START SLAVE Syntax' in the MySQL Manual for
more information.

• Error: 1761 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO)

Message: Foreign key constraint for table '%s', record '%s' would lead to a duplicate entry in table
'%s', key '%s'

• Error: 1762 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO)

Message: Foreign key constraint for table '%s', record '%s' would lead to a duplicate entry in a child
table

• Error: 1763 SQLSTATE: HY000 (ER_SQLTHREAD_WITH_SECURE_SLAVE)

Server Error Codes and Messages

2831

Message: Setting authentication options is not possible when only the Slave SQL Thread is being
started.

• Error: 1764 SQLSTATE: HY000 (ER_TABLE_HAS_NO_FT)

Message: The table does not have FULLTEXT index to support this query

• Error: 1765 SQLSTATE: HY000 (ER_VARIABLE_NOT_SETTABLE_IN_SF_OR_TRIGGER)

Message: The system variable %s cannot be set in stored functions or triggers.

• Error: 1766 SQLSTATE: HY000 (ER_VARIABLE_NOT_SETTABLE_IN_TRANSACTION)

Message: The system variable %s cannot be set when there is an ongoing transaction.

• Error: 1767 SQLSTATE: HY000 (ER_GTID_NEXT_IS_NOT_IN_GTID_NEXT_LIST)

Message: The system variable @@SESSION.GTID_NEXT has the value %s, which is not listed in
@@SESSION.GTID_NEXT_LIST.

• Error: 1768 SQLSTATE: HY000
(ER_CANT_CHANGE_GTID_NEXT_IN_TRANSACTION_WHEN_GTID_NEXT_LIST_IS_NULL)

Message: The system variable @@SESSION.GTID_NEXT cannot change inside a transaction.

• Error: 1769 SQLSTATE: HY000 (ER_SET_STATEMENT_CANNOT_INVOKE_FUNCTION)

Message: The statement 'SET %s' cannot invoke a stored function.

• Error: 1770 SQLSTATE: HY000
(ER_GTID_NEXT_CANT_BE_AUTOMATIC_IF_GTID_NEXT_LIST_IS_NON_NULL)

Message: The system variable @@SESSION.GTID_NEXT cannot be 'AUTOMATIC' when
@@SESSION.GTID_NEXT_LIST is non-NULL.

• Error: 1771 SQLSTATE: HY000 (ER_SKIPPING_LOGGED_TRANSACTION)

Message: Skipping transaction %s because it has already been executed and logged.

• Error: 1772 SQLSTATE: HY000 (ER_MALFORMED_GTID_SET_SPECIFICATION)

Message: Malformed GTID set specification '%s'.

• Error: 1773 SQLSTATE: HY000 (ER_MALFORMED_GTID_SET_ENCODING)

Message: Malformed GTID set encoding.

• Error: 1774 SQLSTATE: HY000 (ER_MALFORMED_GTID_SPECIFICATION)

Message: Malformed GTID specification '%s'.

• Error: 1775 SQLSTATE: HY000 (ER_GNO_EXHAUSTED)

Message: Impossible to generate Global Transaction Identifier: the integer component reached the
maximal value. Restart the server with a new server_uuid.

• Error: 1776 SQLSTATE: HY000 (ER_BAD_SLAVE_AUTO_POSITION)

Message: Parameters MASTER_LOG_FILE, MASTER_LOG_POS, RELAY_LOG_FILE and
RELAY_LOG_POS cannot be set when MASTER_AUTO_POSITION is active.

• Error: 1777 SQLSTATE: HY000 (ER_AUTO_POSITION_REQUIRES_GTID_MODE_ON)

Server Error Codes and Messages

2832

Message: CHANGE MASTER TO MASTER_AUTO_POSITION = 1 can only be executed when
@@GLOBAL.GTID_MODE = ON.

• Error: 1778 SQLSTATE: HY000
(ER_CANT_DO_IMPLICIT_COMMIT_IN_TRX_WHEN_GTID_NEXT_IS_SET)

Message: Cannot execute statements with implicit commit inside a transaction when
@@SESSION.GTID_NEXT == 'UUID:NUMBER'.

• Error: 1779 SQLSTATE: HY000
(ER_GTID_MODE_2_OR_3_REQUIRES_ENFORCE_GTID_CONSISTENCY_ON)

Message: @@GLOBAL.GTID_MODE = ON or UPGRADE_STEP_2 requires
@@GLOBAL.ENFORCE_GTID_CONSISTENCY = 1.

• Error: 1780 SQLSTATE: HY000 (ER_GTID_MODE_REQUIRES_BINLOG)

Message: @@GLOBAL.GTID_MODE = ON or UPGRADE_STEP_1 or UPGRADE_STEP_2
requires --log-bin and --log-slave-updates.

• Error: 1781 SQLSTATE: HY000
(ER_CANT_SET_GTID_NEXT_TO_GTID_WHEN_GTID_MODE_IS_OFF)

Message: @@SESSION.GTID_NEXT cannot be set to UUID:NUMBER when
@@GLOBAL.GTID_MODE = OFF.

• Error: 1782 SQLSTATE: HY000
(ER_CANT_SET_GTID_NEXT_TO_ANONYMOUS_WHEN_GTID_MODE_IS_ON)

Message: @@SESSION.GTID_NEXT cannot be set to ANONYMOUS when
@@GLOBAL.GTID_MODE = ON.

• Error: 1783 SQLSTATE: HY000
(ER_CANT_SET_GTID_NEXT_LIST_TO_NON_NULL_WHEN_GTID_MODE_IS_OFF)

Message: @@SESSION.GTID_NEXT_LIST cannot be set to a non-NULL value when
@@GLOBAL.GTID_MODE = OFF.

• Error: 1784 SQLSTATE: HY000 (ER_FOUND_GTID_EVENT_WHEN_GTID_MODE_IS_OFF)

Message: Found a Gtid_log_event or Previous_gtids_log_event when @@GLOBAL.GTID_MODE =
OFF.

• Error: 1785 SQLSTATE: HY000 (ER_GTID_UNSAFE_NON_TRANSACTIONAL_TABLE)

Message: When @@GLOBAL.ENFORCE_GTID_CONSISTENCY = 1, updates to non-transactional
tables can only be done in either autocommitted statements or single-statement transactions, and
never in the same statement as updates to transactional tables.

• Error: 1786 SQLSTATE: HY000 (ER_GTID_UNSAFE_CREATE_SELECT)

Message: CREATE TABLE ... SELECT is forbidden when
@@GLOBAL.ENFORCE_GTID_CONSISTENCY = 1.

• Error: 1787 SQLSTATE: HY000
(ER_GTID_UNSAFE_CREATE_DROP_TEMPORARY_TABLE_IN_TRANSACTION)

Message: When @@GLOBAL.ENFORCE_GTID_CONSISTENCY = 1, the statements CREATE
TEMPORARY TABLE and DROP TEMPORARY TABLE can be executed in a non-transactional
context only, and require that AUTOCOMMIT = 1.

• Error: 1788 SQLSTATE: HY000 (ER_GTID_MODE_CAN_ONLY_CHANGE_ONE_STEP_AT_A_TIME)

Server Error Codes and Messages

2833

Message: The value of @@GLOBAL.GTID_MODE can only change one step at a time: OFF <->
UPGRADE_STEP_1 <-> UPGRADE_STEP_2 <-> ON. Also note that this value must be stepped up
or down simultaneously on all servers; see the Manual for instructions.

• Error: 1789 SQLSTATE: HY000 (ER_MASTER_HAS_PURGED_REQUIRED_GTIDS)

Message: The slave is connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1,
but the master has purged binary logs containing GTIDs that the slave requires.

• Error: 1790 SQLSTATE: HY000 (ER_CANT_SET_GTID_NEXT_WHEN_OWNING_GTID)

Message: @@SESSION.GTID_NEXT cannot be changed by a client that owns a GTID. The client
owns %s. Ownership is released on COMMIT or ROLLBACK.

• Error: 1791 SQLSTATE: HY000 (ER_UNKNOWN_EXPLAIN_FORMAT)

Message: Unknown EXPLAIN format name: '%s'

• Error: 1792 SQLSTATE: 25006 (ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION)

Message: Cannot execute statement in a READ ONLY transaction.

• Error: 1793 SQLSTATE: HY000 (ER_TOO_LONG_TABLE_PARTITION_COMMENT)

Message: Comment for table partition '%s' is too long (max = %lu)

• Error: 1794 SQLSTATE: HY000 (ER_SLAVE_CONFIGURATION)

Message: Slave is not configured or failed to initialize properly. You must at least set --server-id to
enable either a master or a slave. Additional error messages can be found in the MySQL error log.

• Error: 1795 SQLSTATE: HY000 (ER_INNODB_FT_LIMIT)

Message: InnoDB presently supports one FULLTEXT index creation at a time

• Error: 1796 SQLSTATE: HY000 (ER_INNODB_NO_FT_TEMP_TABLE)

Message: Cannot create FULLTEXT index on temporary InnoDB table

• Error: 1797 SQLSTATE: HY000 (ER_INNODB_FT_WRONG_DOCID_COLUMN)

Message: Column '%s' is of wrong type for an InnoDB FULLTEXT index

• Error: 1798 SQLSTATE: HY000 (ER_INNODB_FT_WRONG_DOCID_INDEX)

Message: Index '%s' is of wrong type for an InnoDB FULLTEXT index

• Error: 1799 SQLSTATE: HY000 (ER_INNODB_ONLINE_LOG_TOO_BIG)

Message: Creating index '%s' required more than 'innodb_online_alter_log_max_size' bytes of
modification log. Please try again.

• Error: 1800 SQLSTATE: HY000 (ER_UNKNOWN_ALTER_ALGORITHM)

Message: Unknown ALGORITHM '%s'

• Error: 1801 SQLSTATE: HY000 (ER_UNKNOWN_ALTER_LOCK)

Message: Unknown LOCK type '%s'

• Error: 1802 SQLSTATE: HY000 (ER_MTS_CHANGE_MASTER_CANT_RUN_WITH_GAPS)

Message: CHANGE MASTER cannot be executed when the slave was stopped with an error or
killed in MTS mode. Consider using RESET SLAVE or START SLAVE UNTIL.

Server Error Codes and Messages

2834

• Error: 1803 SQLSTATE: HY000 (ER_MTS_RECOVERY_FAILURE)

Message: Cannot recover after SLAVE errored out in parallel execution mode. Additional error
messages can be found in the MySQL error log.

• Error: 1804 SQLSTATE: HY000 (ER_MTS_RESET_WORKERS)

Message: Cannot clean up worker info tables. Additional error messages can be found in the MySQL
error log.

• Error: 1805 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_CORRUPTED_V2)

Message: Column count of %s.%s is wrong. Expected %d, found %d. The table is probably
corrupted

• Error: 1806 SQLSTATE: HY000 (ER_SLAVE_SILENT_RETRY_TRANSACTION)

Message: Slave must silently retry current transaction

• Error: 1807 SQLSTATE: HY000 (ER_DISCARD_FK_CHECKS_RUNNING)

Message: There is a foreign key check running on table '%s'. Cannot discard the table.

• Error: 1808 SQLSTATE: HY000 (ER_TABLE_SCHEMA_MISMATCH)

Message: Schema mismatch (%s)

• Error: 1809 SQLSTATE: HY000 (ER_TABLE_IN_SYSTEM_TABLESPACE)

Message: Table '%s' in system tablespace

• Error: 1810 SQLSTATE: HY000 (ER_IO_READ_ERROR)

Message: IO Read error: (%lu, %s) %s

• Error: 1811 SQLSTATE: HY000 (ER_IO_WRITE_ERROR)

Message: IO Write error: (%lu, %s) %s

• Error: 1812 SQLSTATE: HY000 (ER_TABLESPACE_MISSING)

Message: Tablespace is missing for table '%s'

• Error: 1813 SQLSTATE: HY000 (ER_TABLESPACE_EXISTS)

Message: Tablespace for table '%s' exists. Please DISCARD the tablespace before IMPORT.

• Error: 1814 SQLSTATE: HY000 (ER_TABLESPACE_DISCARDED)

Message: Tablespace has been discarded for table '%s'

• Error: 1815 SQLSTATE: HY000 (ER_INTERNAL_ERROR)

Message: Internal error: %s

• Error: 1816 SQLSTATE: HY000 (ER_INNODB_IMPORT_ERROR)

Message: ALTER TABLE '%s' IMPORT TABLESPACE failed with error %lu : '%s'

• Error: 1817 SQLSTATE: HY000 (ER_INNODB_INDEX_CORRUPT)

Message: Index corrupt: %s

• Error: 1818 SQLSTATE: HY000 (ER_INVALID_YEAR_COLUMN_LENGTH)

Server Error Codes and Messages

2835

Message: YEAR(%lu) column type is deprecated. Creating YEAR(4) column instead.

• Error: 1819 SQLSTATE: HY000 (ER_NOT_VALID_PASSWORD)

Message: Your password does not satisfy the current policy requirements

• Error: 1820 SQLSTATE: HY000 (ER_MUST_CHANGE_PASSWORD)

Message: You must SET PASSWORD before executing this statement

• Error: 1821 SQLSTATE: HY000 (ER_FK_NO_INDEX_CHILD)

Message: Failed to add the foreign key constaint. Missing index for constraint '%s' in the foreign
table '%s'

• Error: 1822 SQLSTATE: HY000 (ER_FK_NO_INDEX_PARENT)

Message: Failed to add the foreign key constaint. Missing index for constraint '%s' in the referenced
table '%s'

• Error: 1823 SQLSTATE: HY000 (ER_FK_FAIL_ADD_SYSTEM)

Message: Failed to add the foreign key constraint '%s' to system tables

• Error: 1824 SQLSTATE: HY000 (ER_FK_CANNOT_OPEN_PARENT)

Message: Failed to open the referenced table '%s'

• Error: 1825 SQLSTATE: HY000 (ER_FK_INCORRECT_OPTION)

Message: Failed to add the foreign key constraint on table '%s'. Incorrect options in FOREIGN KEY
constraint '%s'

• Error: 1826 SQLSTATE: HY000 (ER_FK_DUP_NAME)

Message: Duplicate foreign key constraint name '%s'

• Error: 1827 SQLSTATE: HY000 (ER_PASSWORD_FORMAT)

Message: The password hash doesn't have the expected format. Check if the correct password
algorithm is being used with the PASSWORD() function.

• Error: 1828 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_DROP)

Message: Cannot drop column '%s': needed in a foreign key constraint '%s'

• Error: 1829 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_DROP_CHILD)

Message: Cannot drop column '%s': needed in a foreign key constraint '%s' of table '%s'

• Error: 1830 SQLSTATE: HY000 (ER_FK_COLUMN_NOT_NULL)

Message: Column '%s' cannot be NOT NULL: needed in a foreign key constraint '%s' SET NULL

• Error: 1831 SQLSTATE: HY000 (ER_DUP_INDEX)

Message: Duplicate index '%s' defined on the table '%s.%s'. This is deprecated and will be
disallowed in a future release.

• Error: 1832 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_CHANGE)

Message: Cannot change column '%s': used in a foreign key constraint '%s'

Server Error Codes and Messages

2836

• Error: 1833 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_CHANGE_CHILD)

Message: Cannot change column '%s': used in a foreign key constraint '%s' of table '%s'

• Error: 1834 SQLSTATE: HY000 (ER_FK_CANNOT_DELETE_PARENT)

Message: Cannot delete rows from table which is parent in a foreign key constraint '%s' of table '%s'

ER_FK_CANNOT_DELETE_PARENT was removed after 5.7.3.

• Error: 1834 SQLSTATE: HY000 (ER_UNUSED5)

Message: Cannot delete rows from table which is parent in a foreign key constraint '%s' of table '%s'

ER_UNUSED5 was introduced in 5.7.4.

• Error: 1835 SQLSTATE: HY000 (ER_MALFORMED_PACKET)

Message: Malformed communication packet.

• Error: 1836 SQLSTATE: HY000 (ER_READ_ONLY_MODE)

Message: Running in read-only mode

• Error: 1837 SQLSTATE: HY000 (ER_GTID_NEXT_TYPE_UNDEFINED_GROUP)

Message: When @@SESSION.GTID_NEXT is set to a GTID, you must explicitly set it to a different
value after a COMMIT or ROLLBACK. Please check GTID_NEXT variable manual page for detailed
explanation. Current @@SESSION.GTID_NEXT is '%s'.

• Error: 1838 SQLSTATE: HY000 (ER_VARIABLE_NOT_SETTABLE_IN_SP)

Message: The system variable %s cannot be set in stored procedures.

• Error: 1839 SQLSTATE: HY000 (ER_CANT_SET_GTID_PURGED_WHEN_GTID_MODE_IS_OFF)

Message: @@GLOBAL.GTID_PURGED can only be set when @@GLOBAL.GTID_MODE = ON.

• Error: 1840 SQLSTATE: HY000
(ER_CANT_SET_GTID_PURGED_WHEN_GTID_EXECUTED_IS_NOT_EMPTY)

Message: @@GLOBAL.GTID_PURGED can only be set when @@GLOBAL.GTID_EXECUTED is
empty.

• Error: 1841 SQLSTATE: HY000
(ER_CANT_SET_GTID_PURGED_WHEN_OWNED_GTIDS_IS_NOT_EMPTY)

Message: @@GLOBAL.GTID_PURGED can only be set when there are no ongoing transactions
(not even in other clients).

• Error: 1842 SQLSTATE: HY000 (ER_GTID_PURGED_WAS_CHANGED)

Message: @@GLOBAL.GTID_PURGED was changed from '%s' to '%s'.

• Error: 1843 SQLSTATE: HY000 (ER_GTID_EXECUTED_WAS_CHANGED)

Message: @@GLOBAL.GTID_EXECUTED was changed from '%s' to '%s'.

• Error: 1844 SQLSTATE: HY000 (ER_BINLOG_STMT_MODE_AND_NO_REPL_TABLES)

Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT =
STATEMENT, and both replicated and non replicated tables are written to.

• Error: 1845 SQLSTATE: 0A000 (ER_ALTER_OPERATION_NOT_SUPPORTED)

Server Error Codes and Messages

2837

Message: %s is not supported for this operation. Try %s.

ER_ALTER_OPERATION_NOT_SUPPORTED was introduced in 5.7.1.

• Error: 1846 SQLSTATE: 0A000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON)

Message: %s is not supported. Reason: %s. Try %s.

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON was introduced in 5.7.1.

• Error: 1847 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COPY)

Message: COPY algorithm requires a lock

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COPY was introduced in 5.7.1.

• Error: 1848 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_PARTITION)

Message: Partition specific operations do not yet support LOCK/ALGORITHM

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_PARTITION was introduced in 5.7.1.

• Error: 1849 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_RENAME)

Message: Columns participating in a foreign key are renamed

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_RENAME was introduced in 5.7.1.

• Error: 1850 SQLSTATE: HY000
(ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COLUMN_TYPE)

Message: Cannot change column type INPLACE

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COLUMN_TYPE was introduced in 5.7.1.

• Error: 1851 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_CHECK)

Message: Adding foreign keys needs foreign_key_checks=OFF

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_CHECK was introduced in 5.7.1.

• Error: 1852 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_IGNORE)

Message: Creating unique indexes with IGNORE requires COPY algorithm to remove duplicate rows

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_IGNORE was introduced in 5.7.1, removed
after 5.7.3.

• Error: 1852 SQLSTATE: HY000 (ER_UNUSED6)

Message: Creating unique indexes with IGNORE requires COPY algorithm to remove duplicate rows

ER_UNUSED6 was introduced in 5.7.4.

• Error: 1853 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOPK)

Message: Dropping a primary key is not allowed without also adding a new primary key

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOPK was introduced in 5.7.1.

• Error: 1854 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_AUTOINC)

Message: Adding an auto-increment column requires a lock

Server Error Codes and Messages

2838

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_AUTOINC was introduced in 5.7.1.

• Error: 1855 SQLSTATE: HY000
(ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_HIDDEN_FTS)

Message: Cannot replace hidden FTS_DOC_ID with a user-visible one

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_HIDDEN_FTS was introduced in 5.7.1.

• Error: 1856 SQLSTATE: HY000
(ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_CHANGE_FTS)

Message: Cannot drop or rename FTS_DOC_ID

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_CHANGE_FTS was introduced in 5.7.1.

• Error: 1857 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FTS)

Message: Fulltext index creation requires a lock

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FTS was introduced in 5.7.1.

• Error: 1858 SQLSTATE: HY000
(ER_SQL_SLAVE_SKIP_COUNTER_NOT_SETTABLE_IN_GTID_MODE)

Message: sql_slave_skip_counter can not be set when the server is running with
@@GLOBAL.GTID_MODE = ON. Instead, for each transaction that you want to skip, generate an
empty transaction with the same GTID as the transaction

ER_SQL_SLAVE_SKIP_COUNTER_NOT_SETTABLE_IN_GTID_MODE was introduced in 5.7.1.

• Error: 1859 SQLSTATE: 23000 (ER_DUP_UNKNOWN_IN_INDEX)

Message: Duplicate entry for key '%s'

ER_DUP_UNKNOWN_IN_INDEX was introduced in 5.7.1.

• Error: 1860 SQLSTATE: HY000 (ER_IDENT_CAUSES_TOO_LONG_PATH)

Message: Long database name and identifier for object resulted in path length exceeding %d
characters. Path: '%s'.

ER_IDENT_CAUSES_TOO_LONG_PATH was introduced in 5.7.1.

• Error: 1861 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOT_NULL)

Message: cannot silently convert NULL values, as required in this SQL_MODE

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOT_NULL was introduced in 5.7.1.

• Error: 1862 SQLSTATE: HY000 (ER_MUST_CHANGE_PASSWORD_LOGIN)

Message: Your password has expired. To log in you must change it using a client that supports
expired passwords.

ER_MUST_CHANGE_PASSWORD_LOGIN was introduced in 5.7.1.

• Error: 1863 SQLSTATE: HY000 (ER_ROW_IN_WRONG_PARTITION)

Message: Found a row in wrong partition %s

ER_ROW_IN_WRONG_PARTITION was introduced in 5.7.1.

Server Error Codes and Messages

2839

• Error: 1864 SQLSTATE: HY000 (ER_MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX)

Message: Cannot schedule event %s, relay-log name %s, position %s to Worker thread because its
size %lu exceeds %lu of slave_pending_jobs_size_max.

ER_MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX was introduced in 5.7.2.

• Error: 1865 SQLSTATE: HY000 (ER_INNODB_NO_FT_USES_PARSER)

Message: Cannot CREATE FULLTEXT INDEX WITH PARSER on InnoDB table

ER_INNODB_NO_FT_USES_PARSER was introduced in 5.7.2.

• Error: 1866 SQLSTATE: HY000 (ER_BINLOG_LOGICAL_CORRUPTION)

Message: The binary log file '%s' is logically corrupted: %s

ER_BINLOG_LOGICAL_CORRUPTION was introduced in 5.7.2.

• Error: 1867 SQLSTATE: HY000 (ER_WARN_PURGE_LOG_IN_USE)

Message: file %s was not purged because it was being read by %d thread(s), purged only %d out of
%d files.

ER_WARN_PURGE_LOG_IN_USE was introduced in 5.7.2.

• Error: 1868 SQLSTATE: HY000 (ER_WARN_PURGE_LOG_IS_ACTIVE)

Message: file %s was not purged because it is the active log file.

ER_WARN_PURGE_LOG_IS_ACTIVE was introduced in 5.7.2.

• Error: 1869 SQLSTATE: HY000 (ER_AUTO_INCREMENT_CONFLICT)

Message: Auto-increment value in UPDATE conflicts with internally generated values

ER_AUTO_INCREMENT_CONFLICT was introduced in 5.7.2.

• Error: 1870 SQLSTATE: HY000 (WARN_ON_BLOCKHOLE_IN_RBR)

Message: Row events are not logged for %s statements that modify BLACKHOLE tables in row
format. Table(s): '%s'

WARN_ON_BLOCKHOLE_IN_RBR was introduced in 5.7.2.

• Error: 1871 SQLSTATE: HY000 (ER_SLAVE_MI_INIT_REPOSITORY)

Message: Slave failed to initialize master info structure from the repository

ER_SLAVE_MI_INIT_REPOSITORY was introduced in 5.7.2.

• Error: 1872 SQLSTATE: HY000 (ER_SLAVE_RLI_INIT_REPOSITORY)

Message: Slave failed to initialize relay log info structure from the repository

ER_SLAVE_RLI_INIT_REPOSITORY was introduced in 5.7.2.

• Error: 1873 SQLSTATE: 28000 (ER_ACCESS_DENIED_CHANGE_USER_ERROR)

Message: Access denied trying to change to user '%s'@'%s' (using password: %s). Disconnecting.

ER_ACCESS_DENIED_CHANGE_USER_ERROR was introduced in 5.7.2.

• Error: 1874 SQLSTATE: HY000 (ER_INNODB_READ_ONLY)

Server Error Codes and Messages

2840

Message: InnoDB is in read only mode.

ER_INNODB_READ_ONLY was introduced in 5.7.2.

• Error: 1875 SQLSTATE: HY000 (ER_STOP_SLAVE_SQL_THREAD_TIMEOUT)

Message: STOP SLAVE command execution is incomplete: Slave SQL thread got the stop signal,
thread is busy, SQL thread will stop once the current task is complete.

ER_STOP_SLAVE_SQL_THREAD_TIMEOUT was introduced in 5.7.2.

• Error: 1876 SQLSTATE: HY000 (ER_STOP_SLAVE_IO_THREAD_TIMEOUT)

Message: STOP SLAVE command execution is incomplete: Slave IO thread got the stop signal,
thread is busy, IO thread will stop once the current task is complete.

ER_STOP_SLAVE_IO_THREAD_TIMEOUT was introduced in 5.7.2.

• Error: 1877 SQLSTATE: HY000 (ER_TABLE_CORRUPT)

Message: Operation cannot be performed. The table '%s.%s' is missing, corrupt or contains bad
data.

ER_TABLE_CORRUPT was introduced in 5.7.2.

• Error: 1878 SQLSTATE: HY000 (ER_TEMP_FILE_WRITE_FAILURE)

Message: Temporary file write failure.

ER_TEMP_FILE_WRITE_FAILURE was introduced in 5.7.3.

• Error: 1879 SQLSTATE: HY000 (ER_INNODB_FT_AUX_NOT_HEX_ID)

Message: Upgrade index name failed, please use create index(alter table) algorithm copy to rebuild
index.

ER_INNODB_FT_AUX_NOT_HEX_ID was introduced in 5.7.4.

• Error: 1880 SQLSTATE: HY000 (ER_OLD_TEMPORALS_UPGRADED)

Message: TIME/TIMESTAMP/DATETIME columns of old format have been upgraded to the new
format.

ER_OLD_TEMPORALS_UPGRADED was introduced in 5.7.4.

• Error: 1881 SQLSTATE: HY000 (ER_INNODB_FORCED_RECOVERY)

Message: Operation not allowed when innodb_forced_recovery > 0.

ER_INNODB_FORCED_RECOVERY was introduced in 5.7.4.

• Error: 1882 SQLSTATE: HY000 (ER_AES_INVALID_IV)

Message: The initialization vector supplied to %s is too short. Must be at least %d bytes long

ER_AES_INVALID_IV was introduced in 5.7.4.

• Error: 1883 SQLSTATE: HY000 (ER_FILE_CORRUPT)

Message: File %s is corrupted

• Error: 1884 SQLSTATE: HY000 (ER_ERROR_ON_MASTER)

Server Error Codes and Messages

2841

Message: Query partially completed on the master (error on master: %d) and was aborted.
There is a chance that your master is inconsistent at this point. If you are sure that your master
is ok, run this query manually on the slave and then restart the slave with SET GLOBAL
SQL_SLAVE_SKIP_COUNTER=1; START SLAVE;. Query:'%s'

• Error: 1885 SQLSTATE: HY000 (ER_INCONSISTENT_ERROR)

Message: Query caused different errors on master and slave. Error on master: message
(format)='%s' error code=%d; Error on slave:actual message='%s', error code=%d. Default
database:'%s'. Query:'%s'

• Error: 1886 SQLSTATE: HY000 (ER_STORAGE_ENGINE_NOT_LOADED)

Message: Storage engine for table '%s'.'%s' is not loaded.

• Error: 1887 SQLSTATE: 0Z002 (ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER)

Message: GET STACKED DIAGNOSTICS when handler not active

• Error: 1888 SQLSTATE: HY000 (ER_WARN_LEGACY_SYNTAX_CONVERTED)

Message: %s is no longer supported. The statement was converted to %s.

• Error: 1889 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_FULLTEXT_PLUGIN)

Message: Statement is unsafe because it uses a fulltext parser plugin which may not return the same
value on the slave.

ER_BINLOG_UNSAFE_FULLTEXT_PLUGIN was introduced in 5.7.1.

• Error: 1890 SQLSTATE: HY000 (ER_CANNOT_DISCARD_TEMPORARY_TABLE)

Message: Cannot DISCARD/IMPORT tablespace associated with temporary table

ER_CANNOT_DISCARD_TEMPORARY_TABLE was introduced in 5.7.1.

• Error: 1891 SQLSTATE: HY000 (ER_FK_DEPTH_EXCEEDED)

Message: Foreign key cascade delete/update exceeds max depth of %d.

ER_FK_DEPTH_EXCEEDED was introduced in 5.7.2.

• Error: 1892 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE_V2)

Message: Column count of %s.%s is wrong. Expected %d, found %d. Created with MySQL %d, now
running %d. Please use mysql_upgrade to fix this error.

ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE_V2 was introduced in 5.7.2.

• Error: 1893 SQLSTATE: HY000 (ER_WARN_TRIGGER_DOESNT_HAVE_CREATED)

Message: Trigger %s.%s.%s does not have CREATED attribute.

ER_WARN_TRIGGER_DOESNT_HAVE_CREATED was introduced in 5.7.2.

• Error: 1894 SQLSTATE: HY000 (ER_REFERENCED_TRG_DOES_NOT_EXIST)

Message: Referenced trigger '%s' for the given action time and event type does not exist.

ER_REFERENCED_TRG_DOES_NOT_EXIST was introduced in 5.7.2.

• Error: 1895 SQLSTATE: HY000 (ER_EXPLAIN_NOT_SUPPORTED)

Server Error Codes and Messages

2842

Message: EXPLAIN FOR CONNECTION command is supported only for SELECT/UPDATE/
INSERT/DELETE/REPLACE

ER_EXPLAIN_NOT_SUPPORTED was introduced in 5.7.2.

• Error: 1896 SQLSTATE: HY000 (ER_INVALID_FIELD_SIZE)

Message: Invalid size for column '%s'.

ER_INVALID_FIELD_SIZE was introduced in 5.7.2.

• Error: 1897 SQLSTATE: HY000 (ER_MISSING_HA_CREATE_OPTION)

Message: Table storage engine '%s' found required create option missing

ER_MISSING_HA_CREATE_OPTION was introduced in 5.7.2.

• Error: 1898 SQLSTATE: HY000 (ER_ENGINE_OUT_OF_MEMORY)

Message: Out of memory in storage engine '%s'.

ER_ENGINE_OUT_OF_MEMORY was introduced in 5.7.3.

• Error: 1899 SQLSTATE: HY000 (ER_PASSWORD_EXPIRE_ANONYMOUS_USER)

Message: The password for anonymous user cannot be expired.

ER_PASSWORD_EXPIRE_ANONYMOUS_USER was introduced in 5.7.3.

• Error: 1900 SQLSTATE: HY000 (ER_SLAVE_SQL_THREAD_MUST_STOP)

Message: This operation cannot be performed with a running slave sql thread; run STOP SLAVE
SQL_THREAD first

ER_SLAVE_SQL_THREAD_MUST_STOP was introduced in 5.7.3.

• Error: 1901 SQLSTATE: HY000 (ER_NO_FT_MATERIALIZED_SUBQUERY)

Message: Cannot create FULLTEXT index on materialized subquery

ER_NO_FT_MATERIALIZED_SUBQUERY was introduced in 5.7.4.

• Error: 1902 SQLSTATE: HY000 (ER_INNODB_UNDO_LOG_FULL)

Message: Undo Log error: %s

ER_INNODB_UNDO_LOG_FULL was introduced in 5.7.4.

• Error: 1903 SQLSTATE: 2201E (ER_INVALID_ARGUMENT_FOR_LOGARITHM)

Message: Invalid argument for logarithm

ER_INVALID_ARGUMENT_FOR_LOGARITHM was introduced in 5.7.4.

• Error: 1904 SQLSTATE: HY000 (ER_SLAVE_IO_THREAD_MUST_STOP)

Message: This operation cannot be performed with a running slave io thread; run STOP SLAVE
IO_THREAD first.

ER_SLAVE_IO_THREAD_MUST_STOP was introduced in 5.7.4.

• Error: 1905 SQLSTATE: HY000 (ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO)

Client Error Codes and Messages

2843

Message: This operation may not be safe when the slave has temporary tables. The tables will be
kept open until the server restarts or until the tables are deleted by any replicated DROP statement.
Suggest to wait until slave_open_temp_tables = 0.

ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO was introduced in 5.7.4.

• Error: 1906 SQLSTATE: HY000 (ER_WARN_ONLY_MASTER_LOG_FILE_NO_POS)

Message: CHANGE MASTER TO with a MASTER_LOG_FILE clause but no MASTER_LOG_POS
clause may not be safe. The old position value may not be valid for the new binary log file.

ER_WARN_ONLY_MASTER_LOG_FILE_NO_POS was introduced in 5.7.4.

• Error: 1907 SQLSTATE: HY000 (ER_QUERY_TIMEOUT)

Message: Query execution was interrupted, max_statement_time exceeded

ER_QUERY_TIMEOUT was introduced in 5.7.4.

• Error: 1908 SQLSTATE: HY000 (ER_NON_RO_SELECT_DISABLE_TIMER)

Message: Select is not a read only statement, disabling timer

ER_NON_RO_SELECT_DISABLE_TIMER was introduced in 5.7.4.

• Error: 1909 SQLSTATE: HY000 (ER_DUP_LIST_ENTRY)

Message: Duplicate entry '%s'.

ER_DUP_LIST_ENTRY was introduced in 5.7.4.

• Error: 1910 SQLSTATE: HY000 (ER_SQL_MODE_NO_EFFECT)

Message: '%s' mode no longer has any effect. Use STRICT_ALL_TABLES or
STRICT_TRANS_TABLES instead.

ER_SQL_MODE_NO_EFFECT was introduced in 5.7.4.

C.4 Client Error Codes and Messages

Client error information comes from the following source files:

• The Error values and the symbols in parentheses correspond to definitions in the include/
errmsg.h MySQL source file.

• The Message values correspond to the error messages that are listed in the libmysql/errmsg.c
file. %d and %s represent numbers and strings, respectively, that are substituted into the messages
when they are displayed.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

• Error: 2000 (CR_UNKNOWN_ERROR)

Message: Unknown MySQL error

• Error: 2001 (CR_SOCKET_CREATE_ERROR)

Message: Can't create UNIX socket (%d)

• Error: 2002 (CR_CONNECTION_ERROR)

Client Error Codes and Messages

2844

Message: Can't connect to local MySQL server through socket '%s' (%d)

• Error: 2003 (CR_CONN_HOST_ERROR)

Message: Can't connect to MySQL server on '%s' (%d)

• Error: 2004 (CR_IPSOCK_ERROR)

Message: Can't create TCP/IP socket (%d)

• Error: 2005 (CR_UNKNOWN_HOST)

Message: Unknown MySQL server host '%s' (%d)

• Error: 2006 (CR_SERVER_GONE_ERROR)

Message: MySQL server has gone away

• Error: 2007 (CR_VERSION_ERROR)

Message: Protocol mismatch; server version = %d, client version = %d

• Error: 2008 (CR_OUT_OF_MEMORY)

Message: MySQL client ran out of memory

• Error: 2009 (CR_WRONG_HOST_INFO)

Message: Wrong host info

• Error: 2010 (CR_LOCALHOST_CONNECTION)

Message: Localhost via UNIX socket

• Error: 2011 (CR_TCP_CONNECTION)

Message: %s via TCP/IP

• Error: 2012 (CR_SERVER_HANDSHAKE_ERR)

Message: Error in server handshake

• Error: 2013 (CR_SERVER_LOST)

Message: Lost connection to MySQL server during query

• Error: 2014 (CR_COMMANDS_OUT_OF_SYNC)

Message: Commands out of sync; you can't run this command now

• Error: 2015 (CR_NAMEDPIPE_CONNECTION)

Message: Named pipe: %s

• Error: 2016 (CR_NAMEDPIPEWAIT_ERROR)

Message: Can't wait for named pipe to host: %s pipe: %s (%lu)

• Error: 2017 (CR_NAMEDPIPEOPEN_ERROR)

Message: Can't open named pipe to host: %s pipe: %s (%lu)

• Error: 2018 (CR_NAMEDPIPESETSTATE_ERROR)

Client Error Codes and Messages

2845

Message: Can't set state of named pipe to host: %s pipe: %s (%lu)

• Error: 2019 (CR_CANT_READ_CHARSET)

Message: Can't initialize character set %s (path: %s)

• Error: 2020 (CR_NET_PACKET_TOO_LARGE)

Message: Got packet bigger than 'max_allowed_packet' bytes

• Error: 2021 (CR_EMBEDDED_CONNECTION)

Message: Embedded server

• Error: 2022 (CR_PROBE_SLAVE_STATUS)

Message: Error on SHOW SLAVE STATUS:

• Error: 2023 (CR_PROBE_SLAVE_HOSTS)

Message: Error on SHOW SLAVE HOSTS:

• Error: 2024 (CR_PROBE_SLAVE_CONNECT)

Message: Error connecting to slave:

• Error: 2025 (CR_PROBE_MASTER_CONNECT)

Message: Error connecting to master:

• Error: 2026 (CR_SSL_CONNECTION_ERROR)

Message: SSL connection error: %s

• Error: 2027 (CR_MALFORMED_PACKET)

Message: Malformed packet

• Error: 2028 (CR_WRONG_LICENSE)

Message: This client library is licensed only for use with MySQL servers having '%s' license

• Error: 2029 (CR_NULL_POINTER)

Message: Invalid use of null pointer

• Error: 2030 (CR_NO_PREPARE_STMT)

Message: Statement not prepared

• Error: 2031 (CR_PARAMS_NOT_BOUND)

Message: No data supplied for parameters in prepared statement

• Error: 2032 (CR_DATA_TRUNCATED)

Message: Data truncated

• Error: 2033 (CR_NO_PARAMETERS_EXISTS)

Message: No parameters exist in the statement

• Error: 2034 (CR_INVALID_PARAMETER_NO)

Client Error Codes and Messages

2846

Message: Invalid parameter number

• Error: 2035 (CR_INVALID_BUFFER_USE)

Message: Can't send long data for non-string/non-binary data types (parameter: %d)

• Error: 2036 (CR_UNSUPPORTED_PARAM_TYPE)

Message: Using unsupported buffer type: %d (parameter: %d)

• Error: 2037 (CR_SHARED_MEMORY_CONNECTION)

Message: Shared memory: %s

• Error: 2038 (CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR)

Message: Can't open shared memory; client could not create request event (%lu)

• Error: 2039 (CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR)

Message: Can't open shared memory; no answer event received from server (%lu)

• Error: 2040 (CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR)

Message: Can't open shared memory; server could not allocate file mapping (%lu)

• Error: 2041 (CR_SHARED_MEMORY_CONNECT_MAP_ERROR)

Message: Can't open shared memory; server could not get pointer to file mapping (%lu)

• Error: 2042 (CR_SHARED_MEMORY_FILE_MAP_ERROR)

Message: Can't open shared memory; client could not allocate file mapping (%lu)

• Error: 2043 (CR_SHARED_MEMORY_MAP_ERROR)

Message: Can't open shared memory; client could not get pointer to file mapping (%lu)

• Error: 2044 (CR_SHARED_MEMORY_EVENT_ERROR)

Message: Can't open shared memory; client could not create %s event (%lu)

• Error: 2045 (CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR)

Message: Can't open shared memory; no answer from server (%lu)

• Error: 2046 (CR_SHARED_MEMORY_CONNECT_SET_ERROR)

Message: Can't open shared memory; cannot send request event to server (%lu)

• Error: 2047 (CR_CONN_UNKNOW_PROTOCOL)

Message: Wrong or unknown protocol

• Error: 2048 (CR_INVALID_CONN_HANDLE)

Message: Invalid connection handle

• Error: 2049 (CR_SECURE_AUTH)

Message: Connection using old (pre-4.1.1) authentication protocol refused (client option
'secure_auth' enabled)

• Error: 2050 (CR_FETCH_CANCELED)

Problems and Common Errors

2847

Message: Row retrieval was canceled by mysql_stmt_close() call

• Error: 2051 (CR_NO_DATA)

Message: Attempt to read column without prior row fetch

• Error: 2052 (CR_NO_STMT_METADATA)

Message: Prepared statement contains no metadata

• Error: 2053 (CR_NO_RESULT_SET)

Message: Attempt to read a row while there is no result set associated with the statement

• Error: 2054 (CR_NOT_IMPLEMENTED)

Message: This feature is not implemented yet

• Error: 2055 (CR_SERVER_LOST_EXTENDED)

Message: Lost connection to MySQL server at '%s', system error: %d

• Error: 2056 (CR_STMT_CLOSED)

Message: Statement closed indirectly because of a preceeding %s() call

• Error: 2057 (CR_NEW_STMT_METADATA)

Message: The number of columns in the result set differs from the number of bound buffers. You
must reset the statement, rebind the result set columns, and execute the statement again

• Error: 2058 (CR_ALREADY_CONNECTED)

Message: This handle is already connected. Use a separate handle for each connection.

• Error: 2059 (CR_AUTH_PLUGIN_CANNOT_LOAD)

Message: Authentication plugin '%s' cannot be loaded: %s

• Error: 2060 (CR_DUPLICATE_CONNECTION_ATTR)

Message: There is an attribute with the same name already

• Error: 2061 (CR_AUTH_PLUGIN_ERR)

Message: Authentication plugin '%s' reported error: %s

CR_AUTH_PLUGIN_ERR was introduced in 5.7.1.

C.5 Problems and Common Errors

This section lists some common problems and error messages that you may encounter. It describes
how to determine the causes of the problems and what to do to solve them.

C.5.1 How to Determine What Is Causing a Problem

When you run into a problem, the first thing you should do is to find out which program or piece of
equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as
memory, motherboard, CPU, or hard disk) or kernel problem:

How to Determine What Is Causing a Problem

2848

• The keyboard does not work. This can normally be checked by pressing the Caps Lock key. If
the Caps Lock light does not change, you have to replace your keyboard. (Before doing this, you
should try to restart your computer and check all cables to the keyboard.)

• The mouse pointer does not move.

• The machine does not answer to a remote machine's pings.

• Other programs that are not related to MySQL do not behave correctly.

• Your system restarted unexpectedly. (A faulty user-level program should never be able to take
down your system.)

In this case, you should start by checking all your cables and run some diagnostic tool to check your
hardware! You should also check whether there are any patches, updates, or service packs for your
operating system that could likely solve your problem. Check also that all your libraries (such as
glibc) are up to date.

It is always good to use a machine with ECC memory to discover memory problems early.

• If your keyboard is locked up, you may be able to recover by logging in to your machine from another
machine and executing kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your problem.
If you think the problem is in MySQL, you should also examine MySQL's log files. See Section 5.2,
“MySQL Server Logs”.

• If you do not think you have hardware problems, you should try to find out which program is causing
problems. Try using top, ps, Task Manager, or some similar program, to check which program is
taking all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file
descriptors, or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it does not want to die, there
is probably a bug in the operating system.

If after you have examined all other possibilities and you have concluded that the MySQL server or a
MySQL client is causing the problem, it is time to create a bug report for our mailing list or our support
team. In the bug report, try to give a very detailed description of how the system is behaving and what
you think is happening. You should also state why you think that MySQL is causing the problem. Take
into consideration all the situations in this chapter. State any problems exactly how they appear when
you examine your system. Use the “copy and paste” method for any output and error messages from
programs and log files.

Try to describe in detail which program is not working and all symptoms you see. We have in the
past received many bug reports that state only “the system does not work.” This provides us with no
information about what could be the problem.

If a program fails, it is always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a while, it
may simply be evaluating something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -u
root ping or mysqladmin -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql, for
example.) Does the client jam? Do you get any output from the program?

Common Errors When Using MySQL Programs

2849

When sending a bug report, you should follow the outline described in Section 1.7, “How to Report
Bugs or Problems”.

C.5.2 Common Errors When Using MySQL Programs

This section lists some errors that users frequently encounter when running MySQL programs.
Although the problems show up when you try to run client programs, the solutions to many of the
problems involves changing the configuration of the MySQL server.

C.5.2.1 Access denied

An Access denied error can have many causes. Often the problem is related to the MySQL
accounts that the server permits client programs to use when connecting. See Section 6.2, “The
MySQL Access Privilege System”, and Section 6.2.7, “Causes of Access-Denied Errors”.

C.5.2.2 Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix
socket file to connect through a file in the file system (default /tmp/mysql.sock), or by using TCP/IP,
which connects through a port number. A Unix socket file connection is faster than TCP/IP, but can be
used only when connecting to a server on the same computer. A Unix socket file is used if you do not
specify a host name or if you specify the special host name localhost.

If the MySQL server is running on Windows, you can connect using TCP/IP. If the server is started
with the --enable-named-pipe option, you can also connect with named pipes if you run the client
on the host where the server is running. The name of the named pipe is MySQL by default. If you do
not give a host name when connecting to mysqld, a MySQL client first tries to connect to the named
pipe. If that does not work, it connects to the TCP/IP port. You can force the use of named pipes on
Windows by using . as the host name.

The error (2002) Can't connect to ... normally means that there is no MySQL server running
on the system or that you are using an incorrect Unix socket file name or TCP/IP port number when
trying to connect to the server. You should also check that the TCP/IP port you are using has not been
blocked by a firewall or port blocking service.

The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that the
network connection has been refused. You should check that there is a MySQL server running, that it
has network connections enabled, and that the network port you specified is the one configured on the
server.

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa
| grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should
start the server. See Section 2.9.1.3, “Starting and Troubleshooting the MySQL Server”.

If a mysqld process is running, you can check it by trying the following commands. The port number
or Unix socket file name might be different in your setup. host_ip represents the IP address of the
machine where the server is running.

shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h `hostname` version variables
shell> mysqladmin -h `hostname` --port=3306 version
shell> mysqladmin -h host_ip version
shell> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version

Note the use of backticks rather than forward quotation marks with the hostname command; these
cause the output of hostname (that is, the current host name) to be substituted into the mysqladmin
command. If you have no hostname command or are running on Windows, you can manually type
the host name of your machine (without backticks) following the -h option. You can also try -h
127.0.0.1 to connect with TCP/IP to the local host.

Common Errors When Using MySQL Programs

2850

Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with --skip-networking, it will not accept TCP/IP connections
at all. If the server was started with --bind-address=127.0.0.1, it will listen for TCP/IP
connections only locally on the loopback interface and will not accept remote connections.

Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for
communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration
to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or the
Windows XP personal firewall may need to be configured not to block the MySQL port.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running on the local host. Check your operating system's process list to ensure the
mysqld process is present.

• You're running a MySQL server on Windows with many TCP/IP connections to it. If you're
experiencing that quite often your clients get that error, you can find a workaround here:
Connection to MySQL Server Failing on Windows.

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default). For
example, you might have a cron job that removes old files from the /tmp directory. You can always
run mysqladmin version to check whether the Unix socket file that mysqladmin is trying to use
really exists. The fix in this case is to change the cron job to not remove mysql.sock or to place
the socket file somewhere else. See Section C.5.4.5, “How to Protect or Change the MySQL Unix
Socket File”.

• You have started the mysqld server with the --socket=/path/to/socket option, but forgotten
to tell client programs the new name of the socket file. If you change the socket path name for the
server, you must also notify the MySQL clients. You can do this by providing the same --socket
option when you run client programs. You also need to ensure that clients have permission to access
the mysql.sock file. To find out where the socket file is, you can do:

shell> netstat -ln | grep mysql

See Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”.

• You are using Linux and one server thread has died (dumped core). In this case, you must kill the
other mysqld threads (for example, with kill or with the mysql_zap script) before you can restart
the MySQL server. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.

• The server or client program might not have the proper access privileges for the directory that holds
the Unix socket file or the socket file itself. In this case, you must either change the access privileges
for the directory or socket file so that the server and clients can access them, or restart mysqld with
a --socket option that specifies a socket file name in a directory where the server can create it and
where client programs can access it.

If you get the error message Can't connect to MySQL server on some_host, you can try the
following things to find out what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306 and
pressing the Enter key a couple of times. (3306 is the default MySQL port number. Change the value
if your server is listening to a different port.) If there is a MySQL server running and listening to the
port, you should get a response that includes the server's version number. If you get an error such as
telnet: Unable to connect to remote host: Connection refused, then there is no
server running on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables to
connect using the Unix socket file. Verify the TCP/IP port number that the server is configured to
listen to (it is the value of the port variable.)

Common Errors When Using MySQL Programs

2851

• If you are running under Linux and Security-Enhanced Linux (SELinux) is enabled, make sure you
have disabled SELinux protection for the mysqld process.

Connection to MySQL Server Failing on Windows

When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're
experiencing that quite often your clients get a Can't connect to MySQL server error, the
reason might be that Windows does not allow for enough ephemeral (short-lived) ports to serve those
connections.

The purpose of TIME_WAIT is to keep a connection accepting packets even after the connection has
been closed. This is because Internet routing can cause a packet to take a slow route to its destination
and it may arrive after both sides have agreed to close. If the port is in use for a new connection, that
packet from the old connection could break the protocol or compromise personal information from the
original connection. The TIME_WAIT delay prevents this by ensuring that the port cannot be reused
until after some time has been permitted for those delayed packets to arrive.

It is safe to reduce TIME_WAIT greatly on LAN connections because there is little chance of packets
arriving at very long delays, as they could through the Internet with its comparatively large distances
and latencies.

Windows permits ephemeral (short-lived) TCP ports to the user. After any port is closed it will remain
in a TIME_WAIT status for 120 seconds. The port will not be available again until this time expires. The
default range of port numbers depends on the version of Windows, with a more limited number of ports
in older versions:

• Windows through Server 2003: Ports in range 1025–5000

• Windows Vista, Server 2008, and newer: Ports in range 49152–65535

With a small stack of available TCP ports (5000) and a high number of TCP ports being open and
closed over a short period of time along with the TIME_WAIT status you have a good chance for
running out of ports. There are two ways to address this problem:

• Reduce the number of TCP ports consumed quickly by investigating connection pooling or persistent
connections where possible

• Tune some settings in the Windows registry (see below)

IMPORTANT: The following procedure involves modifying the Windows registry. Before
you modify the registry, make sure to back it up and make sure that you understand how
to restore the registry if a problem occurs. For information about how to back up, restore,
and edit the registry, view the following article in the Microsoft Knowledge Base: http://
support.microsoft.com/kb/256986/EN-US/.

1. Start Registry Editor (Regedt32.exe).

2. Locate the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

This sets the number of ephemeral ports available to any user. The valid range is between 5000
and 65534 (decimal). The default value is 0x1388 (5000 decimal).

4. On the Edit menu, click Add Value, and then add the following registry value:

http://support.microsoft.com/kb/256986/EN-US/
http://support.microsoft.com/kb/256986/EN-US/

Common Errors When Using MySQL Programs

2852

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before closing.
The valid range is between 0 (zero) and 300 (decimal). The default value is 0x78 (120 decimal).

5. Quit Registry Editor.

6. Reboot the machine.

Note: Undoing the above should be as simple as deleting the registry entries you've created.

C.5.2.3 Lost connection to MySQL server

There are three likely causes for this error message.

Usually it indicates network connectivity trouble and you should check the condition of your network if
this error occurs frequently. If the error message includes “during query,” this is probably the case you
are experiencing.

Sometimes the “during query” form happens when millions of rows are being sent as part of one or
more queries. If you know that this is happening, you should try increasing net_read_timeout from
its default of 30 seconds to 60 seconds or longer, sufficient for the data transfer to complete.

More rarely, it can happen when the client is attempting the initial connection to the server. In this case,
if your connect_timeout value is set to only a few seconds, you may be able to resolve the problem
by increasing it to ten seconds, perhaps more if you have a very long distance or slow connection.
You can determine whether you are experiencing this more uncommon cause by using SHOW GLOBAL
STATUS LIKE 'Aborted_connects'. It will increase by one for each initial connection attempt that
the server aborts. You may see “reading authorization packet” as part of the error message; if so, that
also suggests that this is the solution that you need.

If the cause is none of those just described, you may be experiencing a problem with BLOB values
that are larger than max_allowed_packet, which can cause this error with some clients. Sometime
you may see an ER_NET_PACKET_TOO_LARGE error, and that confirms that you need to increase
max_allowed_packet.

C.5.2.4 Client does not support authentication protocol

The current implementation of the authentication protocol uses a password hashing algorithm that is
incompatible with that used by older (pre-4.1) clients. Attempts to connect to a 4.1 or newer server with
an older client may fail with the following message:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

To deal with this problem, the preferred solution is to upgrade all client programs to use a 4.1.1 or
newer client library. If that is not possible, use one of the following approaches:

• To connect to the server with a pre-4.1 client program, use an account that still has a pre-4.1-style
password.

• Reset the password to pre-4.1 style for each user that needs to use a pre-4.1 client program. This
can be done using the SET PASSWORD statement and the OLD_PASSWORD() function. It is also
necessary to first ensure that the authentication plugin for the account is mysql_old_password:

mysql> UPDATE mysql.user SET plugin = 'mysql_old_password'

Common Errors When Using MySQL Programs

2853

mysql> WHERE User = 'some_user' AND Host = 'some_host';
mysql> FLUSH PRIVILEGES;
mysql> SET PASSWORD FOR
 -> 'some_user'@'some_host' = OLD_PASSWORD('newpwd');

Substitute the password you want to use for “newpwd” in the preceding example. MySQL cannot tell
you what the original password was, so you'll need to pick a new one.

• Tell the server to use the older password hashing algorithm by default:

1. Start mysqld with the old_passwords system variable set to 1.

2. Assign an old-format password to each account that has had its password updated to the longer
4.1 format. You can identify these accounts with the following query:

mysql> SELECT Host, User, Password FROM mysql.user
 -> WHERE LENGTH(Password) > 16;

For each account record displayed by the query, use the Host and User values and assign a
password using one of the methods described previously.

The Client does not support authentication protocol error also can occur if multiple
versions of MySQL are installed but client programs are dynamically linked and link to an older
library. Make sure that clients use the most recent library version with which they are compatible. The
procedure to do this will depend on your system.

Note

The mysql extension does not support the authentication protocol in MySQL
4.1.1 and higher. This is true regardless of the PHP version being used. If you
wish to use the mysql extension with MySQL 4.1 or newer, you may need to
follow one of the options discussed above for configuring MySQL to work with
old clients. The mysqli extension (stands for "MySQL, Improved"; added in
PHP 5) is compatible with the improved password hashing employed in MySQL
4.1 and higher, and no special configuration of MySQL need be done to use this
MySQL client library. For more information about the mysqli extension, see
http://php.net/mysqli.

For additional background on password hashing and authentication, see Section 6.1.2.4, “Password
Hashing in MySQL”.

C.5.2.5 Password Fails When Entered Interactively

MySQL client programs prompt for a password when invoked with a --password or -p option that has
no following password value:

shell> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the
command line, but not when you enter it interactively at the Enter password: prompt. This occurs
when the library provided by the system to read passwords limits password values to a small number of
characters (typically eight). That is a problem with the system library, not with MySQL. To work around
it, change your MySQL password to a value that is eight or fewer characters long, or put your password
in an option file.

C.5.2.6 Host 'host_name' is blocked

If the following error occurs, it means that mysqld has received many connection requests from the
given host that were interrupted in the middle:

http://php.net/mysqli

Common Errors When Using MySQL Programs

2854

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The value of the max_connect_errors system variable determines how many successive
interrupted connection requests are permitted. (See Section 5.1.4, “Server System Variables”.) After
max_connect_errors failed requests without a successful connection, mysqld assumes that
something is wrong (for example, that someone is trying to break in), and blocks the host from further
connections until you issue a FLUSH HOSTS statement or execute a mysqladmin flush-hosts
command.

By default, mysqld blocks a host after 100 connection errors. You can adjust the value by setting
max_connect_errors at server startup:

shell> mysqld_safe --max_connect_errors=10000 &

The value can also be set at runtime:

mysql> SET GLOBAL max_connect_errors=10000;

If you get the Host 'host_name' is blocked error message for a given host, you should first
verify that there is nothing wrong with TCP/IP connections from that host. If you are having network
problems, it does you no good to increase the value of the max_connect_errors variable.

C.5.2.7 Too many connections

If you get a Too many connections error when you try to connect to the mysqld server, this means
that all available connections are in use by other clients.

The number of connections permitted is controlled by the max_connections system variable. The
default value is 151 to improve performance when MySQL is used with the Apache Web server.
(Previously, the default was 100.) If you need to support more connections, you should set a larger
value for this variable.

mysqld actually permits max_connections+1 clients to connect. The extra connection is reserved
for use by accounts that have the SUPER privilege. By granting the SUPER privilege to administrators
and not to normal users (who should not need it), an administrator can connect to the server and use
SHOW PROCESSLIST to diagnose problems even if the maximum number of unprivileged clients are
connected. See Section 13.7.5.28, “SHOW PROCESSLIST Syntax”.

The maximum number of connections MySQL can support depends on the quality of the thread library
on a given platform, the amount of RAM available, how much RAM is used for each connection, the
workload from each connection, and the desired response time. Linux or Solaris should be able to
support at 500 to 1000 simultaneous connections routinely and as many as 10,000 connections if you
have many gigabytes of RAM available and the workload from each is low or the response time target
undemanding. Windows is limited to (open tables × 2 + open connections) < 2048 due to the Posix
compatibility layer used on that platform.

Increasing open-files-limit may be necessary. Also see Section 2.5, “Installing MySQL on Linux”,
for how to raise the operating system limit on how many handles can be used by MySQL.

C.5.2.8 Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it
means that mysql does not have enough memory to store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

Common Errors When Using MySQL Programs

2855

To remedy the problem, first check whether your query is correct. Is it reasonable that it should return
so many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with the --
quick option. This causes it to use the mysql_use_result() C API function to retrieve the result
set, which places less of a load on the client (but more on the server).

C.5.2.9 MySQL server has gone away

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server timed out
and closed the connection. In this case, you normally get one of the following error codes (which one
you get is operating system-dependent).

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to the server, but it
didn't get a full answer (or any answer) to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can change
the time limit by setting the wait_timeout variable when you start mysqld. See Section 5.1.4,
“Server System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic
reconnection. This assumes that you have automatic reconnection in the client enabled (which is the
default for the mysql command-line client).

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysqladmin
kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in the
application that should be corrected.

• A client application running on a different host does not have the necessary privileges to connect to
the MySQL server from that host.

• You got a timeout from the TCP/IP connection on the client side. This may happen if you have
been using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or
mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the timeout
may help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client is
disabled (the reconnect flag in the MYSQL structure is equal to 0).

• You are using a Windows client and the server had dropped the connection (probably because
wait_timeout expired) before the command was issued.

The problem on Windows is that in some cases MySQL does not get an error from the OS when
writing to the TCP/IP connection to the server, but instead gets the error when trying to read the
answer from the connection.

The solution to this is to either do a mysql_ping() on the connection if there has been a long time
since the last query (this is what Connector/ODBC does) or set wait_timeout on the mysqld
server so high that it in practice never times out.

• You can also get these errors if you send a query to the server that is incorrect or too large. If
mysqld receives a packet that is too large or out of order, it assumes that something has gone
wrong with the client and closes the connection. If you need big queries (for example, if you
are working with big BLOB columns), you can increase the query limit by setting the server's

Common Errors When Using MySQL Programs

2856

max_allowed_packet variable, which has a default value of 1MB. You may also need to increase
the maximum packet size on the client end. More information on setting the packet size is given in
Section C.5.2.10, “Packet Too Large”.

An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of
errors. Either one of these statements sends a single request to the server irrespective of the number
of rows to be inserted; thus, you can often avoid the error by reducing the number of rows sent per
INSERT or REPLACE.

• You also get a lost connection if you are sending a packet 16MB or larger if your client is older than
4.0.8 and your server is 4.0.8 and above, or the other way around.

• It is also possible to see this error if host name lookups fail (for example, if the DNS server on which
your server or network relies goes down). This is because MySQL is dependent on the host system
for name resolution, but has no way of knowing whether it is working—from MySQL's point of view
the problem is indistinguishable from any other network timeout.

You may also see the MySQL server has gone away error if MySQL is started with the --
skip-networking option.

Another networking issue that can cause this error occurs if the MySQL port (default 3306) is blocked
by your firewall, thus preventing any connections at all to the MySQL server.

• You can also encounter this error with applications that fork child processes, all of which try to use
the same connection to the MySQL server. This can be avoided by using a separate connection for
each child process.

• You have encountered a bug where the server died while executing the query.

You can check whether the MySQL server died and restarted by executing mysqladmin version
and examining the server's uptime. If the client connection was broken because mysqld crashed
and restarted, you should concentrate on finding the reason for the crash. Start by checking whether
issuing the query again kills the server again. See Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”.

You can get more information about the lost connections by starting mysqld with the
log_error_verbosity system variable set to 3. This logs some of the disconnection messages in
the hostname.err file. See Section 5.2.2, “The Error Log”.

If you want to create a bug report regarding this problem, be sure that you include the following
information:

• Indicate whether the MySQL server died. You can find information about this in the server error log.
See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before you
ran the query, can you provide a reproducible test case? See Section 22.4, “Debugging and Porting
MySQL”.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin
variables gives you the value of this variable.)

• Have you tried to run mysqld with the general query log enabled to determine whether the problem
query appears in the log? (See Section 5.2.3, “The General Query Log”.)

See also Section C.5.2.11, “Communication Errors and Aborted Connections”, and Section 1.7, “How
to Report Bugs or Problems”.

C.5.2.10 Packet Too Large

A communication packet is a single SQL statement sent to the MySQL server, a single row that is sent
to the client, or a binary log event sent from a master replication server to a slave.

Common Errors When Using MySQL Programs

2857

The largest possible packet that can be transmitted to or from a MySQL 5.7 server or client is 1GB.

When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet
bytes, it issues an ER_NET_PACKET_TOO_LARGE error and closes the connection. With some
clients, you may also get a Lost connection to MySQL server during query error if the
communication packet is too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to handle
big packets, you must increase this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To set
a larger value, start mysql like this:

shell> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 1MB. You can increase this if the server needs
to handle big queries (for example, if you are working with big BLOB columns). For example, to set the
variable to 16MB, start the server like this:

shell> mysqld --max_allowed_packet=16M

You can also use an option file to set max_allowed_packet. For example, to set the size for the
server to 16MB, add the following lines in an option file:

[mysqld]
max_allowed_packet=16M

It is safe to increase the value of this variable because the extra memory is allocated only when
needed. For example, mysqld allocates more memory only when you issue a long query or when
mysqld must return a large result row. The small default value of the variable is a precaution to catch
incorrect packets between the client and server and also to ensure that you do not run out of memory
by using large packets accidentally.

You can also get strange problems with large packets if you are using large BLOB values but have not
given mysqld access to enough memory to handle the query. If you suspect this is the case, try adding
ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.

C.5.2.11 Communication Errors and Aborted Connections

If connection problems occur such as communication errors or aborted connections, use these sources
of information to diagnose problems:

• The error log. See Section 5.2.2, “The Error Log”.

• The general query log. See Section 5.2.3, “The General Query Log”.

• The Aborted_xxx and Connection_errors_xxx status variables. See Section 5.1.6, “Server
Status Variables”.

• The host cache, which is accessible using the host_cache Performance Schema table. See
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”, and Section 20.9.13.1, “The
host_cache Table”.

If you start the server with the log_error_verbosity system variable set to 3, you might find
messages like this in your error log:

2013-09-24T12:12:37.839018Z 854 [Note] Aborted connection 854 to db:
'users' user: 'josh'

Common Errors When Using MySQL Programs

2858

If a client successfully connects but later disconnects improperly or is terminated, the server increments
the Aborted_clients status variable, and logs an Aborted connection message to the error log.
The cause can be any of the following:

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout seconds
without issuing any requests to the server. See Section 5.1.4, “Server System Variables”.

• The client program ended abruptly in the middle of a data transfer.

If a client is unable even to connect, the server increments the Aborted_connects status variable.
Unsuccessful connection attempts can occur for the following reasons:

• A client does not have privileges to connect to a database.

• A client uses an incorrect password.

• A connection packet does not contain the right information.

• It takes more than connect_timeout seconds to get a connect packet. See Section 5.1.4, “Server
System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server!
Messages for these types of problems are logged to the general query log if it is enabled.

Other reasons for problems with aborted clients or aborted connections:

• The max_allowed_packet variable value is too small or queries require more memory than you
have allocated for mysqld. See Section C.5.2.10, “Packet Too Large”.

• Use of Ethernet protocol with Linux, both half and full duplex. Many Linux Ethernet drivers have this
bug. You should test for this bug by transferring a huge file using FTP between the client and server
machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a Linux duplex
syndrome. Switch the duplex mode for both your network card and hub/switch to either full duplex or
to half duplex and test the results to determine the best setting.

• A problem with the thread library that causes interrupts on reads.

• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by
replacing hardware.

See also Section C.5.2.9, “MySQL server has gone away”.

C.5.2.12 The table is full

If a table-full error occurs, it may be that the disk is full or that the table has reached its maximum size.
The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. See Section E.10.3, “Limits on Table Size”.

C.5.2.13 Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a
temporary file for the result set in the temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

The preceding error is a typical message for Windows; the Unix message is similar.

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of
your option file. For example, to specify a directory of C:\temp, use these lines:

Common Errors When Using MySQL Programs

2859

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See
Section 4.2.3.3, “Using Option Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to
the tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is
that the file system is full:

shell> perror 28
OS error code 28: No space left on device

If you get an error of the following type during startup, it indicates that the file system or directory used
for storing data files is write protected. Provided that the write error is to a test file, the error is not
serious and can be safely ignored.

Can't create test file /usr/local/mysql/data/master.lower-test

C.5.2.14 Commands out of sync

If you get Commands out of sync; you can't run this command now in your client code,
you are calling client functions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new query
before you have called mysql_free_result(). It can also happen if you try to execute two queries
that return data without calling mysql_use_result() or mysql_store_result() in between.

C.5.2.15 Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant
tables, it found an account in the user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring user

As a result, the account is simply ignored by the permission system.

The following list indicates possible causes of and fixes for this problem:

• You may be running a new version of mysqld with an old user table. You can check this by
executing mysqlshow mysql user to see whether the Password column is shorter than 16
characters. If so, you can correct this condition by running the scripts/add_long_password
script.

• The account has an old password (eight characters long). Update the account in the user table to
have a new password.

• You have specified a password in the user table without using the PASSWORD() function. Use
mysql to update the account in the user table with a new password, making sure to use the
PASSWORD() function:

mysql> UPDATE user SET Password=PASSWORD('newpwd')
 -> WHERE User='some_user' AND Host='some_host';

C.5.2.16 Table 'tbl_name' doesn't exist

If you get either of the following errors, it usually means that no table exists in the default database with
the given name:

Common Errors When Using MySQL Programs

2860

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table names
are case sensitive if they are located on a file system that has case-sensitive file names.

• Even for file systems that are not case sensitive, such as on Windows, all references to a given table
within a query must use the same lettercase.

You can check which tables are in the default database with SHOW TABLES. See Section 13.7.5, “SHOW
Syntax”.

C.5.2.17 Can't initialize character set

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name

This error can have any of the following causes:

• The character set is a multi-byte character set and you have no support for the character
set in the client. In this case, you need to recompile the client by running CMake with the -
DDEFAULT_CHARSET=charset_name or -DWITH_EXTRA_CHARSETS=charset_name option. See
Section 2.8.4, “MySQL Source-Configuration Options”.

All standard MySQL binaries are compiled with -DWITH_EXTRA_CHARSETS=complex, which
enables support for all multi-byte character sets. See Section 2.8.4, “MySQL Source-Configuration
Options”.

• The character set is a simple character set that is not compiled into mysqld, and the character set
definition files are not in the place where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.8.4, “MySQL Source-
Configuration Options”.

• Specify to the client the directory where the character set definition files are located. For many
clients, you can do this with the --character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

C.5.2.18 'File' Not Found and Similar Errors

If you get ERROR '...' not found (errno: 23), Can't open file: ... (errno: 24), or
any other error with errno 23 or errno 24 from MySQL, it means that you haven't allocated enough
file descriptors for the MySQL server. You can use the perror utility to get a description of what the
error number means:

shell> perror 23
OS error code 23: File table overflow
shell> perror 24
OS error code 24: Too many open files
shell> perror 11
OS error code 11: Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can either
tell mysqld not to open so many files at once or increase the number of file descriptors available to
mysqld.

Installation-Related Issues

2861

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing
the value of the table_open_cache system variable (the default value is 64). This may not entirely
prevent running out of file descriptors because in some circumstances the server may attempt to
extend the cache size temporarily, as described in Section 8.4.3.1, “How MySQL Opens and Closes
Tables”. Reducing the value of max_connections also reduces the number of open files (the default
value is 100).

To change the number of file descriptors available to mysqld, you can use the --open-files-
limit option to mysqld_safe or set the open_files_limit system variable. See Section 5.1.4,
“Server System Variables”. The easiest way to set these values is to add an option to your option file.
See Section 4.2.3.3, “Using Option Files”. If you have an old version of mysqld that does not support
setting the open files limit, you can edit the mysqld_safe script. There is a commented-out line
ulimit -n 256 in the script. You can remove the “#” character to uncomment this line, and change
the number 256 to set the number of file descriptors to be made available to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the
limit imposed by the operating system. There is also a “hard” limit that can be overridden only if you
start mysqld_safe or mysqld as root (just remember that you also need to start the server with the
--user option in this case so that it does not continue to run as root after it starts up). If you need to
increase the operating system limit on the number of file descriptors available to each process, consult
the documentation for your system.

Note

If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect
values when you ask for the current limits. In this case, you should start
mysqld_safe using sh.

C.5.2.19 Table-Corruption Issues

If you have started mysqld with --myisam-recover-options, MySQL automatically checks and
tries to repair MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens,
MySQL writes an entry in the hostname.err file 'Warning: Checking table ...' which is
followed by Warning: Repairing table if the table needs to be repaired. If you get a lot of these
errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be
investigated further.

In MySQL 5.7, when the server detects MyISAM table corruption, it writes additional information to
the error log, such as the name and line number of the source file, and the list of threads accessing
the table. Example: Got an error from thread_id=1, mi_dynrec.c:368. This is useful
information to include in bug reports.

See also Section 5.1.3, “Server Command Options”, and Section 22.4.1.7, “Making a Test Case If You
Experience Table Corruption”.

C.5.3 Installation-Related Issues

C.5.3.1 Problems with File Permissions

If you have problems with file permissions, the UMASK environment variable might be set incorrectly
when mysqld starts. For example, MySQL might issue the following error message when you create a
table:

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

The default UMASK value is 0660. You can change this behavior by starting mysqld_safe as follows:

shell> UMASK=384 # = 600 in octal
shell> export UMASK
shell> mysqld_safe &

Administration-Related Issues

2862

By default, MySQL creates database directories with an access permission value of 0700. You can
modify this behavior by setting the UMASK_DIR variable. If you set its value, new directories are
created with the combined UMASK and UMASK_DIR values. For example, if you want to give group
access to all new directories, you can do this:

shell> UMASK_DIR=504 # = 770 in octal
shell> export UMASK_DIR
shell> mysqld_safe &

MySQL assumes that the value for UMASK or UMASK_DIR is in octal if it starts with a zero.

See Section 2.11, “Environment Variables”.

C.5.4 Administration-Related Issues

C.5.4.1 How to Reset the Root Password

If you have never set a root password for MySQL, the server does not require a password at all
for connecting as root. However, this is insecure. For instructions on assigning passwords, see
Section 2.9.2, “Securing the Initial MySQL Accounts”.

If you know the root password, but want to change it, see Section 13.7.1.7, “SET PASSWORD Syntax”.

If you set a root password previously, but have forgotten it, you can set a new password. The
following sections provide instructions for Windows and Unix systems, as well as generic instructions
that apply to any system.

Resetting the Root Password: Windows Systems

On Windows, use the following procedure to reset the password for all MySQL root accounts:

1. Log on to your system as Administrator.

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to
the Services manager: From the Start menu, select Control Panel, then Administrative Tools, then
Services. Find the MySQL service in the list and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to stop.

3. Create a text file containing the following statements. Replace the password with the password that
you want to use.

UPDATE mysql.user SET Password=PASSWORD('MyNewPass') WHERE User='root';
FLUSH PRIVILEGES;

Write the UPDATE and FLUSH statements each on a single line. The UPDATE statement resets the
password for all root accounts, and the FLUSH statement tells the server to reload the grant tables
into memory so that it notices the password change.

4. Save the file. For this example, the file will be named C:\mysql-init.txt.

5. Open a console window to get to the command prompt: From the Start menu, select Run, then
enter cmd as the command to be run.

6. Start the MySQL server with the special --init-file option (notice that the backslash in the
option value is doubled):

C:\> C:\mysql\bin\mysqld --init-file=C:\\mysql-init.txt

If you installed MySQL to a location other than C:\mysql, adjust the command accordingly.

Administration-Related Issues

2863

The server executes the contents of the file named by the --init-file option at startup,
changing each root account password.

You can also add the --console option to the command if you want server output to appear in the
console window rather than in a log file.

If you installed MySQL using the MySQL Installation Wizard, you may need to specify a --
defaults-file option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld.exe"
 --defaults-file="C:\\Program Files\\MySQL\\MySQL Server 5.7\\my.ini"
 --init-file=C:\\mysql-init.txt

The appropriate --defaults-file setting can be found using the Services Manager: From the
Start menu, select Control Panel, then Administrative Tools, then Services. Find the MySQL service
in the list, right-click it, and choose the Properties option. The Path to executable field
contains the --defaults-file setting.

7. After the server has started successfully, delete C:\mysql-init.txt.

You should now be able to connect to the MySQL server as root using the new password. Stop the
MySQL server, then restart it in normal mode again. If you run the server as a service, start it from the
Windows Services window. If you start the server manually, use whatever command you normally use.

Resetting the Root Password: Unix Systems

On Unix, use the following procedure to reset the password for all MySQL root accounts. The
instructions assume that you will start the server so that it runs using the Unix login account that you
normally use for running the server. For example, if you run the server using the mysql login account,
you should log in as mysql before using the instructions. Alternatively, you can log in as root, but
in this case you must start mysqld with the --user=mysql option. If you start the server as root
without using --user=mysql, the server may create root-owned files in the data directory, such as
log files, and these may cause permission-related problems for future server startups. If that happens,
you will need to either change the ownership of the files to mysql or remove them.

1. Log on to your system as the Unix user that the mysqld server runs as (for example, mysql).

2. Locate the .pid file that contains the server's process ID. The exact location and name of this file
depend on your distribution, host name, and configuration. Common locations are /var/lib/
mysql/, /var/run/mysqld/, and /usr/local/mysql/data/. Generally, the file name has an
extension of .pid and begins with either mysqld or your system's host name.

You can stop the MySQL server by sending a normal kill (not kill -9) to the mysqld process,
using the path name of the .pid file in the following command:

shell> kill `cat /mysql-data-directory/host_name.pid`

Use backticks (not forward quotation marks) with the cat command. These cause the output of
cat to be substituted into the kill command.

3. Create a text file containing the following statements. Replace the password with the password that
you want to use.

UPDATE mysql.user SET Password=PASSWORD('MyNewPass') WHERE User='root';
FLUSH PRIVILEGES;

Write the UPDATE and FLUSH statements each on a single line. The UPDATE statement resets the
password for all root accounts, and the FLUSH statement tells the server to reload the grant tables
into memory so that it notices the password change.

Administration-Related Issues

2864

4. Save the file. For this example, the file will be named /home/me/mysql-init. The file contains
the password, so it should not be saved where it can be read by other users. If you are not logged
in as mysql (the user the server runs as), make sure that the file has permissions that permit
mysql to read it.

5. Start the MySQL server with the special --init-file option:

shell> mysqld_safe --init-file=/home/me/mysql-init &

The server executes the contents of the file named by the --init-file option at startup,
changing each root account password.

6. After the server has started successfully, delete /home/me/mysql-init.

You should now be able to connect to the MySQL server as root using the new password. Stop the
server and restart it normally.

Resetting the Root Password: Generic Instructions

The preceding sections provide password-resetting instructions for Windows and Unix systems.
Alternatively, on any platform, you can set the new password using the mysql client (but this approach
is less secure):

1. Stop mysqld and restart it with the --skip-grant-tables option. This enables anyone to
connect without a password and with all privileges. Because this is insecure, you might want to use
--skip-grant-tables in conjunction with --skip-networking to prevent remote clients from
connecting.

2. Connect to the mysqld server with this command:

shell> mysql

3. Issue the following statements in the mysql client. Replace the password with the password that
you want to use.

mysql> UPDATE mysql.user SET Password=PASSWORD('MyNewPass')
 -> WHERE User='root';
mysql> FLUSH PRIVILEGES;

The FLUSH statement tells the server to reload the grant tables into memory so that it notices the
password change.

You should now be able to connect to the MySQL server as root using the new password. Stop the
server, then restart it normally (without the --skip-grant-tables and --skip-networking
options).

C.5.4.2 What to Do If MySQL Keeps Crashing

Each MySQL version is tested on many platforms before it is released. This does not mean that there
are no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you
have a problem, it always helps if you try to find out exactly what crashes your system, because you
have a much better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your
problem has to do with your client. You can check how long your mysqld server has been up by
executing mysqladmin version. If mysqld has died and restarted, you may find the reason by
looking in the server's error log. See Section 5.2.2, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died that you can
resolve with the resolve_stack_dump program. See Section 22.4, “Debugging and Porting MySQL”.
Note that the variable values written in the error log may not always be 100% correct.

Administration-Related Issues

2865

Many server crashes are caused by corrupted data files or index files. MySQL updates the files on
disk with the write() system call after every SQL statement and before the client is notified about
the result. (This is not true if you are running with --delay-key-write, in which case data files
are written but not index files.) This means that data file contents are safe even if mysqld crashes,
because the operating system ensures that the unflushed data is written to disk. You can force MySQL
to flush everything to disk after every SQL statement by starting mysqld with the --flush option.

The preceding means that normally you should not get corrupted tables unless one of the following
happens:

• The MySQL server or the server host was killed in the middle of an update.

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld without
locking the table properly.

• You are running many mysqld servers using the same data directory on a system that does not
support good file system locks (normally handled by the lockd lock manager), or you are running
multiple servers with external locking disabled.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This isn't likely, but it is at least possible. In this
case, you can try to change the storage engine to another engine by using ALTER TABLE on a
repaired copy of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that work
for others crash for you. Try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */
*.MYI from the data directory to check all MyISAM tables, and restart mysqld. This ensures that you
are running from a clean state. See Chapter 5, MySQL Server Administration.

• Start mysqld with the general query log enabled (see Section 5.2.3, “The General Query Log”).
Then try to determine from the information written to the log whether some specific query kills the
server. About 95% of all bugs are related to a particular query. Normally, this is one of the last
queries in the log file just before the server restarts. See Section 5.2.3, “The General Query Log”.
If you can repeatedly kill MySQL with a specific query, even when you have checked all tables
just before issuing it, then you have isolated the bug and should submit a bug report for it. See
Section 1.7, “How to Report Bugs or Problems”.

• Try to make a test case that we can use to repeat the problem. See Section 22.4, “Debugging and
Porting MySQL”.

• Try running the tests in the mysql-test directory and the MySQL benchmarks. See Section 22.1.2,
“The MySQL Test Suite”. They test MySQL rather well. You can also add code to the benchmarks
that simulates your application. The benchmarks are in the sql-bench directory in a source
distribution or, for a binary distribution, in the sql-bench directory under your MySQL installation
directory.

• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• Configuring MySQL for debugging makes it much easier to gather information about possible errors
if something goes wrong. Reconfigure MySQL with the -DWITH_DEBUG=1 option to CMake and then
recompile. See Section 22.4, “Debugging and Porting MySQL”.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock
manager does not work properly; the --skip-external-locking option tells mysqld not to use

Administration-Related Issues

2866

external locking. (This means that you cannot run two mysqld servers on the same data directory
and that you must be careful if you use myisamchk. Nevertheless, it may be instructive to try the
option as a test.)

• If mysqld appears to be running but not responding, try mysqladmin -u root processlist.
Sometimes mysqld is not hung even though it seems unresponsive. The problem may be that
all connections are in use, or there may be some internal lock problem. mysqladmin -u root
processlist usually is able to make a connection even in these cases, and can provide useful
information about the current number of connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate
window to produce statistics while running other queries.

• Try the following:

1. Start mysqld from gdb (or another debugger). See Section 22.4, “Debugging and Porting
MySQL”.

2. Run your test scripts.

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this with
the following commands when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a
specific thread with thread N, where N is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to crash or misbehave.

• Send a normal bug report. See Section 1.7, “How to Report Bugs or Problems”. Be even more
detailed than usual. Because MySQL works for many people, the crash might result from something
that exists only on your computer (for example, an error that is related to your particular system
libraries).

• If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR
columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR with ALTER
TABLE. This forces MySQL to use fixed-size rows. Fixed-size rows take a little extra space, but are
much more tolerant to corruption.

The current dynamic row code has been in use for several years with very few problems, but
dynamic-length rows are by nature more prone to errors, so it may be a good idea to try this strategy
to see whether it helps.

• Consider the possibility of hardware faults when diagnosing problems. Defective hardware can be
the cause of data corruption. Pay particular attention to your memory and disk subsystems when
troubleshooting hardware.

C.5.4.3 How MySQL Handles a Full Disk

This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and
to quota-exceeded errors (such as “write failed” or “user block limit reached”).

This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and
binary log index file, except that references to “row” and “record” should be understood to mean
“event.”

Administration-Related Issues

2867

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If there is
enough space, it continues as if nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

To alleviate the problem, take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• Alternatively, to abort the thread, use mysqladmin kill. The thread is aborted the next time it
checks the disk (in one minute).

• Other threads might be waiting for the table that caused the disk-full condition. If you have several
“locked” threads, killing the one thread that is waiting on the disk-full condition enables the other
threads to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE
or when the indexes are created in a batch after LOAD DATA INFILE or after an ALTER TABLE
statement. All of these statements may create large temporary files that, if left to themselves, would
cause big problems for the rest of the system. If the disk becomes full while MySQL is doing any of
these operations, it removes the big temporary files and mark the table as crashed. The exception is
that for ALTER TABLE, the old table is left unchanged.

C.5.4.4 Where MySQL Stores Temporary Files

As of MySQL 5.7.1, non-compressed InnoDB temporary tables are, by default, stored in a
temporary tablespace named ibtmp1 that is located in the MySQL data directory (datadir). The
innodb_temp_data_file_path option can be used to specify a different file name and location.
Compressed InnoDB temporary tables are stored in their own independent tablespace files (.ibd
files) in the path specified by t he TMPDIR environment variable.

On Unix, MySQL uses the value of the TMPDIR environment variable as the path name of the directory
in which to store temporary files (with the exception of non-compressed InnoDB temporary tables, as
described above). If TMPDIR is not set, MySQL uses the system default, which is usually /tmp, /var/
tmp, or /usr/tmp.

On Windows, MySQL checks in order the values of the TMPDIR, TEMP, and TMP environment variables.
For the first one found to be set, MySQL uses it and does not check those remaining. If none of
TMPDIR, TEMP, or TMP are set, MySQL uses the Windows system default, which is usually C:
\windows\temp\.

If the file system containing your temporary file directory is too small, you can use the --tmpdir option
to mysqld to specify a directory in a file system where you have enough space. On replication slaves,
you can use --slave-load-tmpdir to specify a separate directory for holding temporary files when
replicating LOAD DATA INFILE statements.

The --tmpdir option can be set to a list of several paths that are used in round-robin fashion. Paths
should be separated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows.

Note

To spread the load effectively, these paths should be located on different
physical disks, not different partitions of the same disk.

If the MySQL server is acting as a replication slave, you should be sure to set --slave-load-
tmpdir not to point to a directory that is on a memory-based file system or to a directory that is
cleared when the server host restarts. A replication slave needs some of its temporary files to survive a
machine restart so that it can replicate temporary tables or LOAD DATA INFILE operations. If files in
the slave temporary file directory are lost when the server restarts, replication fails.

Administration-Related Issues

2868

MySQL arranges that temporary files are removed if mysqld is terminated. On platforms that support
it (such as Unix), this is done by unlinking the file after opening it. The disadvantage of this is that the
name does not appear in directory listings and you do not see a big temporary file that fills up the file
system in which the temporary file directory is located. (In such cases, lsof +L1 may be helpful in
identifying large files associated with mysqld.)

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The
maximum disk space required is determined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some SELECT queries, MySQL also creates temporary SQL tables. These are not hidden and have
names of the form SQL_*.

In most cases, ALTER TABLE creates a temporary copy of the original table in the same directory
as the original table. However, if ALTER TABLE uses the in-place technique (online DDL), InnoDB
creates temporary files in the temporary file directory. If this directory is not large enough to hold such
files, you may need to set the tmpdir system variable to a different directory. For more information
about online DDL, Section 14.2.11, “InnoDB and Online DDL”.

C.5.4.5 How to Protect or Change the MySQL Unix Socket File

The default location for the Unix socket file that the server uses for communication with local clients is
/tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/
lib/mysql for RPMs.)

On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories
used for temporary files. If the socket file is located in such a directory on your system, this might cause
problems.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their
owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by logging in as
root and using the following command:

shell> chmod +t /tmp

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission
character is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this,
you should also let client programs know the new location of the file. You can specify the file location in
several ways:

• Specify the path in a global or local option file. For example, put the following lines in /etc/my.cnf:

[mysqld]
socket=/path/to/socket

[client]
socket=/path/to/socket

See Section 4.2.3.3, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client
programs.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

Query-Related Issues

2869

• Recompile MySQL from source to use a different default Unix socket file location. Define the path
to the file with the MYSQL_UNIX_ADDR option when you run CMake. See Section 2.8.4, “MySQL
Source-Configuration Options”.

You can test whether the new socket location works by attempting to connect to the server with this
command:

shell> mysqladmin --socket=/path/to/socket version

C.5.4.6 Time Zone Problems

If you have a problem with SELECT NOW() returning values in UTC and not your local time, you have
to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns the wrong
value. This should be done for the environment in which the server runs; for example, in mysqld_safe
or mysql.server. See Section 2.11, “Environment Variables”.

You can set the time zone for the server with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.

The permissible values for --timezone or TZ are system dependent. Consult your operating system
documentation to see what values are acceptable.

C.5.5 Query-Related Issues

C.5.5.1 Case Sensitivity in String Searches

For nonbinary strings (CHAR, VARCHAR, TEXT), string searches use the collation of the comparison
operands. For binary strings (BINARY, VARBINARY, BLOB), comparisons use the numeric values of the
bytes in the operands; this means that for alphabetic characters, comparisons will be case sensitive.

A comparison between a nonbinary string and binary string is treated as a comparison of binary strings.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each
character's “sort value.” Characters with the same sort value are treated as the same character. For
example, if “e” and “é” have the same sort value in a given collation, they compare as equal.

The default character set and collation are latin1 and latin1_swedish_ci, so nonbinary string
comparisons are case insensitive by default. This means that if you search with col_name LIKE 'a
%', you get all column values that start with A or a. To make this search case sensitive, make sure
that one of the operands has a case sensitive or binary collation. For example, if you are comparing a
column and a string that both have the latin1 character set, you can use the COLLATE operator to
cause either operand to have the latin1_general_cs or latin1_bin collation:

col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin

If you want a column always to be treated in case-sensitive fashion, declare it with a case sensitive or
binary collation. See Section 13.1.14, “CREATE TABLE Syntax”.

To cause a case-sensitive comparison of nonbinary strings to be case insensitive, use COLLATE to
name a case-insensitive collation. The strings in the following example normally are case sensitive, but
COLLATE changes the comparison to be case insensitive:

mysql> SET @s1 = 'MySQL' COLLATE latin1_bin,
 -> @s2 = 'mysql' COLLATE latin1_bin;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |

Query-Related Issues

2870

+-----------+
| 0 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_swedish_ci = @s2;
+-------------------------------------+
| @s1 COLLATE latin1_swedish_ci = @s2 |
+-------------------------------------+
| 1 |
+-------------------------------------+

A binary string is case sensitive in comparisons. To compare the string as case insensitive, convert it to
a nonbinary string and use COLLATE to name a case-insensitive collation:

mysql> SET @s = BINARY 'MySQL';
mysql> SELECT @s = 'mysql';
+--------------+
| @s = 'mysql' |
+--------------+
| 0 |
+--------------+
mysql> SELECT CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql';
+--+
| CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql' |
+--+
| 1 |
+--+

To determine whether a value will compare as a nonbinary or binary string, use the COLLATION()
function. This example shows that VERSION() returns a string that has a case-insensitive collation, so
comparisons are case insensitive:

mysql> SELECT COLLATION(VERSION());
+----------------------+
| COLLATION(VERSION()) |
+----------------------+
| utf8_general_ci |
+----------------------+

For binary strings, the collation value is binary, so comparisons will be case sensitive. One context in
which you will see binary is for compression and encryption functions, which return binary strings as
a general rule: string:

mysql> SELECT COLLATION(ENCRYPT('x')), COLLATION(SHA1('x'));
+-------------------------+----------------------+
| COLLATION(ENCRYPT('x')) | COLLATION(SHA1('x')) |
+-------------------------+----------------------+
| binary | binary |
+-------------------------+----------------------+

To check the sort value of a string, the WEIGHT_STRING() may be helpful. See Section 12.5, “String
Functions”.

C.5.5.2 Problems Using DATE Columns

The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is
permitted. You should use this format in UPDATE expressions and in the WHERE clause of SELECT
statements. For example:

SELECT * FROM t1 WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in a numeric
context and vice versa. MySQL also permits a “relaxed” string format when updating and in a WHERE
clause that compares a date to a DATE, DATETIME, or TIMESTAMP column. “Relaxed” format
means that any punctuation character may be used as the separator between parts. For example,

Query-Related Issues

2871

'2004-08-15' and '2004#08#15' are equivalent. MySQL can also convert a string containing no
separators (such as '20040815'), provided it makes sense as a date.

When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =,
>=, >, or BETWEEN operators, MySQL normally converts the string to an internal long integer for faster
comparison (and also for a bit more “relaxed” string checking). However, this conversion is subject to
the following exceptions:

• When you compare two columns

• When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression

• When you use any comparison method other than those just listed, such as IN or STRCMP().

For those exceptions, the comparison is done by converting the objects to strings and performing a
string comparison.

To be on the safe side, assume that strings are compared as strings and use the appropriate string
functions if you want to compare a temporal value to a string.

The special “zero” date '0000-00-00' can be stored and retrieved as '0000-00-00'. When a
'0000-00-00' date is used through Connector/ODBC, it is automatically converted to NULL because
ODBC cannot handle that kind of date.

Because MySQL performs the conversions just described, the following statements work (assume that
idate is a DATE column):

INSERT INTO t1 (idate) VALUES (19970505);
INSERT INTO t1 (idate) VALUES ('19970505');
INSERT INTO t1 (idate) VALUES ('97-05-05');
INSERT INTO t1 (idate) VALUES ('1997.05.05');
INSERT INTO t1 (idate) VALUES ('1997 05 05');
INSERT INTO t1 (idate) VALUES ('0000-00-00');

SELECT idate FROM t1 WHERE idate >= '1997-05-05';
SELECT idate FROM t1 WHERE idate >= 19970505;
SELECT MOD(idate,100) FROM t1 WHERE idate >= 19970505;
SELECT idate FROM t1 WHERE idate >= '19970505';

However, the following statement does not work:

SELECT idate FROM t1 WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and performs
a string comparison. It does not convert '20030505' to the date '2003-05-05' and perform a date
comparison.

If you enable the ALLOW_INVALID_DATES SQL mode, MySQL permits you to store dates that are
given only limited checking: MySQL requires only that the day is in the range from 1 to 31 and the
month is in the range from 1 to 12. This makes MySQL very convenient for Web applications where
you obtain year, month, and day in three different fields and you want to store exactly what the user
inserted (without date validation).

MySQL permits you to store dates where the day or month and day are zero. This is convenient if you
want to store a birthdate in a DATE column and you know only part of the date. To disallow zero month
or day parts in dates, enable strict SQL mode (as of MySQL 5.7.4) or the NO_ZERO_IN_DATE mode
(before MySQL 5.7.4).

MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some
cases more convenient than using NULL values. If a date to be stored in a DATE column cannot be
converted to any reasonable value, MySQL stores '0000-00-00'. To disallow '0000-00-00',
enable strict SQL mode (as of MySQL 5.7.4) or the NO_ZERO_DATE mode (before MySQL 5.7.4).

Query-Related Issues

2872

To have MySQL check all dates and accept only legal dates (unless overridden by IGNORE), enable
strict SQL mode (as of MySQL 5.7.4) or the NO_ZERO_IN_DATE and NO_ZERO_DATE modes (before
MySQL 5.7.4).

C.5.5.3 Problems with NULL Values

The concept of the NULL value is a common source of confusion for newcomers to SQL, who often
think that NULL is the same thing as an empty string ''. This is not the case. For example, the
following statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the
second inserts an empty string. The meaning of the first can be regarded as “phone number is not
known” and the meaning of the second can be regarded as “the person is known to have no phone,
and thus no phone number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the
IFNULL() function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that
contains NULL always produces a NULL value unless otherwise indicated in the documentation for the
operators and functions involved in the expression. All columns in the following example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

To search for column values that are NULL, you cannot use an expr = NULL test. The following
statement returns no rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to find
the NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

See Section 3.3.4.6, “Working with NULL Values”, for additional information and examples.

You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB,
or MEMORY storage engine. Otherwise, you must declare an indexed column NOT NULL, and you
cannot insert NULL into the column.

When reading data with LOAD DATA INFILE, empty or missing columns are updated with ''. To load
a NULL value into a column, use \N in the data file. The literal word “NULL” may also be used under
some circumstances. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in
descending order.

Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The
exception to this is COUNT(*), which counts rows and not individual column values. For example, the
following statement produces two counts. The first is a count of the number of rows in the table, and
the second is a count of the number of non-NULL values in the age column:

Query-Related Issues

2873

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some data types, MySQL handles NULL values specially. If you insert NULL into a TIMESTAMP
column, the current date and time is inserted. If you insert NULL into an integer or floating-point column
that has the AUTO_INCREMENT attribute, the next number in the sequence is inserted.

C.5.5.4 Problems with Column Aliases

An alias can be used in a query select list to give a column a different name. You can use the alias in
GROUP BY, ORDER BY, or HAVING clauses to refer to the column:

SELECT SQRT(a*b) AS root FROM tbl_name
 GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name
 GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL disallows references to column aliases in a WHERE clause. This restriction is imposed
because when the WHERE clause is evaluated, the column value may not yet have been determined.
For example, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name
 WHERE cnt > 0 GROUP BY id;

The WHERE clause determines which rows should be included in the GROUP BY clause, but it refers to
the alias of a column value that is not known until after the rows have been selected, and grouped by
the GROUP BY.

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

SELECT 1 AS `one`, 2 AS 'two';

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference
is treated as a string literal. For example, this statement groups by the values in column id, referenced
using the alias `a`:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY `a`;

But this statement groups by the literal string 'a' and will not work as expected:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY 'a';

C.5.5.5 Rollback Failure for Nontransactional Tables

If you receive the following message when trying to perform a ROLLBACK, it means that one or more of
the tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These nontransactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and nontransactional tables within the transaction, the
most likely cause for this message is that a table you thought was transactional actually is not. This
can happen if you try to create a table using a transactional storage engine that is not supported by

Query-Related Issues

2874

your mysqld server (or that was disabled with a startup option). If mysqld does not support a storage
engine, it instead creates the table as a MyISAM table, which is nontransactional.

You can check the storage engine for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

See Section 13.7.5.35, “SHOW TABLE STATUS Syntax”, and Section 13.7.5.10, “SHOW CREATE
TABLE Syntax”.

To check which storage engines your mysqld server supports, use this statement:

SHOW ENGINES;

See Section 13.7.5.15, “SHOW ENGINES Syntax” for full details.

C.5.5.6 Deleting Rows from Related Tables

If the total length of the DELETE statement for related_table is more than 1MB (the default value
of the max_allowed_packet system variable), you should split it into smaller parts and execute
multiple DELETE statements. You probably get the fastest DELETE by specifying only 100 to 1,000
related_column values per statement if the related_column is indexed. If the related_column
isn't indexed, the speed is independent of the number of arguments in the IN clause.

C.5.5.7 Solving Problems with No Matching Rows

If you have a complicated query that uses many tables but that returns no rows, you should use the
following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously wrong. See
Section 13.8.2, “EXPLAIN Syntax”.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it is a
good idea to use LIMIT 10 with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was last
removed from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you cannot use
equality (=) comparisons. This problem is common in most computer languages because not all
floating-point values can be stored with exact precision. In some cases, changing the FLOAT to a
DOUBLE fixes this. See Section C.5.5.8, “Problems with Floating-Point Values”.

6. If you still cannot figure out what is wrong, create a minimal test that can be run with mysql test
< query.sql that shows your problems. You can create a test file by dumping the tables with
mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql. Open the file
in an editor, remove some insert lines (if there are more than needed to demonstrate the problem),
and add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

shell> mysqladmin create test2
shell> mysql test2 < query.sql

Attach the test file to a bug report, which you can file using the instructions in Section 1.7, “How to
Report Bugs or Problems”.

Query-Related Issues

2875

C.5.5.8 Problems with Floating-Point Values

Floating-point numbers sometimes cause confusion because they are approximate and not stored as
exact values. A floating-point value as written in an SQL statement may not be the same as the value
represented internally. Attempts to treat floating-point values as exact in comparisons may lead to
problems. They are also subject to platform or implementation dependencies. The FLOAT and DOUBLE
data types are subject to these issues. For DECIMAL columns, MySQL performs operations with a
precision of 65 decimal digits, which should solve most common inaccuracy problems.

The following example uses DOUBLE to demonstrate how calculations that are done using floating-point
operations are subject to floating-point error.

mysql> CREATE TABLE t1 (i INT, d1 DOUBLE, d2 DOUBLE);
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
 -> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
 -> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
 -> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
 -> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
 -> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
 -> FROM t1 GROUP BY i HAVING a <> b;

+------+-------+------+
| i | a | b |
+------+-------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4
4	15.4	15.4
5	7.2	7.2
6	-51.4	0
+------+-------+------+

The result is correct. Although the first five records look like they should not satisfy the comparison
(the values of a and b do not appear to be different), they may do so because the difference between
the numbers shows up around the tenth decimal or so, depending on factors such as computer
architecture or the compiler version or optimization level. For example, different CPUs may evaluate
floating-point numbers differently.

If columns d1 and d2 had been defined as DECIMAL rather than DOUBLE, the result of the SELECT
query would have contained only one row—the last one shown above.

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance
for differences between the numbers and then do the comparison against the tolerance value. For
example, if we agree that floating-point numbers should be regarded the same if they are same within
a precision of one in ten thousand (0.0001), the comparison should be written to find differences larger
than the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) > 0.0001;
+------+-------+------+
| i | a | b |
+------+-------+------+
| 6 | -51.4 | 0 |
+------+-------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the
tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) <= 0.0001;

Optimizer-Related Issues

2876

+------+------+------+
| i | a | b |
+------+------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4
4	15.4	15.4
5	7.2	7.2
+------+------+------+
5 rows in set (0.03 sec)

Floating-point values are subject to platform or implementation dependencies. Suppose that you
execute the following statements:

CREATE TABLE t1(c1 FLOAT(53,0), c2 FLOAT(53,0));
INSERT INTO t1 VALUES('1e+52','-1e+52');
SELECT * FROM t1;

On some platforms, the SELECT statement returns inf and -inf. On others, it returns 0 and -0.

An implication of the preceding issues is that if you attempt to create a replication slave by dumping
table contents with mysqldump on the master and reloading the dump file into the slave, tables
containing floating-point columns might differ between the two hosts.

C.5.6 Optimizer-Related Issues

MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases,
MySQL can calculate the best possible query plan, but sometimes MySQL does not have enough
information about the data at hand and has to make “educated” guesses about the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL
are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just
add the keyword EXPLAIN to the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 13.8.2, “EXPLAIN Syntax”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive
compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful. See Section 13.2.9.3, “Index Hint Syntax”.

• Global and table-level STRAIGHT_JOIN. See Section 13.2.9, “SELECT Syntax”.

• You can tune global or thread-specific system variables. For example, start mysqld with the --max-
seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optimizer to
assume that no key scan causes more than 1,000 key seeks. See Section 5.1.4, “Server System
Variables”.

C.5.7 Table Definition-Related Issues

C.5.7.1 Problems with ALTER TABLE

Known Issues in MySQL

2877

If you get a duplicate-key error when using ALTER TABLE to change the character set or collation of a
character column, the cause is either that the new column collation maps two keys to the same value
or that the table is corrupted. In the latter case, you should run REPAIR TABLE on the table.

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an
earlier ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying around:

Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)

In this case, go to the MySQL data directory and delete all files that have names starting with A- or B-.
(You may want to move them elsewhere instead of deleting them.)

ALTER TABLE works in the following way:

• Create a new table named A-xxx with the requested structural changes.

• Copy all rows from the original table to A-xxx.

• Rename the original table to B-xxx.

• Rename A-xxx to your original table name.

• Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If something
goes seriously wrong (although this shouldn't happen), MySQL may leave the old table as B-xxx. A
simple rename of the table files at the system level should get your data back.

If you use ALTER TABLE on a transactional table or if you are using Windows, ALTER TABLE unlocks
the table if you had done a LOCK TABLE on it. This is done because InnoDB and these operating
systems cannot drop a table that is in use.

C.5.7.2 TEMPORARY Table Problems

The following list indicates limitations on the use of TEMPORARY tables:

• A TEMPORARY table can only be of type MEMORY, MyISAM, MERGE, or InnoDB.

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the
following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

This error also occurs if you refer to a temporary table multiple times in a stored function under
different aliases, even if the references occur in different statements within the function.

• The SHOW TABLES statement does not list TEMPORARY tables.

• You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TABLE
instead:

mysql> ALTER TABLE orig_name RENAME new_name;

• There are known issues in using temporary tables with replication. See Section 16.4.1, “Replication
Features and Issues”, for more information.

C.5.8 Known Issues in MySQL

Known Issues in MySQL

2878

This section lists known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and porting instructions in
Section 2.1, “General Installation Guidance”, and Section 22.4, “Debugging and Porting MySQL”.

The following problems are known:

• Subquery optimization for IN is not as effective as for =.

• Even if you use lower_case_table_names=2 (which enables MySQL to remember the case used
for databases and table names), MySQL does not remember the case used for database names for
the function DATABASE() or within the various logs (on case-insensitive systems).

• Dropping a FOREIGN KEY constraint does not work in replication because the constraint may have
another name on the slave.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.

• DISTINCT with ORDER BY does not work inside GROUP_CONCAT() if you do not use all and only
those columns that are in the DISTINCT list.

• When inserting a big integer value (between 263 and 264–1) into a decimal or string column, it is
inserted as a negative value because the number is evaluated in a signed integer context.

• With statement-based binary logging, the master writes the executed queries to the binary log. This
is a very fast, compact, and efficient logging method that works perfectly in most cases. However,
it is possible for the data on the master and slave to become different if a query is designed in such
a way that the data modification is nondeterministic (generally not a recommended practice, even
outside of replication).

For example:

• CREATE TABLE ... SELECT or INSERT ... SELECT statements that insert zero or NULL
values into an AUTO_INCREMENT column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE
properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in the
inserted data.

If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic
order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which results in a row having different ranks, hence getting a different number in the
AUTO_INCREMENT column), depending on the choices made by the optimizers on the master and
slave.

A query is optimized differently on the master and slave only if:

• The table is stored using a different storage engine on the master than on the slave. (It is possible
to use different storage engines on the master and slave. For example, you can use InnoDB on
the master, but MyISAM on the slave if the slave has less available disk space.)

• MySQL buffer sizes (key_buffer_size, and so on) are different on the master and slave.

• The master and slave run different MySQL versions, and the optimizer code differs between these
versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

Known Issues in MySQL

2879

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned
nondeterministic queries to ensure that the rows are always stored or modified in the same order.
Using row-based or mixed logging format also avoids the problem.

• Log file names are based on the server host name if you do not specify a file name with the startup
option. To retain the same log file names if you change your host name to something else, you
must explicitly use options such as --log-bin=old_host_name-bin. See Section 5.1.3, “Server
Command Options”. Alternatively, rename the old files to reflect your host name change. If these are
binary logs, you must edit the binary log index file and fix the binary log file names there as well. (The
same is true for the relay logs on a slave server.)

• mysqlbinlog does not delete temporary files left after a LOAD DATA INFILE statement. See
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.

• RENAME does not work with TEMPORARY tables or tables used in a MERGE table.

• When using SET CHARACTER SET, you cannot use translated characters in database, table, and
column names.

• You cannot use “_” or “%” with ESCAPE in LIKE ... ESCAPE.

• Only the first max_sort_length bytes are used when comparing data values. This means that
values cannot reliably be used in GROUP BY, ORDER BY or DISTINCT if they are not distinct in the
first max_sort_length bytes. To work around this, increase the variable value. The default value of
max_sort_length is 1024 and can be changed at server startup time or at runtime.

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which
precision you get depends on the function. The general rule is that bit functions are performed with
BIGINT precision, IF() and ELT() with BIGINT or DOUBLE precision, and the rest with DOUBLE
precision. You should try to avoid using unsigned long long values if they resolve to be larger than 63
bits (9223372036854775807) for anything other than bit fields.

• You can have up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET
columns by their string value rather than by the string's relative position in the set.

• In an UPDATE statement, columns are updated from left to right. If you refer to an updated column,
you get the updated value instead of the original value. For example, the following statement
increments KEY by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given
temporary table more than once. For example, the following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join than
when you are not. In a join, hidden columns are counted as part of the result (even if they are not
shown), whereas in normal queries, hidden columns do not participate in the DISTINCT comparison.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
 WHERE userid = 9 ORDER BY id DESC;

and

Known Issues in MySQL

2880

SELECT DISTINCT band_downloads.mp3id
 FROM band_downloads,band_mp3
 WHERE band_downloads.userid = 9
 AND band_mp3.id = band_downloads.mp3id
 ORDER BY band_downloads.id DESC;

In the second case, using MySQL Server 3.23.x, you may get two identical rows in the result set
(because the values in the hidden id column may differ).

Note that this happens only for queries that do not have the ORDER BY columns in the result.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE
does not transform the columns.

• Creation of a table of type MERGE does not check whether the underlying tables are compatible
types.

• If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add
a normal index on the MERGE table, the key order is different for the tables if there was an old,
non-UNIQUE key in the table. This is because ALTER TABLE puts UNIQUE indexes before normal
indexes to be able to detect duplicate keys as early as possible.

2881

Appendix D MySQL Release Notes
Release notes for MySQL Server and associated products are published in standalone form, not as
part of the MySQL Reference Manual. For release notes, see these documents:

• MySQL 5.7 Release Notes

• MySQL Connector/ODBC Release Notes

• MySQL Connector/Net Release Notes (includes MySQL Visual Studio Plugin release notes)

• MySQL Connector/J Release Notes

• MySQL Connector/C++ Release Notes

• MySQL Proxy Release Notes

• MySQL for Excel Release Notes

• MySQL Installer Release Notes

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/doc/relnotes/connector-odbc/en/
http://dev.mysql.com/doc/relnotes/connector-net/en/
http://dev.mysql.com/doc/relnotes/connector-j/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/mysql-proxy/en/
http://dev.mysql.com/doc/relnotes/mysql-for-excel/en/
http://dev.mysql.com/doc/relnotes/mysql-installer/en/

2882

2883

Appendix E Restrictions and Limits

Table of Contents
E.1 Restrictions on Stored Programs ... 2883
E.2 Restrictions on Condition Handling ... 2886
E.3 Restrictions on Server-Side Cursors ... 2886
E.4 Restrictions on Subqueries .. 2887
E.5 Restrictions on Views .. 2889
E.6 Restrictions on XA Transactions .. 2890
E.7 Restrictions on Character Sets .. 2891
E.8 Restrictions on Performance Schema ... 2891
E.9 Restrictions on Pluggable Authentication .. 2891
E.10 Limits in MySQL .. 2893

E.10.1 Limits of Joins .. 2893
E.10.2 Limits on Number of Databases and Tables ... 2893
E.10.3 Limits on Table Size ... 2894
E.10.4 Limits on Table Column Count and Row Size .. 2895
E.10.5 Limits Imposed by .frm File Structure .. 2896
E.10.6 Windows Platform Limitations .. 2897

The discussion here describes restrictions that apply to the use of MySQL features such as subqueries
or views.

E.1 Restrictions on Stored Programs
These restrictions apply to the features described in Chapter 18, Stored Programs and Views.

Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures
and stored functions. There are also some restrictions specific to stored functions but not to stored
procedures.

The restrictions for stored functions also apply to triggers. There are also some restrictions specific to
triggers.

The restrictions for stored procedures also apply to the DO clause of Event Scheduler event definitions.
There are also some restrictions specific to events.

SQL Statements Not Permitted in Stored Routines

Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:

• The locking statements LOCK TABLES and UNLOCK TABLES.

• ALTER VIEW.

• LOAD DATA and LOAD TABLE.

• SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored
procedures, but not stored functions or triggers. Thus, stored functions and triggers cannot use
dynamic SQL (where you construct statements as strings and then execute them).

• Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. For a list of statements supported as prepared statements, see Section 13.5, “SQL Syntax
for Prepared Statements”. Exceptions are SIGNAL, RESIGNAL, and GET DIAGNOSTICS, which are
not permissible as prepared statements but are permitted in stored programs.

• Because local variables are in scope only during stored program execution, references to them
are not permitted in prepared statements created within a stored program. Prepared statement

Restrictions for Stored Functions

2884

scope is the current session, not the stored program, so the statement could be executed after the
program ends, at which point the variables would no longer be in scope. For example, SELECT ...
INTO local_var cannot be used as a prepared statement. This restriction also applies to stored
procedure and function parameters. See Section 13.5.1, “PREPARE Syntax”.

• Within all stored programs (stored procedures and functions, triggers, and events), the parser treats
BEGIN [WORK] as the beginning of a BEGIN ... END block. To begin a transaction in this context,
use START TRANSACTION instead.

Restrictions for Stored Functions

The following additional statements or operations are not permitted within stored functions. They are
permitted within stored procedures, except stored procedures that are invoked from within a stored
function or trigger. For example, if you use FLUSH in a stored procedure, that stored procedure cannot
be called from a stored function or trigger.

• Statements that perform explicit or implicit commit or rollback. Support for these statements is not
required by the SQL standard, which states that each DBMS vendor may decide whether to permit
them.

• Statements that return a result set. This includes SELECT statements that do not have an INTO
var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. A function
can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH
statements. See Section 13.2.9.1, “SELECT ... INTO Syntax”, and Section 13.6.6, “Cursors”.

• FLUSH statements.

• Stored functions cannot be used recursively.

• A stored function or trigger cannot modify a table that is already being used (for reading or writing) by
the statement that invoked the function or trigger.

• If you refer to a temporary table multiple times in a stored function under different aliases, a Can't
reopen table: 'tbl_name' error occurs, even if the references occur in different statements
within the function.

• HANDLER ... READ statements that invoke stored functions can cause replication errors and are
disallowed.

Restrictions for Triggers

For triggers, the following additional restrictions apply:

• Triggers are not activated by foreign key actions.

• When using row-based replication, triggers on the slave are not activated by statements originating
on the master. The triggers on the slave are activated when using statement-based replication. For
more information, see Section 16.4.1.32, “Replication and Triggers”.

• The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger
immediately, use the LEAVE statement.

• Triggers are not permitted on tables in the mysql database.

• The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger
uses a table and the table has changed since the trigger was loaded into the cache, the trigger
operates using the outdated metadata.

Name Conflicts within Stored Routines

The same identifier might be used for a routine parameter, a local variable, and a table column. Also,
the same local variable name can be used in nested blocks. For example:

Replication Considerations

2885

CREATE PROCEDURE p (i INT)
BEGIN
 DECLARE i INT DEFAULT 0;
 SELECT i FROM t;
 BEGIN
 DECLARE i INT DEFAULT 1;
 SELECT i FROM t;
 END;
END;

In such cases, the identifier is ambiguous and the following precedence rules apply:

• A local variable takes precedence over a routine parameter or table column.

• A routine parameter takes precedence over a table column.

• A local variable in an inner block takes precedence over a local variable in an outer block.

The behavior that variables take precedence over table columns is nonstandard.

Replication Considerations

Use of stored routines can cause replication problems. This issue is discussed further in Section 18.7,
“Binary Logging of Stored Programs”.

The --replicate-wild-do-table=db_name.tbl_name option applies to tables, views, and
triggers. It does not apply to stored procedures and functions, or events. To filter statements operating
on the latter objects, use one or more of the --replicate-*-db options.

Debugging Considerations

There are no stored routine debugging facilities.

Unsupported Syntax from the SQL:2003 Standard

The MySQL stored routine syntax is based on the SQL:2003 standard. The following items from that
standard are not currently supported:

• UNDO handlers

• FOR loops

Concurrency Considerations

To prevent problems of interaction between sessions, when a client issues a statement, the server
uses a snapshot of routines and triggers available for execution of the statement. That is, the server
calculates a list of procedures, functions, and triggers that may be used during execution of the
statement, loads them, and then proceeds to execute the statement. While the statement executes, it
does not see changes to routines performed by other sessions.

For maximum concurrency, stored functions should minimize their side-effects; in particular, updating
a table within a stored function can reduce concurrent operations on that table. A stored function
acquires table locks before executing, to avoid inconsistency in the binary log due to mismatch of the
order in which statements execute and when they appear in the log. When statement-based binary
logging is used, statements that invoke a function are recorded rather than the statements executed
within the function. Consequently, stored functions that update the same underlying tables do not
execute in parallel. In contrast, stored procedures do not acquire table-level locks. All statements
executed within stored procedures are written to the binary log, even for statement-based binary
logging. See Section 18.7, “Binary Logging of Stored Programs”.

Event Scheduler Restrictions

The following limitations are specific to the Event Scheduler:

Restrictions on Condition Handling

2886

• Event names are handled in case-insensitive fashion. For example, you cannot have two events in
the same database with the names anEvent and AnEvent.

• An event may not be created, altered, or dropped by a stored routine, trigger, or another event. An
event also may not create, alter, or drop stored routines or triggers. (Bug #16409, Bug #18896)

• DDL statements on events are prohibited while a LOCK TABLES statement is in effect.

• Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR_MONTH are resolved in months;
those using any other interval are resolved in seconds. There is no way to cause events scheduled
to occur at the same second to execute in a given order. In addition—due to rounding, the nature
of threaded applications, and the fact that a nonzero length of time is required to create events
and to signal their execution—events may be delayed by as much as 1 or 2 seconds. However,
the time shown in the INFORMATION_SCHEMA.EVENTS table's LAST_EXECUTED column or the
mysql.event table's last_executed column is always accurate to within one second of the
actual event execution time. (See also Bug #16522.)

• Each execution of the statements contained in the body of an event takes place in a new connection;
thus, these statements has no effect in a given user session on the server's statement counts such
as Com_select and Com_insert that are displayed by SHOW STATUS. However, such counts are
updated in the global scope. (Bug #16422)

• Events do not support times later than the end of the Unix Epoch; this is approximately the beginning
of the year 2038. Such dates are specifically not permitted by the Event Scheduler. (Bug #16396)

• References to stored functions, user-defined functions, and tables in the ON SCHEDULE clauses of
CREATE EVENT and ALTER EVENT statements are not supported. These sorts of references are not
permitted. (See Bug #22830 for more information.)

E.2 Restrictions on Condition Handling
SIGNAL, RESIGNAL, and GET DIAGNOSTICS are not permissible as prepared statements. For
example, this statement is invalid:

PREPARE stmt1 FROM 'SIGNAL SQLSTATE "02000"';

SQLSTATE values in class '04' are not treated specially. They are handled the same as other
exceptions.

Standard SQL has a diagnostics area stack, containing a diagnostics area for each nested execution
context. Standard SQL syntax includes GET STACKED DIAGNOSTICS for referring to stacked areas.
MySQL does not support the STACKED keyword because there is a single diagnostics area containing
information from the most recent statement that wrote to it. See also Section 13.6.7.7, “The MySQL
Diagnostics Area”.

In standard SQL, the first condition relates to the SQLSTATE value returned for the previous SQL
statement. In MySQL, this is not guaranteed, so to get the main error, you cannot do this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

Instead, do this:

GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

E.3 Restrictions on Server-Side Cursors
Server-side cursors are implemented in the C API using the mysql_stmt_attr_set() function. The
same implementation is used for cursors in stored routines. A server-side cursor enables a result set

Restrictions on Subqueries

2887

to be generated on the server side, but not transferred to the client except for those rows that the client
requests. For example, if a client executes a query but is only interested in the first row, the remaining
rows are not transferred.

In MySQL, a server-side cursor is materialized into an internal temporary table. Initially, this is a
MEMORY table, but is converted to a MyISAM table when its size exceeds the minimum value of the
max_heap_table_size and tmp_table_size system variables. Note that the same restrictions
apply to internal temporary tables created to hold the result set for a cursor as for other uses of internal
temporary tables. See Section 8.4.4, “How MySQL Uses Internal Temporary Tables”. One limitation of
the implementation is that for a large result set, retrieving its rows through a cursor might be slow.

Cursors are read only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because
updatable cursors are not supported.

Cursors are nonholdable (not held open after a commit).

Cursors are asensitive.

Cursors are nonscrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must
prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported
in prepared mode. This includes statements such as CHECK TABLE, HANDLER READ, and SHOW
BINLOG EVENTS.

E.4 Restrictions on Subqueries
• Subquery optimization for IN is not as effective as for the = operator or for the IN(value_list)

operator.

A typical case for poor IN subquery performance is when the subquery returns a small number of
rows but the outer query returns a large number of rows to be compared to the subquery result.

The problem is that, for a statement that uses an IN subquery, the optimizer rewrites it as a
correlated subquery. Consider the following statement that uses an uncorrelated subquery:

SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);

The optimizer rewrites the statement to a correlated subquery:

SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);

If the inner and outer queries return M and N rows, respectively, the execution time becomes on the
order of O(M×N), rather than O(M+N) as it would be for an uncorrelated subquery.

An implication is that an IN subquery can be much slower than a query written using an
IN(value_list) operator that lists the same values that the subquery would return.

• In general, you cannot modify a table and select from the same table in a subquery. For example,
this limitation applies to statements of the following forms:

DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);

Restrictions on Subqueries

2888

Exception: The preceding prohibition does not apply if you are using a subquery for the modified
table in the FROM clause. Example:

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) AS _t ...);

Here the result from the subquery in the FROM clause is stored as a temporary table, so the relevant
rows in t have already been selected by the time the update to t takes place.

• Row comparison operations are only partially supported:

• For expr [NOT] IN subquery, expr can be an n-tuple (specified using row constructor
syntax) and the subquery can return rows of n-tuples. The permitted syntax is therefore more
specifically expressed as row_constructor [NOT] IN table_subquery

• For expr op {ALL|ANY|SOME} subquery, expr must be a scalar value and the subquery
must be a column subquery; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(expr_1, ..., expr_n) [NOT] IN table_subquery

But this is not supported:

(expr_1, ..., expr_n) op {ALL|ANY|SOME} subquery

The reason for supporting row comparisons for IN but not for the others is that IN is implemented by
rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used for
ALL, ANY, or SOME.

• Subqueries in the FROM clause cannot be correlated subqueries. They are materialized in whole
(evaluated to produce a result set) during query execution, so they cannot be evaluated per row of
the outer query. In MySQL 5.7, the optimizer delays materialization until the result is needed, which
may permit materialization to be avoided. See Optimizing Subqueries in the FROM Clause (Derived
Tables).

• MySQL does not support LIMIT in subqueries for certain subquery operators:

mysql> SELECT * FROM t1
 -> WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1);
ERROR 1235 (42000): This version of MySQL doesn't yet support
 'LIMIT & IN/ALL/ANY/SOME subquery'

• The optimizer is more mature for joins than for subqueries, so in many cases a statement that uses a
subquery can be executed more efficiently if you rewrite it as a join.

An exception occurs for the case where an IN subquery can be rewritten as a SELECT DISTINCT
join. Example:

SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);

That statement can be rewritten as follows:

SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;

• MySQL permits a subquery to refer to a stored function that has data-modifying side effects such as
inserting rows into a table. For example, if f() inserts rows, the following query can modify data:

Restrictions on Views

2889

SELECT ... WHERE x IN (SELECT f() ...);

This behavior is an extension to the SQL standard. In MySQL, it can produce indeterminate results
because f() might be executed a different number of times for different executions of a given query
depending on how the optimizer chooses to handle it.

For statement-based or mixed-format replication, one implication of this indeterminism is that such a
query can produce different results on the master and its slaves.

• In MySQL 5.7, the optimizer creates an index on the materialized table if this will result in faster
query execution. See Optimizing Subqueries in the FROM Clause (Derived Tables).

E.5 Restrictions on Views
View processing is not optimized:

• It is not possible to create an index on a view.

• Indexes can be used for views processed using the merge algorithm. However, a view that is
processed with the temptable algorithm is unable to take advantage of indexes on its underlying
tables (although indexes can be used during generation of the temporary tables).

Subqueries cannot be used in the FROM clause of a view.

There is a general principle that you cannot modify a table and select from the same table in a
subquery. See Section E.4, “Restrictions on Subqueries”.

The same principle also applies if you select from a view that selects from the table, if the view selects
from the table in a subquery and the view is evaluated using the merge algorithm. Example:

CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery
and still modify that table in the outer query. In this case the view will be stored in a temporary table
and thus you are not really selecting from the table in a subquery and modifying it “at the same time.”
(This is another reason you might wish to force MySQL to use the temptable algorithm by specifying
ALGORITHM = TEMPTABLE in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition.
No warning results from the DROP or ALTER operation, even though this invalidates the view. Instead,
an error occurs later, when the view is used. CHECK TABLE can be used to check for views that have
been invalidated by DROP or ALTER operations.

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable,
it should be updatable in practice. This includes views that have UNION in their definition. Currently,
not all views that are theoretically updatable can be updated. The initial view implementation was
deliberately written this way to get usable, updatable views into MySQL as quickly as possible. Many
theoretically updatable views can be updated now, but limitations still exist:

• Updatable views with subqueries anywhere other than in the WHERE clause. Some views that have
subqueries in the SELECT list may be updatable.

• You cannot use UPDATE to update more than one underlying table of a view that is defined as a join.

• You cannot use DELETE to update a view that is defined as a join.

There exists a shortcoming with the current implementation of views. If a user is granted the basic
privileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user will be

Restrictions on XA Transactions

2890

unable to call SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW
privilege.

That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to
insufficient privileges. This problem is described in Bug #22062.

The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to
users who are granted CREATE VIEW, since MySQL doesn't grant it implicitly when views are created.

Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view
is not permitted.

SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column. If a
column is created from an expression, the default alias is the expression text, which can be quite long.
Aliases for column names in CREATE VIEW statements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters). As a result, views created
from the output of SHOW CREATE VIEW fail if any column alias exceeds 64 characters. This can cause
problems in the following circumstances for views with too-long aliases:

• View definitions fail to replicate to newer slaves that enforce the column-length restriction.

• Dump files created with mysqldump cannot be loaded into servers that enforce the column-length
restriction.

A workaround for either problem is to modify each problematic view definition to use aliases that
provide shorter column names. Then the view will replicate properly, and can be dumped and reloaded
without causing an error. To modify the definition, drop and create the view again with DROP VIEW and
CREATE VIEW, or replace the definition with CREATE OR REPLACE VIEW.

For problems that occur when reloading view definitions in dump files, another workaround is to edit
the dump file to modify its CREATE VIEW statements. However, this does not change the original view
definitions, which may cause problems for subsequent dump operations.

E.6 Restrictions on XA Transactions
XA transaction support is limited to the InnoDB storage engine.

For “external XA,” a MySQL server acts as a Resource Manager and client programs act as
Transaction Managers. For “Internal XA”, storage engines within a MySQL server act as RMs, and
the server itself acts as a TM. Internal XA support is limited by the capabilities of individual storage
engines. Internal XA is required for handling XA transactions that involve more than one storage
engine. The implementation of internal XA requires that a storage engine support two-phase commit at
the table handler level, and currently this is true only for InnoDB.

For XA START, the JOIN and RESUME clauses are not supported.

For XA END, the SUSPEND [FOR MIGRATE] clause is not supported.

The requirement that the bqual part of the xid value be different for each XA transaction within
a global transaction is a limitation of the current MySQL XA implementation. It is not part of the XA
specification.

If an XA transaction has reached the PREPARED state and the MySQL server is killed (for example,
with kill -9 on Unix) or shuts down abnormally, the transaction can be continued after the server
restarts. However, if the client reconnects and commits the transaction, the transaction will be absent
from the binary log even though it has been committed. This means the data and the binary log have
gone out of synchrony. An implication is that XA cannot be used safely together with replication.

It is possible that the server will roll back a pending XA transaction, even one that has reached the
PREPARED state. This happens if a client connection terminates and the server continues to run, or if
clients are connected and the server shuts down gracefully. (In the latter case, the server marks each

Restrictions on Character Sets

2891

connection to be terminated, and then rolls back the PREPARED XA transaction associated with it.) It
should be possible to commit or roll back a PREPARED XA transaction, but this cannot be done without
changes to the binary logging mechanism.

E.7 Restrictions on Character Sets
• Identifiers are stored in mysql database tables (user, db, and so forth) using utf8, but identifiers

can contain only characters in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted in identifiers.

• The ucs2, utf16, utf16le, and utf32 character sets have the following restrictions:

• They cannot be used as a client character set, which means that they do not work for SET NAMES
or SET CHARACTER SET. (See Section 10.1.4, “Connection Character Sets and Collations”.)

• It is currently not possible to use LOAD DATA INFILE to load data files that use these character
sets.

• FULLTEXT indexes cannot be created on a column that uses any of these character sets.
However, you can perform IN BOOLEAN MODE searches on the column without an index.

• The use of ENCRYPT() with these character sets is not recommended because the underlying
system call expects a string terminated by a zero byte.

• The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multi-byte safe and
may produce unexpected results with multi-byte character sets. In addition, these operators compare
characters by their byte values and accented characters may not compare as equal even if a given
collation treats them as equal.

E.8 Restrictions on Performance Schema
The Performance Schema avoids using mutexes to collect or produce data, so there are no guarantees
of consistency and results can sometimes be incorrect. Event values in performance_schema tables
are nondeterministic and nonrepeatable.

If you save event information in another table, you should not assume that the original events will
still be available later. For example, if you select events from a performance_schema table into a
temporary table, intending to join that table with the original table later, there might be no matches.

mysqldump and BACKUP DATABASE ignore tables in the performance_schema database.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

Tables in the performance_schema database cannot be indexed.

Results for queries that refer to tables in the performance_schema database are not saved in the
query cache.

Tables in the performance_schema database are not replicated.

The Performance Schema is not available in libmysqld, the embedded server.

The types of timers might vary per platform. The performance_timers table shows which event
timers are available. If the values in this table for a given timer name are NULL, that timer is not
supported on your platform.

Instruments that apply to storage engines might not be implemented for all storage engines.
Instrumentation of each third-party engine is the responsibility of the engine maintainer.

E.9 Restrictions on Pluggable Authentication

General Pluggable Authentication Restrictions

2892

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Section 6.3.8, “Pluggable Authentication”. The second part
describes how third-party connector developers can determine the extent to which a connector can
take advantage of pluggable authentication capabilities and what steps to take to become more
compliant.

The term “native authentication” used here refers to authentication against passwords stored in the
Password column of the mysql.user table. This is the same authentication method provided by older
MySQL servers, before pluggable authentication was implemented. It remains the default method,
although now it is implemented using plugins. “Windows native authentication” refers to authentication
using the credentials of a user who has already logged in to Windows, as implemented by the Windows
Native Authentication plugin (“Windows plugin” for short).

General Pluggable Authentication Restrictions

• Connector/C, Connector/C++: Clients that use these connectors can connect to the server only
through accounts that use native authentication.

Exception: A connector supports pluggable authentication if it was built to link to libmysqlclient
dynamically (rather than statically) and it loads the current version of libmysqlclient if that
version is installed, or if the connector is recompiled from source to link against the current
libmysqlclient.

• Connector/J: Clients that use this connector can connect to the server only through accounts that
use native authentication.

• Connector/Net: Before Connector/Net 6.4.4, clients that use this connector can connect to the
server only through accounts that use native authentication. As of 6.4.4, clients can also connect to
the server through accounts that use the Windows plugin.

• Connector/ODBC: Before Connector/ODBC 3.51.29 and 5.1.9, clients that use this connector
can connect to the server only through accounts that use native authentication. As of 3.51.29 and
5.1.9, clients that use binary releases of this connector for Windows can also connect to the server
through accounts that use the PAM or Windows plugins. (These capabilities result from linking the
Connector/ODBC binaries against the MySQL 5.5.16 libmysqlclient rather than the MySQL 5.1
libmysqlclient used previously. The newer libmysqlclient includes the client-side support
needed for the server-side PAM and Windows authentication plugins.)

• Connector/PHP: Clients that use this connector can connect to the server only through accounts
that use native authentication, when compiled using the MySQL native driver for PHP (mysqlnd).

• MySQL Proxy: Before MySQL Proxy 0.8.2, clients can connect to the server only through accounts
that use native authentication. As of 0.8.2, clients can also connect to the server through accounts
that use the PAM plugin. As of 0.8.3, clients can also connect to the server through accounts that
use the Windows plugin.

• MySQL Enterprise Backup: MySQL Enterprise Backup before version 3.6.1 supports connections
to the server only through accounts that use native authentication. As of 3.6.1, MySQL Enterprise
Backup can connect to the server through accounts that use nonnative authentication.

• Windows native authentication: Connecting through an account that uses the Windows plugin
requires Windows Domain setup. Without it, NTLM authentication is used and then only local
connections are possible; that is, the client and server must run on the same computer.

• Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a user
name different from that of the connecting user). For example, the native authentication plugins do
not support proxy users, whereas the PAM and Windows plugins do.

• Replication: Replication slaves can employ not only master accounts using native authentication,
but can also connect through master accounts that use nonnative authentication if the required

Pluggable Authentication and Third-Party Connectors

2893

client-side plugin is available. If the plugin is built into libmysqlclient, it is available by default.
Otherwise, the plugin must be installed on the slave side in the directory named by the slave
plugin_dir system variable.

• FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a
connector to take advantage of pluggable authentication capabilities and what steps to take to become
more compliant:

• An existing connector to which no changes have been made uses native authentication and
clients that use the connector can connect to the server only through accounts that use native
authentication. However, you should test the connector against a recent version of the server to
verify that such connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
to libmysqlclient dynamically (rather than statically) and it loads the current version of
libmysqlclient if that version is installed.

• To take advantage of pluggable authentication capabilities, a connector that is libmysqlclient-
based should be relinked against the current version of libmysqlclient. This enables the
connector to support connections though accounts that require client-side plugins now built into
libmysqlclient (such as the cleartext plugin needed for PAM authentication and the Windows
plugin needed for Windows native authentication). Linking with a current libmysqlclient also
enables the connector to access client-side plugins installed in the default MySQL plugin directory
(typically the directory named by the default value of the local server's plugin_dir system
variable).

If a connector links to libmysqlclient dynamically, it must be ensured that the newer version of
libmysqlclient is installed on the client host and that the connector loads it at runtime.

• Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/Net uses this approach to provide support for Windows native
authentication.

• If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities
for this include a command-line option or environment variable from which the connector can obtain
the directory name. Standard MySQL client programs such as mysql and mysqladmin implement a
--plugin-dir option. See also Section 21.8.14, “C API Client Plugin Functions”.

• Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

E.10 Limits in MySQL
This section lists current limits in MySQL 5.7.

E.10.1 Limits of Joins

The maximum number of tables that can be referenced in a single join is 61. This also applies to the
number of tables that can be referenced in the definition of a view.

E.10.2 Limits on Number of Databases and Tables

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

Limits on Table Size

2894

MySQL has no limit on the number of tables. The underlying file system may have a limit on the
number of files that represent tables. Individual storage engines may impose engine-specific
constraints. InnoDB permits up to 4 billion tables.

E.10.3 Limits on Table Size

The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. The following table lists some examples of
operating system file-size limits. This is only a rough guide and is not intended to be definitive. For the
most up-to-date information, be sure to check the documentation specific to your operating system.

Operating System File-size Limit

Win32 w/ FAT/FAT32 2GB/4GB

Win32 w/ NTFS 2TB (possibly larger)

Linux 2.2-Intel 32-bit 2GB (LFS: 4GB)

Linux 2.4+ (using ext3 file system) 4TB

Solaris 9/10 16TB

Mac OS X w/ HFS+ 2TB

Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production
use with MySQL. Use NTFS instead.

On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the Large File Support (LFS)
patch for the ext2 file system. Most current Linux distributions are based on kernel 2.4 or higher and
include all the required LFS patches. On Linux 2.4, patches also exist for ReiserFS to get support for
big files (up to 2TB). With JFS and XFS, petabyte and larger files are possible on Linux.

For a detailed overview about LFS in Linux, have a look at Andreas Jaeger's Large File Support in
Linux page at http://www.suse.de/~aj/linux_lfs.html.

If you do encounter a full-table error, there are several reasons why it might have occurred:

• The disk might be full.

• The InnoDB storage engine maintains InnoDB tables within a tablespace that can be created from
several files. This enables a table to exceed the maximum individual file size. The tablespace can
include raw disk partitions, which permits extremely large tables. The maximum tablespace size is
64TB.

If you are using InnoDB tables and run out of room in the InnoDB tablespace. In this case, the
solution is to extend the InnoDB tablespace. See Section 14.2.5.7, “Changing the Number or Size of
InnoDB Log Files and Resizing the InnoDB Tablespace”.

• You are using MyISAM tables on an operating system that supports files only up to 2GB in size and
you have hit this limit for the data file or index file.

• You are using a MyISAM table and the space required for the table exceeds what is permitted by the
internal pointer size. MyISAM permits data and index files to grow up to 256TB by default, but this
limit can be changed up to the maximum permissible size of 65,536TB (2567 – 1 bytes).

If you need a MyISAM table that is larger than the default limit and your operating system supports
large files, the CREATE TABLE statement supports AVG_ROW_LENGTH and MAX_ROWS options. See
Section 13.1.14, “CREATE TABLE Syntax”. The server uses these options to determine how large a
table to permit.

If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to
increase a table's maximum permissible size. See Section 13.1.6, “ALTER TABLE Syntax”.

http://www.suse.de/~aj/linux_lfs.html

Limits on Table Column Count and Row Size

2895

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case,
MySQL can't optimize the space required based only on the number of rows.

To change the default size limit for MyISAM tables, set the myisam_data_pointer_size, which
sets the number of bytes used for internal row pointers. The value is used to set the pointer size for
new tables if you do not specify the MAX_ROWS option. The value of myisam_data_pointer_size
can be from 2 to 7. A value of 4 permits tables up to 4GB; a value of 6 permits tables up to 256TB.

You can check the maximum data and index sizes by using this statement:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file. See Section 13.7.5, “SHOW
Syntax”, or Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

Other ways to work around file-size limits for MyISAM tables are as follows:

• If your large table is read only, you can use myisampack to compress it. myisampack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack
also can merge multiple tables into a single table. See Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”.

• MySQL includes a MERGE library that enables you to handle a collection of MyISAM tables that
have identical structure as a single MERGE table. See Section 14.8, “The MERGE Storage Engine”.

• You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the
max_heap_table_size system variable. See Section 5.1.4, “Server System Variables”.

E.10.4 Limits on Table Column Count and Row Size

There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given
table. The exact limit depends on several interacting factors.

• Every table (regardless of storage engine) has a maximum row size of 65,535 bytes. Storage
engines may place additional constraints on this limit, reducing the effective maximum row size.

The maximum row size constrains the number (and possibly size) of columns because the total
length of all columns cannot exceed this size. For example, utf8 characters require up to three
bytes per character, so for a CHAR(255) CHARACTER SET utf8 column, the server must allocate
255 × 3 = 765 bytes per value. Consequently, a table cannot contain more than 65,535 / 765 = 85
such columns.

Storage for variable-length columns includes length bytes, which are assessed against the row size.
For example, a VARCHAR(255) CHARACTER SET utf8 column takes two bytes to store the length
of the value, so each value can take up to 767 bytes.

BLOB and TEXT columns count from one to four plus eight bytes each toward the row-size limit
because their contents are stored separately from the rest of the row.

Declaring columns NULL can reduce the maximum number of columns permitted. For MyISAM
tables, NULL columns require additional space in the row to record whether their values are NULL.
Each NULL column takes one bit extra, rounded up to the nearest byte. The maximum row length in
bytes can be calculated as follows:

row length = 1
 + (sum of column lengths)
 + (number of NULL columns + delete_flag + 7)/8
 + (number of variable-length columns)

Limits Imposed by .frm File Structure

2896

delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a flag
that indicates whether the row has been deleted. delete_flag is 0 for dynamic tables because
the flag is stored in the dynamic row header. For information about MyISAM table formats, see
Section 14.3.3, “MyISAM Table Storage Formats”.

For InnoDB tables, storage size is the same for NULL and NOT NULL columns, so the preceding
calculations do not apply.

The following statement to create table t1 succeeds because the columns require 32,765 + 2 bytes
and 32,766 + 2 bytes, which falls within the maximum row size of 65,535 bytes:

mysql> CREATE TABLE t1
 -> (c1 VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL)
 -> ENGINE = MyISAM CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The following statement to create table t2 fails because the columns are NULL and MyISAM requires
additional space that causes the row size to exceed 65,535 bytes:

mysql> CREATE TABLE t2
 -> (c1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL)
 -> ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

The following statement to create table t3 fails because, although the column length is within the
maximum length of 65,535 bytes, two additional bytes are required to record the length, which
causes the row size to exceed 65,535 bytes:

mysql> CREATE TABLE t3
 -> (c1 VARCHAR(65535) NOT NULL)
 -> ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

Reducing the column length to 65,533 or less permits the statement to succeed.

• Individual storage engines might impose additional restrictions that limit table column count.
Examples:

• InnoDB permits up to 1000 columns.

• InnoDB restricts row size to something less than half a database page (approximately 8000
bytes), not including VARBINARY, VARCHAR, BLOB, or TEXT columns.

• Different InnoDB storage formats (COMPRESSED, REDUNDANT) use different amounts of page
header and trailer data, which affects the amount of storage available for rows.

• Each table has an .frm file that contains the table definition. The definition affects the content of this
file in ways that may affect the number of columns permitted in the table. For more information, see
Section E.10.5, “Limits Imposed by .frm File Structure”.

E.10.5 Limits Imposed by .frm File Structure

Each table has an .frm file that contains the table definition. The server uses the following expression
to check some of the table information stored in the file against an upper limit of 64KB:

if (info_length+(ulong) create_fields.elements*FCOMP+288+

Windows Platform Limitations

2897

 n_length+int_length+com_length > 65535L || int_count > 255)

The portion of the information stored in the .frm file that is checked against the expression cannot
grow beyond the 64KB limit, so if the table definition reaches this size, no more columns can be added.

The relevant factors in the expression are:

• info_length is space needed for “screens.” This is related to MySQL's Unireg heritage.

• create_fields.elements is the number of columns.

• FCOMP is 17.

• n_length is the total length of all column names, including one byte per name as a separator.

• int_length is related to the list of values for ENUM and SET columns. In this context, “int” does not
mean “integer.” It means “interval,” a term that refers collectively to ENUM and SET columns.

• int_count is the number of unique ENUM and SET definitions.

• com_length is the total length of column comments.

The expression just described has several implications for permitted table definitions:

• Using long column names can reduce the maximum number of columns, as can the inclusion of
ENUM or SET columns, or use of column comments.

• A table can have no more than 255 unique ENUM and SET definitions. Columns with identical element
lists are considered the same against this limt. For example, if a table contains these two columns,
they count as one (not two) toward this limit because the definitions are identical:

e1 ENUM('a','b','c')
e2 ENUM('a','b','c')

• The sum of the length of element names in the unique ENUM and SET definitions counts toward the
64KB limit, so although the theoretical limit on number of elements in a given ENUM column is 65,535,
the practical limit is less than 3000.

E.10.6 Windows Platform Limitations

The following limitations apply to use of MySQL on the Windows platform:

• Process memory

On Windows 32-bit platforms, it is not possible by default to use more than 2GB of RAM within a
single process, including MySQL. This is because the physical address limit on Windows 32-bit
is 4GB and the default setting within Windows is to split the virtual address space between kernel
(2GB) and user/applications (2GB).

Some versions of Windows have a boot time setting to enable larger applications by reducing the
kernel application. Alternatively, to use more than 2GB, use a 64-bit version of Windows.

• File system aliases

When using MyISAM tables, you cannot use aliases within Windows link to the data files on another
volume and then link back to the main MySQL datadir location.

This facility is often used to move the data and index files to a RAID or other fast solution, while
retaining the main .frm files in the default data directory configured with the datadir option.

• Limited number of ports

Windows Platform Limitations

2898

Windows systems have about 4,000 ports available for client connections, and after a connection on
a port closes, it takes two to four minutes before the port can be reused. In situations where clients
connect to and disconnect from the server at a high rate, it is possible for all available ports to be
used up before closed ports become available again. If this happens, the MySQL server appears to
be unresponsive even though it is running. Note that ports may be used by other applications running
on the machine as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see http://support.microsoft.com/default.aspx?scid=kb;en-
us;196271.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY option for CREATE TABLE is supported on Windows only for InnoDB tables,
as described in Section 14.2.5.4, “Specifying the Location of a Tablespace”. For MyISAM and other
storage engines, the DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are
ignored on Windows and any other platforms with a nonfunctional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by another session.

• Case-insensitive names

File names are not case sensitive on Windows, so MySQL database and table names are also not
case sensitive on Windows. The only restriction is that database and table names must be specified
using the same case throughout a given statement. See Section 9.2.2, “Identifier Case Sensitivity”.

• Directory and file names

On Windows, MySQL Server supports only directory and file names that are compatible with the
current ANSI code pages. For example, the following Japanese directory name will not work in the
Western locale (code page 1252):

datadir="C:/私たちのプロジェクトのデータ"

The same limitation applies to directory and file names referred to in SQL statements, such as the
data file path name in LOAD DATA INFILE.

• The “\” path name separator character

Path name components in Windows are separated by the “\” character, which is also the escape
character in MySQL. If you are using LOAD DATA INFILE or SELECT ... INTO OUTFILE, use
Unix-style file names with “/” characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the “\” character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character
^Z / CHAR(24), Windows thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:

http://support.microsoft.com/default.aspx?scid=kb;en-us;196271
http://support.microsoft.com/default.aspx?scid=kb;en-us;196271

Windows Platform Limitations

2899

C:\> mysqlbinlog binary_log_file | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character,
you can use the following workaround:

C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read in any SQL file that may contain binary data.

2900

2901

MySQL Glossary
These terms are commonly used in information about the MySQL database server. This glossary originated as a
reference for terminology about the InnoDB storage engine, and the majority of definitions are InnoDB-related.

A
.ARM file

 Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in
backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup, mysqlbackup command.

.ARZ file
 Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup, mysqlbackup command.

ACID
 An acronym standing for atomicity, consistency, isolation, and durability. These properties are all desirable
in a database system, and are all closely tied to the notion of a transaction. The transactional features of
InnoDB adhere to the ACID principles.

Transactions are atomic units of work that can be committed or rolled back. When a transaction makes
multiple changes to the database, either all the changes succeed when the transaction is committed, or all the
changes are undone when the transaction is rolled back.

The database remains in a consistent state at all times -- after each commit or rollback, and while transactions
are in progress. If related data is being updated across multiple tables, queries see either all old values or all
new values, not a mix of old and new values.

Transactions are protected (isolated) from each other while they are in progress; they cannot interfere with
each other or see each other's uncommitted data. This isolation is achieved through the locking mechanism.
Experienced users can adjust the isolation level, trading off less protection in favor of increased performance
and concurrency, when they can be sure that the transactions really do not interfere with each other.

The results of transactions are durable: once a commit operation succeeds, the changes made by that
transaction are safe from power failures, system crashes, race conditions, or other potential dangers that
many non-database applications are vulnerable to. Durability typically involves writing to disk storage, with a
certain amount of redundancy to protect against power failures or software crashes during write operations.
(In InnoDB, the doublewrite buffer assists with durability.)
See Also atomic, commit, concurrency, doublewrite buffer, isolation level, locking, rollback, transaction.

adaptive flushing
 An algorithm for InnoDB tables that smooths out the I/O overhead introduced by checkpoints. Instead of
flushing all modified pages from the buffer pool to the data files at once, MySQL periodically flushes small
sets of modified pages. The adaptive flushing algorithm extends this process by estimating the optimal rate to
perform these periodic flushes, based on the rate of flushing and how fast redo information is generated. First
introduced in MySQL 5.1, in the InnoDB Plugin.
See Also buffer pool, checkpoint, data files, flush, InnoDB, page, redo log.

adaptive hash index
 An optimization for InnoDB tables that can speed up lookups using = and IN operators, by constructing
a hash index in memory. MySQL monitors index searches for InnoDB tables, and if queries could
benefit from a hash index, it builds one automatically for index pages that are frequently accessed.
In a sense, the adaptive hash index configures MySQL at runtime to take advantage of ample main
memory, coming closer to the architecture of main-memory databases. This feature is controlled by the
innodb_adaptive_hash_index configuration option. Because this feature benefits some workloads
and not others, and the memory used for the hash index is reserved in the buffer pool, typically you should
benchmark with this feature both enabled and disabled.

2902

The hash index is always built based on an existing InnoDB secondary index, which is organized as a B-tree
structure. MySQL can build a hash index on a prefix of any length of the key defined for the B-tree, depending
on the pattern of searches against the index. A hash index can be partial; the whole B-tree index does not
need to be cached in the buffer pool.

In MySQL 5.6 and higher, another way to take advantage of fast single-value lookups with InnoDB tables is
to use the memcached interface to InnoDB. See Section 14.2.16, “InnoDB Integration with memcached” for
details.
See Also B-tree, buffer pool, hash index, memcached, page, secondary index.

AHI
 Acronym for adaptive hash index.
See Also adaptive hash index.

AIO
 Acronym for asynchronous I/O. You might see this acronym in InnoDB messages or keywords.
See Also asynchronous I/O.

Antelope
 The code name for the original InnoDB file format. It supports the redundant and compact row formats, but
not the newer dynamic and compressed row formats available in the Barracuda file format.

If your application could benefit from InnoDB table compression, or uses BLOBs or large text columns that
could benefit from the dynamic row format, you might switch some tables to Barracuda format. You select the
file format to use by setting the innodb_file_format option before creating the table.
See Also Barracuda, compact row format, compressed row format, dynamic row format, file format,
innodb_file_format, redundant row format.

application programming interface (API)
 A set of functions or procedures. An API provides a stable set of names and types for functions, procedures,
parameters, and return values.

apply
 When a backup produced by the MySQL Enterprise Backup product does not include the most recent
changes that occurred while the backup was underway, the process of updating the backup files to include
those changes is known as the apply step. It is specified by the apply-log option of the mysqlbackup
command.

Before the changes are applied, we refer to the files as a raw backup. After the changes are applied, we refer
to the files as a prepared backup. The changes are recorded in the ibbackup_logfile file; once the apply
step is finished, this file is no longer necessary.
See Also hot backup, ibbackup_logfile, MySQL Enterprise Backup, prepared backup, raw backup.

asynchronous I/O
 A type of I/O operation that allows other processing to proceed before the I/O is completed. Also known as
non-blocking I/O and abbreviated as AIO. InnoDB uses this type of I/O for certain operations that can run in
parallel without affecting the reliability of the database, such as reading pages into the buffer pool that have
not actually been requested, but might be needed soon.

Historically, InnoDB has used asynchronous I/O on Windows systems only. Starting with the InnoDB Plugin
1.1, InnoDB uses asynchronous I/O on Linux systems. This change introduces a dependency on libaio. On
other Unix-like systems, InnoDB uses synchronous I/O only.
See Also buffer pool, non-blocking I/O.

atomic
 In the SQL context, transactions are units of work that either succeed entirely (when committed) or have
no effect at all (when rolled back). The indivisible ("atomic") property of transactions is the "A" in the acronym
ACID.
See Also ACID, commit, rollback, transaction.

2903

atomic instruction
 Special instructions provided by the CPU, to ensure that critical low-level operations cannot be interrupted.

auto-increment
 A property of a table column (specified by the AUTO_INCREMENT keyword) that automatically adds an
ascending sequence of values in the column. InnoDB supports auto-increment only for primary key columns.

It saves work for the developer, not to have to produce new unique values when inserting new rows. It
provides useful information for the query optimizer, because the column is known to be not null and with
unique values. The values from such a column can be used as lookup keys in various contexts, and because
they are auto-generated there is no reason to ever change them; for this reason, primary key columns are
often specified as auto-incrementing.

Auto-increment columns can be problematic with statement-based replication, because replaying the
statements on a slave might not produce the same set of column values as on the master, due to timing
issues. When you have an auto-incrementing primary key, you can use statement-based replication only
with the setting innodb_autoinc_lock_mode=1. If you have innodb_autoinc_lock_mode=2, which
allows higher concurrency for insert operations, use row-based replication rather than statement-based
replication. The setting innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and
should not be used except for compatibility purposes.
See Also auto-increment locking, innodb_autoinc_lock_mode, primary key, row-based replication, statement-
based replication.

auto-increment locking
 The convenience of an auto-increment primary key involves some tradeoff with concurrency. In the simplest
case, if one transaction is inserting values into the table, any other transactions must wait to do their own
inserts into that table, so that rows inserted by the first transaction receive consecutive primary key values.
InnoDB includes optimizations, and the innodb_autoinc_lock_mode option, so that you can choose how
to trade off between predictable sequences of auto-increment values and maximum concurrency for insert
operations.
See Also auto-increment, concurrency, innodb_autoinc_lock_mode.

autocommit
 A setting that causes a commit operation after each SQL statement. This mode is not recommended for
working with InnoDB tables with transactions that span several statements. It can help performance for
read-only transactions on InnoDB tables, where it minimizes overhead from locking and generation of
undo data, especially in MySQL 5.6.4 and up. It is also appropriate for working with MyISAM tables, where
transactions are not applicable.
See Also commit, locking, read-only transaction, SQL, transaction, undo.

availability
 The ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the
operating system, or the hardware and maintenance activity that may otherwise cause downtime. Often paired
with scalability as critical aspects of a large-scale deployment.
See Also scalability.

B
B-tree

 A tree data structure that is popular for use in database indexes. The structure is kept sorted at all times,
enabling fast lookup for exact matches (equals operator) and ranges (for example, greater than, less than,
and BETWEEN operators). This type of index is available for most storage engines, such as InnoDB and
MyISAM.

Because B-tree nodes can have many children, a B-tree is not the same as a binary tree, which is limited to 2
children per node.

Contrast with hash index, which is only available in the MEMORY storage engine. The MEMORY storage
engine can also use B-tree indexes, and you should choose B-tree indexes for MEMORY tables if some
queries use range operators.

2904

See Also hash index.

backticks
 Identifiers within MySQL SQL statements must be quoted using the backtick character (`) if they contain
special characters or reserved words. For example, to refer to a table named FOO#BAR or a column named
SELECT, you would specify the identifiers as `FOO#BAR` and `SELECT`. Since the backticks provide an
extra level of safety, they are used extensively in program-generated SQL statements, where the identifier
names might not be known in advance.

Many other database systems use double quotation marks (") around such special names. For portability, you
can enable ANSI_QUOTES mode in MySQL and use double quotation marks instead of backticks to qualify
identifier names.
See Also SQL.

backup
 The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can
also refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore
operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the mysqldump command. These techniques have different characteristics in
terms of size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal
database operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup,
warm backup.

Barracuda
 The code name for an InnoDB file format that supports compression for table data. This file format was
first introduced in the InnoDB Plugin. It supports the compressed row format that enables InnoDB table
compression, and the dynamic row format that improves the storage layout for BLOB and large text columns.
You can select it through the innodb_file_format option.

Because the InnoDB system tablespace is stored in the original Antelope file format, to use the Barracuda
file format you must also enable the file-per-table setting, which puts newly created tables in their own
tablespaces separate from the system tablespace.

The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespaces that use the
Barracuda file format.
See Also Antelope, compact row format, compressed row format, dynamic row format, file format, file-per-
table, innodb_file_format, MySQL Enterprise Backup, row format, system tablespace.

beta
 An early stage in the life of a software product, when it is available only for evaluation, typically without a
definite release number or a number less than 1. InnoDB does not use the beta designation, preferring an
early adopter phase that can extend over several point releases, leading to a GA release.
See Also early adopter, GA.

binary log
 A file containing a record of all statements that attempt to change table data. These statements can be
replayed to bring slave servers up to date in a replication scenario, or to bring a database up to date after
restoring table data from a backup. The binary logging feature can be turned on and off, although Oracle
recommends always enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay those statements during replication or recovery, by
using the mysqlbinlog command. For full information about the binary log, see Section 5.2.4, “The Binary
Log”. For MySQL configuration options related to the binary log, see Section 16.1.4.4, “Binary Log Options
and Variables”.

2905

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the
file are important details. To record this information for the master server when taking a backup in a replication
context, you can specify the --slave-info option.

Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the
binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.

binlog
 An informal name for the binary log file. For example, you might see this abbreviation used in e-mail
messages or forum discussions.
See Also binary log.

blind query expansion
 A special mode of full-text search enabled by the WITH QUERY EXPANSION clause. It performs the search
twice, where the search phrase for the second search is the original search phrase concatenated with the
few most highly relevant documents from the first search. This technique is mainly applicable for short search
phrases, perhaps only a single word. It can uncover relevant matches where the precise search term does not
occur in the document.
See Also full-text search.

bottleneck
 A portion of a system that is constrained in size or capacity, that has the effect of limiting overall throughput.
For example, a memory area might be smaller than necessary; access to a single required resource might
prevent multiple CPU cores from running simultaneously; or waiting for disk I/O to complete might prevent the
CPU from running at full capacity. Removing bottlenecks tends to improve concurrency. For example, the
ability to have multiple InnoDB buffer pool instances reduces contention when multiple sessions read from
and write to the buffer pool simultaneously.
See Also buffer pool, concurrency.

bounce
 A shutdown operation immediately followed by a restart. Ideally with a relatively short warmup period so
that performance and throughput quickly return to a high level.
See Also shutdown.

buddy allocator
 A mechanism for managing different-sized pages in the InnoDB buffer pool.
See Also buffer pool, page, page size.

buffer
 A memory or disk area used for temporary storage. Data is buffered in memory so that it can be written
to disk efficiently, with a few large I/O operations rather than many small ones. Data is buffered on disk for
greater reliability, so that it can be recovered even when a crash or other failure occurs at the worst possible
time. The main types of buffers used by InnoDB are the buffer pool, the doublewrite buffer, and the insert
buffer.
See Also buffer pool, crash, doublewrite buffer, insert buffer.

buffer pool
 The memory area that holds cached InnoDB data for both tables and indexes. For efficiency of high-volume
read operations, the buffer pool is divided into pages that can potentially hold multiple rows. For efficiency of
cache management, the buffer pool is implemented as a linked list of pages; data that is rarely used is aged
out of the cache, using a variation of the LRU algorithm. On systems with large memory, you can improve
concurrency by dividing the buffer pool into multiple buffer pool instances.

Several InnoDB status variables, information_schema tables, and performance_schema tables help
to monitor the internal workings of the buffer pool. Starting in MySQL 5.6, you can also dump and restore
the contents of the buffer pool, either automatically during shutdown and restart, or manually at any time,
through a set of InnoDB configuration variables such as innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup.

2906

See Also buffer pool instance, LRU, page, warm up.

buffer pool instance
 Any of the multiple regions into which the buffer pool can be divided, controlled by the
innodb_buffer_pool_instances configuration option. The total memory size specified by the
innodb_buffer_pool_size is divided among all the instances. Typically, multiple buffer pool instances are
appropriate for systems devoting multiple gigabytes to the InnoDB buffer pool, with each instance 1 gigabyte
or larger. On systems loading or looking up large amounts of data in the buffer pool from many concurrent
sessions, having multiple instances reduces the contention for exclusive access to the data structures that
manage the buffer pool.
See Also buffer pool.

built-in
 The built-in InnoDB storage engine within MySQL is the original form of distribution for the storage engine.
Contrast with the InnoDB Plugin. Starting with MySQL 5.5, the InnoDB Plugin is merged back into the
MySQL code base as the built-in InnoDB storage engine (known as InnoDB 1.1).

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin
but not the built-in InnoDB, or vice versa.
See Also InnoDB, plugin.

business rules
 The relationships and sequences of actions that form the basis of business software, used to run a
commercial company. Sometimes these rules are dictated by law, other times by company policy. Careful
planning ensures that the relationships encoded and enforced by the database, and the actions performed
through application logic, accurately reflect the real policies of the company and can handle real-life situations.

For example, an employee leaving a company might trigger a sequence of actions from the human resources
department. The human resources database might also need the flexibility to represent data about a person
who has been hired, but not yet started work. Closing an account at an online service might result in data
being removed from a database, or the data might be moved or flagged so that it could be recovered if the
account is re-opened. A company might establish policies regarding salary maximums, minimums, and
adjustments, in addition to basic sanity checks such as the salary not being a negative number. A retail
database might not allow a purchase with the same serial number to be returned more than once, or might not
allow credit card purchases above a certain value, while a database used to detect fraud might allow these
kinds of things.
See Also relational.

C
.cfg file

 A metadata file used with the InnoDB transportable tablespace feature. It is produced by the command
FLUSH TABLES ... FOR EXPORT, puts one or more tables in a consistent state that can be copied to
another server. The .cfg file is copied along with the corresponding .ibd file, and used to adjust the internal
values of the .ibd file, such as the space ID, during the ALTER TABLE ... IMPORT TABLESPACE step.
See Also .ibd file, space ID, transportable tablespace.

cache
 The general term for any memory area that stores copies of data for frequent or high-speed retrieval. In
InnoDB, the primary kind of cache structure is the buffer pool.
See Also buffer, buffer pool.

cardinality
 The number of different values in a table column. When queries refer to columns that have an associated
index, the cardinality of each column influences which access method is most efficient. For example, for a
column with a unique constraint, the number of different values is equal to the number of rows in the table. If
a table has a million rows but only 10 different values for a particular column, each value occurs (on average)
100,000 times. A query such as SELECT c1 FROM t1 WHERE c1 = 50; thus might return 1 row or a huge

2907

number of rows, and the database server might process the query differently depending on the cardinality of
c1.

If the values in a column have a very uneven distribution, the cardinality might not be a good way to determine
the best query plan. For example, SELECT c1 FROM t1 WHERE c1 = x; might return 1 row when x=50
and a million rows when x=30. In such a case, you might need to use index hints to pass along advice about
which lookup method is more efficient for a particular query.

Cardinality can also apply to the number of distinct values present in multiple columns, as in a composite
index.

For InnoDB, the process of estimating cardinality for indexes is influenced by the
innodb_stats_sample_pages and the innodb_stats_on_metadata configuration options. The
estimated values are more stable when the persistent statistics feature is enabled (in MySQL 5.6 and
higher).
See Also column, composite index, index, index hint, persistent statistics, random dive, selectivity, unique
constraint.

change buffer
 A special data structure that records changes to pages in secondary indexes. These values could result
from SQL INSERT, UPDATE, or DELETE statements (DML). The set of features involving the change buffer
is known collectively as change buffering, consisting of insert buffering, delete buffering, and purge
buffering.

Changes are only recorded in the change buffer when the relevant page from the secondary index is not in
the buffer pool. When the relevant index page is brought into the buffer pool while associated changes are
still in the change buffer, the changes for that page are applied in the buffer pool (merged) using the data
from the change buffer. Periodically, the purge operation that runs during times when the system is mostly
idle, or during a slow shutdown, writes the new index pages to disk. The purge operation can write the disk
blocks for a series of index values more efficiently than if each value were written to disk immediately.

Physically, the change buffer is part of the system tablespace, so that the index changes remain buffered
across database restarts. The changes are only applied (merged) when the pages are brought into the buffer
pool due to some other read operation.

The kinds and amount of data stored in the change buffer are governed by the innodb_change_buffering
and innodb_change_buffer_max_size configuration options. To see information about the current data
in the change buffer, issue the SHOW ENGINE INNODB STATUS command.

Formerly known as the insert buffer.
See Also buffer pool, change buffering, delete buffering, DML, insert buffer, insert buffering, merge, page,
purge, purge buffering, secondary index, system tablespace.

change buffering
 The general term for the features involving the change buffer, consisting of insert buffering, delete
buffering, and purge buffering. Index changes resulting from SQL statements, which could normally
involve random I/O operations, are held back and performed periodically by a background thread.
This sequence of operations can write the disk blocks for a series of index values more efficiently than
if each value were written to disk immediately. Controlled by the innodb_change_buffering and
innodb_change_buffer_max_size configuration options.
See Also change buffer, delete buffering, insert buffering, purge buffering.

checkpoint
 As changes are made to data pages that are cached in the buffer pool, those changes are written to the
data files sometime later, a process known as flushing. The checkpoint is a record of the latest changes
(represented by an LSN value) that have been successfully written to the data files.
See Also buffer pool, data files, flush, fuzzy checkpointing, LSN.

checksum
 In InnoDB, a validation mechanism to detect corruption when a page in a tablespace is read from disk
into the InnoDB buffer pool. This feature is turned on and off by the innodb_checksums configuration

2908

option. In MySQL 5.6, you can enable a faster checksum algorithm by also specifying the configuration option
innodb_checksum_algorithm=crc32.

The innochecksum command helps to diagnose corruption problems by testing the checksum values for a
specified tablespace file while the MySQL server is shut down.

MySQL also uses checksums for replication purposes. For details, see the configuration options
binlog_checksum, master_verify_checksum, and slave_sql_verify_checksum.
See Also buffer pool, page, tablespace.

child table
 In a foreign key relationship, a child table is one whose rows refer (or point) to rows in another table with an
identical value for a specific column. This is the table that contains the FOREIGN KEY ... REFERENCES
clause and optionally ON UPDATE and ON DELETE clauses. The corresponding row in the parent table
must exist before the row can be created in the child table. The values in the child table can prevent delete or
update operations on the parent table, or can cause automatic deletion or updates in the child table, based on
the ON CASCADE option used when creating the foreign key.
See Also foreign key, parent table.

clean page
 A page in the InnoDB buffer pool where all changes made in memory have also been written (flushed) to
the data files. The opposite of a dirty page.
See Also buffer pool, data files, dirty page, flush, page.

clean shutdown
 A shutdown that completes without errors and applies all changes to InnoDB tables before finishing, as
opposed to a crash or a fast shutdown. Synonym for slow shutdown.
See Also crash, fast shutdown, shutdown, slow shutdown.

client
 A type of program that sends requests to a server, and interprets or processes the results. The client
software might run only some of the time (such as a mail or chat program), and might run interactively (such
as the mysql command processor).
See Also mysql, server.

clustered index
 The InnoDB term for a primary key index. InnoDB table storage is organized based on the values of the
primary key columns, to speed up queries and sorts involving the primary key columns. For best performance,
choose the primary key columns carefully based on the most performance-critical queries. Because modifying
the columns of the clustered index is an expensive operation, choose primary columns that are rarely or never
updated.

In the Oracle Database product, this type of table is known as an index-organized table.
See Also index, primary key, secondary index.

cold backup
 A backup taken while the database is shut down. For busy applications and web sites, this might not be
practical, and you might prefer a warm backup or a hot backup.
See Also backup, hot backup, warm backup.

column
 A data item within a row, whose storage and semantics are defined by a data type. Each table and index is
largely defined by the set of columns it contains.

Each column has a cardinality value. A column can be the primary key for its table, or part of the primary
key. A column can be subject to a unique constraint, a NOT NULL constraint, or both. Values in different
columns, even across different tables, can be linked by a foreign key relationship.

In discussions of MySQL internal operations, sometimes field is used as a synonym.

2909

See Also cardinality, foreign key, index, primary key, row, SQL, table, unique constraint.

column index
 An index on a single column.
See Also composite index, index.

column prefix
 When an index is created with a length specification, such as CREATE INDEX idx ON t1 (c1(N)), only
the first N characters of the column value are stored in the index. Keeping the index prefix small makes the
index compact, and the memory and disk I/O savings help performance. (Although making the index prefix too
small can hinder query optimization by making rows with different values appear to the query optimizer to be
duplicates.)

For columns containing binary values or long text strings, where sorting is not a major consideration and
storing the entire value in the index would waste space, the index automatically uses the first N (typically 768)
characters of the value to do lookups and sorts.
See Also index.

commit
 A SQL statement that ends a transaction, making permanent any changes made by the transaction. It is the
opposite of rollback, which undoes any changes made in the transaction.

InnoDB uses an optimistic mechanism for commits, so that changes can be written to the data files before
the commit actually occurs. This technique makes the commit itself faster, with the tradeoff that more work is
required in case of a rollback.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement.
See Also autocommit, optimistic, rollback, SQL, transaction.

compact row format
 The default InnoDB row format since MySQL 5.0.3. Available for tables that use the Antelope file format. It
has a more compact representation for nulls and variable-length fields than the prior default (redundant row
format).

Because of the B-tree indexes that make row lookups so fast in InnoDB, there is little if any performance
benefit to keeping all rows the same size.

For additional information about InnoDB COMPACT row format, see Section 14.2.9.4, “COMPACT and
REDUNDANT Row Formats”.
See Also Antelope, file format, redundant row format, row format.

composite index
 An index that includes multiple columns.
See Also index, index prefix.

compressed backup
 The compression feature of the MySQL Enterprise Backup product makes a compressed copy of each
tablespace, changing the extension from .ibd to .ibz. Compressing the backup data allows you to
keep more backups on hand, and reduces the time to transfer backups to a different server. The data is
uncompressed during the restore operation. When a compressed backup operation processes a table that is
already compressed, it skips the compression step for that table, because compressing again would result in
little or no space savings.

A set of files produced by the MySQL Enterprise Backup product, where each tablespace is compressed.
The compressed files are renamed with a .ibz file extension.

Applying compression right at the start of the backup process helps to avoid storage overhead during the
compression process, and to avoid network overhead when transferring the backup files to another server.
The process of applying the binary log takes longer, and requires uncompressing the backup files.

2910

See Also apply, binary log, compression, hot backup, MySQL Enterprise Backup, tablespace.

compressed row format
 A row format that enables data and index compression for InnoDB tables. It was introduced in the InnoDB
Plugin, available as part of the Barracuda file format. Large fields are stored away from the page that holds
the rest of the row data, as in dynamic row format. Both index pages and the large fields are compressed,
yielding memory and disk savings. Depending on the structure of the data, the decrease in memory and disk
usage might or might not outweigh the performance overhead of uncompressing the data as it is used. See
Section 14.2.7, “InnoDB Compressed Tables” for usage details.

For additional information about InnoDB COMPRESSED row format, see Section 14.2.9.3, “DYNAMIC and
COMPRESSED Row Formats”.
See Also Barracuda, compression, dynamic row format, row format.

compression
 A feature with wide-ranging benefits from using less disk space, performing less I/O, and using less memory
for caching. InnoDB table and index data can be kept in a compressed format during database operation.

The data is uncompressed when needed for queries, and re-compressed when changes are made by DML
operations. After you enable compression for a table, this processing is transparent to users and application
developers. DBAs can consult information_schema tables to monitor how efficiently the compression
parameters work for the MySQL instance and for particular compressed tables.

When InnoDB table data is compressed, the compression applies to the table itself, any associated index
data, and the pages loaded into the buffer pool. Compression does not apply to pages in the undo buffer.

The table compression feature requires using MySQL 5.5 or higher, or the InnoDB Plugin in
MySQL 5.1 or earlier, and creating the table using the Barracuda file format and compressed
row format, with the innodb_file_per_table setting turned on. The compression for each table is
influenced by the KEY_BLOCK_SIZE clause of the CREATE TABLE and ALTER TABLE statements.
In MySQL 5.6 and higher, compression is also affected by the server-wide configuration options
innodb_compression_failure_threshold_pct, innodb_compression_level, and
innodb_compression_pad_pct_max. See Section 14.2.7, “InnoDB Compressed Tables” for usage
details.

Another type of compression is the compressed backup feature of the MySQL Enterprise Backup product.
See Also Barracuda, buffer pool, compressed row format, DML, hot backup, index,
INFORMATION_SCHEMA, innodb_file_per_table, plugin, table, undo buffer.

compression failure
 Not actually an error, rather an expensive operation that can occur when using compression in combination
with DML operations. It occurs when: updates to a compressed page overflow the area on the page
reserved for recording modifications; the page is compressed again, with all changes applied to the table
data; the re-compressed data does not fit on the original page, requiring MySQL to split the data into
two new pages and compress each one separately. To check the frequency of this condition, query the
table INFORMATION_SCHEMA.INNODB_CMP and check how much the value of the COMPRESS_OPS
column exceeds the value of the COMPRESS_OPS_OK column. Ideally, compression failures do not
occur often; when they do, you can adjust the configuration options innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max.
See Also compression, DML, page.

concatenated index
See composite index.

concurrency
 The ability of multiple operations (in database terminology, transactions) to run simultaneously, without
interfering with each other. Concurrency is also involved with performance, because ideally the protection
for multiple simultaneous transactions works with a minimum of performance overhead, using efficient
mechanisms for locking.
See Also ACID, locking, transaction.

2911

configuration file
 The file that holds the option values used by MySQL at startup. Traditionally, on Linux and UNIX this file is
named my.cnf, and on Windows it is named my.ini. You can set a number of options related to InnoDB
under the [mysqld] section of the file.

Typically, this file is searched for in the locations /etc/my.cnf /etc/mysql/my.cnf /usr/local/
mysql/etc/my.cnf and ~/.my.cnf. See Section 4.2.3.3, “Using Option Files” for details about the search
path for this file.

When you use the MySQL Enterprise Backup product, you typically use two configuration files: one that
specifies where the data comes from and how it is structured (which could be the original configuration file
for your real server), and a stripped-down one containing only a small set of options that specify where the
backup data goes and how it is structured. The configuration files used with the MySQL Enterprise Backup
product must contain certain options that are typically left out of regular configuration files, so you might need
to add some options to your existing configuration file for use with MySQL Enterprise Backup.
See Also my.cnf, option file.

consistent read
 A read operation that uses snapshot information to present query results based on a point in time, regardless
of changes performed by other transactions running at the same time. If queried data has been changed by
another transaction, the original data is reconstructed based on the contents of the undo log. This technique
avoids some of the locking issues that can reduce concurrency by forcing transactions to wait for other
transactions to finish.

With the repeatable read isolation level, the snapshot is based on the time when the first read operation is
performed. With the read committed isolation level, the snapshot is reset to the time of each consistent read
operation.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. Because a consistent read does not set any locks on the tables
it accesses, other sessions are free to modify those tables while a consistent read is being performed on the
table.

For technical details about the applicable isolation levels, see Section 14.2.2.4, “Consistent Nonlocking
Reads”.
See Also ACID, concurrency, isolation level, locking, MVCC, READ COMMITTED, READ UNCOMMITTED,
REPEATABLE READ, SERIALIZABLE, transaction, undo log.

constraint
 An automatic test that can block database changes to prevent data from becoming inconsistent. (In computer
science terms, a kind of assertion related to an invariant condition.) Constraints are a crucial component of
the ACID philosophy, to maintain data consistency. Constraints supported by MySQL include FOREIGN KEY
constraints and unique constraints.
See Also ACID, foreign key, relational, unique constraint.

counter
 A value that is incremented by a particular kind of InnoDB operation. Useful for measuring how busy a
server is, troubleshooting the sources of performance issues, and testing whether changes (for example,
to configuration settings or indexes used by queries) have the desired low-level effects. Different kinds of
counters are available through performance_schema tables and information_schema tables, particularly
information_schema.innodb_metrics.
See Also INFORMATION_SCHEMA, metrics counter, Performance Schema.

covering index
 An index that includes all the columns retrieved by a query. Instead of using the index values as pointers to
find the full table rows, the query returns values from the index structure, saving disk I/O. InnoDB can apply
this optimization technique to more indexes than MyISAM can, because InnoDB secondary indexes also
include the primary key columns. InnoDB cannot apply this technique for queries against tables modified by a
transaction, until that transaction ends.

2912

Any column index or composite index could act as a covering index, given the right query. Design your
indexes and queries to take advantage of this optimization technique wherever possible.
See Also column index, composite index, index, secondary index.

CPU-bound
 A type of workload where the primary bottleneck is CPU operations in memory. Typically involves read-
intensive operations where the results can all be cached in the buffer pool.
See Also bottleneck, buffer pool, CPU-bound, workload.

crash
 MySQL uses the term "crash" to refer generally to any unexpected shutdown operation where the server
cannot do its normal cleanup. For example, a crash could happen due to a hardware fault on the database
server machine or storage device; a power failure; a potential data mismatch that causes the MySQL server to
halt; a fast shutdown initiated by the DBA; or many other reasons. The robust, automatic crash recovery for
InnoDB tables ensures that data is made consistent when the server is restarted, without any extra work for
the DBA.
See Also crash recovery, fast shutdown, InnoDB, redo log, shutdown.

crash recovery
 The cleanup activities that occur when MySQL is started again after a crash. For InnoDB tables, changes
from incomplete transactions are replayed using data from the redo log. Changes that were committed
before the crash, but not yet written into the data files, are reconstructed from the doublewrite buffer. When
the database is shut down normally, this type of activity is performed during shutdown by the purge operation.

During normal operation, committed data can be stored in the change buffer for a period of time before being
written to the data files. There is always a tradeoff between keeping the data files up-to-date, which introduces
performance overhead during normal operation, and buffering the data, which can make shutdown and crash
recovery take longer.
See Also change buffer, commit, crash, data files, doublewrite buffer, InnoDB, purge, redo log.

CRUD
 Acronym for "create, read, update, delete", a common sequence of operations in database applications.
Often denotes a class of applications with relatively simple database usage (basic DDL, DML and query
statements in SQL) that can be implemented quickly in any language.
See Also DDL, DML, query, SQL.

cursor
 An internal data structure that is used to represent the result set of a query, or other operation that performs
a search using an SQL WHERE clause. It works like an iterator in other high-level languages, producing each
value from the result set as requested.

Although usually SQL handles the processing of cursors for you, you might delve into the inner workings when
dealing with performance-critical code.
See Also query.

D

data definition language
See DDL.

data dictionary
 Metadata that keeps track of InnoDB-related objects such as tables, indexes, and table columns. This
metadata is physically located in the InnoDB system tablespace. For historical reasons, it overlaps to some
degree with information stored in the .frm files.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups
include the contents of the data dictionary.
See Also column, .frm file, hot backup, index, MySQL Enterprise Backup, system tablespace, table.

2913

data directory
 The directory under which each MySQL instance keeps the data files for InnoDB and the directories
representing individual databases. Controlled by the datadir configuration option.
See Also data files, instance.

data files
 The files that physically contain the InnoDB table and index data. There can be a one-to-many relationship
between data files and tables, as in the case of the system tablespace, which can hold multiple InnoDB
tables as well as the data dictionary. There can also be a one-to-one relationship between data files and
tables, as when the file-per-table setting is enabled, causing each newly created table to be stored in a
separate tablespace.
See Also data dictionary, file-per-table, index, system tablespace, table, tablespace.

data manipulation language
See DML.

data warehouse
 A database system or application that primarily runs large queries. The read-only or read-mostly data might
be organized in denormalized form for query efficiency. Can benefit from the optimizations for read-only
transactions in MySQL 5.6 and higher. Contrast with OLTP.
See Also denormalized, OLTP, query, read-only transaction.

database
 Within the MySQL data directory, each database is represented by a separate directory. The InnoDB
system tablespace, which can hold table data from multiple databases within a MySQL instance, is kept in
its data files that reside outside the individual database directories. When file-per-table mode is enabled, the
.ibd files representing individual InnoDB tables are stored inside the database directories.

For long-time MySQL users, a database is a familiar notion. Users coming from an Oracle Database
background will find that the MySQL meaning of a database is closer to what Oracle Database calls a
schema.
See Also data files, file-per-table, .ibd file, instance, schema, system tablespace.

DCL
 Data control language, a set of SQL statements for managing privileges. In MySQL, consists of the GRANT
and REVOKE statements. Contrast with DDL and DML.
See Also DDL, DML, SQL.

DDL
 Data definition language, a set of SQL statements for manipulating the database itself rather than individual
table rows. Includes all forms of the CREATE, ALTER, and DROP statements. Also includes the TRUNCATE
statement, because it works differently than a DELETE FROM table_name statement, even though the
ultimate effect is similar.

DDL statements automatically commit the current transaction; they cannot be rolled back.

InnoDB's online DDL feature enhances performance for CREATE INDEX, DROP INDEX, and many types of
ALTER TABLE operations. See Section 14.2.11, “InnoDB and Online DDL” for more information. Also, the
InnoDB's file-per-table setting can affect the behaviour of DROP TABLE and TRUNCATE TABLE operations.

Contrast with DML and DCL.
See Also commit, DCL, DML, file-per-table, rollback, SQL, transaction.

deadlock
 A situation where different transactions are unable to proceed, because each holds a lock that the other
needs. Because both transactions are waiting for a resource to become available, neither will ever release the
locks it holds.

A deadlock can occur when the transactions lock rows in multiple tables (through statements such as UPDATE
or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when such statements

2914

lock ranges of index records and gaps, with each transaction acquiring some locks but not others due to a
timing issue.

To reduce the possibility of deadlocks, use transactions rather than LOCK TABLE statements; keep
transactions that insert or update data small enough that they do not stay open for long periods of time; when
different transactions update multiple tables or large ranges of rows, use the same order of operations (such
as SELECT ... FOR UPDATE) in each transaction; create indexes on the columns used in SELECT ...
FOR UPDATE and UPDATE ... WHERE statements. The possibility of deadlocks is not affected by the
isolation level, because the isolation level changes the behavior of read operations, while deadlocks occur
because of write operations.

If a deadlock does occur, InnoDB detects the condition and rolls back one of the transactions (the victim).
Thus, even if your application logic is perfectly correct, you must still handle the case where a transaction
must be retried. To see the last deadlock in an InnoDB user transaction, use the command SHOW ENGINE
INNODB STATUS. If frequent deadlocks highlight a problem with transaction structure or application error
handling, run with the innodb_print_all_deadlocks setting enabled to print information about all
deadlocks to the mysqld error log.

For background information on how deadlocks are automatically detected and handled, see
Section 14.2.2.10, “Deadlock Detection and Rollback”. For tips on avoiding and recovering from deadlock
conditions, see Section 14.2.2.11, “How to Cope with Deadlocks”.
See Also concurrency, gap, isolation level, lock, locking, rollback, transaction, victim.

deadlock detection
 A mechanism that automatically detects when a deadlock occurs, and automatically rolls back one of the
transactions involved (the victim).
See Also deadlock, rollback, transaction, victim.

delete
 When InnoDB processes a DELETE statement, the rows are immediately marked for deletion and no longer
are returned by queries. The storage is reclaimed sometime later, during the periodic garbage collection
known as the purge operation, performed by a separate thread. For removing large quantities of data, related
operations with their own performance characteristics are truncate and drop.
See Also drop, purge, truncate.

delete buffering
 The technique of storing index changes due to DELETE operations in the insert buffer rather than writing
them immediately, so that the physical writes can be performed to minimize random I/O. (Because delete
operations are a two-step process, this operation buffers the write that normally marks an index record for
deletion.) It is one of the types of change buffering; the others are insert buffering and purge buffering.
See Also change buffer, change buffering, insert buffer, insert buffering, purge buffering.

denormalized
 A data storage strategy that duplicates data across different tables, rather than linking the tables with foreign
keys and join queries. Typically used in data warehouse applications, where the data is not updated
after loading. In such applications, query performance is more important than making it simple to maintain
consistent data during updates. Contrast with normalized.
See Also data warehouse, normalized.

descending index
 A type of index available with some database systems, where index storage is optimized to process ORDER
BY column DESC clauses. Currently, although MySQL allows the DESC keyword in the CREATE TABLE
statement, it does not use any special storage layout for the resulting index.
See Also index.

dirty page
 A page in the InnoDB buffer pool that has been updated in memory, where the changes are not yet written
(flushed) to the data files. The opposite of a clean page.
See Also buffer pool, clean page, data files, flush, page.

2915

dirty read
 An operation that retrieves unreliable data, data that was updated by another transaction but not yet
committed. It is only possible with the isolation level known as read uncommitted.

This kind of operation does not adhere to the ACID principle of database design. It is considered very risky,
because the data could be rolled back, or updated further before being committed; then, the transaction
doing the dirty read would be using data that was never confirmed as accurate.

Its polar opposite is consistent read, where InnoDB goes to great lengths to ensure that a transaction does
not read information updated by another transaction, even if the other transaction commits in the meantime.
See Also ACID, commit, consistent read, isolation level, READ COMMITTED, READ UNCOMMITTED,
rollback.

disk-based
 A kind of database that primarily organizes data on disk storage (hard drives or equivalent). Data is brought
back and forth between disk and memory to be operated upon. It is the opposite of an in-memory database.
Although InnoDB is disk-based, it also contains features such as the buffer pool, multiple buffer pool
instances, and the adaptive hash index that allow certain kinds of workloads to work primarily from memory.
See Also adaptive hash index, buffer pool, in-memory database.

disk-bound
 A type of workload where the primary bottleneck is disk I/O. (Also known as I/O-bound.) Typically involves
frequent writes to disk, or random reads of more data than can fit into the buffer pool.
See Also bottleneck, buffer pool, CPU-bound, workload.

DML
 Data manipulation language, a set of SQL statements for performing insert, update, and delete operations.
The SELECT statement is sometimes considered as a DML statement, because the SELECT ... FOR
UPDATE form is subject to the same considerations for locking as INSERT, UPDATE, and DELETE.

DML statements for an InnoDB table operate in the context of a transaction, so their effects can be
committed or rolled back as a single unit.

Contrast with DDL and DCL.
See Also commit, DCL, DDL, locking, rollback, SQL, transaction.

document id
 In the InnoDB full-text search feature, a special column in the table containing the FULLTEXT index,
to uniquely identify the document associated with each ilist value. Its name is FTS_DOC_ID (uppercase
required). The column itself must be of BIGINT UNSIGNED NOT NULL type, with a unique index named
FTS_DOC_ID_INDEX. Preferably, you define this column when creating the table. If InnoDB must add the
column to the table while creating a FULLTEXT index, the indexing operation is considerably more expensive.
See Also full-text search, FULLTEXT index, ilist.

doublewrite buffer
 InnoDB uses a novel file flush technique called doublewrite. Before writing pages to the data files, InnoDB
first writes them to a contiguous area called the doublewrite buffer. Only after the write and the flush to the
doublewrite buffer have completed, does InnoDB write the pages to their proper positions in the data file. If the
operating system crashes in the middle of a page write, InnoDB can later find a good copy of the page from
the doublewrite buffer during crash recovery.

Although data is always written twice, the doublewrite buffer does not require twice as much I/O overhead
or twice as many I/O operations. Data is written to the buffer itself as a large sequential chunk, with a single
fsync() call to the operating system.

To turn off the doublewrite buffer, specify the option innodb_doublewrite=0.
See Also crash recovery, data files, page, purge.

drop
 A kind of DDL operation that removes a schema object, through a statement such as DROP TABLE
or DROP INDEX. It maps internally to an ALTER TABLE statement. From an InnoDB perspective, the

2916

performance considerations of such operations involve the time that the data dictionary is locked to ensure
that interrelated objects are all updated, and the time to update memory structures such as the buffer pool.
For a table, the drop operation has somewhat different characteristics than a truncate operation (TRUNCATE
TABLE statement).
See Also buffer pool, data dictionary, DDL, table, truncate.

dynamic row format
 A row format introduced in the InnoDB Plugin, available as part of the Barracuda file format. Because TEXT
and BLOB fields are stored outside of the rest of the page that holds the row data, it is very efficient for rows
that include large objects. Since the large fields are typically not accessed to evaluate query conditions, they
are not brought into the buffer pool as often, resulting in fewer I/O operations and better utilization of cache
memory.

For additional information about InnoDB DYNAMIC row format, see Section 14.2.9.3, “DYNAMIC and
COMPRESSED Row Formats”.
See Also Barracuda, buffer pool, file format, row format.

E

early adopter
 A stage similar to beta, when a software product is typically evaluated for performance, functionality, and
compatibility in a non-mission-critical setting. InnoDB uses the early adopter designation rather than beta,
through a succession of point releases leading up to a GA release.
See Also beta, GA.

error log
 A type of log showing information about MySQL startup and critical runtime errors and crash information. For
details, see Section 5.2.2, “The Error Log”.
See Also crash, log.

eviction
 The process of removing an item from a cache or other temporary storage area, such as the InnoDB buffer
pool. Often, but not always, uses the LRU algorithm to determine which item to remove. When a dirty page
is evicted, its contents are flushed to disk, and any dirty neighbor pages might be flushed also.
See Also buffer pool, dirty page, flush, LRU.

exclusive lock
 A kind of lock that prevents any other transaction from locking the same row. Depending on the transaction
isolation level, this kind of lock might block other transactions from writing to the same row, or might also
block other transactions from reading the same row. The default InnoDB isolation level, REPEATABLE
READ, enables higher concurrency by allowing transactions to read rows that have exclusive locks, a
technique known as consistent read.
See Also concurrency, consistent read, isolation level, lock, REPEATABLE READ, shared lock, transaction.

extent
 A group of pages within a tablespace totaling 1 megabyte. With the default page size of 16KB, an extent
contains 64 pages. In MySQL 5.6, the page size can also be 4KB or 8KB, in which case an extent contains
more pages, still adding up to 1MB.

InnoDB features such as segments, read-ahead requests and the doublewrite buffer use I/O operations
that read, write, allocate, or free data one extent at a time.
See Also doublewrite buffer, neighbor page, page, page size, read-ahead, segment, tablespace.

F

.frm file
 A file containing the metadata, such as the table definition, of a MySQL table.

2917

For backups, you must always keep the full set of .frm files along with the backup data to be able to restore
tables that are altered or dropped after the backup.

Although each InnoDB table has a .frm file, InnoDB maintains its own table metadata in the system
tablespace; the .frm files are not needed for InnoDB to operate on InnoDB tables.

These files are backed up by the MySQL Enterprise Backup product. These files must not be modified by
an ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB
tables perform a FLUSH TABLES WITH READ LOCK operation to freeze such activity while backing up the
.frm files. Restoring a backup can result in .frm files being created, changed, or removed to match the state
of the database at the time of the backup.
See Also MySQL Enterprise Backup.

Fast Index Creation
 A capability first introduced in the InnoDB Plugin, now part of the MySQL server in 5.5 and higher, that
speeds up creation of InnoDB secondary indexes by avoiding the need to completely rewrite the associated
table. The speedup applies to dropping secondary indexes also.

Because index maintenance can add performance overhead to many data transfer operations, consider doing
operations such as ALTER TABLE ... ENGINE=INNODB or INSERT INTO ... SELECT * FROM ...
without any secondary indexes in place, and creating the indexes afterward.

In MySQL 5.6, this feature becomes more general: you can read and write to tables while an index is being
created, and many more kinds of ALTER TABLE operations can be performed without copying the table,
without blocking DML operations, or both. Thus in MySQL 5.6 and higher, we typically refer to this set of
features as online DDL rather than Fast Index Creation.
See Also DML, index, online DDL, secondary index.

fast shutdown
 The default shutdown procedure for InnoDB, based on the configuration setting
innodb_fast_shutdown=1. To save time, certain flush operations are skipped. This type of shutdown
is safe during normal usage, because the flush operations are performed during the next startup, using the
same mechanism as in crash recovery. In cases where the database is being shut down for an upgrade or
downgrade, do a slow shutdown instead to ensure that all relevant changes are applied to the data files
during the shutdown.
See Also crash recovery, data files, flush, shutdown, slow shutdown.

file format
 The format used by InnoDB for each table, typically with the file-per-table setting enabled so that each table
is stored in a separate .ibd file. Currently, the file formats available in InnoDB are known as Antelope and
Barracuda. Each file format supports one or more row formats. The row formats available for Barracuda
tables, COMPRESSED and DYNAMIC, enable important new storage features for InnoDB tables.
See Also Antelope, Barracuda, file-per-table, .ibd file, ibdata file, row format.

file-per-table
 A general name for the setting controlled by the innodb_file_per_table option. That is a very important
configuration option that affects many aspects of InnoDB file storage, availability of features, and I/O
characteristics. In MySQL 5.6.7 and higher, it is enabled by default. Prior to MySQL 5.6.7, it is disabled by
default.

For each table created while this setting is in effect, the data is stored in a separate .ibd file rather than
in the ibdata files of the system tablespace. When table data is stored in individual files, you have more
flexibility to choose nondefault file formats and row formats, which are required for features such as data
compression. The TRUNCATE TABLE operation is also much faster, and the reclaimed space can be used
by the operating system rather than remaining reserved for InnoDB.

The MySQL Enterprise Backup product is more flexible for tables that are in their own files. For example,
tables can be excluded from a backup, but only if they are in separate files. Thus, this setting is suitable for
tables that are backed up less frequently or on a different schedule.
See Also compressed row format, compression, file format, .ibd file, ibdata file, innodb_file_per_table, row
format, system tablespace.

2918

fill factor
 In an InnoDB index, the proportion of a page that is taken up by index data before the page is split. The
unused space when index data is first divided between pages allows for rows to be updated with longer
string values without requiring expensive index maintenance operations. If the fill factor is too low, the index
consumes more space than needed, causing extra I/O overhead when reading the index. If the fill factor
is too high, any update that increases the length of column values can cause extra I/O overhead for index
maintenance. See Physical Structure of an InnoDB Index for more information.
See Also index, page.

fixed row format
 This row format is used by the MyISAM storage engine, not by InnoDB. If you create an InnoDB table with the
option row_format=fixed, InnoDB translates this option to use the compact row format instead, although
the fixed value might still show up in output such as SHOW TABLE STATUS reports.
See Also compact row format, row format.

flush
 To write changes to the database files, that had been buffered in a memory area or a temporary disk storage
area. The InnoDB storage structures that are periodically flushed include the redo log, the undo log, and the
buffer pool.

Flushing can happen because a memory area becomes full and the system needs to free some space,
because a commit operation means the changes from a transaction can be finalized, or because a slow
shutdown operation means that all outstanding work should be finalized. When it is not critical to flush all
the buffered data at once, InnoDB can use a technique called fuzzy checkpointing to flush small batches of
pages to spread out the I/O overhead.
See Also buffer pool, commit, fuzzy checkpointing, neighbor page, redo log, slow shutdown, undo log.

flush list
 An internal InnoDB data structure that tracks dirty pages in the buffer pool: that is, pages that have been
changed and need to be written back out to disk. This data structure is updated frequently by InnoDB's
internal mini-transactions, and so is protected by its own mutex to allow concurrent access to the buffer
pool.
See Also buffer pool, dirty page, LRU, mini-transaction, mutex, page, page cleaner.

foreign key
 A type of pointer relationship, between rows in separate InnoDB tables. The foreign key relationship is
defined on one column in both the parent table and the child table.

In addition to enabling fast lookup of related information, foreign keys help to enforce referential integrity,
by preventing any of these pointers from becoming invalid as data is inserted, updated, and deleted. This
enforcement mechanism is a type of constraint. A row that points to another table cannot be inserted if
the associated foreign key value does not exist in the other table. If a row is deleted or its foreign key value
changed, and rows in another table point to that foreign key value, the foreign key can be set up to prevent
the deletion, cause the corresponding column values in the other table to become null, or automatically delete
the corresponding rows in the other table.

One of the stages in designing a normalized database is to identify data that is duplicated, separate that data
into a new table, and set up a foreign key relationship so that the multiple tables can be queried like a single
table, using a join operation.
See Also child table, FOREIGN KEY constraint, join, normalized, NULL, parent table, referential integrity,
relational.

FOREIGN KEY constraint
 The type of constraint that maintains database consistency through a foreign key relationship. Like other
kinds of constraints, it can prevent data from being inserted or updated if data would become inconsistent; in
this case, the inconsistency being prevented is between data in multiple tables. Alternatively, when a DML
operation is performed, FOREIGN KEY constraints can cause data in child rows to be deleted, changed to
different values, or set to null, based on the ON CASCADE option specified when creating the foreign key.
See Also child table, constraint, DML, foreign key, NULL.

2919

FTS
 In most contexts, an acronym for full-text search. Sometimes in performance discussions, an acronym for
full table scan.
See Also full table scan, full-text search.

full backup
 A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup.
See Also backup, database, instance, partial backup, table.

full table scan
 An operation that requires reading the entire contents of a table, rather than just selected portions using an
index. Typically performed either with small lookup tables, or in data warehousing situations with large tables
where all available data is aggregated and analyzed. How frequently these operations occur, and the sizes of
the tables relative to available memory, have implications for the algorithms used in query optimization and
managing the buffer pool.

The purpose of indexes is to allow lookups for specific values or ranges of values within a large table, thus
avoiding full table scans when practical.
See Also buffer pool, index, LRU.

full-text search
 The MySQL feature for finding words, phrases, Boolean combinations of words, and so on within table data,
in a faster, more convenient, and more flexible way than using the SQL LIKE operator or writing your own
application-level search algorithm. It uses the SQL function MATCH() [1197] and FULLTEXT indexes.
See Also FULLTEXT index.

FULLTEXT index
 The special kind of index that holds the search index in the MySQL full-text search mechanism.
Represents the words from values of a column, omitting any that are specified as stopwords. Originally, only
available for MyISAM tables. Starting in MySQL 5.6.4, it is also available for InnoDB tables.
See Also full-text search, index, InnoDB, search index, stopword.

fuzzy checkpointing
 A technique that flushes small batches of dirty pages from the buffer pool, rather than flushing all dirty
pages at once which would disrupt database processing.
See Also buffer pool, dirty page, flush.

G
GA

 "Generally available", the stage when a software product leaves beta and is available for sale, official
support, and production use.
See Also beta, early adopter.

gap
 A place in an InnoDB index data structure where new values could be inserted. When you lock a set of rows
with a statement such as SELECT ... FOR UPDATE, InnoDB can create locks that apply to the gaps as
well as the actual values in the index. For example, if you select all values greater than 10 for update, a gap
lock prevents another transaction from inserting a new value that is greater than 10. The supremum record
and infimum record represent the gaps containing all values greater than or less than all the current index
values.
See Also concurrency, gap lock, index, infimum record, isolation level, supremum record.

gap lock
 A lock on a gap between index records, or a lock on the gap before the first or after the last index record.
For example, SELECT c1 FOR UPDATE FROM t WHERE c1 BETWEEN 10 and 20; prevents other
transactions from inserting a value of 15 into the column t.c1, whether or not there was already any such
value in the column, because the gaps between all existing values in the range are locked. Contrast with
record lock and next-key lock.

2920

Gap locks are part of the tradeoff between performance and concurrency, and are used in some transaction
isolation levels and not others.
See Also gap, infimum record, lock, next-key lock, record lock, supremum record.

general log
See general query log.

general query log
 A type of log used for diagnosis and troubleshooting of SQL statements processed by the MySQL server.
Can be stored in a file or in a database table. You must enable this feature through the general_log
configuration option to use it. You can disable it for a specific connection through the sql_log_off
configuration option.

Records a broader range of queries than the slow query log. Unlike the binary log, which is used for
replication, the general query log contains SELECT statements and does not maintain strict ordering. For more
information, see Section 5.2.3, “The General Query Log”.
See Also binary log, general query log, log.

global_transaction
 A type of transaction involved in XA operations. It consists of several actions that are transactional in
themselves, but that all must either complete successfully as a group, or all be rolled back as a group. In
essence, this extends ACID properties "up a level" so that multiple ACID transactions can be executed
in concert as components of a global operation that also has ACID properties. For this type of distributed
transaction, you must use the SERIALIZABLE isolation level to achieve ACID properties.
See Also ACID, SERIALIZABLE, transaction, XA.

group commit
 An InnoDB optimization that performs some low-level I/O operations (log write) once for a set of commit
operations, rather than flushing and syncing separately for each commit.

When the binlog is enabled, you typically also set the configuration option sync_binlog=0, because group
commit for the binary log is only supported if it is set to 0.
See Also commit, plugin, XA.

H
hash index

 A type of index intended for queries that use equality operators, rather than range operators such as greater-
than or BETWEEN. It is available for MEMORY tables. Although hash indexes are the default for MEMORY
tables for historic reasons, that storage engine also supports B-tree indexes, which are often a better choice
for general-purpose queries.

MySQL includes a variant of this index type, the adaptive hash index, that is constructed automatically for
InnoDB tables if needed based on runtime conditions.
See Also adaptive hash index, B-tree, index, InnoDB.

HDD
 Acronym for "hard disk drive". Refers to storage media using spinning platters, usually when comparing and
contrasting with SSD. Its performance characteristics can influence the throughput of a disk-based workload.
See Also disk-based, SSD.

heartbeat
 A periodic message that is sent to indicate that a system is functioning properly. In a replication context, if
the master stops sending such messages, one of the slaves can take its place. Similar techniques can be
used between the servers in a cluster environment, to confirm that all of them are operating properly.
See Also replication.

high-water mark
 A value representing an upper limit, either a hard limit that should not be exceeded at runtime, or a record of
the maximum value that was actually reached. Contrast with low-water mark.

2921

See Also low-water mark.

history list
 A list of transactions with delete-marked records scheduled to be processed by the InnoDB purge
operation. Recorded in the undo log. The length of the history list is reported by the command SHOW
ENGINE INNODB STATUS. If the history list grows longer than the value of the innodb_max_purge_lag
configuration option, each DML operation is delayed slightly to allow the purge operation to finish flushing the
deleted records.

Also known as purge lag.
See Also flush, purge, purge lag, rollback segment, transaction, undo log.

hot
 A condition where a row, table, or internal data structure is accessed so frequently, requiring some form of
locking or mutual exclusion, that it results in a performance or scalability issue.

Although "hot" typically indicates an undesirable condition, a hot backup is the preferred type of backup.
See Also hot backup.

hot backup
 A backup taken while the database and is running and applications are reading and writing to it. The backup
involves more than simply copying data files: it must include any data that was inserted or updated while the
backup was in process; it must exclude any data that was deleted while the backup was in process; and it
must ignore any changes that were not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is known as MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the data files produces a raw backup.
The apply step incorporates any changes to the database that happened while the backup was running.
Applying the changes produces a prepared backup; these files are ready to be restored whenever necessary.
See Also apply, MySQL Enterprise Backup, prepared backup, raw backup.

I
.ibd file

 Each InnoDB table created using the file-per-table mode goes into its own tablespace file, with a .ibd
extension, inside the database directory. This file contains the table data and any indexes for the table. File-
per-table mode, controlled by the innodb_file_per_table option, affects many aspects of InnoDB storage
usage and performance, and is enabled by default in MySQL 5.6.7 and higher.

This extension does not apply to the system tablespace, which consists of the ibdata files.

When a .ibd file is included in a compressed backup by the MySQL Enterprise Backup product, the
compressed equivalent is a .ibz file.

If a table is create with the DATA DIRECTORY = clause in MySQL 5.6 and higher, the .ibd file is located
outside the normal database directory, and is pointed to by a .isl file.
See Also database, file-per-table, ibdata file, .ibz file, index, innodb_file_per_table, .isl file, MySQL Enterprise
Backup, system tablespace, table, tablespace.

.ibz file
 When the MySQL Enterprise Backup product performs a compressed backup, it transforms each
tablespace file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. A compressed backup operation skips the compression step for a
tablespace that is already in compressed row format, as compressing a second time would slow down the
backup but produce little or no space savings.

2922

See Also compressed backup, compressed row format, file-per-table, .ibd file, MySQL Enterprise Backup,
tablespace.

.isl file
 A file that specifies the location of a .ibd file for an InnoDB table created with the DATA DIRECTORY =
clause in MySQL 5.6 and higher. It functions like a symbolic link, without the platform restrictions of the
actual symbolic link mechanism. You can store InnoDB tablespaces outside the database directory, for
example, on an especially large or fast storage device depending on the usage of the table. For details, see
Section 14.2.5.4, “Specifying the Location of a Tablespace”.
See Also database, .ibd file, table, tablespace.

I/O-bound
See disk-bound.

ib-file set
 The set of files managed by InnoDB within a MySQL database: the system tablespace, any file-per-table
tablespaces, and the (typically 2) redo log files. Used sometimes in detailed discussions of InnoDB file
structures and formats, to avoid ambiguity between the meanings of database between different DBMS
products, and the non-InnoDB files that may be part of a MySQL database.
See Also database, file-per-table, redo log, system tablespace.

ibbackup_logfile
 A supplemental backup file created by the MySQL Enterprise Backup product during a hot backup
operation. It contains information about any data changes that occurred while the backup was running. The
initial backup files, including ibbackup_logfile, are known as a raw backup, because the changes that
occurred during the backup operation are not yet incorporated. After you perform the apply step to the raw
backup files, the resulting files do include those final data changes, and are known as a prepared backup. At
this stage, the ibbackup_logfile file is no longer necessary.
See Also apply, hot backup, MySQL Enterprise Backup, prepared backup, raw backup.

ibdata file
 A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system
tablespace. These files contain metadata about InnoDB tables, (the data dictionary), and the storage areas
for the undo log, the change buffer, and the doublewrite buffer. They also can contain some or all of
the table data also (depending on whether the file-per-table mode is in effect when each table is created).
When the innodb_file_per_table option is enabled, data and indexes for newly created tables are stored in
separate .ibd files rather than in the system tablespace.

The growth of the ibdata files is influenced by the innodb_autoextend_increment configuration option.
See Also change buffer, data dictionary, doublewrite buffer, file-per-table, .ibd file, innodb_file_per_table,
system tablespace, undo log.

ibtmp file
 The InnoDB temporary tablespace data file for non-compressed InnoDB temporary tables and related
objects. The configuration file option, innodb_temp_data_file_path, allows users to define a relative
path for the temporary data file. If innodb_temp_data_file_path is not specified, the default behavior is
to create a single auto- extending 12MB data file named ibtmp1 in the data directory, alongside ibdata1.
See Also temporary tablespace.

ib_logfile
 A set of files, typically named ib_logfile0 and ib_logfile1, that form the redo log. Also sometimes
referred to as the log group. These files record statements that attempt to change data in InnoDB tables.
These statements are replayed automatically to correct data written by incomplete transactions, on startup
following a crash.

This data cannot be used for manual recovery; for that type of operation, use the binary log.
See Also binary log, log group, redo log.

ilist
 Within an InnoDB FULLTEXT index, the data structure consisting of a document ID and positional
information for a token (that is, a particular word).

2923

See Also FULLTEXT index.

implicit row lock
 A row lock that InnoDB acquires to ensure consistency, without you specifically requesting it.
See Also row lock.

in-memory database
 A type of database system that maintains data in memory, to avoid overhead due to disk I/O and translation
between disk blocks and memory areas. Some in-memory databases sacrifice durability (the "D" in the ACID
design philosophy) and are vulnerable to hardware, power, and other types of failures, making them more
suitable for read-only operations. Other in-memory databases do use durability mechanisms such as logging
changes to disk or using non-volatile memory.

MySQL features that are address the same kinds of memory-intensive processing include the InnoDB buffer
pool, adaptive hash index, and read-only transaction optimization, the MEMORY storage engine, the
MyISAM key cache, and the MySQL query cache.
See Also ACID, adaptive hash index, buffer pool, disk-based, read-only transaction.

incremental backup
 A type of hot backup, performed by the MySQL Enterprise Backup product, that only saves data changed
since some point in time. Having a full backup and a succession of incremental backups lets you reconstruct
backup data over a long period, without the storage overhead of keeping several full backups on hand. You
can restore the full backup and then apply each of the incremental backups in succession, or you can keep
the full backup up-to-date by applying each incremental backup to it, then perform a single restore operation.

The granularity of changed data is at the page level. A page might actually cover more than one row. Each
changed page is included in the backup.
See Also hot backup, MySQL Enterprise Backup, page.

index
 A data structure that provides a fast lookup capability for rows of a table, typically by forming a tree structure
(B-tree) representing all the values of a particular column or set of columns.

InnoDB tables always have a clustered index representing the primary key. They can also have one or
more secondary indexes defined on one or more columns. Depending on their structure, secondary indexes
can be classified as partial, column, or composite indexes.

Indexes are a crucial aspect of query performance. Database architects design tables, queries, and indexes
to allow fast lookups for data needed by applications. The ideal database design uses a covering index
where practical; the query results are computed entirely from the index, without reading the actual table
data. Each foreign key constraint also requires an index, to efficiently check whether values exist in both the
parent and child tables.

Although a B-tree index is the most common, a different kind of data structure is used for hash indexes, as in
the MEMORY storage engine and the InnoDB adaptive hash index.
See Also adaptive hash index, B-tree, child table, clustered index, column index, composite index, covering
index, foreign key, hash index, parent table, partial index, primary key, query, row, secondary index, table.

index cache
 A memory area that holds the token data for InnoDB full-text search. It buffers the data to minimize disk I/
O when data is inserted or updated in columns that are part of a FULLTEXT index. The token data is written
to disk when the index cache becomes full. Each InnoDB FULLTEXT index has its own separate index cache,
whose size is controlled by the configuration option innodb_ft_cache_size.
See Also full-text search, FULLTEXT index.

index hint
 Extended SQL syntax for overriding the indexes recommended by the optimizer. For example, the FORCE
INDEX, USE INDEX, and IGNORE INDEX clauses. Typically used when indexed columns have unevenly
distributed values, resulting in inaccurate cardinality estimates.

2924

See Also cardinality, index.

index prefix
 In an index that applies to multiple columns (known as a composite index), the initial or leading columns of
the index. A query that references the first 1, 2, 3, and so on columns of a composite index can use the index,
even if the query does not reference all the columns in the index.
See Also composite index, index.

index statistics
See statistics.

infimum record
 A pseudo-record in an index, representing the gap below the smallest value in that index. If a transaction
has a statement such as SELECT ... FOR UPDATE ... WHERE col < 10;, and the smallest value in
the column is 5, it is a lock on the infimum record that prevents other transactions from inserting even smaller
values such as 0, -10, and so on.
See Also gap, index, pseudo-record, supremum record.

INFORMATION_SCHEMA
 The name of the database that provides a query interface to the MySQL data dictionary. (This name is
defined by the ANSI SQL standard.) To examine information (metadata) about the database, you can query
tables such as INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.COLUMNS, rather than using
SHOW commands that produce unstructured output.

The information schema contains some tables that are specific to InnoDB, such as INNODB_LOCKS and
INNODB_TRX. You use these tables not to see how the database is structured, but to get real-time information
about the workings of InnoDB tables to help with performance monitoring, tuning, and troubleshooting. In
particular, these tables provide information about MySQL features related to compression, and transactions
and their associated locks.
See Also compression, data dictionary, database, InnoDB, lock, transaction.

InnoDB
 A MySQL component that combines high performance with transactional capability for reliability, robustness,
and concurrent access. It embodies the ACID design philosophy. Represented as a storage engine; it
handles tables created or altered with the ENGINE=INNODB clause. See Section 14.2, “The InnoDB Storage
Engine” for architectural details and administration procedures, and Section 8.5, “Optimizing for InnoDB
Tables” for performance advice.

In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables and the ENGINE=INNODB
clause is not required. In MySQL 5.1 only, many of the advanced InnoDB features require enabling the
component known as the InnoDB Plugin. See Section 14.2.1.1, “InnoDB as the Default MySQL Storage
Engine” for the considerations involved in transitioning to recent releases where InnoDB tables are the default.

InnoDB tables are ideally suited for hot backups. See Section 23.2, “MySQL Enterprise Backup” for
information about the MySQL Enterprise Backup product for backing up MySQL servers without interrupting
normal processing.
See Also ACID, hot backup, storage engine, transaction.

innodb_autoinc_lock_mode
 The innodb_autoinc_lock_mode option controls the algorithm used for auto-increment locking.
When you have an auto-incrementing primary key, you can use statement-based replication only
with the setting innodb_autoinc_lock_mode=1. This setting is known as consecutive lock mode,
because multi-row inserts within a transaction receive consecutive auto-increment values. If you have
innodb_autoinc_lock_mode=2, which allows higher concurrency for insert operations, use row-based
replication rather than statement-based replication. This setting is known as interleaved lock mode, because
multiple multi-row insert statements running at the same time can receive autoincrement values that are
interleaved. The setting innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and
should not be used except for compatibility purposes.
See Also auto-increment locking, mixed-mode insert, primary key.

2925

innodb_file_format
 The innodb_file_format option determines the file format for all InnoDB tablespaces created after you
specify a value for this option. To create tablespaces other than the system tablespace, you must also use
the file-per-table option. Currently, you can specify the Antelope and Barracuda file formats.
See Also Antelope, Barracuda, file format, file-per-table, innodb_file_per_table, system tablespace,
tablespace.

innodb_file_per_table
 A very important configuration option that affects many aspects of InnoDB file storage, availability of features,
and I/O characteristics. In MySQL 5.6.7 and higher, it is enabled by default. Prior to MySQL 5.6.7, it is
disabled by default. The innodb_file_per_table option turns on file-per-table mode, which stores each
newly created InnoDB table and its associated index in its own .ibd file, outside the system tablespace.

This option affects the performance and storage considerations for a number of SQL statements, such as
DROP TABLE and TRUNCATE TABLE.

This option is needed to take full advantage of many other InnoDB features, such as such as table
compression, or backups of named tables in MySQL Enterprise Backup.

This option was once static, but can now be set using the SET GLOBAL command.

For reference information, see innodb_file_per_table. For usage information, see Section 14.2.5.2,
“InnoDB File-Per-Table Mode”.
See Also compression, file-per-table, .ibd file, MySQL Enterprise Backup, system tablespace.

innodb_lock_wait_timeout
 The innodb_lock_wait_timeout option sets the balance between waiting for shared resources to
become available, or giving up and handling the error, retrying, or doing alternative processing in your
application. Rolls back any InnoDB transaction that waits more than a specified time to acquire a lock.
Especially useful if deadlocks are caused by updates to multiple tables controlled by different storage
engines; such deadlocks are not detected automatically.
See Also deadlock, deadlock detection, lock, wait.

innodb_strict_mode
 The innodb_strict_mode option controls whether InnoDB operates in strict mode, where conditions that
are normally treated as warnings, cause errors instead (and the underlying statements fail).

This mode is the default setting in MySQL 5.5.5 and higher.
See Also strict mode.

insert
 One of the primary DML operations in SQL. The performance of inserts is a key factor in data warehouse
systems that load millions of rows into tables, and OLTP systems where many concurrent connections might
insert rows into the same table, in arbitrary order. If insert performance is important to you, you should learn
about InnoDB features such as the insert buffer used in change buffering, and auto-increment columns.
See Also auto-increment, change buffering, data warehouse, DML, InnoDB, insert buffer, OLTP, SQL.

insert buffer
 Former name for the change buffer. Now that change buffering includes delete and update operations as
well as inserts, "change buffer" is the preferred term.
See Also change buffer, change buffering.

insert buffering
 The technique of storing secondary index changes due to INSERT operations in the insert buffer rather than
writing them immediately, so that the physical writes can be performed to minimize random I/O. It is one of the
types of change buffering; the others are delete buffering and purge buffering.

Insert buffering is not used if the secondary index is unique, because the uniqueness of new values cannot
be verified before the new entries are written out. Other kinds of change buffering do work for unique indexes.
See Also change buffer, change buffering, delete buffering, insert buffer, purge buffering, unique index.

2926

instance
 A single mysqld daemon managing a data directory representing one or more databases with a set of
tables. It is common in development, testing, and some replication scenarios to have multiple instances on
the same server machine, each managing its own data directory and listening on its own port or socket. With
one instance running a disk-bound workload, the server might still have extra CPU and memory capacity to
run additional instances.
See Also data directory, database, disk-bound, mysqld, replication, server.

instrumentation
 Modifications at the source code level to collect performance data for tuning and debugging. In MySQL,
data collected by instrumentation is exposed through a SQL interface using the INFORMATION_SCHEMA and
PERFORMANCE_SCHEMA databases.
See Also INFORMATION_SCHEMA, Performance Schema.

intention exclusive lock
See intention lock.

intention lock
 A kind of lock that applies to the table level, used to indicate what kind of lock the transaction intends
to acquire on rows in the table. Different transactions can acquire different kinds of intention locks on the
same table, but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other
transactions from acquiring any S or X locks on the table. Conversely, the first transaction to acquire an
intention shared (IS) lock on a table prevents other transactions from acquiring any X locks on the table. The
two-phase process allows the lock requests to be resolved in order, without blocking locks and corresponding
operations that are compatible. For more details on this locking mechanism, see Section 14.2.2.3, “InnoDB
Lock Modes”.
See Also lock, lock mode, locking.

intention shared lock
See intention lock.

inverted index
 A data structure optimized for document retrieval systems, used in the implementation of InnoDB full-text
search. The InnoDB FULLTEXT index, implemented as an inverted index, records the position of each word
within a document, rather than the location of a table row. A single column value (a document stored as a text
string) is represented by many entries in the inverted index.
See Also full-text search, FULLTEXT index, ilist.

IOPS
 Acronym for I/O operations per second. A common measurement for busy systems, particularly OLTP
applications. If this value is near the maximum that the storage devices can handle, the application can
become disk-bound, limiting scalability.
See Also disk-bound, OLTP, scalability.

isolation level
 One of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is
the setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of
results when multiple transactions are making changes and performing queries at the same time.

From highest amount of consistency and protection to the least, the isolation levels supported by InnoDB are:
SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.

With InnoDB tables, many users can keep the default isolation level (REPEATABLE READ) for all operations.
Expert users might choose the read committed level as they push the boundaries of scalability with OLTP
processing, or during data warehousing operations where minor inconsistencies do not affect the aggregate
results of large amounts of data. The levels on the edges (SERIALIZABLE and READ UNCOMMITTED)
change the processing behavior to such an extent that they are rarely used.
See Also ACID, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

2927

J
join

 A query that retrieves data from more than one table, by referencing columns in the tables that hold identical
values. Ideally, these columns are part of an InnoDB foreign key relationship, which ensures referential
integrity and that the join columns are indexed. Often used to save space and improve query performance
by replacing repeated strings with numeric IDs, in a normalized data design.
See Also foreign key, index, normalized, query, referential integrity.

K
KEY_BLOCK_SIZE

 An option to specify the size of data pages within an InnoDB table that uses compressed row format. The
default is 8 kilobytes. Lower values risk hitting internal limits that depend on the combination of row size and
compression percentage.
See Also compressed row format.

L
latch

 A lightweight structure used by InnoDB to implement a lock for its own internal memory structures, typically
held for a brief time measured in milliseconds or microseconds. A general term that includes both mutexes
(for exclusive access) and rw-locks (for shared access). Certain latches are the focus of InnoDB performance
tuning, such as the data dictionary mutex. Statistics about latch use and contention are available through the
Performance Schema interface.
See Also data dictionary, lock, locking, mutex, Performance Schema, rw-lock.

list
 The InnoDB buffer pool is represented as a list of memory pages. The list is reordered as new pages are
accessed and enter the buffer pool, as pages within the buffer pool are accessed again and are considered
newer, and as pages that are not accessed for a long time are evicted from the buffer pool. The buffer pool is
actually divided into sublists, and the replacement policy is a variation of the familiar LRU technique.
See Also buffer pool, eviction, LRU, sublist.

lock
 The high-level notion of an object that controls access to a resource, such as a table, row, or internal data
structure, as part of a locking strategy. For intensive performance tuning, you might delve into the actual
structures that implement locks, such as mutexes and latches.
See Also latch, lock mode, locking, mutex.

lock escalation
 An operation used in some database systems that converts many row locks into a single table lock, saving
memory space but reducing concurrent access to the table. InnoDB uses a space-efficient representation for
row locks, so that lock escalation is not needed.
See Also locking, row lock, table lock.

lock mode
 A shared (S) lock allows a transaction to read a row. Multiple transactions can acquire an S lock on that same
row at the same time.

An exclusive (X) lock allows a transaction to update or delete a row. No other transaction can acquire any kind
of lock on that same row at the same time.

Intention locks apply to the table level, and are used to indicate what kind of lock the transaction intends to
acquire on rows in the table. Different transactions can acquire different kinds of intention locks on the same
table, but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions
from acquiring any S or X locks on the table. Conversely, the first transaction to acquire an intention shared
(IS) lock on a table prevents other transactions from acquiring any X locks on the table. The two-phase

2928

process allows the lock requests to be resolved in order, without blocking locks and corresponding operations
that are compatible.
See Also intention lock, lock, locking.

locking
 The system of protecting a transaction from seeing or changing data that is being queried or changed by
other transactions. The locking strategy must balance reliability and consistency of database operations (the
principles of the ACID philosophy) against the performance needed for good concurrency. Fine-tuning the
locking strategy often involves choosing an isolation level and ensuring all your database operations are safe
and reliable for that isolation level.
See Also ACID, concurrency, isolation level, latch, lock, mutex, transaction.

locking read
 A SELECT statement that also performs a locking operation on an InnoDB table. Either SELECT ... FOR
UPDATE or SELECT ... LOCK IN SHARE MODE. It has the potential to produce a deadlock, depending on
the isolation level of the transaction. The opposite of a non-locking read. Not allowed for global tables in a
read-only transaction.
See Also deadlock, isolation level, locking, non-locking read, read-only transaction.

log
 In the InnoDB context, "log" or "log files" typically refers to the redo log represented by the ib_logfile* files.
Another log area, which is physically part of the system tablespace, is the undo log.

Other kinds of logs that are important in MySQL are the error log (for diagnosing startup and runtime
problems), binary log (for working with replication and performing point-in-time restores), the general query
log (for diagnosing application problems), and the slow query log (for diagnosing performance problems).
See Also binary log, error log, general query log, ib_logfile, redo log, slow query log, system tablespace, undo
log.

log buffer
 The memory area that holds data to be written to the log files that make up the redo log. It is controlled by
the innodb_log_buffer_size configuration option.
See Also log file, redo log.

log file
 One of the ib_logfileN files that make up the redo log. Data is written to these files from the log buffer
memory area.
See Also ib_logfile, log buffer, redo log.

log group
 The set of files that make up the redo log, typically named ib_logfile0 and ib_logfile1. (For that
reason, sometimes referred to collectively as ib_logfile.)
See Also ib_logfile, redo log.

logical
 A type of operation that involves high-level, abstract aspects such as tables, queries, indexes, and other
SQL concepts. Typically, logical aspects are important to make database administration and application
development convenient and usable. Contrast with physical.
See Also logical backup, physical.

logical backup
 A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysqldump command produces a logical backup, because its output contains statements such as CREATE
TABLE and INSERT that can re-create the data. Contrast with physical backup. A logical backup offers
flexibility (for example, you could edit table definitions or insert statements before restoring), but can take
substantially longer to restore than a physical backup.
See Also backup, mysqldump, physical backup, restore.

loose_
 In MySQL 5.1, a prefix added to InnoDB configuration options when installing the InnoDB Plugin after server
startup, so any new configuration options not recognized by the current level of MySQL do not cause a startup

2929

failure. MySQL processes configuration options that start with this prefix, but gives a warning rather than a
failure if the part after the prefix is not a recognized option.
See Also plugin.

low-water mark
 A value representing a lower limit, typically a threshold value at which some corrective action begins or
becomes more aggressive. Contrast with high-water mark.
See Also high-water mark.

LRU
 An acronym for "least recently used", a common method for managing storage areas. The items that
have not been used recently are evicted when space is needed to cache newer items. InnoDB uses the
LRU mechanism by default to manage the pages within the buffer pool, but makes exceptions in cases
where a page might be read only a single time, such as during a full table scan. This variation of the
LRU algorithm is called the midpoint insertion strategy. The ways in which the buffer pool management
differs from the traditional LRU algorithm is fine-tuned by the options innodb_old_blocks_pct,
innodb_old_blocks_time, and the new MySQL 5.6 options innodb_lru_scan_depth and
innodb_flush_neighbors.
See Also buffer pool, eviction, full table scan, midpoint insertion strategy, page.

LSN
 Acronym for "log sequence number". This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction
boundaries; it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash
recovery and for managing the buffer pool.

Prior to MySQL 5.6.3, the LSN was a 4-byte unsigned integer. The LSN became an 8-byte unsigned integer in
MySQL 5.6.3 when the redo log file size limit increased from 4GB to 512GB, as additional bytes were required
to store extra size information. Applications built on MySQL 5.6.3 or later that use LSN values should use 64-
bit rather than 32-bit variables to store and compare LSN values.

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which
to take an incremental backup. The relevant LSN is displayed by the output of the mysqlbackup command.
Once you have the LSN corresponding to the time of a full backup, you can specify that value to take a
subsequent incremental backup, whose output contains another LSN for the next incremental backup.
See Also crash recovery, incremental backup, MySQL Enterprise Backup, redo log, transaction.

M
.MRG file

 A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup
product.
See Also MySQL Enterprise Backup, mysqlbackup command.

.MYD file
 A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file, MySQL Enterprise Backup, mysqlbackup command.

.MYI file
 A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file, MySQL Enterprise Backup, mysqlbackup command.

master server
 Frequently shortened to "master". A database server machine in a replication scenario that processes the
initial insert, update, and delete requests for data. These changes are propagated to, and repeated on, other
servers known as slave servers.
See Also replication, slave server.

2930

master thread
 An InnoDB thread that performs various tasks in the background. Most of these tasks are I/O related, such
as writing changes from the insert buffer to the appropriate secondary indexes.

To improve concurrency, sometimes actions are moved from the master thread to separate background
threads. For example, in MySQL 5.6 and higher, dirty pages are flushed from the buffer pool by the page
cleaner thread rather than the master thread.
See Also buffer pool, dirty page, flush, insert buffer, page cleaner, thread.

MDL
 Acronym for "metadata lock".
See Also metadata lock.

memcached
 A popular component of many MySQL and NoSQL software stacks, allowing fast reads and writes for single
values and caching the results entirely in memory. Traditionally, applications required extra logic to write the
same data to a MySQL database for permanent storage, or to read data from a MySQL database when it
was not cached yet in memory. Now, applications can use the simple memcached protocol, supported by
client libraries for many languages, to communicate directly with MySQL servers using InnoDB or MySQL
Cluster tables. These NoSQL interfaces to MySQL tables allow applications to achieve higher read and write
performance than by issuing SQL commands directly, and can simplify application logic and deployment
configurations for systems that already incorporated memcached for in-memory caching.

The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see Section 14.2.16,
“InnoDB Integration with memcached” for details. The memcached interface to MySQL Cluster tables is
available in MySQL Cluster 7.2; see http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html for details.
See Also InnoDB, NoSQL.

merge
 To apply changes to data cached in memory, such as when a page is brought into the buffer pool, and any
applicable changes recorded in the change buffer are incorporated into the page in the buffer pool. The
updated data is eventually written to the tablespace by the flush mechanism.
See Also buffer pool, change buffer, flush, tablespace.

metadata lock
 A type of lock that prevents DDL operations on a table that is being used at the same time by another
transaction. For details, see Section 8.10.4, “Metadata Locking”.

Enhancements to online operations, particularly in MySQL 5.6 and higher, are focused on reducing the
amount of metadata locking. The objective is for DDL operations that do not change the table structure
(such as CREATE INDEX and DROP INDEX for InnoDB tables) to proceed while the table is being queried,
updated, and so on by other transactions.
See Also DDL, lock, online, transaction.

metrics counter
 A feature implemented by the innodb_metrics table in the information_schema, in MySQL 5.6 and
higher. You can query counts and totals for low-level InnoDB operations, and use the results for performance
tuning in combination with data from the performance_schema.
See Also counter, INFORMATION_SCHEMA, Performance Schema.

midpoint insertion strategy
 The technique of initially bringing pages into the InnoDB buffer pool not at the "newest" end of the list,
but instead somewhere in the middle. The exact location of this point can vary, based on the setting of the
innodb_old_blocks_pct option. The intent is that blocks that are only read once, such as during a full
table scan, can be aged out of the buffer pool sooner than with a strict LRU algorithm.
See Also buffer pool, full table scan, LRU, page.

mini-transaction
 An internal phase of InnoDB processing, when making changes at the physical level to internal data
structures during DML operations. A mini-transaction has no notion of rollback; multiple mini-transactions
can occur within a single transaction. Mini-transactions write information to the redo log that is used during

http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html

2931

crash recovery. A mini-transaction can also happen outside the context of a regular transaction, for example
during purge processing by background threads.
See Also commit, crash recovery, DML, physical, purge, redo log, rollback, transaction.

mixed-mode insert
 An INSERT statement where auto-increment values are specified for some but not all of the new rows.
For example, a multi-value INSERT could specify a value for the auto-increment column in some cases and
NULL in other cases. InnoDB generates auto-increment values for the rows where the column value was
specified as NULL. Another example is an INSERT ... ON DUPLICATE KEY UPDATE statement, where
auto-increment values might be generated but not used, for any duplicate rows that are processed as UPDATE
rather than INSERT statements.

Can cause consistency issues between master and slave servers in a replication configuration. Can require
adjusting the value of the innodb_autoinc_lock_mode configuration option.
See Also auto-increment, innodb_autoinc_lock_mode, master server, replication, slave server.

multi-core
 A type of processor that can take advantage of multi-threaded programs, such as the MySQL server.

multiversion concurrency control
See MVCC.

mutex
 Informal abbreviation for "mutex variable". (Mutex itself is short for "mutual exclusion".) The low-level object
that InnoDB uses to represent and enforce exclusive-access locks to internal in-memory data structures.
Once the lock is acquired, any other process, thread, and so on is prevented from acquiring the same lock.
Contrast with rw-locks, which allow shared access. Mutexes and rw-locks are known collectively as latches.
See Also latch, lock, Performance Schema, Pthreads, rw-lock.

MVCC
 Acronym for "multiversion concurrency control". This technique lets InnoDB transactions with certain
isolation levels to perform consistent read operations; that is, to query rows that are being updated by other
transactions, and see the values from before those updates occurred. This is a powerful technique to increase
concurrency, by allowing queries to proceed without waiting due to locks held by the other transactions.

This technique is not universal in the database world. Some other database products, and some other MySQL
storage engines, do not support it.
See Also ACID, concurrency, consistent read, isolation level, lock, transaction.

my.cnf
 The name, on UNIX or Linux systems, of the MySQL option file.
See Also my.ini, option file.

my.ini
 The name, on Windows systems, of the MySQL option file.
See Also my.cnf, option file.

mysql
 The mysql program is the command-line interpreter for the MySQL database. It processes SQL statements,
and also MySQL-specific commands such as SHOW TABLES, by passing requests to the mysqld daemon.
See Also mysqld, SQL.

MySQL Enterprise Backup
 A licensed product that performs hot backups of MySQL databases. It offers the most efficiency and
flexibility when backing up InnoDB tables, but can also back up MyISAM and other kinds of tables.
See Also hot backup, InnoDB.

mysqlbackup command
 A command-line tool of the MySQL Enterprise Backup product. It performs a hot backup operation
for InnoDB tables, and a warm backup for MyISAM and other kinds of tables. See Section 23.2, “MySQL
Enterprise Backup” for more information about this command.

2932

See Also hot backup, MySQL Enterprise Backup, warm backup.

mysqld
 The mysqld program is the database engine for the MySQL database. It runs as a UNIX daemon or
Windows service, constantly waiting for requests and performing maintenance work in the background.
See Also mysql.

mysqldump
 A command that performs a logical backup of some combination of databases, tables, and table data. The
results are SQL statements that reproduce the original schema objects, data, or both. For substantial amounts
of data, a physical backup solution such as MySQL Enterprise Backup is faster, particularly for the restore
operation.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.

N
natural key

 A indexed column, typically a primary key, where the values have some real-world significance. Usually
advised against because:

• If the value should ever change, there is potentially a lot of index maintenance to re-sort the clustered
index and update the copies of the primary key value that are repeated in each secondary index.

• Even seemingly stable values can change in unpredictable ways that are difficult to represent correctly
in the database. For example, one country can change into two or several, making the original country
code obsolete. Or, rules about unique values might have exceptions. For example, even if taxpayer IDs
are intended to be unique to a single person, a database might have to handle records that violate that
rule, such as in cases of identity theft. Taxpayer IDs and other sensitive ID numbers also make poor
primary keys, because they may need to be secured, encrypted, and otherwise treated differently than other
columns.

Thus, it is typically better to use arbitrary numeric values to form a synthetic key, for example using an auto-
increment column.
See Also auto-increment, primary key, secondary index, synthetic key.

neighbor page
 Any page in the same extent as a particular page. When a page is selected to be flushed, any neighbor
pages that are dirty are typically flushed as well, as an I/O optimization for traditional hard disks. In MySQL
5.6 and up, this behavior can be controlled by the configuration variable innodb_flush_neighbors; you
might turn that setting off for SSD drives, which do not have the same overhead for writing smaller batches of
data at random locations.
See Also dirty page, extent, flush, page.

next-key lock
 A combination of a record lock on the index record and a gap lock on the gap before the index record.
See Also gap lock, locking, record lock.

non-blocking I/O
 An industry term that means the same as asynchronous I/O.
See Also asynchronous I/O.

non-locking read
 A query that does not use the SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE
clauses. The only kind of query allowed for global tables in a read-only transaction. The opposite of a
locking read.
See Also locking read, query, read-only transaction.

non-repeatable read
 The situation when a query retrieves data, and a later query within the same transaction retrieves what
should be the same data, but the queries return different results (changed by another transaction committing
in the meantime).

2933

This kind of operation goes against the ACID principle of database design. Within a transaction, data should
be consistent, with predictable and stable relationships.

Among different isolation levels, non-repeatable reads are prevented by the serializable read and
repeatable read levels, and allowed by the consistent read, and read uncommitted levels.
See Also ACID, consistent read, isolation level, READ UNCOMMITTED, REPEATABLE READ,
SERIALIZABLE, transaction.

normalized
 A database design strategy where data is split into multiple tables, and duplicate values condensed into
single rows represented by an ID, to avoid storing, querying, and updating redundant or lengthy values. It is
typically used in OLTP applications.

For example, an address might be given a unique ID, so that a census database could represent the
relationship lives at this address by associating that ID with each member of a family, rather than storing
multiple copies of a complex value such as 123 Main Street, Anytown, USA.

For another example, although a simple address book application might store each phone number in the
same table as a person's name and address, a phone company database might give each phone number a
special ID, and store the numbers and IDs in a separate table. This normalized representation could simplify
large-scale updates when area codes split apart.

Normalization is not always recommended. Data that is primarily queried, and only updated by deleting
entirely and reloading, is often kept in fewer, larger tables with redundant copies of duplicate values. This data
representation is referred to as denormalized, and is frequently found in data warehousing applications.
See Also denormalized, foreign key, OLTP, relational.

NoSQL
 A broad term for a set of data access technologies that do not use the SQL language as their primary
mechanism for reading and writing data. Some NoSQL technologies act as key-value stores, only accepting
single-value reads and writes; some relax the restrictions of the ACID methodology; still others do not require
a pre-planned schema. MySQL users can combine NoSQL-style processing for speed and simplicity with
SQL operations for flexibility and convenience, by using the memcached API to directly access some kinds
of MySQL tables. The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see
Section 14.2.16, “InnoDB Integration with memcached” for details. The memcached interface to MySQL
Cluster tables is available in MySQL Cluster 7.2; see http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
for details.
See Also ACID, InnoDB, memcached, schema, SQL.

NOT NULL constraint
 A type of constraint that specifies that a column cannot contain any NULL values. It helps to preserve
referential integrity, as the database server can identify data with erroneous missing values. It also helps
in the arithmetic involved in query optimization, allowing the optimizer to predict the number of entries in an
index on that column.
See Also column, constraint, NULL, primary key, referential integrity.

NULL
 A special value in SQL, indicating the absence of data. Any arithmetic operation or equality test involving a
NULL value, in turn produces a NULL result. (Thus it is similar to the IEEE floating-point concept of NaN, "not
a number".) Any aggregate calculation such as AVG() ignores rows with NULL values, when determining how
many rows to divide by. The only test that works with NULL values uses the SQL idioms IS NULL or IS NOT
NULL.

NULL values play a part in index operations, because for performance a database must minimize the
overhead of keeping track of missing data values. Typically, NULL values are not stored in an index, because
a query that tests an indexed column using a standard comparison operator could never match a row with a
NULL value for that column. For the same reason, unique indexes do not prevent NULL values; those values
simply are not represented in the index. Declaring a NOT NULL constraint on a column provides reassurance
that there are no rows left out of the index, allowing for better query optimization (accurate counting of rows
and estimation of whether to use the index).

http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html

2934

Because the primary key must be able to uniquely identify every row in the table, a single-column primary
key cannot contain any NULL values, and a multi-column primary key cannot contain any rows with NULL
values in all columns.

Although the Oracle database allows a NULL value to be concatenated with a string, InnoDB treats the result
of such an operation as NULL.
See Also index, primary key, SQL.

O
.OPT file

 A file containing database configuration information. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.

off-page column
 A column containing variable-length data (such as BLOB and VARCHAR) that is too long to fit on a B-tree
page. The data is stored in overflow pages. The DYNAMIC row format in the InnoDB Barracuda file format is
more efficient for such storage than the older COMPACT row format.
See Also B-tree, Barracuda, overflow page.

OLTP
 Acronym for "Online Transaction Processing". A database system, or a database application, that runs a
workload with many transactions, with frequent writes as well as reads, typically affecting small amounts of
data at a time. For example, an airline reservation system or an application that processes bank deposits. The
data might be organized in normalized form for a balance between DML (insert/update/delete) efficiency and
query efficiency. Contrast with data warehouse.

With its row-level locking and transactional capability, InnoDB is the ideal storage engine for MySQL tables
used in OLTP applications.
See Also data warehouse, DML, InnoDB, query, row lock, transaction.

online
 A type of operation that involves no downtime, blocking, or restricted operation for the database. Typically
applied to DDL. Operations that shorten the periods of restricted operation, such as fast index creation, have
evolved into a wider set of online DDL operations in MySQL 5.6.

In the context of backups, a hot backup is an online operation and a warm backup is partially an online
operation.
See Also DDL, Fast Index Creation, hot backup, online DDL, warm backup.

online DDL
 A feature that improves the performance, concurrency, and availability of InnoDB tables during DDL
(primarily ALTER TABLE) operations. See Section 14.2.11, “InnoDB and Online DDL” for details.

The details vary according to the type of operation. In some cases, the table can be modified concurrently
while the ALTER TABLE is in progress. The operation might be able to be performed without doing
a table copy, or using a specially optimized type of table copy. Space usage is controlled by the
innodb_online_alter_log_max_size configuration option.

This feature is an enhancement of the Fast Index Creation feature in MySQL 5.5 and the InnoDB Plugin for
MySQL 5.1.
See Also DDL, Fast Index Creation, online.

optimistic
 A methodology that guides low-level implementation decisions for a relational database system. The
requirements of performance and concurrency in a relational database mean that operations must be started
or dispatched quickly. The requirements of consistency and referential integrity mean that any operation
could fail: a transaction might be rolled back, a DML operation could violate a constraint, a request for a lock
could cause a deadlock, a network error could cause a timeout. An optimistic strategy is one that assumes

2935

most requests or attempts will succeed, so that relatively little work is done to prepare for the failure case.
When this assumption is true, the database does little unnecessary work; when requests do fail, extra work
must be done to clean up and undo changes.

InnoDB uses optimistic strategies for operations such as locking and commits. For example, data changed
by a transaction can be written to the data files before the commit occurs, making the commit itself very fast,
but requiring more work to undo the changes if the transaction is rolled back.

The opposite of an optimistic strategy is a pessimistic one, where a system is optimized to deal with
operations that are unreliable and frequently unsuccessful. This methodology is rare in a database system,
because so much care goes into choosing reliable hardware, networks, and algorithms.
See Also commit, concurrency, DML, locking, pessimistic.

optimizer
 The MySQL component that determines the best indexes and join order to use for a query, based on
characteristics and data distribution of the relevant tables.
See Also index, join, query, table.

option
 A configuration parameter for MySQL, either stored in the option file or passed on the command line.

For the options that apply to InnoDB tables, each option name starts with the prefix innodb_.
See Also InnoDB, option file.

option file
 The file that holds the configuration options for the MySQL instance. Traditionally, on Linux and UNIX this
file is named my.cnf, and on Windows it is named my.ini.
See Also configuration file, my.cnf, option.

overflow page
 Separately allocated disk pages that hold variable-length columns (such as BLOB and VARCHAR) that are too
long to fit on a B-tree page. The associated columns are known as off-page columns.
See Also B-tree, off-page column, page.

P
.PAR file

 A file containing partition definitions. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.

page
 A unit representing how much data InnoDB transfers at any one time between disk (the data files) and
memory (the buffer pool). A page can contain one or more rows, depending on how much data is in each
row. If a row does not fit entirely into a single page, InnoDB sets up additional pointer-style data structures so
that the information about the row can be stored in one page.

One way to fit more data in each page is to use compressed row format. For tables that use BLOBs or large
text fields, compact row format allows those large columns to be stored separately from the rest of the row,
reducing I/O overhead and memory usage for queries that do not reference those columns.

When InnoDB reads or writes sets of pages as a batch to increase I/O throughput, it reads or writes an extent
at a time.

All the InnoDB disk data structures within a MySQL instance share the same page size.
See Also buffer pool, compact row format, compressed row format, data files, extent, page size, row.

page cleaner
 An InnoDB background thread that flushes dirty pages from the buffer pool. Prior to MySQL 5.6, this
activity was performed by the master thread
See Also buffer pool, dirty page, flush, master thread, thread.

2936

page size
 For releases up to and including MySQL 5.5, the size of each InnoDB page is fixed at 16 kilobytes. This
value represents a balance: large enough to hold the data for most rows, yet small enough to minimize the
performance overhead of transferring unneeded data to memory. Other values are not tested or supported.

Starting in MySQL 5.6, the page size for an InnoDB instance can be either 4KB, 8KB, or 16KB, controlled
by the innodb_page_size configuration option. You set the size when creating the MySQL instance, and
it remains constant afterwards. The same page size applies to all InnoDB tablespaces, both the system
tablespace and any separate tablespaces created in file-per-table mode.

Smaller page sizes can help performance with storage devices that use small block sizes, particularly for SSD
devices in disk-bound workloads, such as for OLTP applications. As individual rows are updated, less data is
copied into memory, written to disk, reorganized, locked, and so on.
See Also disk-bound, file-per-table, instance, OLTP, page, SSD, system tablespace, tablespace.

parent table
 The table in a foreign key relationship that holds the initial column values pointed to from the child table.
The consequences of deleting, or updating rows in the parent table depend on the ON UPDATE and ON
DELETE clauses in the foreign key definition. Rows with corresponding values in the child table could be
automatically deleted or updated in turn, or those columns could be set to NULL, or the operation could be
prevented.
See Also child table, foreign key.

partial backup
 A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup.
See Also backup, full backup, table.

partial index
 An index that represents only part of a column value, typically the first N characters (the prefix) of a long
VARCHAR value.
See Also index, index prefix.

Performance Schema
 The performance_schema schema, in MySQL 5.5 and up, presents a set of tables that you can query to
get detailed information about the performance characteristics of many internal parts of the MySQL server.
See Also latch, mutex, rw-lock.

persistent statistics
 A feature in MySQL 5.6 that stores index statistics for InnoDB tables on disk, providing better plan stability
for queries.
See Also index, optimizer, plan stability, query, table.

pessimistic
 A methodology that sacrifices performance or concurrency in favor of safety. It is appropriate if a high
proportion of requests or attempts might fail, or if the consequences of a failed request are severe. InnoDB
uses what is known as a pessimistic locking strategy, to minimize the chance of deadlocks. At the
application level, you might avoid deadlocks by using a pessimistic strategy of acquiring all locks needed by a
transaction at the very beginning.

Many built-in database mechanisms use the opposite optimistic methodology.
See Also deadlock, locking, optimistic.

phantom
 A row that appears in the result set of a query, but not in the result set of an earlier query. For example, if a
query is run twice within a transaction, and in the meantime, another transaction commits after inserting a
new row or updating a row so that it matches the WHERE clause of the query.

This occurrence is known as a phantom read. It is harder to guard against than a non-repeatable read,
because locking all the rows from the first query result set does not prevent the changes that cause the
phantom to appear.

2937

Among different isolation levels, phantom reads are prevented by the serializable read level, and allowed
by the repeatable read, consistent read, and read uncommitted levels.
See Also consistent read, isolation level, non-repeatable read, READ UNCOMMITTED, REPEATABLE
READ, SERIALIZABLE, transaction.

physical
 A type of operation that involves hardware-related aspects such as disk blocks, memory pages, files, bits,
disk reads, and so on. Typically, physical aspects are important during expert-level performance tuning and
problem diagnosis. Contrast with logical.
See Also logical, physical backup.

physical backup
 A backup that copies the actual data files. For example, the mysqlbackup command of the MySQL
Enterprise Backup product produces a physical backup, because its output contains data files that can be
used directly by the mysqld server, resulting in a faster restore operation. Contrast with logical backup.
See Also backup, logical backup, MySQL Enterprise Backup, restore.

PITR
 Acronym for point-in-time recovery.
See Also point-in-time recovery.

plan stability
 A property of a query execution plan, where the optimizer makes the same choices each time for a given
query, so that performance is consistent and predictable.
See Also query, query execution plan.

plugin
 In MySQL 5.1 and earlier, a separately installable form of the InnoDB storage engine that includes features
and performance enhancements not included in the built-in InnoDB for those releases.

For MySQL 5.5 and higher, the MySQL distribution includes the very latest InnoDB features and performance
enhancements, known as InnoDB 1.1, and there is no longer a separate InnoDB Plugin.

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin
but not the built-in InnoDB, or vice versa.
See Also built-in, InnoDB.

point-in-time recovery
 The process of restoring a backup to recreate the state of the database at a specific date and time.
Commonly abbreviated PITR. Because it is unlikely that the specified time corresponds exactly to the time
of a backup, this technique usually requires a combination of a physical backup and a logical backup. For
example, with the MySQL Enterprise Backup product, you restore the last backup that you took before the
specified point in time, then replay changes from the binary log between the time of the backup and the PITR
time.
See Also backup, logical backup, MySQL Enterprise Backup, physical backup, PITR.

prefix
See index prefix.

prepared backup
 A set of backup files, produced by the MySQL Enterprise Backup product, after all the stages of applying
binary logs and incremental backups are finished. The resulting files are ready to be restored. Prior to the
apply steps, the files are known as a raw backup.
See Also binary log, hot backup, incremental backup, MySQL Enterprise Backup, raw backup, restore.

primary key
 A set of columns -- and by implication, the index based on this set of columns -- that can uniquely identify
every row in a table. As such, it must be a unique index that does not contain any NULL values.

InnoDB requires that every table has such an index (also called the clustered index or cluster index), and
organizes the table storage based on the column values of the primary key.

2938

When choosing primary key values, consider using arbitrary values (a synthetic key) rather than relying on
values derived from some other source (a natural key).
See Also clustered index, index, natural key, synthetic key.

process
 An instance of an executing program. The operating system switches between multiple running processes,
allowing for a certain degree of concurrency. On most operating systems, processes can contain multiple
threads of execution that share resources. Context-switching between threads is faster than the equivalent
switching between processes.
See Also concurrency, thread.

pseudo-record
 An artificial record in an index, used for locking key values or ranges that do not currently exist.
See Also infimum record, locking, supremum record.

Pthreads
 The POSIX threads standard, which defines an API for threading and locking operations on UNIX and Linux
systems. On UNIX and Linux systems, InnoDB uses this implementation for mutexes.
See Also mutex.

purge
 A type of garbage collection performed by a separate thread, running on a periodic schedule. The purge
includes these actions: removing obsolete values from indexes; physically removing rows that were marked
for deletion by previous DELETE statements.
See Also crash recovery, delete, doublewrite buffer.

purge buffering
 The technique of storing index changes due to DELETE operations in the insert buffer rather than writing
them immediately, so that the physical writes can be performed to minimize random I/O. (Because delete
operations are a two-step process, this operation buffers the write that normally purges an index record
that was previously marked for deletion.) It is one of the types of change buffering; the others are insert
buffering. and delete buffering
See Also change buffer, change buffering, delete buffering, insert buffer, insert buffering.

purge lag
 Another name for the InnoDB history list. Related to the innodb_max_purge_lag configuration option.
See Also history list, purge.

purge thread
 A thread within the InnoDB process that is dedicated to performing the periodic purge operation. In MySQL
5.6 and higher, multiple purge threads are enabled by the innodb_purge_threads configuration option.
See Also purge, thread.

Q
query

 In SQL, an operation that reads information from one or more tables. Depending on the organization of data
and the parameters of the query, the lookup might be optimized by consulting an index. If multiple tables are
involved, the query is known as a join.

For historical reasons, sometimes discussions of internal processing for statements use "query" in a broader
sense, including other types of MySQL statements such as DDL and DML statements.
See Also DDL, DML, index, join, SQL, table.

query execution plan
 The set of decisions made by the optimizer about how to perform a query most efficiently, including which
index or indexes to use, and the order in which to join tables. Plan stability involves the same choices being
made consistently for a given query.
See Also index, join, plan stability, query.

2939

query log
See general query log.

quiesce
 To reduce the amount of database activity, often in preparation for an operation such as an ALTER TABLE,
a backup, or a shutdown. Might or might not involve doing as much flushing as possible, so that InnoDB
does not continue doing background I/O.

In MySQL 5.6 and higher, the syntax FLUSH TABLES ... FOR EXPORT writes some data to disk for
InnoDB tables that make it simpler to back up those tables by copying the data files.
See Also backup, flush, InnoDB, shutdown.

R
RAID

 Acronym for "Redundant Array of Inexpensive Drives". Spreading I/O operations across multiple drives
enables greater concurrency at the hardware level, and improves the efficiency of low-level write operations
that otherwise would be performed in sequence.
See Also concurrency.

random dive
 A technique for quickly estimating the number of different values in a column (the column's cardinality).
InnoDB samples pages at random from the index and uses that data to estimate the number of different
values. This operation occurs when each table is first opened.

Originally, the number of sampled pages was fixed at 8; now, it is determined by the setting of the
innodb_stats_sample_pages parameter.

The way the random pages are picked depends on the setting of the
innodb_use_legacy_cardinality_algorithm parameter. The default setting (OFF) has better randomness than in
older releases.
See Also cardinality.

raw backup
 The initial set of backup files produced by the MySQL Enterprise Backup product, before the changes
reflected in the binary log and any incremental backups are applied. At this stage, the files are not ready to
restore. After these changes are applied, the files are known as a prepared backup.
See Also binary log, hot backup, ibbackup_logfile, incremental backup, MySQL Enterprise Backup, prepared
backup, restore.

READ COMMITTED
 An isolation level that uses a locking strategy that relaxes some of the protection between transactions,
in the interest of performance. Transactions cannot see uncommitted data from other transactions, but they
can see data that is committed by another transaction after the current transaction started. Thus, a transaction
never sees any bad data, but the data that it does see may depend to some extent on the timing of other
transactions.

When a transaction with this isolation level performs UPDATE ... WHERE or DELETE ... WHERE
operations, other transactions might have to wait. The transaction can perform SELECT ... FOR UPDATE,
and LOCK IN SHARE MODE operations without making other transactions wait.
See Also ACID, isolation level, locking, REPEATABLE READ, SERIALIZABLE, transaction.

READ UNCOMMITTED
 The isolation level that provides the least amount of protection between transactions. Queries employ
a locking strategy that allows them to proceed in situations where they would normally wait for another
transaction. However, this extra performance comes at the cost of less reliable results, including data that has
been changed by other transactions and not committed yet (known as dirty read). Use this isolation level only
with great caution, and be aware that the results might not be consistent or reproducible, depending on what
other transactions are doing at the same time. Typically, transactions with this isolation level do only queries,
not insert, update, or delete operations.

2940

See Also ACID, dirty read, isolation level, locking, transaction.

read view
 An internal snapshot used by the MVCC mechanism of InnoDB. Certain transactions, depending on their
isolation level, see the data values as they were at the time the transaction (or in some cases, the statement)
started. Isolation levels that use a read view are REPEATABLE READ, READ COMMITTED, and READ
UNCOMMITTED.
See Also isolation level, MVCC, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ,
transaction.

read-ahead
 A type of I/O request that prefetches a group of pages (an entire extent) into the buffer pool
asynchronously, in anticipation that these pages will be needed soon. The linear read-ahead technique
prefetches all the pages of one extent based on access patterns for pages in the preceding extent, and is
part of all MySQL versions starting with the InnoDB Plugin for MySQL 5.1. The random read-ahead technique
prefetches all the pages for an extent once a certain number of pages from the same extent are in the buffer
pool. Random read-ahead is not part of MySQL 5.5, but is re-introduced in MySQL 5.6 under the control of the
innodb_random_read_ahead configuration option.
See Also buffer pool, extent, page.

read-only transaction
 A type of transaction that can be optimized for InnoDB tables by eliminating some of the bookkeeping
involved with creating a read view for each transaction. Can only perform non-locking read queries. It can
be started explicitly with the syntax START TRANSACTION READ ONLY, or automatically under certain
conditions. See Optimizations for Read-Only Transactions for details.
See Also non-locking read, read view, transaction.

record lock
 A lock on an index record. For example, SELECT c1 FOR UPDATE FROM t WHERE c1 = 10; prevents
any other transaction from inserting, updating, or deleting rows where the value of t.c1 is 10. Contrast with
gap lock and next-key lock.
See Also gap lock, lock, next-key lock.

redo
 The data, in units of records, recorded in the redo log when DML statements make changes to InnoDB
tables. It is used during crash recovery to correct data written by incomplete transactions. The ever-
increasing LSN value represents the cumulative amount of redo data that has passed through the redo log.
See Also crash recovery, DML, LSN, redo log, transaction.

redo log
 A disk-based data structure used during crash recovery, to correct data written by incomplete transactions.
During normal operation, it encodes requests to change InnoDB table data, which result from SQL statements
or low-level API calls through NoSQL interfaces. Modifications that did not finish updating the data files
before an unexpected shutdown are replayed automatically.

The redo log is physically represented as a set of files, typically named ib_logfile0 and ib_logfile1.
The data in the redo log is encoded in terms of records affected; this data is collectively referred to as redo.
The passage of data through the redo logs is represented by the ever-increasing LSN value. The original 4GB
limit on maximum size for the redo log is raised to 512GB in MySQL 5.6.3.

The disk layout of the redo log is influenced by the configuration options innodb_log_file_size,
innodb_log_group_home_dir, and (rarely) innodb_log_files_in_group. The performance of redo
log operations is also affected by the log buffer, which is controlled by the innodb_log_buffer_size
configuration option.
See Also crash recovery, data files, ib_logfile, log buffer, LSN, redo, shutdown, transaction.

redundant row format
 The oldest InnoDB row format, available for tables using the Antelope file format. Prior to MySQL 5.0.3, it
was the only row format available in InnoDB. In My SQL 5.0.3 and later, the default is compact row format.
You can still specify redundant row format for compatibility with older InnoDB tables.

2941

For additional information about InnoDB REDUNDANT row format, see Section 14.2.9.4, “COMPACT and
REDUNDANT Row Formats”.
See Also Antelope, compact row format, file format, row format.

referential integrity
 The technique of maintaining data always in a consistent format, part of the ACID philosophy. In particular,
data in different tables is kept consistent through the use of foreign key constraints, which can prevent
changes from happening or automatically propagate those changes to all related tables. Related mechanisms
include the unique constraint, which prevents duplicate values from being inserted by mistake, and the NOT
NULL constraint, which prevents blank values from being inserted by mistake.
See Also ACID, FOREIGN KEY constraint, NOT NULL constraint, unique constraint.

relational
 An important aspect of modern database systems. The database server encodes and enforces relationships
such as one-to-one, one-to-many, many-to-one, and uniqueness. For example, a person might have zero,
one, or many phone numbers in an address database; a single phone number might be associated with
several family members. In a financial database, a person might be required to have exactly one taxpayer ID,
and any taxpayer ID could only be associated with one person.

The database server can use these relationships to prevent bad data from being inserted, and to find efficient
ways to look up information. For example, if a value is declared to be unique, the server can stop searching as
soon as the first match is found, and it can reject attempts to insert a second copy of the same value.

At the database level, these relationships are expressed through SQL features such as columns within a
table, unique and NOT NULL constraints, foreign keys, and different kinds of join operations. Complex
relationships typically involve data split between more than one table. Often, the data is normalized, so that
duplicate values in one-to-many relationships are stored only once.

In a mathematical context, the relations within a database are derived from set theory. For example, the OR
and AND operators of a WHERE clause represent the notions of union and intersection.
See Also ACID, constraint, foreign key, normalized.

relevance
 In the full-text search feature, a number signifying the similarity between the search string and the data in
the FULLTEXT index. For example, when you search for a single word, that word is typically more relevant
for a row where if it occurs several times in the text than a row where it appears only once.
See Also full-text search, FULLTEXT index.

REPEATABLE READ
 The default isolation level for InnoDB. It prevents any rows that are queried from being changed by other
transactions, thus blocking non-repeatable reads but not phantom reads. It uses a moderately strict locking
strategy so that all queries within a transaction see data from the same snapshot, that is, the data as it was at
the time the transaction started.

When a transaction with this isolation level performs UPDATE ... WHERE, DELETE ... WHERE,
SELECT ... FOR UPDATE, and LOCK IN SHARE MODE operations, other transactions might have to wait.
See Also ACID, consistent read, isolation level, locking, phantom, SERIALIZABLE, transaction.

replication
 The practice of sending changes from a master database, to one or more slave databases, so that all
databases have the same data. This technique has a wide range of uses, such as load-balancing for better
scalability, disaster recovery, and testing software upgrades and configuration changes. The changes can be
sent between the database by methods called row-based replication and statement-based replication.
See Also row-based replication, statement-based replication.

restore
 The process of putting a set of backup files from the MySQL Enterprise Backup product in place for use by
MySQL. This operation can be performed to fix a corrupted database, to return to some earlier point in time,
or (in a replication context) to set up a new slave database. In the MySQL Enterprise Backup product, this
operation is performed by the copy-back option of the mysqlbackup command.
See Also hot backup, MySQL Enterprise Backup, mysqlbackup command, prepared backup, replication.

2942

rollback
 A SQL statement that ends a transaction, undoing any changes made by the transaction. It is the opposite
of commit, which makes permanent any changes made in the transaction.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement. You must change this setting before you can use the rollback technique.
See Also ACID, commit, transaction.

rollback segment
 The storage area containing the undo log, part of the system tablespace.
See Also system tablespace, undo log.

row
 The logical data structure defined by a set of columns. A set of rows makes up a table. Within InnoDB data
files, each page can contain one or more rows.

Although InnoDB uses the term row format for consistency with MySQL syntax, the row format is a property
of each table and applies to all rows in that table.
See Also column, data files, page, row format, table.

row format
 The disk storage format for a row from an InnoDB table. As InnoDB gains new capabilities such as
compression, new row formats are introduced to support the resulting improvements in storage efficiency and
performance.

Each table has its own row format, specified through the ROW_FORMAT option. To see the row format for
each InnoDB table, issue the command SHOW TABLE STATUS. Because all the tables in the system
tablespace share the same row format, to take advantage of other row formats typically requires setting the
innodb_file_per_table option, so that each table is stored in a separate tablespace.
See Also compact row format, compressed row format, dynamic row format, fixed row format, redundant row
format, row, table.

row lock
 A lock that prevents a row from being accessed in an incompatible way by another transaction. Other rows
in the same table can be freely written to by other transactions. This is the type of locking done by DML
operations on InnoDB tables.

Contrast with table locks used by MyISAM, or during DDL operations on InnoDB tables that cannot be done
with online DDL; those locks block concurrent access to the table.
See Also DDL, DML, InnoDB, lock, locking, online DDL, table lock, transaction.

row-based replication
 A form of replication where events are propagated from the master server specifying how to change
individual rows on the slave server. It is safe to use for all settings of the innodb_autoinc_lock_mode
option.
See Also auto-increment locking, innodb_autoinc_lock_mode, master server, replication, slave server,
statement-based replication.

row-level locking
 The locking mechanism used for InnoDB tables, relying on row locks rather than table locks. Multiple
transactions can modify the same table concurrently. Only if two transactions try to modify the same row
does one of the transactions wait for the other to complete (and release its row locks).
See Also InnoDB, locking, row lock, table lock, transaction.

rw-lock
 The low-level object that InnoDB uses to represent and enforce shared-access locks to internal in-memory
data structures. Once the lock is acquired, any other process, thread, and so on can read the data structure,
but no one else can write to it. Contrast with mutexes, which enforce exclusive access. Mutexes and rw-locks
are known collectively as latches.
See Also latch, lock, mutex, Performance Schema.

2943

S
savepoint

 Savepoints help to implement nested transactions. They can be used to provide scope to operations on
tables that are part of a larger transaction. For example, scheduling a trip in a reservation system might
involve booking several different flights; if a desired flight is unavailable, you might roll back the changes
involved in booking that one leg, without rolling back the earlier flights that were successfully booked.
See Also rollback, transaction.

scalability
 The ability to add more work and issue more simultaneous requests to a system, without a sudden drop in
performance due to exceeding the limits of system capacity. Software architecture, hardware configuration,
application coding, and type of workload all play a part in scalability. When the system reaches its maximum
capacity, popular techniques for increasing scalability are scale up (increasing the capacity of existing
hardware or software) and scale out (adding new servers and more instances of MySQL). Often paired with
availability as critical aspects of a large-scale deployment.
See Also availability, scale out, scale up.

scale out
 A technique for increasing scalability by adding new servers and more instances of MySQL. For example,
setting up replication, MySQL Cluster, connection pooling, or other features that spread work across a group
of servers. Contrast with scale up.
See Also scalability, scale up.

scale up
 A technique for increasing scalability by increasing the capacity of existing hardware or software.
For example, increasing the memory on a server and adjusting memory-related parameters such as
innodb_buffer_pool_size and innodb_buffer_pool_instances. Contrast with scale out.
See Also scalability, scale out.

schema
 Conceptually, a schema is a set of interrelated database objects, such as tables, table columns, data types
of the columns, indexes, foreign keys, and so on. These objects are connected through SQL syntax, because
the columns make up the tables, the foreign keys refer to tables and columns, and so on. Ideally, they are
also connected logically, working together as part of a unified application or flexible framework. For example,
the information_schema and performance_schema databases use "schema" in their names to emphasize
the close relationships between the tables and columns they contain.

In MySQL, physically, a schema is synonymous with a database. You can substitute the keyword SCHEMA
instead of DATABASE in MySQL SQL syntax, for example using CREATE SCHEMA instead of CREATE
DATABASE.

Some other database products draw a distinction. For example, in the Oracle Database product, a schema
represents only a part of a database: the tables and other objects owned by a single user.
See Also database, ib-file set, INFORMATION_SCHEMA, Performance Schema.

search index
 In MySQL, full-text search queries use a special kind of index, the FULLTEXT index. In MySQL 5.6.4 and
up, InnoDB and MyISAM tables both support FULLTEXT indexes; formerly, these indexes were only available
for MyISAM tables.
See Also full-text search, FULLTEXT index.

secondary index
 A type of InnoDB index that represents a subset of table columns. An InnoDB table can have zero, one, or
many secondary indexes. (Contrast with the clustered index, which is required for each InnoDB table, and
stores the data for all the table columns.)

A secondary index can be used to satisfy queries that only require values from the indexed columns. For more
complex queries, it can be used to identify the relevant rows in the table, which are then retrieved through
lookups using the clustered index.

2944

Creating and dropping secondary indexes has traditionally involved significant overhead from copying all the
data in the InnoDB table. The fast index creation feature of the InnoDB Plugin makes both CREATE INDEX
and DROP INDEX statements much faster for InnoDB secondary indexes.
See Also clustered index, Fast Index Creation, index.

segment
 A division within an InnoDB tablespace. If a tablespace is analogous to a directory, the segments are
analogous to files within that directory. A segment can grow. New segments can be created.

For example, within a file-per-table tablespace, the table data is in one segment and each associated index
is in its own segment. The system tablespace contains many different segments, because it can hold many
tables and their associated indexes. The system tablespace also includes up to 128 rollback segments
making up the undo log.

Segments grow and shrink as data is inserted and deleted. When a segment needs more room, it is extended
by one extent (1 megabyte) at a time. Similarly, a segment releases one extent's worth of space when all the
data in that extent is no longer needed.
See Also extent, file-per-table, rollback segment, system tablespace, tablespace, undo log.

selectivity
 A property of data distribution, the number of distinct values in a column (its cardinality) divided by the
number of records in the table. High selectivity means that the column values are relatively unique, and can
retrieved efficiently through an index. If you (or the query optimizer) can predict that a test in a WHERE clause
only matches a small number (or proportion) of rows in a table, the overall query tends to be efficient if it
evaluates that test first, using an index.
See Also cardinality, query.

semi-consistent read
 A type of read operation used for UPDATE statements, that is a combination of read committed and
consistent read. When an UPDATE statement examines a row that is already locked, InnoDB returns the
latest committed version to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE. If the row matches (must be updated), MySQL reads the row again, and this
time InnoDB either locks it or waits for a lock on it. This type of read operation can only happen when the
transaction has the read committed isolation level, or when the innodb_locks_unsafe_for_binlog
option is enabled.
See Also consistent read, isolation level, READ COMMITTED.

SERIALIZABLE
 The isolation level that uses the most conservative locking strategy, to prevent any other transactions from
inserting or changing data that was read by this transaction, until it is finished. This way, the same query can
be run over and over within a transaction, and be certain to retrieve the same set of results each time. Any
attempt to change data that was committed by another transaction since the start of the current transaction,
cause the current transaction to wait.

This is the default isolation level specified by the SQL standard. In practice, this degree of strictness is rarely
needed, so the default isolation level for InnoDB is the next most strict, repeatable read.
See Also ACID, consistent read, isolation level, locking, REPEATABLE READ, transaction.

server
 A type of program that runs continuously, waiting to receive and act upon requests from another program
(the client). Because often an entire computer is dedicated to running one or more server programs (such as
a database server, a web server, an application server, or some combination of these), the term server can
also refer to the computer that runs the server software.
See Also client, mysqld.

shared lock
 A kind of lock that allows other transactions to read the locked object, and to also acquire other shared
locks on it, but not to write to it. The opposite of exclusive lock.
See Also exclusive lock, lock, transaction.

2945

shared tablespace
 Another way of referring to the system tablespace.
See Also system tablespace.

sharp checkpoint
 The process of flushing to disk all dirty buffer pool pages whose redo entries are contained in certain portion
of the redo log. Occurs before InnoDB reuses a portion of a log file; the log files are used in a circular fashion.
Typically occurs with write-intensive workloads.
See Also dirty page, flush, redo log, workload.

shutdown
 The process of stopping the MySQL server. By default, this process does cleanup operations for InnoDB
tables, so it can slow to shut down, but fast to start up later. If you skip the cleanup operations, it is fast to
shut down but must do the cleanup during the next restart.

The shutdown mode is controlled by the innodb_fast_shutdown option.
See Also fast shutdown, InnoDB, slow shutdown, startup.

slave server
 Frequently shortened to "slave". A database server machine in a replication scenario that receives changes
from another server (the master) and applies those same changes. Thus it maintains the same contents as
the master, although it might lag somewhat behind.

In MySQL, slave servers are commonly used in disaster recovery, to take the place of a master servers that
fails. They are also commonly used for testing software upgrades and new settings, to ensure that database
configuration changes do not cause problems with performance or reliability.

Slave servers typically have high workloads, because they process all the DML (write) operations relayed
from the master, as well as user queries. To ensure that slave servers can apply changes from the master
fast enough, they frequently have fast I/O devices and sufficient CPU and memory to run multiple database
instances on the same slave server. For example, the master server might use hard drive storage while the
slave servers use SSDs.
See Also DML, replication, server, SSD.

slow query log
 A type of log used for performance tuning of SQL statements processed by the MySQL server. The log
information is stored in a file. You must enable this feature to use it. You control which categories of "slow"
SQL statements are logged. For more information, see Section 5.2.5, “The Slow Query Log”.
See Also general query log, log.

slow shutdown
 A type of shutdown that does additional InnoDB flushing operations before completing. Also known as a
clean shutdown. Specified by the configuration parameter innodb_fast_shutdown=0 or the command
SET GLOBAL innodb_fast_shutdown=0;. Although the shutdown itself can take longer, that time will be
saved on the subsequent startup.
See Also clean shutdown, fast shutdown, shutdown.

snapshot
 A representation of data at a particular time, which remains the same even as changes are committed by
other transactions. Used by certain isolation levels to allow consistent reads.
See Also commit, consistent read, isolation level, transaction.

space ID
 An identifier used to uniquely identify an InnoDB tablespace within a MySQL instance. The space ID for
the system tablespace is always zero; this same ID applies to all tables within the system tablespace. Each
tablespace file created in file-per-table mode also has its own space ID.

Prior to MySQL 5.6, this hardcoded value presented difficulties in moving InnoDB tablespace files between
MySQL instances. Starting in MySQL 5.6, you can copy tablespace files between instances by using the

2946

transportable tablespace feature involving the statements FLUSH TABLES ... FOR EXPORT, ALTER
TABLE ... DISCARD TABLESPACE, and ALTER TABLE ... IMPORT TABLESPACE. The information
needed to adjust the space ID is conveyed in the .cfg file which you copy along with the tablespace. See
Section 14.2.5.5, “Copying Tablespaces to Another Server (Transportable Tablespaces)” for details.
See Also .cfg file, file-per-table, .ibd file, system tablespace, tablespace, transportable tablespace.

spin
 A type of wait operation that continuously tests whether a resource becomes available. This technique is
used for resources that are typically held only for brief periods, where it is more efficient to wait in a "busy
loop" than to put the thread to sleep and perform a context switch. If the resource does not become available
within a short time, the spin loop ceases and another wait technique is used.
See Also latch, lock, mutex, wait.

SQL
 The Structured Query Language that is standard for performing database operations. Often divided into
the categories DDL, DML, and queries. MySQL includes some additional statement categories such as
replication. See Chapter 9, Language Structure for the building blocks of SQL syntax, Chapter 11, Data
Types for the data types to use for MySQL table columns, Chapter 13, SQL Statement Syntax for details
about SQL statements and their associated categories, and Chapter 12, Functions and Operators for standard
and MySQL-specific functions to use in queries.
See Also DDL, DML, query, replication.

SSD
 Acronym for "solid-state drive". A type of storage device with different performance characteristics than a
traditional hard disk drive (HDD): smaller storage capacity, faster for random reads, no moving parts, and with
a number of considerations affecting write performance. Its performance characteristics can influence the
throughput of a disk-bound workload.
See Also disk-bound, SSD.

startup
 The process of starting the MySQL server. Typically done by one of the programs listed in Section 4.3,
“MySQL Server and Server-Startup Programs”. The opposite of shutdown.
See Also shutdown.

statement-based replication
 A form of replication where SQL statements are sent from the master server and replayed on the slave
server. It requires some care with the setting for the innodb_autoinc_lock_mode option, to avoid potential
timing problems with auto-increment locking.
See Also auto-increment locking, innodb_autoinc_lock_mode, master server, replication, row-based
replication, slave server.

statistics
 Estimated values relating to each InnoDB table and index, used to construct an efficient query execution
plan. The main values are the cardinality (number of distinct values) and the total number of table rows
or index entries. The statistics for the table represent the data in its primary key index. The statistics for a
secondary index represent the rows covered by that index.

The values are estimated rather than counted precisely because at any moment, different transactions can
be inserting and deleting rows from the same table. To keep the values from being recalculated frequently,
you can enable persistent statistics, where the values are stored in InnoDB system tables, and refreshed
only when you issue an ANALYZE TABLE statement.

You can control how NULL values are treated when calculating statistics through the
innodb_stats_method configuration option.

Other types of statistics are available for database objects and database activity through the
INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables.
See Also cardinality, index, INFORMATION_SCHEMA, NULL, Performance Schema, persistent statistics,
primary key, query execution plan, secondary index, table, transaction.

2947

stemming
 The ability to search for different variations of a word based on a common root word, such as singular and
plural, or past, present, and future verb tense. This feature is currently supported in MyISAM full-text search
feature but not in FULLTEXT indexes for InnoDB tables.
See Also full-text search, FULLTEXT index.

stopword
 In a FULLTEXT index, a word that is considered common or trivial enough that it is omitted from the search
index and ignored in search queries. Different configuration settings control stopword processing for InnoDB
and MyISAM tables. See Section 12.9.4, “Full-Text Stopwords” for details.
See Also FULLTEXT index, search index.

storage engine
 A component of the MySQL database that performs the low-level work of storing, updating, and querying
data. In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables, superceding MyISAM.
Different storage engines are designed with different tradeoffs between factors such as memory usage versus
disk usage, read speed versus write speed, and speed versus robustness. Each storage engine manages
specific tables, so we refer to InnoDB tables, MyISAM tables, and so on.

The MySQL Enterprise Backup product is optimized for backing up InnoDB tables. It can also back up tables
handled by MyISAM and other storage engines.
See Also InnoDB, MySQL Enterprise Backup, table type.

strict mode
 The general name for the setting controlled by the innodb_strict_mode option. Turning on this setting
causes certain conditions that are normally treated as warnings, to be considered errors. For example, certain
invalid combinations of options related to file format and row format, that normally produce a warning and
continue with default values, now cause the CREATE TABLE operation to fail.

MySQL also has something called strict mode.
See Also file format, innodb_strict_mode, row format.

sublist
 Within the list structure that represents the buffer pool, pages that are relatively old and relatively new are
represented by different portions of the list. A set of parameters control the size of these portions and the
dividing point between the new and old pages.
See Also buffer pool, eviction, list, LRU.

supremum record
 A pseudo-record in an index, representing the gap above the largest value in that index. If a transaction
has a statement such as SELECT ... FOR UPDATE ... WHERE col > 10;, and the largest value in the
column is 20, it is a lock on the supremum record that prevents other transactions from inserting even larger
values such as 50, 100, and so on.
See Also gap, infimum record, pseudo-record.

surrogate key
 Synonym name for synthetic key.
See Also synthetic key.

synthetic key
 A indexed column, typically a primary key, where the values are assigned arbitrarily. Often done using an
auto-increment column. By treating the value as completely arbitrary, you can avoid overly restrictive rules
and faulty application assumptions. For example, a numeric sequence representing employee numbers might
have a gap if an employee was approved for hiring but never actually joined. Or employee number 100 might
have a later hiring date than employee number 500, if they left the company and later rejoined. Numeric
values also produce shorter values of predictable length. For example, storing numeric codes meaning
"Road", "Boulevard", "Expressway", and so on is more space-efficient than repeating those strings over and
over.

Also known as a surrogate key. Contrast with natural key.

2948

See Also auto-increment, natural key, primary key, surrogate key.

system tablespace
 A small set of data files (the ibdata files) containing the metadata for InnoDB-related objects (the data
dictionary), and the storage areas for the undo log, the change buffer, and the doublewrite buffer.
Depending on the setting of the innodb_file_per_table, when tables are created, it might also contain
table and index data for some or all InnoDB tables. The data and metadata in the system tablespace apply to
all the databases in a MySQL instance.

Prior to MySQL 5.6.7, the default was to keep all InnoDB tables and indexes inside the system tablespace,
often causing this file to become very large. Because the system tablespace never shrinks, storage problems
could arise if large amounts of temporary data were loaded and then deleted. In MySQL 5.6.7 and higher, the
default is file-per-table mode, where each table and its associated indexes are stored in a separate .ibd file.
This new default makes it easier to use InnoDB features that rely on the Barracuda file format, such as table
compression and the DYNAMIC row format.

In MySQL 5.6 and higher, setting a value for the innodb_undo_tablespaces option splits the undo log
into one or more separate tablespace files. These files are still considered part of the system tablespace.

Keeping all table data in the system tablespace or in separate .ibd files has implications for storage
management in general. The MySQL Enterprise Backup product might back up a small set of large files, or
many smaller files. On systems with thousands of tables, the filesystem operations to process thousands of
.ibd files can cause bottlenecks.
See Also Barracuda, change buffer, compression, data dictionary, database, doublewrite buffer, dynamic
row format, file-per-table, .ibd file, ibdata file, innodb_file_per_table, instance, MySQL Enterprise Backup,
tablespace, undo log.

T
.TRG file

 A file containing trigger parameters. Files with this extension are always included in backups produced by
the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRN file.

.TRN file
 A file containing trigger namespace information. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRG file.

table
 Each MySQL table is associated with a particular storage engine. InnoDB tables have particular physical
and logical characteristics that affect performance, scalability, backup, administration, and application
development.

In terms of file storage, each InnoDB table is either part of the single big InnoDB system tablespace, or in a
separate .ibd file if the table is created in file-per-table mode. The .ibd file holds data for the table and all
its indexes, and is known as a tablespace.

InnoDB tables created in file-per-table mode can use the Barracuda file format. Barracuda tables can use the
DYNAMIC row format or the COMPRESSED row format. These relatively new settings enable a number of
InnoDB features, such as compression, fast index creation, and off-page columns

For backward compatibility with MySQL 5.1 and earlier, InnoDB tables inside the system tablespace must use
the Antelope file format, which supports the compact row format and the redundant row format.

The rows of an InnoDB table are organized into an index structure known as the clustered index, with
entries sorted based on the primary key columns of the table. Data access is optimized for queries that
filter and sort on the primary key columns, and each index contains a copy of the associated primary key
columns for each entry. Modifying values for any of the primary key columns is an expensive operation. Thus

2949

an important aspect of InnoDB table design is choosing a primary key with columns that are used in the most
important queries, and keeping the primary key short, with rarely changing values.
See Also Antelope, backup, Barracuda, clustered index, compact row format, compressed row format,
compression, dynamic row format, Fast Index Creation, file-per-table, .ibd file, index, off-page column, primary
key, redundant row format, row, system tablespace, tablespace.

table lock
 A lock that prevents any other transaction from accessing a table. InnoDB makes considerable effort to
make such locks unnecessary, by using techniques such as online DDL, row locks and consistent reads
for processing DML statements and queries. You can create such a lock through SQL using the LOCK
TABLE statement; one of the steps in migrating from other database systems or MySQL storage engines is to
remove such statements wherever practical.
See Also consistent read, DML, lock, locking, online DDL, query, row lock, table, transaction.

table scan
See full table scan.

table statistics
See statistics.

table type
 Obsolete synonym for storage engine. We refer to InnoDB tables, MyISAM tables, and so on.
See Also InnoDB, storage engine.

tablespace
 A data file that can hold data for one or more InnoDB tables and associated indexes. The system
tablespace contains the tables that make up the data dictionary, and prior to MySQL 5.6 holds all the other
InnoDB tables by default. Turning on the innodb_file_per_table option, the default in MySQL 5.6 and
higher, allows newly created tables to each have their own tablespace, with a separate data file for each
table.

Using multiple tablespaces, by turning on the innodb_file_per_table option, is vital to using many
MySQL features such as table compression and transportable tablespaces, and managing disk usage. See
Section 14.2.5.2, “InnoDB File-Per-Table Mode” for details.

Tablespaces created by the built-in InnoDB storage engine are upward compatible with the InnoDB Plugin.
Tablespaces created by the InnoDB Plugin are downward compatible with the built-in InnoDB storage engine,
if they use the Antelope file format.

MySQL Cluster also groups its tables into tablespaces. See MySQL Cluster Disk Data Objects for details.
See Also Antelope, Barracuda, compressed row format, data dictionary, data files, file-per-table, index,
innodb_file_per_table, system tablespace, table.

tablespace dictionary
 A representation of the data dictionary metadata for a table, within the InnoDB tablespace. This metadata
can be checked against the .frm file for consistency when the table is opened, to diagnose errors resulting
from out-of-date .frm files. This information is present for InnoDB tables that are part of the system
tablespace, as well as for tables that have their own .ibd file because of the file-per-table option.
See Also data dictionary, file-per-table, .frm file, .ibd file, system tablespace, tablespace.

temporary table
 A table whose data does not need to be truly permanent. For example, temporary tables might be used as
storage areas for intermediate results in complicated calculations or transformations; this intermediate data
would not need to be recovered after a crash. Database products can take various shortcuts to improve the
performance of operations on temporary tables, by being less scrupulous about writing data to disk and other
measures to protect the data across restarts.

Sometimes, the data itself is removed automatically at a set time, such as when the transaction ends or when
the session ends. With some database products, the table itself is removed automatically too.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-disk-data-objects.html

2950

See Also table.

temporary tablespace
 The tablespace for non-compressed InnoDB temporary tables and related objects. This tablespace was
introduced in MySQL 5.7.1. The configuration file option, innodb_temp_data_file_path, allows users
to define a relative path for the temporary data file. If innodb_temp_data_file_path is not specified,
the default behavior is to create a single auto-extending 12MB data file named ibtmp1 in the data directory,
alongside ibdata1. The temporary tablespace is recreated on each server start and receives a dynamically
generated space-id, which helps avoid conflicts with existing space-ids. The temporary tablespace cannot
reside on a raw device. Inability or error creating the temporary table is treated as fatal and server startup will
be refused.

The tablespace is removed on normal shutdown or on init abort, which may occur when a user specifies the
wrong startup options, for example. The temporary tablespace is not removed when a crash occurs. In this
case, the database administrator can remove the tablespace manually or restart the server with the same
configuration, which will remove and recreate the temporary tablespace.
See Also ibtmp file.

text collection
 The set of columns included in a FULLTEXT index.
See Also FULLTEXT index.

thread
 A unit of processing that is typically more lightweight than a process, allowing for greater concurrency.
See Also concurrency, master thread, process, Pthreads.

torn page
 An error condition that can occur due to a combination of I/O device configuration and hardware failure. If
data is written out in chunks smaller than the InnoDB page size (by default, 16KB), a hardware failure while
writing could result in only part of a page being stored to disk. The InnoDB doublewrite buffer guards against
this possibility.
See Also doublewrite buffer.

TPS
 Acronym for "transactions per second", a unit of measurement sometimes used in benchmarks. Its value
depends on the workload represented by a particular benchmark test, combined with factors that you control
such as the hardware capacity and database configuration.
See Also transaction, workload.

transaction
 Transactions are atomic units of work that can be committed or rolled back. When a transaction makes
multiple changes to the database, either all the changes succeed when the transaction is committed, or all the
changes are undone when the transaction is rolled back.

Database transactions, as implemented by InnoDB, have properties that are collectively known by the
acronym ACID, for atomicity, consistency, isolation, and durability.
See Also ACID, commit, isolation level, lock, rollback.

transaction ID
 An internal field associated with each row. This field is physically changed by INSERT, UPDATE, and
DELETE operations to record which transaction has locked the row.
See Also implicit row lock.

transportable tablespace
 A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not
been possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL
5.6 and higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to
another server; running ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ... IMPORT
TABLESPACE on the other server brings the copied data file into the other instance. A separate .cfg file,
copied along with the .ibd file, is used to update the table metadata (for example the space ID) as the

2951

tablespace is imported. See Section 14.2.5.5, “Copying Tablespaces to Another Server (Transportable
Tablespaces)” for usage information.
See Also .ibd file, space ID, system tablespace, tablespace.

troubleshooting
 Resources for troubleshooting InnoDB reliability and performance issues include: the Information Schema
tables.

truncate
 A DDL operation that removes the entire contents of a table, while leaving the table and related indexes
intact. Contrast with drop. Although conceptually it has the same result as a DELETE statement with no
WHERE clause, it operates differently behind the scenes: InnoDB creates a new empty table, drops the old
table, then renames the new table to take the place of the old one. Because this is a DDL operation, it cannot
be rolled back.

If the table being truncated contains foreign keys that reference another table, the truncation operation uses a
slower method of operation, deleting one row at a time so that corresponding rows in the referenced table can
be deleted as needed by any ON DELETE CASCADE clause. (MySQL 5.5 and higher do not allow this slower
form of truncate, and return an error instead if foreign keys are involved. In this case, use a DELETE statement
instead.
See Also DDL, drop, foreign key, rollback.

tuple
 A technical term designating an ordered set of elements. It is an abstract notion, used in formal discussions
of database theory. In the database field, tuples are usually represented by the columns of a table row. They
could also be represented by the result sets of queries, for example, queries that retrieved only some columns
of a table, or columns from joined tables.
See Also cursor.

two-phase commit
 An operation that is part of a distributed transaction, under the XA specification. (Sometimes abbreviated as
2PC.) When multiple databases participate in the transaction, either all databases commit the changes, or all
databases roll back the changes.
See Also commit, rollback, transaction, XA.

U
undo

 Data that is maintained throughout the life of a transaction, recording all changes so that they can be
undone in case of a rollback operation. It is stored in the undo log, also known as the rollback segment,
either within the system tablespace or in separate undo tablespaces.
See Also rollback, rollback segment, system tablespace, transaction, undo log, undo tablespace.

undo buffer
See undo log.

undo log
 A storage area that holds copies of data modified by active transactions. If another transaction needs to see
the original data (as part of a consistent read operation), the unmodified data is retrieved from this storage
area.

By default, this area is physically part of the system tablespace. In MySQL 5.6 and higher, you can use the
innodb_undo_tablespaces and innodb_undo_directory configuration options to split it into one or
more separate tablespace files, the undo tablespaces, optionally stored on another storage device such as
an SSD.

The undo log is split into separate portions, the insert undo buffer and the update undo buffer. Collectively,
these parts are also known as the rollback segment, a familiar term for Oracle DBAs.
See Also consistent read, rollback segment, SSD, system tablespace, transaction, undo tablespace.

2952

undo tablespace
 One of a set of files containing the undo log, when the undo log is separated from the system tablespace
by the innodb_undo_tablespaces and innodb_undo_directory configuration options. Only applies to
MySQL 5.6 and higher.
See Also system tablespace, undo log.

unique constraint
 A kind of constraint that asserts that a column cannot contain any duplicate values. In terms of relational
algebra, it is used to specify 1-to-1 relationships. For efficiency in checking whether a value can be inserted
(that is, the value does not already exist in the column), a unique constraint is supported by an underlying
unique index.
See Also constraint, relational, unique index.

unique index
 An index on a column or set of columns that have a unique constraint. Because the index is known not
to contain any duplicate values, certain kinds of lookups and count operations are more efficient than in the
normal kind of index. Most of the lookups against this type of index are simply to determine if a certain value
exists or not. The number of values in the index is the same as the number of rows in the table, or at least the
number of rows with non-null values for the associated columns.

The insert buffering optimization does not apply to unique indexes. As a workaround, you can temporarily
set unique_checks=0 while doing a bulk data load into an InnoDB table.
See Also cardinality, insert buffering, unique constraint, unique key.

unique key
 The set of columns (one or more) comprising a unique index. When you can define a WHERE condition that
matches exactly one row, and the query can use an associated unique index, the lookup and error handling
can be performed very efficiently.
See Also cardinality, unique constraint, unique index.

V
victim

 The transaction that is automatically chosen to be rolled back when a deadlock is detected. InnoDB rolls
back the transaction that has updated the fewest rows.
See Also deadlock, deadlock detection, innodb_lock_wait_timeout.

W
wait

 When an operation, such as acquiring a lock, mutex, or latch, cannot be completed immediately, InnoDB
pauses and tries again. The mechanism for pausing is elaborate enough that this operation has its own name,
the wait. Individual threads are paused using a combination of internal InnoDB scheduling, operating system
wait() calls, and short-duration spin loops.

On systems with heavy load and many transactions, you might use the output from the SHOW INNODB
STATUS command to determine whether threads are spending too much time waiting, and if so, how you can
improve concurrency.
See Also concurrency, latch, lock, mutex, spin.

warm backup
 A backup taken while the database is running, but that restricts some database operations during the backup
process. For example, tables might become read-only. For busy applications and web sites, you might prefer
a hot backup.
See Also backup, cold backup, hot backup.

warm up
 To run a system under a typical workload for some time after startup, so that the buffer pool and other
memory regions are filled as they would be under normal conditions.

2953

This process happens naturally over time when a MySQL server is restarted or subjected to a new workload.
Starting in MySQL 5.6, you can speed up the warmup process by setting the configuration variables
innodb_buffer_pool_dump_at_shutdown=ON and innodb_buffer_pool_load_at_startup=ON, to
bring the contents of the buffer pool back into memory after a restart. Typically, you run a workload for some
time to warm up the buffer pool before running performance tests, to ensure consistent results across multiple
runs; otherwise, performance might be artificially low during the first run.
See Also buffer pool, workload.

Windows
 The built-in InnoDB storage engine and the InnoDB Plugin are supported on all the same Microsoft Windows
versions as the MySQL server. The MySQL Enterprise Backup product has more comprehensive support for
Windows systems than the InnoDB Hot Backup product that it supersedes.
See Also InnoDB, MySQL Enterprise Backup, plugin.

workload
 The combination and volume of SQL and other database operations, performed by a database application
during typical or peak usage. You can subject the database to a particular workload during performance
testing to identify bottlenecks, or during capacity planning.
See Also bottleneck, CPU-bound, disk-bound, SQL.

write combining
 An optimization technique that reduces write operations when dirty pages are flushed from the InnoDB
buffer pool. If a row in a page is updated multiple times, or multiple rows on the same page are updated, all
of those changes are stored to the data files in a single write operation rather than one write for each change.
See Also buffer pool, dirty page, flush.

X
XA

 A standard interface for coordinating distributed transactions, allowing multiple databases to participate in a
transaction while maintaining ACID compliance. For full details, see Section 13.3.7, “XA Transactions”.

XA Distributed Transaction support is turned on by default. If you are not using this feature, you can disable
the innodb_support_xa configuration option, avoiding the performance overhead of an extra fsync for each
transaction.
See Also commit, transaction, two-phase commit.

Y
young

 A characteristic of a page in the InnoDB buffer pool meaning it has been accessed recently, and so is
moved within the buffer pool data structure, so that it will not be flushed soon by the LRU algorithm. This term
is used in some information schema column names of tables related to the buffer pool.
See Also buffer pool, flush, INFORMATION_SCHEMA, LRU, page.

2954

2955

General Index

Symbols
! (logical NOT), 1136
!= (not equal), 1131
", 980
#mysql50 identifier prefix, 981, 985
%, 1167
% (modulo), 1172
% (wildcard character), 974
& (bitwise AND), 1226
&& (logical AND), 1136
() (parentheses), 1130
(Control+Z) \Z, 974, 1390
* (multiplication), 1166
+ (addition), 1166
- (subtraction), 1166
- (unary minus), 1166
--master-info-repository option, 2108
--password option, 696
--relay-log-info-repository option, 2108
-p option, 696
.ARM file, 2901
.ARZ file, 2901
.cfg file, 2906
.frm file, 2916
.ibd file, 2921
.ibz file, 2921
.isl file, 2922
.MRG file, 2929
.my.cnf file, 227, 230, 231, 675, 696, 732
.MYD file, 2929
.MYI file, 2929
.mylogin.cnf file, 230, 374
.mysql_history file, 285, 697
.mysql_secret file, 120, 252, 255, 256
.OPT file, 2934
.PAR file, 2935
.pid (process ID) file, 819
.TRG file, 2948
.TRN file, 2948
/ (division), 1167
/etc/passwd, 709, 1408
3306 port, 148, 467
:= (assignment operator), 1137
:= (assignment), 992
< (less than), 1131
<< (left shift), 215, 1227
<= (less than or equal), 1131
<=> (equal to), 1131
<> (not equal), 1131
= (assignment operator), 1137
= (assignment), 992
= (equal), 1131
> (greater than), 1132
>= (greater than or equal), 1132
>> (right shift), 1227

\" (double quote), 974
\' (single quote), 974
\. (mysql client command), 210, 288
\0 (ASCII NUL), 974, 1390
\b (backspace), 974, 1390
\n (linefeed), 974, 1390
\n (newline), 974, 1390
\N (NULL), 1390
\r (carriage return), 974, 1390
\t (tab), 974, 1390
\Z (Control+Z) ASCII 26, 974, 1390
\\ (escape), 974
^ (bitwise XOR), 1227
_ (wildcard character), 974
_rowid, 1337
`, 980
| (bitwise OR), 1226
|| (logical OR), 1136
~ (invert bits), 1227

A
abort-slave-event-count option

mysqld, 2049
aborted clients, 2857
aborted connection, 2857
ABS(), 1168
access control, 726
access denied errors, 2849
access privileges, 713
account names, 724
accounts

adding privileges, 738
anonymous user, 164
default, 164
root, 164

accounts table
performance_schema, 2395

ACID, 27, 1595, 1601, 2901
ACLs, 713
ACOS(), 1168
action option

MySQLInstallerConsole, 80
activating plugins, 638
ActiveState Perl, 184
adaptive flushing, 2901
adaptive hash index, 1618, 1730, 2901
add-drop-database option

mysqldump, 314
add-drop-table option

mysqldump, 315
add-drop-trigger option

mysqldump, 315
add-locks option

mysqldump, 323
ADDDATE(), 1178
adding

character sets, 1050
native functions, 2650

2956

new account privileges, 738
new functions, 2639
new user privileges, 738
user-defined functions, 2640

addition (+), 1166
ADDTIME(), 1179
addtodest option

mysqlhotcopy, 403
administration

server, 292
administrative programs, 222
AES_DECRYPT(), 1229
AES_ENCRYPT(), 1229
After create

thread state, 962
age

calculating, 199
AHI, 2902
AIO, 2902
alias names

case sensitivity, 982
aliases

for expressions, 1261
for tables, 1403
in GROUP BY clauses, 1261
names, 979
on expressions, 1402

ALL, 1406, 1423
ALL join type

optimizer, 910
all option

mysql_config_editor, 378
all-databases option

mysqlcheck, 303
mysqldump, 321

all-in-1 option
mysqlcheck, 303

all-tablespaces option
mysqldump, 315

allow-keywords option
mysqldump, 315

allow-mismatches option
innochecksum, 347

allow-suspicious-udfs option
mysqld, 445

allowold option
mysqlhotcopy, 403

ALLOW_INVALID_DATES SQL mode, 628
ALTER COLUMN, 1307
ALTER DATABASE, 1298
ALTER EVENT, 1299

and replication, 2148
ALTER FUNCTION, 1301
ALTER PROCEDURE, 1301
ALTER SCHEMA, 1298
ALTER SERVER, 1301
ALTER TABLE, 1302, 1308, 2876

and replication log tables, 2108

ROW_FORMAT, 1677
ALTER USER, 1505
ALTER VIEW, 1318
altering

database, 1298
schema, 1298

altering table
thread state, 963

altering user accounts, 1505
ANALYSE()

PROCEDURE, 890
analyze option

myisamchk, 359
mysqlcheck, 303

ANALYZE TABLE, 1523
and partitioning, 2213

Analyzing
thread state, 962

AND
bitwise, 1226
logical, 1136

anonymous user, 164, 165, 726, 729
ANSI mode

running, 23
ansi option

mysqld, 446
ANSI SQL mode, 627, 634
ANSI_QUOTES SQL mode, 628
answering questions

etiquette, 17
Antelope, 2902
Antelope file format, 1670, 1678, 1785
ANY, 1422
Apache, 218
APIs, 2453

list of, 40
Perl, 2581

application programming interface (API), 2902
apply, 2902
apply-slave-statements option

mysqldump, 317
approximate-value literals, 976, 1288
ARCHIVE storage engine, 1591, 1882
Area(), 1279, 1280
argument processing, 2645
arithmetic expressions, 1166
arithmetic functions, 1226
AS, 1403, 1409
AsBinary(), 1275
ASCII(), 1142
ASIN(), 1168
assignment operator

:=, 1137
=, 1137

assignment operators, 1137
AsText(), 1275
asynchronous I/O, 1733, 2902
ATAN(), 1169

2957

ATAN2(), 1169
atomic, 2902
atomic instruction, 2903
attackers

security against, 708
attribute demotion

replication, 2143
attribute promotion

replication, 2143
audit log plugin

, 776
audit plugins, 2589
audit-log option

mysqld, 789
audit_log_buffer_size system variable, 790
audit_log_file system variable, 791
audit_log_flush system variable, 791
audit_log_format system variable, 791
audit_log_policy system variable, 792
audit_log_rotate_on_size system variable, 792
audit_log_strategy system variable, 793
authentication

for the InnoDB memcached interface, 1838
authentication plugins, 2589
auto-generate-sql option

mysqlslap, 340
auto-generate-sql-add-autoincrement option

mysqlslap, 340
auto-generate-sql-execute-number option

mysqlslap, 340
auto-generate-sql-guid-primary option

mysqlslap, 340
auto-generate-sql-load-type option

mysqlslap, 340
auto-generate-sql-secondary-indexes option

mysqlslap, 340
auto-generate-sql-unique-query-number option

mysqlslap, 340
auto-generate-sql-unique-write-number option

mysqlslap, 340
auto-generate-sql-write-number option

mysqlslap, 340
auto-increment, 2903
auto-increment locking, 2903
auto-rehash option

mysql, 271
auto-repair option

mysqlcheck, 303
auto-vertical-output option

mysql, 271
auto.cnf file, 2037

and SHOW SLAVE HOSTS, 1563
autocommit, 2903
autocommit system variable, 492
automatic_sp_privileges system variable, 492
AUTO_INCREMENT, 216, 1084

and NULL values, 2873
and replication, 2139

auto_increment_increment system variable, 2046
auto_increment_offset system variable, 2049
availability, 2903
AVG(), 1254
AVG(DISTINCT), 1254

B
B-tree, 2903
B-tree indexes, 886, 1617
background threads

master, 1733, 1734
read, 1732
write, 1732

backslash
escape character, 973

backspace (\b), 974, 1390
backticks, 2904
backup, 2904
backup option

myisamchk, 358
myisampack, 369

backups, 797, 2664
databases and tables, 307, 402
InnoDB, 1827
with mysqldump, 806

back_log system variable, 493
Barracuda, 2904
Barracuda file format, 1660, 1670, 1677, 1785
base64-output option

mysqlbinlog, 383
basedir option

mysql.server, 247
mysqld, 446
mysqld_safe, 243
mysql_install_db, 254
mysql_plugin, 258
mysql_upgrade, 265

basedir system variable, 493
batch mode, 209
batch option

mysql, 271
batch SQL files, 267
Batched Key Access

optimization, 851, 852
Bazaar tree, 137
BdMPolyFromText(), 1271
BdMPolyFromWKB(), 1272
BdPolyFromText(), 1271
BdPolyFromWKB(), 1272
BEGIN, 1434, 1471

labels, 1471
XA transactions, 1448

BENCHMARK(), 1236
benchmarks, 958, 958
beta, 2904
BETWEEN ... AND, 1133
big-tables option

mysqld, 446

2958

big5, 2760
BIGINT data type, 1077
big_tables system variable, 494
BIN(), 1142
BINARY, 1212
BINARY data type, 1083, 1102
binary distributions

installing, 58
binary log, 654, 2904

event groups, 1461
binary-mode option

mysql, 271
bind-address option

mysql, 271
mysqladmin, 296
mysqlbinlog, 384
mysqlcheck, 303
mysqld, 446
mysqldump, 312
mysqlimport, 328
mysqlshow, 334

bind_address system variable, 494
BINLOG, 1578
binlog, 2905
Binlog Dump

thread command, 960
BINLOG statement

mysqlbinlog output, 394
binlog-checksum option

mysqld, 2089
binlog-do-db option

mysqld, 2086
binlog-format option

mysqld, 447
binlog-ignore-db option

mysqld, 2088
binlog-row-event-max-size option

mysqlbinlog, 384
mysqld, 2084

binlog-rows-query-log-events option
mysqld, 2090

binlog_cache_size system variable, 2090
binlog_checksum system variable, 2090
binlog_direct_non_transactional_updates system
variable, 2091
binlog_format

BLACKHOLE, 2139
binlog_format system variable, 2092
binlog_max_flush_queue_time system variable, 2093
binlog_order_commits system variable, 2093
binlog_rows_query_log_events system variable, 2095
binlog_row_image system variable, 2093
binlog_stmt_cache_size system variable, 2095
BIT data type, 1076
bit functions, 1226

example, 215
BIT_AND(), 1254
BIT_COUNT, 215

BIT_COUNT(), 1227
BIT_LENGTH(), 1142
BIT_OR, 215
BIT_OR(), 1254
BIT_XOR(), 1254
BLACKHOLE

binlog_format, 2139
replication, 2139

BLACKHOLE storage engine, 1591, 1883
blind query expansion, 1204, 2905
BLOB columns

default values, 1104
indexing, 882, 1338
inserting binary data, 975
size, 1113

BLOB data type, 1083, 1103
Block Nested-Loop

optimization, 851, 852
Block Nested-Loop join algorithm, 840
block-search option

myisamchk, 360
block_encryption_mode system variable, 494
BOOL data type, 1076
BOOLEAN data type, 1076
boolean options, 230
Boolean search, 1202
bootstrap option

mysqld, 448
bottleneck, 2905
bounce, 2905
Boundary(), 1276
brackets

square, 1076
buddy allocator, 1742, 2905
buffer, 2905
buffer pool, 923, 1735, 2905

and compressed tables, 1668
buffer pool instance, 2906
buffer sizes, 923

client, 2453
mysqld server, 943

Buffer(), 1281
bugs

known, 2877
reporting, 2, 18

bugs database, 18
bugs.mysql.com, 18
builddir option

mysql_install_db, 254
building

client programs, 2465
BUILD_CONFIG option

CMake, 142
built-in, 2906
bulk loading

for InnoDB tables, 895
for MyISAM tables, 901

bulk_insert_buffer_size system variable, 495

2959

business rules, 2906

C
C API, 2453

data types, 2462
example programs, 2465
functions, 2474
linking problems, 2466

C prepared statement API
functions, 2539, 2540
type codes, 2538

C++, 2457
C:\my.cnf file, 675
cache, 2906
CACHE INDEX, 1578

and partitioning, 2228
caches

clearing, 1579
cache_policies table, 1855
calculating

aggregate value for a set of rows, 1253
cardinality, 1553
dates, 199

calendar, 1197
CALL, 1370
calling sequences for aggregate functions

UDF, 2644
calling sequences for simple functions

UDF, 2642
can't create/write to file, 2858
cardinality, 871, 2906
carriage return (\r), 974, 1390
CASE, 1138, 1474
case sensitivity

in access checking, 723
in identifiers, 982
in names, 982
in searches, 2869
in string comparisons, 1155
of database names, 24
of replication filtering options, 2114
of table names, 24

CAST, 1213
cast functions, 1212
cast operators, 1212
casts, 1125, 1130, 1212
catalog option

MySQLInstallerConsole, 80
CC environment variable, 152, 182
CEIL(), 1169
CEILING(), 1169
Centroid(), 1280
cflags option

mysql_config, 406
change buffer, 2907
change buffering, 2907

disabling, 1729
CHANGE MASTER TO, 1453

CHANGE REPLICATION FILTER, 1459
Change user

thread command, 960
ChangeLog, 2881
changes

release notes, 2881
changes to privileges, 730
changing

column, 1307
field, 1307
socket location, 162, 2868
table, 1302, 1308, 2877

Changing master
thread state, 970

CHAR data type, 1082, 1100
CHAR VARYING data type, 1083
CHAR(), 1142
CHARACTER data type, 1082
character set repertoire, 1031
character sets, 999

adding, 1050
and replication, 2140
repertoire, 1023
restrictions, 2891

CHARACTER VARYING data type, 1083
character-set-client-handshake option

mysqld, 448
character-set-filesystem option

mysqld, 448
character-set-server option

mysqld, 449
character-sets-dir option

myisamchk, 358
myisampack, 369
mysql, 271
mysqladmin, 296
mysqlbinlog, 384
mysqlcheck, 303
mysqld, 448
mysqldump, 316
mysqlimport, 328
mysqlshow, 334

characters
multi-byte, 1053

CHARACTER_LENGTH(), 1143
CHARACTER_SETS

INFORMATION_SCHEMA table, 2272
character_sets_dir system variable, 497
character_set_client system variable, 495
character_set_connection system variable, 496
character_set_database system variable, 496
character_set_filesystem system variable, 496
character_set_results system variable, 497
character_set_server system variable, 497
character_set_system system variable, 497
charset command

mysql, 280
charset option

2960

comp_err, 251
CHARSET(), 1237
CHAR_LENGTH(), 1143
check option

myisamchk, 357
mysqlcheck, 303

check options
myisamchk, 357

CHECK TABLE, 1524
and partitioning, 2213

check-only-changed option
myisamchk, 357
mysqlcheck, 303

check-upgrade option
mysqlcheck, 303

checking
tables for errors, 816

Checking master version
thread state, 969

checking permissions
thread state, 962

checking privileges on cached query
thread state, 968

checking query cache for query
thread state, 968

Checking table
thread state, 962

checkpoint, 2907
checkpoint option

mysqlhotcopy, 403
checksum, 2907
checksum errors, 128
CHECKSUM TABLE, 1527
child table, 2908
Chinese, Japanese, Korean character sets

frequently asked questions, 2760
choosing

a MySQL version, 45
data types, 1114

chroot option
mysqld, 449
mysqlhotcopy, 403

CJK (Chinese, Japanese, Korean)
Access, PHP, etc., 2760
availability of specific characters, 2760
big5, 2760
character sets available, 2760
characters displayed as question marks, 2760
CJKV, 2760
collations, 2760, 2760
conversion problems with Japanese character sets,
2760
data truncation, 2760
Database and table names, 2760
documentation in Chinese, 2760
documentation in Japanese, 2760
documentation in Korean, 2760
FAQ, 2760

gb2312, gbk, 2760
Japanese character sets, 2760
Korean character set, 2760
LIKE and FULLTEXT, 2760
MySQL 4.0 behavior, 2760
ORDER BY treatment, 2760, 2760
problems with Access, PHP, etc., 2760
problems with Big5 character sets (Chinese), 2760
problems with data truncation, 2760
problems with euckr character set (Korean), 2760
problems with GB character sets (Chinese), 2760
problems with LIKE and FULLTEXT, 2760
problems with Yen sign (Japanese), 2760
rejected characters, 2760
sort order problems, 2760, 2760
sorting problems, 2760, 2760
testing availability of characters, 2760
Unicode collations, 2760
Vietnamese, 2760
Yen sign, 2760

clean page, 2908
clean shutdown, 648, 670, 2152, 2908
cleaning up

thread state, 962
clear command

mysql, 280
Clearing

thread state, 971
clearing

caches, 1579
client, 2908
client connection threads, 955
client programs, 221

building, 2465
client tools, 2453
clients

debugging, 2658
threaded, 2467

CLOSE, 1479
Close stmt

thread command, 960
closing

tables, 890
closing tables

thread state, 962
clustered index, 2908

InnoDB, 1616
CMake

BUILD_CONFIG option, 142
CMAKE_BUILD_TYPE option, 142
CMAKE_CXX_FLAGS option, 150
CMAKE_C_FLAGS option, 150
CMAKE_INSTALL_PREFIX option, 143
COMPILATION_COMMENT option, 145
CPACK_MONOLITHIC_INSTALL option, 143
DEFAULT_CHARSET option, 145
DEFAULT_COLLATION option, 145
DISABLE_PSI_COND option, 146

2961

DISABLE_PSI_FILE option, 146
DISABLE_PSI_IDLE option, 146
DISABLE_PSI_MEMORY option, 146
DISABLE_PSI_METADATA option, 146
DISABLE_PSI_MUTEX option, 146
DISABLE_PSI_RWLOCK option, 146
DISABLE_PSI_SOCKET option, 146
DISABLE_PSI_SP option, 146
DISABLE_PSI_STAGE option, 146
DISABLE_PSI_STATEMENT option, 146
DISABLE_PSI_STATEMENT_DIGEST option, 146
DISABLE_PSI_TABLE option, 146
ENABLED_LOCAL_INFILE option, 147
ENABLED_PROFILING option, 147
ENABLE_DEBUG_SYNC option, 147
ENABLE_DOWNLOADS option, 147
ENABLE_DTRACE option, 147
ENABLE_GCOV option, 147
ENABLE_GPROF option, 147
IGNORE_AIO_CHECK option, 147
INNODB_PAGE_ATOMIC_REF_COUNT option,
147
INSTALL_BINDIR option, 143
INSTALL_DOCDIR option, 143
INSTALL_DOCREADMEDIR option, 143
INSTALL_INCLUDEDIR option, 143
INSTALL_INFODIR option, 143
INSTALL_LAYOUT option, 143
INSTALL_LIBDIR option, 143
INSTALL_MANDIR option, 143
INSTALL_MYSQLSHAREDIR option, 144
INSTALL_MYSQLTESTDIR option, 144
INSTALL_PLUGINDIR option, 144
INSTALL_SBINDIR option, 144
INSTALL_SCRIPTDIR option, 144
INSTALL_SHAREDIR option, 144
INSTALL_SQLBENCHDIR option, 144
INSTALL_SUPPORTFILESDIR option, 144
MAX_INDEXES option, 148
MYSQL_DATADIR option, 144
MYSQL_MAINTAINER_MODE option, 148
MYSQL_PROJECT_NAME option, 148
MYSQL_TCP_PORT option, 148
MYSQL_UNIX_ADDR option, 148
ODBC_INCLUDES option, 144
ODBC_LIB_DIR option, 144
OPTIMIZER_TRACE option, 148
options, 139
running after prior invocation, 135, 151
SYSCONFDIR option, 144
TMPDIR option, 144
VERSION file, 153
WITHOUT_SERVER option, 150
WITH_ASAN option, 148
WITH_AUTHENTICATION_PAM option, 148
WITH_CLIENT_PROTOCOL_TRACING option, 148
WITH_DEBUG option, 148

WITH_DEFAULT_COMPILER_OPTIONS option,
151
WITH_DEFAULT_FEATURE_SET option, 149
WITH_EDITLINE option, 149
WITH_EMBEDDED_SERVER option, 149
WITH_EXTRA_CHARSETS option, 149
WITH_INNODB_EXTRA_DEBUG option, 149
WITH_INNODB_MEMCACHED option, 149
WITH_LIBEVENT option, 149
WITH_LIBWRAP option, 149
WITH_MSAN option, 149
WITH_SSL option, 149
WITH_TEST_TRACE_PLUGIN option, 150
WITH_UNIXODBC option, 150
WITH_ZLIB option, 150

CMakeCache.txt file, 151
CMAKE_BUILD_TYPE option

CMake, 142
CMAKE_CXX_FLAGS option

CMake, 150
CMAKE_C_FLAGS option

CMake, 150
CMAKE_INSTALL_PREFIX option

CMake, 143
COALESCE(), 1133
COERCIBILITY(), 1237
cold backup, 2908
collating

strings, 1053
collation

adding, 1053
INFORMATION_SCHEMA, 1021
modifying, 1054
names, 1014

COLLATION(), 1238
collation-server option

mysqld, 449
COLLATIONS

INFORMATION_SCHEMA table, 2272
COLLATION_CHARACTER_SET_APPLICABILITY

INFORMATION_SCHEMA table, 2273
collation_connection system variable, 498
collation_database system variable, 498
collation_server system variable, 498
column, 2908

changing, 1307
types, 1075

column alias
problems, 2873
quoting, 980, 2873

column comments, 1337
column index, 2909
column names

case sensitivity, 982
column prefix, 2909
column-names option

mysql, 271
column-type-info option

2962

mysql, 271
columns

displaying, 332
indexes, 882
names, 979
other types, 1114
selecting, 197
storage requirements, 1111

COLUMNS
INFORMATION_SCHEMA table, 2273

columns option
mysqlimport, 328

columns partitioning, 2181
columns per table

maximum, 2895
COLUMN_PRIVILEGES

INFORMATION_SCHEMA table, 2274
comma-separated values data, reading, 1389, 1409
command options

mysql, 267
mysqladmin, 295
mysqld, 444

command syntax, 4
command-line history

mysql, 285
command-line tool, 79, 267
commands

for binary distribution, 59
commands out of sync, 2859
comment syntax, 997
comments

adding, 997
starting, 29

comments option
mysql, 271
mysqldump, 315

COMMIT, 27, 1434
XA transactions, 1448

commit, 2909
commit option

mysqlslap, 341
committing alter table to storage engine

thread state, 963
compact option

mysqldump, 318
compact row format, 1678, 2909
comparison operators, 1130
compatibility

between MySQL versions, 171
with mSQL, 1159
with ODBC, 571, 982, 1079, 1126, 1132, 1336, 1411
with Oracle, 25, 1256, 1306, 1587
with PostgreSQL, 26
with standard SQL, 22

compatible option
mysqldump, 318

COMPILATION_COMMENT option
CMake, 145

compiling
optimizing, 943
user-defined functions, 2647

compiling clients
on Unix, 2465
on Windows, 2466

compiling MySQL server
problems, 151

complete-insert option
mysqldump, 319

completion_type system variable, 498
composite index, 2909
composite partitioning, 2193
compound statements, 1471
compress option

mysql, 272
mysqladmin, 297
mysqlcheck, 304
mysqldump, 312
mysqlimport, 328
mysqlshow, 334
mysqlslap, 341

COMPRESS(), 1230
compressed backup, 2909
compressed row format, 1677, 2910
compressed tables, 368, 1875
compression, 1659, 2910

algorithms, 1666
application and schema design, 1663
BLOBs, VARCHAR and TEXT, 1667
buffer pool considerations, 1668
compressed page size, 1664
configuration characteristics, 1664
data and indexes, 1666
data characteristics, 1662
enabling for a table, 1660
implementation, 1665
information schema, 1742
KEY_BLOCK_SIZE, 1664
log file format, 1668
modification log, 1666
monitoring, 1664
overflow pages, 1667
overview, 1660
tuning, 1661
workload characteristics, 1664

compression failure, 2910
comp_err, 220, 251

charset option, 251
debug option, 251
debug-info option, 252
header_file option, 252
help option, 251
in_file option, 252
name_file option, 252
out_dir option, 252
out_file option, 252
statefile option, 252

2963

version option, 252
CONCAT(), 1143
concatenation

string, 973, 1143
CONCAT_WS(), 1143
concurrency, 1595, 2910

of commits, 1781
of threads, 1822
tickets, 1782

concurrency option
mysqlslap, 341

concurrent inserts, 938, 940
concurrent_insert system variable, 499
Conditions, 1480
conditions, 1549, 1575
cond_instances table

performance_schema, 2368
config option

MySQLInstallerConsole, 80
config-file option

my_print_defaults, 408
configuration file, 2911
configuration files, 732
config_options table, 1855
Connect

thread command, 960
connect command

mysql, 280
Connect Out

thread command, 960
connect-expired-password option

mysql, 272
connecting

remotely with SSH, 776
to the server, 187, 224
verification, 726

Connecting to master
thread state, 969

connection
aborted, 2857

CONNECTION_ID(), 1238
Connector/C, 2453, 2457
Connector/C++, 2453, 2457
Connector/J, 2453, 2457
Connector/Net, 2453, 2457
Connector/ODBC, 2453, 2456
Connector/Python, 2453, 2457
Connectors, 2453
connect_timeout system variable, 500
connect_timeout variable, 279, 299
consistent read, 2911
consistent reads, 1605
console option

mysqld, 449
const table

optimizer, 908, 1407
constant table, 825
constraint, 2911

constraints, 30
foreign keys, 1353

CONSTRAINTS
INFORMATION_SCHEMA table, 2293

containers table, 1855
Contains(), 1284
contributing companies

list of, 41
contributors

list of, 34
control flow functions, 1138
CONV(), 1169
conventions

syntax, 2
typographical, 2

CONVERT, 1213
CONVERT TO, 1309
converting HEAP to MyISAM

thread state, 962
CONVERT_TZ(), 1179
ConvexHull(), 1281
copy to tmp table

thread state, 963
copying databases, 180
copying tables, 1350, 1351
Copying to group table

thread state, 963
Copying to tmp table

thread state, 963
Copying to tmp table on disk

thread state, 963
core-file option

mysqld, 450
core-file-size option

mysqld_safe, 243
core_file system variable, 500
correct-checksum option

myisamchk, 358
correlated subqueries, 1425
corruption, 1861
COS(), 1170
COT(), 1170
count option

innochecksum, 346
myisam_ftdump, 351
mysqladmin, 297
mysqlshow, 334

COUNT(), 1254
COUNT(DISTINCT), 1255
counter, 2911
counting

table rows, 205
covering index, 2911
CPACK_MONOLITHIC_INSTALL option

CMake, 143
CPU-bound, 2912
crash, 2652, 2912

recovery, 815

2964

repeated, 2864
replication, 2152

crash recovery, 2912
crash-me, 958
crash-me program, 958
crash-safe replication, 2055, 2083, 2108
CRC32(), 1170
CREATE ... IF NOT EXISTS

and replication, 2140
CREATE DATABASE, 1318
Create DB

thread command, 960
CREATE EVENT, 1318

and replication, 2148
CREATE FUNCTION, 1326, 1532
CREATE INDEX, 1323, 1682
create option

mysqlslap, 341
CREATE PROCEDURE, 1326
CREATE SCHEMA, 1318
CREATE SERVER, 1331
CREATE TABLE, 1332

DIRECTORY options
and replication, 2147

KEY_BLOCK_SIZE, 1664
options for table compression, 1660
ROW_FORMAT, 1677

CREATE TABLE ... SELECT
and replication, 2140

CREATE TRIGGER, 1358
CREATE USER, 1507
CREATE VIEW, 1361
create-options option

mysqldump, 319
create-schema option

mysqlslap, 341
creating

bug reports, 18
database, 1318
databases, 191
default startup options, 230
function, 1532
schema, 1318
tables, 193

Creating index
thread state, 963

Creating sort index
thread state, 963

creating table
thread state, 963

Creating tmp table
thread state, 963

creating user accounts, 1507
CROSS JOIN, 1409
cross-bootstrap option

mysql_install_db, 254
Crosses(), 1284
CRUD, 2912

CR_SERVER_GONE_ERROR, 2855
CR_SERVER_LOST_ERROR, 2855
CSV data, reading, 1389, 1409
csv option

mysqlslap, 341
CSV storage engine, 1591, 1880
CURDATE(), 1179
CURRENT_DATE, 1179
CURRENT_TIME, 1179
CURRENT_TIMESTAMP, 1179
CURRENT_USER(), 1238
cursor, 2912
Cursors, 1478
CURTIME(), 1179
CXX environment variable, 152, 182
cxxflags option

mysql_config, 406

D
Daemon

thread command, 960
daemon plugins, 2588
daemon_memcached_enable_binlog system variable,
1768
daemon_memcached_engine_lib_name system
variable, 1768
daemon_memcached_engine_lib_path system
variable, 1769
daemon_memcached_option system variable, 1769
daemon_memcached_r_batch_size system variable,
1769
daemon_memcached_w_batch_size system variable,
1770
data

importing, 288, 326
loading into tables, 194
retrieving, 195
size, 887

data dictionary, 1627, 2912
DATA DIRECTORY

and replication, 2147
data directory, 2913
data files, 2913
Data truncation with CJK characters, 2760
data type

BIGINT, 1077
BINARY, 1083, 1102
BIT, 1076
BLOB, 1083, 1103
BOOL, 1076, 1114
BOOLEAN, 1076, 1114
CHAR, 1082, 1100
CHAR VARYING, 1083
CHARACTER, 1082
CHARACTER VARYING, 1083
DATE, 1079, 1090
DATETIME, 1079, 1090
DEC, 1078

2965

DECIMAL, 1078, 1288
DOUBLE, 1078
DOUBLE PRECISION, 1079
ENUM, 1084, 1105
FIXED, 1078
FLOAT, 1078, 1078, 1079
GEOMETRY, 1269
GEOMETRYCOLLECTION, 1269
INT, 1077
INTEGER, 1077
LINESTRING, 1269
LONG, 1103
LONGBLOB, 1084
LONGTEXT, 1084
MEDIUMBLOB, 1084
MEDIUMINT, 1077
MEDIUMTEXT, 1084
MULTILINESTRING, 1269
MULTIPOINT, 1269
MULTIPOLYGON, 1269
NATIONAL CHAR, 1082
NATIONAL VARCHAR, 1083
NCHAR, 1082
NUMERIC, 1078
NVARCHAR, 1083
POINT, 1269
POLYGON, 1269
REAL, 1079
SET, 1084, 1107
SMALLINT, 1077
TEXT, 1083, 1103
TIME, 1080, 1091
TIMESTAMP, 1080, 1090
TINYBLOB, 1083
TINYINT, 1076
TINYTEXT, 1083
VARBINARY, 1083, 1102
VARCHAR, 1083, 1100
VARCHARACTER, 1083
YEAR, 1080, 1092

data types, 1075
C API, 2462
overview, 1076

data warehouse, 2913
data-file-length option

myisamchk, 358
database, 2913

altering, 1298
creating, 1318
deleting, 1365

Database information
obtaining, 1538

database metadata, 2270
database names

case sensitivity, 24, 982
database option

mysql, 272
mysqlbinlog, 384

DATABASE(), 1239
databases

backups, 797
copying, 180
creating, 191, 1318
defined, 4
displaying, 332
dumping, 307, 402
information about, 208
names, 979
replicating, 2011
selecting, 192, 1590
symbolic links, 950
using, 191

databases option
mysqlcheck, 304
mysqldump, 321

datadir option
mysql.server, 247
mysqld, 450
mysqld_safe, 243
mysql_install_db, 255
mysql_plugin, 258
mysql_upgrade, 265

datadir system variable, 500
DATE, 2870
date and time functions, 1176
Date and Time types, 1088
date calculations, 199
DATE columns

problems, 2870
DATE data type, 1079, 1090
date literals, 976
date types, 1112
date values

problems, 1090
DATE(), 1180
DATEDIFF(), 1180
dates

used with partitioning, 2174
used with partitioning (examples), 2177, 2189, 2194,
2217

DATETIME data type, 1079, 1090
datetime_format system variable, 501
DATE_ADD(), 1180
date_format system variable, 501
DATE_FORMAT(), 1182
DATE_SUB(), 1180, 1184
DAY(), 1184, 1236
DAYNAME(), 1184
DAYOFMONTH(), 1184
DAYOFWEEK(), 1184
DAYOFYEAR(), 1184
db table

sorting, 729
DB2 SQL mode, 634
DBI interface, 2581
DBI->quote, 975

2966

DBI->trace, 2655
DBI/DBD interface, 2581
DBI_TRACE environment variable, 182, 2655
DBI_USER environment variable, 182
DBUG package, 2658
DCL, 1510, 1521, 2913
DDL, 1298, 2913
deadlock, 937, 1442, 1603, 1610, 1613, 1811, 2158,
2451, 2913
deadlock detection, 1718, 2914
DEALLOCATE PREPARE, 1466, 1470
Debug

thread command, 960
debug option

comp_err, 251
myisamchk, 355
myisampack, 369
mysql, 272
mysqladmin, 297
mysqlbinlog, 385
mysqlcheck, 304
mysqld, 450
mysqldump, 315
mysqldumpslow, 401
mysqlhotcopy, 403
mysqlimport, 328
mysqlshow, 334
mysqlslap, 341
mysql_config_editor, 379
mysql_upgrade, 265
my_print_defaults, 408

debug system variable, 501
debug-check option

mysql, 272
mysqladmin, 297
mysqlbinlog, 385
mysqlcheck, 304
mysqldump, 315
mysqlimport, 328
mysqlshow, 334
mysqlslap, 341
mysql_upgrade, 265

debug-info option
comp_err, 252
mysql, 272
mysqladmin, 297
mysqlbinlog, 385
mysqlcheck, 304
mysqldump, 315
mysqlimport, 328
mysqlshow, 334
mysqlslap, 341
mysql_upgrade, 265

debug-sync-timeout option
mysqld, 451

debugging
client, 2658
server, 2652

debugging support, 139
debug_sync system variable, 502
DEC data type, 1078
decimal arithmetic, 1288
DECIMAL data type, 1078, 1288
decimal point, 1075
DECLARE, 1472
DECODE(), 1231
decode_bits myisamchk variable, 355
DEFAULT

constraint, 32
default

privileges, 164
default accounts, 164
default host name, 224
default installation location, 58
default options, 230
DEFAULT value clause, 1110, 1337
default values, 1110, 1337, 1379

BLOB and TEXT columns, 1104
explicit, 1110
implicit, 1110
suppression, 32

DEFAULT(), 1246
default-auth option

mysql, 272
mysqladmin, 297
mysqlbinlog, 385
mysqlcheck, 304
mysqldump, 312
mysqlimport, 328
mysqlshow, 334
mysqlslap, 341
mysql_upgrade, 265

default-authentication-plugin option
mysqld, 451

default-character-set option
mysql, 272
mysqladmin, 297
mysqlcheck, 304
mysqldump, 316
mysqlimport, 328
mysqlshow, 334

default-storage-engine option
mysqld, 452

default-time-zone option
mysqld, 452

defaults
embedded, 2459

defaults-extra-file option, 235, 255
myisamchk, 355
mysql, 272
mysqladmin, 297
mysqlbinlog, 385
mysqlcheck, 304
mysqld, 452
mysqldump, 314
mysqld_multi, 248

2967

mysqld_safe, 243
mysqlimport, 329
mysqlshow, 334
mysqlslap, 341
mysql_secure_installation, 261
mysql_upgrade, 265
my_print_defaults, 408

defaults-file option, 235, 255
myisamchk, 355
mysql, 272
mysqladmin, 297
mysqlbinlog, 385
mysqlcheck, 304
mysqld, 452
mysqldump, 314
mysqld_multi, 248
mysqld_safe, 243
mysqlimport, 329
mysqlshow, 334
mysqlslap, 341
mysql_secure_installation, 261
mysql_upgrade, 266
my_print_defaults, 408

defaults-group-suffix option, 235
myisamchk, 355
mysql, 272
mysqladmin, 297
mysqlbinlog, 385
mysqlcheck, 304
mysqld, 452
mysqldump, 314
mysqlimport, 329
mysqlshow, 334
mysqlslap, 341
mysql_secure_installation, 261
mysql_upgrade, 266
my_print_defaults, 408

default_authentication_plugin system variable, 502
DEFAULT_CHARSET option

CMake, 145
DEFAULT_COLLATION option

CMake, 145
default_password_lifetime system variable, 503
default_storage_engine system variable, 504
default_tmp_storage_engine system variable, 504
default_week_format system variable, 504
DEGREES(), 1170
delay-key-write option

mysqld, 452, 1872
DELAYED, 1383
Delayed insert

thread command, 961
delayed replication, 2137
delayed_insert_limit system variable, 505
delayed_insert_timeout system variable, 506
delayed_queue_size system variable, 506
delay_key_write system variable, 505
DELETE, 1372

delete, 2914
delete buffering, 2914
delete option

mysqlimport, 329
delete-master-logs option

mysqldump, 317
deleting

database, 1365
foreign key, 1309, 1355
function, 1533
index, 1307, 1366
primary key, 1307
rows, 2874
schema, 1365
table, 1367
user, 741, 1510
users, 741, 1510

deleting from main table
thread state, 963

deleting from reference tables
thread state, 963

deletion
mysql.sock, 2868

delimiter command
mysql, 280

delimiter option
mysql, 273
mysqlslap, 342

demo_test table, 1836
denormalized, 2914
derived tables, 1426

optimization, 864
des-key-file option

mysqld, 453
DESC, 1586
descending index, 2914
DESCRIBE, 208, 1586
description option

myisamchk, 360
design

issues, 2878
DES_DECRYPT(), 1231
DES_ENCRYPT(), 1231
detach option

mysqlslap, 342
development source tree, 137
Difference(), 1281
digits, 1075
Dimension(), 1275
directory structure

default, 58
dirty page, 1734, 1771, 2914
dirty read, 2915
disable named command

mysql, 273
--disable option prefix, 230
disable-keys option

mysqldump, 322

2968

disable-log-bin option
mysqlbinlog, 386

DISABLE_PSI_COND option
CMake, 146

DISABLE_PSI_FILE option
CMake, 146

DISABLE_PSI_IDLE option
CMake, 146

DISABLE_PSI_MEMORY option
CMake, 146

DISABLE_PSI_METADATA option
CMake, 146

DISABLE_PSI_MUTEX option
CMake, 146

DISABLE_PSI_RWLOCK option
CMake, 146

DISABLE_PSI_SOCKET option
CMake, 146

DISABLE_PSI_SP option
CMake, 146

DISABLE_PSI_STAGE option
CMake, 146

DISABLE_PSI_STATEMENT option
CMake, 146

DISABLE_PSI_STATEMENT_DIGEST option
CMake, 146

DISABLE_PSI_TABLE option
CMake, 146

DISCARD TABLESPACE, 1309, 1643
discard_or_import_tablespace

thread state, 963
disconnect-slave-event-count option

mysqld, 2050
disconnecting

from the server, 187
disconnect_on_expired_password system variable, 507
Disjoint(), 1284
disk full, 2866
disk performance, 948
disk-based, 2915
disk-bound, 2915
disks

splitting data across, 951
display size, 1075
display triggers, 1573
display width, 1075
displaying

database information, 332
information

Cardinality, 1553
Collation, 1553
SHOW, 1538, 1540, 1552, 1554, 1573

table status, 1571
DISTINCT, 198, 860, 1406

AVG(), 1254
COUNT(), 1255
MAX(), 1256
MIN(), 1256

SUM(), 1257
DISTINCTROW, 1406
DIV, 1167
division (/), 1167
div_precision_increment system variable, 507
DML, 1370, 2915

DELETE statement, 1372
INSERT statement, 1378
UPDATE statement, 1432

DNS, 956
DO, 1376
DocBook XML

documentation source format, 2
document id, 2915
Documentation

in Chinese, 2760
in Japanese, 2760
in Korean, 2760

Documenters
list of, 38

DOUBLE data type, 1078
DOUBLE PRECISION data type, 1079
double quote (\"), 974
doublewrite buffer, 616, 1679, 1784, 2915
downgrading, 168, 175
downloading, 48
drop, 2915
DROP ... IF EXISTS

and replication, 2142
DROP DATABASE, 1365
Drop DB

thread command, 961
DROP EVENT, 1366
DROP FOREIGN KEY, 1309, 1355
DROP FUNCTION, 1367, 1533
DROP INDEX, 1307, 1366, 1682
DROP PREPARE, 1470
DROP PRIMARY KEY, 1307
DROP PROCEDURE, 1367
DROP SCHEMA, 1365
DROP SERVER, 1367
DROP TABLE, 1367
DROP TRIGGER, 1368
DROP USER, 1510
DROP VIEW, 1368
dropping

user, 741, 1510
dryrun option

mysqlhotcopy, 403
DTrace, 675

and memcached, 1926
DUAL, 1402
dump option

myisam_ftdump, 351
dump-date option

mysqldump, 316
dump-slave option

mysqldump, 317

2969

DUMPFILE, 1409
dumping

databases and tables, 307, 402
dynamic row format, 1677, 2916
dynamic table characteristics, 1874

E
early adopter, 2916
edit command

mysql, 280
ego command

mysql, 281
Eiffel Wrapper, 2582
ELT(), 1143
email lists, 15
embedded MySQL server library, 2457
embedded option

mysql_config, 406
--enable option prefix, 230
enable-cleartext-plugin option

mysql, 273
mysqladmin, 297
mysqlslap, 342

enable-named-pipe option
mysqld, 453

ENABLED_LOCAL_INFILE option
CMake, 147

ENABLED_PROFILING option
CMake, 147

ENABLE_DEBUG_SYNC option
CMake, 147

ENABLE_DOWNLOADS option
CMake, 147

ENABLE_DTRACE option
CMake, 147

ENABLE_GCOV option
CMake, 147

ENABLE_GPROF option
CMake, 147

ENCODE(), 1232
ENCRYPT(), 1232
encryption, 708, 764
encryption functions, 1227
end

thread state, 964
END, 1471
end-page option

innochecksum, 346
EndPoint(), 1277
end_markers_in_json system variable, 508
enforce-gtid-consistency option, 2099
enforce_gtid_consistency system variable, 2101
engine option

mysqlslap, 342
ENGINES

INFORMATION_SCHEMA table, 2275
entering

queries, 188

enterprise components
MySQL Enterprise Audit, 776, 2665
MySQL Enterprise Backup, 2664
MySQL Enterprise Monitor, 2663
MySQL Enterprise Security, 2664
MySQL Thread Pool, 2665

ENUM
size, 1114

ENUM data type, 1084, 1105
Envelope(), 1275
environment variable

CC, 152, 182
CXX, 152, 182
DBI_TRACE, 182, 2655
DBI_USER, 182
HOME, 182, 285
LD_LIBRARY_PATH, 185
LD_RUN_PATH, 182, 185
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN, 182
LIBMYSQL_PLUGINS, 182, 2569
LIBMYSQL_PLUGIN_DIR, 182, 2569
MYSQL_DEBUG, 182, 223, 2658
MYSQL_GROUP_SUFFIX, 182
MYSQL_HISTFILE, 182, 285
MYSQL_HISTIGNORE, 182, 285
MYSQL_HOME, 182
MYSQL_HOST, 182, 227
MYSQL_PS1, 182
MYSQL_PWD, 182, 223, 227
MYSQL_TCP_PORT, 182, 223, 674, 675
MYSQL_TEST_LOGIN_FILE, 182
MYSQL_TEST_TRACE_DEBUG, 182, 2633
MYSQL_TRACE_TRACE_CRASH, 182, 2633
MYSQL_UNIX_PORT, 159, 182, 223, 674, 675
PATH, 154, 182, 224
TMPDIR, 159, 182, 223, 2867
TZ, 182, 2869
UMASK, 182, 2861
UMASK_DIR, 182, 2862
USER, 182, 227

environment variables, 223, 240, 732
list of, 181

equal (=), 1131
Equals(), 1284
eq_ref join type

optimizer, 908
Errcode, 409
errno, 409
Error

thread command, 961
error log, 2916
error messages

can't find file, 2861
displaying, 409
languages, 1049, 1049

errors
access denied, 2849
and replication, 2155

2970

checking tables for, 816
common, 2847
directory checksum, 128
handling for UDFs, 2647
in subqueries, 1428
known, 2878
linking, 2466
list of, 2849
lost connection, 2852
reporting, 18, 18
sources of information, 2779

error_count system variable, 509
ERROR_FOR_DIVISION_BY_ZERO SQL mode, 628
escape (\\), 974
escape sequences

option files, 233
strings, 973

estimating
query performance, 919

event
restrictions, 2883

event groups, 1461
event scheduler, 2239

thread states, 971
Event Scheduler, 2248

altering events, 1299
and MySQL privileges, 2253
and mysqladmin debug, 2252
and replication, 2147, 2148
and SHOW PROCESSLIST, 2249
concepts, 2248
creating events, 1318
dropping events, 1366
enabling and disabling, 2249
event metadata, 2251
obtaining status information, 2252
SQL statements, 2251
starting and stopping, 2249
time representation, 2252

event-scheduler option
mysqld, 453

events, 2239, 2248
altering, 1299
creating, 1318
dropping, 1366
metadata, 2251
status variables, 2255

EVENTS
INFORMATION_SCHEMA table, 2254, 2275

events option
mysqldump, 321

events_stages_current table
performance_schema, 2377

events_stages_history table
performance_schema, 2378

events_stages_history_long table
performance_schema, 2378

events_stages_summary_by_account_by_event_name
table

performance_schema, 2419
events_stages_summary_by_host_by_event_name
table

performance_schema, 2419
events_stages_summary_by_thread_by_event_name
table

performance_schema, 2410
events_stages_summary_by_user_by_event_name
table

performance_schema, 2419
events_stages_summary_global_by_event_name table

performance_schema, 2410
events_statements_current table

performance_schema, 2382
events_statements_history table

performance_schema, 2385
events_statements_history_long table

performance_schema, 2385
events_statements_summary_by_account_by_event_name
table

performance_schema, 2419
events_statements_summary_by_digest table

performance_schema, 2411
events_statements_summary_by_host_by_event_name
table

performance_schema, 2419
events_statements_summary_by_program table

performance_schema, 2411
events_statements_summary_by_thread_by_event_name
table

performance_schema, 2411
events_statements_summary_by_user_by_event_name
table

performance_schema, 2419
events_statements_summary_global_by_event_name
table

performance_schema, 2411
events_transactions_current table

performance_schema, 2391
events_transactions_history table

performance_schema, 2393
events_transactions_history_long table

performance_schema, 2394
events_transactions_summary_by_account_by_event
table

performance_schema, 2413
events_transactions_summary_by_host_by_event_name
table

performance_schema, 2413
events_transactions_summary_by_thread_by_event_name
table

performance_schema, 2413
events_transactions_summary_by_user_by_event_name
table

performance_schema, 2413

2971

events_transactions_summary_global_by_event_name
table

performance_schema, 2413
events_waits_current table

performance_schema, 2373
events_waits_history table

performance_schema, 2375
events_waits_history_long table

performance_schema, 2375
events_waits_summary_by_account_by_event_name
table

performance_schema, 2419
events_waits_summary_by_host_by_event_name table

performance_schema, 2419
events_waits_summary_by_instance table

performance_schema, 2409
events_waits_summary_by_thread_by_event_name
table

performance_schema, 2409
events_waits_summary_by_user_by_event_name
table

performance_schema, 2419
events_waits_summary_global_by_event_name table

performance_schema, 2409
event_scheduler system variable, 509
eviction, 2916
exact-value literals, 976, 1288
example option

mysqld_multi, 248
example programs

C API, 2465
EXAMPLE storage engine, 1591, 1896
examples

compressed tables, 370
myisamchk output, 360
queries, 211

exclude-gtids option
mysqlbinlog, 386

exclusive lock, 2916
Execute

thread command, 961
EXECUTE, 1466, 1470
execute option

mysql, 273
executing

thread state, 964
executing SQL statements from text files, 209, 288
Execution of init_command

thread state, 964
EXISTS

with subqueries, 1424
exit command

mysql, 281
exit-info option

mysqld, 454
EXP(), 1170
expire_logs_days system variable, 509
expiring passwords, 746

EXPLAIN, 904, 1586
EXPLAIN PARTITIONS, 2214, 2215
EXPLAIN used with partitioned tables, 2214
explicit default values, 1110
explicit_defaults_for_timestamp system variable, 509
EXPORT_SET(), 1144
expression aliases, 1261, 1402
expression syntax, 995
expressions

extended, 202
extend-check option

myisamchk, 357, 358
extended option

mysqlcheck, 304
extended-insert option

mysqldump, 322
extensions

to standard SQL, 22
extent, 2916
ExteriorRing(), 1279
external locking, 454, 568, 815, 942, 966
external-locking option

mysqld, 454
external_user system variable, 511
extra-file option

my_print_defaults, 408
EXTRACT(), 1184
extracting

dates, 199
ExtractValue(), 1217

F
FALSE, 976, 979

testing for, 1132, 1132
FAQs

C API, 2570
Connectors and APIs, 2773
MySQL Cluster, 2760
replication, 2773

Fast Index Creation, 1681, 2917
fast option

myisamchk, 357
mysqlcheck, 304

fast shutdown, 2917
features of MySQL, 5
FEDERATED storage engine, 1591, 1890
Fetch

thread command, 961
FETCH, 1479
field

changing, 1307
Field List

thread command, 961
FIELD(), 1144
fields-enclosed-by option

mysqldump, 319, 329
fields-escaped-by option

mysqldump, 319, 329

2972

fields-optionally-enclosed-by option
mysqldump, 319, 329

fields-terminated-by option
mysqldump, 319, 329

FILE, 1146
file format, 1670, 2917

Antelope, 1667
Barracuda, 1660
downgrading, 1676
identifying, 1675

file-per-table, 2917
files

binary log, 654
error messages, 1049
general query log, 653
log, 667
my.cnf, 2138
not found message, 2861
permissions, 2861
repairing, 358
script, 209
size limits, 2894
slow query log, 665
text, 288, 326
tmp, 159

FILES
INFORMATION_SCHEMA table, 2279

filesort optimization, 855
file_instances table

performance_schema, 2368
file_summary_by_event_name table

performance_schema, 2415
file_summary_by_instance table

performance_schema, 2415
fill factor, 1617, 2918
FIND_IN_SET(), 1144
Finished reading one binlog; switching to next binlog

thread state, 968
fix-db-names option

mysqlcheck, 304
fix-table-names option

mysqlcheck, 305
FIXED data type, 1078
fixed row format, 2918
fixed-point arithmetic, 1288
FLOAT data type, 1078, 1078, 1079
floating-point number, 1079
floating-point values

and replication, 2149
floats, 976
FLOOR(), 1170
FLUSH, 1579

and replication, 2149
flush, 2918
flush list, 2918
flush list mutex, 1739
flush option

mysqld, 454

flush system variable, 511
flush tables, 294
flush-logs option

mysqldump, 323
flush-privileges option

mysqldump, 323
Flushing tables

thread state, 964
flushlog option

mysqlhotcopy, 403
flush_time system variable, 511
FOR UPDATE, 1406
FORCE INDEX, 1416, 2876
FORCE KEY, 1416
force option

myisamchk, 357, 358
myisampack, 369
mysql, 273
mysqladmin, 297
mysqlcheck, 305
mysqldump, 316
mysqlimport, 329
mysql_install_db, 255
mysql_upgrade, 266

force-if-open option
mysqlbinlog, 386

force-read option
mysqlbinlog, 386

foreign key, 2918
constraint, 31, 31
deleting, 1309, 1355

FOREIGN KEY constraint, 2918
foreign key constraints, 1353

InnoDB, 1655
restrictions, 1655

FOREIGN KEY constraints
and online DDL, 1714

foreign keys, 29, 213, 1308
foreign_key_checks system variable, 511
FORMAT(), 1144
Forums, 17
FOUND_ROWS(), 1239
fractional seconds

and replication, 2149
fractional seconds precision, 1075, 1079
FreeBSD troubleshooting, 152
freeing items

thread state, 964
FROM, 1403
FROM_BASE64()(), 1145
FROM_DAYS(), 1185
FROM_UNIXTIME(), 1185
FTS, 2919
ft_boolean_syntax system variable, 512
ft_max_word_len myisamchk variable, 355
ft_max_word_len system variable, 512
ft_min_word_len myisamchk variable, 355
ft_min_word_len system variable, 513

2973

ft_query_expansion_limit system variable, 513
ft_stopword_file myisamchk variable, 355
ft_stopword_file system variable, 513
full backup, 2919
full disk, 2866
full table scan, 2919
full table scans

avoiding, 870
full-text parser plugins, 2587
full-text search, 1197, 2919
FULLTEXT, 1197
fulltext

stopword list, 1209
FULLTEXT index, 2919

InnoDB, 1617
FULLTEXT initialization

thread state, 964
fulltext join type

optimizer, 909
function

creating, 1532
deleting, 1533

function names
parsing, 986
resolving ambiguity, 986

functions, 1117
and replication, 2150
arithmetic, 1226
bit, 1226
C API, 2474
C prepared statement API, 2539, 2540
cast, 1212
control flow, 1138
date and time, 1176
encryption, 1227
for SELECT and WHERE clauses, 1117
GROUP BY, 1253
grouping, 1130
GTIDs, 1244
information, 1236
mathematical, 1168
miscellaneous, 1246
native

adding, 2650
new, 2639
stored, 2241
string, 1140
string comparison, 1155
user-defined, 1532, 1533, 2639

adding, 2640
fuzzy checkpointing, 2919

G
GA, 2919
gap, 2919
gap lock, 2919

InnoDB, 1603, 1608, 1610, 1799
gb2312, gbk, 2760

gdb
using, 2654

gdb option
mysqld, 454

general information, 1
General Public License, 5
general query log, 653, 2920
general-log option

mysqld, 455
general_log system variable, 514
general_log_file system variable, 514
geographic feature, 1262
GeomCollFromText(), 1270
GeomCollFromWKB(), 1271
geometry, 1262
GEOMETRY data type, 1269
GEOMETRYCOLLECTION data type, 1269
GeometryCollection(), 1272
GeometryCollectionFromText(), 1270
GeometryCollectionFromWKB(), 1271
GeometryFromText(), 1270
GeometryFromWKB(), 1271
GeometryN(), 1280
GeometryType(), 1276
GeomFromText(), 1270, 1275
GeomFromWKB(), 1271, 1275
geospatial feature, 1262
GET DIAGNOSTICS, 1484
getting MySQL, 48
GET_FORMAT(), 1185
GET_LOCK(), 1247
GIS, 1261, 1262
GLength(), 1277, 1278
global privileges, 1510, 1521
globalization, 999
GLOBAL_STATUS

INFORMATION_SCHEMA table, 2280
global_transaction, 2920
GLOBAL_VARIABLES

INFORMATION_SCHEMA table, 2280
go command

mysql, 281
Google Test, 147
GRANT, 1510
GRANT statement, 738
grant tables

re-creating, 159
sorting, 728, 729
structure, 718

granting
privileges, 1510

GRANTS, 1552
greater than (>), 1132
greater than or equal (>=), 1132
GREATEST(), 1133
GROUP BY, 858

aliases in, 1261
extensions to standard SQL, 1260, 1404

2974

GROUP BY functions, 1253
group commit, 1733, 2920
grouping

expressions, 1130
GROUP_CONCAT(), 1255
group_concat_max_len system variable, 514
GTID functions, 1244
gtid-mode option (mysqld), 2100
gtid_executed system variable, 2101
gtid_mode system variable, 2102
gtid_next system variable, 2102
gtid_owned system variable, 2103
gtid_purged system variable, 2103
GTID_SUBSET(), 1245
GTID_SUBTRACT(), 1245

H
HANDLER, 1377
Handlers, 1481
handling

errors, 2647
hash index, 2920
hash indexes, 886
hash partitioning, 2189
hash partitions

managing, 2207
splitting and merging, 2207

have_compress system variable, 515
have_crypt system variable, 515
have_dynamic_loading system variable, 515
have_geometry system variable, 515
have_openssl system variable, 515
have_profiling system variable, 515
have_query_cache system variable, 515
have_rtree_keys system variable, 515
have_ssl system variable, 515
have_symlink system variable, 516
HAVING, 1404
HDD, 2920
header_file option

comp_err, 252
HEAP storage engine, 1591, 1877
heartbeat, 2920
help command

mysql, 280
help option

comp_err, 251
innochecksum, 345
myisamchk, 354
myisampack, 369
myisam_ftdump, 351
mysql, 271
mysqladmin, 296
mysqlbinlog, 383
mysqlcheck, 303
mysqld, 445
mysqldump, 316
mysqldumpslow, 400

mysqld_multi, 248
mysqld_safe, 243
mysqlhotcopy, 403
mysqlimport, 328
MySQLInstallerConsole, 79
mysqlshow, 334
mysqlslap, 340
mysql_config_editor, 378
mysql_install_db, 254
mysql_plugin, 258
mysql_secure_installation, 260
mysql_upgrade, 265
mysql_waitpid, 405
my_print_defaults, 408
perror, 409
resolveip, 411
resolve_stack_dump, 408

HELP option
myisamchk, 355

HELP statement, 1588
HEX(), 1145, 1171
hex-blob option

mysqldump, 319
hexadecimal literals, 978
hexdump option

mysqlbinlog, 386
high-water mark, 2920
HIGH_NOT_PRECEDENCE SQL mode, 629
HIGH_PRIORITY, 1406
hints, 23

index, 1403, 1416
histignore option

mysql, 273
history list, 2921
history of MySQL, 8
HOME environment variable, 182, 285
host name

default, 224
host name caching, 956
host name resolution, 956
host names, 224

in account names, 724
in default accounts, 164

host option, 226
mysql, 273
mysqladmin, 297
mysqlbinlog, 386
mysqlcheck, 305
mysqldump, 312
mysqlhotcopy, 403
mysqlimport, 329
mysqlshow, 335
mysqlslap, 342
mysql_config_editor, 379
mysql_secure_installation, 261

host table
sorting, 729

host.frm

2975

problems finding, 156
hostname system variable, 516
hosts table

performance_schema, 2395
host_cache table

performance_schema, 2425
hot, 2921
hot backup, 2921
HOUR(), 1186
html option

mysql, 273

I
i-am-a-dummy option

mysql, 276
ib-file set, 1671, 2922
ibbackup_logfile, 2922
ibdata file, 2922
ibtmp file, 2922
ib_logfile, 2922
icc

MySQL builds, 58
ID

unique, 2571
idempotent option

mysqlbinlog, 386
identifiers, 979

case sensitivity, 982
quoting, 980

identity system variable, 516
IF, 1475
IF(), 1139
IFNULL(), 1139
IGNORE

with partitioned tables, 1382
IGNORE INDEX, 1416
IGNORE KEY, 1416
ignore option

mysqlimport, 329
ignore-builtin-innodb option

mysqld, 1767
ignore-db-dir option

mysqld, 455
ignore-error option

mysqldump, 321
ignore-lines option

mysqlimport, 329
ignore-spaces option

mysql, 273
ignore-table option

mysqldump, 321
IGNORE_AIO_CHECK option

CMake, 147
ignore_builtin_innodb system variable, 1770
ignore_db_dirs system variable, 516
IGNORE_SPACE SQL mode, 629
ilist, 2922
implicit default values, 1110

implicit row lock, 2923
IMPORT TABLESPACE, 1309, 1643
importing

data, 288, 326
IN, 1134, 1422
in-memory database, 2923
include option

mysql_config, 406
include-gtids option

mysqlbinlog, 386
include-master-host-port option

mysqldump, 317
increasing with replication

speed, 2011
incremental backup, 2923
incremental recovery, 812
index, 2923

deleting, 1307, 1366
rebuilding, 179

index cache, 2923
INDEX DIRECTORY

and replication, 2147
index dives (for statistics estimation), 1761
index hint, 2923
index hints, 1403, 1416
index join type

optimizer, 910
index prefix, 2924
index-record lock

InnoDB, 1603, 1608, 1610, 1799
indexes, 1323

and BLOB columns, 882, 1338
and IS NULL, 886
and LIKE, 886
and NULL values, 1338
and TEXT columns, 882, 1338
assigning to key cache, 1578
block size, 519
columns, 882
creating and dropping, 1711
leftmost prefix of, 884
multi-column, 883
multiple-part, 1323
names, 979
primary (clustered) and secondary, 1711
use of, 880

index_merge join type
optimizer, 909

index_subquery join type
optimizer, 910

INET6_ATON(), 1248
INET6_NTOA(), 1249
INET_ATON(), 1247
INET_NTOA(), 1248
infimum record, 2924
info option

innochecksum, 345
information functions, 1236

2976

information option
myisamchk, 357

INFORMATION SCHEMA
InnoDB tables, 1741

INFORMATION_SCHEMA, 2270, 2924
collation and searching, 1021
INNODB_CMP table, 1742
INNODB_CMPMEM table, 1742
INNODB_CMPMEM_RESET table, 1742
INNODB_CMP_RESET table, 1742
INNODB_LOCKS table, 1743
INNODB_LOCK_WAITS table, 1744
INNODB_METRICS table, 2310
INNODB_TRX table, 1743

INFORMATION_SCHEMA plugins, 2589
init

thread state, 964
Init DB

thread command, 961
init-command option

mysql, 273
init-file option

mysqld, 455
Initialized

thread state, 971
init_connect system variable, 517
init_file system variable, 517
init_slave system variable, 2070
INNER JOIN, 1409
innochecksum, 222, 344

allow-mismatches option, 347
count option, 346
end-page option, 346
help option, 345
info option, 345
log option, 348
no-check option, 347
page option, 346
page-type-dump option, 348
page-type-summary option, 348
read from standard in option, 349
start-page option, 346
strict-check option, 346
verbose option, 345
version option, 345
write option, 347

InnoDB, 1595, 2924
adaptive hash index, 1618
auto-increment columns, 1649
autocommit mode, 1613, 1644
backups, 1827
checkpoints, 1680
clustered index, 1616
configuration parameters, 1762
configuring data files and memory allocation, 1620
considerations as default storage engine, 1596
consistent reads, 1605
crash recovery, 1828

data files, 1638
deadlock detection, 1613
disk I/O, 1678
file space management, 1679
file-per-table setting, 1627
foreign key constraints, 1655
FULLTEXT index, 1617
gap lock, 1603, 1608, 1610, 1799
index-record lock, 1603, 1608, 1610, 1799
indexes, 1616
insert buffering, 1618
limits and restrictions, 1656
lock modes, 1603
locking, 1602
locking reads, 1607
log files, 1638
migrating tables, 1642
Monitors, 1680, 1749, 1828, 1860, 1863
multi-versioning, 1615
next-key lock, 1603, 1608, 1610, 1799
NFS, 1621, 1656
online DDL, 1681
page size, 1617, 1657
raw partitions, 1640
record-level locks, 1603, 1608, 1610, 1799
replication, 1829
row structure, 1619
secondary index, 1616
semi-consistent read, 1799
Solaris 10 x86_64 issues, 128
storage requirements, 1111
system tablespace setup, 1626
system variables, 1762
tables, 1616, 1641

converting from other storage engines, 1645
temporary table undo logs, 1616
transaction model, 1602
troubleshooting, 1860

data dictionary problems, 1862
deadlocks, 1613
defragmenting tables, 1680
I/O problems, 1860
InnoDB error codes, 1865
online DDL, 1714
OS error codes, 1866
performance problems, 893
recovery problems, 1861
SQL errors, 1865

InnoDB buffer pool, 923
innodb option

mysqld, 1767
InnoDB parameters, new, 1826

innodb_adaptive_flushing, 1734
innodb_change_buffering, 1729
innodb_file_format_check, 1672
innodb_io_capacity, 1733
innodb_large_prefix, 1798
innodb_read_ahead_threshold, 1732

2977

innodb_read_io_threads, 1732
innodb_spin_wait_delay, 1735
innodb_stats_transient_sample_pages, 1761
innodb_use_sys_malloc, 1728
innodb_write_io_threads, 1732

InnoDB parameters, removed, 1826
InnoDB parameters, with new defaults

innodb_max_dirty_pages_pct, 1734
InnoDB storage engine, 1591, 1595
InnoDB tables, 27
innodb-status-file option

mysqld, 1768
innodb_adaptive_flushing, 1734
innodb_adaptive_flushing system variable, 1770
innodb_adaptive_flushing_lwm system variable, 1771
innodb_adaptive_hash_index, 1730

and innodb_thread_concurrency, 1730
innodb_adaptive_hash_index system variable, 1771
innodb_adaptive_max_sleep_delay system variable,
1772
innodb_additional_mem_pool_size system variable,
1772

and innodb_use_sys_malloc, 1728
innodb_api_bk_commit_interval system variable, 1772
innodb_api_disable_rowlock system variable, 1773
innodb_api_enable_binlog system variable, 1773
innodb_api_enable_mdl system variable, 1773
innodb_api_trx_level system variable, 1774
innodb_autoextend_increment system variable, 1774
innodb_autoinc_lock_mode, 2924
innodb_autoinc_lock_mode system variable, 1774
INNODB_BUFFER_PAGE table, 2307
INNODB_BUFFER_PAGE_LRU table, 2309
innodb_buffer_pool_dump_at_shutdown system
variable, 1775
innodb_buffer_pool_dump_now system variable, 1775
innodb_buffer_pool_dump_pct system variable, 1775
innodb_buffer_pool_filename system variable, 1776
innodb_buffer_pool_instances system variable, 1776
innodb_buffer_pool_load_abort system variable, 1777
innodb_buffer_pool_load_at_startup system variable,
1777
innodb_buffer_pool_load_now system variable, 1777
innodb_buffer_pool_size system variable, 1778
INNODB_BUFFER_POOL_STATS table, 2309
innodb_change_buffering, 1729
innodb_change_buffering system variable, 1779
innodb_change_buffer_max_size system variable,
1779
innodb_checksums system variable, 1780
innodb_checksum_algorithm system variable, 1779
INNODB_CMP table, 2298
INNODB_CMPMEM table, 2299
INNODB_CMPMEM_RESET table, 2299
INNODB_CMP_PER_INDEX table, 2298
innodb_cmp_per_index_enabled system variable, 1781
INNODB_CMP_PER_INDEX_RESET table, 2298
INNODB_CMP_RESET table, 2298

innodb_commit_concurrency system variable, 1781
innodb_compression_failure_threshold_pct system
variable, 1781
innodb_compression_level system variable, 1782
innodb_compression_pad_pct_max system variable,
1782
innodb_concurrency_tickets, 1730
innodb_concurrency_tickets system variable, 1782
innodb_data_file_path system variable, 1783
innodb_data_home_dir system variable, 1783
innodb_disable_sort_file_cache system variable, 1783
innodb_doublewrite system variable, 1784
innodb_fast_shutdown system variable, 1784
innodb_file_format, 1670, 2925

Antelope, 1667
Barracuda, 1660
identifying, 1675

innodb_file_format system variable, 1785
innodb_file_format_check, 1672
innodb_file_format_check system variable, 1785
innodb_file_format_max system variable, 1785
innodb_file_per_table, 1660, 2925
innodb_file_per_table system variable, 1786
innodb_flushing_avg_loops system variable, 1790
innodb_flush_log_at_timeout system variable, 1787
innodb_flush_log_at_trx_commit system variable, 1787
innodb_flush_method system variable, 1788
innodb_flush_neighbors system variable, 1789
innodb_force_load_corrupted system variable, 1790
innodb_force_recovery system variable, 1791
innodb_ft_aux_table system variable, 1791
INNODB_FT_BEING_DELETED table, 2319
innodb_ft_cache_size system variable, 1792
INNODB_FT_CONFIG table, 2316
INNODB_FT_DEFAULT_STOPWORD table, 2317
INNODB_FT_DELETED table, 2318
innodb_ft_enable_diag_print system variable, 1792
innodb_ft_enable_stopword system variable, 1793
INNODB_FT_INDEX_CACHE table, 2318
INNODB_FT_INDEX_TABLE table, 2317
innodb_ft_max_token_size system variable, 1793
innodb_ft_min_token_size system variable, 1793
innodb_ft_num_word_optimize system variable, 1794
innodb_ft_result_cache_limit system variable, 1794
innodb_ft_server_stopword_table system variable,
1795
innodb_ft_sort_pll_degree system variable, 1795
innodb_ft_total_cache_size system variable, 1795
innodb_ft_user_stopword_table system variable, 1796
innodb_index_stats table, 1722
innodb_io_capacity, 1733
innodb_io_capacity system variable, 1796
innodb_io_capacity_max system variable, 1797
innodb_large_prefix system variable, 1798
INNODB_LOCKS table, 2301
innodb_locks_unsafe_for_binlog system variable, 1799
INNODB_LOCK_WAITS table, 2302
innodb_lock_wait_timeout, 2925

2978

innodb_lock_wait_timeout system variable, 1799
innodb_log_buffer_size system variable, 1802
innodb_log_compressed_pages system variable, 1802
innodb_log_files_in_group system variable, 1803
innodb_log_file_size system variable, 1802
innodb_log_group_home_dir system variable, 1803
innodb_log_write_ahead_size system variable, 1803
innodb_lru_scan_depth system variable, 1804
innodb_max_dirty_pages_pct, 1734
innodb_max_dirty_pages_pct system variable, 1804
innodb_max_dirty_pages_pct_lwm system variable,
1805
innodb_max_purge_lag system variable, 1805
innodb_max_purge_lag_delay system variable, 1806
innodb_memcache database, 1836, 1855
innodb_memcached_config.sql script, 1836
INNODB_METRICS table, 2310
innodb_monitor_disable system variable, 1806
innodb_monitor_enable system variable, 1807
innodb_monitor_reset system variable, 1807
innodb_monitor_reset_all system variable, 1807
innodb_old_blocks_pct, 1735
innodb_old_blocks_pct system variable, 1808
innodb_old_blocks_time, 1735
innodb_old_blocks_time system variable, 1808
innodb_online_alter_log_max_size system variable,
1809
innodb_open_files system variable, 1809
innodb_optimize_fulltext_only system variable, 1809
INNODB_PAGE_ATOMIC_REF_COUNT option

CMake, 147
innodb_page_cleaners system variable, 1810
innodb_page_size system variable, 1810
innodb_print_all_deadlocks system variable, 1811

innodb_print_all_deadlocks, 1811
innodb_purge_batch_size system variable, 1811
innodb_purge_threads system variable, 1812
innodb_random_read_ahead system variable, 1812
innodb_read_ahead_threshold, 1731
innodb_read_ahead_threshold system variable, 1812
innodb_read_io_threads, 1732
innodb_read_io_threads system variable, 1813
innodb_read_only system variable, 1813
innodb_replication_delay system variable, 1814
innodb_rollback_on_timeout system variable, 1814
innodb_rollback_segments system variable, 1814
innodb_sort_buffer_size system variable, 1815
innodb_spin_wait_delay, 1735
innodb_spin_wait_delay system variable, 1816
innodb_stats_auto_recalc system variable, 1816
innodb_stats_method system variable, 1816
innodb_stats_on_metadata system variable, 1817
innodb_stats_persistent system variable

innodb_stats_persistent, 1817
innodb_stats_persistent_sample_pages system
variable, 1818
innodb_stats_sample_pages system variable, 1818
innodb_stats_transient_sample_pages, 1761

innodb_stats_transient_sample_pages system variable,
1818
innodb_status_output system variable, 1819
innodb_status_output_locks system variable, 1819
innodb_stat_persistent system variable, 1817
innodb_strict_mode, 2925
innodb_strict_mode system variable, 1819
innodb_support_xa system variable, 1820
innodb_sync_array_size system variable, 1821
innodb_sync_spin_loops system variable, 1821
INNODB_SYS_COLUMNS table, 2304
INNODB_SYS_DATAFILES table, 2307
INNODB_SYS_FIELDS table, 2305
INNODB_SYS_FOREIGN table, 2305
INNODB_SYS_FOREIGN_COLS table, 2305
INNODB_SYS_INDEXES table, 2303
INNODB_SYS_TABLES table, 2303
INNODB_SYS_TABLESPACES table, 2307
INNODB_SYS_TABLESTATS table, 2306
innodb_table_locks system variable, 1821
innodb_table_stats table, 1722
innodb_temp_data_file_path system variable, 1822
INNODB_TEMP_TABLE_INFO table, 2319
innodb_thread_concurrency, 1730
innodb_thread_concurrency system variable, 1822
innodb_thread_sleep_delay, 1730
innodb_thread_sleep_delay system variable, 1823
INNODB_TRX table, 2300
innodb_undo_directory system variable, 1823
innodb_undo_logs system variable, 1824
innodb_undo_tablespaces system variable, 1824
innodb_use_native_aio system variable, 1825
innodb_use_sys_malloc

and innodb_thread_concurrency, 1730
innodb_use_sys_malloc system variable, 1728, 1825
innodb_version system variable, 1825
innodb_write_io_threads, 1732
innodb_write_io_threads system variable, 1826
INSERT, 871, 1378
insert, 2925
INSERT ... SELECT, 1382
insert buffer, 2925
insert buffering, 1618, 2925

disabling, 1729
INSERT DELAYED, 1383, 1383
INSERT statement

grant privileges, 739
INSERT(), 1145
insert-ignore option

mysqldump, 322
insertable views

insertable, 2258
inserting

speed of, 871
inserts

concurrent, 938, 940
insert_id system variable, 518
install option

2979

mysqld, 456
INSTALL PLUGIN, 1533
install-manual option

mysqld, 456
Installation, 79
installation layouts, 58
installation overview, 131
installing

binary distribution, 58
Linux RPM packages, 119
Mac OS X DMG packages, 103
overview, 44
Perl, 183
Perl on Windows, 184
Solaris PKG packages, 128
source distribution, 131
user-defined functions, 2647

installing plugins, 638, 1533
INSTALL_BINDIR option

CMake, 143
INSTALL_DOCDIR option

CMake, 143
INSTALL_DOCREADMEDIR option

CMake, 143
INSTALL_INCLUDEDIR option

CMake, 143
INSTALL_INFODIR option

CMake, 143
INSTALL_LAYOUT option

CMake, 143
INSTALL_LIBDIR option

CMake, 143
INSTALL_MANDIR option

CMake, 143
INSTALL_MYSQLSHAREDIR option

CMake, 144
INSTALL_MYSQLTESTDIR option

CMake, 144
INSTALL_PLUGINDIR option

CMake, 144
INSTALL_SBINDIR option

CMake, 144
INSTALL_SCRIPTDIR option

CMake, 144
INSTALL_SHAREDIR option

CMake, 144
INSTALL_SQLBENCHDIR option

CMake, 144
INSTALL_SUPPORTFILESDIR option

CMake, 144
instance, 2926
INSTR(), 1145
instrumentation, 2926
INT data type, 1077
integer arithmetic, 1288
INTEGER data type, 1077
integers, 976
intention lock, 2926

interactive_timeout system variable, 518
InteriorRingN(), 1279
internal locking, 937
internal memory allocator

disabling, 1728
internals, 2583
internationalization, 999
Internet Relay Chat, 18
Intersection(), 1282
Intersects(), 1284
INTERVAL(), 1134
INTO

SELECT, 1407
introducer

string literal, 974, 1005
invalid data

constraint, 32
invalidating query cache entries

thread state, 968
inverted index, 2926
in_file option

comp_err, 252
IOPS, 2926
IP addresses

in account names, 724
in default accounts, 164

IPv6 addresses
in account names, 724
in default accounts, 164

IPv6 connections, 165
IRC, 18
IS boolean_value, 1132
IS NOT boolean_value, 1132
IS NOT NULL, 1133
IS NULL, 838, 1132

and indexes, 886
IsClosed(), 1277, 1279
IsEmpty(), 1276
ISNULL(), 1134
ISOLATION LEVEL, 1444
isolation level, 1602, 2926, 3225
IsSimple(), 1276
IS_FREE_LOCK(), 1249
IS_IPV4(), 1249
IS_IPV4_COMPAT(), 1249
IS_IPV4_MAPPED(), 1250
IS_IPV6(), 1250
IS_USED_LOCK(), 1250
ITERATE, 1476
iterations option

mysqlslap, 342

J
Japanese character sets

conversion, 2760
Japanese, Korean, Chinese character sets

frequently asked questions, 2760
Java, 2457

2980

JDBC, 2453
join, 2927

nested-loop algorithm, 844
JOIN, 1409
join algorithm

Block Nested-Loop, 840
Nested-Loop, 840

join option
myisampack, 369

join type, 3083
ALL, 910
const, 908
eq_ref, 908
fulltext, 909
index, 910
index_merge, 909
index_subquery, 910
range, 910
ref, 909
ref_or_null, 909
system, 908
unique_subquery, 909

join_buffer_size system variable, 518

K
keepold option

mysqlhotcopy, 403
keep_files_on_create system variable, 519
Key cache

MyISAM, 925
key cache

assigning indexes to, 1578
key partitioning, 2192
key partitions

managing, 2207
splitting and merging, 2207

key space
MyISAM, 1873

key-value store, 887
keys, 882

foreign, 29, 213
multi-column, 883
searching on two, 215

keys option
mysqlshow, 335

keys-used option
myisamchk, 358

keywords, 989
KEY_BLOCK_SIZE, 1660, 1664, 2927
key_buffer_size myisamchk variable, 355
key_buffer_size system variable, 519
key_cache_age_threshold system variable, 521
key_cache_block_size system variable, 521
key_cache_division_limit system variable, 521
KEY_COLUMN_USAGE

INFORMATION_SCHEMA table, 2280
Kill

thread command, 961

KILL, 1584
Killed

thread state, 964
Killing slave

thread state, 970
known errors, 2878
Korean, 2760

L
labels

stored program block, 1471
language option

mysqld, 456
language support

error messages, 1049
large page support, 953
large-pages option

mysqld, 456
large_files_support system variable, 522
large_pages system variable, 522
large_page_size system variable, 522
last row

unique ID, 2571
LAST_DAY(), 1186
last_insert_id system variable, 522
LAST_INSERT_ID(), 1240, 1381

and replication, 2139
and stored routines, 2243
and triggers, 2243
locking considerations, 28

latch, 2927
layout of installation, 58
lc-messages option

mysqld, 457
lc-messages-dir option

mysqld, 457
LCASE(), 1146
lc_messages system variable, 523
lc_messages_dir system variable, 523
lc_time_names system variable, 523
ldata option

mysql_install_db, 255
LDML syntax, 1062
LD_LIBRARY_PATH environment variable, 185
LD_RUN_PATH environment variable, 182, 185
LEAST(), 1135
LEAVE, 1476
ledir option

mysqld_safe, 243
LEFT JOIN, 839, 1409
LEFT OUTER JOIN, 1409
LEFT(), 1146
leftmost prefix of indexes, 884
legal names, 979
length option

myisam_ftdump, 351
LENGTH(), 1146
less than (<), 1131

2981

less than or equal (<=), 1131
libmysqlclient library, 2453
libmysqld, 2457

options, 2459
libmysqld library, 2453
libmysqld-libs option

mysql_config, 406
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN
environment variable, 182
LIBMYSQL_PLUGINS environment variable, 182, 2569
LIBMYSQL_PLUGIN_DIR environment variable, 182,
2569
library

libmysqlclient, 2453
libmysqld, 2453

libs option
mysql_config, 407

libs_r option
mysql_config, 407

license system variable, 523
LIKE, 1155

and indexes, 886
and wildcards, 886

LIMIT, 869, 1239, 1405
and replication, 2152

limitations
MySQL Limitations, 2893
replication, 2138

limits
file-size, 2894
InnoDB, 1656
MySQL Limits, limits in MySQL, 2893

line-numbers option
mysql, 273

linear hash partitioning, 2191
linear key partitioning, 2193
linefeed (\n), 974, 1390
LineFromText(), 1270
LineFromWKB(), 1271
lines-terminated-by option

mysqldump, 319, 329
LINESTRING data type, 1269
LineString(), 1272
LineStringFromText(), 1270
LineStringFromWKB(), 1271
linking, 2465

errors, 2466
problems, 2466

links
symbolic, 949

list, 2927
list partitioning, 2179, 2181
list partitions

adding and dropping, 2201
managing, 2201

literals, 973
LN(), 1171
LOAD DATA

and replication, 2152
LOAD DATA INFILE, 1385, 2872
load emulation, 336
LOAD INDEX INTO CACHE

and partitioning, 2228
LOAD XML, 1394
loading

tables, 194
LOAD_FILE(), 1146
local option

mysqlimport, 329
local-infile option

mysql, 273
local-load option

mysqlbinlog, 386
local-service option

mysqld, 457
localhost, 225
localization, 999
LOCALTIME, 1186
LOCALTIMESTAMP, 1186
local_infile system variable, 524
LOCATE(), 1146
lock, 2927
lock escalation, 2927
LOCK IN SHARE MODE, 1406
lock mode, 2927
Lock Monitor

InnoDB, 1749
LOCK TABLES, 1439
lock-all-tables option

mysqldump, 323
lock-tables option

mysqldump, 323
mysqlimport, 329

locked_in_memory system variable, 524
locking, 943, 2928

external, 454, 568, 815, 942, 966
information schema, 1743, 1748
internal, 937
row-level, 28, 937
table-level, 937

locking methods, 937
locking read, 2928
lock_wait_timeout system variable, 524
log, 2928
log buf mutex, 1739
log buffer, 2928
log file, 2928
log files

maintaining, 667
log group, 2928
log option

innochecksum, 348
mysqld_multi, 248

log sys mutex, 1739
LOG(), 1171
log-bin option

2982

mysqld, 2084
log-bin-index option

mysqld, 2085
log-bin-trust-function-creators option

mysqld, 2085
log-bin-use-v1-row-events option

mysqld, 2085
log-error option

mysqld, 458
mysqldump, 316
mysqld_safe, 243

log-isam option
mysqld, 458

log-output option
mysqld, 458

log-queries-not-using-indexes option
mysqld, 459

log-raw option
mysqld, 459

log-short-format option
mysqld, 459, 2086

log-slave-updates option
mysqld, 2050

log-slow-admin-statements option
mysqld, 459

log-slow-slave-statements option
mysqld, 2051

log-tc option
mysqld, 460

log-tc-size option
mysqld, 460

log-warnings option
mysqld, 460, 2051

LOG10(), 1172
LOG2(), 1171
logging

passwords, 697
logging slow query

thread state, 964
logical, 2928
logical backup, 2928
logical operators, 1135
login

thread state, 964
login-path option, 235, 408

mysql, 273
mysqladmin, 297
mysqlbinlog, 386
mysqlcheck, 305
mysqldump, 312
mysqlimport, 330
mysqlshow, 335
mysqlslap, 342
mysql_config_editor, 379

logs
flushing, 649
server, 649

log_bin system variable, 2096

log_bin_basename system variable, 2096
log_bin_index system variable, 2096
log_bin_trust_function_creators system variable, 525
log_bin_use_v1_row_events system variable, 2096
log_error system variable, 525
log_error_verbosity system variable, 525
log_output system variable, 526
log_queries_not_using_indexes system variable, 526
log_slave_updates system variable, 2097
log_slow_admin_statements system variable

mysqld, 527
log_slow_slave_statements system variable

mysqld, 2070
log_throttle_queries_not_using_indexes system
variable, 527
log_timestamps system variable, 526
log_warnings system variable, 528
Long Data

thread command, 961
LONG data type, 1103
LONGBLOB data type, 1084
LONGTEXT data type, 1084
long_query_time system variable, 529
LOOP, 1476

labels, 1471
--loose option prefix, 230
loose_, 2928
lost connection errors, 2852
lost+found directory, 455
low-priority option

mysqlimport, 330
low-priority-updates option

mysqld, 461
low-water mark, 2929
LOWER(), 1146
lower_case_file_system system variable, 529
lower_case_table_names system variable, 530
low_priority_updates system variable, 529
LPAD(), 1147
LRU, 2929
LRU page replacement, 1735
LSN, 2929
LTRIM(), 1147
Lua, 1972

M
Mac OS X

installation, 103
mailing lists, 15

archive location, 15
guidelines, 17

main features of MySQL, 5
maintaining

log files, 667
tables, 819

maintenance
tables, 300

MAKEDATE(), 1186

2983

MAKETIME(), 1187
MAKE_SET(), 1147
Making temp file

thread state, 970
manage keys

thread state, 964
manual

available formats, 2
online location, 2
syntax conventions, 2
typographical conventions, 2

Master has sent all binlog to slave; waiting for binlog to
be updated

thread state, 968
master server, 2929
master thread, 2930
master-data option

mysqldump, 317
master-info-file option

mysqld, 2052
master-info-repository option

mysqld, 2083
master-retry-count option

mysqld, 2052
master-verify-checksum option

mysqld, 2089
master_info_repository system variable, 2070
MASTER_POS_WAIT(), 1251, 1461
master_verify_checksum system variable, 2097
MATCH ... AGAINST(), 1197
matching

patterns, 202
math, 1288
mathematical functions, 1168
MAX(), 1256
MAX(DISTINCT), 1256
max-binlog-dump-events option

mysqld, 2089
max-record-length option

myisamchk, 359
max-relay-log-size option

mysqld, 2052
MAXDB SQL mode, 634
--maximum option prefix, 230
maximums

maximum columns per table, 2895
maximum number of databases, 2893
maximum number of tables, 2893
maximum row size, 2895
maximum tables per join, 2893
table size, 2894

max_allowed_packet
and replication, 2153

max_allowed_packet system variable, 530
max_allowed_packet variable, 279
max_binlog_cache_size system variable, 2097
max_binlog_size system variable, 2098
max_binlog_stmt_cache_size system variable, 2098

max_connections system variable, 531
MAX_CONNECTIONS_PER_HOUR, 741
max_connect_errors system variable, 531
max_delayed_threads system variable, 532
max_error_count system variable, 532
max_heap_table_size system variable, 533
MAX_INDEXES option

CMake, 148
max_insert_delayed_threads system variable, 533
max_join_size system variable, 533
max_join_size variable, 279
max_length_for_sort_data system variable, 534
max_prepared_stmt_count system variable, 534
MAX_QUERIES_PER_HOUR, 741
max_relay_log_size system variable, 535
max_seeks_for_key system variable, 535
max_sort_length system variable, 536
max_sp_recursion_depth system variable, 536
MAX_STATEMENT_TIME, 1406
max_statement_time system variable, 536
Max_statement_time_exceeded status variable, 618
Max_statement_time_set status variable, 618
Max_statement_time_set_failed status variable, 619
max_tmp_tables system variable, 537
MAX_UPDATES_PER_HOUR, 741
MAX_USER_CONNECTIONS, 741
max_user_connections system variable, 537
max_write_lock_count system variable, 537
MBR, 1282
MBRContains(), 1282
MBRDisjoint(), 1282
MBREqual(), 1282
MBRIntersects(), 1282
MBROverlaps(), 1282
MBRTouches(), 1282
MBRWithin(), 1283
MD5(), 1233
MDL, 2930
medium-check option

myisamchk, 357
mysqlcheck, 305

MEDIUMBLOB data type, 1084
MEDIUMINT data type, 1077
MEDIUMTEXT data type, 1084
memcached, 1831, 2930
MEMCACHED_SASL_PWDB environment variable,
1838
memcapable command, 1832
memlock option

mysqld, 462
memory allocator

innodb_use_sys_malloc, 1728
MEMORY storage engine, 1591, 1877

and replication, 2153
memory usage

myisamchk, 366
memory use, 952

Performance Schema, 2333

2984

memory_summary_by_account_by_event_name table
performance_schema, 2421

memory_summary_by_host_by_event_name table
performance_schema, 2421

memory_summary_by_thread_by_event_name table
performance_schema, 2421

memory_summary_by_user_by_event_name table
performance_schema, 2421

memory_summary_global_by_event_name table
performance_schema, 2421

merge, 2930
MERGE storage engine, 1591, 1886
MERGE tables

defined, 1886
metadata

database, 2270
InnoDB, 2297
stored routines, 2243
triggers, 2247
views, 2259

metadata lock, 2930
metadata locking

transactions, 941
metadata_locks table

performance_schema, 2404
metadata_locks_cache_size system variable, 538
metadata_locks_hash_instances system variable, 538
method option

mysqlhotcopy, 404
methods

locking, 937
metrics counter, 2930
MICROSECOND(), 1187
MID(), 1148
midpoint insertion, 1735
midpoint insertion strategy, 2930
MIN(), 1256
MIN(DISTINCT), 1256
min-examined-row-limit option

mysqld, 462
mini-transaction, 2930
Minimum Bounding Rectangle, 1282
minus

unary (-), 1166
MINUTE(), 1187
min_examined_row_limit system variable, 539
mirror sites, 48
miscellaneous functions, 1246
mixed statements (Replication), 2159
mixed-mode insert, 2931
MLineFromText(), 1270
MLineFromWKB(), 1271
MOD (modulo), 1172
MOD(), 1172
modes

batch, 209
modulo (%), 1172
modulo (MOD), 1172

monitor
terminal, 187

monitoring, 2663
threads, 959

Monitors
InnoDB, 1680, 1749, 1828, 1860, 1863

MONTH(), 1187
MONTHNAME(), 1187
MPointFromText(), 1270
MPointFromWKB(), 1271
MPolyFromText(), 1270
MPolyFromWKB(), 1271
mSQL compatibility, 1159
MSSQL SQL mode, 635
multi mysqld, 247
multi-byte character sets, 2860
multi-byte characters, 1053
multi-column indexes, 883
multi-core, 2931
Multi-Range Read

optimization, 849
MULTILINESTRING data type, 1269
MultiLineString(), 1272
MultiLineStringFromText(), 1270
MultiLineStringFromWKB(), 1271
multiple buffer pools, 1738
multiple rollback segments, 1738
multiple servers, 668
multiple-part index, 1323
multiplication (*), 1166
MULTIPOINT data type, 1269
MultiPoint(), 1272
MultiPointFromText(), 1270
MultiPointFromWKB(), 1271
MULTIPOLYGON data type, 1269
MultiPolygon(), 1272
MultiPolygonFromText(), 1270
MultiPolygonFromWKB(), 1271
mutex, 2931
mutex_instances table

performance_schema, 2368
MVCC, 2931
MVCC (multi-version concurrency control), 1615
My

derivation, 8
my-print-defaults option

mysql_plugin, 258
my.cnf, 2931
my.cnf file, 2138
my.ini, 2931
MyISAM

compressed tables, 368, 1875
converting tables to InnoDB, 1645

MyISAM key cache, 925
MyISAM storage engine, 1591, 1869
myisam-block-size option

mysqld, 463
myisam-recover-options option

2985

mysqld, 463, 1871
myisamchk, 222, 351

analyze option, 359
backup option, 358
block-search option, 360
character-sets-dir option, 358
check option, 357
check-only-changed option, 357
correct-checksum option, 358
data-file-length option, 358
debug option, 355
defaults-extra-file option, 355
defaults-file option, 355
defaults-group-suffix option, 355
description option, 360
example output, 360
extend-check option, 357, 358
fast option, 357
force option, 357, 358
help option, 354
HELP option, 355
information option, 357
keys-used option, 358
max-record-length option, 359
medium-check option, 357
no-defaults option, 355
no-symlinks option, 358
options, 354
parallel-recover option, 359
print-defaults option, 355
quick option, 359
read-only option, 358
recover option, 359
safe-recover option, 359
set-auto-increment[option, 360
set-character-set option, 359
set-collation option, 359
silent option, 355
sort-index option, 360
sort-records option, 360
sort-recover option, 359
tmpdir option, 359
unpack option, 359
update-state option, 358
verbose option, 355
version option, 355
wait option, 355

myisamlog, 222, 367
myisampack, 222, 368, 1358, 1875

backup option, 369
character-sets-dir option, 369
debug option, 369
force option, 369
help option, 369
join option, 369
silent option, 369
test option, 369
tmpdir option, 369

verbose option, 370
version option, 370
wait option, 370

myisam_block_size myisamchk variable, 355
myisam_data_pointer_size system variable, 539
myisam_ftdump, 222, 350

count option, 351
dump option, 351
help option, 351
length option, 351
stats option, 351
verbose option, 351

myisam_max_sort_file_size system variable, 539
myisam_mmap_size system variable, 540
myisam_recover_options system variable, 540
myisam_repair_threads system variable, 540
myisam_sort_buffer_size myisamchk variable, 355
myisam_sort_buffer_size system variable, 541
myisam_stats_method system variable, 542
myisam_use_mmap system variable, 542
MySQL

defined, 4
introduction, 4
pronunciation, 5
upgrading, 262

mysql, 221, 267, 2931
auto-rehash option, 271
auto-vertical-output option, 271
batch option, 271
binary-mode option, 271
bind-address option, 271
character-sets-dir option, 271
charset command, 280
clear command, 280
column-names option, 271
column-type-info option, 271
comments option, 271
compress option, 272
connect command, 280
connect-expired-password option, 272
database option, 272
debug option, 272
debug-check option, 272
debug-info option, 272
default-auth option, 272
default-character-set option, 272
defaults-extra-file option, 272
defaults-file option, 272
defaults-group-suffix option, 272
delimiter command, 280
delimiter option, 273
disable named commands, 273
edit command, 280
ego command, 281
enable-cleartext-plugin option, 273
execute option, 273
exit command, 281
force option, 273

2986

go command, 281
help command, 280
help option, 271
histignore option, 273
host option, 273
html option, 273
i-am-a-dummy option, 276
ignore-spaces option, 273
init-command option, 273
line-numbers option, 273
local-infile option, 273
login-path option, 273
named-commands option, 274
no-auto-rehash option, 274
no-beep option, 274
no-defaults option, 274
nopager command, 281
notee command, 281
nowarning command, 281
one-database option, 274
pager command, 281
pager option, 275
password option, 275
pipe option, 275
plugin-dir option, 275
port option, 275
print command, 281
print-defaults option, 275
prompt command, 281
prompt option, 275
protocol option, 275
quick option, 275
quit command, 281
raw option, 275
reconnect option, 276
rehash command, 282
resetconnection command, 282
safe-updates option, 276
secure-auth option, 276
server-public-key-path option, 276
show-warnings option, 277
sigint-ignore option, 277
silent option, 277
skip-column-names option, 277
skip-line-numbers option, 277
socket option, 277
source command, 282
SSL options, 277, 389
status command, 282
syslog option, 277
system command, 282
table option, 277
tee command, 282
tee option, 278
unbuffered option, 278
use command, 283
user option, 278
verbose option, 278

version option, 278
vertical option, 278
wait option, 278
warnings command, 283
xml option, 278

MySQL binary distribution, 45
MYSQL C type, 2469
MySQL Cluster

FAQ, 2760
mysql command options, 267
mysql commands

list of, 279
MySQL Dolphin name, 8
MySQL Enterprise Audit, 776, 2665
MySQL Enterprise Backup, 2664, 2931
MySQL Enterprise Monitor, 2663
MySQL Enterprise Security, 2664
MySQL Enterprise Thread Pool, 2665
MySQL history, 8
mysql history file, 285
MySQL Installer, 63, 63
MySQL mailing lists, 15
MySQL name, 8
MySQL Notifier, 80
mysql prompt command, 283
MySQL server

mysqld, 241, 413
mysql source (command for reading from text files),
210, 288
MySQL source distribution, 45
MySQL storage engines, 1591
MySQL system tables

and replication, 2154
MySQL version, 48
MySQL Yum Repository, 113, 117, 170
mysql \. (command for reading from text files), 210, 288
mysql.event table, 2255
mysql.server, 220, 246

basedir option, 247
datadir option, 247
pid-file option, 247
service-startup-timeout option, 247
use-mysqld_safe option, 247
user option, 247

mysql.slave_master_info table, 2108
mysql.slave_relay_log_info table, 2108
mysql.sock

protection, 2868
MYSQL323 SQL mode, 635
MYSQL40 SQL mode, 635
mysqladmin, 221, 292, 1318, 1366, 1570, 1574, 1579,
1584

bind-address option, 296
character-sets-dir option, 296
compress option, 297
count option, 297
debug option, 297
debug-check option, 297

2987

debug-info option, 297
default-auth option, 297
default-character-set option, 297
defaults-extra-file option, 297
defaults-file option, 297
defaults-group-suffix option, 297
enable-cleartext-plugin option, 297
force option, 297
help option, 296
host option, 297
login-path option, 297
no-beep option, 298
no-defaults option, 298
password option, 298
pipe option, 298
plugin-dir option, 298
port option, 298
print-defaults option, 298
protocol option, 298
relative option, 298
secure-auth option, 299
show-warnings option, 298
silent option, 299
sleep option, 299
socket option, 299
SSL options, 299
user option, 299
verbose option, 299
version option, 299
vertical option, 299
wait option, 299

mysqladmin command options, 295
mysqladmin option

mysqld_multi, 248
mysqlbackup command, 2931
mysqlbinlog, 222, 380

base64-output option, 383
bind-address option, 384
binlog-row-event-max-size option, 384
character-sets-dir option, 384
database option, 384
debug option, 385
debug-check option, 385
debug-info option, 385
default-auth option, 385
defaults-extra-file option, 385
defaults-file option, 385
defaults-group-suffix option, 385
disable-log-bin option, 386
exclude-gtids option, 386
force-if-open option, 386
force-read option, 386
help option, 383
hexdump option, 386
host option, 386
idempotent option, 386
include-gtids option, 386
local-load option, 386

login-path option, 386
no-defaults option, 387
offset option, 387
password option, 387
plugin-dir option, 387
port option, 387
print-defaults option, 387
protocol option, 387
raw option, 387
read-from-remote-master option, 388
read-from-remote-server option, 388
result-file option, 388
rewrite-db option, 388
secure-auth option, 388
server-id option, 389
set-charset option, 389
short-form option, 389
skip-gtids option, 389
socket option, 389
start-datetime option, 389
start-position option, 389
stop-datetime option, 390
stop-never option, 390
stop-never-slave-server-id option, 390
stop-position option, 390
to-last-log option, 390
user option, 390
verbose option, 390
verify-binlog-checksum option, 390
version option, 390

mysqlbug, 252
mysqlcheck, 221, 300

all-databases option, 303
all-in-1 option, 303
analyze option, 303
auto-repair option, 303
bind-address option, 303
character-sets-dir option, 303
check option, 303
check-only-changed option, 303
check-upgrade option, 303
compress option, 304
databases option, 304
debug option, 304
debug-check option, 304
debug-info option, 304
default-auth option, 304
default-character-set option, 304
defaults-extra-file option, 304
defaults-file option, 304
defaults-group-suffix option, 304
extended option, 304
fast option, 304
fix-db-names option, 304
fix-table-names option, 305
force option, 305
help option, 303
host option, 305

2988

login-path option, 305
medium-check option, 305
no-defaults option, 305
optimize option, 305
password option, 305
pipe option, 305
plugin-dir option, 305
port option, 306
print-defaults option, 306
protocol option, 306
quick option, 306
repair option, 306
secure-auth option, 306
silent option, 306
skip-database option, 306
socket option, 306
SSL options, 306
tables option, 307
use-frm option, 307
user option, 307
verbose option, 307
version option, 307
write-binlog option, 307

mysqld, 220, 2932
abort-slave-event-count option, 2049
allow-suspicious-udfs option, 445
ansi option, 446
audit-log option, 789
basedir option, 446
big-tables option, 446
bind-address option, 446
binlog-checksum option, 2089
binlog-do-db option, 2086
binlog-format option, 447
binlog-ignore-db option, 2088
binlog-row-event-max-size option, 2084
binlog-rows-query-log-events option, 2090
bootstrap option, 448
character-set-client-handshake option, 448
character-set-filesystem option, 448
character-set-server option, 449
character-sets-dir option, 448
chroot option, 449
collation-server option, 449
command options, 444
console option, 449
core-file option, 450
datadir option, 450
debug option, 450
debug-sync-timeout option, 451
default-authentication-plugin option, 451
default-storage-engine option, 452
default-time-zone option, 452
defaults-extra-file option, 452
defaults-file option, 452
defaults-group-suffix option, 452
delay-key-write option, 452, 1872
des-key-file option, 453

disconnect-slave-event-count option, 2050
enable-named-pipe option, 453
event-scheduler option, 453
exit-info option, 454
external-locking option, 454
flush option, 454
gdb option, 454
general-log option, 455
help option, 445
ignore-builtin-innodb option, 1767
ignore-db-dir option, 455
init-file option, 455
innodb option, 1767
innodb-status-file option, 1768
install option, 456
install-manual option, 456
language option, 456
large-pages option, 456
lc-messages option, 457
lc-messages-dir option, 457
local-service option, 457
log-bin option, 2084
log-bin-index option, 2085
log-bin-trust-function-creators option, 2085
log-bin-use-v1-row-events option, 2085
log-error option, 458
log-isam option, 458
log-output option, 458
log-queries-not-using-indexes option, 459
log-raw option, 459
log-short-format option, 459, 2086
log-slave-updates option, 2050
log-slow-admin-statements option, 459
log-slow-slave-statements option, 2051
log-tc option, 460
log-tc-size option, 460
log-warnings option, 460, 2051
log_slow_admin_statements system variable, 527
log_slow_slave_statements system variable, 2070
low-priority-updates option, 461
master-info-file option, 2052
master-info-repository option, 2083
master-retry-count option, 2052
master-verify-checksum option, 2089
max-binlog-dump-events option, 2089
max-relay-log-size option, 2052
memlock option, 462
min-examined-row-limit option, 462
myisam-block-size option, 463
myisam-recover-options option, 463, 1871
MySQL server, 241, 413
no-defaults option, 464
old-alter-table option, 464
old-style-user-limits option, 464
open-files-limit option, 465
partition option, 465
performance-schema-consumer-events-stages-
current option, 2434

2989

performance-schema-consumer-events-stages-
history option, 2434
performance-schema-consumer-events-stages-
history-long option, 2434
performance-schema-consumer-events-statements-
current option, 2435
performance-schema-consumer-events-statements-
history option, 2435
performance-schema-consumer-events-statements-
history-long option, 2435
performance-schema-consumer-events-
transactions-current option, 2435
performance-schema-consumer-events-
transactions-history option, 2435
performance-schema-consumer-events-
transactions-history-long option, 2435
performance-schema-consumer-events-waits-
current option, 2435
performance-schema-consumer-events-waits-history
option, 2435
performance-schema-consumer-events-waits-
history-long option, 2435
performance-schema-consumer-global-
instrumentation option, 2435
performance-schema-consumer-statements-digest
option, 2435
performance-schema-consumer-thread-
instrumentation option, 2435
performance-schema-consumer-xxx option, 2434
performance-schema-instrument option, 2434
pid-file option, 465
plugin option prefix, 466
plugin-load option, 466
plugin-load-add option, 467
port option, 467
port-open-timeout option, 468
print-defaults option, 468
read-only option, 2053
relay-log option, 2053
relay-log-index option, 2054
relay-log-info-file option, 2054
relay-log-info-repository option, 2083
relay-log-purge option, 2055
relay-log-recovery option, 2055
relay-log-space-limit option, 2055
remove option, 468
replicate-do-db option, 2056
replicate-do-table option, 2058
replicate-ignore-db option, 2057
replicate-ignore-table option, 2059
replicate-rewrite-db option, 2059
replicate-same-server-id option, 2060
replicate-wild-do-table option, 2060
replicate-wild-ignore-table option, 2061
report-host option, 2061
report-password option, 2061
report-port option, 2062
report-user option, 2062

safe-user-create option, 468
secure-auth option, 468
secure-file-priv option, 469
server-id option, 2037
server_uuid variable, 2037
shared-memory option, 469
shared-memory-base-name option, 469
show-slave-auth-info option, 2062
skip-concurrent-insert option, 470
skip-event-scheduler option, 470
skip-grant-tables option, 470
skip-host-cache option, 470
skip-innodb option, 470, 1768
skip-name-resolve option, 470
skip-networking option, 471
skip-partition option, 471
skip-show-database option, 472
skip-slave-start option, 2065
skip-stack-trace option, 472
skip-symbolic-links option, 472
slave-checkpoint-group option, 2063
slave-checkpoint-period option, 2063
slave-load-tmpdir option, 2065
slave-max-allowed-packet, 2066
slave-net-timeout option, 2066
slave-parallel-type, 2066
slave-parallel-workers option, 2064
slave-pending-jobs-size-max option, 2064
slave-rows-search-algorithms, 2067
slave-skip-errors option, 2068
slave-sql-verify-checksum option, 2068
slave_compressed_protocol option, 2065
slow-query-log option, 472
slow-start-timeout option, 472
socket option, 473
sporadic-binlog-dump-fail option, 2089
sql-mode option, 473
SSL options, 471
standalone option, 471
starting, 710
super-large-pages option, 471
symbolic-links option, 472
sysdate-is-now option, 474
tc-heuristic-recover option, 474
temp-pool option, 474
tmpdir option, 475
transaction-isolation option, 475
transaction-read-only option, 475
user option, 476
validate-password option, 705
verbose option, 476
version option, 476

mysqld option
malloc-lib, 243
mysqld_multi, 248
mysqld_safe, 244
mysql_plugin, 258

mysqld options, 944

2990

enforce-gtid-consistency, 2099
gtid-mode, 2100

mysqld server
buffer sizes, 943

mysqld-version option
mysqld_safe, 244

mysqldump, 181, 221, 307, 2932
add-drop-database option, 314
add-drop-table option, 315
add-drop-trigger option, 315
add-locks option, 323
all-databases option, 321
all-tablespaces option, 315
allow-keywords option, 315
apply-slave-statements option, 317
bind-address option, 312
character-sets-dir option, 316
comments option, 315
compact option, 318
compatible option, 318
complete-insert option, 319
compress option, 312
create-options option, 319
databases option, 321
debug option, 315
debug-check option, 315
debug-info option, 315
default-auth option, 312
default-character-set option, 316
defaults-extra-file option, 314
defaults-file option, 314
defaults-group-suffix option, 314
delete-master-logs option, 317
disable-keys option, 322
dump-date option, 316
dump-slave option, 317
events option, 321
extended-insert option, 322
fields-enclosed-by option, 319, 329
fields-escaped-by option, 319, 329
fields-optionally-enclosed-by option, 319, 329
fields-terminated-by option, 319, 329
flush-logs option, 323
flush-privileges option, 323
force option, 316
help option, 316
hex-blob option, 319
host option, 312
ignore-error option, 321
ignore-table option, 321
include-master-host-port option, 317
insert-ignore option, 322
lines-terminated-by option, 319, 329
lock-all-tables option, 323
lock-tables option, 323
log-error option, 316
login-path option, 312
master-data option, 317

no-autocommit option, 323
no-create-db option, 315
no-create-info option, 315
no-data option, 321
no-defaults option, 314
no-set-names option, 317
no-tablespaces option, 315
opt option, 322
order-by-primary option, 324
password option, 313
pipe option, 313
plugin-dir option, 313
port option, 313
print-defaults option, 314
problems, 325, 2889
protocol option, 313
quick option, 322
quote-names option, 319
replace option, 315
result-file option, 319
routines option, 321
secure-auth option, 313
set-charset option, 317
set-gtid-purged option, 318
single-transaction option, 324
skip-comments option, 316
skip-opt option, 323
socket option, 313
SSL options, 313
tab option, 319
tables option, 321
triggers option, 321
tz-utc option, 319
user option, 313
using for backups, 806
verbose option, 316
version option, 316
views, 325, 2889
where option, 322
workarounds, 325, 2889
xml option, 320

mysqldumpslow, 222, 400
debug option, 401
help option, 400
verbose option, 401

mysqld_multi, 220, 247
defaults-extra-file option, 248
defaults-file option, 248
example option, 248
help option, 248
log option, 248
mysqladmin option, 248
mysqld option, 248
no-defaults option, 248
no-log option, 249
password option, 249
silent option, 249
tcp-ip option, 249

2991

user option, 249
verbose option, 249
version option, 249

mysqld_safe, 220, 241
basedir option, 243
core-file-size option, 243
datadir option, 243
defaults-extra-file option, 243
defaults-file option, 243
help option, 243
ledir option, 243
log-error option, 243
malloc-lib option, 243
mysqld option, 244
mysqld-version option, 244
nice option, 244
no-defaults option, 244
open-files-limit option, 244
pid-file option, 244
plugin-dir option, 245
port option, 245
skip-kill-mysqld option, 245
skip-syslog option, 245
socket option, 245
syslog option, 245
syslog-tag option, 245
timezone option, 245
user option, 245

mysqlhotcopy, 222, 402
addtodest option, 403
allowold option, 403
checkpoint option, 403
chroot option, 403
debug option, 403
dryrun option, 403
flushlog option, 403
help option, 403
host option, 403
keepold option, 403
method option, 404
noindices option, 404
old_server option, 404
password option, 404
port option, 404
quiet option, 404
record_log_pos option, 404
regexp option, 404
resetmaster option, 404
resetslave option, 404
socket option, 404
suffix option, 404
tmpdir option, 404
user option, 404

mysqlimport, 181, 221, 326, 1385
bind-address option, 328
character-sets-dir option, 328
columns option, 328
compress option, 328

debug option, 328
debug-check option, 328
debug-info option, 328
default-auth option, 328
default-character-set option, 328
defaults-extra-file option, 329
defaults-file option, 329
defaults-group-suffix option, 329
delete option, 329
force option, 329
help option, 328
host option, 329
ignore option, 329
ignore-lines option, 329
local option, 329
lock-tables option, 329
login-path option, 330
low-priority option, 330
no-defaults option, 330
password option, 330
pipe option, 330
plugin-dir option, 330
port option, 330
print-defaults option, 330
protocol option, 330
replace option, 330
secure-auth option, 331
silent option, 331
socket option, 331
SSL options, 331
use-threads option, 331
user option, 331
verbose option, 331
version option, 331

MySQLInstallerConsole, 79
action option, 80
catalog option, 80
config option, 80
help option, 79
install action option, 80
list action option, 80
nowait option, 80
product option, 80
remove action option, 80
status action option, 80
type option, 80
updates option, 79
upgrade action option, 80
user option, 80

mysqlshow, 221, 332
bind-address option, 334
character-sets-dir option, 334
compress option, 334
count option, 334
debug option, 334
debug-check option, 334
debug-info option, 334
default-auth option, 334

2992

default-character-set option, 334
defaults-extra-file option, 334
defaults-file option, 334
defaults-group-suffix option, 334
help option, 334
host option, 335
keys option, 335
login-path option, 335
no-defaults option, 335
password option, 335
pipe option, 335
plugin-dir option, 335
port option, 335
print-defaults option, 335
protocol option, 335
secure-auth option, 336
show-table-type option, 336
socket option, 336
SSL options, 336
status option, 336
user option, 336
verbose option, 336
version option, 336

mysqlslap, 221, 336
auto-generate-sql option, 340
auto-generate-sql-add-autoincrement option, 340
auto-generate-sql-execute-number option, 340
auto-generate-sql-guid-primary option, 340
auto-generate-sql-load-type option, 340
auto-generate-sql-secondary-indexes option, 340
auto-generate-sql-unique-query-number option, 340
auto-generate-sql-unique-write-number option, 340
auto-generate-sql-write-number option, 340
commit option, 341
compress option, 341
concurrency option, 341
create option, 341
create-schema option, 341
csv option, 341
debug option, 341
debug-check option, 341
debug-info option, 341
default-auth option, 341
defaults-extra-file option, 341
defaults-file option, 341
defaults-group-suffix option, 341
delimiter option, 342
detach option, 342
enable-cleartext-plugin option, 342
engine option, 342
help option, 340
host option, 342
iterations option, 342
login-path option, 342
no-defaults option, 342
no-drop option, 342
number-char-cols option, 342
number-int-cols option, 342

number-of-queries option, 342
only-print option, 343
password option, 343
pipe option, 343
plugin-dir option, 343
port option, 343
post-query option, 343
post-system option, 343
pre-query option, 343
pre-system option, 343
print-defaults option, 343
protocol option, 343
query option, 344
secure-auth option, 344
shared-memory-base-name option, 344
silent option, 344
socket option, 344
SSL options, 344
user option, 344
verbose option, 344
version option, 344

mysqltest
MySQL Test Suite, 2584

mysql_affected_rows(), 2479
mysql_autocommit(), 2480
MYSQL_BIND C type, 2535
mysql_change_user(), 2480
mysql_character_set_name(), 2481
mysql_client_find_plugin(), 2567
mysql_client_register_plugin(), 2568
mysql_close(), 2481
mysql_commit(), 2482
mysql_config, 406

cflags option, 406
cxxflags option, 406
embedded option, 406
include option, 406
libmysqld-libs option, 406
libs option, 407
libs_r option, 407
plugindir option, 407
port option, 407
socket option, 407
version option, 407

mysql_config_editor, 222, 374
all option, 378
debug option, 379
help option, 378
host option, 379
login-path option, 379
password option, 379
port option, 379
socket option, 379
user option, 379
verbose option, 379
version option, 379
warn option, 379

mysql_config_server, 406

2993

mysql_connect(), 2482
mysql_create_db(), 2483
MYSQL_DATADIR option

CMake, 144
mysql_data_seek(), 2483
MYSQL_DEBUG environment variable, 182, 223, 2658
mysql_debug(), 2484
mysql_drop_db(), 2484
mysql_dump_debug_info(), 2485
mysql_eof(), 2485
mysql_errno(), 2486
mysql_error(), 2487
mysql_escape_string(), 2487
mysql_fetch_field(), 2487
mysql_fetch_fields(), 2489
mysql_fetch_field_direct(), 2488
mysql_fetch_lengths(), 2489
mysql_fetch_row(), 2490
MYSQL_FIELD C type, 2469
mysql_field_count(), 2491, 2506
MYSQL_FIELD_OFFSET C type, 2470
mysql_field_seek(), 2492
mysql_field_tell(), 2492
mysql_free_result(), 2492
mysql_get_character_set_info(), 2492
mysql_get_client_info(), 2493
mysql_get_client_version(), 2493
mysql_get_host_info(), 2494
mysql_get_option(), 2494
mysql_get_proto_info(), 2495
mysql_get_server_info(), 2495
mysql_get_server_version(), 2495
mysql_get_ssl_cipher(), 2496
MYSQL_GROUP_SUFFIX environment variable, 182
mysql_hex_string(), 2496
MYSQL_HISTFILE environment variable, 182, 285
MYSQL_HISTIGNORE environment variable, 182, 285
MYSQL_HOME environment variable, 182
MYSQL_HOST environment variable, 182, 227
mysql_info(), 1310, 1381, 1394, 1433, 2497
mysql_init(), 2497
mysql_insert_id(), 28, 1381, 2498
mysql_install_db, 158, 220, 252

basedir option, 254
builddir option, 254
cross-bootstrap option, 254
datadir option, 255
force option, 255
help option, 254
ldata option, 255
random-passwords option, 255
rpm option, 256
skip-name-resolve option, 256
skip-random-passwords option, 256
srcdir option, 256
user option, 257
verbose option, 257
windows option, 257

mysql_kill(), 2499
mysql_library_end(), 2500
mysql_library_init(), 2500
mysql_list_dbs(), 2502
mysql_list_fields(), 2502
mysql_list_processes(), 2503
mysql_list_tables(), 2504
mysql_load_plugin(), 2568
mysql_load_plugin_v(), 2570
MYSQL_MAINTAINER_MODE option

CMake, 148
mysql_more_results(), 2504
mysql_next_result(), 2505
mysql_num_fields(), 2506
mysql_num_rows(), 2507
mysql_options(), 2507
mysql_options4(), 2512
mysql_ping(), 2513
mysql_plugin, 221, 257

basedir option, 258
datadir option, 258
help option, 258
my-print-defaults option, 258
mysqld option, 258
no-defaults option, 258
plugin-dir option, 258
plugin-ini option, 258
print-defaults option, 259
verbose option, 259
version option, 259

mysql_plugin_options(), 2570
MYSQL_PROJECT_NAME option

CMake, 148
MYSQL_PS1 environment variable, 182
MYSQL_PWD environment variable, 182, 223, 227
mysql_query(), 2514, 2570
mysql_real_connect(), 2515
mysql_real_escape_string(), 975, 1148, 2518
mysql_real_query(), 2519
mysql_refresh(), 2520
mysql_reload(), 2521
MYSQL_RES C type, 2469
mysql_reset_connection(), 2521
mysql_rollback(), 2522
MYSQL_ROW C type, 2469
mysql_row_seek(), 2522
mysql_row_tell(), 2523
mysql_secure_installation, 221, 259

defaults-extra-file option, 261
defaults-file option, 261
defaults-group-suffix option, 261
help option, 260
host option, 261
no-defaults option, 261
password option, 261
port option, 261
print-defaults option, 261
protocol option, 261

2994

socket option, 261
SSL options, 261
use-default option, 262
user option, 262

mysql_select_db(), 2523
MYSQL_SERVER_AUTH_INFO plugin structure, 2624
mysql_server_end(), 2567
mysql_server_init(), 2567
mysql_session_track_get_first(), 2524
mysql_session_track_get_next(), 2525
mysql_set_character_set(), 2526
mysql_set_local_infile_default(), 2526, 2526
mysql_set_server_option(), 2528
mysql_shutdown(), 2529
mysql_sqlstate(), 2529
mysql_ssl_set(), 2530
mysql_stat(), 2530
MYSQL_STMT C type, 2535
mysql_stmt_affected_rows(), 2543
mysql_stmt_attr_get(), 2543
mysql_stmt_attr_set(), 2543
mysql_stmt_bind_param(), 2545
mysql_stmt_bind_result(), 2545
mysql_stmt_close(), 2546
mysql_stmt_data_seek(), 2547
mysql_stmt_errno(), 2547
mysql_stmt_error(), 2547
mysql_stmt_execute(), 2548
mysql_stmt_fetch(), 2551
mysql_stmt_fetch_column(), 2556
mysql_stmt_field_count(), 2556
mysql_stmt_free_result(), 2556
mysql_stmt_init(), 2557
mysql_stmt_insert_id(), 2557
mysql_stmt_next_result(), 2557
mysql_stmt_num_rows(), 2558
mysql_stmt_param_count(), 2559
mysql_stmt_param_metadata(), 2559
mysql_stmt_prepare(), 2559
mysql_stmt_reset(), 2560
mysql_stmt_result_metadata, 2561
mysql_stmt_row_seek(), 2561
mysql_stmt_row_tell(), 2562
mysql_stmt_send_long_data(), 2562
mysql_stmt_sqlstate(), 2564
mysql_stmt_store_result(), 2564
mysql_store_result(), 2531, 2570
MYSQL_TCP_PORT environment variable, 182, 223,
674, 675
MYSQL_TCP_PORT option

CMake, 148
MYSQL_TEST_LOGIN_FILE environment variable,
182
MYSQL_TEST_TRACE_DEBUG environment variable,
182, 2633
mysql_thread_end(), 2566
mysql_thread_id(), 2532
mysql_thread_init(), 2566

mysql_thread_safe(), 2566
MYSQL_TIME C type, 2537
MYSQL_TRACE_TRACE_CRASH environment
variable, 182, 2633
mysql_tzinfo_to_sql, 221, 262
MYSQL_UNIX_ADDR option

CMake, 148
MYSQL_UNIX_PORT environment variable, 159, 182,
223, 674, 675
mysql_upgrade, 221, 262, 732

basedir option, 265
datadir option, 265
debug option, 265
debug-check option, 265
debug-info option, 265
default-auth option, 265
defaults-extra-file option, 265
defaults-file option, 266
defaults-group-suffix option, 266
force option, 266
help option, 265
mysql_upgrade_info file, 263
no-defaults option, 266
plugin-dir option, 266
print-defaults option, 266
tmpdir option, 266
upgrade-system-tables option, 266
user option, 266
verbose option, 266
version-check option, 266
write-binlog option, 266

mysql_upgrade_info file
mysql_upgrade, 263

mysql_use_result(), 2532
mysql_waitpid, 222, 405

help option, 405
verbose option, 405
version option, 405

mysql_warning_count(), 2534
mysql_zap, 222, 405
my_bool C type, 2470
my_bool values

printing, 2470
my_init(), 2565
my_print_defaults, 223, 407

config-file option, 408
debug option, 408
defaults-extra-file option, 408
defaults-file option, 408
defaults-group-suffix option, 408
extra-file option, 408
help option, 408
no-defaults option, 408
verbose option, 408
version option, 408

my_ulonglong C type, 2470
my_ulonglong values

printing, 2470

2995

N
named pipes, 93, 98
named-commands option

mysql, 274
named_pipe system variable, 542
names, 979

case sensitivity, 982
variables, 992

NAME_CONST(), 1251, 2265
name_file option

comp_err, 252
naming

releases of MySQL, 46
NATIONAL CHAR data type, 1082
NATIONAL VARCHAR data type, 1083
native functions

adding, 2650
native thread support, 45
natural key, 2932
NATURAL LEFT JOIN, 1409
NATURAL LEFT OUTER JOIN, 1409
NATURAL RIGHT JOIN, 1409
NATURAL RIGHT OUTER JOIN, 1409
NCHAR data type, 1082
ndb option

perror, 409
NDB storage engine

FAQ, 2760
negative values, 976
neighbor page, 2932
nested queries, 1420
Nested-Loop join algorithm, 840
nested-loop join algorithm, 844
net etiquette, 17
netmask notation

in account names, 725
net_buffer_length system variable, 543
net_buffer_length variable, 279
net_read_timeout system variable, 543
net_retry_count system variable, 544
net_write_timeout system variable, 544
new features in MySQL 5.7, 9
new system variable, 544
newline (\n), 974, 1390
next-key lock, 2932

InnoDB, 1603, 1608, 1610, 1799
NFS

InnoDB, 1621, 1656
nice option

mysqld_safe, 244
no matching rows, 2874
no-auto-rehash option

mysql, 274
no-autocommit option

mysqldump, 323
no-beep option

mysql, 274

mysqladmin, 298
no-check option

innochecksum, 347
no-create-db option

mysqldump, 315
no-create-info option

mysqldump, 315
no-data option

mysqldump, 321
no-defaults option, 235, 255

myisamchk, 355
mysql, 274
mysqladmin, 298
mysqlbinlog, 387
mysqlcheck, 305
mysqld, 464
mysqldump, 314
mysqld_multi, 248
mysqld_safe, 244
mysqlimport, 330
mysqlshow, 335
mysqlslap, 342
mysql_plugin, 258
mysql_secure_installation, 261
mysql_upgrade, 266
my_print_defaults, 408

no-drop option
mysqlslap, 342

no-log option
mysqld_multi, 249

no-set-names option
mysqldump, 317

no-symlinks option
myisamchk, 358

no-tablespaces option
mysqldump, 315

noindices option
mysqlhotcopy, 404

non-blocking I/O, 2932
non-locking read, 2932
non-repeatable read, 2932
nondelimited strings, 977
Nontransactional tables, 2873
nopager command

mysql, 281
normalized, 2933
NoSQL, 2933
NOT

logical, 1136
NOT BETWEEN, 1133
not equal (!=), 1131
not equal (<>), 1131
NOT EXISTS

with subqueries, 1425
NOT IN, 1134
NOT LIKE, 1158
NOT NULL

constraint, 32

2996

NOT NULL constraint, 2933
NOT REGEXP, 1159
notee command

mysql, 281
Notifier, 80
NOW(), 1187
nowait option

MySQLInstallerConsole, 80
nowarning command

mysql, 281
NO_AUTO_CREATE_USER SQL mode, 629
NO_AUTO_VALUE_ON_ZERO SQL mode, 629
NO_BACKSLASH_ESCAPES SQL mode, 630
NO_DIR_IN_CREATE SQL mode, 630
NO_ENGINE_SUBSTITUTION SQL mode, 630
NO_FIELD_OPTIONS SQL mode, 630
NO_KEY_OPTIONS SQL mode, 630
NO_TABLE_OPTIONS SQL mode, 630
NO_UNSIGNED_SUBTRACTION SQL mode, 630
NO_ZERO_DATE SQL mode, 631
NO_ZERO_IN_DATE SQL mode, 631
NUL, 974, 1390
NULL, 201, 2872, 2933

ORDER BY, 855, 1404
testing for null, 1131, 1132, 1133, 1133, 1139
thread state, 964

NULL value, 201, 979
NULL values

and AUTO_INCREMENT columns, 2873
and indexes, 1338
and TIMESTAMP columns, 2873
vs. empty values, 2872

NULLIF(), 1140
number-char-cols option

mysqlslap, 342
number-int-cols option

mysqlslap, 342
number-of-queries option

mysqlslap, 342
numbers, 976
NUMERIC data type, 1078
numeric precision, 1075
numeric scale, 1075
numeric types, 1111
numeric-dump-file option

resolve_stack_dump, 409
NumGeometries(), 1281
NumInteriorRings(), 1279
NumPoints(), 1278
NVARCHAR data type, 1083

O
objects_summary_global_by_type table

performance_schema, 2414
obtaining information about partitions, 2214
OCT(), 1148
OCTET_LENGTH(), 1148

ODBC compatibility, 571, 982, 1079, 1126, 1132, 1336,
1411
ODBC_INCLUDES= option

CMake, 144
ODBC_LIB_DIR option

CMake, 144
off-page column, 2934
offset option

mysqlbinlog, 387
OLAP, 1257
old system variable, 545
old-alter-table option

mysqld, 464
old-style-user-limits option

mysqld, 464
old_alter_table system variable, 545
OLD_PASSWORD(), 1233
old_passwords system variable, 545
old_server option

mysqlhotcopy, 404
OLTP, 2934
ON DUPLICATE KEY UPDATE, 1378
one-database option

mysql, 274
online, 2934
online DDL, 1681, 2934

concurrency, 1688
crash recovery, 1713
examples, 1691
limitations, 1714

online location of manual, 2
only-print option

mysqlslap, 343
ONLY_FULL_GROUP_BY

SQL mode, 1260
ONLY_FULL_GROUP_BY SQL mode, 631
OPEN, 1480
Open Source

defined, 5
open tables, 294, 890
open-files-limit option

mysqld, 465
mysqld_safe, 244

OpenGIS, 1262
opening

tables, 890
Opening master dump table

thread state, 970
Opening table

thread state, 964
Opening tables

thread state, 964
opens, 294
OpenSSL, 764, 764
open_files_limit system variable, 546
open_files_limit variable, 391
operating systems

file-size limits, 2894

2997

supported, 45
operations

arithmetic, 1166
operators, 1117

assignment, 992, 1137
cast, 1165, 1212
logical, 1135
precedence, 1129

opt option
mysqldump, 322

optimistic, 2934
optimization, 822

Batched Key Access, 851, 852
benchmarking, 957
BLOB types, 889
Block Nested-Loop, 851, 852
character and string types, 889
data size, 887
DELETE statements, 872
disk I/O, 948
DML statements, 871
foreign keys, 881
full table scans, 871
indexes, 880
InnoDB tables, 893
INSERT statements, 871
many tables, 890
MEMORY tables, 904
memory usage, 952
Multi-Range Read, 849
MyISAM tables, 900
network usage, 955
numeric types, 889
PERFORMANCE_SCHEMA, 959
primary keys, 881
SQL statements, 823
subquery, 861, 865
subquery materialization, 863
tips, 877
UPDATE statements, 872

optimizations, 824, 831
LIMIT clause, 869

optimize option
mysqlcheck, 305

OPTIMIZE TABLE, 1528
and partitioning, 2213

optimizer, 2935
and replication, 2155
controlling, 919
query plan evaluation, 919
switchable optimizations, 920

optimizer statistics
for InnoDB tables, 1722

Optimizer Statistics Estimation, 1761
optimizer_prune_level system variable, 547
optimizer_search_depth system variable, 547
optimizer_switch system variable, 547, 920
OPTIMIZER_TRACE

INFORMATION_SCHEMA table, 2281
OPTIMIZER_TRACE option

CMake, 148
optimizer_trace system variable, 548
optimizer_trace_features system variable, 549
optimizer_trace_limit system variable, 549
optimizer_trace_max_mem_size system variable, 549
optimizer_trace_offset system variable, 549
optimizing

DISTINCT, 860
filesort, 855
GROUP BY, 858
LEFT JOIN, 839
tables, 819
thread state, 965

option, 2935
option file, 2935
option files, 230, 732

escape sequences, 233
option prefix

--disable, 230
--enable, 230
--loose, 230
--maximum, 230
--skip, 230

options
boolean, 230
CMake, 139
command-line

mysql, 267
mysqladmin, 295

embedded server, 2459
libmysqld, 2459
myisamchk, 354
provided by MySQL, 187
replication, 2138

OR, 215, 831
bitwise, 1226
logical, 1136

OR Index Merge optimization, 831
Oracle compatibility, 25, 1256, 1306, 1587
ORACLE SQL mode, 635
ORD(), 1148
ORDER BY, 198, 1308, 1403

NULL, 855, 1404
order-by-primary option

mysqldump, 324
Out of resources error

and partitioned tables, 2228
out-of-range handling, 1087
OUTFILE, 1408
out_dir option

comp_err, 252
out_file option

comp_err, 252
overflow handling, 1087
overflow page, 2935
Overlaps(), 1284

2998

overview, 1

P
packages

list of, 40
PAD_CHAR_TO_FULL_LENGTH SQL mode, 632
page, 2935
page cleaner, 2935
page option

innochecksum, 346
page size, 2936

InnoDB, 1617, 1657
page-type-dump option

innochecksum, 348
page-type-summary option

innochecksum, 348
pager command

mysql, 281
pager option

mysql, 275
parallel-recover option

myisamchk, 359
parameters

server, 943
PARAMETERS

INFORMATION_SCHEMA table, 2282
parent table, 2936
parentheses (and), 1130
partial backup, 2936
partial index, 2936
partial updates

and replication, 2155
PARTITION, 2169
PARTITION BY LIST COLUMNS, 2181
PARTITION BY RANGE COLUMNS, 2181
partition management, 2200
partition option

mysqld, 465
partition pruning, 2217
partitioning, 2169

advantages, 2172
and dates, 2174
and foreign keys, 2228
and FULLTEXT indexes, 2229
and key cache, 2228
and query cache, 2228
and replication, 2158
and SQL mode, 2158, 2226
and subqueries, 2229
and temporary tables, 2229, 2231
by hash, 2189
by key, 2192
by linear hash, 2191
by linear key, 2193
by list, 2179
by range, 2175
COLUMNS, 2181
concepts, 2171

data type of partitioning key, 2229
enabling, 2169
functions allowed in partitioning expressions, 2235
limitations, 2225
operators not permitted in partitioning expressions,
2225
operators supported in partitioning expressions,
2225
optimization, 2215, 2217
resources, 2170
storage engines (limitations), 2234
subpartitioning, 2229
support, 2169
types, 2173

Partitioning
maximum number of partitions, 2228

partitioning information statements, 2214
partitioning keys and primary keys, 2231
partitioning keys and unique keys, 2231
partitions

adding and dropping, 2200
analyzing, 2213
checking, 2213
managing, 2200
modifying, 2200
optimizing, 2213
repairing, 2213
splitting and merging, 2200
truncating, 2200

PARTITIONS
INFORMATION_SCHEMA table, 2282

password
root user, 164

password encryption
reversibility of, 1234

password option, 226
mysql, 275
mysqladmin, 298
mysqlbinlog, 387
mysqlcheck, 305
mysqldump, 313
mysqld_multi, 249
mysqlhotcopy, 404
mysqlimport, 330
mysqlshow, 335
mysqlslap, 343
mysql_config_editor, 379
mysql_secure_installation, 261

password policy, 705
password validation, 703
PASSWORD(), 727, 743, 1233, 2859
passwords

administrator guidelines, 697
expiration, 746
for the InnoDB memcached interface, 1838
for users, 736
forgotten, 2862
hashing, 698

2999

logging, 697
lost, 2862
resetting, 2862
security, 695, 713
setting, 743, 1517, 1521
user guidelines, 695

PATH environment variable, 154, 182, 224
path name separators

Windows, 233
pattern matching, 202, 1159
performance, 822

benchmarks, 959
disk I/O, 948
estimating, 919

Performance Schema, 1737, 2323, 2936
event filtering, 2337
memory use, 2333

performance-schema-consumer-events-stages-current
option

mysqld, 2434
performance-schema-consumer-events-stages-history
option

mysqld, 2434
performance-schema-consumer-events-stages-history-
long option

mysqld, 2434
performance-schema-consumer-events-statements-
current option

mysqld, 2435
performance-schema-consumer-events-statements-
history option

mysqld, 2435
performance-schema-consumer-events-statements-
history-long option

mysqld, 2435
performance-schema-consumer-events-transactions-
current option

mysqld, 2435
performance-schema-consumer-events-transactions-
history option

mysqld, 2435
performance-schema-consumer-events-transactions-
history-long option

mysqld, 2435
performance-schema-consumer-events-waits-current
option

mysqld, 2435
performance-schema-consumer-events-waits-history
option

mysqld, 2435
performance-schema-consumer-events-waits-history-
long option

mysqld, 2435
performance-schema-consumer-global-instrumentation
option

mysqld, 2435
performance-schema-consumer-statements-digest
option

mysqld, 2435
performance-schema-consumer-thread-instrumentation
option

mysqld, 2435
performance-schema-consumer-xxx option

mysqld, 2434
performance-schema-instrument option

mysqld, 2434
performance_schema

accounts table, 2395
cond_instances table, 2368
events_stages_current table, 2377
events_stages_history table, 2378
events_stages_history_long table, 2378
events_stages_summary_by_account_by_event_name
table, 2419
events_stages_summary_by_host_by_event_name
table, 2419
events_stages_summary_by_thread_by_event_name
table, 2410
events_stages_summary_by_user_by_event_name
table, 2419
events_stages_summary_global_by_event_name
table, 2410
events_statements_current table, 2382
events_statements_history table, 2385
events_statements_history_long table, 2385
events_statements_summary_by_account_by_event_name
table, 2419
events_statements_summary_by_digest table, 2411
events_statements_summary_by_host_by_event_name
table, 2419
events_statements_summary_by_program table,
2411
events_statements_summary_by_thread_by_event_name
table, 2411
events_statements_summary_by_user_by_event_name
table, 2419
events_statements_summary_global_by_event_name
table, 2411
events_transactions_current table, 2391
events_transactions_history table, 2393
events_transactions_history_long table, 2394
events_transactions_summary_by_account_by_event
table, 2413
events_transactions_summary_by_host_by_event_name
table, 2413
events_transactions_summary_by_thread_by_event_name
table, 2413
events_transactions_summary_by_user_by_event_name
table, 2413
events_transactions_summary_global_by_event_name
table, 2413
events_waits_current table, 2373
events_waits_history table, 2375
events_waits_history_long table, 2375
events_waits_summary_by_account_by_event_name
table, 2419

3000

events_waits_summary_by_host_by_event_name
table, 2419
events_waits_summary_by_instance table, 2409
events_waits_summary_by_thread_by_event_name
table, 2409
events_waits_summary_by_user_by_event_name
table, 2419
events_waits_summary_global_by_event_name
table, 2409
file_instances table, 2368
file_summary_by_event_name table, 2415
file_summary_by_instance table, 2415
hosts table, 2395
host_cache table, 2425
memory_summary_by_account_by_event_name
table, 2421
memory_summary_by_host_by_event_name table,
2421
memory_summary_by_thread_by_event_name
table, 2421
memory_summary_by_user_by_event_name table,
2421
memory_summary_global_by_event_name table,
2421
metadata_locks table, 2404
mutex_instances table, 2368
objects_summary_global_by_type table, 2414
performance_timers table, 2427
prepared_statements_instances table, 2411
replication_connection_configuration, 2399
replication_connection_status, 2400
replication_execute_configuration, 2401
replication_execute_status, 2402
replication_execute_status_by_coordinator, 2402
replication_execute_status_by_worker, 2403
rwlock_instances table, 2369
session_account_connect_attrs table, 2396
session_connect_attrs table, 2396
setup_actors table, 2363
setup_consumers table, 2364
setup_instruments table, 2364
setup_objects table, 2365
setup_timers table, 2367
socket_instances table, 2370
socket_summary_by_event_name table, 2420
socket_summary_by_instance table, 2420
table_handles table, 2406
table_io_waits_summary_by_index_usage table,
2417
table_io_waits_summary_by_table table, 2416
table_lock_waits_summary_by_table table, 2417
thread table, 2428
users table, 2396

performance_schema database, 2323
restrictions, 2891
TRUNCATE TABLE, 2360, 2891

PERFORMANCE_SCHEMA storage engine, 2323
performance_schema system variable, 2436

performance_schema_accounts_size system variable,
2436
performance_schema_digests_size system variable,
2437
performance_schema_events_stages_history_long_size
system variable, 2437
performance_schema_events_stages_history_size
system variable, 2437
performance_schema_events_statements_history_long_size
system variable, 2438
performance_schema_events_statements_history_size
system variable, 2438
performance_schema_events_transactions_history_long_size
system variable, 2438
performance_schema_events_transactions_history_size
system variable, 2438
performance_schema_events_waits_history_long_size
system variable, 2439
performance_schema_events_waits_history_size
system variable, 2439
performance_schema_hosts_size system variable,
2439
performance_schema_max_cond_classes system
variable, 2440
performance_schema_max_cond_instances system
variable, 2440
performance_schema_max_file_classes system
variable, 2440
performance_schema_max_file_handles system
variable, 2440
performance_schema_max_file_instances system
variable, 2441
performance_schema_max_memory_classes system
variable, 2441
performance_schema_max_metadata_locks system
variable, 2441
performance_schema_max_mutex_classes system
variable, 2442
performance_schema_max_mutex_instances system
variable, 2442
performance_schema_max_prepared_statements_instances
system variable, 2442
performance_schema_max_program_instances system
variable, 2443
performance_schema_max_rwlock_classes system
variable, 2443
performance_schema_max_rwlock_instances system
variable, 2443
performance_schema_max_socket_classes system
variable, 2444
performance_schema_max_socket_instances system
variable, 2444
performance_schema_max_stage_classes system
variable, 2444
performance_schema_max_statement_classes system
variable, 2444
performance_schema_max_statement_stack system
variable, 2445

3001

performance_schema_max_table_handles system
variable, 2445
performance_schema_max_table_instances system
variable, 2445
performance_schema_max_thread_classes system
variable, 2446
performance_schema_max_thread_instances system
variable, 2446
Performance_schema_prepared_statements_lost
status variable, 2449
performance_schema_session_connect_attrs_size
system variable, 2446
performance_schema_setup_actors_size system
variable, 2447
performance_schema_setup_objects_size system
variable, 2447
performance_schema_users_size system variable,
2447
performance_timers table

performance_schema, 2427
PERIOD_ADD(), 1188
PERIOD_DIFF(), 1188
Perl

installing, 183
installing on Windows, 184

Perl API, 2581
Perl DBI/DBD

installation problems, 185
permission checks

effect on speed, 872
perror, 223, 409

help option, 409
ndb option, 409
silent option, 409
verbose option, 410
version option, 410

persistent statistics, 2936
pessimistic, 2936
phantom, 2936
phantom rows, 1610
physical, 2937
physical backup, 2937
PI(), 1172
pid-file option

mysql.server, 247
mysqld, 465
mysqld_safe, 244

pid_file system variable, 550
Ping

thread command, 961
pipe option, 226

mysql, 275, 305
mysqladmin, 298
mysqldump, 313
mysqlimport, 330
mysqlshow, 335
mysqlslap, 343

PIPES_AS_CONCAT SQL mode, 633

PITR, 2937
plan stability, 2937
pluggable authentication

restrictions, 2891
plugin, 2937

audit log, 776
plugin API, 638, 2584
plugin option prefix

mysqld, 466
plugin services, 2638
plugin-dir option

mysql, 275
mysqladmin, 298
mysqlbinlog, 387
mysqlcheck, 305
mysqldump, 313
mysqld_safe, 245
mysqlimport, 330
mysqlshow, 335
mysqlslap, 343
mysql_plugin, 258
mysql_upgrade, 266

plugin-ini option
mysql_plugin, 258

plugin-load option
mysqld, 466

plugin-load-add option
mysqld, 467

plugindir option
mysql_config, 407

plugins
activating, 638
adding, 2584
audit, 2589
authentication, 2589
daemon, 2588
full-text parser, 2587
INFORMATION_SCHEMA, 2589
installing, 638, 1533
protocol trace, 2590
protocol trace plugin, 2633
semisynchronous replication, 2589
server, 638
storage engine, 2587
test protocol trace plugin, 2633
uninstalling, 638, 1534

PLUGINS
INFORMATION_SCHEMA table, 2285

plugin_dir system variable, 550
POINT data type, 1269
Point(), 1272
point-in-time recovery, 812, 2937
PointFromText(), 1270
PointFromWKB(), 1271
PointN(), 1278
PointOnSurface(), 1280
PolyFromText(), 1271
PolyFromWKB(), 1271

3002

POLYGON data type, 1269
Polygon(), 1272
PolygonFromText(), 1271
PolygonFromWKB(), 1271
port option, 226

mysql, 275
mysqladmin, 298
mysqlbinlog, 387
mysqlcheck, 306
mysqld, 467
mysqldump, 313
mysqld_safe, 245
mysqlhotcopy, 404
mysqlimport, 330
mysqlshow, 335
mysqlslap, 343
mysql_config, 407
mysql_config_editor, 379
mysql_secure_installation, 261

port system variable, 550
port-open-timeout option

mysqld, 468
portability, 823

types, 1114
porting

to other systems, 2651
ports, 148, 162, 181, 224, 387, 673, 694, 731, 776,
2062, 2370, 2849
POSITION(), 1148
post-filtering

Performance Schema, 2337
post-query option

mysqlslap, 343
post-system option

mysqlslap, 343
PostgreSQL compatibility, 26
POSTGRESQL SQL mode, 635
postinstall

multiple servers, 668
postinstallation

setup and testing, 153
POW(), 1172
POWER(), 1172
pre-filtering

Performance Schema, 2337
pre-query option

mysqlslap, 343
pre-system option

mysqlslap, 343
precedence

operator, 1129
precision

arithmetic, 1288
fractional seconds, 1075, 1079
numeric, 1075

precision math, 1288
preload_buffer_size system variable, 551
Prepare

thread command, 961
PREPARE, 1466, 1469

XA transactions, 1448
prepared backup, 2937
prepared statements, 1466, 1469, 1470, 1470, 2534

repreparation, 936
prepared_statements_instances table

performance_schema, 2411
preparing

thread state, 965
preparing for alter table

thread state, 965
primary key, 2937

constraint, 30
deleting, 1307

PRIMARY KEY, 1307, 1337
primary keys

and partitioning keys, 2231
print command

mysql, 281
print-defaults option, 236

myisamchk, 355
mysql, 275
mysqladmin, 298
mysqlbinlog, 387
mysqlcheck, 306
mysqld, 468
mysqldump, 314
mysqlimport, 330
mysqlshow, 335
mysqlslap, 343
mysql_plugin, 259
mysql_secure_installation, 261
mysql_upgrade, 266

privilege
changes, 730

privilege checks
effect on speed, 872

privilege information
location, 718

privilege system, 713
privileges

access, 713
adding, 738
and replication, 2154
default, 164
deleting, 741, 1510
display, 1552
dropping, 741, 1510
granting, 1510
revoking, 1521

problems
access denied errors, 2849
common errors, 2847
compiling MySQL server, 151
DATE columns, 2870
date values, 1090
installing on Solaris, 128

3003

installing Perl, 185
linking, 2466
lost connection errors, 2852
reporting, 2, 18
starting the server, 162
table locking, 939
time zone, 2869

PROCEDURE, 1406
PROCEDURE ANALYSE(), 890
procedures

stored, 2241
process, 2938
process support, 45
processes

display, 1557
processing

arguments, 2645
Processlist

thread command, 961
PROCESSLIST, 1557

INFORMATION_SCHEMA table, 2286
possible inconsistency with
INFORMATION_SCHEMA tables, 1749

product option
MySQLInstallerConsole, 80

PROFILING
INFORMATION_SCHEMA table, 2287

profiling system variable, 551
profiling_history_size system variable, 551
program variables

setting, 236
program-development utilities, 222
programs

administrative, 222
client, 221, 2465
stored, 1471, 2239
utility, 222

prompt command
mysql, 281

prompt option
mysql, 275

prompts
meanings, 190

pronunciation
MySQL, 5

protocol option, 226
mysql, 275
mysqladmin, 298
mysqlbinlog, 387
mysqlcheck, 306
mysqldump, 313
mysqlimport, 330
mysqlshow, 335
mysqlslap, 343
mysql_secure_installation, 261

protocol trace plugins, 2590
protocol_version system variable, 551
proximity search, 1202

Proxy, 1972
proxy_user system variable, 551
pseudo-record, 2938
pseudo_slave_mode system variable, 551
pseudo_thread_id system variable, 552
Pthreads, 2938
purge, 2938
PURGE BINARY LOGS, 1451
purge buffering, 2938
purge lag, 2938
PURGE MASTER LOGS, 1451
purge scheduling, 1739
purge thread, 2938
Purging old relay logs

thread state, 965
Python, 2457

third-party driver, 2581

Q
QUARTER(), 1188
queries

entering, 188
estimating performance, 919
examples, 211
speed of, 823

Query
thread command, 961

query, 2938
Query Cache, 929
query cache

and partitioned tables, 2228
thread states, 968

query end
thread state, 965

query execution plan, 2938
query expansion, 1204
query option

mysqlslap, 344
query_alloc_block_size system variable, 552
query_cache_limit system variable, 552
query_cache_min_res_unit system variable, 553
query_cache_size system variable, 553
query_cache_type system variable, 554
query_cache_wlock_invalidate system variable, 555
query_prealloc_size system variable, 555
questions, 294

answering, 17
Queueing master event to the relay log

thread state, 969
quick option

myisamchk, 359
mysql, 275
mysqlcheck, 306
mysqldump, 322

quiesce, 2939
quiet option

mysqlhotcopy, 404
Quit

3004

thread command, 961
quit command

mysql, 281
quotation marks

in strings, 975
QUOTE(), 975, 1148, 2518
quote-names option

mysqldump, 319
quoting, 975

column alias, 980, 2873
quoting binary data, 975
quoting of identifiers, 980

R
RADIANS(), 1173
RAID, 2939
RAND(), 1173
random dive, 2939
random-passwords option

mysql_install_db, 255
RANDOM_BYTES(), 1234
rand_seed1 system variable, 556
rand_seed2 system variable, 556
range join type

optimizer, 910
range partitioning, 2175, 2181
range partitions

adding and dropping, 2201
managing, 2201

range_alloc_block_size system variable, 556
raw backup, 2939
raw option

mysql, 275
mysqlbinlog, 387

raw partitions, 1640
re-creating

grant tables, 159
READ COMMITTED, 2939

transaction isolation level, 1446
read from standard in

innochecksum, 349
READ UNCOMMITTED, 2939

transaction isolation level, 1446
read view, 2940
read-ahead, 2940

linear, 1732
random, 1732

read-from-remote-master option
mysqlbinlog, 388

read-from-remote-server option
mysqlbinlog, 388

read-only option
myisamchk, 358
mysqld, 2053

read-only transaction, 2940
Reading event from the relay log

thread state, 970
Reading from net

thread state, 965
Reading master dump table data

thread state, 970
read_buffer_size myisamchk variable, 355
read_buffer_size system variable, 556
read_only system variable, 557
read_rnd_buffer_size system variable, 558
REAL data type, 1079
REAL_AS_FLOAT SQL mode, 633
Rebuilding the index on master dump table

thread state, 971
reconfiguring, 151
reconnect option

mysql, 276
Reconnecting after a failed binlog dump request

thread state, 969
Reconnecting after a failed master event read

thread state, 969
reconnection

automatic, 2428, 2572
record lock, 2940
record-level locks

InnoDB, 1603, 1608, 1610, 1799
record_log_pos option

mysqlhotcopy, 404
RECOVER

XA transactions, 1448
recover option

myisamchk, 359
recovery

from crash, 815
incremental, 812
point in time, 812

redo, 2940
redo log, 1638, 2940
reducing

data size, 887
redundant row format, 1678, 2940
ref join type

optimizer, 909
references, 1308
referential integrity, 1595, 1596, 2941
REFERENTIAL_CONSTRAINTS

INFORMATION_SCHEMA table, 2288
Refresh

thread command, 961
ref_or_null, 838
ref_or_null join type

optimizer, 909
REGEXP, 1159
REGEXP operator, 1159
regexp option

mysqlhotcopy, 404
Register Slave

thread command, 961
Registering slave on master

thread state, 969
regular expression syntax, 1159

3005

rehash command
mysql, 282

relational, 2941
relational databases

defined, 5
relative option

mysqladmin, 298
relay logs (replication), 2108
relay-log option

mysqld, 2053
relay-log-index option

mysqld, 2054
relay-log-info-file option

mysqld, 2054
relay-log-info-repository option

mysqld, 2083
relay-log-purge option

mysqld, 2055
relay-log-recovery option

mysqld, 2055
relay-log-space-limit option

mysqld, 2055
relay_log system variable, 2071
relay_log_basename system variable, 2071
relay_log_index system variable, 2071
relay_log_info_file system variable, 2071
relay_log_info_repository system variable, 2072
relay_log_purge system variable, 559
relay_log_recovery system variable, 2072
relay_log_space_limit system variable, 559
release notes, 2881
release numbers, 45
RELEASE SAVEPOINT, 1438
releases

naming scheme, 46
testing, 47
updating, 48

RELEASE_LOCK(), 1251
relevance, 2941
remove option

mysqld, 468
Removing duplicates

thread state, 965
removing tmp table

thread state, 965
rename

thread state, 965
rename result table

thread state, 965
RENAME TABLE, 1368
RENAME USER, 1520
renaming user accounts, 1520
Reopen tables

thread state, 965
repair

tables, 300
Repair by sorting

thread state, 965

Repair done
thread state, 965

repair option
mysqlcheck, 306

repair options
myisamchk, 358

REPAIR TABLE, 1530
and partitioning, 2213
and replication, 1532, 2152

Repair with keycache
thread state, 965

repairing
tables, 816

REPEAT, 1477
labels, 1471

REPEAT(), 1148
REPEATABLE READ, 2941

transaction isolation level, 1446
repertoire

character set, 1023, 1031
replace, 223
REPLACE, 1399
replace option

mysqldump, 315
mysqlimport, 330

replace utility, 410
REPLACE(), 1148
replicate-do-db option

mysqld, 2056
replicate-do-table option

mysqld, 2058
replicate-ignore-db option

mysqld, 2057
replicate-ignore-table option

mysqld, 2059
replicate-rewrite-db option

mysqld, 2059
replicate-same-server-id option

mysqld, 2060
replicate-wild-do-table option

mysqld, 2060
replicate-wild-ignore-table option

mysqld, 2061
replication, 2011, 2941

and AUTO_INCREMENT, 2138
and character sets, 2140
and CREATE ... IF NOT EXISTS, 2140
and CREATE TABLE ... SELECT, 2140
and DATA DIRECTORY, 2147
and DROP ... IF EXISTS, 2142
and errors on slave, 2155
and floating-point values, 2149
and FLUSH, 2149
and fractional seconds, 2149
and functions, 2150
and INDEX DIRECTORY, 2147
and invoked features, 2147
and LAST_INSERT_ID(), 2139

3006

and LIMIT, 2152
and LOAD DATA, 2152
and max_allowed_packet, 2153
and MEMORY tables, 2153
and mysql (system) database, 2154
and partial updates, 2155
and partitioning, 2158
and privileges, 2154
and query optimizer, 2155
and REPAIR TABLE statement, 1532, 2152
and reserved words, 2155
and scheduled events, 2147, 2148
and SQL mode, 2158
and stored routines, 2147
and temporary tables, 2154
and time zones, 2158
and TIMESTAMP, 2139
and transactions, 2158, 2159
and triggers, 2147, 2160
and TRUNCATE TABLE, 2161
and variables, 2161
and views, 2163
attribute demotion, 2143
attribute promotion, 2143
BLACKHOLE, 2139
crashes, 2152
delayed, 2137
relay logs, 2108
row-based vs statement-based, 2023
safe and unsafe statements, 2027
semisynchronous, 2132
shutdown and restart, 2152, 2154
statements incompatible with STATEMENT format,
2023
status logs, 2108
timeouts, 2158
with differing tables on master and slave, 2142
with ZFS, 1912

replication filtering options
and case sensitivity, 2114

replication formats
compared, 2023

replication implementation, 2106
replication limitations, 2138
replication log tables, 2108
replication master

thread states, 968
replication masters

statements, 1451
replication options, 2138
replication slave

thread states, 969, 970, 970
replication slaves

statements, 1453
replication_connection_configuration

performance_schema, 2399
replication_connection_status

performance_schema, 2400

replication_execute_configuration
performance_schema, 2401

replication_execute_status
performance_schema, 2402

replication_execute_status_by_coordinator
performance_schema, 2402

replication_execute_status_by_worker
performance_schema, 2403

report-host option
mysqld, 2061

report-password option
mysqld, 2061

report-port option
mysqld, 2062

report-user option
mysqld, 2062

reporting
bugs, 2, 18
errors, 18
problems, 2

report_host system variable, 559
report_password system variable, 560
report_port system variable, 560
report_user system variable, 560
Requesting binlog dump

thread state, 969
REQUIRE GRANT option, 1518
reserved words, 989

and replication, 2155
RESET MASTER, 1452
RESET SLAVE, 1461
RESET SLAVE ALL, 1461
Reset stmt

thread command, 962
resetconnection command

mysql, 282
resetmaster option

mysqlhotcopy, 404
resetslave option

mysqlhotcopy, 404
RESIGNAL, 1489
resolveip, 223, 410

help option, 411
silent option, 411
version option, 411

resolve_stack_dump, 223, 408
help option, 408
numeric-dump-file option, 409
symbols-file option, 409
version option, 409

resource limits
user accounts, 537, 741, 1518

restarting
the server, 157

restore, 2941
restrictions

character sets, 2891
events, 2883

3007

InnoDB, 1656
performance_schema database, 2891
pluggable authentication, 2891
server-side cursors, 2886
signal, 2886
stored routines, 2883
subqueries, 2887
triggers, 2883
views, 2889
XA transactions, 2890

result-file option
mysqlbinlog, 388
mysqldump, 319

retrieving
data from tables, 195

RETURN, 1478
return (\r), 974, 1390
return values

UDFs, 2647
REVERSE(), 1149
REVOKE, 1521
revoking

privileges, 1521
rewrite-db option

mysqlbinlog, 388
RIGHT JOIN, 1409
RIGHT OUTER JOIN, 1409
RIGHT(), 1149
RLIKE, 1159
ROLLBACK, 27, 1434

XA transactions, 1448
rollback, 2942
rollback segment, 1717, 2942
ROLLBACK TO SAVEPOINT, 1438
Rolling back

thread state, 966
ROLLUP, 1257
root password, 164
root user, 694

password resetting, 2862
ROUND(), 1174
rounding, 1288
rounding errors, 1077
ROUTINES

INFORMATION_SCHEMA table, 2289
routines option

mysqldump, 321
ROW, 1424
row, 2942
row format, 2942
row lock, 2942
row size

maximum, 2895
row subqueries, 1424
row-based replication, 2942

advantages, 2025
disadvantages, 2025

row-level locking, 937, 2942

rows
counting, 205
deleting, 2874
locking, 28
matching problems, 2874
selecting, 196
sorting, 198

ROW_COUNT(), 1243
ROW_FORMAT

COMPACT, 1678
COMPRESSED, 1660, 1677
DYNAMIC, 1677
REDUNDANT, 1678

RPAD(), 1149
Rpl_semi_sync_master_clients status variable, 620
rpl_semi_sync_master_enabled system variable, 560
Rpl_semi_sync_master_net_avg_wait_time status
variable, 620
Rpl_semi_sync_master_net_waits status variable, 621
Rpl_semi_sync_master_net_wait_time status variable,
620
Rpl_semi_sync_master_no_times status variable, 621
Rpl_semi_sync_master_no_tx status variable, 621
Rpl_semi_sync_master_status status variable, 621
Rpl_semi_sync_master_timefunc_failures status
variable, 621
rpl_semi_sync_master_timeout system variable, 561
rpl_semi_sync_master_trace_level system variable,
561
Rpl_semi_sync_master_tx_avg_wait_time status
variable, 621
Rpl_semi_sync_master_tx_waits status variable, 621
Rpl_semi_sync_master_tx_wait_time status variable,
621
rpl_semi_sync_master_wait_for_slave_count system
variable, 561
rpl_semi_sync_master_wait_no_slave system variable,
562
rpl_semi_sync_master_wait_point system variable, 562
Rpl_semi_sync_master_wait_pos_backtraverse status
variable, 621
Rpl_semi_sync_master_wait_sessions status variable,
622
Rpl_semi_sync_master_yes_tx status variable, 622
rpl_semi_sync_slave_enabled system variable, 563
Rpl_semi_sync_slave_status status variable, 622
rpl_semi_sync_slave_trace_level system variable, 563
rpl_stop_slave_timeout system variable, 2072
RPM file, 113, 117, 119
rpm option

mysql_install_db, 256
RPM Package Manager, 119
RTRIM(), 1149
Ruby API, 2582
running

ANSI mode, 23
batch mode, 209
multiple servers, 668

3008

queries, 188
running CMake after prior invocation, 135, 151
rw-lock, 2942
rwlock_instances table

performance_schema, 2369

S
safe statement (replication)

defined, 2027
safe-recover option

myisamchk, 359
safe-updates option, 290

mysql, 276
safe-user-create option

mysqld, 468
Sakila, 8
sandbox mode, 746
SASL, 1838
SAVEPOINT, 1438
savepoint, 2943
Saving state

thread state, 966
scalability, 2943
scale

arithmetic, 1288
numeric, 1075

scale out, 2943
scale up, 2943
schema, 2943

altering, 1298
creating, 1318
deleting, 1365

SCHEMA(), 1244
SCHEMATA

INFORMATION_SCHEMA table, 2290
SCHEMA_PRIVILEGES

INFORMATION_SCHEMA table, 2290
script files, 209
scripts, 241, 247

mysql_install_db, 158
SQL, 267

search index, 2943
searching

and case sensitivity, 2869
full-text, 1197
MySQL Web pages, 18
two keys, 215

Searching rows for update
thread state, 966

SECOND(), 1188
secondary index, 2943

InnoDB, 1616
secure-auth option

mysql, 276
mysqladmin, 299
mysqlbinlog, 388
mysqlcheck, 306
mysqld, 468

mysqldump, 313
mysqlimport, 331
mysqlshow, 336
mysqlslap, 344

secure-file-priv option
mysqld, 469

secure_auth system variable, 564
secure_file_priv system variable, 564
security

against attackers, 708
for the InnoDB memcached interface, 1838

security system, 713
SEC_TO_TIME(), 1188
segment, 2944
SELECT

INTO, 1407
LIMIT, 1401
optimizing, 904, 1586
Query Cache, 930

SELECT INTO TABLE, 26
SELECT speed, 824
selecting

databases, 192
selectivity, 2944
select_limit variable, 279
semi-consistent read, 2944

InnoDB, 1799
semi-joins, 861
semisynchronous replication, 2132

administrative interface, 2134
configuration, 2135
installation, 2135
monitoring, 2137

semisynchronous replication plugins, 2589
Sending binlog event to slave

thread state, 968
sending cached result to client

thread state, 968
SEQUENCE, 216
sequence emulation, 1242
sequences, 216
SERIAL, 1076, 1077
SERIAL DEFAULT VALUE, 1111
SERIALIZABLE, 2944

transaction isolation level, 1447
server, 2944

connecting, 187, 224
debugging, 2652
disconnecting, 187
logs, 649
restart, 157
shutdown, 157
signal handling, 647
starting, 154
starting and stopping, 160
starting problems, 162

server administration, 292
server plugins, 638

3009

server variables, 1574 (see system variables)
server-id option

mysqlbinlog, 389
mysqld, 2037

server-public-key-path option
mysql, 276

server-side cursor
restrictions, 2886

servers
multiple, 668

server_id system variable, 564
server_uuid system variable

mysqld, 2037
service-startup-timeout option

mysql.server, 247
services

for plugins, 2638
session state information, 565, 565, 566, 2524, 2525
session variables

and replication, 2161
session_account_connect_attrs table

performance_schema, 2396
session_connect_attrs table

performance_schema, 2396
SESSION_STATUS

INFORMATION_SCHEMA table, 2280
session_track_schema system variable, 565
session_track_state_change system variable, 565
session_track_system_variables system variable, 566
SESSION_USER(), 1244
SESSION_VARIABLES

INFORMATION_SCHEMA table, 2280
SET, 1535

CHARACTER SET, 1009, 1537
NAMES, 1009, 1011, 1537
size, 1114

SET data type, 1084, 1107
SET GLOBAL sql_slave_skip_counter, 1461
Set option

thread command, 962
SET PASSWORD, 1521
SET PASSWORD statement, 743
SET sql_log_bin, 1453
SET statement

assignment operator, 1137
SET TRANSACTION, 1444
set-auto-increment[option

myisamchk, 360
set-character-set option

myisamchk, 359
set-charset option

mysqlbinlog, 389
mysqldump, 317

set-collation option
myisamchk, 359

set-gtid-purged option
mysqldump, 318

setting

passwords, 743
setting passwords, 1521
setting program variables, 236
setup

postinstallation, 153
thread state, 966

setup_actors table
performance_schema, 2363

setup_consumers table
performance_schema, 2364

setup_instruments table
performance_schema, 2364

setup_objects table
performance_schema, 2365

setup_timers table
performance_schema, 2367

SHA(), 1235
SHA1(), 1235
SHA2(), 1235
sha256_password_private_key_path system variable,
566
sha256_password_public_key_path system variable,
567
shared lock, 2944
shared tablespace, 2945
shared-memory option

mysqld, 469
shared-memory-base-name option, 227

mysqld, 469
mysqlslap, 344

shared_memory system variable, 567
shared_memory_base_name system variable, 567
sharp checkpoint, 2945
shell syntax, 4
short-form option

mysqlbinlog, 389
SHOW BINARY LOGS, 1538, 1538
SHOW BINLOG EVENTS, 1538, 1539
SHOW CHARACTER SET, 1538, 1539
SHOW COLLATION, 1538, 1540
SHOW COLUMNS, 1538, 1540
SHOW CREATE DATABASE, 1538, 1542
SHOW CREATE EVENT, 1538
SHOW CREATE FUNCTION, 1538, 1543
SHOW CREATE PROCEDURE, 1538, 1543
SHOW CREATE SCHEMA, 1538, 1542
SHOW CREATE TABLE, 1538, 1544
SHOW CREATE TRIGGER, 1538, 1544
SHOW CREATE VIEW, 1538, 1545
SHOW DATABASES, 1538, 1545
SHOW ENGINE, 1538, 1546
SHOW ENGINE INNODB STATUS, 1546

and innodb_adaptive_hash_index, 1730
and innodb_use_sys_malloc, 1728

SHOW ENGINES, 1538, 1548
SHOW ERRORS, 1538, 1549
SHOW EVENTS, 1538, 1550
SHOW extensions, 2320

3010

SHOW FIELDS, 1538, 1542
SHOW FUNCTION CODE, 1538, 1552
SHOW FUNCTION STATUS, 1538, 1552
SHOW GRANTS, 1538, 1552
SHOW INDEX, 1538, 1552
SHOW KEYS, 1538, 1552
SHOW MASTER LOGS, 1538, 1538
SHOW MASTER STATUS, 1538, 1554
SHOW OPEN TABLES, 1538, 1554
SHOW PLUGINS, 1538, 1555
SHOW PRIVILEGES, 1538, 1556
SHOW PROCEDURE CODE, 1538, 1556
SHOW PROCEDURE STATUS, 1538, 1557
SHOW PROCESSLIST, 1538, 1557
SHOW PROFILE, 1538, 1559
SHOW PROFILES, 1538, 1559, 1562
SHOW RELAYLOG EVENTS, 1562
SHOW SCHEDULER STATUS, 2252
SHOW SCHEMAS, 1545
SHOW SLAVE HOSTS, 1538, 1562
SHOW SLAVE STATUS, 1538, 1563
SHOW STATUS, 1538
SHOW STORAGE ENGINES, 1548
SHOW TABLE STATUS, 1538
SHOW TABLES, 1538, 1573
SHOW TRIGGERS, 1538, 1573
SHOW VARIABLES, 1538
SHOW WARNINGS, 1538, 1575
SHOW with WHERE, 2270, 2320
show-slave-auth-info option

mysqld, 2062
show-table-type option

mysqlshow, 336
show-warnings option

mysql, 277
mysqladmin, 298

showing
database information, 332

shutdown, 647, 2945
Shutdown

thread command, 962
shutdown_timeout variable, 300
shutting down

the server, 157
sigint-ignore option

mysql, 277
SIGN(), 1175
SIGNAL, 1493
signal

restrictions, 2886
signals

server response, 647
silent column changes, 1357
silent option

myisamchk, 355
myisampack, 369
mysql, 277
mysqladmin, 299

mysqlcheck, 306
mysqld_multi, 249
mysqlimport, 331
mysqlslap, 344
perror, 409
resolveip, 411

SIN(), 1175
single quote (\'), 974
single-transaction option

mysqldump, 324
size of tables, 2894
sizes

display, 1075
--skip option prefix, 230
skip-column-names option

mysql, 277
skip-comments option

mysqldump, 316
skip-concurrent-insert option

mysqld, 470
skip-database option

mysqlcheck, 306
skip-event-scheduler option

mysqld, 470
skip-grant-tables option

mysqld, 470
skip-gtids option

mysqlbinlog, 389
skip-host-cache option

mysqld, 470
skip-innodb option

mysqld, 470, 1768
skip-kill-mysqld option

mysqld_safe, 245
skip-line-numbers option

mysql, 277
skip-name-resolve option

mysqld, 470
mysql_install_db, 256

skip-networking option
mysqld, 471

skip-opt option
mysqldump, 323

skip-partition option
mysqld, 471

skip-random-passwords option
mysql_install_db, 256

skip-show-database option
mysqld, 472

skip-slave-start option
mysqld, 2065

skip-ssl option, 767
skip-stack-trace option

mysqld, 472
skip-symbolic-links option

mysqld, 472
skip-syslog option

mysqld_safe, 245

3011

skip_external_locking system variable, 568
skip_name_resolve system variable, 568
skip_networking system variable, 568
skip_show_database system variable, 568
Slave has read all relay log; waiting for the slave I/O
thread to update it

thread state, 970
slave server, 2945
slave-checkpoint-group option

mysqld, 2063
slave-checkpoint-period option

mysqld, 2063
slave-load-tmpdir option

mysqld, 2065
slave-max-allowed-packet (mysqld), 2066
slave-net-timeout option

mysqld, 2066
slave-parallel-type (mysqld), 2066
slave-parallel-workers option

mysqld, 2064
slave-pending-jobs-size-max option

mysqld, 2064
slave-rows-search-algorithms (mysqld), 2067
slave-skip-errors option

mysqld, 2068
slave-sql-verify-checksum option

mysqld, 2068
slave_checkpoint_group system variable, 2073
slave_checkpoint_period system variable, 2073
slave_compressed_protocol option

mysqld, 2065
slave_compressed_protocol system variable, 2074
slave_exec_mode system variable, 2074
slave_load_tmpdir system variable, 2074
slave_max_allowed_packet system variable, 2075
slave_net_timeout system variable, 2075
slave_parallel_type system variable, 2075
slave_parallel_workers system variable, 2076
slave_pending_jobs_size_max system variable, 2077
slave_rows_search_algorithms system variable, 2077
slave_skip_errors system variable, 2078
slave_sql_verify_checksum system variable, 2079
slave_transaction_retries system variable, 2079
slave_type_conversions system variable, 2080
Sleep

thread command, 962
sleep option

mysqladmin, 299
SLEEP(), 1251
slow queries, 294
slow query log, 665, 2945
slow shutdown, 2945
slow-query-log option

mysqld, 472
slow-start-timeout option

mysqld, 472
slow_launch_time system variable, 569
slow_query_log system variable, 569

slow_query_log_file system variable, 569
SMALLINT data type, 1077
snapshot, 2945
socket option, 227

mysql, 277
mysqladmin, 299
mysqlbinlog, 389
mysqlcheck, 306
mysqld, 473
mysqldump, 313
mysqld_safe, 245
mysqlhotcopy, 404
mysqlimport, 331
mysqlshow, 336
mysqlslap, 344
mysql_config, 407
mysql_config_editor, 379
mysql_secure_installation, 261

socket system variable, 570
socket_instances table

performance_schema, 2370
socket_summary_by_event_name table

performance_schema, 2420
socket_summary_by_instance table

performance_schema, 2420
Solaris

installation, 128
Solaris installation problems, 128
Solaris troubleshooting, 152
Solaris x86_64 issues, 897
SOME, 1422
sort-index option

myisamchk, 360
sort-records option

myisamchk, 360
sort-recover option

myisamchk, 359
sorting

data, 198
grant tables, 728, 729
table rows, 198

Sorting for group
thread state, 966

Sorting for order
thread state, 966

Sorting index
thread state, 966

Sorting result
thread state, 966

sort_buffer_size myisamchk variable, 355
sort_buffer_size system variable, 570
sort_key_blocks myisamchk variable, 355
SOUNDEX(), 1149
SOUNDS LIKE, 1150
source (mysql client command), 210, 288
source command

mysql, 282
source distribution

3012

installing, 131
space ID, 2945
SPACE(), 1150
Spatial Extensions in MySQL, 1262
speed

increasing with replication, 2011
inserting, 871
of queries, 823, 824

spin, 2946
sporadic-binlog-dump-fail option

mysqld, 2089
SQL, 2946

defined, 5
SQL mode, 626

ALLOW_INVALID_DATES, 628
and partitioning, 2158, 2226
and replication, 2158
ANSI, 627, 634
ANSI_QUOTES, 628
DB2, 634
ERROR_FOR_DIVISION_BY_ZERO, 628
HIGH_NOT_PRECEDENCE, 629
IGNORE_SPACE, 629
MAXDB, 634
MSSQL, 635
MYSQL323, 635
MYSQL40, 635
NO_AUTO_CREATE_USER, 629
NO_AUTO_VALUE_ON_ZERO, 629
NO_BACKSLASH_ESCAPES, 630
NO_DIR_IN_CREATE, 630
NO_ENGINE_SUBSTITUTION, 630
NO_FIELD_OPTIONS, 630
NO_KEY_OPTIONS, 630
NO_TABLE_OPTIONS, 630
NO_UNSIGNED_SUBTRACTION, 630
NO_ZERO_DATE, 631
NO_ZERO_IN_DATE, 631
ONLY_FULL_GROUP_BY, 631, 1260
ORACLE, 635
PAD_CHAR_TO_FULL_LENGTH, 632
PIPES_AS_CONCAT, 633
POSTGRESQL, 635
REAL_AS_FLOAT, 633
strict, 628
STRICT_ALL_TABLES, 633
STRICT_TRANS_TABLES, 627, 633
TRADITIONAL, 628, 635

SQL scripts, 267
SQL statements

replication masters, 1451
replication slaves, 1453

SQL-92
extensions to, 22

sql-mode option
mysqld, 473

sql_auto_is_null system variable, 571
SQL_BIG_RESULT, 1407

sql_big_selects system variable, 571
SQL_BUFFER_RESULT, 1407
sql_buffer_result system variable, 572
SQL_CACHE, 932, 1407
SQL_CALC_FOUND_ROWS, 1407
sql_log_bin system variable, 572
sql_log_off system variable, 572
sql_mode system variable, 573
sql_notes system variable, 573
SQL_NO_CACHE, 932, 1407
sql_quote_show_create system variable, 574
sql_safe_updates system variable, 574
sql_select_limit system variable, 574
sql_slave_skip_counter, 1461
sql_slave_skip_counter system variable, 2080
SQL_SMALL_RESULT, 1407
sql_warnings system variable, 574
SQRT(), 1175
square brackets, 1076
srcdir option

mysql_install_db, 256
SRID(), 1276
SSD, 1659, 2946
SSH, 708, 776
SSL, 764

command options, 767
configuring, 764
establishing connections, 765
X509 Basics, 764

ssl option, 767
SSL options, 227

mysql, 277, 389
mysqladmin, 299
mysqlcheck, 306
mysqld, 471
mysqldump, 313
mysqlimport, 331
mysqlshow, 336
mysqlslap, 344
mysql_secure_installation, 261

SSL related options, 1518
ssl-ca option, 768
ssl-capath option, 768
ssl-cert option, 769
ssl-cipher option, 769
ssl-crl option, 770
ssl-crlpath option, 770
ssl-key option, 770
ssl-verify-server-cert option, 770
ssl_ca system variable, 574
ssl_capath system variable, 574
ssl_cert system variable, 575
ssl_cipher system variable, 575
ssl_crl system variable, 575
ssl_crlpath system variable, 575
ssl_key system variable, 576
standalone option

mysqld, 471

3013

Standard Monitor
InnoDB, 1749

Standard SQL
differences from, 26, 1520
extensions to, 22, 23

standards compatibility, 22
START

XA transactions, 1448
START SLAVE, 1462
START TRANSACTION, 1434
start-datetime option

mysqlbinlog, 389
start-page option

innochecksum, 346
start-position option

mysqlbinlog, 389
starting

comments, 29
mysqld, 710
the server, 154
the server automatically, 160

Starting many servers, 668
StartPoint(), 1278
startup, 2946
startup options

default, 230
startup parameters, 943

mysql, 267
mysqladmin, 295
tuning, 943

statefile option
comp_err, 252

statement-based replication, 2946
advantages, 2023
disadvantages, 2023
unsafe statements, 2023

statements
compound, 1471
GRANT, 738
INSERT, 739
replication masters, 1451
replication slaves, 1453

Statistics
thread command, 962

statistics, 2946
thread state, 966

STATISTICS
INFORMATION_SCHEMA table, 2291

stats option
myisam_ftdump, 351

stats_method myisamchk variable, 355
status

tables, 1571
status command

mysql, 282
results, 294

status logs (replication), 2108
status option

mysqlshow, 336
status variable

Max_statement_time_exceeded, 618
Max_statement_time_set, 618
Max_statement_time_set_failed, 619
Performance_schema_prepared_statements_lost,
2449
Rpl_semi_sync_master_clients, 620
Rpl_semi_sync_master_net_avg_wait_time, 620
Rpl_semi_sync_master_net_waits, 621
Rpl_semi_sync_master_net_wait_time, 620
Rpl_semi_sync_master_no_times, 621
Rpl_semi_sync_master_no_tx, 621
Rpl_semi_sync_master_status, 621
Rpl_semi_sync_master_timefunc_failures, 621
Rpl_semi_sync_master_tx_avg_wait_time, 621
Rpl_semi_sync_master_tx_waits, 621
Rpl_semi_sync_master_tx_wait_time, 621
Rpl_semi_sync_master_wait_pos_backtraverse, 621
Rpl_semi_sync_master_wait_sessions, 622
Rpl_semi_sync_master_yes_tx, 622
Rpl_semi_sync_slave_status, 622

status variables, 600, 1570
STD(), 1256
STDDEV(), 1256
STDDEV_POP(), 1256
STDDEV_SAMP(), 1257
stemming, 2947
STOP SLAVE, 1465
stop-datetime option

mysqlbinlog, 390
stop-never option

mysqlbinlog, 390
stop-never-slave-server-id option

mysqlbinlog, 390
stop-position option

mysqlbinlog, 390
stopping

the server, 160
stopword, 2947
stopword list

user-defined, 1209
stopwords, 1205
storage engine, 2947

ARCHIVE, 1882
InnoDB, 1595
PERFORMANCE_SCHEMA, 2323

storage engine plugins, 2587
storage engines

choosing, 1591
InnoDB as default, 1596

storage requirements
data type, 1111

storage space
minimizing, 887

storage_engine system variable, 576
stored functions, 2241
stored procedures, 2241

3014

stored programs, 1471, 2239
reparsing, 936

stored routines
and replication, 2147
LAST_INSERT_ID(), 2243
metadata, 2243
restrictions, 2883

storing result in query cache
thread state, 968

STRAIGHT_JOIN, 839, 840, 905, 916, 1407, 1409,
1588
STRCMP(), 1158
strict mode, 2947
strict SQL mode, 628
strict-check option

innochecksum, 346
STRICT_ALL_TABLES SQL mode, 633
STRICT_TRANS_TABLES SQL mode, 627, 633
string collating, 1053
string comparison functions, 1155
string comparisons

case sensitivity, 1155
string concatenation, 973, 1143
string functions, 1140
string literal introducer, 974, 1005
string replacement

replace utility, 410
string types, 1100, 1112
strings

defined, 973
escape sequences, 973
nondelimited, 977

striping
defined, 948

STR_TO_DATE(), 1189
ST_Contains(), 1283
ST_Crosses(), 1283
ST_Disjoint(), 1283
ST_Equals(), 1284
ST_Intersects(), 1284
ST_Overlaps(), 1284
ST_Touches(), 1284
ST_Within(), 1284
SUBDATE(), 1190
sublist, 2947
SUBPARTITION BY KEY

known issues, 2229
subpartitioning, 2193
subpartitions, 2193

known issues, 2229
subqueries, 1420

correlated, 1425
errors, 1428
optimization, 865
restrictions, 2887
rewriting as joins, 1431
with ALL, 1423
with ANY, IN, SOME, 1422

with EXISTS, 1425
with NOT EXISTS, 1425
with ROW, 1424

subquery (see subqueries)
subquery materialization, 863, 863
subquery optimization, 861
subselects, 1420
SUBSTR(), 1150
SUBSTRING(), 1150
SUBSTRING_INDEX(), 1151
SUBTIME(), 1190
subtraction (-), 1166
suffix option

mysqlhotcopy, 404
SUM(), 1257
SUM(DISTINCT), 1257
super-large-pages option

mysqld, 471
superuser, 164
support

for operating systems, 45
suppression

default values, 32
supremum record, 2947
surrogate key, 2947
symbolic links, 949, 951
symbolic-links option

mysqld, 472
symbols-file option

resolve_stack_dump, 409
SymDifference(), 1282
sync_binlog system variable, 2099
sync_frm system variable, 577
sync_master_info system variable, 2081
sync_relay_log system variable, 2081
sync_relay_log_info system variable, 2082
syntax

regular expression, 1159
syntax conventions, 2
synthetic key, 2947
SYSCONFDIR option

CMake, 144
SYSDATE(), 1190
sysdate-is-now option

mysqld, 474
syslog option

mysql, 277
mysqld_safe, 245

syslog-tag option
mysqld_safe, 245

system
privilege, 713
security, 694

system command
mysql, 282

System lock
thread state, 966

system optimization, 943

3015

system table
optimizer, 908, 1407

system tablespace, 2948
system variable

audit_log_buffer_size, 790
audit_log_file, 791
audit_log_flush, 791
audit_log_format, 791
audit_log_policy, 792
audit_log_rotate_on_size, 792
audit_log_strategy, 793
autocommit, 492
automatic_sp_privileges, 492
auto_increment_increment, 2046
auto_increment_offset, 2049
back_log, 493
basedir, 493
big_tables, 494
bind_address, 494
binlog_cache_size, 2090
binlog_checksum, 2090
binlog_direct_non_transactional_updates, 2091
binlog_format, 2092
binlog_max_flush_queue_time, 2093
binlog_order_commits, 2093
binlog_rows_query_log_events, 2095
binlog_row_image, 2093
binlog_stmt_cache_size, 2095
block_encryption_mode, 494
bulk_insert_buffer_size, 495
character_sets_dir, 497
character_set_client, 495
character_set_connection, 496
character_set_database, 496
character_set_filesystem, 496
character_set_results, 497
character_set_server, 497
character_set_system, 497
collation_connection, 498
collation_database, 498
collation_server, 498
completion_type, 498
concurrent_insert, 499
connect_timeout, 500
core_file, 500
datadir, 500
datetime_format, 501
date_format, 501
debug, 501
debug_sync, 502
default_authentication_plugin, 502
default_password_lifetime, 503
default_storage_engine, 504
default_tmp_storage_engine, 504
default_week_format, 504
delayed_insert_limit, 505
delayed_insert_timeout, 506
delayed_queue_size, 506

delay_key_write, 505
disconnect_on_expired_password, 507
div_precision_increment, 507
end_markers_in_json, 508
error_count, 509
event_scheduler, 509
expire_logs_days, 509
explicit_defaults_for_timestamp, 509
external_user, 511
flush, 511
flush_time, 511
foreign_key_checks, 511
ft_boolean_syntax, 512
ft_max_word_len, 512
ft_min_word_len, 513
ft_query_expansion_limit, 513
ft_stopword_file, 513
general_log, 514
general_log_file, 514
group_concat_max_len, 514
gtid_executed, 2101
gtid_purged, 2103
have_compress, 515
have_crypt, 515
have_dynamic_loading, 515
have_geometry, 515
have_openssl, 515
have_profiling, 515
have_query_cache, 515
have_rtree_keys, 515
have_ssl, 515
have_symlink, 516
hostname, 516
identity, 516
ignore_builtin_innodb, 1770
ignore_db_dirs, 516
init_connect, 517
init_file, 517
init_slave, 2070
innodb_adaptive_flushing, 1770
innodb_adaptive_hash_index, 1771
innodb_additional_mem_pool_size, 1772
innodb_autoextend_increment, 1774
innodb_autoinc_lock_mode, 1774
innodb_buffer_pool_instances, 1776
innodb_buffer_pool_size, 1778
innodb_change_buffering, 1779
innodb_checksums, 1780
innodb_commit_concurrency, 1781
innodb_concurrency_tickets, 1782
innodb_data_file_path, 1783
innodb_data_home_dir, 1783
innodb_disable_sort_file_cache, 1783
innodb_doublewrite, 1784
innodb_fast_shutdown, 1784
innodb_file_format, 1785
innodb_file_format_check, 1785
innodb_file_format_max, 1785

3016

innodb_file_per_table, 1786
innodb_flush_log_at_timeout, 1787
innodb_flush_log_at_trx_commit, 1787
innodb_flush_method, 1788
innodb_force_recovery, 1791
innodb_io_capacity, 1796
innodb_locks_unsafe_for_binlog, 1799
innodb_lock_wait_timeout, 1799
innodb_log_buffer_size, 1802
innodb_log_files_in_group, 1803
innodb_log_file_size, 1802
innodb_log_group_home_dir, 1803
innodb_log_write_ahead_size, 1803
innodb_max_dirty_pages_pct, 1804
innodb_max_purge_lag, 1805
innodb_max_purge_lag_delay, 1806
innodb_old_blocks_pct, 1808
innodb_old_blocks_time, 1808
innodb_open_files, 1809
innodb_purge_batch_size, 1811
innodb_purge_threads, 1812
innodb_read_ahead_threshold, 1812
innodb_read_io_threads, 1813
innodb_replication_delay, 1814
innodb_rollback_on_timeout, 1814
innodb_spin_wait_delay, 1816
innodb_stats_method, 1816
innodb_stats_on_metadata, 1817
innodb_stats_sample_pages, 1818
innodb_status_output, 1819
innodb_status_output_locks, 1819
innodb_strict_mode, 1819
innodb_support_xa, 1820
innodb_sync_spin_loops, 1821
innodb_table_locks, 1821
innodb_temp_data_file_path, 1822
innodb_thread_concurrency, 1822
innodb_thread_sleep_delay, 1823
innodb_use_native_aio, 1825
innodb_use_sys_malloc, 1825
innodb_version, 1825
innodb_write_io_threads, 1826
insert_id, 518
interactive_timeout, 518
join_buffer_size, 518
keep_files_on_create, 519
key_buffer_size, 519
key_cache_age_threshold, 521
key_cache_block_size, 521
key_cache_division_limit, 521
large_files_support, 522
large_pages, 522
large_page_size, 522
last_insert_id, 522
lc_messages, 523
lc_messages_dir, 523
lc_time_names, 523
license, 523

local_infile, 524
locked_in_memory, 524
lock_wait_timeout, 524
log_bin, 2096
log_bin_basename, 2096
log_bin_index, 2096
log_bin_trust_function_creators, 525
log_bin_use_v1_row_events, 2096
log_error, 525
log_error_verbosity, 525
log_output, 526
log_queries_not_using_indexes, 526
log_slave_updates, 2097
log_throttle_queries_not_using_indexes, 527
log_timestamps, 526
log_warnings, 528
long_query_time, 529
lower_case_file_system, 529
lower_case_table_names, 530
low_priority_updates, 529
master_info_repository, 2070
master_verify_checksum, 2097
max_allowed_packet, 530
max_binlog_cache_size, 2097
max_binlog_size, 2098
max_binlog_stmt_cache_size, 2098
max_connections, 531
max_connect_errors, 531
max_delayed_threads, 532
max_error_count, 532
max_heap_table_size, 533
max_insert_delayed_threads, 533
max_join_size, 533
max_length_for_sort_data, 534
max_prepared_stmt_count, 534
max_relay_log_size, 535
max_seeks_for_key, 535
max_sort_length, 536
max_sp_recursion_depth, 536
max_statement_time, 536
max_tmp_tables, 537
max_user_connections, 537
max_write_lock_count, 537
metadata_locks_cache_size, 538
metadata_locks_hash_instances, 538
min_examined_row_limit, 539
myisam_data_pointer_size, 539
myisam_max_sort_file_size, 539
myisam_mmap_size, 540
myisam_recover_options, 540
myisam_repair_threads, 540
myisam_sort_buffer_size, 541
myisam_stats_method, 542
myisam_use_mmap, 542
named_pipe, 542
net_buffer_length, 543
net_read_timeout, 543
net_retry_count, 544

3017

net_write_timeout, 544
new, 544
old, 545
old_alter_table, 545
old_passwords, 545
open_files_limit, 546
optimizer_prune_level, 547
optimizer_search_depth, 547
optimizer_switch, 547
optimizer_trace, 548
optimizer_trace_features, 549
optimizer_trace_limit, 549
optimizer_trace_max_mem_size, 549
optimizer_trace_offset, 549
performance_schema, 2436
performance_schema_accounts_size, 2436
performance_schema_digests_size, 2437
performance_schema_events_stages_history_long_size,
2437
performance_schema_events_stages_history_size,
2437
performance_schema_events_statements_history_long_size,
2438
performance_schema_events_statements_history_size,
2438
performance_schema_events_transactions_history_long_size,
2438
performance_schema_events_transactions_history_size,
2438
performance_schema_events_waits_history_long_size,
2439
performance_schema_events_waits_history_size,
2439
performance_schema_hosts_size, 2439
performance_schema_max_cond_classes, 2440
performance_schema_max_cond_instances, 2440
performance_schema_max_file_classes, 2440
performance_schema_max_file_handles, 2440
performance_schema_max_file_instances, 2441
performance_schema_max_memory_classes, 2441
performance_schema_max_metadata_locks, 2441
performance_schema_max_mutex_classes, 2442
performance_schema_max_mutex_instances, 2442
performance_schema_max_prepared_statements_instances,
2442
performance_schema_max_program_instances,
2443
performance_schema_max_rwlock_classes, 2443
performance_schema_max_rwlock_instances, 2443
performance_schema_max_socket_classes, 2444
performance_schema_max_socket_instances, 2444
performance_schema_max_stage_classes, 2444
performance_schema_max_statement_classes,
2444
performance_schema_max_statement_stack, 2445
performance_schema_max_table_handles, 2445
performance_schema_max_table_instances, 2445
performance_schema_max_thread_classes, 2446

performance_schema_max_thread_instances, 2446
performance_schema_session_connect_attrs_size,
2446
performance_schema_setup_actors_size, 2447
performance_schema_setup_objects_size, 2447
performance_schema_users_size, 2447
pid_file, 550
plugin_dir, 550
port, 550
preload_buffer_size, 551
profiling, 551
profiling_history_size, 551
protocol_version, 551
proxy_user, 551
pseudo_slave_mode, 551
pseudo_thread_id, 552
query_alloc_block_size, 552
query_cache_limit, 552
query_cache_min_res_unit, 553
query_cache_size, 553
query_cache_type, 554
query_cache_wlock_invalidate, 555
query_prealloc_size, 555
rand_seed1, 556
rand_seed2, 556
range_alloc_block_size, 556
read_buffer_size, 556
read_only, 557
read_rnd_buffer_size, 558
relay_log, 2071
relay_log_basename, 2071
relay_log_index, 2071
relay_log_info_file, 2071
relay_log_info_repository, 2072
relay_log_purge, 559
relay_log_recovery, 2072
relay_log_space_limit, 559
report_host, 559
report_password, 560
report_port, 560
report_user, 560
rpl_semi_sync_master_enabled, 560
rpl_semi_sync_master_timeout, 561
rpl_semi_sync_master_trace_level, 561
rpl_semi_sync_master_wait_for_slave_count, 561
rpl_semi_sync_master_wait_no_slave, 562
rpl_semi_sync_master_wait_point, 562
rpl_semi_sync_slave_enabled, 563
rpl_semi_sync_slave_trace_level, 563
rpl_stop_slave_timeout, 2072
secure_auth, 564
secure_file_priv, 564
server_id, 564
session_track_schema, 565
session_track_state_change, 565
session_track_system_variables, 566
sha256_password_private_key_path, 566
sha256_password_public_key_path, 567

3018

shared_memory, 567
shared_memory_base_name, 567
skip_external_locking, 568
skip_name_resolve, 568
skip_networking, 568
skip_show_database, 568
slave_checkpoint_group, 2073
slave_checkpoint_period, 2073
slave_compressed_protocol, 2074
slave_exec_mode, 2074
slave_load_tmpdir, 2074
slave_max_allowed_packet, 2075
slave_net_timeout, 2075
slave_parallel_type, 2075
slave_parallel_workers, 2076
slave_pending_jobs_size_max, 2077
slave_rows_search_algorithms, 2077
slave_skip_errors, 2078
slave_sql_verify_checksum, 2079
slave_transaction_retries, 2079
slave_type_conversions, 2080
slow_launch_time, 569
slow_query_log, 569
slow_query_log_file, 569
socket, 570
sort_buffer_size, 570
sql_auto_is_null, 571
sql_big_selects, 571
sql_buffer_result, 572
sql_log_bin, 572
sql_log_off, 572
sql_mode, 573
sql_notes, 573
sql_quote_show_create, 574
sql_safe_updates, 574
sql_select_limit, 574
sql_slave_skip_counter, 2080
sql_warnings, 574
ssl_ca, 574
ssl_capath, 574
ssl_cert, 575
ssl_cipher, 575
ssl_crl, 575
ssl_crlpath, 575
ssl_key, 576
storage_engine, 576
sync_binlog, 2099
sync_frm, 577
sync_master_info, 2081
sync_relay_log, 2081
sync_relay_log_info, 2082
system_time_zone, 577
sysvar_stored_program_cache, 576
table_definition_cache, 577
table_open_cache, 578
table_open_cache_instances, 578
thread_cache_size, 579
thread_concurrency, 579

thread_handling, 580
thread_stack, 580
timed_mutexes, 581
timestamp, 581
time_format, 581
time_zone, 581
tmpdir, 582
tmp_table_size, 582
transaction_alloc_block_size, 583
transaction_prealloc_size, 583
tx_isolation, 584
tx_read_only, 585
unique_checks, 585
updatable_views_with_limit, 585
validate_password_dictionary_file, 705
validate_password_length, 706
validate_password_mixed_case_count, 706
validate_password_number_count, 707
validate_password_policy, 707
validate_password_special_char_count, 707
validate_user_plugins, 586
version, 586
version_comment, 586
version_compile_machine, 586
version_compile_os, 587
wait_timeout, 587
warning_count, 587

system variables, 477, 587, 1574
and replication, 2161
enforce_gtid_consistency, 2101
gtid_mode, 2102
gtid_next, 2102
gtid_owned, 2103

system_time_zone system variable, 577
SYSTEM_USER(), 1244
sysvar_stored_program_cache system variable, 576

T
tab (\t), 974, 1390
tab option

mysqldump, 319
table, 2948

changing, 1302, 1308, 2877
deleting, 1367
rebuilding, 179
repair, 179
row size, 1111

table aliases, 1403
table cache, 890
table description

myisamchk, 360
Table Dump

thread command, 962
table is full, 494, 2858
table lock, 2949
Table Monitor

InnoDB, 1749, 1863
table names

3019

case sensitivity, 24, 982
table option

mysql, 277
table scan, 1735
table type, 2949

choosing, 1591
table-level locking, 937
tables

BLACKHOLE, 1883
checking, 357
closing, 890
compressed, 368
compressed format, 1875
const, 908
constant, 825
copying, 1351, 1351
counting rows, 205
creating, 193
CSV, 1880
defragment, 1874
defragmenting, 820, 1528
deleting rows, 2874
displaying, 332
displaying status, 1571
dumping, 307, 402
dynamic, 1874
error checking, 816
EXAMPLE, 1896
FEDERATED, 1890
flush, 294
fragmentation, 1528
HEAP, 1877
improving performance, 887
information, 360
information about, 208
InnoDB, 1595
loading data, 194
maintenance, 300
maintenance schedule, 819
maximum size, 2894
MEMORY, 1877
MERGE, 1886
merging, 1886
multiple, 207
MyISAM, 1869
names, 979
open, 890
opening, 890
optimizing, 819
partitioning, 1886
repair, 300
repairing, 816
retrieving data, 195
selecting columns, 197
selecting rows, 196
sorting rows, 198
symbolic links, 950
system, 908

too many, 892
unique ID for last row, 2571

TABLES
INFORMATION_SCHEMA table, 2291

tables option
mysqlcheck, 307
mysqldump, 321

TABLESPACE
INFORMATION_SCHEMA table, 2293

tablespace, 2949
tablespace dictionary, 2949
Tablespace Monitor

InnoDB, 1680, 1749, 1828
table_definition_cache system variable, 577
table_handles table

performance_schema, 2406
table_io_waits_summary_by_index_usage table

performance_schema, 2417
table_io_waits_summary_by_table table

performance_schema, 2416
table_lock_waits_summary_by_table table

performance_schema, 2417
table_open_cache, 890
table_open_cache system variable, 578
table_open_cache_instances system variable, 578
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 2293
TAN(), 1175
tar

problems on Solaris, 128, 128
tc-heuristic-recover option

mysqld, 474
Tcl API, 2582
tcp-ip option

mysqld_multi, 249
TCP/IP, 93, 98, 148, 181, 224, 245, 261, 275, 387, 407,
467, 669, 708, 731, 955, 2062, 2370, 2849
tee command

mysql, 282
tee option

mysql, 278
temp-pool option

mysqld, 474
temporary file

write access, 159
temporary files, 2867
temporary table, 2949
temporary tables

and replication, 2154
internal, 892
problems, 2877

temporary tablespace, 2950
terminal monitor

defined, 187
test option

myisampack, 369
test protocol trace plugin, 2633
testing

3020

connection to the server, 726
installation, 154
of MySQL releases, 47
postinstallation, 153

testing mysqld
mysqltest, 2584

TEXT
size, 1113

text collection, 2950
TEXT columns

default values, 1104
indexing, 882, 1338

TEXT data type, 1083, 1103
text files

importing, 288, 326, 1385
thread, 2950
thread cache, 955
thread command

Binlog Dump, 960
Change user, 960
Close stmt, 960
Connect, 960
Connect Out, 960
Create DB, 960
Daemon, 960
Debug, 960
Delayed insert, 961
Drop DB, 961
Error, 961
Execute, 961
Fetch, 961
Field List, 961
Init DB, 961
Kill, 961
Long Data, 961
Ping, 961
Prepare, 961
Processlist, 961
Query, 961
Quit, 961
Refresh, 961
Register Slave, 961
Reset stmt, 962
Set option, 962
Shutdown, 962
Sleep, 962
Statistics, 962
Table Dump, 962
Time, 962

thread commands, 960
thread state

After create, 962
altering table, 963
Analyzing, 962
Changing master, 970
Checking master version, 969
checking permissions, 962
checking privileges on cached query, 968

checking query cache for query, 968
Checking table, 962
cleaning up, 962
Clearing, 971
closing tables, 962
committing alter table to storage engine, 963
Connecting to master, 969
converting HEAP to MyISAM, 962
copy to tmp table, 963
Copying to group table, 963
Copying to tmp table, 963
Copying to tmp table on disk, 963
Creating index, 963
Creating sort index, 963
creating table, 963
Creating tmp table, 963
deleting from main table, 963
deleting from reference tables, 963
discard_or_import_tablespace, 963
end, 964
executing, 964
Execution of init_command, 964
Finished reading one binlog; switching to next binlog,
968
Flushing tables, 964
freeing items, 964
FULLTEXT initialization, 964
init, 964
Initialized, 971
invalidating query cache entries, 968
Killed, 964
Killing slave, 970
logging slow query, 964
login, 964
Making temp file, 970
manage keys, 964
Master has sent all binlog to slave; waiting for binlog
to be updated, 968
NULL, 964
Opening master dump table, 970
Opening table, 964
Opening tables, 964
optimizing, 965
preparing, 965
preparing for alter table, 965
Purging old relay logs, 965
query end, 965
Queueing master event to the relay log, 969
Reading event from the relay log, 970
Reading from net, 965
Reading master dump table data, 970
Rebuilding the index on master dump table, 971
Reconnecting after a failed binlog dump request, 969
Reconnecting after a failed master event read, 969
Registering slave on master, 969
Removing duplicates, 965
removing tmp table, 965
rename, 965

3021

rename result table, 965
Reopen tables, 965
Repair by sorting, 965
Repair done, 965
Repair with keycache, 965
Requesting binlog dump, 969
Rolling back, 966
Saving state, 966
Searching rows for update, 966
Sending binlog event to slave, 968
sending cached result to client, 968
setup, 966
Slave has read all relay log; waiting for the slave I/O
thread to update it, 970
Sorting for group, 966
Sorting for order, 966
Sorting index, 966
Sorting result, 966
statistics, 966
storing result in query cache, 968
System lock, 966
update, 966
Updating, 967
updating main table, 967
updating reference tables, 967
User lock, 967
User sleep, 967
Waiting for commit lock, 967
Waiting for global read lock, 967, 967
Waiting for master to send event, 969
Waiting for master update, 969
Waiting for next activation, 971
Waiting for query cache lock, 968
Waiting for scheduler to stop, 971
Waiting for schema metadata lock, 967
Waiting for slave mutex on exit, 970, 970
Waiting for stored function metadata lock, 967
Waiting for stored procedure metadata lock, 967
Waiting for table, 967
Waiting for table level lock, 967
Waiting for table metadata lock, 967
Waiting for tables, 967
Waiting for the next event in relay log, 970
Waiting for the slave SQL thread to free enough
relay log space, 969
Waiting for trigger metadata lock, 967
Waiting on cond, 967
Waiting on empty queue, 971
Waiting to finalize termination, 968
Waiting to reconnect after a failed binlog dump
request, 969
Waiting to reconnect after a failed master event
read, 969
Waiting until MASTER_DELAY seconds after master
executed event, 970
Writing to net, 968

thread states, 959
event scheduler, 971

general, 962
query cache, 968
replication master, 968
replication slave, 969, 970, 970

thread support, 45
thread table

performance_schema, 2428
threaded clients, 2467
threads, 294, 1557, 2583

display, 1557
monitoring, 959, 1557, 2286, 2428

thread_cache_size system variable, 579
thread_concurrency system variable, 579
thread_handling system variable, 580
thread_stack system variable, 580
Time

thread command, 962
TIME data type, 1080, 1091
time literals, 976
time representation

Event Scheduler, 2252
time types, 1112
time zone problems, 2869
time zone tables, 262
time zones

and replication, 2158
leap seconds, 1070
support, 1067
upgrading, 1069

TIME(), 1191
TIMEDIFF(), 1191
timed_mutexes system variable, 581
timeout, 500, 1247

connect_timeout variable, 279, 299
shutdown_timeout variable, 300

timeouts (replication), 2158
TIMESTAMP

and NULL values, 2873
and replication, 2139
initialization and updating, 1095

TIMESTAMP data type, 1080, 1090
timestamp system variable, 581
TIMESTAMP(), 1191
TIMESTAMPADD(), 1191
TIMESTAMPDIFF(), 1192
timezone option

mysqld_safe, 245
time_format system variable, 581
TIME_FORMAT(), 1192
TIME_TO_SEC(), 1192
time_zone system variable, 581
TINYBLOB data type, 1083
TINYINT data type, 1076
TINYTEXT data type, 1083
tips

optimization, 877
TMPDIR environment variable, 159, 182, 223, 2867
TMPDIR option

3022

CMake, 144
tmpdir option

myisamchk, 359
myisampack, 369
mysqld, 475
mysqlhotcopy, 404
mysql_upgrade, 266

tmpdir system variable, 582
tmp_table_size system variable, 582
to-last-log option

mysqlbinlog, 390
tools

command-line, 79, 267
list of, 40
mysqld_multi, 247
mysqld_safe, 241

torn page, 1679, 2950
Touches(), 1285
TO_BASE64(), 1151
TO_DAYS(), 1192
TO_SECONDS(), 1193
TPS, 2950
trace DBI method, 2655
TRADITIONAL SQL mode, 628, 635
transaction, 2950
transaction access mode, 1444
transaction ID, 2950
transaction isolation level, 1444

READ COMMITTED, 1446
READ UNCOMMITTED, 1446
REPEATABLE READ, 1446
SERIALIZABLE, 1447

transaction-isolation option
mysqld, 475

transaction-read-only option
mysqld, 475

transaction-safe tables, 27, 1595
transactions, 1602

and replication, 2158, 2159
isolation levels, 1602, 3225
metadata locking, 941
support, 27, 1595

transaction_alloc_block_size system variable, 583
transaction_prealloc_size system variable, 583
Translators

list of, 38
transportable tablespace, 1631, 2950
trigger

restrictions, 2883
triggers, 1358, 1368, 1573, 2239, 2243

and replication, 2147, 2160
LAST_INSERT_ID(), 2243
metadata, 2247

TRIGGERS
INFORMATION_SCHEMA table, 2294

triggers option
mysqldump, 321

TRIM(), 1151

troubleshooting, 2779, 2951
ALTER TABLE problems, 2877
C API, 2570
compiling MySQL server, 151
connection problems, 731
InnoDB deadlocks, 1613
InnoDB errors, 1865
InnoDB recovery problems, 1861
InnoDB table fragmentation, 1680
OS error codes, 1867
replication, 2165
startup problems, 162
with MySQL Enterprise Monitor, 2663
with MySQL Performance Schema, 2450

TRUE, 976, 979
testing for, 1132, 1132

truncate, 2951
TRUNCATE TABLE, 1369

and replication, 2161
performance_schema database, 2360, 2891

TRUNCATE(), 1175
tuning, 822

InnoDB compressed tables, 1661
tuple, 2951
tutorial, 187
two-phase commit, 613, 613, 1820, 2951
tx_isolation system variable, 584
tx_read_only system variable, 585
type codes

C prepared statement API, 2538
type conversions, 1125, 1130
type option

MySQLInstallerConsole, 80
types

columns, 1075, 1114
data, 1075
date, 1112
Date and Time, 1088
numeric, 1111
of tables, 1591
portability, 1114
string, 1113
strings, 1100
time, 1112

typographical conventions, 2
TZ environment variable, 182, 2869
tz-utc option

mysqldump, 319

U
UCASE(), 1152
UCS-2, 999
ucs2 character set, 1029
UDFs, 1532, 1533

compiling, 2647
defined, 2639
return values, 2647

ulimit, 2861

3023

UMASK environment variable, 182, 2861
UMASK_DIR environment variable, 182, 2862
unary minus (-), 1166
unbuffered option

mysql, 278
UNCOMPRESS(), 1235
UNCOMPRESSED_LENGTH(), 1235
undo, 2951
undo log, 1627, 1717, 2951
undo logs

InnoDB temporary tables, 1616
undo tablespace, 2952
UNHEX(), 1152
Unicode, 999
Unicode Collation Algorithm, 1038
UNINSTALL PLUGIN, 1534
uninstalling plugins, 638, 1534
UNION, 215, 1418
Union(), 1282
UNIQUE, 1307
unique constraint, 2952
unique ID, 2571
unique index, 2952
unique key, 2952

constraint, 31
unique keys

and partitioning keys, 2231
unique_checks system variable, 585
unique_subquery join type

optimizer, 909
Unix

compiling clients on, 2465
UNIX_TIMESTAMP(), 1194
UNKNOWN

testing for, 1132, 1132
unloading

tables, 195
UNLOCK TABLES, 1439
unnamed views, 1426
unpack option

myisamchk, 359
unsafe statement (replication)

defined, 2027
unsafe statements (replication), 2028
UNSIGNED, 1076, 1084
UNTIL, 1477
updatable views, 2258
updatable_views_with_limit system variable, 585
UPDATE, 27, 1432
update

thread state, 966
update-state option

myisamchk, 358
updates option

MySQLInstallerConsole, 79
UpdateXML(), 1219
updating

releases of MySQL, 48

Updating
thread state, 967

updating main table
thread state, 967

updating reference tables
thread state, 967

upgrade-system-tables option
mysql_upgrade, 266

upgrading, 168, 168
different architecture, 180
to ¤t-series;, 171
with MySQL Yum Repository, 170

upgrading MySQL, 262
UPPER(), 1152
uptime, 294
URLs for downloading MySQL, 48
USE, 1590
use command

mysql, 283
USE INDEX, 1416
USE KEY, 1416
use-default option

mysql_secure_installation, 262
use-frm option

mysqlcheck, 307
use-mysqld_safe option

mysql.server, 247
use-threads option

mysqlimport, 331
user accounts

altering, 1505
creating, 1507
renaming, 1520
resource limits, 537, 741, 1518

USER environment variable, 182, 227
User lock

thread state, 967
user names

and passwords, 736
in account names, 724
in default accounts, 164

user option, 227
mysql, 278
mysql.server, 247
mysqladmin, 299
mysqlbinlog, 390
mysqlcheck, 307
mysqld, 476
mysqldump, 313
mysqld_multi, 249
mysqld_safe, 245
mysqlhotcopy, 404
mysqlimport, 331
MySQLInstallerConsole, 80
mysqlshow, 336
mysqlslap, 344
mysql_config_editor, 379
mysql_install_db, 257

3024

mysql_secure_installation, 262
mysql_upgrade, 266

user privileges
adding, 738
deleting, 741, 1510
dropping, 741, 1510

User sleep
thread state, 967

user table
sorting, 728

user variables, 992
and replication, 2161

USER(), 1244
User-defined functions, 1532, 1533
user-defined functions

adding, 2639, 2640
users

deleting, 741, 1510
root, 164

users table
performance_schema, 2396

USER_PRIVILEGES
INFORMATION_SCHEMA table, 2296

using multiple disks to start data, 951
UTC_DATE(), 1195
UTC_TIME(), 1195
UTC_TIMESTAMP(), 1195
UTF-8, 999
utf16 character set, 1029
utf16le character set, 1030
utf16_bin collation, 1041
utf32 character set, 1030
utf8 character set, 1030
utf8mb3 character set, 1031
utf8mb4 character set, 1031
utilities

program-development, 222
utility programs, 222
UUID(), 1251
UUID_SHORT(), 1252

V
valid numbers

examples, 976
validate-password option

mysqld, 705
validate_password plugin, 703

configuring, 705
installing, 704
system variables, 705

validate_password_dictionary_file system variable, 705
validate_password_length system variable, 706
validate_password_mixed_case_count system
variable, 706
validate_password_number_count system variable,
707
validate_password_policy system variable, 707

validate_password_special_char_count system
variable, 707
validate_user_plugins system variable, 586
VALUES(), 1253
VARBINARY data type, 1083, 1102
VARCHAR

size, 1113
VARCHAR data type, 1083, 1100
VARCHARACTER data type, 1083
variables

and replication, 2161
environment, 223
mysqld, 944
server, 1574
status, 600, 1570
system, 477, 587, 1574
user, 992

VARIANCE(), 1257
VAR_POP(), 1257
VAR_SAMP(), 1257
verbose option

innochecksum, 345
myisamchk, 355
myisampack, 370
myisam_ftdump, 351
mysql, 278
mysqladmin, 299
mysqlbinlog, 390
mysqlcheck, 307
mysqld, 476
mysqldump, 316
mysqldumpslow, 401
mysqld_multi, 249
mysqlimport, 331
mysqlshow, 336
mysqlslap, 344
mysql_config_editor, 379
mysql_install_db, 257
mysql_plugin, 259
mysql_upgrade, 266
mysql_waitpid, 405
my_print_defaults, 408
perror, 410

verify-binlog-checksum option
mysqlbinlog, 390

version
choosing, 45
latest, 48

VERSION file
CMake, 153

version option
comp_err, 252
innochecksum, 345
myisamchk, 355
myisampack, 370
mysql, 278
mysqladmin, 299
mysqlbinlog, 390

3025

mysqlcheck, 307
mysqld, 476
mysqldump, 316
mysqld_multi, 249
mysqlimport, 331
mysqlshow, 336
mysqlslap, 344
mysql_config, 407
mysql_config_editor, 379
mysql_plugin, 259
mysql_waitpid, 405
my_print_defaults, 408
perror, 410
resolveip, 411
resolve_stack_dump, 409

version system variable, 586
VERSION(), 1244
version-check option

mysql_upgrade, 266
version_comment system variable, 586
version_compile_machine system variable, 586
version_compile_os system variable, 587
vertical option

mysql, 278
mysqladmin, 299

victim, 2952
Vietnamese, 2760
view

restrictions, 2889
views, 1360, 2239, 2255

algorithms, 2256
and replication, 2163
metadata, 2259
updatable, 1361, 2258

VIEWS
INFORMATION_SCHEMA table, 2296

Views
limitations, 2889
privileges, 2889
problems, 2889

W
wait, 2952
wait option

myisamchk, 355
myisampack, 370
mysql, 278
mysqladmin, 299

Waiting for commit lock
thread state, 967

Waiting for event metadata lock
thread state, 967

Waiting for event read lock
thread state, 967

Waiting for global read lock
thread state, 967

Waiting for master to send event
thread state, 969

Waiting for master update
thread state, 969

Waiting for next activation
thread state, 971

Waiting for query cache lock
thread state, 968

Waiting for scheduler to stop
thread state, 971

Waiting for schema metadata lock
thread state, 967

Waiting for slave mutex on exit
thread state, 970, 970

Waiting for stored function metadata lock
thread state, 967

Waiting for stored procedure metadata lock
thread state, 967

Waiting for table
thread state, 967

Waiting for table level lock
thread state, 967

Waiting for table metadata lock
thread state, 967

Waiting for tables
thread state, 967

Waiting for the next event in relay log
thread state, 970

Waiting for the slave SQL thread to free enough relay
log space

thread state, 969
Waiting for trigger metadata lock

thread state, 967
Waiting on cond

thread state, 967
Waiting on empty queue

thread state, 971
Waiting to finalize termination

thread state, 968
Waiting to reconnect after a failed binlog dump request

thread state, 969
Waiting to reconnect after a failed master event read

thread state, 969
Waiting until MASTER_DELAY seconds after master
executed event

thread state, 970
wait_timeout system variable, 587
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), 1246
warm backup, 2952
warm up, 2952
warn option

mysql_config_editor, 379
warnings command

mysql, 283
warning_count system variable, 587
WEEK(), 1195
WEEKDAY(), 1196
WEEKOFYEAR(), 1196
WEIGHT_STRING(), 1153
Well-Known Binary format, 1269

3026

Well-Known Text format, 1268
WHERE, 824

with SHOW, 2270, 2320
where option

mysqldump, 322
WHILE, 1478

labels, 1471
widths

display, 1075
Wildcard character (%), 974
Wildcard character (_), 974
wildcards

and LIKE, 886
in account names, 725
in mysql.columns_priv table, 729
in mysql.db table, 729
in mysql.procs_priv table, 729
in mysql.tables_priv table, 729

Windows, 2953
compiling clients on, 2466
MySQL limitations, 2896, 2897
path name separators, 233
upgrading, 100

Windows Failover Clustering, 1905
windows option

mysql_install_db, 257
Windows Server Failover Clustering, 1905
Within(), 1285
WITHOUT_SERVER option

CMake, 150
WITH_ASAN option

CMake, 148
WITH_AUTHENTICATION_PAM option

CMake, 148
WITH_CLIENT_PROTOCOL_TRACING option

CMake, 148
WITH_DEBUG option

CMake, 148
WITH_DEFAULT_COMPILER_OPTIONS option

CMake, 151
WITH_DEFAULT_FEATURE_SET option

CMake, 149
WITH_EDITLINE option

CMake, 149
WITH_EMBEDDED_SERVER option

CMake, 149
WITH_EXTRA_CHARSETS option

CMake, 149
WITH_INNODB_EXTRA_DEBUG option

CMake, 149
WITH_INNODB_MEMCACHED option

CMake, 149
WITH_LIBEVENT option

CMake, 149
WITH_LIBWRAP option

CMake, 149
WITH_MSAN option

CMake, 149

WITH_SSL option
CMake, 149

WITH_TEST_TRACE_PLUGIN option
CMake, 150

WITH_UNIXODBC option
CMake, 150

WITH_ZLIB option
CMake, 150

WKB format, 1269
WKT format, 1268
workload, 2953
wrappers

Eiffel, 2582
write access

tmp, 159
write combining, 2953
write option

innochecksum, 347
write-binlog option

mysqlcheck, 307
mysql_upgrade, 266

write_buffer_size myisamchk variable, 355
Writing to net

thread state, 968

X
X(), 1276
X509/Certificate, 764
XA, 2953
XA BEGIN, 1448
XA COMMIT, 1448
XA PREPARE, 1448
XA RECOVER, 1448
XA ROLLBACK, 1448
XA START, 1448
XA transactions, 1447

restrictions, 2890
transaction identifiers, 1448

xid
XA transaction identifier, 1448

xml option
mysql, 278
mysqldump, 320

XOR
bitwise, 1227
logical, 1136

Y
Y(), 1277
yaSSL, 764
YEAR data type, 1080, 1092
YEAR(), 1197
YEARWEEK(), 1197
Yen sign (Japanese), 2760
young, 2953
Your password does not satisfy the current policy
requirements

3027

password error, 703

Z
ZEROFILL, 1076, 1084, 2575
ZFS, 1912

3028

3029

C Function Index

my_init()
Section 21.8.12.1, “my_init()”
Section 21.8.12.3, “mysql_thread_init()”
Section 21.8.6, “C API Function Overview”

mysql_affected_rows()
Section 13.2.1, “CALL Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.47, “mysql_next_result()”
Section 21.8.7.49, “mysql_num_rows()”
Section 21.8.11.1, “mysql_stmt_affected_rows()”
Section 21.8.7.76, “mysql_use_result()”
Section 13.2.8, “REPLACE Syntax”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 12.14, “Information Functions”
Section 21.8.15.2, “What Results You Can Get from a
Query”

mysql_autocommit()
Section 21.8.7.2, “mysql_autocommit()”
Section 21.8.6, “C API Function Overview”

mysql_change_user()
Section 4.5.1.2, “mysql Commands”
Section 21.8.7.3, “mysql_change_user()”
Section 21.8.7.59, “mysql_reset_connection()”
Section 21.8.6, “C API Function Overview”

mysql_character_set_name()
Section 21.8.7.4, “mysql_character_set_name()”
Section 21.8.6, “C API Function Overview”

mysql_client_find_plugin()
Section 21.8.14.1, “mysql_client_find_plugin()”
Section 21.8.6, “C API Function Overview”

mysql_client_register_plugin()
Section 21.8.14.2,
“mysql_client_register_plugin()”
Section 21.8.6, “C API Function Overview”

mysql_close()
Section 21.8.7.5, “mysql_close()”
Section 21.8.7.6, “mysql_commit()”
Section 21.8.7.7, “mysql_connect()”
Section 21.8.7.37, “mysql_init()”
Section 21.8.7.60, “mysql_rollback()”
Section 21.8.6, “C API Function Overview”
Section C.5.2.11, “Communication Errors and Aborted
Connections”

mysql_commit()
Section 21.8.7.6, “mysql_commit()”
Section 21.8.6, “C API Function Overview”

mysql_connect()
Section 21.8.12.1, “my_init()”
Section 21.8.7.5, “mysql_close()”
Section 21.8.7.7, “mysql_connect()”
Section 21.8.7.50, “mysql_options()”
Section 21.8.12.3, “mysql_thread_init()”
Section 21.8.6, “C API Function Overview”
Section 21.8.4.2, “Writing C API Threaded Client
Programs”

mysql_create_db()
Section 21.8.7.8, “mysql_create_db()”
Section 21.8.6, “C API Function Overview”

mysql_data_seek()
Section 21.8.7.9, “mysql_data_seek()”
Section 21.8.7.61, “mysql_row_seek()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.6, “C API Function Overview”

mysql_debug()
Section 21.8.7.10, “mysql_debug()”
Section 21.8.6, “C API Function Overview”

mysql_drop_db()
Section 21.8.7.11, “mysql_drop_db()”
Section 21.8.6, “C API Function Overview”

mysql_dump_debug_info()
Section 21.8.7.12, “mysql_dump_debug_info()”
Section 21.8.6, “C API Function Overview”

mysql_eof()
Section 21.8.7.13, “mysql_eof()”
Section 21.8.6, “C API Function Overview”

mysql_errno()
Section 21.8.14.1, “mysql_client_find_plugin()”
Section 21.8.14.2,
“mysql_client_register_plugin()”
Section 21.8.7.7, “mysql_connect()”
Section 21.8.7.13, “mysql_eof()”
Section 21.8.7.14, “mysql_errno()”
Section 21.8.7.22, “mysql_field_count()”
Section 21.8.14.3, “mysql_load_plugin()”
Section 21.8.7.48, “mysql_num_fields()”
Section 21.8.7.71, “mysql_sqlstate()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.7, “C API Function Descriptions”
Section 21.8.6, “C API Function Overview”
Signal Condition Information Items

3030

Section 6.3.13.3, “The Audit Log File”
Section C.2, “Types of Error Values”
Section 21.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query()
Returns Success”
Section 22.2.4.8, “Writing Audit Plugins”

mysql_error()
Section 21.8.14.1, “mysql_client_find_plugin()”
Section 21.8.14.2,
“mysql_client_register_plugin()”
Section 21.8.7.7, “mysql_connect()”
Section 21.8.7.13, “mysql_eof()”
Section 21.8.7.15, “mysql_error()”
Section 21.8.14.3, “mysql_load_plugin()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.7, “C API Function Descriptions”
Section 21.8.6, “C API Function Overview”
Signal Condition Information Items
Section C.2, “Types of Error Values”
Section 21.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query()
Returns Success”
Section 22.2.4.8, “Writing Audit Plugins”

mysql_escape_string()
Section 21.8.7.16, “mysql_escape_string()”
Section 21.8.6, “C API Function Overview”
Section 6.1.7, “Client Programming Security
Guidelines”

mysql_fetch_field()
Section 21.8.7.17, “mysql_fetch_field()”
Section 21.8.7.23, “mysql_field_seek()”
Section 21.8.7.24, “mysql_field_tell()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”

mysql_fetch_field_direct()
Section 21.8.7.18, “mysql_fetch_field_direct()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.6, “C API Function Overview”

mysql_fetch_fields()
Section 21.8.7.19, “mysql_fetch_fields()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.6, “C API Function Overview”

mysql_fetch_lengths()
Section 21.8.7.20, “mysql_fetch_lengths()”
Section 21.8.7.21, “mysql_fetch_row()”
Section 21.8.6, “C API Function Overview”

mysql_fetch_row()
Section 14.9.1, “FEDERATED Storage Engine Overview”
Section 21.8.7.13, “mysql_eof()”
Section 21.8.7.14, “mysql_errno()”
Section 21.8.7.20, “mysql_fetch_lengths()”
Section 21.8.7.21, “mysql_fetch_row()”
Section 21.8.7.62, “mysql_row_tell()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 21.8.15.2, “What Results You Can Get from a
Query”

mysql_field_count()
Section 21.8.7.22, “mysql_field_count()”
Section 21.8.7.48, “mysql_num_fields()”
Section 21.8.7.53, “mysql_query()”
Section 21.8.7.56, “mysql_real_query()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.6, “C API Function Overview”
Section 21.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query()
Returns Success”

mysql_field_seek()
Section 21.8.7.17, “mysql_fetch_field()”
Section 21.8.7.23, “mysql_field_seek()”
Section 21.8.7.24, “mysql_field_tell()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”

mysql_field_tell()
Section 21.8.7.24, “mysql_field_tell()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.6, “C API Function Overview”

mysql_free_result()
Section C.5.2.14, “Commands out of sync”
Section 21.8.7.25, “mysql_free_result()”
Section 21.8.7.42, “mysql_list_dbs()”
Section 21.8.7.43, “mysql_list_fields()”
Section 21.8.7.44, “mysql_list_processes()”
Section 21.8.7.45, “mysql_list_tables()”
Section 21.8.7.47, “mysql_next_result()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.6, “C API Function Overview”
Section 21.8.10, “C API Prepared Statement Function
Overview”

3031

mysql_get_character_set_info()
Section 21.8.7.26,
“mysql_get_character_set_info()”
Section 21.8.6, “C API Function Overview”
Section 10.4.2, “Choosing a Collation ID”

mysql_get_client_info()
Section 21.8.7.7, “mysql_connect()”
Section 21.8.7.27, “mysql_get_client_info()”
Section 21.8.6, “C API Function Overview”
Section 21.8.4.4, “C API Server and Client Library
Versions”

mysql_get_client_version()
Section 21.8.7.28, “mysql_get_client_version()”
Section 21.8.6, “C API Function Overview”
Section 21.8.4.4, “C API Server and Client Library
Versions”

mysql_get_host_info()
Section 21.8.7.29, “mysql_get_host_info()”
Section 21.8.6, “C API Function Overview”

mysql_get_option()
Section 21.8.7.30, “mysql_get_option()”
Section 21.8.6, “C API Function Overview”

mysql_get_proto_info()
Section 21.8.7.31, “mysql_get_proto_info()”
Section 21.8.6, “C API Function Overview”

mysql_get_server_info()
Section 21.8.7.32, “mysql_get_server_info()”
Section 21.8.6, “C API Function Overview”
Section 21.8.4.4, “C API Server and Client Library
Versions”

mysql_get_server_version()
Section 21.8.7.33, “mysql_get_server_version()”
Section 21.8.6, “C API Function Overview”
Section 21.8.4.4, “C API Server and Client Library
Versions”

mysql_get_ssl_cipher()
Section 21.8.7.34, “mysql_get_ssl_cipher()”
Section 21.8.6, “C API Function Overview”
Section 6.3.11.3, “Using SSL Connections”

mysql_hex_string()
Section 21.8.7.35, “mysql_hex_string()”
Section 21.8.6, “C API Function Overview”

mysql_info()
Section 13.1.6, “ALTER TABLE Syntax”

Section 13.2.5, “INSERT Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 21.8.7.36, “mysql_info()”
Section 21.8.7.50, “mysql_options()”
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 13.2.11, “UPDATE Syntax”
Section 21.8.6, “C API Function Overview”
Section 21.8.15.2, “What Results You Can Get from a
Query”

mysql_init()
Section 21.8.12.1, “my_init()”
Section 21.8.7.5, “mysql_close()”
Section 21.8.7.34, “mysql_get_ssl_cipher()”
Section 21.8.7.37, “mysql_init()”
Section 21.8.7.41, “mysql_library_init()”
Section 21.8.7.50, “mysql_options()”
Section 21.8.7.54, “mysql_real_connect()”
Section 21.8.7.72, “mysql_ssl_set()”
Section 21.8.12.3, “mysql_thread_init()”
Section 21.8.6, “C API Function Overview”
Section 21.8.4.2, “Writing C API Threaded Client
Programs”

mysql_insert_id()
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.7.38, “mysql_insert_id()”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 21.8.15.3, “How to Get the Unique ID for the
Last Inserted Row”
Section 12.14, “Information Functions”
Section 5.1.4, “Server System Variables”
Section 1.8.2.3, “Transaction and Atomic Operation
Differences”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 21.8.15.2, “What Results You Can Get from a
Query”

mysql_kill()
Section 21.8.7.39, “mysql_kill()”
Section 21.8.7.75, “mysql_thread_id()”
Section 21.8.6, “C API Function Overview”
Section 21.8.16, “Controlling Automatic Reconnection
Behavior”

mysql_library_end()
Section 21.8.7.40, “mysql_library_end()”
Section 21.8.7.41, “mysql_library_init()”
Section 21.8.13.2, “mysql_server_end()”
Section 21.8.13, “C API Embedded Server Function
Descriptions”
Section 21.8.6, “C API Function Overview”
Section 21.7, “libmysqld, the Embedded MySQL Server
Library”

3032

mysql_library_init()
Section 21.8.12.1, “my_init()”
Section 21.8.7.41, “mysql_library_init()”
Section 21.8.14.3, “mysql_load_plugin()”
Section 21.8.13.1, “mysql_server_init()”
Section 21.8.12.3, “mysql_thread_init()”
Section 21.8.13, “C API Embedded Server Function
Descriptions”
Section 21.8.6, “C API Function Overview”
Section 21.7, “libmysqld, the Embedded MySQL Server
Library”
Section 21.7.3, “Options with the Embedded Server”
Section 21.8.4.2, “Writing C API Threaded Client
Programs”

mysql_list_dbs()
Section 21.8.7.25, “mysql_free_result()”
Section 21.8.7.42, “mysql_list_dbs()”
Section 21.8.6, “C API Function Overview”

mysql_list_fields()
Section 21.8.7.43, “mysql_list_fields()”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”

mysql_list_processes()
Section 21.8.7.44, “mysql_list_processes()”
Section 21.8.6, “C API Function Overview”

mysql_list_tables()
Section 21.8.7.45, “mysql_list_tables()”
Section 21.8.6, “C API Function Overview”

mysql_load_plugin()
Section 21.8.14.3, “mysql_load_plugin()”
Section 21.8.14.4, “mysql_load_plugin_v()”
Section 21.8.6, “C API Function Overview”
Client Plugin Descriptors

mysql_load_plugin_v()
Section 21.8.14.3, “mysql_load_plugin()”
Section 21.8.14.4, “mysql_load_plugin_v()”
Section 21.8.6, “C API Function Overview”

mysql_more_results()
Section 21.8.7.46, “mysql_more_results()”
Section 21.8.7.47, “mysql_next_result()”
Section 21.8.11.17, “mysql_stmt_next_result()”
Section 21.8.6, “C API Function Overview”
Section 21.8.17, “C API Support for Multiple Statement
Execution”

mysql_next_result()
Section 13.2.1, “CALL Syntax”
Section 21.8.7.46, “mysql_more_results()”

Section 21.8.7.47, “mysql_next_result()”
Section 21.8.7.54, “mysql_real_connect()”
Section 21.8.7.69, “mysql_set_server_option()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.6, “C API Function Overview”
Section 21.8.17, “C API Support for Multiple Statement
Execution”

mysql_num_fields()
Section 21.8.7.18, “mysql_fetch_field_direct()”
Section 21.8.7.21, “mysql_fetch_row()”
Section 21.8.7.48, “mysql_num_fields()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.6, “C API Function Overview”

mysql_num_rows()
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.9, “mysql_data_seek()”
Section 21.8.7.49, “mysql_num_rows()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 21.8.15.2, “What Results You Can Get from a
Query”

mysql_options()
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.7.30, “mysql_get_option()”
Section 21.8.7.50, “mysql_options()”
Section 21.8.7.51, “mysql_options4()”
Section 21.8.7.52, “mysql_ping()”
Section 21.8.7.54, “mysql_real_connect()”
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.14, “C API Client Plugin Functions”
Section 21.8.6, “C API Function Overview”
Section 21.8.9, “C API Prepared Statement Data
Structures”
Client Plugin Descriptors
Section 10.1.4, “Connection Character Sets and
Collations”
Section 21.8.16, “Controlling Automatic Reconnection
Behavior”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 20.9.9, “Performance Schema Connection
Attribute Tables”
Section 22.2.2, “Plugin API Components”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 6.3.9.5, “The Cleartext Client-Side
Authentication Plugin”
Section 6.3.1, “User Names and Passwords”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”
Section 6.3.11.3, “Using SSL Connections”

3033

Using the Authentication Plugins
Using Your Own Protocol Trace Plugins

mysql_options4()
Section 21.8.7.50, “mysql_options()”
Section 21.8.7.51, “mysql_options4()”
Section 21.8.6, “C API Function Overview”
Section 20.9.9, “Performance Schema Connection
Attribute Tables”

mysql_ping()
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.7.52, “mysql_ping()”
Section 21.8.7.75, “mysql_thread_id()”
Section 21.8.6, “C API Function Overview”
Section 21.8.16, “Controlling Automatic Reconnection
Behavior”

mysql_plugin_options()
Section 21.8.14.5, “mysql_plugin_options()”
Section 21.8.6, “C API Function Overview”

mysql_query()
Section 13.2.1, “CALL Syntax”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.8, “mysql_create_db()”
Section 21.8.7.11, “mysql_drop_db()”
Section 21.8.7.17, “mysql_fetch_field()”
Section 21.8.7.39, “mysql_kill()”
Section 21.8.7.47, “mysql_next_result()”
Section 21.8.7.53, “mysql_query()”
Section 21.8.7.54, “mysql_real_connect()”
Section 21.8.7.56, “mysql_real_query()”
Section 21.8.7.58, “mysql_reload()”
Section 21.8.7.68,
“mysql_set_local_infile_handler()”
Section 21.8.7.69, “mysql_set_server_option()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.6, “C API Function Overview”
Section 21.8.17, “C API Support for Multiple Statement
Execution”
Section 21.8.15.3, “How to Get the Unique ID for the
Last Inserted Row”
Section 21.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query()
Returns Success”
Section 21.8.4.2, “Writing C API Threaded Client
Programs”

mysql_real_connect()
Section 13.2.1, “CALL Syntax”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.3, “mysql_change_user()”

Section 21.8.7.7, “mysql_connect()”
Section 21.8.7.37, “mysql_init()”
Section 21.8.7.47, “mysql_next_result()”
Section 21.8.7.50, “mysql_options()”
Section 21.8.7.54, “mysql_real_connect()”
Section 21.8.7.69, “mysql_set_server_option()”
Section 21.8.7.71, “mysql_sqlstate()”
Section 21.8.7.72, “mysql_ssl_set()”
Section 21.8.6, “C API Function Overview”
Section 21.8.17, “C API Support for Multiple Statement
Execution”
Chapter 12, Functions and Operators
Section 12.14, “Information Functions”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 5.1.4, “Server System Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 18.2.1, “Stored Routine Syntax”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”
Section 6.3.11.3, “Using SSL Connections”

mysql_real_escape_string()
Section 21.8.7.16, “mysql_escape_string()”
Section 21.8.7.55, “mysql_real_escape_string()”
Section 21.8.7.66, “mysql_set_character_set()”
Section 21.8.6, “C API Function Overview”
Section 6.1.7, “Client Programming Security
Guidelines”
Section 12.18.4.4, “Populating Spatial Columns”
Section 9.1.1, “String Literals”

mysql_real_query()
Section 13.2.1, “CALL Syntax”
Section 14.9.1, “FEDERATED Storage Engine Overview”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.47, “mysql_next_result()”
Section 21.8.7.53, “mysql_query()”
Section 21.8.7.54, “mysql_real_connect()”
Section 21.8.7.56, “mysql_real_query()”
Section 21.8.7.69, “mysql_set_server_option()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.6, “C API Function Overview”
Section 21.8.17, “C API Support for Multiple Statement
Execution”

mysql_refresh()
Section 21.8.7.57, “mysql_refresh()”
Section 21.8.6, “C API Function Overview”

mysql_reload()
Section 21.8.7.58, “mysql_reload()”
Section 21.8.6, “C API Function Overview”

mysql_reset_connection()
Section 21.8.7.3, “mysql_change_user()”

3034

Section 21.8.7.59, “mysql_reset_connection()”
Section 21.8.6, “C API Function Overview”

mysql_rollback()
Section 21.8.7.60, “mysql_rollback()”
Section 21.8.6, “C API Function Overview”

mysql_row_seek()
Section 21.8.7.61, “mysql_row_seek()”
Section 21.8.7.62, “mysql_row_tell()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.6, “C API Function Overview”

mysql_row_tell()
Section 21.8.7.61, “mysql_row_seek()”
Section 21.8.7.62, “mysql_row_tell()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.6, “C API Function Overview”

mysql_select_db()
Section 21.8.7.63, “mysql_select_db()”
Section 21.8.6, “C API Function Overview”

mysql_server_end()
Section 21.8.13.2, “mysql_server_end()”
Section 21.8.6, “C API Function Overview”

mysql_server_init()
Section 21.8.12.1, “my_init()”
Section 21.8.13.1, “mysql_server_init()”
Section 21.8.12.3, “mysql_thread_init()”
Section 21.8.6, “C API Function Overview”

mysql_session_track_get_first()
Section 21.8.7.64,
“mysql_session_track_get_first()”
Section 21.8.7.65,
“mysql_session_track_get_next()”
Section 21.8.6, “C API Function Overview”

mysql_session_track_get_next()
Section 21.8.7.64,
“mysql_session_track_get_first()”
Section 21.8.7.65,
“mysql_session_track_get_next()”
Section 21.8.6, “C API Function Overview”

mysql_set_character_set()
Section 21.8.7.26,
“mysql_get_character_set_info()”
Section 21.8.7.55, “mysql_real_escape_string()”
Section 21.8.7.66, “mysql_set_character_set()”
Section 21.8.6, “C API Function Overview”

mysql_set_local_infile_default()
Section 21.8.7.67,
“mysql_set_local_infile_default()”
Section 21.8.6, “C API Function Overview”

mysql_set_local_infile_handler()
Section 21.8.7.67,
“mysql_set_local_infile_default()”
Section 21.8.7.68,
“mysql_set_local_infile_handler()”
Section 21.8.6, “C API Function Overview”

mysql_set_server_option()
Section 21.8.7.69, “mysql_set_server_option()”
Section 21.8.6, “C API Function Overview”
Section 21.8.17, “C API Support for Multiple Statement
Execution”

mysql_shutdown()
Section 21.8.7.70, “mysql_shutdown()”
Section 21.8.6, “C API Function Overview”

mysql_sqlstate()
Section 21.8.7.14, “mysql_errno()”
Section 21.8.7.71, “mysql_sqlstate()”
Section 21.8.6, “C API Function Overview”
Signal Condition Information Items
Section C.2, “Types of Error Values”

mysql_ssl_set()
Section 21.8.7.54, “mysql_real_connect()”
Section 21.8.7.72, “mysql_ssl_set()”
Section 21.8.6, “C API Function Overview”
Section 6.3.11.3, “Using SSL Connections”

mysql_stat()
Section 21.8.7.73, “mysql_stat()”
Section 21.8.6, “C API Function Overview”

mysql_stmt_affected_rows()
Section 21.8.11.1, “mysql_stmt_affected_rows()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.17, “mysql_stmt_next_result()”
Section 21.8.11.18, “mysql_stmt_num_rows()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_attr_get()
Section 21.8.11.2, “mysql_stmt_attr_get()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_attr_set()
Section 21.8.11.3, “mysql_stmt_attr_set()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.11, “mysql_stmt_fetch()”

3035

Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.5, “C API Data Structures”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.9.2, “C API Prepared Statement Type
Conversions”
Section E.3, “Restrictions on Server-Side Cursors”

mysql_stmt_bind_param()
Section 21.8.11.4, “mysql_stmt_bind_param()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.21, “mysql_stmt_prepare()”
Section 21.8.11.26,
“mysql_stmt_send_long_data()”
Section 21.8.9, “C API Prepared Statement Data
Structures”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.19, “C API Prepared Statement Handling
of Date and Time Values”

mysql_stmt_bind_result()
Section 21.8.11.5, “mysql_stmt_bind_result()”
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.11.12, “mysql_stmt_fetch_column()”
Section 21.8.11.17, “mysql_stmt_next_result()”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.9, “C API Prepared Statement Data
Structures”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.19, “C API Prepared Statement Handling
of Date and Time Values”

mysql_stmt_close()
Section 21.8.11.6, “mysql_stmt_close()”
Section 21.8.11.15, “mysql_stmt_init()”
Section 21.8.9, “C API Prepared Statement Data
Structures”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 20.9.6.4, “The
prepared_statements_instances Table”

mysql_stmt_data_seek()
Section 21.8.11.7, “mysql_stmt_data_seek()”
Section 21.8.11.24, “mysql_stmt_row_seek()”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_errno()
Section 21.8.11.8, “mysql_stmt_errno()”
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section C.2, “Types of Error Values”

mysql_stmt_error()
Section 21.8.11.9, “mysql_stmt_error()”
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.11.21, “mysql_stmt_prepare()”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section C.2, “Types of Error Values”

mysql_stmt_execute()
Section 21.8.11.1, “mysql_stmt_affected_rows()”
Section 21.8.11.3, “mysql_stmt_attr_set()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.11.17, “mysql_stmt_next_result()”
Section 21.8.11.26,
“mysql_stmt_send_long_data()”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.9, “C API Prepared Statement Data
Structures”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.19, “C API Prepared Statement Handling
of Date and Time Values”
Section 21.8.9.2, “C API Prepared Statement Type
Conversions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 20.9.6.4, “The
prepared_statements_instances Table”

mysql_stmt_fetch()
Section 21.8.11.5, “mysql_stmt_bind_result()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.11.25, “mysql_stmt_row_tell()”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.9, “C API Prepared Statement Data
Structures”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.9.2, “C API Prepared Statement Type
Conversions”

mysql_stmt_fetch_column()
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.11.12, “mysql_stmt_fetch_column()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_field_count()
Section 21.8.11.13, “mysql_stmt_field_count()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_free_result()
Section 21.8.11.3, “mysql_stmt_attr_set()”

3036

Section 21.8.11.14, “mysql_stmt_free_result()”
Section 21.8.11.17, “mysql_stmt_next_result()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_init()
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.15, “mysql_stmt_init()”
Section 21.8.11.21, “mysql_stmt_prepare()”
Section 21.8.9, “C API Prepared Statement Data
Structures”
Section 21.8.11, “C API Prepared Statement Function
Descriptions”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.8, “C API Prepared Statements”

mysql_stmt_insert_id()
Section 21.8.11.16, “mysql_stmt_insert_id()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_next_result()
Section 13.2.1, “CALL Syntax”
Section 21.8.11.17, “mysql_stmt_next_result()”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.20, “C API Support for Prepared CALL
Statements”

mysql_stmt_num_rows()
Section 21.8.11.7, “mysql_stmt_data_seek()”
Section 21.8.11.18, “mysql_stmt_num_rows()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_param_count()
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.19, “mysql_stmt_param_count()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_param_metadata()
Section 21.8.11.20,
“mysql_stmt_param_metadata()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_prepare()
Section 21.8.11.4, “mysql_stmt_bind_param()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.13, “mysql_stmt_field_count()”
Section 21.8.11.21, “mysql_stmt_prepare()”
Section 21.8.11.22, “mysql_stmt_reset()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”

Section 21.8.9, “C API Prepared Statement Data
Structures”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.19, “C API Prepared Statement Handling
of Date and Time Values”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 8.9.3.1, “How the Query Cache Operates”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 20.9.6.4, “The
prepared_statements_instances Table”

mysql_stmt_reset()
Section 21.8.11.3, “mysql_stmt_attr_set()”
Section 21.8.11.22, “mysql_stmt_reset()”
Section 21.8.11.26,
“mysql_stmt_send_long_data()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_result_metadata()
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.9.2, “C API Prepared Statement Type
Conversions”

mysql_stmt_row_seek()
Section 21.8.11.24, “mysql_stmt_row_seek()”
Section 21.8.11.25, “mysql_stmt_row_tell()”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_row_tell()
Section 21.8.11.24, “mysql_stmt_row_seek()”
Section 21.8.11.25, “mysql_stmt_row_tell()”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_send_long_data()
Section 21.8.11.22, “mysql_stmt_reset()”
Section 21.8.11.26,
“mysql_stmt_send_long_data()”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 5.1.4, “Server System Variables”

mysql_stmt_sqlstate()
Section 21.8.11.27, “mysql_stmt_sqlstate()”
Section 21.8.10, “C API Prepared Statement Function
Overview”

3037

Section C.2, “Types of Error Values”

mysql_stmt_store_result()
Section 21.8.11.3, “mysql_stmt_attr_set()”
Section 21.8.11.7, “mysql_stmt_data_seek()”
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.11.18, “mysql_stmt_num_rows()”
Section 21.8.11.24, “mysql_stmt_row_seek()”
Section 21.8.11.25, “mysql_stmt_row_tell()”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.5, “C API Data Structures”
Section 21.8.10, “C API Prepared Statement Function
Overview”

mysql_store_result()
Section C.5.2.14, “Commands out of sync”
Section 14.9.1, “FEDERATED Storage Engine Overview”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.9, “mysql_data_seek()”
Section 21.8.7.13, “mysql_eof()”
Section 21.8.7.17, “mysql_fetch_field()”
Section 21.8.7.21, “mysql_fetch_row()”
Section 21.8.7.22, “mysql_field_count()”
Section 21.8.7.25, “mysql_free_result()”
Section 21.8.7.47, “mysql_next_result()”
Section 21.8.7.48, “mysql_num_fields()”
Section 21.8.7.49, “mysql_num_rows()”
Section 21.8.7.61, “mysql_row_seek()”
Section 21.8.7.62, “mysql_row_tell()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.23,
“mysql_stmt_result_metadata()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 21.8.15.2, “What Results You Can Get from a
Query”
Section 21.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query()
Returns Success”
Section 21.8.4.2, “Writing C API Threaded Client
Programs”

mysql_thread_end()
Section 21.8.12.2, “mysql_thread_end()”
Section 21.8.6, “C API Function Overview”
Section 21.7, “libmysqld, the Embedded MySQL Server
Library”
Section 21.8.4.2, “Writing C API Threaded Client
Programs”

mysql_thread_id()
Section 21.8.7.52, “mysql_ping()”
Section 21.8.7.75, “mysql_thread_id()”

Section 21.8.6, “C API Function Overview”
Section 21.8.16, “Controlling Automatic Reconnection
Behavior”

mysql_thread_init()
Section 21.8.12.1, “my_init()”
Section 21.8.12.2, “mysql_thread_end()”
Section 21.8.12.3, “mysql_thread_init()”
Section 21.8.6, “C API Function Overview”
Section 21.7, “libmysqld, the Embedded MySQL Server
Library”
Section 21.8.4.2, “Writing C API Threaded Client
Programs”

mysql_thread_safe()
Section 21.8.12.4, “mysql_thread_safe()”
Section 21.8.6, “C API Function Overview”

mysql_use_result()
Section C.5.2.14, “Commands out of sync”
Section 21.8.7.9, “mysql_data_seek()”
Section 21.8.7.13, “mysql_eof()”
Section 21.8.7.21, “mysql_fetch_row()”
Section 21.8.7.25, “mysql_free_result()”
Section 21.8.7.47, “mysql_next_result()”
Section 21.8.7.48, “mysql_num_fields()”
Section 21.8.7.49, “mysql_num_rows()”
Section 21.8.7.61, “mysql_row_seek()”
Section 21.8.7.62, “mysql_row_tell()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section C.5.2.8, “Out of memory”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 21.8.15.2, “What Results You Can Get from a
Query”
Section 21.8.4.2, “Writing C API Threaded Client
Programs”

mysql_warning_count()
Section 21.8.7.47, “mysql_next_result()”
Section 21.8.7.77, “mysql_warning_count()”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section 21.8.6, “C API Function Overview”
Section C.2, “Types of Error Values”

3038

3039

Command Index
A | B | C | D | E | G | H | I | K | L | M | N | O | P | R | S | T
| U | V | W | Y | Z

A

[index top [3039]]

Access
Section 13.2.2, “DELETE Syntax”

addgroup
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

addr2line
Section 22.4.1.5, “Using a Stack Trace”

adduser
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

apt-get
Section 2.5.5, “Installing MySQL on Linux Using Native
Package Managers”

B

[index top [3039]]

bash
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 2.4.1, “General Notes on Installing MySQL on
Mac OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 4.2.4, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

bison
Section 2.8.5, “Dealing with Problems Compiling
MySQL”
Section 2.8, “Installing MySQL from Source”
Section 2.8.3, “Installing MySQL Using a Development
Source Tree”

bzr
Section 2.8.3, “Installing MySQL Using a Development
Source Tree”

C

[index top [3039]]

c++filt
Section 22.4.1.5, “Using a Stack Trace”

cat
Section 4.5.1.1, “mysql Options”

chkconfig
Section 2.5.5, “Installing MySQL on Linux Using Native
Package Managers”
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”

chroot
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

CMake
Section C.5.2.17, “Can't initialize character
set”
Section 10.3, “Adding a Character Set”
Section 22.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 6.3.11.2, “Configuring MySQL for SSL”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 2.8.5, “Dealing with Problems Compiling
MySQL”
Section 2.11, “Environment Variables”
Section C.5.4.5, “How to Protect or Change the MySQL
Unix Socket File”
Section 2.8, “Installing MySQL from Source”
Section 2.8.3, “Installing MySQL Using a Development
Source Tree”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”
Section 22.2.5, “MySQL Services for Plugins”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 20.2.1, “Performance Schema Build
Configuration”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 14.10, “The EXAMPLE Storage Engine”
Section 14.9, “The FEDERATED Storage Engine”
Section 5.4, “Tracing mysqld Using DTrace”
Section 4.2.3.3, “Using Option Files”
Using the Test Protocol Trace Plugin
Using Your Own Protocol Trace Plugins
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

3040

cmake
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”
Password-Protecting the memcached Interface through
SASL

cmd
Resetting the Root Password: Windows Systems

cmd.exe
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”

command.com
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”

comp_err
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.1, “Overview of MySQL Programs”

configure
Section 2.11, “Environment Variables”
Section 1.7, “How to Report Bugs or Problems”
Section 1.2, “Typographical and Syntax Conventions”

copy
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”

coreadm
Section 2.6, “Installing MySQL on Solaris and
OpenSolaris”
Section 5.1.3, “Server Command Options”

cp
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”

crash-me
Section 8.12.2, “The MySQL Benchmark Suite”

cron
Section C.5.2.2, “Can't connect to [local]
MySQL server”

Section 13.7.2.2, “CHECK TABLE Syntax”
Section 14.3.1, “MyISAM Startup Options”
Section 5.2.6, “Server Log Maintenance”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 3.5, “Using mysql in Batch Mode”

csh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.4, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

D

[index top [3039]]

date
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

df
Section C.5.1, “How to Determine What Is Causing a
Problem”

Directory Utility
Section 2.4.1, “General Notes on Installing MySQL on
Mac OS X”

drwtsn32.exe
Section 22.4.1.3, “Using pdb to create a Windows
crashdump”

dump
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”

E

[index top [3039]]

emerge
Section 2.5.5, “Installing MySQL on Linux Using Native
Package Managers”

G

[index top [3039]]

gcc
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 21.7.1, “Compiling Programs with libmysqld”
Section 2.12.3, “Problems Using the Perl DBI/DBD
Interface”

3041

gdb
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 22.4.1.4, “Debugging mysqld under gdb”
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

gmake
Section 2.8, “Installing MySQL from Source”
Section 2.7, “Installing MySQL on FreeBSD”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”

GnuPG
Section 2.1.4.2, “Signature Checking Using GnuPG”

gnutar
Section 2.8, “Installing MySQL from Source”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

gogoc
Section 5.1.9.5, “Obtaining an IPv6 Address from a
Broker”

gpg
Section 2.1.4.2, “Signature Checking Using GnuPG”

grep
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 3.3.4.7, “Pattern Matching”

groupadd
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 2.6, “Installing MySQL on Solaris and
OpenSolaris”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

gtar
Section 2.8, “Installing MySQL from Source”
Section 2.6, “Installing MySQL on Solaris and
OpenSolaris”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

gunzip
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”

gzip
Section 1.7, “How to Report Bugs or Problems”

Section 2.4, “Installing MySQL on Mac OS X”

H

[index top [3039]]

hdparm
Section 14.2.13, “InnoDB Startup Options and System
Variables”

help contents
Section 4.5.1.4, “mysql Server-Side Help”

hostname
Section C.5.2.2, “Can't connect to [local]
MySQL server”

I

[index top [3039]]

icc
Section 2.1.6, “Compiler-Specific Build Characteristics”

ifconfig
Section 5.1.9.1, “Verifying System Support for IPv6”

innochecksum
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 4.1, “Overview of MySQL Programs”
Section 1.4, “What Is New in MySQL 5.7”

K

[index top [3039]]

kill
Section C.5.2.2, “Can't connect to [local]
MySQL server”
Section E.6, “Restrictions on XA Transactions”

ksh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.4, “Setting Environment Variables”

L

[index top [3039]]

ldconfig
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”

3042

less
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

ln
Using Symbolic Links for MyISAM Tables on Unix

logger
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

lsof +L1
Section C.5.4.4, “Where MySQL Stores Temporary
Files”

M

[index top [3039]]

m4
Section 2.8, “Installing MySQL from Source”

make
Section 22.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 2.8.5, “Dealing with Problems Compiling
MySQL”
Section 2.8, “Installing MySQL from Source”
Section 2.7, “Installing MySQL on FreeBSD”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.12.3, “Problems Using the Perl DBI/DBD
Interface”

make install
Section 22.2.4.3, “Compiling and Installing Plugin
Libraries”

make package
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.8.4, “MySQL Source-Configuration Options”

make test
Section 2.8.3, “Installing MySQL Using a Development
Source Tree”
Section 2.12.1, “Installing Perl on Unix”
Section 22.1.2, “The MySQL Test Suite”

make VERBOSE=1
Section 2.8.5, “Dealing with Problems Compiling
MySQL”

md5
Section 2.1.4.1, “Verifying the MD5 Checksum”

md5.exe
Section 2.1.4.1, “Verifying the MD5 Checksum”

md5sum
Section 2.1.4.1, “Verifying the MD5 Checksum”

memcached
memcached Plugin for InnoDB
Section 14.2.16, “InnoDB Integration with memcached”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Adapting an Existing memcached Application for the
Integrated memcached Daemon
Adapting an Existing MySQL Schema for a memcached
Application
Adapting DML Statements to memcached Operations
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Section 14.2.16.1, “Benefits of the InnoDB /
memcached Combination”
Controlling Transactional Behavior of the InnoDB
memcached Plugin
Section 14.2.16.3, “Getting Started with InnoDB
Memcached Plugin”
Installing and Configuring the InnoDB memcached
Plugin
Section 14.2.16.7, “Internals of the InnoDB memcached
Plugin”
Password-Protecting the memcached Interface through
SASL
Performing DML and DDL Statements on the
Underlying InnoDB Table
Prerequisites for the InnoDB memcached Plugin
Section 14.2.16.4, “Security Considerations for the
InnoDB memcached Plugin”
Section 14.2.16.8, “Troubleshooting the InnoDB
memcached Plugin”
Tuning Performance of the InnoDB memcached Plugin
Section 15.6, “Using MySQL with memcached”
Section 14.2.16.6, “Using the InnoDB memcached
Plugin with Replication”
Verifying the InnoDB and memcached Setup
Section 14.2.16.5, “Writing Applications for the InnoDB
memcached Interface”

memcapable
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”

memcat
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Verifying the InnoDB and memcached Setup

memcp
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”

3043

memflush
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”

memrm
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”

memslap
Tuning Performance of the InnoDB memcached Plugin

mkdir
Section 13.1.8, “CREATE DATABASE Syntax”

mklink
Using Symbolic Links for Databases on Windows
Section 1.4, “What Is New in MySQL 5.7”

more
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

mv
Section 5.2.6, “Server Log Maintenance”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”

my_print_defaults
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.7, “MySQL Program Development Utilities”
Section 4.1, “Overview of MySQL Programs”

myisam_ftdump
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 12.9, “Full-Text Search Functions”
Section 4.1, “Overview of MySQL Programs”

myisamchk
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 14.3.1, “MyISAM Startup Options”

Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.7.5.21, “SHOW INDEX Syntax”
Section 13.7.5.35, “SHOW TABLE STATUS Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 10.5, “Character Set Configuration”
Section 14.3.3.3, “Compressed Table Characteristics”
Section 14.3.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 22.4.1, “Debugging a MySQL Server”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 14.3.3.2, “Dynamic Table Characteristics”
Section 8.10.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 7.6.2, “How to Check MyISAM Tables for
Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section E.10.3, “Limits on Table Size”
Section 17.3.4, “Maintenance of Partitions”
Section 22.4.1.7, “Making a Test Case If You
Experience Table Corruption”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 4.6.3.4, “Other myisamchk Options”
Section 8.2.5, “Other Optimization Tips”
Section 4.1, “Overview of MySQL Programs”
Section 14.3.4.2, “Problems from Tables Not Being
Closed Properly”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
Section 14.3.3.1, “Static (Fixed-Length) Table
Characteristics”
Section 8.11.1, “System Factors and Startup Parameter
Tuning”
Section 14.3, “The MyISAM Storage Engine”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 22.4.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Using Symbolic Links for MyISAM Tables on Unix
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

myisamchk *.MYI
Section 7.6.3, “How to Repair MyISAM Tables”

3044

myisamchk tbl_name
Section 7.6.2, “How to Check MyISAM Tables for
Errors”

myisamlog
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.1, “Overview of MySQL Programs”

myisampack
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.8.1, “MERGE Table Advantages and
Disadvantages”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 14.3.3.3, “Compressed Table Characteristics”
Section 8.10.5, “External Locking”
Section E.10.3, “Limits on Table Size”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 8.4.1, “Optimizing Data Size”
Section 4.1, “Overview of MySQL Programs”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 13.1.14.3, “Silent Column Specification
Changes”
Section 14.8, “The MERGE Storage Engine”
Section 14.3, “The MyISAM Storage Engine”

mysql
Section 1.8.2.5, “'--' as the Start of a Comment”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 4.5.1.4, “mysql Server-Side Help”
Section 4.5.1.6, “mysql Tips”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.6.1, “BEGIN ... END Compound-
Statement Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.8.3, “HELP Syntax”
Section C.5.2.15, “Ignoring user”
Section 14.2.14, “InnoDB Backup and Recovery”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 21.8.7.14, “mysql_errno()”
Section 21.8.7.71, “mysql_sqlstate()”
Section C.5.2.8, “Out of memory”
Section 17.2.3.1, “RANGE COLUMNS partitioning”

Section 13.7.1.6, “REVOKE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 6.3.2, “Adding User Accounts”
Section 7.1, “Backup and Recovery Types”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 9.6, “Comment Syntax”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 3.1, “Connecting to and Disconnecting from the
Server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 5.1.9.4, “Connecting Using IPv6 Nonlocal Host
Addresses”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host
Address”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 21.8.16, “Controlling Automatic Reconnection
Behavior”
Section 14.2.12.5, “Controlling Optimizer Statistics
Estimation”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 2.10.5, “Copying MySQL Databases to Another
Machine”
Section 3.3.1, “Creating and Selecting a Database”
Section 14.2.5.1, “Creating the InnoDB Tablespace”
Section 2.3.5.6, “Customizing the PATH for MySQL
Tools”
Section 22.4.2, “Debugging a MySQL Client”
Section 18.1, “Defining Stored Programs”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the
Time Zone Tables”
Disabling mysql Auto-Reconnect
Section 2.10.2, “Downgrading MySQL”
Enabling InnoDB Monitors
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 3.2, “Entering Queries”
Section 2.11, “Environment Variables”
Section 18.4.2, “Event Scheduler Configuration”
Section 7.3, “Example Backup and Recovery Strategy”
Section 21.8.3, “Example C API Client Programs”
Section 3.6, “Examples of Common Queries”

3045

Section 14.2.11.5, “Examples of Online DDL”
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 4.5.1.5, “Executing SQL Statements from a
Text File”
Chapter 12, Functions and Operators
Section 2.4.1, “General Notes on Installing MySQL on
Mac OS X”
Section 14.2.2.11, “How to Cope with Deadlocks”
Section C.5.1, “How to Determine What Is Causing a
Problem”
Section 1.7, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 12.14, “Information Functions”
Input-Line Editing
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 4.2.1, “Invoking MySQL Programs”
Section 7.4.5.1, “Making a Copy of a Database”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 8.12.1, “Measuring the Speed of Expressions
and Functions”
Section 15.7, “MySQL Proxy”
Section 10.6, “MySQL Server Time Zone Support”
Section 8.2.1.19, “Optimizing LIMIT Queries”
Section 4.2.3.6, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 4.1, “Overview of MySQL Programs”
Section C.5.2.10, “Packet Too Large”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.3.8, “Pluggable Authentication”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”
Section 2.9.1.1, “Problems Running
mysql_install_db”
Section 4.2.3.2, “Program Option Modifiers”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.4.1.27, “Replication of Server-Side Help
Tables”
Resetting the Root Password: Generic Instructions
Section E.9, “Restrictions on Pluggable Authentication”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 5.1.3, “Server Command Options”
Section C.3, “Server Error Codes and Messages”
Section 5.1.4, “Server System Variables”
Section 5.1.10, “Server-Side Help”
Section 12.18.5, “Spatial Analysis Functions”
Section 4.2.3, “Specifying Program Options”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”

Section 2.3.5.7, “Starting MySQL as a Windows
Service”
Section 9.1.1, “String Literals”
Section 11.4.3, “The BLOB and TEXT Types”
Section 6.3.9.5, “The Cleartext Client-Side
Authentication Plugin”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 6.3.9.6, “The Socket Peer-Credential
Authentication Plugin”
Section 18.3.1, “Trigger Syntax and Examples”
Section 14.2.17.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Chapter 3, Tutorial
Section 1.2, “Typographical and Syntax Conventions”
Unicode Support on Windows
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 3.5, “Using mysql in Batch Mode”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”
Section 7.4, “Using mysqldump for Backups”
Section 7.3.2, “Using Backups for Recovery”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”
Section 4.2.3.5, “Using Options to Set Program
Variables”
Section 22.4.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 6.3.11.3, “Using SSL Connections”
Using the --safe-updates Option
Using the Test Protocol Trace Plugin
Using Your Own Protocol Trace Plugins
Section 1.4, “What Is New in MySQL 5.7”
Section 2.3.8, “Windows Postinstallation Procedures”
Section 12.11, “XML Functions”

mysql < dump_file
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”

mysql ...
Section 22.4.1.1, “Compiling MySQL for Debugging”

mysql {start|stop}
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

mysql-server
Section 2.7, “Installing MySQL on FreeBSD”

mysql-test-run.pl
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 22.1.2, “The MySQL Test Suite”
Section 4.2.3.3, “Using Option Files”

3046

mysql-test-run.pl test_name
Section 22.1.2, “The MySQL Test Suite”

mysql.exe
Unicode Support on Windows

mysql.script
Section 2.4.1, “General Notes on Installing MySQL on
Mac OS X”

mysql.server
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 2.5, “Installing MySQL on Linux”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”
Section C.5.4.6, “Time Zone Problems”

mysql.server stop
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”

mysql_config
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”
Section 21.8.4.1, “Building C API Client Programs”
Section 21.7.1, “Compiling Programs with libmysqld”
Section 2.8.5, “Dealing with Problems Compiling
MySQL”
Section 21.8.1, “MySQL C API Implementations”
Section 4.1, “Overview of MySQL Programs”
Section 22.2.2, “Plugin API Components”

mysql_config options
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

mysql_config_editor
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 2.11, “Environment Variables”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 4.2.3.3, “Using Option Files”

mysql_config_editor options
command
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

mysql_install_db
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 6.3.2, “Adding User Accounts”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 2.5.5, “Installing MySQL on Linux Using Native
Package Managers”
Section 2.4.2, “Installing MySQL on Mac OS X Using
Native Packages”
Section 2.6.2, “Installing MySQL on OpenSolaris Using
IPS”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”
Section 14.2.6.7, “Limits on InnoDB Tables”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 4.1, “Overview of MySQL Programs”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section 2.9.1.1, “Problems Running
mysql_install_db”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 5.1.3, “Server Command Options”
Section 5.1.2, “Server Configuration Defaults”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.1.10, “Server-Side Help”
Section 5.3.1, “Setting Up Multiple Data Directories”

3047

mysql_plugin
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.1, “Overview of MySQL Programs”

mysql_secure_installation
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 2.5.5, “Installing MySQL on Linux Using Native
Package Managers”
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository”
Section 2.6.2, “Installing MySQL on OpenSolaris Using
IPS”
Section 2.6.1, “Installing MySQL on Solaris Using a
Solaris PKG”
Section 4.1, “Overview of MySQL Programs”
Section 2.9.2, “Securing the Initial MySQL Accounts”

mysql_server_config
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

mysql_stmt_execute()
Section 5.1.6, “Server Status Variables”

mysql_stmt_prepare()
Section 5.1.6, “Server Status Variables”

mysql_tzinfo_to_sql
Section 4.4.6, “mysql_tzinfo_to_sql — Load the
Time Zone Tables”
Section 10.6, “MySQL Server Time Zone Support”
Section 4.1, “Overview of MySQL Programs”

mysql_tzinfo_to_sql
arguments
Section 4.4.6, “mysql_tzinfo_to_sql — Load the
Time Zone Tables”

mysql_upgrade
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 2.10.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”

Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 2.10.2, “Downgrading MySQL”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password
Plugin”
Section 4.1, “Overview of MySQL Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 20.2.1, “Performance Schema Build
Configuration”
Section 6.2.2, “Privilege System Grant Tables”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 16.4.1.27, “Replication of Server-Side Help
Tables”
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”
Section 5.1.3, “Server Command Options”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 2.10.1, “Upgrading MySQL”
Section 2.3.7, “Upgrading MySQL on Windows”
Section 2.10.1.1, “Upgrading MySQL with the MySQL
Yum Repository”
Section 1.4, “What Is New in MySQL 5.7”

mysql_waitpid
Section 4.6.10, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.1, “Overview of MySQL Programs”

mysql_waitpid()
Section 4.6.10, “mysql_waitpid — Kill Process and
Wait for Its Termination”

mysql_zap
Section 4.6.11, “mysql_zap — Kill Processes That
Match a Pattern”
Section C.5.2.2, “Can't connect to [local]
MySQL server”
Section 4.1, “Overview of MySQL Programs”

mysqlaccess
Section 1.7, “How to Report Bugs or Problems”

mysqladmin
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section C.5.2.2, “Can't connect to [local]
MySQL server”
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.1.17, “DROP DATABASE Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 16.3.1.1, “Backing Up a Slave Using
mysqldump”

3048

Section 4.2.2, “Connecting to the MySQL Server”
Section 2.3.5.6, “Customizing the PATH for MySQL
Tools”
Section 22.4.1, “Debugging a MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 21.8.3, “Example C API Client Programs”
Section 2.4.1, “General Notes on Installing MySQL on
Mac OS X”
Section C.5.1, “How to Determine What Is Causing a
Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 5.2, “MySQL Server Logs”
Section 4.1, “Overview of MySQL Programs”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.9, “Restrictions on Pluggable Authentication”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.3.5.7, “Starting MySQL as a Windows
Service”
Section 2.3.5.5, “Starting MySQL from the Windows
Command Line”
Section 6.3.9.5, “The Cleartext Client-Side
Authentication Plugin”
Section 5.1.12, “The Shutdown Process”
Section 8.11.2, “Tuning Server Parameters”
Section 2.3.7, “Upgrading MySQL on Windows”
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

mysqladmin debug
Section 13.7.1.4, “GRANT Syntax”
Section 22.4.1, “Debugging a MySQL Server”
Section 18.4.5, “Event Scheduler Status”
Section 6.2.1, “Privileges Provided by MySQL”

mysqladmin extended-status
Section 13.7.5.34, “SHOW STATUS Syntax”

mysqladmin flush-hosts
Section C.5.2.6, “Host 'host_name' is blocked”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”

Section 5.1.4, “Server System Variables”

mysqladmin flush-logs
Section 7.3.3, “Backup Strategy Summary”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2.6, “Server Log Maintenance”
Section 5.2.4, “The Binary Log”
Section 5.2.2, “The Error Log”
Section 16.2.2.1, “The Slave Relay Log”

mysqladmin flush-privileges
Section 6.2.7, “Causes of Access-Denied Errors”
Section 2.10.5, “Copying MySQL Databases to Another
Machine”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 6.2.2, “Privilege System Grant Tables”
Section 2.9.1.1, “Problems Running
mysql_install_db”
Section 5.1.3, “Server Command Options”
Section 6.2.6, “When Privilege Changes Take Effect”

mysqladmin flush-tables
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 8.10.5, “External Locking”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 7.6.1, “Using myisamchk for Crash Recovery”

mysqladmin flush-xxx
Section 6.3.2, “Adding User Accounts”

mysqladmin kill
Section 13.7.6.4, “KILL Syntax”
Section C.5.2.9, “MySQL server has gone away”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section 12.16, “Miscellaneous Functions”
Section 6.2.1, “Privileges Provided by MySQL”

mysqladmin password
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

mysqladmin processlist
Section 13.7.6.4, “KILL Syntax”
Section 21.8.7.44, “mysql_list_processes()”
Section 13.7.5.28, “SHOW PROCESSLIST Syntax”
Section 6.3.2, “Adding User Accounts”
Section 8.12.5, “Examining Thread Information”
Section 6.1.3, “Making MySQL Secure Against
Attackers”

3049

Section 22.1.1, “MySQL Threads”
Section 6.2.1, “Privileges Provided by MySQL”

mysqladmin processlist
status
Section 22.4.1, “Debugging a MySQL Server”

mysqladmin refresh
Section 6.3.2, “Adding User Accounts”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 5.2.6, “Server Log Maintenance”

mysqladmin reload
Section 6.3.2, “Adding User Accounts”
Section 1.7, “How to Report Bugs or Problems”
Section 6.2.2, “Privilege System Grant Tables”
Section 2.9.1.1, “Problems Running
mysql_install_db”
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.2.6, “When Privilege Changes Take Effect”

mysqladmin reload version
Section 1.7, “How to Report Bugs or Problems”

mysqladmin shutdown
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 14.2.5.1, “Creating the InnoDB Tablespace”
Section 22.4.1.2, “Creating Trace Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.4.2, “Installing MySQL on Mac OS X Using
Native Packages”
Section 22.4.1.7, “Making a Test Case If You
Experience Table Corruption”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.22, “Replication and Temporary Tables”
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”
Section 2.3.5.7, “Starting MySQL as a Windows
Service”
Section 5.1.12, “The Shutdown Process”
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

mysqladmin status
Section 21.8.7.73, “mysql_stat()”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”

mysqladmin variables
Section C.5.2.9, “MySQL server has gone away”
Section 13.7.5.38, “SHOW VARIABLES Syntax”

mysqladmin variables
extended-status processlist
Section 1.7, “How to Report Bugs or Problems”

mysqladmin ver
Section 22.4.1.1, “Compiling MySQL for Debugging”

mysqladmin version
Section C.5.2.2, “Can't connect to [local]
MySQL server”
Section C.5.2.9, “MySQL server has gone away”
Section 1.7, “How to Report Bugs or Problems”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

mysqlanalyze
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

mysqlbackup
Section 14.2.14, “InnoDB Backup and Recovery”
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”

mysqlbinlog
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 13.7.6.1, “BINLOG Syntax”
Section 14.2.14, “InnoDB Backup and Recovery”
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.31, “SHOW RELAYLOG EVENTS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 5.4.1.2, “Command Probes”
Section 16.1.3.1, “GTID Concepts”
Section 16.4.5, “How to Report Replication Bugs or
Problems”
Section C.5.8, “Known Issues in MySQL”
Section 12.16, “Miscellaneous Functions”
Section 4.1, “Overview of MySQL Programs”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”

3050

Section 7.5.2, “Point-in-Time Recovery Using Event
Positions”
Section 7.5.1, “Point-in-Time Recovery Using Event
Times”
Section 16.4.1.34, “Replication and Variables”
Section 4.6.7.4, “Specifying the mysqlbinlog Server
ID”
Section 5.2.4, “The Binary Log”
Section 16.2.2.1, “The Slave Relay Log”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”
Section 7.3.2, “Using Backups for Recovery”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 1.4, “What Is New in MySQL 5.7”

mysqlbinlog binary-log-file
| mysql
Section 22.4.1.7, “Making a Test Case If You
Experience Table Corruption”

mysqlbinlog|mysql
Section C.5.8, “Known Issues in MySQL”

mysqlbug
Section 4.4.2, “mysqlbug — Generate Bug Report”

mysqlcheck
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 13.1.1, “ALTER DATABASE Syntax”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 2.10.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 17.3.4, “Maintenance of Partitions”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”
Section 14.3, “The MyISAM Storage Engine”

mysqld
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.3.1, “mysqld — The MySQL Server”
Section 5.4.1, “mysqld DTrace Probe Reference”

Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section C.5.2.2, “Can't connect to [local]
MySQL server”
Section C.5.2.13, “Can't create/write to file”
Section C.5.2.17, “Can't initialize character
set”
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section C.5.2.4, “Client does not support
authentication protocol”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section C.5.2.6, “Host 'host_name' is blocked”
Section C.5.2.15, “Ignoring user”
Section 14.2.14, “InnoDB Backup and Recovery”
Section 14.2.3, “InnoDB Configuration”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.17, “InnoDB Troubleshooting”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.3.1, “MyISAM Startup Options”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.50, “mysql_options()”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.5.38, “SHOW VARIABLES Syntax”
Section C.5.2.7, “Too many connections”
Section 22.3.2, “Adding a New User-Defined Function”
Section 22.3, “Adding New Functions to MySQL”
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4.1, “Binary Logging Formats”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 2.1.2.2, “Choosing a Distribution Format”
Section 9.6, “Comment Syntax”
Section C.5.2.11, “Communication Errors and Aborted
Connections”
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 6.3.11.2, “Configuring MySQL for SSL”
Controlling Transactional Behavior of the InnoDB
memcached Plugin
Section 14.3.4.1, “Corrupted MyISAM Tables”
Section 14.2.5.1, “Creating the InnoDB Tablespace”
Section 22.4.1.2, “Creating Trace Files”
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 22.4.1, “Debugging a MySQL Server”

3051

Section 22.4, “Debugging and Porting MySQL”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Enabling InnoDB Monitors
Section 2.11, “Environment Variables”
Section 8.10.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.12.5.2, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 8.2.1.20, “How to Avoid Full Table Scans”
Section C.5.1, “How to Determine What Is Causing a
Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 9.2.2, “Identifier Case Sensitivity”
Section 12.14, “Information Functions”
Section 14.2.5.2, “InnoDB File-Per-Table Mode”
Installing and Configuring the InnoDB memcached
Plugin
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 2.4.2, “Installing MySQL on Mac OS X Using
Native Packages”
Section 2.6, “Installing MySQL on Solaris and
OpenSolaris”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 22.4.1.7, “Making a Test Case If You
Experience Table Corruption”
Section 6.1.3, “Making MySQL Secure Against
Attackers”

Section 12.16, “Miscellaneous Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 14.2.6.2, “Moving or Copying InnoDB Tables
to Another Machine”
Section 2.3.1, “MySQL Installation Layout on Microsoft
Windows”
Chapter 5, MySQL Server Administration
Section 4.3, “MySQL Server and Server-Startup
Programs”
Section 5.2, “MySQL Server Logs”
Section 10.6, “MySQL Server Time Zone Support”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 1.8, “MySQL Standards Compliance”
Section C.5.6, “Optimizer-Related Issues”
Section 21.7.3, “Options with the Embedded Server”
Section 4.1, “Overview of MySQL Programs”
Section 14.2.11.1, “Overview of Online DDL”
Section C.5.2.10, “Packet Too Large”
Section 20.2.2, “Performance Schema Startup
Configuration”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section 6.2.2, “Privilege System Grant Tables”
Section 14.3.4.2, “Problems from Tables Not Being
Closed Properly”
Section 2.9.1.1, “Problems Running
mysql_install_db”
Section C.5.3.1, “Problems with File Permissions”
Section 4.2.3.2, “Program Option Modifiers”
Section 8.9.3.3, “Query Cache Configuration”
Section 16.1.4.1, “Replication and Binary Logging
Option and Variable Reference”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 16.1.4.2, “Replication Master Options and
Variables”
Section 16.2.2, “Replication Relay and Status Logs”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Resetting the Root Password: Generic Instructions
Resetting the Root Password: Unix Systems
Section C.5.5.5, “Rollback Failure for Nontransactional
Tables”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 6.1.4, “Security-Related mysqld Options and
Variables”
Section 2.3.5.3, “Selecting a MySQL Server Type”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”
Server Plugin Status and System Variables
Section 5.1.11, “Server Response to Signals”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 10.2, “Setting the Error Message Language”

3052

Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 21.8.2, “Simultaneous MySQL Server and
MySQL Connector/C Installations”
Section 14.2.17.2, “Starting InnoDB on a Corrupted
Database”
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”
Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 5.3.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 2.3.5.7, “Starting MySQL as a Windows
Service”
Section 2.3.5.5, “Starting MySQL from the Windows
Command Line”
Section 10.6.1, “Staying Current with Time Zone
Changes”
Section 16.3.6, “Switching Masters During Failover”
Section 8.10.2, “Table Locking Issues”
Section C.5.2.19, “Table-Corruption Issues”
Section 2.3.5.8, “Testing The MySQL Installation”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
Section 5.2.4, “The Binary Log”
Section 22.4.3, “The DBUG Package”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”
Section 8.9.3, “The MySQL Query Cache”
Section 5.1, “The MySQL Server”
Section 22.1.2, “The MySQL Test Suite”
Section 5.2.5, “The Slow Query Log”
Section C.5.4.6, “Time Zone Problems”
Section 5.4, “Tracing mysqld Using DTrace”
Section 14.2.17.1, “Troubleshooting InnoDB I/O
Problems”
Section 2.3.6, “Troubleshooting a Microsoft Windows
MySQL Server Installation”
Section 8.11.2, “Tuning Server Parameters”
Section 1.2, “Typographical and Syntax Conventions”
Section 2.10.1, “Upgrading MySQL”
Section 2.3.7, “Upgrading MySQL on Windows”
Section 22.3.2.6, “User-Defined Function Security
Precautions”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 22.4.1.3, “Using pdb to create a Windows
crashdump”
Section 22.4.1.5, “Using a Stack Trace”
Section 4.2.3.3, “Using Option Files”
Section 22.4.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Using Symbolic Links for MyISAM Tables on Unix
Section 2.4.5, “Using the Bundled MySQL on Mac OS
X Server”

Section 14.2.16.6, “Using the InnoDB memcached
Plugin with Replication”
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”
Section 6.2.6, “When Privilege Changes Take Effect”
Section C.5.4.4, “Where MySQL Stores Temporary
Files”
Section 22.2.4, “Writing Plugins”

mysqld mysqld.trace
Section 22.4.1.2, “Creating Trace Files”

mysqld-
Section 2.10.1, “Upgrading MySQL”

mysqld-debug
Section 2.1.2.2, “Choosing a Distribution Format”
Section 22.4.1.2, “Creating Trace Files”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.3.5.3, “Selecting a MySQL Server Type”
Section 5.3.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”

mysqld_multi
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”

mysqld_safe
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section 14.2.17, “InnoDB Troubleshooting”
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 14.2.5.1, “Creating the InnoDB Tablespace”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 8.11.4.2, “Enabling Large Page Support”
Section C.5.4.5, “How to Protect or Change the MySQL
Unix Socket File”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 10.6, “MySQL Server Time Zone Support”
Section 4.2.3.6, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 4.1, “Overview of MySQL Programs”
Section C.5.2.10, “Packet Too Large”

3053

Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section C.5.3.1, “Problems with File Permissions”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.2, “Server Configuration Defaults”
Section 5.1.4, “Server System Variables”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”
Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”
Section 5.2.2, “The Error Log”
Section C.5.4.6, “Time Zone Problems”
Section 8.11.2, “Tuning Server Parameters”
Section 4.2.3.3, “Using Option Files”

mysqld_safe options
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

mysqldump
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.5, “mysqldump Tips”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.2.14, “InnoDB Backup and Recovery”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”
Section 16.3.1.3, “Backing Up a Master or Slave by
Making It Read Only”
Section 16.3.1.1, “Backing Up a Slave Using
mysqldump”
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 7.3.3, “Backup Strategy Summary”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 14.2.5.7, “Changing the Number or Size
of InnoDB Log Files and Resizing the InnoDB
Tablespace”
Section 2.10.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 4.2.2, “Connecting to the MySQL Server”
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 2.10.5, “Copying MySQL Databases to Another
Machine”
Section 14.2.5.5, “Copying Tablespaces to Another
Server (Transportable Tablespaces)”

Section 14.2.6.1, “Creating InnoDB Tables”
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 2.3.5.6, “Customizing the PATH for MySQL
Tools”
Section 7.2, “Database Backup Methods”
Section 14.2.10.4, “Defragmenting a Table”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 2.10.2, “Downgrading MySQL”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”
Section 14.2.5.3, “Enabling and Disabling File-Per-
Table Mode”
Section 7.3.1, “Establishing a Backup Policy”
Section 7.3, “Example Backup and Recovery Strategy”
Section 1.8.2.4, “Foreign Key Differences”
Section 1.7, “How to Report Bugs or Problems”
Section 16.1.1, “How to Set Up Replication”
Section 9.2.2, “Identifier Case Sensitivity”
Section 7.4.5.1, “Making a Copy of a Database”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 14.2.6.2, “Moving or Copying InnoDB Tables
to Another Machine”
Section 5.2, “MySQL Server Logs”
Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 4.1, “Overview of MySQL Programs”
Section C.5.5.8, “Problems with Floating-Point Values”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section E.8, “Restrictions on Performance Schema”
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”
Section E.5, “Restrictions on Views”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 16.1.1.8, “Setting Up Replication with Existing
Data”
Section C.5.5.7, “Solving Problems with No Matching
Rows”
Section 4.2.3, “Specifying Program Options”

3054

Section 2.3.5.7, “Starting MySQL as a Windows
Service”
Section 11.4.3, “The BLOB and TEXT Types”
Section 8.9.1, “The InnoDB Buffer Pool”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 10.1.11, “Upgrading from Previous to Current
Unicode Support”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”
Section 7.4, “Using mysqldump for Backups”
Section 7.4.5.5, “Using mysqldump to Test for
Upgrade Incompatibilities”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 16.3.1, “Using Replication for Backups”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 14.2.16.6, “Using the InnoDB memcached
Plugin with Replication”
Section 1.4, “What Is New in MySQL 5.7”
Section 12.11, “XML Functions”

mysqldump mysql
Section 6.2.7, “Causes of Access-Denied Errors”

mysqldumpslow
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.2.5, “The Slow Query Log”

mysqlfailover
Section 16.3.6, “Switching Masters During Failover”

mysqlhotcopy
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.1, “Overview of MySQL Programs”

mysqlhotcopy arguments
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

mysqlimport
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 7.1, “Backup and Recovery Types”
Section 2.10.5, “Copying MySQL Databases to Another
Machine”
Section 7.2, “Database Backup Methods”

Section 2.10.2, “Downgrading MySQL”
Section 4.1, “Overview of MySQL Programs”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

mysqloptimize
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

mysqlrepair
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

mysqlshow
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 13.7.5.13, “SHOW DATABASES Syntax”
Section 13.7.5.21, “SHOW INDEX Syntax”
Section 13.7.5.35, “SHOW TABLE STATUS Syntax”
Section 4.2.2, “Connecting to the MySQL Server”
Section 21.8.3, “Example C API Client Programs”
Section 4.1, “Overview of MySQL Programs”
Section 2.3.5.8, “Testing The MySQL Installation”
Section 2.3.8, “Windows Postinstallation Procedures”

mysqlshow db_name
Section 13.7.5.36, “SHOW TABLES Syntax”

mysqlshow db_name tbl_name
Section 13.7.5.5, “SHOW COLUMNS Syntax”

mysqlshow mysql user
Section C.5.2.15, “Ignoring user”

mysqlslap
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 6.3.9.5, “The Cleartext Client-Side
Authentication Plugin”
Section 8.12.3, “Using Your Own Benchmarks”

mysqltest
Section 22.1.2, “The MySQL Test Suite”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”

N

[index top [3039]]

ndb_restore
Section 7.1, “Backup and Recovery Types”

NET
Section 2.3.5.7, “Starting MySQL as a Windows
Service”

3055

NET START
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”

NET START MySQL
Section 2.3.5.7, “Starting MySQL as a Windows
Service”
Section 2.3.6, “Troubleshooting a Microsoft Windows
MySQL Server Installation”
Section 2.3.7, “Upgrading MySQL on Windows”

NET STOP
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”

NET STOP MySQL
Section 2.3.5.7, “Starting MySQL as a Windows
Service”

Netinfo Manager
Section 2.4.1, “General Notes on Installing MySQL on
Mac OS X”

nm
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 22.4.1.5, “Using a Stack Trace”

O

[index top [3039]]

openssl
Section 6.3.11.5, “Setting Up SSL Certificates and
Keys for MySQL”

openssl md5 package_name
Section 2.1.4.1, “Verifying the MD5 Checksum”

P

[index top [3039]]

perror
Section 4.8.1, “perror — Explain Error Codes”
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section C.5.2.13, “Can't create/write to file”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.2.17.6, “Operating System Error Codes”
Section 4.1, “Overview of MySQL Programs”
Section C.1, “Sources of Error Information”

pfexec
Section 2.6.2, “Installing MySQL on OpenSolaris Using
IPS”

Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

PGP
Section 2.1.4.2, “Signature Checking Using GnuPG”

ping6
Section 5.1.9.5, “Obtaining an IPv6 Address from a
Broker”

pkg
Section 2.6.2, “Installing MySQL on OpenSolaris Using
IPS”

pkgadd
Section 2.6.1, “Installing MySQL on Solaris Using a
Solaris PKG”

pkgrm
Section 2.6.1, “Installing MySQL on Solaris Using a
Solaris PKG”

ppm
Section 2.12, “Perl Installation Notes”

ps
Section 4.6.11, “mysql_zap — Kill Processes That
Match a Pattern”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 8.11.4.1, “How MySQL Uses Memory”
Section C.5.1, “How to Determine What Is Causing a
Problem”
Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”

ps auxw
Section 4.2.2, “Connecting to the MySQL Server”

ps xa | grep mysqld
Section C.5.2.2, “Can't connect to [local]
MySQL server”

R

[index top [3039]]

rename
Section 5.2.6, “Server Log Maintenance”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”

replace
Section 1.8.2.5, “'--' as the Start of a Comment”
Section 4.8.2, “replace — A String-Replacement
Utility”

3056

Section 4.1, “Overview of MySQL Programs”
Section 16.3.3, “Using Replication for Scale-Out”

replace arguments
Section 4.8.2, “replace — A String-Replacement
Utility”

resolve_stack_dump
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.1, “Overview of MySQL Programs”
Section 22.4.1.5, “Using a Stack Trace”

resolveip
Section 4.8.3, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 4.1, “Overview of MySQL Programs”

rm
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”

rpm
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.1.4.4, “Signature Checking Using RPM”

rpmbuild
Section 2.8, “Installing MySQL from Source”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”

rsync
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”

S

[index top [3039]]

scp
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”

sed
Section 3.3.4.7, “Pattern Matching”

service
Section 2.5.5, “Installing MySQL on Linux Using Native
Package Managers”

Service Control Manager
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 2.3.5.7, “Starting MySQL as a Windows
Service”

Services
Section 2.3.5.7, “Starting MySQL as a Windows
Service”

setenv
Section 4.2.4, “Setting Environment Variables”

sh
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.4, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

sleep
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

Start>Run>cmd.exe
Section 6.3.11.5, “Setting Up SSL Certificates and
Keys for MySQL”

strings
Section 6.1.1, “Security Guidelines”

sudo
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

System Preferences...
Section 2.4.4, “Installing and Using the MySQL
Preference Pane”

T

[index top [3039]]

tar
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 2.1.2.2, “Choosing a Distribution Format”
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 3.3, “Creating and Using a Database”
Section 1.7, “How to Report Bugs or Problems”
Section 2.8, “Installing MySQL from Source”

3057

Section 2.4, “Installing MySQL on Mac OS X”
Section 2.6, “Installing MySQL on Solaris and
OpenSolaris”
Section 2.6.1, “Installing MySQL on Solaris Using a
Solaris PKG”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.12.1, “Installing Perl on Unix”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”
Section 21.8.2, “Simultaneous MySQL Server and
MySQL Connector/C Installations”

tcpdump
Section 6.1.1, “Security Guidelines”

tcsh
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section 2.4.1, “General Notes on Installing MySQL on
Mac OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.4, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

tee
Section 4.5.1.2, “mysql Commands”

telnet
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Section 6.1.1, “Security Guidelines”
Verifying the InnoDB and memcached Setup

Terminal
Section 2.4, “Installing MySQL on Mac OS X”

Text in this style
Section 1.2, “Typographical and Syntax Conventions”

top
Section C.5.1, “How to Determine What Is Causing a
Problem”

U

[index top [3039]]

ulimit
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 8.11.4.2, “Enabling Large Page Support”

Section C.5.2.10, “Packet Too Large”
Prerequisites for the InnoDB memcached Plugin
Section 5.1.3, “Server Command Options”

useradd
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 2.6, “Installing MySQL on Solaris and
OpenSolaris”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

usermod
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”

V

[index top [3039]]

vi
Section 4.5.1.2, “mysql Commands”
Section 3.3.4.7, “Pattern Matching”

W

[index top [3039]]

WinDbg
Section 22.4.1.3, “Using pdb to create a Windows
crashdump”

winMd5Sum
Section 2.1.4.1, “Verifying the MD5 Checksum”

WinZip
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 2.8, “Installing MySQL from Source”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”

WordPad
Section 13.2.6, “LOAD DATA INFILE Syntax”

Y

[index top [3039]]

yacc
Section 2.8.5, “Dealing with Problems Compiling
MySQL”
Section 9.3, “Reserved Words”

yum
Section 2.5.5, “Installing MySQL on Linux Using Native
Package Managers”

3058

Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”

yum install MySQL*rpm
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”

yum update
Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository”

Z

[index top [3039]]

zip
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 1.7, “How to Report Bugs or Problems”

zsh
Section 4.2.4, “Setting Environment Variables”

3059

Function Index
Symbols | A | B | C | D | E | F | G | H | I | L | M | N | O | P
| Q | R | S | T | U | V | W | X | Y

Symbols

[index top [3059]]

%
Section 1.8.1, “MySQL Extensions to Standard SQL”

A

[index top [3059]]

ABS()
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section 22.3, “Adding New Functions to MySQL”
Section 12.6.2, “Mathematical Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

ACOS()
Section 12.6.2, “Mathematical Functions”

ADDDATE()
Section 12.7, “Date and Time Functions”

addslashes()
Section 6.1.7, “Client Programming Security
Guidelines”

ADDTIME()
Section 12.7, “Date and Time Functions”

AES_DECRYPT()
Section 12.13, “Encryption and Compression
Functions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

AES_ENCRYPT()
Section 12.13, “Encryption and Compression
Functions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

Area()
Section 12.18.5.2, “Geometry Property Functions”
MultiPolygon Functions

Polygon Functions

AsBinary()
Section 12.18.4.5, “Fetching Spatial Data”
Section 12.18.5.1, “Geometry Format Conversion
Functions”

ASCII()
Section 13.8.3, “HELP Syntax”
Section 12.5, “String Functions”

ASIN()
Section 12.6.2, “Mathematical Functions”

AsText()
Section 12.18.4.5, “Fetching Spatial Data”
Section 12.18.5.1, “Geometry Format Conversion
Functions”

AsWKB()
Section 12.18.5.1, “Geometry Format Conversion
Functions”

AsWKT()
Section 12.18.5.1, “Geometry Format Conversion
Functions”

ATAN()
Section 12.6.2, “Mathematical Functions”

ATAN2()
Section 12.6.2, “Mathematical Functions”

AVG()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 11.1.2, “Date and Time Type Overview”
Loose Index Scan
Section 11.4.4, “The ENUM Type”
Section 11.4.5, “The SET Type”

B

[index top [3059]]

BdMPolyFromText()
Creating Geometry Values Using WKT Functions

BdMPolyFromWKB()
Creating Geometry Values Using WKB Functions

BdPolyFromText()
Creating Geometry Values Using WKT Functions

BdPolyFromWKB()
Creating Geometry Values Using WKB Functions

3060

BENCHMARK()
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 8.12.1, “Measuring the Speed of Expressions
and Functions”
Section 13.2.10.10, “Optimizing Subqueries”
Section 13.2.10.8, “Subqueries in the FROM Clause”

BIN()
Section 9.1.6, “Bit-Field Literals”
Section 12.5, “String Functions”

BIT_AND()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

BIT_COUNT()
Section 12.12, “Bit Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

BIT_LENGTH()
Section 12.5, “String Functions”

BIT_OR()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

BIT_XOR()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

Boundary()
General Geometry Functions

Buffer()
Spatial Operators

C

[index top [3059]]

CAST()
Section 10.1.9.2, “CONVERT() and CAST()”
Section 9.1.6, “Bit-Field Literals”
Section 12.10, “Cast Functions and Operators”
Section 12.3.2, “Comparison Functions and Operators”
Section 11.3.7, “Conversion Between Date and Time
Types”
Section 12.7, “Date and Time Functions”
Section 9.1.4, “Hexadecimal Literals”
Section 1.8.2, “MySQL Differences from Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 10.1.7.7, “The BINARY Operator”
Section 12.2, “Type Conversion in Expression
Evaluation”
Section 9.4, “User-Defined Variables”

CEIL()
Section 12.6.2, “Mathematical Functions”

CEILING()
Section 17.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

Centroid()
MultiPolygon Functions

CHAR()
Section 12.10, “Cast Functions and Operators”
Section 12.13, “Encryption and Compression
Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.5, “String Functions”

CHAR_LENGTH()
Section 12.5, “String Functions”

CHARACTER_LENGTH()
Section 12.5, “String Functions”

CHARSET()
Section 12.14, “Information Functions”
Section 10.1.9.1, “Result Strings”

COALESCE()
Section 13.2.9.2, “JOIN Syntax”
Section 12.3.2, “Comparison Functions and Operators”

COERCIBILITY()
Section 10.1.7.5, “Collation of Expressions”
Section 12.14, “Information Functions”

COLLATION()
Section C.5.5.1, “Case Sensitivity in String Searches”
Section 12.14, “Information Functions”
Section 10.1.9.1, “Result Strings”

COMPRESS()
Section 12.13, “Encryption and Compression
Functions”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”

CONCAT()
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.5, “Collation of Expressions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

3061

Section 10.1.9.1, “Result Strings”
Section 5.1.7, “Server SQL Modes”
Section 12.5, “String Functions”
Section 10.1.8, “String Repertoire”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 12.2, “Type Conversion in Expression
Evaluation”
Section 12.11, “XML Functions”

CONCAT_WS()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 12.5, “String Functions”

CONNECTION_ID()
Section 4.5.1.3, “mysql Logging”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 20.9.13.3, “The threads Table”
Section 6.3.13.3, “The Audit Log File”

Contains()
Functions That Test Spatial Relationships Between
Geometries

CONV()
Section 12.6.2, “Mathematical Functions”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

CONVERT()
Section 10.1.9.2, “CONVERT() and CAST()”
Section 12.10, “Cast Functions and Operators”
Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 12.3.2, “Comparison Functions and Operators”

CONVERT_TZ()
Section 12.7, “Date and Time Functions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 16.4.1.30, “Replication and Time Zones”
Section 5.1.4, “Server System Variables”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

ConvexHull()
Spatial Operators

COS()
Section 12.6.2, “Mathematical Functions”

COT()
Section 12.6.2, “Mathematical Functions”

COUNT()
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 3.3.4.8, “Counting Rows”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Loose Index Scan
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 17.1, “Overview of Partitioning in MySQL”
Section C.5.5.3, “Problems with NULL Values”
Section 5.1.7, “Server SQL Modes”
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”

CRC32()
Section 12.6.2, “Mathematical Functions”

Crosses()
Functions That Test Spatial Relationships Between
Geometries

crypt()
Section 12.13, “Encryption and Compression
Functions”
Section 5.1.4, “Server System Variables”

CURDATE()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”

CURRENT_DATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.5, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_DATE()
Section 11.3.7, “Conversion Between Date and Time
Types”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”

CURRENT_TIME
Section 12.7, “Date and Time Functions”

CURRENT_TIME()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”

3062

CURRENT_TIMESTAMP
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 11.5, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_TIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”

CURRENT_USER
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 18.6, “Access Control for Stored Programs and
Views”
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.2.2, “Privilege System Grant Tables”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 6.2.3, “Specifying Account Names”

CURRENT_USER()
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.2.4, “Access Control, Stage 1: Connection
Verification”
Implementing Proxy User Support in Authentication
Plugins
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.3.10, “Proxy Users”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 6.2.3, “Specifying Account Names”
Section 6.3.14, “SQL-Based MySQL Account Activity
Auditing”
Section 10.1.12, “UTF-8 for Metadata”
Writing the Server-Side Authentication Plugin

CURTIME()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

Section 8.9.3.1, “How the Query Cache Operates”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.13, “Replication and Fractional Seconds
Support”

D

[index top [3059]]

DATABASE()
Section 13.1.17, “DROP DATABASE Syntax”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 3.3.1, “Creating and Selecting a Database”
Section 3.4, “Getting Information About Databases and
Tables”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section C.5.8, “Known Issues in MySQL”
Section 10.1.12, “UTF-8 for Metadata”

DATE()
Section 12.7, “Date and Time Functions”

DATE_ADD()
Section 13.1.9, “CREATE EVENT Syntax”
Section 12.6.1, “Arithmetic Operators”
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section 3.3.4.5, “Date Calculations”
Section 9.5, “Expression Syntax”

DATE_FORMAT()
Section 21.8.18, “C API Prepared Statement Problems”
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

DATE_SUB()
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”

DATEDIFF()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

DAY()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

DAYNAME()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

3063

DAYOFMONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

DAYOFWEEK()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

DAYOFYEAR()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 17.2, “Partitioning Types”

DECODE()
Section 12.13, “Encryption and Compression
Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 1.4, “What Is New in MySQL 5.7”

DEFAULT()
Section 13.2.5, “INSERT Syntax”
Section 13.2.8, “REPLACE Syntax”
Section 11.5, “Data Type Default Values”
Section 12.16, “Miscellaneous Functions”

DEGREES()
Section 12.6.2, “Mathematical Functions”

DES_DECRYPT()
Section 12.13, “Encryption and Compression
Functions”
Section 5.1.3, “Server Command Options”

DES_ENCRYPT()
Section 12.13, “Encryption and Compression
Functions”
Section 5.1.3, “Server Command Options”

Difference()
Spatial Operators

Dimension()
General Geometry Functions

Disjoint()
Functions That Test Spatial Relationships Between
Geometries

E

[index top [3059]]

ELT()
Section C.5.8, “Known Issues in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

ENCODE()
Section 12.13, “Encryption and Compression
Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 1.4, “What Is New in MySQL 5.7”

ENCRYPT()
Section 12.13, “Encryption and Compression
Functions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section E.7, “Restrictions on Character Sets”
Section 5.1.4, “Server System Variables”
Section 6.3.1, “User Names and Passwords”

EndPoint()
LineString Functions
MultiLineString Functions
Geometry Functions That Produce New Geometries

Envelope()
General Geometry Functions
Geometry Functions That Produce New Geometries

Equals()
Functions That Test Spatial Relationships Between
Geometries

EXP()
Section 12.6.2, “Mathematical Functions”

EXPORT_SET()
Section 12.5, “String Functions”

expr IN ()
Section 12.3.2, “Comparison Functions and Operators”

expr NOT IN ()
Section 12.3.2, “Comparison Functions and Operators”

ExteriorRing()
Polygon Functions
Geometry Functions That Produce New Geometries

EXTRACT()
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

3064

ExtractValue()
Section 12.11, “XML Functions”

F

[index top [3059]]

FIELD()
Section 12.5, “String Functions”

FIND_IN_SET()
Section 12.5, “String Functions”
Section 11.4.5, “The SET Type”

FLOOR()
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

FORMAT()
Section 12.6.2, “Mathematical Functions”
Section 12.16, “Miscellaneous Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.7, “MySQL Server Locale Support”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

FOUND_ROWS()
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.15, “Replication and System Functions”

FROM_BASE64()
Section 12.5, “String Functions”

FROM_DAYS()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

FROM_UNIXTIME()
Section 6.3.13.4, “Audit Log Plugin Logging Control”
Section 12.7, “Date and Time Functions”
Section 16.4.1.30, “Replication and Time Zones”

G

[index top [3059]]

GeomCollFromText()
Creating Geometry Values Using WKT Functions

GeomCollFromWKB()
Creating Geometry Values Using WKB Functions

GeometryCollection()
Creating Geometry Values Using MySQL-Specific
Functions

GeometryCollectionFromText()
Creating Geometry Values Using WKT Functions

GeometryCollectionFromWKB()
Creating Geometry Values Using WKB Functions

GeometryFromText()
Creating Geometry Values Using WKT Functions

GeometryFromWKB()
Creating Geometry Values Using WKB Functions

GeometryN()
GeometryCollection Functions
Geometry Functions That Produce New Geometries

GeometryType()
General Geometry Functions

GeomFromText
LineString Functions

GeomFromText()
Creating Geometry Values Using WKT Functions
Section 12.18.5.1, “Geometry Format Conversion
Functions”
Section 12.18.4.4, “Populating Spatial Columns”

GeomFromWKB()
Creating Geometry Values Using WKB Functions
Section 12.18.5.1, “Geometry Format Conversion
Functions”

GET_FORMAT()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”

GET_LOCK()
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 21.8.7.3, “mysql_change_user()”
Section 21.8.7.59, “mysql_reset_connection()”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 21.8.16, “Controlling Automatic Reconnection
Behavior”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

3065

Section 18.4.1, “Event Scheduler Overview”
Section 8.12.5.2, “General Thread States”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1.15, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

gethostbyaddr()
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”

gethostbyaddr_r()
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”

gethostbyname()
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”

gethostbyname_r()
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”

GLength()
LineString Functions
MultiLineString Functions
Section 12.18.7, “MySQL Conformance and
Compatibility”

GREATEST()
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.1, “Result Strings”

GROUP_CONCAT()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section C.5.8, “Known Issues in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 5.1.4, “Server System Variables”

GTID_SUBSET()
Section 12.15, “Functions Used with Global
Transaction IDs”
Section 16.1.3.1, “GTID Concepts”

GTID_SUBTRACT()
Section 12.15, “Functions Used with Global
Transaction IDs”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.3.1, “GTID Concepts”

H

[index top [3059]]

HEX()
Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 9.1.4, “Hexadecimal Literals”
Section 12.6.2, “Mathematical Functions”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

HOUR()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

I

[index top [3059]]

IF()
Section 13.6.5.2, “IF Syntax”
Section 12.4, “Control Flow Functions”
Section C.5.8, “Known Issues in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”

IFNULL()
Section 12.4, “Control Flow Functions”
Section C.5.5.3, “Problems with NULL Values”

IN
Section 12.3.1, “Operator Precedence”

IN()
Section 8.8.2, “EXPLAIN Output Format”
Section E.4, “Restrictions on Subqueries”
The Range Access Method for Single-Part Indexes
Section 12.2, “Type Conversion in Expression
Evaluation”

INET6_ATON()
Section 5.1.9, “IPv6 Support”
Section 12.16, “Miscellaneous Functions”

INET6_NTOA()
Section 5.1.9, “IPv6 Support”
Section 12.16, “Miscellaneous Functions”

INET_ATON()
Section 5.1.9, “IPv6 Support”
Section 12.16, “Miscellaneous Functions”

INET_NTOA()
Section 5.1.9, “IPv6 Support”
Section 12.16, “Miscellaneous Functions”

INSERT()
Section 12.5, “String Functions”

3066

INSTR()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

InteriorRingN()
Polygon Functions
Geometry Functions That Produce New Geometries

Intersection()
Spatial Operators

Intersects()
Functions That Test Spatial Relationships Between
Geometries

INTERVAL()
Section 12.3.2, “Comparison Functions and Operators”

IS_FREE_LOCK()
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1.15, “Replication and System Functions”

IS_IPV4()
Section 12.16, “Miscellaneous Functions”

IS_IPV4_COMPAT()
Section 12.16, “Miscellaneous Functions”

IS_IPV4_MAPPED()
Section 12.16, “Miscellaneous Functions”

IS_IPV6()
Section 12.16, “Miscellaneous Functions”

IS_USED_LOCK()
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1.15, “Replication and System Functions”

IsClosed()
LineString Functions
MultiLineString Functions

IsEmpty()
Functions That Test Spatial Relationships Between
Geometries
General Geometry Functions

ISNULL()
Section 12.3.2, “Comparison Functions and Operators”

IsSimple()
General Geometry Functions

L

[index top [3059]]

LAST_DAY()
Section 12.7, “Date and Time Functions”

LAST_INSERT_ID()
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.7.38, “mysql_insert_id()”
Section 21.8.7.59, “mysql_reset_connection()”
Section 21.8.11.16, “mysql_stmt_insert_id()”
Section 12.3.2, “Comparison Functions and Operators”
Section 21.8.16, “Controlling Automatic Reconnection
Behavior”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 21.8.15.3, “How to Get the Unique ID for the
Last Inserted Row”
Section 12.14, “Information Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.4, “Server System Variables”
Section 18.2.4, “Stored Procedures, Functions,
Triggers, and LAST_INSERT_ID()”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 1.8.2.3, “Transaction and Atomic Operation
Differences”
Section 16.4.4, “Troubleshooting Replication”
Section 18.5.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”

LCASE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

LEAST()
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.1, “Result Strings”

LEFT()
Section 12.10, “Cast Functions and Operators”

3067

Section 12.5, “String Functions”

LENGTH()
Section 12.5, “String Functions”

Length()
LineString Functions
MultiLineString Functions
Section 12.18.7, “MySQL Conformance and
Compatibility”

LineFromText()
Creating Geometry Values Using WKT Functions
Section 12.18.5.1, “Geometry Format Conversion
Functions”

LineFromWKB()
Creating Geometry Values Using WKB Functions
Section 12.18.5.1, “Geometry Format Conversion
Functions”

LineString
LineString Functions

LineString()
Creating Geometry Values Using MySQL-Specific
Functions

LineStringFromText()
Creating Geometry Values Using WKT Functions

LineStringFromWKB()
Creating Geometry Values Using WKB Functions

LN()
Section 12.6.2, “Mathematical Functions”

LOAD_FILE()
Section 13.2.7, “LOAD XML Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

LOCALTIME
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”

LOCALTIME()
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

LOCALTIMESTAMP
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”

LOCALTIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

LOCATE()
Section 12.5, “String Functions”

LOG()
Section 17.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

LOG10()
Section 12.6.2, “Mathematical Functions”

LOG2()
Section 12.6.2, “Mathematical Functions”

LOWER()
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.9, “Collation and
INFORMATION_SCHEMA Searches”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
Section 10.1.14.1, “Unicode Character Sets”

LPAD()
Section 12.5, “String Functions”

LTRIM()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

M

[index top [3059]]

MAKE_SET()
Section 12.5, “String Functions”

MAKEDATE()
Section 12.7, “Date and Time Functions”

3068

MAKETIME()
Section 12.7, “Date and Time Functions”

MASTER_POS_WAIT()
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.2.3, “MASTER_POS_WAIT() Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”

MATCH
Section 9.5, “Expression Syntax”

MATCH ()
Section 12.9, “Full-Text Search Functions”

MATCH()
FULLTEXT Indexes
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.5, “Full-Text Restrictions”
Section 12.9, “Full-Text Search Functions”
Section 12.9.1, “Natural Language Full-Text Searches”

MAX()
Section 8.8.2, “EXPLAIN Output Format”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 8.3.1, “How MySQL Uses Indexes”
Section C.5.8, “Known Issues in MySQL”
Loose Index Scan
Section 12.17.3, “MySQL Extensions to GROUP BY”
Section 11.1.1, “Numeric Type Overview”
Section 13.2.10.10, “Optimizing Subqueries”
Section 5.1.7, “Server SQL Modes”
Section 11.3.8, “Two-Digit Years in Dates”
Section 18.5.3, “Updatable and Insertable Views”
Section 8.2.1.7, “Use of Index Extensions”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 18.5.2, “View Processing Algorithms”

MBRContains()
Relations on Geometry Minimal Bounding Rectangles
(MBRs)
Section 12.18.6.2, “Using a Spatial Index”

MBRDisjoint()
Relations on Geometry Minimal Bounding Rectangles
(MBRs)

MBREqual()
Relations on Geometry Minimal Bounding Rectangles
(MBRs)

MBRIntersects()
Relations on Geometry Minimal Bounding Rectangles
(MBRs)

MBROverlaps()
Relations on Geometry Minimal Bounding Rectangles
(MBRs)

MBRTouches()
Relations on Geometry Minimal Bounding Rectangles
(MBRs)

MBRWithin()
Relations on Geometry Minimal Bounding Rectangles
(MBRs)
Section 12.18.6.2, “Using a Spatial Index”

MD5()
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 9.2, “Schema Object Names”
Section 6.1.1, “Security Guidelines”

MICROSECOND()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

MID()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

MIN()
Section 8.8.2, “EXPLAIN Output Format”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 21.8.18, “C API Prepared Statement Problems”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.3.1, “How MySQL Uses Indexes”
Section C.5.8, “Known Issues in MySQL”
Loose Index Scan
Section 12.17.3, “MySQL Extensions to GROUP BY”
Section 11.1.1, “Numeric Type Overview”
Section 13.2.10.10, “Optimizing Subqueries”
Section C.5.5.3, “Problems with NULL Values”
Section 11.3.8, “Two-Digit Years in Dates”
Section 18.5.3, “Updatable and Insertable Views”
Section 8.2.1.7, “Use of Index Extensions”
Section 18.5.2, “View Processing Algorithms”

MINUTE()
Section 12.7, “Date and Time Functions”

3069

Section 17.6.3, “Partitioning Limitations Relating to
Functions”

MLineFromText()
Creating Geometry Values Using WKT Functions

MLineFromWKB()
Creating Geometry Values Using WKB Functions

MOD()
Section 12.6.1, “Arithmetic Operators”
Section 3.3.4.5, “Date Calculations”
Section 12.6.2, “Mathematical Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 5.1.7, “Server SQL Modes”

MONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 17.2, “Partitioning Types”

MONTHNAME()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

MPointFromText()
Creating Geometry Values Using WKT Functions

MPointFromWKB()
Creating Geometry Values Using WKB Functions

MPolyFromText()
Creating Geometry Values Using WKT Functions

MPolyFromWKB()
Creating Geometry Values Using WKB Functions

MultiLineString()
Creating Geometry Values Using MySQL-Specific
Functions

MultiLineStringFromText()
Creating Geometry Values Using WKT Functions

MultiLineStringFromWKB()
Creating Geometry Values Using WKB Functions

MultiPoint()
Creating Geometry Values Using MySQL-Specific
Functions

MultiPointFromText()
Creating Geometry Values Using WKT Functions

MultiPointFromWKB()
Creating Geometry Values Using WKB Functions

MultiPolygon()
Creating Geometry Values Using MySQL-Specific
Functions

MultiPolygonFromText()
Creating Geometry Values Using WKT Functions

MultiPolygonFromWKB()
Creating Geometry Values Using WKB Functions

my_open()
Section 5.1.6, “Server Status Variables”

N

[index top [3059]]

NAME_CONST()
Section 18.7, “Binary Logging of Stored Programs”
Section 12.16, “Miscellaneous Functions”

NOW()
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 11.5, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 11.3.6, “Fractional Seconds in Time Values”
Section 8.9.3.1, “How the Query Cache Operates”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.30, “Replication and Time Zones”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.3.3, “The YEAR Type”
Section 10.6.2, “Time Zone Leap Second Support”

NULLIF()
Section 12.4, “Control Flow Functions”

NumGeometries()
GeometryCollection Functions

3070

NumInteriorRings()
Polygon Functions

NumPoints()
LineString Functions

O

[index top [3059]]

OCT()
Section 12.5, “String Functions”

OCTET_LENGTH()
Section 12.5, “String Functions”

OLD_PASSWORD()
Section C.5.2.4, “Client does not support
authentication protocol”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 5.1.4, “Server System Variables”
Section 6.1.2.6, “The Password Validation Plugin”

ORD()
Section 12.5, “String Functions”

Overlaps()
Functions That Test Spatial Relationships Between
Geometries

P

[index top [3059]]

PASSWORD()
Section 13.7.1.2, “CREATE USER Syntax”
Section C.5.2.15, “Ignoring user”
Section 17.2.5, “KEY Partitioning”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.2.4, “Access Control, Stage 1: Connection
Verification”
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.13, “Encryption and Compression
Functions”

Section 8.9.3.1, “How the Query Cache Operates”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 5.1.4, “Server System Variables”
Section 6.1.2.6, “The Password Validation Plugin”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 6.3.1, “User Names and Passwords”

PERIOD_ADD()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

PERIOD_DIFF()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

PI()
Section 9.2.4, “Function Name Parsing and Resolution”
Section 12.6.2, “Mathematical Functions”

POINT()
Section 12.18.3.1, “Well-Known Text (WKT) Format”

Point()
Creating Geometry Values Using MySQL-Specific
Functions

PointFromText()
Creating Geometry Values Using WKT Functions
Section 12.18.5.1, “Geometry Format Conversion
Functions”

PointFromWKB()
Creating Geometry Values Using WKB Functions
Section 12.18.5.1, “Geometry Format Conversion
Functions”

PointN()
LineString Functions
Geometry Functions That Produce New Geometries

PolyFromText()
Creating Geometry Values Using WKT Functions

PolyFromWKB()
Creating Geometry Values Using WKB Functions

Polygon()
Creating Geometry Values Using MySQL-Specific
Functions

3071

PolygonFromText()
Creating Geometry Values Using WKT Functions

PolygonFromWKB()
Creating Geometry Values Using WKB Functions

POSITION()
Section 12.5, “String Functions”

POW()
Section 17.2.4, “HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

POWER()
Section 17.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

Q

[index top [3059]]

QUARTER()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

QUOTE()
Section 21.8.7.55, “mysql_real_escape_string()”
Section 12.5, “String Functions”
Section 9.1.1, “String Literals”

R

[index top [3059]]

RADIANS()
Section 12.6.2, “Mathematical Functions”

RAND()
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.6.2, “Mathematical Functions”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.4, “Server System Variables”

RANDOM_BYTES()
Section 12.13, “Encryption and Compression
Functions”

Section 8.9.3.1, “How the Query Cache Operates”

RELEASE_LOCK()
Section 13.2.3, “DO Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1.15, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

REPEAT()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

REPLACE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

REVERSE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

RIGHT()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

ROUND()
Section 12.6.2, “Mathematical Functions”
Section 12.19, “Precision Math”
Section 12.19.5, “Precision Math Examples”
Section 12.19.4, “Rounding Behavior”

ROW_COUNT()
Section 13.2.1, “CALL Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.7.1, “mysql_affected_rows()”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Diagnostics Area Information Items
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.15, “Replication and System Functions”

RPAD()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

RTRIM()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

3072

S

[index top [3059]]

SCHEMA()
Section 12.14, “Information Functions”

SEC_TO_TIME()
Section 12.7, “Date and Time Functions”

SECOND()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

SESSION_USER()
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 10.1.12, “UTF-8 for Metadata”

setrlimit()
Section 5.1.3, “Server Command Options”

SHA()
Section 12.13, “Encryption and Compression
Functions”

SHA1()
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 6.1.1, “Security Guidelines”

SHA2()
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 6.1.1, “Security Guidelines”

SIGN()
Section 12.6.2, “Mathematical Functions”

SIN()
Section 12.6.2, “Mathematical Functions”
Section 22.3.2.3, “UDF Argument Processing”

SLEEP()
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.12.5.2, “General Thread States”

Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1, “Replication Features and Issues”

SOUNDEX()
Section 22.3, “Adding New Functions to MySQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

SPACE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

SQRT()
Section 12.6.2, “Mathematical Functions”

SRID()
General Geometry Functions

ST_Contains()
Functions That Test Spatial Relationships Between
Geometries

ST_Crosses()
Functions That Test Spatial Relationships Between
Geometries

ST_Disjoint()
Functions That Test Spatial Relationships Between
Geometries

ST_Equals()
Functions That Test Spatial Relationships Between
Geometries

ST_Intersects()
Functions That Test Spatial Relationships Between
Geometries

ST_Overlaps()
Functions That Test Spatial Relationships Between
Geometries

ST_Touches()
Functions That Test Spatial Relationships Between
Geometries

ST_Within()
Functions That Test Spatial Relationships Between
Geometries

StartPoint()
LineString Functions
MultiLineString Functions

3073

Geometry Functions That Produce New Geometries

STD()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

STDDEV()
Section 12.17.1, “GROUP BY (Aggregate) Functions”

STDDEV_POP()
Section 12.17.1, “GROUP BY (Aggregate) Functions”

STDDEV_SAMP()
Section 12.17.1, “GROUP BY (Aggregate) Functions”

STR_TO_DATE()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”

STRCMP()
Section C.5.5.2, “Problems Using DATE Columns”
Section 12.5.1, “String Comparison Functions”

SUBDATE()
Section 12.7, “Date and Time Functions”

SUBSTR()
Section 12.5, “String Functions”

SUBSTRING()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

SUBSTRING_INDEX()
Section 6.3.14, “SQL-Based MySQL Account Activity
Auditing”
Section 12.5, “String Functions”

SUBTIME()
Section 12.7, “Date and Time Functions”

SUM()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 22.3.2, “Adding a New User-Defined Function”
Section 11.1.2, “Date and Time Type Overview”
Loose Index Scan
Section 17.1, “Overview of Partitioning in MySQL”
Section C.5.5.3, “Problems with NULL Values”
Section 11.4.4, “The ENUM Type”
Section 11.4.5, “The SET Type”
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”

SymDifference()
Spatial Operators

SYSDATE()
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 16.4.1.13, “Replication and Fractional Seconds
Support”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

SYSTEM_USER()
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 10.1.12, “UTF-8 for Metadata”

T

[index top [3059]]

TAN()
Section 12.6.2, “Mathematical Functions”

thr_setconcurrency()
Section 5.1.4, “Server System Variables”

TIME()
Section 12.7, “Date and Time Functions”

TIME_FORMAT()
Section 12.7, “Date and Time Functions”

TIME_TO_SEC()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

TIMEDIFF()
Section 12.7, “Date and Time Functions”

TIMESTAMP()
Section 12.7, “Date and Time Functions”

TIMESTAMPADD()
Section 12.7, “Date and Time Functions”

TIMESTAMPDIFF()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”

TO_BASE64()
Section 12.5, “String Functions”

3074

TO_DAYS()
Section 17.2.4, “HASH Partitioning”
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 17.4, “Partition Pruning”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 17.2, “Partitioning Types”

TO_SECONDS()
Section 12.7, “Date and Time Functions”
Section 17.4, “Partition Pruning”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 17.2, “Partitioning Types”

Touches()
Functions That Test Spatial Relationships Between
Geometries

TRIM()
Section 10.1.13, “Column Character Set Conversion”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

TRUNCATE()
Section 12.6.2, “Mathematical Functions”

U

[index top [3059]]

UCASE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

UNCOMPRESS()
Section 12.13, “Encryption and Compression
Functions”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”

UNCOMPRESSED_LENGTH()
Section 12.13, “Encryption and Compression
Functions”

UNHEX()
Section 12.13, “Encryption and Compression
Functions”
Section 12.5, “String Functions”

Union()
Spatial Operators

UNIX_TIMESTAMP()
Section 17.2.1, “RANGE Partitioning”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 5.1.4, “Server System Variables”
Section C.5.4.6, “Time Zone Problems”

UpdateXML()
Section 12.11, “XML Functions”

UPPER()
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.9, “Collation and
INFORMATION_SCHEMA Searches”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
Section 10.1.8, “String Repertoire”
Section 10.1.14.1, “Unicode Character Sets”

USER()
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 10.1.7.5, “Collation of Expressions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Implementing Proxy User Support in Authentication
Plugins
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.3.10, “Proxy Users”
Section 16.4.1.15, “Replication and System Functions”
Section 6.3.14, “SQL-Based MySQL Account Activity
Auditing”
Section 10.1.12, “UTF-8 for Metadata”
Writing the Server-Side Authentication Plugin

UTC_DATE
Section 12.7, “Date and Time Functions”

UTC_DATE()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

UTC_TIME
Section 12.7, “Date and Time Functions”

UTC_TIME()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

3075

UTC_TIMESTAMP
Section 12.7, “Date and Time Functions”

UTC_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.13, “Replication and Fractional Seconds
Support”

UUID()
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.15, “Replication and System Functions”
Section 5.2.4.2, “Setting The Binary Log Format”

UUID_SHORT()
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”

V

[index top [3059]]

VALIDATE_PASSWORD_STRENGTH()
Section 12.13, “Encryption and Compression
Functions”
Password Validation Plugin Options and Variables
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.6, “The Password Validation Plugin”

VALUES()
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 12.16, “Miscellaneous Functions”

VAR_POP()
Section 12.17.1, “GROUP BY (Aggregate) Functions”

VAR_SAMP()
Section 12.17.1, “GROUP BY (Aggregate) Functions”

VARIANCE()
Section 12.17.1, “GROUP BY (Aggregate) Functions”

VERSION()
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section C.5.5.1, “Case Sensitivity in String Searches”
Section 10.1.7.5, “Collation of Expressions”
Section 12.14, “Information Functions”
Section 16.4.1.15, “Replication and System Functions”
Section 6.3.13.3, “The Audit Log File”
Section 10.1.12, “UTF-8 for Metadata”

W

[index top [3059]]

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()
Section 12.15, “Functions Used with Global
Transaction IDs”

WEEK()
Section 12.7, “Date and Time Functions”
Section 5.1.4, “Server System Variables”

WEEKDAY()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 17.2, “Partitioning Types”

WEEKOFYEAR()
Section 12.7, “Date and Time Functions”

WEIGHT_STRING()
Section 10.4, “Adding a Collation to a Character Set”
Section C.5.5.1, “Case Sensitivity in String Searches”
Section 12.5, “String Functions”
Section 10.1.14.1, “Unicode Character Sets”

Within()
Functions That Test Spatial Relationships Between
Geometries

X

[index top [3059]]

X()
Point Functions

Y

[index top [3059]]

Y()
Point Functions

3076

YEAR()
Section 17.2.4, “HASH Partitioning”
Section 17.2.1, “RANGE Partitioning”
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 17.2.7, “How MySQL Partitioning Handles
NULL”
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 17.4, “Partition Pruning”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 17.2, “Partitioning Types”

YEARWEEK()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”

3077

INFORMATION_SCHEMA Index
C | E | F | G | I | K | O | P | R | S | T | U | V

C

[index top [3077]]

CHARACTER_SETS
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 19.1, “The INFORMATION_SCHEMA
CHARACTER_SETS Table”

COLLATION_CHARACTER_SET_APPLICABILITY
Section 19.3, “The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY
Table”

COLLATIONS
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 21.8.5, “C API Data Structures”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 19.2, “The INFORMATION_SCHEMA
COLLATIONS Table”

COLUMN_PRIVILEGES
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

COLUMNS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 19.4, “The INFORMATION_SCHEMA COLUMNS
Table”
Section 19.13, “The INFORMATION_SCHEMA
PARAMETERS Table”
Section 19.19, “The INFORMATION_SCHEMA
ROUTINES Table”

E

[index top [3077]]

ENGINES
Section 13.7.5.15, “SHOW ENGINES Syntax”
Section 5.1.4, “Server System Variables”
Section 19.6, “The INFORMATION_SCHEMA ENGINES
Table”

EVENTS
Section 18.4.4, “Event Metadata”
Section 18.4.2, “Event Scheduler Configuration”
Section 16.4.1.11, “Replication of Invoked Features”

Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”

F

[index top [3077]]

FILES
Section 19.8, “The INFORMATION_SCHEMA FILES
Table”

G

[index top [3077]]

GLOBAL_STATUS
Section 19.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

GLOBAL_VARIABLES
Section 19.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

I

[index top [3077]]

INFORMATION_SCHEMA
GLOBAL_STATUS
Section 19.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

INFORMATION_SCHEMA
GLOBAL_VARIABLES
Section 19.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

INFORMATION_SCHEMA.COLLATIONS
Section 10.4.2, “Choosing a Collation ID”

INFORMATION_SCHEMA.COLUMNS
Section 20.1, “Performance Schema Quick Start”

INFORMATION_SCHEMA.ENGINES
Section 20.1, “Performance Schema Quick Start”

INFORMATION_SCHEMA.EVENTS
Section 13.7.5.17, “SHOW EVENTS Syntax”
Section 18.4.4, “Event Metadata”
Section 16.4.1.11, “Replication of Invoked Features”
Section E.1, “Restrictions on Stored Programs”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

3078

INFORMATION_SCHEMA.INNODB_CMP
Section 14.2.7.3, “Tuning Compression for InnoDB
Tables”
Using the Compression Information Schema Tables

INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.7.3, “Tuning Compression for InnoDB
Tables”

INFORMATION_SCHEMA.INNODB_CMPMEM
Using the Compression Information Schema Tables

information_schema.innodb_ft_default_stopword
Section 12.9.4, “Full-Text Stopwords”

INFORMATION_SCHEMA.INNODB_METRICS
Section 14.2.13, “InnoDB Startup Options and System
Variables”

INFORMATION_SCHEMA.KEY_COLUMN_USAGE
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 14.2.6.6, “InnoDB and FOREIGN KEY
Constraints”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

INFORMATION_SCHEMA.PARTITIONS
Section 17.2.5, “KEY Partitioning”
Section 17.2.3.1, “RANGE COLUMNS partitioning”
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 17.2.7, “How MySQL Partitioning Handles
NULL”
Section 17.3.5, “Obtaining Information About Partitions”
Section 5.1.3, “Server Command Options”
Section 19.14, “The INFORMATION_SCHEMA
PARTITIONS Table”

INFORMATION_SCHEMA.PLUGINS
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.13.1, “Installing the Audit Log Plugin”
Section 5.1.8.2, “Obtaining Server Plugin Information”
Chapter 17, Partitioning
Password Validation Plugin Installation
Section 22.2.1, “Plugin API Characteristics”
Section 22.2.2, “Plugin API Components”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Server Plugin Library and Plugin Descriptors
Section 22.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”

Section 22.2.4.10, “Writing Password-Validation
Plugins”
Writing the Server-Side Authentication Plugin

INFORMATION_SCHEMA.PROCESSLIST
Section 13.7.5.28, “SHOW PROCESSLIST Syntax”
Section 8.12.5, “Examining Thread Information”
Section 20.4, “Performance Schema Instrument
Naming Conventions”
Section 20.9.5, “Performance Schema Stage Event
Tables”
Section 19.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”
Section 20.9.13.3, “The threads Table”

INFORMATION_SCHEMA.PROFILING
Section 1.4, “What Is New in MySQL 5.7”

INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS
Section 1.8.2.4, “Foreign Key Differences”

INFORMATION_SCHEMA.ROUTINES
Chapter 19, INFORMATION_SCHEMA Tables
Section 19.19, “The INFORMATION_SCHEMA
ROUTINES Table”

INFORMATION_SCHEMA.TABLE_CONSTRAINTS
Section 1.8.2.4, “Foreign Key Differences”
Section 19.18, “The INFORMATION_SCHEMA
REFERENTIAL_CONSTRAINTS Table”

information_schema.table_constraints
Online DDL
Section 14.2.11.1, “Overview of Online DDL”

INFORMATION_SCHEMA.TABLES
Chapter 19, INFORMATION_SCHEMA Tables
Section 5.1.3, “Server Command Options”

INFORMATION_SCHEMA.VIEWS
Section 18.5.3, “Updatable and Insertable Views”

innodb_buffer_page_lru
Faster Restart by Preloading the InnoDB Buffer Pool

INNODB_CMP
Section 14.2.12.3, “InnoDB INFORMATION_SCHEMA
tables”
INNODB_CMP and INNODB_CMP_RESET
INNODB_CMPMEM and INNODB_CMPMEM_RESET
Section 14.2.7.4, “Monitoring Compression at Runtime”
Using the Compression Information Schema Tables

INNODB_CMP_PER_INDEX
Section 14.2.7.4, “Monitoring Compression at Runtime”
Using the Compression Information Schema Tables

3079

INNODB_CMP_RESET
Section 14.2.12.3, “InnoDB INFORMATION_SCHEMA
tables”
INNODB_CMP and INNODB_CMP_RESET
INNODB_CMPMEM and INNODB_CMPMEM_RESET

INNODB_CMPMEM
Section 14.2.12.3, “InnoDB INFORMATION_SCHEMA
tables”
INNODB_CMPMEM and INNODB_CMPMEM_RESET
Using the Compression Information Schema Tables

INNODB_CMPMEM_RESET
Section 14.2.12.3, “InnoDB INFORMATION_SCHEMA
tables”
INNODB_CMPMEM and INNODB_CMPMEM_RESET

INNODB_FT_BEING_DELETED
FULLTEXT Indexes
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Information Schema Tables about Full-Text Search

INNODB_FT_CONFIG
FULLTEXT Indexes
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Information Schema Tables about Full-Text Search

INNODB_FT_DEFAULT_STOPWORD
FULLTEXT Indexes
Information Schema Tables about Full-Text Search

innodb_ft_default_stopword
Section 12.9.4, “Full-Text Stopwords”

INNODB_FT_DELETED
FULLTEXT Indexes
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Information Schema Tables about Full-Text Search
Section 19.30.25, “The INFORMATION_SCHEMA
INNODB_FT_BEING_DELETED Table”

INNODB_FT_INDEX_CACHE
FULLTEXT Indexes
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Information Schema Tables about Full-Text Search

INNODB_FT_INDEX_TABLE
FULLTEXT Indexes
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Information Schema Tables about Full-Text Search

INNODB_LOCK_WAITS
Section 14.2.12.3, “InnoDB INFORMATION_SCHEMA
tables”
Information Schema Tables about Transactions
Possible Inconsistency with PROCESSLIST
Understanding InnoDB Locking

INNODB_LOCKS
Section 14.2.12.3, “InnoDB INFORMATION_SCHEMA
tables”
Information Schema Tables about Transactions
Possible Inconsistency with PROCESSLIST
Understanding InnoDB Locking

INNODB_SYS_FOREIGN
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 14.2.6.6, “InnoDB and FOREIGN KEY
Constraints”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

INNODB_SYS_FOREIGN_COLS
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 14.2.6.6, “InnoDB and FOREIGN KEY
Constraints”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

INNODB_SYS_INDEXES
FULLTEXT Indexes

INNODB_SYS_TABLES
FULLTEXT Indexes

INNODB_TRX
Section 14.2.12.3, “InnoDB INFORMATION_SCHEMA
tables”
Information Schema Tables about Transactions
Possible Inconsistency with PROCESSLIST

K

[index top [3077]]

KEY_COLUMN_USAGE
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 19.11, “The INFORMATION_SCHEMA
KEY_COLUMN_USAGE Table”

O

[index top [3077]]

OPTIMIZER_TRACE
Section 19.12, “The INFORMATION_SCHEMA
OPTIMIZER_TRACE Table”

3080

P

[index top [3077]]

PARAMETERS
Section 19.13, “The INFORMATION_SCHEMA
PARAMETERS Table”
Section 19.19, “The INFORMATION_SCHEMA
ROUTINES Table”

PARTITIONS
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 17.2.7, “How MySQL Partitioning Handles
NULL”
Section 17.3.5, “Obtaining Information About Partitions”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Chapter 17, Partitioning
Section 19.14, “The INFORMATION_SCHEMA
PARTITIONS Table”

PLUGINS
Section 5.1.8.2, “Obtaining Server Plugin Information”
Section 19.15, “The INFORMATION_SCHEMA PLUGINS
Table”

PROCESSLIST
Section 13.7.5.28, “SHOW PROCESSLIST Syntax”
Section 8.12.5, “Examining Thread Information”
Section 8.8.3, “Obtaining Execution Plan Information
for a Named Connection”
Possible Inconsistency with PROCESSLIST
Section 19.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”

PROFILING
Section 13.7.5.29, “SHOW PROFILE Syntax”
Section 19.17, “The INFORMATION_SCHEMA
PROFILING Table”

R

[index top [3077]]

REFERENTIAL_CONSTRAINTS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 19.18, “The INFORMATION_SCHEMA
REFERENTIAL_CONSTRAINTS Table”

ROUTINES
Section 13.7.5.27, “SHOW PROCEDURE STATUS
Syntax”
Section 18.2.3, “Stored Routine Metadata”

Section 19.13, “The INFORMATION_SCHEMA
PARAMETERS Table”
Section 19.19, “The INFORMATION_SCHEMA
ROUTINES Table”

S

[index top [3077]]

SCHEMA_PRIVILEGES
Section 19.21, “The INFORMATION_SCHEMA
SCHEMA_PRIVILEGES Table”

SCHEMATA
Section 6.2.2, “Privilege System Grant Tables”
Section 19.20, “The INFORMATION_SCHEMA
SCHEMATA Table”

SESSION_STATUS
Section 19.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

SESSION_VARIABLES
Section 19.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

STATISTICS
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 19.22, “The INFORMATION_SCHEMA
STATISTICS Table”

T

[index top [3077]]

TABLE_CONSTRAINTS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 19.25, “The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table”

TABLE_PRIVILEGES
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

TABLES
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”

3081

Section 19.23, “The INFORMATION_SCHEMA TABLES
Table”

TABLESPACES
Section 19.24, “The INFORMATION_SCHEMA
TABLESPACES Table”

TRIGGERS
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.37, “SHOW TRIGGERS Syntax”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 19.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 18.3.2, “Trigger Metadata”

U

[index top [3077]]

USER_PRIVILEGES
Section 19.28, “The INFORMATION_SCHEMA
USER_PRIVILEGES Table”

V

[index top [3077]]

VIEWS
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 18.5.4, “View Metadata”

3082

3083

Join Types Index
A | C | E | F | I | R | S | U

A

[index top [3083]]

ALL
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 8.2.1.10, “Nested-Loop Join Algorithms”

C

[index top [3083]]

const
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.15, “ORDER BY Optimization”
Section 13.2.9, “SELECT Syntax”
The Range Access Method for Single-Part Indexes

E

[index top [3083]]

eq_ref
Section 8.8.2, “EXPLAIN Output Format”
Section 14.8.1, “MERGE Table Advantages and
Disadvantages”
Batched Key Access Joins
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Optimizing Subqueries with EXISTS Strategy

F

[index top [3083]]

fulltext
Section 8.8.2, “EXPLAIN Output Format”

I

[index top [3083]]

index
Section 8.8.2, “EXPLAIN Output Format”
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 8.2.1.10, “Nested-Loop Join Algorithms”

index_merge
Section 8.8.2, “EXPLAIN Output Format”

Section 8.2.1.4, “Index Merge Optimization”

index_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Optimizing Subqueries with EXISTS Strategy

R

[index top [3083]]

range
Section 8.8.2, “EXPLAIN Output Format”
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Section 8.2.1.4, “Index Merge Optimization”
Loose Index Scan
Section 8.2.1.10, “Nested-Loop Join Algorithms”
Section 8.2.1.3, “Range Optimization”
The Range Access Method for Single-Part Indexes

ref
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 14.8.1, “MERGE Table Advantages and
Disadvantages”
Batched Key Access Joins
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Optimizing Subqueries in the FROM Clause (Derived
Tables)
Optimizing Subqueries with EXISTS Strategy

ref_or_null
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.8, “IS NULL Optimization”
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Optimizing Subqueries with EXISTS Strategy

S

[index top [3083]]

system
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.9, “SELECT Syntax”
The Range Access Method for Single-Part Indexes

U

[index top [3083]]

3084

unique_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Optimizing Subqueries with EXISTS Strategy

3085

Operator Index
Symbols | A | B | C | D | E | I | L | N | O | R | X

Symbols

[index top [3085]]

-
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”
Section 17.6, “Restrictions and Limitations on
Partitioning”

!
Section 9.5, “Expression Syntax”
Section 12.3.3, “Logical Operators”
Section 12.3.1, “Operator Precedence”

!=
Section 12.3.2, “Comparison Functions and Operators”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

%
Section 12.6.1, “Arithmetic Operators”

&
Section 13.1.14, “CREATE TABLE Syntax”
Section 12.12, “Bit Functions”
Section 17.6, “Restrictions and Limitations on
Partitioning”

&&
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”

>
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

>>
Section 12.12, “Bit Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 17.6, “Restrictions and Limitations on
Partitioning”

>=
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

<
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

<>
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

<<
Section 12.12, “Bit Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 17.6, “Restrictions and Limitations on
Partitioning”

<=
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

<=>
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 12.2, “Type Conversion in Expression
Evaluation”

3086

*
Section 12.6.1, “Arithmetic Operators”
Section 11.1.1, “Numeric Type Overview”
Section 17.6, “Restrictions and Limitations on
Partitioning”

+
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”
Section 17.6, “Restrictions and Limitations on
Partitioning”

/
Section 12.6.1, “Arithmetic Operators”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”

=
Section 8.8.2, “EXPLAIN Output Format”
Section 13.7.4, “SET Syntax”
Section 12.3.4, “Assignment Operators”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section E.4, “Restrictions on Subqueries”
Section 12.5.1, “String Comparison Functions”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 9.4, “User-Defined Variables”
Section 3.3.4.6, “Working with NULL Values”

^
Section 12.12, “Bit Functions”
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 17.6, “Restrictions and Limitations on
Partitioning”

|
Section 12.12, “Bit Functions”
Section 17.6, “Restrictions and Limitations on
Partitioning”

||
Section 10.1.7.3, “COLLATE Clause Precedence”
Section 9.5, “Expression Syntax”
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 10.1.9.1, “Result Strings”
Section 5.1.7, “Server SQL Modes”

~
Section 12.12, “Bit Functions”
Section 17.6, “Restrictions and Limitations on
Partitioning”

A

[index top [3085]]

AND
Section 13.1.14, “CREATE TABLE Syntax”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 8.2.1.4, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Optimizing Subqueries with EXISTS Strategy
Section E.4, “Restrictions on Subqueries”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 12.5.1, “String Comparison Functions”
The Index Merge Intersection Access Algorithm
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 18.5.2, “View Processing Algorithms”

B

[index top [3085]]

BETWEEN
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 12.2, “Type Conversion in Expression
Evaluation”

BINARY
Section 12.10, “Cast Functions and Operators”
Section 3.3.4.7, “Pattern Matching”
Section 3.3.4.4, “Sorting Rows”
Section 10.1.7.7, “The BINARY Operator”

BINARY str
Section 12.10, “Cast Functions and Operators”

C

[index top [3085]]

CASE
Section 13.6.5.1, “CASE Syntax”
Section 12.4, “Control Flow Functions”
Section 9.5, “Expression Syntax”

3087

Section 1.8.1, “MySQL Extensions to Standard SQL”

CASE value WHEN END
Section 12.4, “Control Flow Functions”

CASE WHEN END
Section 12.4, “Control Flow Functions”

CASE WHEN expr1 = expr2 THEN
NULL ELSE expr1 END
Section 12.4, “Control Flow Functions”

D

[index top [3085]]

DIV
Section 12.6.1, “Arithmetic Operators”
Section 17.6, “Restrictions and Limitations on
Partitioning”

E

[index top [3085]]

expr BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”

expr LIKE pat
Section 12.5.1, “String Comparison Functions”

expr NOT BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”

expr NOT LIKE pat
Section 12.5.1, “String Comparison Functions”

expr NOT REGEXP pat
Section 12.5.2, “Regular Expressions”

expr NOT RLIKE pat
Section 12.5.2, “Regular Expressions”

expr REGEXP pat
Section 12.5.2, “Regular Expressions”

expr RLIKE pat
Section 12.5.2, “Regular Expressions”

expr1 SOUNDS LIKE expr2
Section 12.5, “String Functions”

I

[index top [3085]]

IS
Section 12.3.1, “Operator Precedence”

IS boolean_value
Section 12.3.2, “Comparison Functions and Operators”

IS NOT boolean_value
Section 12.3.2, “Comparison Functions and Operators”

IS NOT NULL
Section 12.3.2, “Comparison Functions and Operators”
Section C.5.5.3, “Problems with NULL Values”
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

IS NULL
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.8, “IS NULL Optimization”
Section 12.3.2, “Comparison Functions and Operators”
Optimizing Subqueries with EXISTS Strategy
Section C.5.5.3, “Problems with NULL Values”
Section 5.1.4, “Server System Variables”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

L

[index top [3085]]

LIKE
Section 4.5.1.4, “mysql Server-Side Help”
Section 13.8.3, “HELP Syntax”
Section 13.7.5.3, “SHOW CHARACTER SET Syntax”
Section 13.7.5.4, “SHOW COLLATION Syntax”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.13, “SHOW DATABASES Syntax”
Section 13.7.5.17, “SHOW EVENTS Syntax”
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”
Section 13.7.5.27, “SHOW PROCEDURE STATUS
Syntax”
Section 13.7.5.34, “SHOW STATUS Syntax”
Section 13.7.5.35, “SHOW TABLE STATUS Syntax”
Section 13.7.5.36, “SHOW TABLES Syntax”
Section 13.7.5.37, “SHOW TRIGGERS Syntax”
Section 13.7.5.38, “SHOW VARIABLES Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 12.10, “Cast Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 19.31, “Extensions to SHOW Statements”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”

3088

Section 3.3.4.7, “Pattern Matching”
Pre-Filtering by Instrument
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 6.2.3, “Specifying Account Names”
Section 12.5.1, “String Comparison Functions”
Section 9.1.1, “String Literals”
Section 5.1.5.1, “Structured System Variables”
Section 11.4.1, “The CHAR and VARCHAR Types”
Section 11.4.5, “The SET Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 5.1.5, “Using System Variables”

LIKE 'pattern'
Section 13.7.5, “SHOW Syntax”
The Range Access Method for Multiple-Part Indexes

LIKE ... ESCAPE
Section C.5.8, “Known Issues in MySQL”

N

[index top [3085]]

N % M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

N MOD M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

NOT
Section 12.3.3, “Logical Operators”
Section 5.1.7, “Server SQL Modes”

NOT LIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

NOT REGEXP
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

NOT RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

O

[index top [3085]]

OR
Section 13.7.1.4, “GRANT Syntax”

Section 9.5, “Expression Syntax”
Section 8.2.1.4, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Optimizing Subqueries with EXISTS Strategy
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.7, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”
The Index Merge Sort-Union Access Algorithm
The Index Merge Union Access Algorithm
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

R

[index top [3085]]

REGEXP
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section E.7, “Restrictions on Character Sets”

RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section E.7, “Restrictions on Character Sets”

X

[index top [3085]]

XOR
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 12.3.3, “Logical Operators”

3089

Option Index
Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N
| O | P | Q | R | S | T | U | V | W | X | Y

Symbols

[index top [3089]]

--
Section 1.8.2.5, “'--' as the Start of a Comment”
Section 4.8.2, “replace — A String-Replacement
Utility”

-#
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.8.2, “replace — A String-Replacement
Utility”
Section 5.1.3, “Server Command Options”
Section 22.4.3, “The DBUG Package”

/opt/mysql/server-
Section 2.5.4, “Installing MySQL on Linux Using Debian
Packages”

-1
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

-?
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”

Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.10, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.11, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement
Utility”
Section 4.8.3, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 4.2.3.1, “Using Options on the Command Line”

A

[index top [3089]]

-A
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.3.4, “Other myisamchk Options”

3090

-a
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.6.3.4, “Other myisamchk Options”

--abort-slave-event-count
Section 16.1.4.3, “Replication Slave Options and
Variables”

--add-drop-database
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”

--add-drop-table
Section 4.5.4, “mysqldump — A Database Backup
Program”

--add-drop-trigger
Section 4.5.4, “mysqldump — A Database Backup
Program”

--add-locks
Section 4.5.4, “mysqldump — A Database Backup
Program”

--addtodest
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--all
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

--all-databases
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”

Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”

--all-in-1
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--all-tablespaces
Section 4.5.4, “mysqldump — A Database Backup
Program”

--allow-keywords
Section 4.5.4, “mysqldump — A Database Backup
Program”

--allow-mismatches
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--allow-suspicious-udfs
Section 5.1.3, “Server Command Options”
Section 22.3.2.6, “User-Defined Function Security
Precautions”

--allowold
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--analyze
Section 4.6.3.1, “myisamchk General Options”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.3.4, “Other myisamchk Options”

--ansi
Section 1.8, “MySQL Standards Compliance”
Section 5.1.3, “Server Command Options”

--apply-slave-statements
Section 4.5.4, “mysqldump — A Database Backup
Program”

--audit-log
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”
Section 6.3.13.1, “Installing the Audit Log Plugin”

--auto-generate-sql
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-add-
autoincrement
Section 4.5.7, “mysqlslap — Load Emulation Client”

3091

--auto-generate-sql-execute-
number
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-guid-
primary
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-load-
type
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-
secondary-indexes
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-unique-
query-number
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-unique-
write-number
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-write-
number
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-rehash
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--auto-repair
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--auto-vertical-output
Section 4.5.1.1, “mysql Options”

--autocommit
Section 5.1.4, “Server System Variables”

B

[index top [3089]]

-B
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

-b
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.3, “Server Command Options”

--back_log
Section 2.6, “Installing MySQL on Solaris and
OpenSolaris”

--backup
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

--base64-output
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 16.1.3.1, “GTID Concepts”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

--basedir
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”
Section 1.4, “What Is New in MySQL 5.7”

basedir
Section 2.3.5.2, “Creating an Option File”
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”

3092

Section 2.3.6, “Troubleshooting a Microsoft Windows
MySQL Server Installation”

--batch
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”

--big-tables
Section 5.1.3, “Server Command Options”

--binary-mode
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--bind-address
Section 4.5.1.1, “mysql Options”
Section C.5.2.2, “Can't connect to [local]
MySQL server”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 5.1.9.2, “Configuring the MySQL Server to
Permit IPv6 Connections”
Section 5.1.9.4, “Connecting Using IPv6 Nonlocal Host
Addresses”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host
Address”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 5.1.9, “IPv6 Support”
Section 5.1.9.5, “Obtaining an IPv6 Address from a
Broker”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--binlog-checksum
Section 16.1.4.4, “Binary Log Options and Variables”

--binlog-do-db
Section 16.1.4.4, “Binary Log Options and Variables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.2.4, “The Binary Log”

--binlog-format
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4.1, “Binary Logging Formats”
Section 5.1.3, “Server Command Options”
Section 5.2.4.2, “Setting The Binary Log Format”

--binlog-ignore-db
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.2.4, “The Binary Log”

--binlog-row-event-max-size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 5.2.4.2, “Setting The Binary Log Format”

--binlog-rows-query-log-
events
Section 16.1.4.4, “Binary Log Options and Variables”

--binlog_format
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

--block-search
Section 4.6.3.4, “Other myisamchk Options”

--bootstrap
Section 5.1.3, “Server Command Options”

--builddir
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

C

[index top [3089]]

-C
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”

3093

Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 5.1.3, “Server Command Options”

-c
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”

--cflags
Section 2.8.5, “Dealing with Problems Compiling
MySQL”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--character-set-client-
handshake
Section 5.1.3, “Server Command Options”
The cp932 Character Set

--character-set-filesystem
Section 5.1.3, “Server Command Options”

--character-set-server
Section 10.5, “Character Set Configuration”

Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 16.4.1.3, “Replication and Character Sets”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”

--character-sets-dir
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section C.5.2.17, “Can't initialize character
set”
Section 10.5, “Character Set Configuration”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 5.1.3, “Server Command Options”

--character_set_server
Section 2.8.4, “MySQL Source-Configuration Options”

--charset
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--check-only-changed
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--check-upgrade
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--checkpoint
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

3094

--chroot
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 5.1.3, “Server Command Options”

CMAKE_BUILD_TYPE
Section 2.8.4, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 2.8.5, “Dealing with Problems Compiling
MySQL”
Section 2.8.4, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_build_type
Section 2.8.4, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_RELWITHDEBINFO
Section 2.8.4, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 2.8.5, “Dealing with Problems Compiling
MySQL”
Section 2.8.4, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_build_type
Section 2.8.4, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_RELWITHDEBINFO
Section 2.8.4, “MySQL Source-Configuration Options”

CMAKE_INSTALL_PREFIX
Section 22.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 2.8.3, “Installing MySQL Using a Development
Source Tree”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”

CMAKE_PREFIX_PATH
Section 2.8.4, “MySQL Source-Configuration Options”

--collation-server
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 16.4.1.3, “Replication and Character Sets”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”

--collation_server
Section 2.8.4, “MySQL Source-Configuration Options”

--column-names
Section 4.5.1.1, “mysql Options”
Section 4.2.3.2, “Program Option Modifiers”

--column-type-info
Section 4.5.1.1, “mysql Options”

--columns
Section 4.5.5, “mysqlimport — A Data Import
Program”

--comments
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--commit
Section 4.5.7, “mysqlslap — Load Emulation Client”

--comp
Section 4.2.3, “Specifying Program Options”
Section 1.4, “What Is New in MySQL 5.7”

--compact
Section 4.5.4, “mysqldump — A Database Backup
Program”

--compatible
Section 4.5.4, “mysqldump — A Database Backup
Program”

COMPILATION_COMMENT
Section 5.1.4, “Server System Variables”

--complete-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”

--compr
Section 4.2.3, “Specifying Program Options”
Section 1.4, “What Is New in MySQL 5.7”

--compress
Section 4.5.1.1, “mysql Options”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.3.11.1, “Basic SSL Concepts”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

3095

Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.2.3, “Specifying Program Options”
Section 1.4, “What Is New in MySQL 5.7”

--concurrency
Section 4.5.7, “mysqlslap — Load Emulation Client”

--config-file
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”

--connect-expired-password
Section 4.5.1.1, “mysql Options”

--console
Section 14.2.17, “InnoDB Troubleshooting”
Section 14.2.5.1, “Creating the InnoDB Tablespace”
Enabling InnoDB Monitors
Resetting the Root Password: Windows Systems
Section 5.1.3, “Server Command Options”
Section 2.3.5.4, “Starting the Server for the First Time”
Section 5.2.2, “The Error Log”

--core-file
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--core-file-size
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.1.3, “Server Command Options”

--correct-checksum
Section 4.6.3.3, “myisamchk Repair Options”

--count
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”

--create
Section 4.5.7, “mysqlslap — Load Emulation Client”

--create-options
Section 4.5.4, “mysqldump — A Database Backup
Program”

--create-schema
Section 4.5.7, “mysqlslap — Load Emulation Client”

--cross-bootstrap
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

--csv
Section 4.5.7, “mysqlslap — Load Emulation Client”

--cxxflags
Section 2.8.5, “Dealing with Problems Compiling
MySQL”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

D

[index top [3089]]

-D
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section C.5.2.17, “Can't initialize character
set”
Section 10.3, “Adding a Character Set”
Section 2.1.2.2, “Choosing a Distribution Format”
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 21.7.1, “Compiling Programs with libmysqld”
Section 22.4.2, “Debugging a MySQL Client”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 2.8.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.8.4, “MySQL Source-Configuration Options”
Chapter 17, Partitioning
Section 20.2.1, “Performance Schema Build
Configuration”
Prerequisites for the InnoDB memcached Plugin
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 14.10, “The EXAMPLE Storage Engine”
Section 14.9, “The FEDERATED Storage Engine”
Section 5.4, “Tracing mysqld Using DTrace”

3096

Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

-d
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.4, “Server System Variables”

--data-file-length
Section 4.6.3.3, “myisamchk Repair Options”

--database
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--databases
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 7.4.5.1, “Making a Copy of a Database”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”

--datadir
Section 2.3.5.2, “Creating an Option File”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”

Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.3.1, “Setting Up Multiple Data Directories”
Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”
Section 4.2.3.3, “Using Option Files”
Section 1.4, “What Is New in MySQL 5.7”

datadir
Section 2.3.5.2, “Creating an Option File”
Section 2.4.1, “General Notes on Installing MySQL on
Mac OS X”
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”
Section 2.3.6, “Troubleshooting a Microsoft Windows
MySQL Server Installation”
Section E.10.6, “Windows Platform Limitations”

--debug
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”

3097

Section 2.3.5.5, “Starting MySQL from the Windows
Command Line”
Section 22.4.3, “The DBUG Package”

--debug-check
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--debug-info
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--debug-sync-timeout
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--default-auth
Section 4.5.1.1, “mysql Options”
Section 21.8.14, “C API Client Plugin Functions”
Client Plugin Descriptors
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 6.3.8, “Pluggable Authentication”
Section 6.3.9.2, “The “Old” Native Authentication
Plugin”
Section 6.3.9.1, “The Native Authentication Plugin”
Using the Authentication Plugins

--default-authentication-
plugin
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--default-character-set
Section 4.5.1.1, “mysql Options”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.1.5, “Executing SQL Statements from a
Text File”
Section 5.1.4, “Server System Variables”
Unicode Support on Windows
Section 6.3.1, “User Names and Passwords”

--default-storage-engine
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 5.1.3, “Server Command Options”
Section 14.1, “Setting the Storage Engine”
Section 14.2.1.3, “Turning Off InnoDB”

default-storage-engine
Section 14.1, “Setting the Storage Engine”

--default-time-zone
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.30, “Replication and Time Zones”

3098

Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--default-tmp-storage-engine
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 5.1.3, “Server Command Options”
Section 14.2.1.3, “Turning Off InnoDB”

--default.key_buffer_size
Section 5.1.5.1, “Structured System Variables”

DEFAULT_CHARSET
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 10.1.3.1, “Server Character Set and Collation”

DEFAULT_COLLATION
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 10.1.3.1, “Server Character Set and Collation”

--defaults-extra-file
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.1.3, “Server Command Options”
Section 4.2.3.3, “Using Option Files”

--defaults-file
Section 4.6.3.1, “myisamchk General Options”

Section 4.5.1.1, “mysql Options”
Section 14.2.3, “InnoDB Configuration”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 21.7.3, “Options with the Embedded Server”
Resetting the Root Password: Windows Systems
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 5.3.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 2.3.5.7, “Starting MySQL as a Windows
Service”

--defaults-group-suffix
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

3099

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 2.11, “Environment Variables”
Section 5.1.3, “Server Command Options”

--delay-key-write
Section 14.3.1, “MyISAM Startup Options”
Section 8.10.5, “External Locking”
Section 5.1.3, “Server Command Options”
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

--delay_key_write
Section 5.1.5, “Using System Variables”

--delete
Section 4.5.5, “mysqlimport — A Data Import
Program”

--delete-master-logs
Section 4.5.4, “mysqldump — A Database Backup
Program”

--delimiter
Section 4.5.1.1, “mysql Options”
Section 4.5.7, “mysqlslap — Load Emulation Client”

--demangle
Section 22.4.1.5, “Using a Stack Trace”

--des-key-file
Section 13.7.6.3, “FLUSH Syntax”
Section 12.13, “Encryption and Compression
Functions”
Section 5.1.3, “Server Command Options”

--description
Section 4.6.3.4, “Other myisamchk Options”

--detach
Section 4.5.7, “mysqlslap — Load Emulation Client”

--disable
Section 4.2.3.2, “Program Option Modifiers”

--disable-auto-rehash
Section 4.5.1.1, “mysql Options”

--disable-keys
Section 4.5.4, “mysqldump — A Database Backup
Program”

--disable-log-bin
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--disable-named-commands
Section 4.5.1.1, “mysql Options”

--disable-plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--disable-ssl
Section 6.3.11.4, “SSL Command Options”
Section 6.3.11.3, “Using SSL Connections”

--disconnect-slave-event-
count
Section 16.1.4.3, “Replication Slave Options and
Variables”

--dryrun
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--dump
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”

--dump-date
Section 4.5.4, “mysqldump — A Database Backup
Program”

--dump-slave
Section 4.5.4, “mysqldump — A Database Backup
Program”

E

[index top [3089]]

-E
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup
Program”

-e
Section 4.6.3.2, “myisamchk Check Options”

3100

Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 13.2.7, “LOAD XML Syntax”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 7.6.2, “How to Check MyISAM Tables for
Errors”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 4.2.3.1, “Using Options on the Command Line”

--embedded
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--enable-cleartext-plugin
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 6.3.9.5, “The Cleartext Client-Side
Authentication Plugin”

--enable-named-pipe
Section C.5.2.2, “Can't connect to [local]
MySQL server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 2.3.5.3, “Selecting a MySQL Server Type”
Section 5.1.3, “Server Command Options”

--enable-plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--end-page
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--enforce-gtid-consistency
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

--engine
Section 4.5.7, “mysqlslap — Load Emulation Client”

event-scheduler
Section 18.4.2, “Event Scheduler Configuration”

--event-scheduler
Section 18.4.2, “Event Scheduler Configuration”
Section 5.1.3, “Server Command Options”

--events
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”

--example
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--exclude-gtids
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--execute
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 4.2.3.1, “Using Options on the Command Line”

--exit-info
Section 5.1.3, “Server Command Options”

--extend-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”

--extended
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--extended-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”

--external-locking
Section 14.3.1, “MyISAM Startup Options”
Section 8.10.5, “External Locking”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.11.1, “System Factors and Startup Parameter
Tuning”

3101

--extra-file
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”

F

[index top [3089]]

-F
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.2, “mysql Commands”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

-f
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.11, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 22.4.1.5, “Using a Stack Trace”

--fast
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--federated
Section 14.9, “The FEDERATED Storage Engine”

--fields-enclosed-by
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”

--fields-escaped-by
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”

--fields-optionally-
enclosed-by
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”

--fields-terminated-by
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”

--fields-xxx
Section 4.5.4, “mysqldump — A Database Backup
Program”

--fix-db-names
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--fix-table-names
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--flush
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

--flush-logs
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2, “MySQL Server Logs”

--flush-privileges
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”

3102

--flush_time
Section 22.1.1, “MySQL Threads”

--flushlog
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--force
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 22.1.2, “The MySQL Test Suite”
Section 3.5, “Using mysql in Batch Mode”

--force-if-open
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--force-read
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

G

[index top [3089]]

-G
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

-g
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”

--gdb
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”

--general-log
Section 5.1.3, “Server Command Options”

--general_log
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

--general_log_file
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

--gtid-mode
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.10.1, “Upgrading MySQL”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

H

[index top [3089]]

-H
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

-h
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

3103

Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.2.1, “Invoking MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 1.2, “Typographical and Syntax Conventions”
Section 4.2.3.1, “Using Options on the Command Line”

--header_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--HELP
Section 4.6.3.1, “myisamchk General Options”

--help
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.10, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.11, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”

Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.1, “Overview of MySQL Programs”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section 5.1.3, “Server Command Options”
Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”
Section 8.11.2, “Tuning Server Parameters”
Chapter 3, Tutorial
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”

--hex-blob
Section 4.5.4, “mysqldump — A Database Backup
Program”

--hexdump
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--histignore
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 1.4, “What Is New in MySQL 5.7”

--host
Section 4.5.1.1, “mysql Options”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 5.1.9.2, “Configuring the MySQL Server to
Permit IPv6 Connections”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

3104

Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.3.6, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 5.1.3, “Server Command Options”
Section 1.2, “Typographical and Syntax Conventions”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”

host
Section 4.5.1.1, “mysql Options”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.2.3.3, “Using Option Files”

--html
Section 4.5.1.1, “mysql Options”

I

[index top [3089]]

-I
Section 21.8.4.1, “Building C API Client Programs”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.10, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.11, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement
Utility”
Section 4.8.3, “resolveip — Resolve Host name to
IP Address or Vice Versa”

-i
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 7.6.2, “How to Check MyISAM Tables for
Errors”
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 22.4.1.3, “Using pdb to create a Windows
crashdump”

--i-am-a-dummy
Section 4.5.1.1, “mysql Options”
Using the --safe-updates Option

--idempotent
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--ignore
Section 4.5.5, “mysqlimport — A Data Import
Program”

--ignore-builtin-innodb
Section 14.2.13, “InnoDB Startup Options and System
Variables”

3105

--ignore-db-dir
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--ignore-error
Section 4.5.4, “mysqldump — A Database Backup
Program”

--ignore-lines
Section 4.5.5, “mysqlimport — A Data Import
Program”

--ignore-spaces
Section 4.5.1.1, “mysql Options”

--ignore-table
Section 4.5.4, “mysqldump — A Database Backup
Program”

--in_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--include
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--include-gtids
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--include-master-host-port
Section 4.5.4, “mysqldump — A Database Backup
Program”

--info
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to
IP Address or Vice Versa”

--information
Section 4.6.3.2, “myisamchk Check Options”

--init-command
Section 4.5.1.1, “mysql Options”
Section 16.4.1.27, “Replication of Server-Side Help
Tables”

--init-file
Section 20.2.3, “Performance Schema Runtime
Configuration”
Resetting the Root Password: Unix Systems
Resetting the Root Password: Windows Systems

Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.4, “The MEMORY Storage Engine”

--init_connect
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”

--innodb
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.1.3, “Turning Off InnoDB”

innodb-status-file
Enabling InnoDB Monitors

--innodb-status-file
Section 14.2.13, “InnoDB Startup Options and System
Variables”

--innodb-xxx
Section 5.1.3, “Server Command Options”

--innodb_adaptive_hash_index
Section 14.2.13, “InnoDB Startup Options and System
Variables”

--innodb_file_per_table
Section 14.2.5.3, “Enabling and Disabling File-Per-
Table Mode”
Section 5.1.3, “Server Command Options”

innodb_file_per_table
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 5.1.3, “Server Command Options”

--innodb_rollback_on_timeout
Section 14.2.17.4, “InnoDB Error Handling”
Section 14.2.13, “InnoDB Startup Options and System
Variables”

--innodb_support_xa
Section 5.2.4, “The Binary Log”

--insert-ignore
Section 4.5.4, “mysqldump — A Database Backup
Program”

--install
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 5.1.3, “Server Command Options”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”

3106

Section 2.3.5.7, “Starting MySQL as a Windows
Service”

--install-manual
Section 5.1.3, “Server Command Options”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 2.3.5.7, “Starting MySQL as a Windows
Service”

--iterations
Section 4.5.7, “mysqlslap — Load Emulation Client”

J

[index top [3089]]

-j
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--join
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

K

[index top [3089]]

-K
Section 4.5.4, “mysqldump — A Database Backup
Program”

-k
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--keep_files_on_create
Section 13.1.14, “CREATE TABLE Syntax”

--keepold
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--key_buffer_size
Section 5.1.3, “Server Command Options”

--keys
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”

--keys-used
Section 4.6.3.3, “myisamchk Repair Options”

L

[index top [3089]]

-L
Section 4.5.1.1, “mysql Options”
Section 21.8.4.1, “Building C API Client Programs”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 2.12.3, “Problems Using the Perl DBI/DBD
Interface”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

-l
Section 4.6.3.3, “myisamchk Repair Options”
Section 21.8.7.40, “mysql_library_end()”
Section 21.8.4.1, “Building C API Client Programs”
Section 21.8.13, “C API Embedded Server Function
Descriptions”
Section 21.8.6, “C API Function Overview”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”

--language
Section 5.1.3, “Server Command Options”

--large-pages
Section 8.11.4.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--lc-messages
Section 5.1.3, “Server Command Options”

--lc-messages-dir
Section 5.1.3, “Server Command Options”

--ldata
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

3107

--ledir
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--length
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”

--libmysqld-libs
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--libs
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--libs_r
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--line-numbers
Section 4.5.1.1, “mysql Options”

--lines-terminated-by
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”

--local
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

--local-infile
Section 4.5.1.1, “mysql Options”
Section 13.2.7, “LOAD XML Syntax”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

--local-load
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--local-service
Section 5.1.3, “Server Command Options”
Section 2.3.5.7, “Starting MySQL as a Windows
Service”

--lock-all-tables
Section 4.5.4, “mysqldump — A Database Backup
Program”

--lock-tables
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

--log
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--log-bin
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 7.3.3, “Backup Strategy Summary”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.4.5, “How to Report Replication Bugs or
Problems”
Section C.5.8, “Known Issues in MySQL”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 16.3.6, “Switching Masters During Failover”
Section 5.2.4, “The Binary Log”
Section 16.4.4, “Troubleshooting Replication”
Section 16.4.3, “Upgrading a Replication Setup”
Section 7.3.2, “Using Backups for Recovery”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

--log-bin-index
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4, “The Binary Log”

--log-bin-trust-function-
creators
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”

--log-bin-use-v1-row-events
Section 16.1.4.4, “Binary Log Options and Variables”

--log-error
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

3108

Section 4.2.3.6, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.2.6, “Server Log Maintenance”
Section 2.3.5.5, “Starting MySQL from the Windows
Command Line”
Section 2.3.5.4, “Starting the Server for the First Time”
Section 5.2.2, “The Error Log”

--log-isam
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 5.1.3, “Server Command Options”

--log-output
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

--log-queries-not-using-
indexes
Section 5.1.3, “Server Command Options”

--log-raw
Section 6.1.2.3, “Passwords and Logging”
Section 5.1.3, “Server Command Options”
Section 5.2.3, “The General Query Log”

--log-short-format
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.3, “Server Command Options”
Section 5.2.5, “The Slow Query Log”

--log-slave-updates
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.4.5, “How to Report Replication Bugs or
Problems”
Section 16.3.5, “Improving Replication Performance”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.3.6, “Switching Masters During Failover”
Section 5.2.4, “The Binary Log”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

--log-slow-admin-statements
Section 5.1.3, “Server Command Options”

--log-slow-slave-statements
Section 16.1.4.3, “Replication Slave Options and
Variables”

--log-tc
Section 5.1.3, “Server Command Options”

--log-tc-size
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”

--log-warnings
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

--login-path
Section 4.5.1.1, “mysql Options”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.2.3.3, “Using Option Files”

--loose
Section 4.2.3.2, “Program Option Modifiers”

--loose-opt_name
Section 4.2.3.3, “Using Option Files”

--low-priority
Section 4.5.5, “mysqlimport — A Data Import
Program”

--low-priority-updates
Section 13.2.5, “INSERT Syntax”
Section 8.10.3, “Concurrent Inserts”
Section 5.1.3, “Server Command Options”
Section 8.10.2, “Table Locking Issues”

--lower-case-table-names
Section 9.2.2, “Identifier Case Sensitivity”

3109

M

[index top [3089]]

-m
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--malloc-lib
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--master-connect-retry
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-data
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2, “MySQL Server Logs”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

--master-host
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-info-file
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.2.2.2, “Slave Status Logs”

--master-info-repository
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 16.2.2, “Replication Relay and Status Logs”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.1.1.8, “Setting Up Replication with Existing
Data”
Section 16.2.2.2, “Slave Status Logs”

--master-password
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-port
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-retry-count
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-ssl
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-ssl-ca
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-ssl-capath
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-ssl-cert
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-ssl-cipher
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-ssl-key
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-user
Section 16.1.4.3, “Replication Slave Options and
Variables”

--master-verify-checksum
Section 16.1.4.4, “Binary Log Options and Variables”

--max
Section 4.2.3.5, “Using Options to Set Program
Variables”

--max-binlog-dump-events
Section 16.1.4.4, “Binary Log Options and Variables”

--max-binlog-size
Section 16.1.4.3, “Replication Slave Options and
Variables”

--max-record-length
Section 4.6.3.3, “myisamchk Repair Options”
Section 13.7.2.5, “REPAIR TABLE Syntax”

--max-relay-log-size
Section 16.1.4.3, “Replication Slave Options and
Variables”

3110

--max-seeks-for-key
Section 8.2.1.20, “How to Avoid Full Table Scans”
Section C.5.6, “Optimizer-Related Issues”

--max_a
Section 4.2.3.5, “Using Options to Set Program
Variables”

--max_join_size
Using the --safe-updates Option

--maximum
Section 4.2.3.2, “Program Option Modifiers”

--maximum-query_cache_size
Section 4.2.3.2, “Program Option Modifiers”
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.5, “Using System Variables”

--maximum-var_name
Section 5.1.3, “Server Command Options”
Section 5.1.5, “Using System Variables”

--medium-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--memlock
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.5.8, “Using Raw Disk Partitions for the
Shared Tablespace”

--method
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--min-examined-row-limit
Section 5.1.3, “Server Command Options”

--my-plugin
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--my-print-defaults
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”

--my_plugin
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--myisam-block-size
Section 8.9.2.5, “Key Cache Block Size”

Section 5.1.3, “Server Command Options”

--myisam-recover
Section 5.1.3, “Server Command Options”

--myisam-recover-options
Section 14.3.1, “MyISAM Startup Options”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.5, “Other Optimization Tips”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section C.5.2.19, “Table-Corruption Issues”
Section 14.3, “The MyISAM Storage Engine”
Section 22.4.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”

--myisam_sort_buffer_size
Section 4.6.3.6, “myisamchk Memory Usage”

MYSQL_MAINTAINER_MODE
Section 2.8.5, “Dealing with Problems Compiling
MySQL”

MYSQL_TCP_PORT
Section 2.8.3, “Installing MySQL Using a Development
Source Tree”
Section 2.8.4, “MySQL Source-Configuration Options”

MYSQL_UNIX_ADDR
Section C.5.4.5, “How to Protect or Change the MySQL
Unix Socket File”
Section 2.8.3, “Installing MySQL Using a Development
Source Tree”
Section 2.8.4, “MySQL Source-Configuration Options”

--mysqladmin
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--mysqld
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--mysqld-version
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

N

[index top [3089]]

3111

-N
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

-n
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”

--name_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--named-commands
Section 4.5.1.1, “mysql Options”

--ndb
Section 4.8.1, “perror — Explain Error Codes”

net_retry_count
Section 16.2.1, “Replication Implementation Details”

net_write_timeout
Section 16.2.1, “Replication Implementation Details”

--new
Section 4.2.3.3, “Using Option Files”

--nice
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--no-auto-rehash
Section 4.5.1.1, “mysql Options”

--no-autocommit
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-beep
Section 4.5.1.1, “mysql Options”

Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--no-check
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--no-create-db
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-create-info
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”

--no-data
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”

--no-defaults
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

3112

Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.1.3, “Server Command Options”

--no-drop
Section 4.5.7, “mysqlslap — Load Emulation Client”

--no-log
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--no-set-names
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-symlinks
Section 4.6.3.3, “myisamchk Repair Options”

--no-tablespaces
Section 4.5.4, “mysqldump — A Database Backup
Program”

--noindices
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--number-char-cols
Section 4.5.7, “mysqlslap — Load Emulation Client”

--number-int-cols
Section 4.5.7, “mysqlslap — Load Emulation Client”

--number-of-queries
Section 4.5.7, “mysqlslap — Load Emulation Client”

--numeric-dump-file
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”

O

[index top [3089]]

-O
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 2.8.4, “MySQL Source-Configuration Options”

-o
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 21.7.1, “Compiling Programs with libmysqld”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”

Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 8.11.3, “Optimizing Disk I/O”

--offset
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--old-alter-table
Section 5.1.3, “Server Command Options”

--old-style-user-limits
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”

--old_server
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

ON
Section 3.3.4.9, “Using More Than one Table”

--one-database
Section 4.5.1.1, “mysql Options”

--only-print
Section 4.5.7, “mysqlslap — Load Emulation Client”

open-files-limit
Section C.5.2.7, “Too many connections”

--open-files-limit
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 5.1.3, “Server Command Options”

--opt
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--opt_name
Section 4.2.3.3, “Using Option Files”

--optimize
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

3113

--order-by-primary
Section 4.5.4, “mysqldump — A Database Backup
Program”

--out_dir
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--out_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

P

[index top [3089]]

-P
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.2.1, “Invoking MySQL Programs”
Section 5.1.3, “Server Command Options”

-p
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 6.3.2, “Adding User Accounts”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 4.2.1, “Invoking MySQL Programs”
Section C.5.2.5, “Password Fails When Entered
Interactively”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 2.3.5.7, “Starting MySQL as a Windows
Service”
Section 2.3.5.5, “Starting MySQL from the Windows
Command Line”
Section 2.3.5.8, “Testing The MySQL Installation”
Section 2.3.7, “Upgrading MySQL on Windows”
Section 6.3.1, “User Names and Passwords”
Section 4.2.3.1, “Using Options on the Command Line”
Section 2.3.8, “Windows Postinstallation Procedures”

--page
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--page-type-dump
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--page-type-summary
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--pager
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--parallel-recover
Section 4.6.3.3, “myisamchk Repair Options”

--partition
Section 5.1.3, “Server Command Options”

password
Section 4.5.1.1, “mysql Options”

3114

Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.2.3.3, “Using Option Files”

--password
Section 4.5.1.1, “mysql Options”
Section 6.3.2, “Adding User Accounts”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 7.3, “Example Backup and Recovery Strategy”
Section 4.2.1, “Invoking MySQL Programs”
Section C.5.2.5, “Password Fails When Entered
Interactively”
Section 6.3.8, “Pluggable Authentication”
Section 6.3.9.7, “The Test Authentication Plugin”
Section 6.3.1, “User Names and Passwords”

Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”
Section 4.2.3.1, “Using Options on the Command Line”

--performance-schema-
consumer-consumer_name
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-stages-
current
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-stages-
history
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-stages-
history-long
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-statements-
current
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-statements-
history
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-statements-
history-long
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-
transactions-current
Section 20.11, “Performance Schema Command
Options”

3115

--performance-schema-
consumer-events-
transactions-history
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-
transactions-history-long
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-waits-
current
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-waits-
history
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-events-waits-
history-long
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-global-
instrumentation
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-statements-digest
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
consumer-thread-
instrumentation
Section 20.11, “Performance Schema Command
Options”

--performance-schema-
instrument
Section 20.11, “Performance Schema Command
Options”
Section 20.2.2, “Performance Schema Startup
Configuration”

--performance-schema-xxx
Section 5.1.3, “Server Command Options”

--
performance_schema_max_mutex_classes
Section 20.5, “Performance Schema Status Monitoring”

--
performance_schema_max_mutex_instances
Section 20.5, “Performance Schema Status Monitoring”

pid-file
Section 2.9.1.2, “Starting and Stopping MySQL
Automatically”

--pid-file
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--pipe
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 2.3.5.8, “Testing The MySQL Installation”

--plugin
Section 5.1.3, “Server Command Options”

--plugin-dir
Section 4.5.1.1, “mysql Options”

3116

Section 21.8.14.3, “mysql_load_plugin()”
Section 21.8.14, “C API Client Plugin Functions”
Client Plugin Descriptors
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 6.3.8, “Pluggable Authentication”
Section E.9, “Restrictions on Pluggable Authentication”
Using the Authentication Plugins
Using Your Own Protocol Trace Plugins

--plugin-ini
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”

--plugin-
innodb_file_per_table
Section 5.1.3, “Server Command Options”

--plugin-load
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.13.1, “Installing the Audit Log Plugin”
Section 2.8.4, “MySQL Source-Configuration Options”
Password Validation Plugin Installation
Password Validation Plugin Options and Variables
Section 6.3.8, “Pluggable Authentication”
Section 22.2.2, “Plugin API Components”
Section 22.2.4.2, “Plugin Data Structures”
Section 5.1.3, “Server Command Options”
Server Plugin Library and Plugin Descriptors
Section 22.2, “The MySQL Plugin API”
Using the Authentication Plugins

--plugin-load-add
Section 5.1.8.1, “Installing and Uninstalling Plugins”

Section 5.1.3, “Server Command Options”

--plugin-sql-mode
Section 5.1.3, “Server Command Options”

--plugin-xxx
Section 5.1.3, “Server Command Options”

--plugin_dir
Section 2.8.4, “MySQL Source-Configuration Options”
Section 22.2.2, “Plugin API Components”

--plugin_name
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--plugindir
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--port
Section 4.5.1.1, “mysql Options”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.2.1, “Invoking MySQL Programs”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

3117

Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”

--port-open-timeout
Section 5.1.3, “Server Command Options”

--post-query
Section 4.5.7, “mysqlslap — Load Emulation Client”

--post-system
Section 4.5.7, “mysqlslap — Load Emulation Client”

--pre-query
Section 4.5.7, “mysqlslap — Load Emulation Client”

--pre-system
Section 4.5.7, “mysqlslap — Load Emulation Client”

--print-defaults
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 5.1.3, “Server Command Options”
Section 2.10.1, “Upgrading MySQL”

--prompt
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--protocol
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 2.3.5.4, “Starting the Server for the First Time”
Section 2.3.5.8, “Testing The MySQL Installation”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”

Q

[index top [3089]]

-Q
Section 4.5.4, “mysqldump — A Database Backup
Program”

-q
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”

--query
Section 4.5.7, “mysqlslap — Load Emulation Client”

--query-cache-size
Section 8.10.5, “External Locking”

--quick
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section C.5.2.8, “Out of memory”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

3118

Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.3.3, “Using Option Files”

--quiet
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--quote-names
Section 4.5.4, “mysqldump — A Database Backup
Program”

R

[index top [3089]]

-R
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”

-r
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 22.3.2, “Adding a New User-Defined Function”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 5.1.3, “Server Command Options”

--random-passwords
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”

--raw
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

--read-from-remote-master
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

--read-from-remote-server
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server
ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

--read-only
Section 4.6.3.2, “myisamchk Check Options”
Section 16.1.4.3, “Replication Slave Options and
Variables”

--reconnect
Section 4.5.1.1, “mysql Options”

--record_log_pos
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--recover
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--regexp
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--relative
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--relay-log
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.3.5, “Improving Replication Performance”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”

3119

Section 4.2.3.6, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.2.2.1, “The Slave Relay Log”

--relay-log-index
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.2.2.1, “The Slave Relay Log”

--relay-log-info-file
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.2.2.2, “Slave Status Logs”

--relay-log-info-repository
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 16.2.2, “Replication Relay and Status Logs”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.2.2.2, “Slave Status Logs”

--relay-log-purge
Section 16.1.4.3, “Replication Slave Options and
Variables”

--relay-log-recovery
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.2.2, “Replication Relay and Status Logs”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.12, “The Shutdown Process”

--relay-log-space-limit
Section 16.1.4.3, “Replication Slave Options and
Variables”

--remove
Section 5.1.3, “Server Command Options”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 2.3.5.7, “Starting MySQL as a Windows
Service”

--repair
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--replace
Section 4.5.4, “mysqldump — A Database Backup
Program”

Section 4.5.5, “mysqlimport — A Data Import
Program”

--replicate-*
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and
Variables”

--replicate-*-db
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section E.1, “Restrictions on Stored Programs”

--replicate-*-table
Section 16.2.3.3, “Replication Rule Application”

--replicate-do-db
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section 16.4.1.25, “Replication and Reserved Words”
Section 16.4.1.22, “Replication and Temporary Tables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.2.4, “The Binary Log”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

--replicate-do-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.2.3.2, “Evaluation of Table-Level Replication
Options”
Section 16.4.1.25, “Replication and Reserved Words”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.22, “Replication and Temporary Tables”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

3120

--replicate-ignore-db
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.4.1.25, “Replication and Reserved Words”
Section 16.4.1.15, “Replication and System Functions”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.2.4, “The Binary Log”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

--replicate-ignore-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.2.3.2, “Evaluation of Table-Level Replication
Options”
Section 16.4.1.25, “Replication and Reserved Words”
Section 16.4.1.22, “Replication and Temporary Tables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

--replicate-rewrite-db
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

--replicate-same-server-id
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 16.1.4.3, “Replication Slave Options and
Variables”

--replicate-wild-do-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.2.3.2, “Evaluation of Table-Level Replication
Options”

Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section 16.4.1.22, “Replication and Temporary Tables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section E.1, “Restrictions on Stored Programs”

--replicate-wild-ignore-
table
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.2.3.2, “Evaluation of Table-Level Replication
Options”
Section 16.4.1.22, “Replication and Temporary Tables”
Section 16.1.4.3, “Replication Slave Options and
Variables”

replication-ignore-table
Section 16.4.1.35, “Replication and Views”

--replication-rewrite-db
Section 16.1.4.3, “Replication Slave Options and
Variables”

--report-host
Section 13.7.5.32, “SHOW SLAVE HOSTS Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

--report-password
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

--report-port
Section 13.7.5.32, “SHOW SLAVE HOSTS Syntax”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

--report-user
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

--resetmaster
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

3121

--resetslave
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--result-file
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”

--rewrite-db
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 1.4, “What Is New in MySQL 5.7”

--routines
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”

--rpm
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

S

[index top [3089]]

-S
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.3.4, “Other myisamchk Options”

-s
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.11, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement
Utility”
Section 4.8.3, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 7.6.2, “How to Check MyISAM Tables for
Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 5.1.3, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”

--safe-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--safe-updates
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Using the --safe-updates Option

3122

--safe-user-create
Section 5.1.3, “Server Command Options”

--secure-auth
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password
Plugin”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.3, “Server Command Options”

--secure-file-priv
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--select_limit
Using the --safe-updates Option

server-id
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”
Section 16.1, “Replication Configuration”
Section 16.1.4.2, “Replication Master Options and
Variables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.1.1.1, “Setting the Replication Master
Configuration”
Section 16.1.1.2, “Setting the Replication Slave
Configuration”
Section 16.1.1.8, “Setting Up Replication with Existing
Data”

--server-id
Section 13.7.5.32, “SHOW SLAVE HOSTS Syntax”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”

Section 5.1.4, “Server System Variables”
Section 16.4.4, “Troubleshooting Replication”

--server-public-key-path
Section 4.5.1.1, “mysql Options”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”

--service-startup-timeout
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

--set-auto-increment
Section 4.6.3.4, “Other myisamchk Options”

--set-character-set
Section 4.6.3.3, “myisamchk Repair Options”

--set-charset
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--set-collation
Section 4.6.3.3, “myisamchk Repair Options”

--set-gtid-purged
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

--shared-memory
Section 4.2.2, “Connecting to the MySQL Server”
Section 5.1.3, “Server Command Options”
Section 5.3.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 2.3.5.4, “Starting the Server for the First Time”

--shared-memory-base-name
Section 21.8.7.50, “mysql_options()”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.3.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”

--short-form
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

3123

--show-slave-auth-info
Section 16.1.4.3, “Replication Slave Options and
Variables”

--show-table-type
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”

--show-warnings
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--sigint-ignore
Section 4.5.1.1, “mysql Options”

--silent
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”

--single-transaction
Section 14.2.14, “InnoDB Backup and Recovery”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.3.1, “Establishing a Backup Policy”

--skip
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.2.3.2, “Program Option Modifiers”
Section 5.1.3, “Server Command Options”

--skip-add-drop-table
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-add-locks
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-auto-rehash
Section 14.2.17.3, “Troubleshooting InnoDB Data
Dictionary Operations”

--skip-character-set-client-
handshake
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
The cp932 Character Set

--skip-column-names
Section 4.5.1.1, “mysql Options”

--skip-comments
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-concurrent-insert
Section 5.1.3, “Server Command Options”

--skip-database
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--skip-disable-keys
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-dump-date
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-engine_name
Section 13.7.5.15, “SHOW ENGINES Syntax”

--skip-event-scheduler
Section 5.1.3, “Server Command Options”

--skip-events
Section 7.4.5.3, “Dumping Stored Programs”

--skip-extended-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-external-locking
Section 8.10.5, “External Locking”
Section 8.12.5.2, “General Thread States”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.11.1, “System Factors and Startup Parameter
Tuning”
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

3124

--skip-grant-tables
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 18.4.2, “Event Scheduler Configuration”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.8, “Pluggable Authentication”
Section 2.9.1.1, “Problems Running
mysql_install_db”
Resetting the Root Password: Generic Instructions
Section 5.1.3, “Server Command Options”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 4.2.3.1, “Using Options on the Command Line”
Section 6.2.6, “When Privilege Changes Take Effect”

--skip-gtids
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”

--skip-host-cache
Section 6.2.7, “Causes of Access-Denied Errors”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--skip-innodb
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 5.1.3, “Server Command Options”
Section 14.2.1.3, “Turning Off InnoDB”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”

--skip-innodb-checksums
Section 14.2.13, “InnoDB Startup Options and System
Variables”

--skip-
innodb_adaptive_hash_index
Section 14.2.13, “InnoDB Startup Options and System
Variables”

--skip-innodb_doublewrite
Section 14.2.13, “InnoDB Startup Options and System
Variables”

--skip-kill-mysqld
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--skip-line-numbers
Section 4.5.1.1, “mysql Options”

--skip-lock-tables
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-name-resolve
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.3.5.8, “Testing The MySQL Installation”

--skip-named-commands
Section 4.5.1.1, “mysql Options”

--skip-networking
Section C.5.2.2, “Can't connect to [local]
MySQL server”
Section C.5.2.9, “MySQL server has gone away”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”
Section 6.3.8, “Pluggable Authentication”
Resetting the Root Password: Generic Instructions
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 16.4.3, “Upgrading a Replication Setup”

skip-networking
Section 16.1.1.1, “Setting the Replication Master
Configuration”
Section 16.4.4, “Troubleshooting Replication”

--skip-new
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 22.4.1, “Debugging a MySQL Server”
Section 5.1.4, “Server System Variables”

--skip-opt
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-pager
Section 4.5.1.1, “mysql Options”

--skip-partition
Chapter 17, Partitioning
Section 5.1.3, “Server Command Options”

3125

--skip-plugin-
innodb_file_per_table
Section 5.1.3, “Server Command Options”

--skip-plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--skip-quick
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-quote-names
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-random-passwords
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

--skip-reconnect
Section 4.5.1.1, “mysql Options”
Section 21.8.16, “Controlling Automatic Reconnection
Behavior”
Disabling mysql Auto-Reconnect

--skip-routines
Section 7.4.5.3, “Dumping Stored Programs”

--skip-secure-auth
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”

--skip-set-charset
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-show-database
Section 13.7.5.13, “SHOW DATABASES Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”

--skip-slave-start
Section 13.4.2.1, “CHANGE MASTER TO Syntax”

Section 13.4.2.6, “START SLAVE Syntax”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 16.3.7, “Setting Up Replication Using SSL”
Section 16.1.1.8, “Setting Up Replication with Existing
Data”
Section 16.4.4, “Troubleshooting Replication”
Section 16.4.3, “Upgrading a Replication Setup”

--skip-ssl
Section 6.3.11.4, “SSL Command Options”
Section 6.3.11.3, “Using SSL Connections”

--skip-stack-trace
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”

--skip-super-large-pages
Section 8.11.4.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”

--skip-symbolic-links
Section 13.1.14, “CREATE TABLE Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Using Symbolic Links for MyISAM Tables on Unix

--skip-syslog
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.2.2, “The Error Log”

--skip-triggers
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.5.3, “Dumping Stored Programs”

--skip-tz-utc
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-version-check
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--skip-warn
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

--skip-write-binlog
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”

3126

Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--skip_grant_tables
Section 4.2.3.1, “Using Options on the Command Line”

--slave-checkpoint-group
Section 16.1.4.3, “Replication Slave Options and
Variables”

--slave-checkpoint-period
Section 16.1.4.3, “Replication Slave Options and
Variables”

--slave-load-tmpdir
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.2, “Database Backup Methods”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section C.5.4.4, “Where MySQL Stores Temporary
Files”

slave-max-allowed-packet
Section 16.1.4.3, “Replication Slave Options and
Variables”

--slave-max-allowed-packet
Section 16.1.4.3, “Replication Slave Options and
Variables”

--slave-net-timeout
Section 16.1.4.3, “Replication Slave Options and
Variables”

--slave-parallel-type
Section 16.1.4.3, “Replication Slave Options and
Variables”

--slave-parallel-workers
Section 16.1.4.3, “Replication Slave Options and
Variables”

--slave-pending-jobs-size-
max
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave-rows-search-algorithms
Section 16.1.4.3, “Replication Slave Options and
Variables”

--slave-skip-errors
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.4.1.26, “Slave Errors During Replication”

--slave-sql-verify-checksum
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.1.4.3, “Replication Slave Options and
Variables”

--slave_compressed_protocol
Section 16.1.4.3, “Replication Slave Options and
Variables”

--sleep
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--slow-query-log
Section 5.1.3, “Server Command Options”

--slow-start-timeout
Section 5.1.3, “Server Command Options”

--slow_query_log
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

--slow_query_log_file
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.2.5, “The Slow Query Log”

--socket
Section 4.5.1.1, “mysql Options”
Section C.5.2.2, “Can't connect to [local]
MySQL server”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

3127

Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section C.5.4.5, “How to Protect or Change the MySQL
Unix Socket File”
Section 4.2.1, “Invoking MySQL Programs”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Server Plugin Library and Plugin Descriptors
Section 2.3.5.8, “Testing The MySQL Installation”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”

socket
Section 2.4.1, “General Notes on Installing MySQL on
Mac OS X”

--sort-index
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-records
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--sporadic-binlog-dump-fail
Section 16.1.4.4, “Binary Log Options and Variables”

--sql-mode
Chapter 12, Functions and Operators
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”

sql-mode
Section 5.1.7, “Server SQL Modes”

--srcdir
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

--ssl
Section 4.5.1.1, “mysql Options”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 5.1.3, “Server Command Options”
Section 6.3.11.4, “SSL Command Options”
Section 6.3.11.3, “Using SSL Connections”

--ssl*
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 5.1.3, “Server Command Options”

--ssl-ca
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.11.5, “Setting Up SSL Certificates and
Keys for MySQL”
Section 6.3.11.4, “SSL Command Options”
Section 6.3.11.3, “Using SSL Connections”

--ssl-capath
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.11.4, “SSL Command Options”

--ssl-cert
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.11.5, “Setting Up SSL Certificates and
Keys for MySQL”
Section 6.3.11.4, “SSL Command Options”
Section 6.3.11.3, “Using SSL Connections”

--ssl-cipher
Section 6.3.11.4, “SSL Command Options”

3128

--ssl-crl
Section 6.3.11.4, “SSL Command Options”

--ssl-crlpath
Section 6.3.11.4, “SSL Command Options”

--ssl-key
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.11.5, “Setting Up SSL Certificates and
Keys for MySQL”
Section 6.3.11.4, “SSL Command Options”
Section 6.3.11.3, “Using SSL Connections”

--ssl-verify-server-cert
Section 6.3.11.4, “SSL Command Options”

--ssl-xxx
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 6.3.11.2, “Configuring MySQL for SSL”
Section 5.1.4, “Server System Variables”
Section 6.3.11.4, “SSL Command Options”

--standalone
Section 22.4.1.2, “Creating Trace Files”
Section 5.1.3, “Server Command Options”
Section 2.3.5.5, “Starting MySQL from the Windows
Command Line”

--start-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event
Times”

--start-page
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--start-position
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event
Positions”

--statefile
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--stats
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”

--status
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”

--stop-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event
Times”

--stop-never
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server
ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”

--stop-never-slave-server-id
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server
ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”

--stop-position
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event
Positions”

--strict-check
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--suffix
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--super-large-pages
Section 8.11.4.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”

--symbolic-links
Section 5.1.3, “Server Command Options”

--symbols-file
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”

SYSCONFDIR
Section 4.2.3.3, “Using Option Files”

--sysdate-is-now
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.3, “Server Command Options”

3129

Section 5.1.4, “Server System Variables”

--syslog
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 2.11, “Environment Variables”
Section 5.2.2, “The Error Log”
Section 1.4, “What Is New in MySQL 5.7”

--syslog-tag
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

T

[index top [3089]]

-T
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 5.1.3, “Server Command Options”

-t
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.11, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 5.1.3, “Server Command Options”

--tab
Section 7.1, “Backup and Recovery Types”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup
Program”

Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 7.4, “Using mysqldump for Backups”

--table
Section 4.5.1.1, “mysql Options”

--tables
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--tc-heuristic-recover
Section 5.1.3, “Server Command Options”

--tcp-ip
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--tee
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--temp-pool
Section 5.1.3, “Server Command Options”

--test
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

Text
Section 1.2, “Typographical and Syntax Conventions”

--thread_cache_size
Section 22.4.1.4, “Debugging mysqld under gdb”

--thread_stack
Section 8.11.5.1, “How MySQL Uses Threads for Client
Connections”

--timezone
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.30, “Replication and Time Zones”
Section 5.1.4, “Server System Variables”
Section C.5.4.6, “Time Zone Problems”

tmpdir
Section 2.3, “Installing MySQL on Microsoft Windows”

--tmpdir
Section 4.6.3.6, “myisamchk Memory Usage”

3130

Section 4.6.3.3, “myisamchk Repair Options”
Section C.5.2.13, “Can't create/write to file”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section C.5.4.4, “Where MySQL Stores Temporary
Files”

--to-last-log
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server
ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”

--transaction-isolation
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”

--transaction-read-only
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--triggers
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.5.3, “Dumping Stored Programs”

--tz-utc
Section 4.5.4, “mysqldump — A Database Backup
Program”

U

[index top [3089]]

-U
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”

-u
Section 4.6.3.3, “myisamchk Repair Options”

Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.2.1, “Invoking MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 2.3.5.8, “Testing The MySQL Installation”
Section 6.3.1, “User Names and Passwords”
Section 2.3.8, “Windows Postinstallation Procedures”

--unbuffered
Section 4.5.1.1, “mysql Options”

--unpack
Section 4.6.3.3, “myisamchk Repair Options”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

--update-state
Section 4.6.3.2, “myisamchk Check Options”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.3, “The MyISAM Storage Engine”

--upgrade-system-tables
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--use-default
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”

--use-frm
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

3131

--use-mysqld_safe
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

--use-threads
Section 4.5.5, “mysqlimport — A Data Import
Program”

--user
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 7.3, “Example Backup and Recovery Strategy”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 4.2.1, “Invoking MySQL Programs”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 4.2.3.6, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 6.3.8, “Pluggable Authentication”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Resetting the Root Password: Unix Systems
Section 5.1.3, “Server Command Options”
Section 6.3.9.6, “The Socket Peer-Credential
Authentication Plugin”

Section 6.3.9.7, “The Test Authentication Plugin”
Section 6.3.1, “User Names and Passwords”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”
Section 4.2.3.3, “Using Option Files”

user
Section 4.5.1.1, “mysql Options”
Section 4.2.3.4, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.2.3.3, “Using Option Files”

V

[index top [3089]]

-V
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.10, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”

3132

Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement
Utility”
Section 4.8.3, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 4.2.3.1, “Using Options on the Command Line”

-v
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.10, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement
Utility”
Section 7.6.2, “How to Check MyISAM Tables for
Errors”

Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 5.1.3, “Server Command Options”
Section 4.2.3.1, “Using Options on the Command Line”

--validate-password
Password Validation Plugin Installation
Password Validation Plugin Options and Variables

--var_name
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 5.1.3, “Server Command Options”

--verbose
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.10, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

3133

Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.1.5, “Executing SQL Statements from a
Text File”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.3, “Server Command Options”
Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”
Section 8.11.2, “Tuning Server Parameters”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”

--verify-binlog-checksum
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--version
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.6.10, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”

Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 5.1.3, “Server Command Options”
Section 4.2.3.1, “Using Options on the Command Line”

--version-check
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--vertical
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 1.7, “How to Report Bugs or Problems”

W

[index top [3089]]

-W
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”

-w
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--wait
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”

3134

Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--warn
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

--where
Section 4.5.4, “mysqldump — A Database Backup
Program”

--windows
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

WITH_CLIENT_PROTOCOL_TRACING
Section 2.8.4, “MySQL Source-Configuration Options”

WITH_DEBUG
Section 13.7.5.14, “SHOW ENGINE Syntax”
Section 2.8.4, “MySQL Source-Configuration Options”

WITH_EDITLINE
Section 2.8.4, “MySQL Source-Configuration Options”

WITH_LIBEDIT
Section 2.8.4, “MySQL Source-Configuration Options”

WITH_PERFSCHEMA_STORAGE_ENGINE
Section 20.2.1, “Performance Schema Build
Configuration”

WITH_TEST_TRACE_PLUGIN
Section 2.8.4, “MySQL Source-Configuration Options”
Using the Test Protocol Trace Plugin
Using Your Own Protocol Trace Plugins

WITH_ZLIB
Section 2.8.4, “MySQL Source-Configuration Options”

--write
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--write-binlog
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

X

[index top [3089]]

-X
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”

-x
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”

--xml
Section 4.5.1.1, “mysql Options”
Section 13.2.7, “LOAD XML Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 12.11, “XML Functions”

Y

[index top [3089]]

-Y
Section 4.5.4, “mysqldump — A Database Backup
Program”

-y
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”

3135

Privileges Index
A | C | D | E | F | G | I | L | P | R | S | T | U

A

[index top [3135]]

ALL
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

ALL PRIVILEGES
Section 6.2.1, “Privileges Provided by MySQL”

ALTER
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

ALTER ROUTINE
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL
Privileges”

C

[index top [3135]]

CREATE
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 6.2.1, “Privileges Provided by MySQL”

CREATE ROUTINE
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”

Section 13.7.1.4, “GRANT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL
Privileges”

CREATE TABLESPACE
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

CREATE TEMPORARY TABLES
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

CREATE USER
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.7.1.3, “DROP USER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.5, “RENAME USER Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

CREATE VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

D

[index top [3135]]

DELETE
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 13.7.1.3, “DROP USER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.8, “REPLACE Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.2.1, “Privileges Provided by MySQL”
Section 14.8, “The MERGE Storage Engine”
Section 20.9.2.4, “The setup_objects Table”
Section 22.3.2.6, “User-Defined Function Security
Precautions”

3136

DROP
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.1.17, “DROP DATABASE Syntax”
Section 13.1.23, “DROP TABLE Syntax”
Section 13.1.25, “DROP VIEW Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 20.8, “Performance Schema General Table
Characteristics”
Section 6.2.1, “Privileges Provided by MySQL”
Section 20.9.13.1, “The host_cache Table”
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 6.2, “The MySQL Access Privilege System”

E

[index top [3135]]

EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.18, “DROP EVENT Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.7, “SHOW CREATE EVENT Syntax”
Section 13.7.5.17, “SHOW EVENTS Syntax”
Section 18.4.1, “Event Scheduler Overview”
Section 18.4.3, “Event Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

EXECUTE
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 18.6, “Access Control for Stored Programs and
Views”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL
Privileges”

F

[index top [3135]]

FILE
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”

G

[index top [3135]]

GRANT OPTION
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

I

[index top [3135]]

INDEX
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

INSERT
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.2.8, “REPLACE Syntax”
Section 18.6, “Access Control for Stored Programs and
Views”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”

3137

Section 6.3.2, “Adding User Accounts”
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 14.12.1, “Pluggable Storage Engine
Architecture”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 20.9.2.4, “The setup_objects Table”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”
Section 22.3.2.6, “User-Defined Function Security
Precautions”

L

[index top [3135]]

LOCK TABLES
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”

P

[index top [3135]]

PROCESS
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 13.7.6.4, “KILL Syntax”
Section 13.7.5.14, “SHOW ENGINE Syntax”
Section 13.7.5.28, “SHOW PROCESSLIST Syntax”
Section 6.3.2, “Adding User Accounts”
Enabling InnoDB Monitors
Section 18.4.2, “Event Scheduler Configuration”
Section 8.12.5, “Examining Thread Information”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 8.8.3, “Obtaining Execution Plan Information
for a Named Connection”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”
Section 20.9.13.3, “The threads Table”

PROXY
Section 13.7.1.4, “GRANT Syntax”
Implementing Proxy User Support in Authentication
Plugins
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 6.3.10, “Proxy Users”
Section 20.9.13.1, “The host_cache Table”

PROXY ... WITH GRANT OPTION
Section 6.3.10, “Proxy Users”

R

[index top [3135]]

REFERENCES
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

RELOAD
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 21.8.7.57, “mysql_refresh()”
Section 21.8.7.58, “mysql_reload()”
Section 13.7.6.6, “RESET Syntax”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 12.13, “Encryption and Compression
Functions”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 20.9.13.1, “The host_cache Table”

REPLICATION CLIENT
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”
Section 13.7.5.22, “SHOW MASTER STATUS Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

REPLICATION SLAVE
Section 13.7.1.4, “GRANT Syntax”
Section 16.1.1.3, “Creating a User for Replication”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.3.7, “Setting Up Replication Using SSL”

3138

S

[index top [3135]]

SELECT
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.2.3, “CHECKSUM TABLE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 13.7.5.20, “SHOW GRANTS Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 18.6, “Access Control for Stored Programs and
Views”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 20.8, “Performance Schema General Table
Characteristics”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 14.8, “The MERGE Storage Engine”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”
Section 6.2, “The MySQL Access Privilege System”
Section 18.3.1, “Trigger Syntax and Examples”

SHOW DATABASES
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.13, “SHOW DATABASES Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”

SHOW VIEW
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”

Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”

SHUTDOWN
Section 13.7.1.4, “GRANT Syntax”
Section 21.8.7.70, “mysql_shutdown()”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 5.1.12, “The Shutdown Process”

SUPER
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.5, “ALTER SERVER Syntax”
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.7.6.1, “BINLOG Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.13, “CREATE SERVER Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.1.22, “DROP SERVER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 21.8.7.12, “mysql_dump_debug_info()”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.4, “SET Syntax”
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”
Section 13.7.5.22, “SHOW MASTER STATUS Syntax”
Section 13.7.5.28, “SHOW PROCESSLIST Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section C.5.2.7, “Too many connections”
Section 18.6, “Access Control for Stored Programs and
Views”
Section 6.3.5, “Assigning Account Passwords”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 12.13, “Encryption and Compression
Functions”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”

3139

Section 16.1.1, “How to Set Up Replication”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 10.7, “MySQL Server Locale Support”
Section 10.6, “MySQL Server Time Zone Support”
Section 6.3.6, “Password Expiration Policy”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.2, “Replication Formats”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 5.2.4, “The Binary Log”
Section 22.4.3, “The DBUG Package”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”
Section 5.1.5, “Using System Variables”

T

[index top [3135]]

TRIGGER
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.24, “DROP TRIGGER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.37, “SHOW TRIGGERS Syntax”
Section 18.6, “Access Control for Stored Programs and
Views”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.27, “The INFORMATION_SCHEMA
TRIGGERS Table”

U

[index top [3135]]

UPDATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.1.5, “RENAME USER Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 18.6, “Access Control for Stored Programs and
Views”
Section 6.3.5, “Assigning Account Passwords”
Section 20.8, “Performance Schema General Table
Characteristics”
Section 20.2.3, “Performance Schema Runtime
Configuration”

Section 20.9.2, “Performance Schema Setup Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 14.8, “The MERGE Storage Engine”
Section 20.9.2.4, “The setup_objects Table”
Section 18.3.1, “Trigger Syntax and Examples”

USAGE
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

3140

3141

SQL Modes Index
A | D | E | H | I | M | N | O | P | R | S | T

A

[index top [3141]]

ALLOW_INVALID_DATES
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section C.5.5.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”

ANSI
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 5.1.7, “Server SQL Modes”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”

ANSI_QUOTES
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 9.2, “Schema Object Names”
Section 5.1.7, “Server SQL Modes”
Section 9.1.1, “String Literals”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

D

[index top [3141]]

DB2
Section 5.1.7, “Server SQL Modes”

E

[index top [3141]]

ERROR_FOR_DIVISION_BY_ZERO
Section 12.19.3, “Expression Handling”
Section 12.19.5, “Precision Math Examples”
Section 16.4.1.28, “Replication and Server SQL Mode”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.7, “Server SQL Modes”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 1.4, “What Is New in MySQL 5.7”

H

[index top [3141]]

HIGH_NOT_PRECEDENCE
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 5.1.7, “Server SQL Modes”

I

[index top [3141]]

IGNORE_SPACE
Section 4.5.1.1, “mysql Options”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 5.1.7, “Server SQL Modes”

M

[index top [3141]]

MAXDB
Section 11.1.2, “Date and Time Type Overview”
Section 5.1.7, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”

MSSQL
Section 5.1.7, “Server SQL Modes”

MYSQL323
Section 5.1.7, “Server SQL Modes”

MYSQL40
Section 5.1.7, “Server SQL Modes”

N

[index top [3141]]

NO_AUTO_CREATE_USER
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.2, “Adding User Accounts”
Section 5.1.7, “Server SQL Modes”

NO_AUTO_VALUE_ON_ZERO
Section 13.1.14, “CREATE TABLE Syntax”
Section 5.1.7, “Server SQL Modes”
Section 3.6.9, “Using AUTO_INCREMENT”

NO_BACKSLASH_ESCAPES
Section 5.1.7, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”
Section 9.1.1, “String Literals”

3142

NO_DIR_IN_CREATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 16.4.1.10, “Replication and DIRECTORY Table
Options”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.7, “Server SQL Modes”
Section 17.2.6, “Subpartitioning”
Section 5.2.4, “The Binary Log”

NO_ENGINE_SUBSTITUTION
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 5.1.2, “Server Configuration Defaults”
Section 5.1.7, “Server SQL Modes”
Section 14.1, “Setting the Storage Engine”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”

NO_FIELD_OPTIONS
Section 5.1.7, “Server SQL Modes”

NO_KEY_OPTIONS
Section 5.1.7, “Server SQL Modes”

NO_TABLE_OPTIONS
Section 5.1.7, “Server SQL Modes”

NO_UNSIGNED_SUBTRACTION
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 11.1.1, “Numeric Type Overview”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.7, “Server SQL Modes”

NO_ZERO_DATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.10, “Cast Functions and Operators”
Section 11.3, “Date and Time Types”
Section C.5.5.2, “Problems Using DATE Columns”
Section 16.4.1.28, “Replication and Server SQL Mode”
Section 5.1.7, “Server SQL Modes”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 1.4, “What Is New in MySQL 5.7”

NO_ZERO_IN_DATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.3, “Date and Time Types”
Section C.5.5.2, “Problems Using DATE Columns”
Section 16.4.1.28, “Replication and Server SQL Mode”

Section 5.1.7, “Server SQL Modes”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 1.4, “What Is New in MySQL 5.7”

O

[index top [3141]]

ONLY_FULL_GROUP_BY
Section 12.17.2, “GROUP BY Modifiers”
Section 3.3.4.8, “Counting Rows”
Section 12.17.3, “MySQL Extensions to GROUP BY”
Section 5.1.7, “Server SQL Modes”

ORACLE
Section 5.1.7, “Server SQL Modes”

P

[index top [3141]]

PAD_CHAR_TO_FULL_LENGTH
Section 5.1.7, “Server SQL Modes”
Section 11.1.3, “String Type Overview”
Section 11.4.1, “The CHAR and VARCHAR Types”

PIPES_AS_CONCAT
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 5.1.7, “Server SQL Modes”

POSTGRESQL
Section 5.1.7, “Server SQL Modes”

R

[index top [3141]]

REAL_AS_FLOAT
Section 11.1.1, “Numeric Type Overview”
Section 11.2, “Numeric Types”
Section 5.1.7, “Server SQL Modes”

S

[index top [3141]]

STRICT_ALL_TABLES
Section 6.3.2, “Adding User Accounts”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 12.19.3, “Expression Handling”
Section 16.4.1.28, “Replication and Server SQL Mode”
Section 5.1.7, “Server SQL Modes”
Section 16.4.3, “Upgrading a Replication Setup”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 1.4, “What Is New in MySQL 5.7”

3143

STRICT_TRANS_TABLES
Section 6.3.2, “Adding User Accounts”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 12.19.3, “Expression Handling”
Section 16.4.1.28, “Replication and Server SQL Mode”
Section 5.1.2, “Server Configuration Defaults”
Section 5.1.7, “Server SQL Modes”
Section 16.4.3, “Upgrading a Replication Setup”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 1.4, “What Is New in MySQL 5.7”

T

[index top [3141]]

TRADITIONAL
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.19.3, “Expression Handling”
Section 5.1.7, “Server SQL Modes”

3144

3145

Statement/Syntax Index
A | B | C | D | E | F | G | H | I | K | L | O | P | R | S | T | U
| W | X

A

[index top [3145]]

ADD FULLTEXT INDEX
Section 14.2.11.1, “Overview of Online DDL”

ADD INDEX
Section 14.2.11.1, “Overview of Online DDL”

ALTER DATABASE
Section 13.1.1, “ALTER DATABASE Syntax”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 16.1.4.3, “Replication Slave Options and
Variables”

ALTER EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 18.4.4, “Event Metadata”
Section 18.4.1, “Event Scheduler Overview”
Section 18.4.3, “Event Syntax”
Section 12.14, “Information Functions”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 16.4.1.11, “Replication of Invoked Features”
Section E.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

ALTER EVENT event_name
ENABLED
Section 16.4.1.11, “Replication of Invoked Features”

ALTER FUNCTION
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 18.7, “Binary Logging of Stored Programs”

Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”

ALTER IGNORE TABLE
Section 17.3.4, “Maintenance of Partitions”

ALTER PROCEDURE
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”

ALTER SCHEMA
Section 13.1.1, “ALTER DATABASE Syntax”

ALTER SERVER
Section 13.1.5, “ALTER SERVER Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.4.1.6, “Replication of CREATE SERVER,
ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

ALTER TABLE
Section 4.6.3.1, “myisamchk General Options”
Section 13.1.6.2, “ALTER TABLE Examples”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.20, “DROP INDEX Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Syntax”
Section 14.2.6.6, “InnoDB and FOREIGN KEY
Constraints”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 14.2.17.5, “InnoDB Error Codes”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.7.6.4, “KILL Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 14.3.1, “MyISAM Startup Options”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 21.8.7.36, “mysql_info()”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 17.2.3.1, “RANGE COLUMNS partitioning”
Section 17.2.1, “RANGE Partitioning”

3146

Section 13.1.26, “RENAME TABLE Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section C.5.7.2, “TEMPORARY Table Problems”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 10.1.3.4, “Column Character Set and Collation”
Section 10.1.13, “Column Character Set Conversion”
Section 14.2.11.4, “Combining or Separating DDL
Statements”
Section 14.2.2.4, “Consistent Nonlocking Reads”
Controlling Transactional Behavior of the InnoDB
memcached Plugin
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.6.1, “Creating InnoDB Tables”
Section 3.3.2, “Creating a Table”
Section 12.18.4.3, “Creating Spatial Columns”
Section 12.18.6.1, “Creating Spatial Indexes”
Section 14.2.10.4, “Defragmenting a Table”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 14.2.7.2, “Enabling Compression for a Table”
Section 14.2.11.5, “Examples of Online DDL”
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9, “Full-Text Search Functions”
Section 8.12.5.2, “General Thread States”
Section 14.2.7.5, “How Compression Works for InnoDB
Tables”
Section 14.2.11.7, “How Crash Recovery Works with
Online DDL”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section 8.9.3.1, “How the Query Cache Operates”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.2.11.6, “Implementation Details of Online
DDL”
Section 12.14, “Information Functions”
Section 14.2.5.2, “InnoDB File-Per-Table Mode”
Section C.5.8, “Known Issues in MySQL”
Section 14.2.11.9, “Limitations of Online DDL”
Section E.10.3, “Limits on Table Size”
Section 17.3.4, “Maintenance of Partitions”
Section 17.3.2, “Management of HASH and KEY
Partitions”
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 14.2.6.2, “Moving or Copying InnoDB Tables
to Another Machine”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Online DDL
Section 14.2.11.8, “Online DDL for Partitioned InnoDB
Tables”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 14.2.9.1, “Overview of InnoDB Row Storage”
Section 14.2.11.1, “Overview of Online DDL”
Section 14.2.7.1, “Overview of Table Compression”

Section 17.3, “Partition Management”
Section 17.6.4, “Partitioning and Locking”
Section 17.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”
Section 14.2.11.2, “Performance and Concurrency
Considerations for Online DDL”
Persistent Optimizer Statistics for InnoDB Tables
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5.7.1, “Problems with ALTER TABLE”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.25, “Replication and Reserved Words”
Replication with More Columns on Master or Slave
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section E.5, “Restrictions on Views”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.1, “Setting the Storage Engine”
Section 13.1.14.3, “Silent Column Specification
Changes”
Section 14.2.5.4, “Specifying the Location of a
Tablespace”
Section 14.2.9.2, “Specifying the Row Format for a
Table”
Section 14.2.7.6, “SQL Compression Syntax Warnings
and Errors”
Section 14.2.11.3, “SQL Syntax for Online DDL”
Section 14.2.17.2, “Starting InnoDB on a Corrupted
Database”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 11.1.3, “String Type Overview”
Section 10.1.3.3, “Table Character Set and Collation”
Section 19.14, “The INFORMATION_SCHEMA
PARTITIONS Table”
Section 14.4, “The MEMORY Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
Section 5.2.5, “The Slow Query Log”
Traditional InnoDB Auto-Increment Locking
Section 14.2.17.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 10.1.11, “Upgrading from Previous to Current
Unicode Support”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Using Symbolic Links for MyISAM Tables on Unix
Section 14.2.8.2, “Verifying File Format Compatibility”
Section 1.4, “What Is New in MySQL 5.7”
Section C.5.4.2, “What to Do If MySQL Keeps
Crashing”

3147

Section C.5.4.4, “Where MySQL Stores Temporary
Files”

ALTER TABLE ... ADD FOREIGN
KEY
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

ALTER TABLE ...
ALGORITHM=COPY
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.2.11.9, “Limitations of Online DDL”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

ALTER TABLE ...
ALGORITHM=INPLACE
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.2.11.9, “Limitations of Online DDL”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

ALTER TABLE ... DISCARD
PARTITION ... TABLESPACE
Section 14.2.5.5, “Copying Tablespaces to Another
Server (Transportable Tablespaces)”
Transportable Tablespace Examples

ALTER TABLE ... DISCARD
TABLESPACE
Section 14.2.5.5, “Copying Tablespaces to Another
Server (Transportable Tablespaces)”
Tablespace Copying Internals (Transportable
Tablespaces)

ALTER TABLE ... DROP FOREIGN
KEY
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

ALTER TABLE ... ENGINE =
MEMORY
Section 16.4.1.21, “Replication and MEMORY Tables”

ALTER TABLE ...
ENGINE=INNODB
Section 1.4, “What Is New in MySQL 5.7”

ALTER TABLE ... EXCHANGE
PARTITION
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”

Section 17.6.4, “Partitioning and Locking”

ALTER TABLE ... FORCE
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 1.4, “What Is New in MySQL 5.7”

ALTER TABLE ... IMPORT
PARTITION ... TABLESPACE
Section 14.2.5.5, “Copying Tablespaces to Another
Server (Transportable Tablespaces)”
Transportable Tablespace Examples

ALTER TABLE ... IMPORT
TABLESPACE
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.2.5.5, “Copying Tablespaces to Another
Server (Transportable Tablespaces)”
Section 14.2.6.2, “Moving or Copying InnoDB Tables
to Another Machine”
Tablespace Copying Internals (Transportable
Tablespaces)
Transportable Tablespace Examples

ALTER TABLE ... OPTIMIZE
PARTITION
Section 17.3.4, “Maintenance of Partitions”
Section 17.6.2, “Partitioning Limitations Relating to
Storage Engines”

ALTER TABLE ... PARTITION BY
Section 17.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”

ALTER TABLE ... PARTITION
BY ...
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 17.6, “Restrictions and Limitations on
Partitioning”

ALTER TABLE ... RENAME
Using Symbolic Links for MyISAM Tables on Unix

ALTER TABLE ... REPAIR
PARTITION
Section 17.3.4, “Maintenance of Partitions”

ALTER TABLE ... TRUNCATE
PARTITION
Section 17.3.4, “Maintenance of Partitions”
Section 17.3, “Partition Management”
Section 17.6.4, “Partitioning and Locking”

3148

ALTER TABLE ... TRUNCATE
PARTITION ALL
Section 17.3.4, “Maintenance of Partitions”

ALTER TABLE EXCHANGE
PARTITION
Section 17.3.3, “Exchanging Partitions and
Subpartitions with Tables”

ALTER TABLE RENAME INDEX
Section 14.2.11.1, “Overview of Online DDL”

ALTER TABLE t TRUNCATE
PARTITION ()
Section 13.2.2, “DELETE Syntax”

ALTER TABLE tbl_name
ENGINE=INNODB
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.2.10.4, “Defragmenting a Table”

ALTER TABLE tbl_name FORCE
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.2.10.4, “Defragmenting a Table”

ALTER TABLESPACE
Section 19.8, “The INFORMATION_SCHEMA FILES
Table”

ALTER USER
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password
Plugin”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 6.3.6, “Password Expiration Policy”
Section 6.2.2, “Privilege System Grant Tables”

ALTER VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 12.14, “Information Functions”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section E.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.5.2, “View Processing Algorithms”
Section 18.5.1, “View Syntax”

ANALYZE TABLE
Section 4.6.3.1, “myisamchk General Options”
Section 13.1.6, “ALTER TABLE Syntax”

Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.8.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 13.7.5.21, “SHOW INDEX Syntax”
Section 14.2.12.5, “Controlling Optimizer Statistics
Estimation”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Equality Range Optimization of Many-Valued
Comparisons
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.12.5.2, “General Thread States”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 14.2.6.7, “Limits on InnoDB Tables”
Section 17.3.4, “Maintenance of Partitions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Persistent Optimizer Statistics for InnoDB Tables
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.14, “Replication and FLUSH”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.2.5, “The Slow Query Log”

B

[index top [3145]]

BEGIN
Section 13.6.1, “BEGIN ... END Compound-
Statement Syntax”
Section 14.2.17.4, “InnoDB Error Handling”
Section 18.7, “Binary Logging of Stored Programs”
Section 16.4.1.31, “Replication and Transactions”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section E.1, “Restrictions on Stored Programs”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 20.9.7.1, “The
events_transactions_current Table”

3149

Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”

BEGIN ... END
Section 13.6.1, “BEGIN ... END Compound-
Statement Syntax”
Section 13.6.5.1, “CASE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.3, “DECLARE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.6.6.1, “Cursor CLOSE Syntax”
Section 18.1, “Defining Stored Programs”
Section 18.4.1, “Event Scheduler Overview”
Section 13.6.4.1, “Local Variable DECLARE Syntax”
Section 13.6.4.2, “Local Variable Scope and
Resolution”
Section 13.6, “MySQL Compound-Statement Syntax”
Section E.1, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.6.2, “Statement Label Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.3.1, “Trigger Syntax and Examples”

BINLOG
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 13.7.6.1, “BINLOG Syntax”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

C

[index top [3145]]

CACHE INDEX
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 8.9.2.4, “Index Preloading”
Section 8.9.2.2, “Multiple Key Caches”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CALL
Section 13.2.1, “CALL Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.38, “mysql_insert_id()”
Section 21.8.7.46, “mysql_more_results()”

Section 21.8.7.47, “mysql_next_result()”
Section 21.8.7.54, “mysql_real_connect()”
Section 21.8.7.69, “mysql_set_server_option()”
Section 21.8.11.17, “mysql_stmt_next_result()”
Section 18.6, “Access Control for Stored Programs and
Views”
Section 18.7, “Binary Logging of Stored Programs”
Section 21.8.5, “C API Data Structures”
Section 21.8.18, “C API Prepared Statement Problems”
Section 21.8.17, “C API Support for Multiple Statement
Execution”
Section 21.8.20, “C API Support for Prepared CALL
Statements”
Section 13.5, “SQL Syntax for Prepared Statements”
Chapter 18, Stored Programs and Views
Section 18.2.1, “Stored Routine Syntax”
Section 18.3.1, “Trigger Syntax and Examples”

CALL p()
RESIGNAL with a Condition Value and Optional New
Signal Information

CALL stored_procedure()
Section 17.6.4, “Partitioning and Locking”

CASE
Section 13.6.5.1, “CASE Syntax”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 12.4, “Control Flow Functions”
Section 13.6.5, “Flow Control Statements”

CHANGE MASTER TO
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 16.3.9, “Delayed Replication”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.3.1, “GTID Concepts”
Section 20.9.10, “Performance Schema Replication
Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 16.4.1.19, “Replication and Master or Slave
Shutdowns”
Section 16.1, “Replication Configuration”

3150

Section 8.12.5.7, “Replication Slave Connection Thread
States”
Section 8.12.5.5, “Replication Slave I/O Thread States”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 8.12.5.6, “Replication Slave SQL Thread
States”
Section 5.1.6, “Server Status Variables”
Section 16.1.1.10, “Setting the Master Configuration on
the Slave”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 16.3.7, “Setting Up Replication Using SSL”
Section 16.1.1.8, “Setting Up Replication with Existing
Data”
Section 16.1.1.7, “Setting Up Replication with New
Master and Slaves”
Section 16.2.2.2, “Slave Status Logs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 16.3.6, “Switching Masters During Failover”
Section 20.9.10.1, “The
replication_connection_configuration
Table”
Section 20.9.10.3, “The
replication_execute_configuration Table”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 1.4, “What Is New in MySQL 5.7”

CHANGE MASTER TO ...
MASTER_LOG_FILE = ...
MASTER_LOG_POS = ...
Section 16.1.4.5, “Global Transaction ID Options and
Variables”

CHANGE REPLICATION FILTER
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 5.1.6, “Server Status Variables”

CHANGE REPLICATION FILTER
REPLICATE_DO_DB
Section 16.1.4.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_DO_TABLE
Section 16.1.4.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_IGNORE_DB
Section 16.1.4.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_IGNORE_TABLE
Section 16.1.4.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_REWRITE_DB
Section 16.1.4.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_WILD_DO_TABLE
Section 16.1.4.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_WILD_IGNORE_TABLE
Section 16.1.4.3, “Replication Slave Options and
Variables”

CHECK TABLE
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 14.2.14, “InnoDB Backup and Recovery”
Section 14.2.17, “InnoDB Troubleshooting”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”
Section 2.10.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 14.3.4.1, “Corrupted MyISAM Tables”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 8.10.5, “External Locking”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”

3151

Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 17.3.4, “Maintenance of Partitions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 14.3.4.2, “Problems from Tables Not Being
Closed Properly”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section E.3, “Restrictions on Server-Side Cursors”
Section E.1, “Restrictions on Stored Programs”
Section E.5, “Restrictions on Views”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.8, “The MERGE Storage Engine”
Section 5.2.5, “The Slow Query Log”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”

CHECK TABLE ... EXTENDED
Section 13.7.2.2, “CHECK TABLE Syntax”

CHECK TABLE ... FOR UPGRADE
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 2.10.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”

CHECKSUM TABLE
Section 13.7.2.3, “CHECKSUM TABLE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”

CLOSE
Section 13.6.6.1, “Cursor CLOSE Syntax”

COMMIT
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 14.2.17.4, “InnoDB Error Handling”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 14.2.6.3, “Grouping DML Operations with
Transactions”
Section 14.2.2.9, “Implicit Transaction Commit and
Rollback”
Section 14.2.6.7, “Limits on InnoDB Tables”
Section 14.2.2.1, “MySQL and the ACID Model”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 20.9.7, “Performance Schema Transaction
Tables”
Section 16.4.1.31, “Replication and Transactions”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 20.9.7.1, “The
events_transactions_current Table”
Section 19.23, “The INFORMATION_SCHEMA TABLES
Table”
Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”
Section 5.2.4, “The Binary Log”
Section 1.8.2.3, “Transaction and Atomic Operation
Differences”
Section 18.3.1, “Trigger Syntax and Examples”
Section 3.6.9, “Using AUTO_INCREMENT”

COMMIT AND CHAIN
Section 20.9.7, “Performance Schema Transaction
Tables”

CREATE DATABASE
Section 13.1.8, “CREATE DATABASE Syntax”
Section 21.8.7.8, “mysql_create_db()”
Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 7.1, “Backup and Recovery Types”
Section 21.8.6, “C API Function Overview”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”

3152

Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 9.2.2, “Identifier Case Sensitivity”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 20.4, “Performance Schema Instrument
Naming Conventions”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE DATABASE dbx
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”

CREATE DATABASE IF NOT
EXISTS
Section 16.4.1.4, “Replication of CREATE ... IF NOT
EXISTS Statements”

CREATE EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.7.5.7, “SHOW CREATE EVENT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 18.4.4, “Event Metadata”
Section 18.4.3, “Event Syntax”
Section 12.14, “Information Functions”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 16.4.1.11, “Replication of Invoked Features”
Section E.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

CREATE EVENT IF NOT EXISTS
Section 16.4.1.4, “Replication of CREATE ... IF NOT
EXISTS Statements”

CREATE FULLTEXT INDEX
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”

CREATE FUNCTION
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.10, “CREATE FUNCTION Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”

Section 22.3, “Adding New Functions to MySQL”
Section 18.7, “Binary Logging of Stored Programs”
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 12.14, “Information Functions”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 16.4.1.11, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”
Section 22.3.2.1, “UDF Calling Sequences for Simple
Functions”
Section 2.10.1, “Upgrading MySQL”
Section 22.3.2.6, “User-Defined Function Security
Precautions”

CREATE INDEX
Section 13.1.11, “CREATE INDEX Syntax”
FULLTEXT Indexes
Section 14.2.17.5, “InnoDB Error Codes”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Controlling Transactional Behavior of the InnoDB
memcached Plugin
Section 12.18.6.1, “Creating Spatial Indexes”
Section 14.2.7.2, “Enabling Compression for a Table”
Section 14.2.11.5, “Examples of Online DDL”
Section 12.9, “Full-Text Search Functions”
Section 14.2.7.5, “How Compression Works for InnoDB
Tables”
Section 14.2.11.7, “How Crash Recovery Works with
Online DDL”
Online DDL
Section 8.7, “Optimizing for MEMORY Tables”
Section 14.2.11.1, “Overview of Online DDL”
Section 14.2.11.2, “Performance and Concurrency
Considerations for Online DDL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.2.5, “The Slow Query Log”

CREATE LOGFILE GROUP
Section 4.5.4, “mysqldump — A Database Backup
Program”

CREATE OR REPLACE VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section E.5, “Restrictions on Views”

CREATE PROCEDURE
Section 13.1.4, “ALTER PROCEDURE Syntax”

3153

Section 13.2.1, “CALL Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 12.14, “Information Functions”
Section 6.2.2, “Privilege System Grant Tables”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 16.4.1.11, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”

CREATE SCHEMA
Section 13.1.8, “CREATE DATABASE Syntax”

CREATE SERVER
Section 13.1.5, “ALTER SERVER Syntax”
Section 13.1.13, “CREATE SERVER Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.9.2.2, “Creating a FEDERATED Table Using
CREATE SERVER”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 14.9.2, “How to Create FEDERATED Tables”
Section 16.4.1.6, “Replication of CREATE SERVER,
ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE TABLE
Section 4.5.1.1, “mysql Options”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.13, “CREATE SERVER Syntax”
Section 13.1.14.1, “CREATE TABLE ... SELECT
Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 17.2.4, “HASH Partitioning”
Section 13.8.3, “HELP Syntax”
Section 14.2.6.6, “InnoDB and FOREIGN KEY
Constraints”
Section 14.2.15, “InnoDB and MySQL Replication”
Section 14.2.17.5, “InnoDB Error Codes”
Section 14.2.9, “InnoDB Row Storage and Row
Formats”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.17, “InnoDB Troubleshooting”
Section 17.2.5, “KEY Partitioning”

Section 17.2.2, “LIST Partitioning”
Section 13.2.7, “LOAD XML Syntax”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 17.2.3.1, “RANGE COLUMNS partitioning”
Section 17.2.1, “RANGE Partitioning”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.10, “SHOW CREATE TABLE Syntax”
Section 13.7.5.35, “SHOW TABLE STATUS Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 7.1, “Backup and Recovery Types”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 10.1.3.4, “Column Character Set and Collation”
Section 8.3.4, “Column Indexes”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.6.1, “Creating InnoDB Tables”
Section 14.9.2.1, “Creating a FEDERATED Table Using
CONNECTION”
Section 3.3.2, “Creating a Table”
Section 12.18.4.3, “Creating Spatial Columns”
Section 12.18.6.1, “Creating Spatial Indexes”
Section 7.2, “Database Backup Methods”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Enabling InnoDB Monitors
Section 14.2.7.2, “Enabling Compression for a Table”
Section 14.2.11.5, “Examples of Online DDL”
Section 1.8.2.4, “Foreign Key Differences”
Section 12.9, “Full-Text Search Functions”
Section 3.4, “Getting Information About Databases and
Tables”
Section 14.2.7.5, “How Compression Works for InnoDB
Tables”
Section 17.2.7, “How MySQL Partitioning Handles
NULL”
Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”
Section 9.2.2, “Identifier Case Sensitivity”
Section 14.2.8.3, “Identifying the File Format in Use”
Section 12.14, “Information Functions”
Section 14.2.1, “Introduction to InnoDB”
Section E.10.3, “Limits on Table Size”
Section 3.3.3, “Loading Data into a Table”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Online DDL
Section 8.5.6, “Optimizing InnoDB DDL Operations”

3154

Section 8.4.1, “Optimizing Data Size”
Section 14.2.9.1, “Overview of InnoDB Row Storage”
Section 14.2.11.1, “Overview of Online DDL”
Section 17.1, “Overview of Partitioning in MySQL”
Section 14.2.7.1, “Overview of Table Compression”
Section 17.3, “Partition Management”
Section 17.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 17.2, “Partitioning Types”
Persistent Optimizer Statistics for InnoDB Tables
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.10, “Replication and DIRECTORY Table
Options”
Section 16.4.1.3, “Replication and Character Sets”
Section 16.4.1.13, “Replication and Fractional Seconds
Support”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.5, “Replication of CREATE TABLE ...
SELECT Statements”
Replication with More Columns on Master or Slave
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.1, “Setting the Storage Engine”
Section 13.1.14.3, “Silent Column Specification
Changes”
Section C.1, “Sources of Error Information”
Section 14.2.5.4, “Specifying the Location of a
Tablespace”
Section 14.2.9.2, “Specifying the Row Format for a
Table”
Section 14.2.7.6, “SQL Compression Syntax Warnings
and Errors”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Chapter 14, Storage Engines
Section 11.1.3, “String Type Overview”
Section 17.2.6, “Subpartitioning”
Section 10.1.3.3, “Table Character Set and Collation”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 14.6, “The ARCHIVE Storage Engine”
Section 11.4.4, “The ENUM Type”
Section 19.14, “The INFORMATION_SCHEMA
PARTITIONS Table”
Section 14.4, “The MEMORY Storage Engine”

Section 14.3, “The MyISAM Storage Engine”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Traditional InnoDB Auto-Increment Locking
Section 14.2.17.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 7.4, “Using mysqldump for Backups”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 3.3.4.9, “Using More Than one Table”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 8.11.3.1, “Using Symbolic Links”
Using Symbolic Links for MyISAM Tables on Unix
Section 1.4, “What Is New in MySQL 5.7”
Section E.10.6, “Windows Platform Limitations”

CREATE TABLE ... DATA
DIRECTORY
Section 19.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”

CREATE TABLE ... LIKE
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

CREATE TABLE ... SELECT
Section 13.1.14.1, “CREATE TABLE ... SELECT
Syntax”
Section 1.8.2.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 18.7, “Binary Logging of Stored Programs”
Section 12.10, “Cast Functions and Operators”
Section 14.2.2.4, “Consistent Nonlocking Reads”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section C.5.8, “Known Issues in MySQL”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 16.4.2, “Replication Compatibility Between
MySQL Versions”
Section 16.4.1.5, “Replication of CREATE TABLE ...
SELECT Statements”
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE TABLE ... SELECT ...
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 17.3.1, “Management of RANGE and LIST
Partitions”

3155

CREATE TABLE IF NOT EXISTS
Section 16.4.1.4, “Replication of CREATE ... IF NOT
EXISTS Statements”

CREATE TABLE IF NOT
EXISTS ... LIKE
Section 16.4.1.4, “Replication of CREATE ... IF NOT
EXISTS Statements”

CREATE TABLE IF NOT
EXISTS ... SELECT
Section 16.4.1.4, “Replication of CREATE ... IF NOT
EXISTS Statements”

CREATE TABLE new_table
SELECT ... FROM
old_table ...
Section 13.1.14.1, “CREATE TABLE ... SELECT
Syntax”
Section 13.2.9, “SELECT Syntax”

CREATE TABLESPACE
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 19.8, “The INFORMATION_SCHEMA FILES
Table”

CREATE TEMPORARY TABLE
Section 13.7.1.4, “GRANT Syntax”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”
Section 5.1.4, “Server System Variables”
Section 14.1, “Setting the Storage Engine”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE TRIGGER
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 12.14, “Information Functions”
Optimizing Subqueries with EXISTS Strategy
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 16.4.1.11, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

Section 18.3.1, “Trigger Syntax and Examples”

CREATE USER
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host
Address”
Section 16.1.1.3, “Creating a User for Replication”
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 8.11.4.1, “How MySQL Uses Memory”
Implementing Proxy User Support in Authentication
Plugins
Section 5.1.9, “IPv6 Support”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 6.3.8, “Pluggable Authentication”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 6.3.10, “Proxy Users”
Section 5.1.4, “Server System Variables”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 6.2, “The MySQL Access Privilege System”
Section 6.1.2.6, “The Password Validation Plugin”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 6.3.1, “User Names and Passwords”

CREATE VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 8.12.5.2, “General Thread States”
Section 12.14, “Information Functions”
Section 17.6.4, “Partitioning and Locking”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section E.5, “Restrictions on Views”
Section 9.2, “Schema Object Names”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”

3156

Section 18.5.1, “View Syntax”

D

[index top [3145]]

DEALLOCATE PREPARE
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section E.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 20.9.6.4, “The
prepared_statements_instances Table”

DECLARE
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.6.3, “DECLARE Syntax”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.4.1, “Local Variable DECLARE Syntax”
Section 13.6.4, “Variables in Stored Programs”

DECLARE ... CONDITION
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.6.7, “Condition Handling”

DECLARE ... HANDLER
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7, “Condition Handling”
Effect of Signals on Handlers, Cursors, and Statements

DELETE
Section 4.5.1.1, “mysql Options”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.15, “InnoDB and MySQL Replication”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.2.9.2, “JOIN Syntax”
Section 13.7.6.4, “KILL Syntax”

Section 17.2.2, “LIST Partitioning”
Section 14.8.2, “MERGE Table Problems”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.49, “mysql_num_rows()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.13, “mysql_stmt_field_count()”
Section 21.8.11.18, “mysql_stmt_num_rows()”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 17.2.1, “RANGE Partitioning”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 6.3.2, “Adding User Accounts”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 21.8.6, “C API Function Overview”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 6.2.7, “Causes of Access-Denied Errors”
Compression Enhancements for OLTP Workloads
Section 14.2.2.4, “Consistent Nonlocking Reads”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section C.5.5.6, “Deleting Rows from Related Tables”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 2.10.2.1, “Downgrading to MySQL 5.6”
Section 14.2.11.5, “Examples of Online DDL”
Chapter 12, Functions and Operators
Section 8.12.5.2, “General Thread States”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 8.10.1, “Internal Locking Methods”
Section C.5.8, “Known Issues in MySQL”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 8.8.3, “Obtaining Execution Plan Information
for a Named Connection”
Section 8.2.2, “Optimizing DML Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 14.2.11.1, “Overview of Online DDL”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.4, “Partition Pruning”
Section 17.5, “Partition Selection”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 8.12.5.3, “Query Cache Thread States”
Section 16.4.1.16, “Replication and LIMIT”
Section 16.4.1.21, “Replication and MEMORY Tables”

3157

Section 16.4.1.24, “Replication and the Query
Optimizer”
Section 16.4.1.32, “Replication and Triggers”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 9.3, “Reserved Words”
Section E.5, “Restrictions on Views”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 3.3.4.1, “Selecting All Data”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.2.2.3, “Speed of DELETE Statements”
Section 14.2.17.2, “Starting InnoDB on a Corrupted
Database”
Section 5.4.1.12, “Statement Probes”
Section 13.2.10.9, “Subquery Errors”
Section 13.2.10, “Subquery Syntax”
Section 8.10.2, “Table Locking Issues”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 19.23, “The INFORMATION_SCHEMA TABLES
Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 14.4, “The MEMORY Storage Engine”
Section 14.8, “The MERGE Storage Engine”
Section 5.2.4, “The Binary Log”
Section 6.2, “The MySQL Access Privilege System”
Section 18.3.1, “Trigger Syntax and Examples”
Section 18.5.3, “Updatable and Insertable Views”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Using the --safe-updates Option
Section 1.4, “What Is New in MySQL 5.7”
Section 21.8.15.2, “What Results You Can Get from a
Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 21.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query()
Returns Success”
Section 22.2.4.8, “Writing Audit Plugins”

DELETE FROM ... WHERE ...
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”

DELETE FROM a.t
Section 16.1.4.3, “Replication Slave Options and
Variables”

DELETE FROM t1,t2
Section 5.4.1.12, “Statement Probes”

DESCRIBE
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.8.1, “DESCRIBE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 3.3.2, “Creating a Table”
Section 19.31, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and
Tables”
Section 8.2.1.19, “Optimizing LIMIT Queries”
Section 13.1.14.3, “Silent Column Specification
Changes”
Section 3.6.6, “Using Foreign Keys”
Section 10.1.12, “UTF-8 for Metadata”

DISCARD PARTITION ...
TABLESPACE
Section 13.1.6.1, “ALTER TABLE Partition Operations”

DO
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.2.3, “DO Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 12.16, “Miscellaneous Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 17.6.4, “Partitioning and Locking”
Section E.1, “Restrictions on Stored Programs”
Section 13.2.10, “Subquery Syntax”
Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”

DROP DATABASE
Section 13.1.17, “DROP DATABASE Syntax”
Section 21.8.7.11, “mysql_drop_db()”
Section 21.8.6, “C API Function Overview”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”

3158

Section 8.9.3.1, “How the Query Cache Operates”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section E.10.6, “Windows Platform Limitations”

DROP DATABASE IF EXISTS
Section 16.4.1.8, “Replication of DROP ... IF
EXISTS Statements”

DROP EVENT
Section 13.1.18, “DROP EVENT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 18.4.3, “Event Syntax”
Section 16.4.1.11, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

DROP FUNCTION
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section 13.1.19, “DROP FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 22.3, “Adding New Functions to MySQL”
Section 18.7, “Binary Logging of Stored Programs”
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 16.4.1.11, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”
Section 2.10.1, “Upgrading MySQL”
Section 22.3.2.6, “User-Defined Function Security
Precautions”

DROP INDEX
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.20, “DROP INDEX Syntax”
Section 12.18.6.1, “Creating Spatial Indexes”
Section 14.2.11.5, “Examples of Online DDL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 14.2.11.1, “Overview of Online DDL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.2.5, “The Slow Query Log”

DROP PREPARE
Section 20.9.6.4, “The
prepared_statements_instances Table”

DROP PROCEDURE
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 16.4.1.11, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”

DROP SCHEMA
Section 13.1.17, “DROP DATABASE Syntax”
Section 5.1.4, “Server System Variables”

DROP SERVER
Section 13.1.22, “DROP SERVER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 16.4.1.6, “Replication of CREATE SERVER,
ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

DROP TABLE
Section 4.5.1.1, “mysql Options”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.23, “DROP TABLE Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 14.2.2.4, “Consistent Nonlocking Reads”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 22.2.3.2, “Full-Text Parser Plugins”
How the Diagnostics Area is Populated
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 14.2.5.2, “InnoDB File-Per-Table Mode”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Online DDL

3159

Section 8.5.6, “Optimizing InnoDB DDL Operations”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.2.5.4, “Specifying the Location of a
Tablespace”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 14.4, “The MEMORY Storage Engine”
Section 14.8, “The MERGE Storage Engine”
Section 14.2.17.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 1.4, “What Is New in MySQL 5.7”

DROP TABLE IF EXISTS
Section 16.4.1.8, “Replication of DROP ... IF
EXISTS Statements”

DROP TEMPORARY TABLE
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”

DROP TEMPORARY TABLE IF
EXISTS
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

DROP TRIGGER
Section 13.1.24, “DROP TRIGGER Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.4.1.11, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.3.1, “Trigger Syntax and Examples”

DROP USER
Section 13.7.1.3, “DROP USER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 12.14, “Information Functions”
Section 6.2.1, “Privileges Provided by MySQL”
Section 6.3.3, “Removing User Accounts”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

DROP USER 'x'@'localhost'
Using the Authentication Plugins

DROP VIEW
Section 13.1.25, “DROP VIEW Syntax”
Section E.5, “Restrictions on Views”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 18.5.1, “View Syntax”

DROP VIEW IF EXISTS
Section 16.4.1.8, “Replication of DROP ... IF
EXISTS Statements”

E

[index top [3145]]

EXECUTE
Section 13.2.1, “CALL Syntax”
Section 13.5.2, “EXECUTE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section 21.8.20, “C API Support for Prepared CALL
Statements”
Section E.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 20.9.6.4, “The
prepared_statements_instances Table”

EXPLAIN
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.8.1, “DESCRIBE Syntax”
Section 8.2.1.17, “DISTINCT Optimization”
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 8.2.1.8, “IS NULL Optimization”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 8.2.1.15, “ORDER BY Optimization”
Section 13.2.9, “SELECT Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Batched Key Access Joins
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 22.4.1, “Debugging a MySQL Server”
Section 8.2.1.5, “Engine Condition Pushdown
Optimization”

3160

Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”
Section 8.2.1.20, “How to Avoid Full Table Scans”
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Section 13.2.9.3, “Index Hint Syntax”
Section 8.2.1.4, “Index Merge Optimization”
Loose Index Scan
Section 8.2.1.13, “Multi-Range Read Optimization”
Chapter 20, MySQL Performance Schema
Section 17.3.5, “Obtaining Information About Partitions”
Section C.5.6, “Optimizer-Related Issues”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 13.2.10.10, “Optimizing Subqueries”
Optimizing Subqueries in the FROM Clause (Derived
Tables)
Optimizing Subqueries with EXISTS Strategy
Optimizing Subqueries with Semi-Join Transformations
Optimizing Subqueries with Subquery Materialization
Section 8.2.5, “Other Optimization Tips”
Range Optimization of Row Constructor Expressions
Section E.1, “Restrictions on Stored Programs”
Section C.5.5.7, “Solving Problems with No Matching
Rows”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 13.2.10.8, “Subqueries in the FROM Clause”
The Index Merge Intersection Access Algorithm
The Range Access Method for Multiple-Part Indexes
Section 8.8, “Understanding the Query Execution Plan”
Section 8.2.1.7, “Use of Index Extensions”
Section 12.18.6.2, “Using a Spatial Index”
Section 22.4.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 8.3.6, “Verifying Index Usage”
Section 1.4, “What Is New in MySQL 5.7”

EXPLAIN ... SELECT
Section 17.3.5, “Obtaining Information About Partitions”

EXPLAIN EXTENDED
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section 8.2.1.5, “Engine Condition Pushdown
Optimization”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Optimizing Subqueries with EXISTS Strategy
Optimizing Subqueries with Semi-Join Transformations
Optimizing Subqueries with Subquery Materialization

EXPLAIN FOR CONNECTION
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Obtaining Execution Plan Information
for a Named Connection”

EXPLAIN PARTITIONS
Section 13.8.2, “EXPLAIN Syntax”
Section 17.3.5, “Obtaining Information About Partitions”
Section 8.8.1, “Optimizing Queries with EXPLAIN”

EXPLAIN PARTITIONS SELECT
Section 17.3.5, “Obtaining Information About Partitions”

EXPLAIN PARTITIONS SELECT
COUNT()
Section 17.2.1, “RANGE Partitioning”

EXPLAIN SELECT
Section 8.8.2, “EXPLAIN Output Format”
Section 14.2.2.11, “How to Cope with Deadlocks”
Section 1.7, “How to Report Bugs or Problems”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 17.3.5, “Obtaining Information About Partitions”
Optimizing Subqueries in the FROM Clause (Derived
Tables)
Section 13.2.10.8, “Subqueries in the FROM Clause”

EXPLAIN SELECT ... ORDER BY
Section 8.2.1.15, “ORDER BY Optimization”

EXPLAIN tbl_name
Section 8.8.1, “Optimizing Queries with EXPLAIN”

F

[index top [3145]]

FETCH
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”
Section E.1, “Restrictions on Stored Programs”

FETCH ... INTO var_list
Section 13.6.4, “Variables in Stored Programs”

FLUSH
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.6.6, “RESET Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.14, “Replication and FLUSH”
Resetting the Root Password: Generic Instructions
Resetting the Root Password: Unix Systems
Resetting the Root Password: Windows Systems

3161

Section E.1, “Restrictions on Stored Programs”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 5.1.11, “Server Response to Signals”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

FLUSH BINARY LOGS
Section 5.2.6, “Server Log Maintenance”

FLUSH DES_KEY_FILE
Section 12.13, “Encryption and Compression
Functions”

FLUSH HOSTS
Section C.5.2.6, “Host 'host_name' is blocked”
Section 21.8.7.57, “mysql_refresh()”
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”
Section 5.1.4, “Server System Variables”
Section 20.9.13.1, “The host_cache Table”

FLUSH LOGS
Section 13.7.6.3, “FLUSH Syntax”
Section 21.8.7.57, “mysql_refresh()”
Section 7.3.3, “Backup Strategy Summary”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2, “MySQL Server Logs”
Section 16.4.1.14, “Replication and FLUSH”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.6, “Server Status Variables”
Section 5.2.2, “The Error Log”
Section 16.2.2.1, “The Slave Relay Log”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

FLUSH MASTER
Section 16.4.1.14, “Replication and FLUSH”

FLUSH PRIVILEGES
Section 13.7.6.3, “FLUSH Syntax”
Section 21.8.7.57, “mysql_refresh()”
Section 21.8.7.58, “mysql_reload()”
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 6.2.2, “Privilege System Grant Tables”
Section 16.4.1.14, “Replication and FLUSH”
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”
Section 1.2, “Typographical and Syntax Conventions”
Section 6.2.6, “When Privilege Changes Take Effect”

FLUSH QUERY CACHE
Section 13.7.6.3, “FLUSH Syntax”
Section 8.9.3.4, “Query Cache Status and
Maintenance”

FLUSH SLAVE
Section 16.4.1.14, “Replication and FLUSH”

FLUSH STATUS
Section 21.8.7.57, “mysql_refresh()”
Section 5.1.6, “Server Status Variables”
Section 8.2.1.7, “Use of Index Extensions”

FLUSH TABLE
Section 13.7.6.3, “FLUSH Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.2.1.7, “Use of Index Extensions”

FLUSH TABLES
Section 13.7.6.3, “FLUSH Syntax”
Section 13.2.4, “HANDLER Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 21.8.7.57, “mysql_refresh()”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 8.12.5.2, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 14.3.4.2, “Problems from Tables Not Being
Closed Properly”
Section 8.9.3.4, “Query Cache Status and
Maintenance”
Section 16.4.1.14, “Replication and FLUSH”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

FLUSH TABLES ... FOR EXPORT
Section 13.7.6.3, “FLUSH Syntax”
Section 14.2.6.2, “Moving or Copying InnoDB Tables
to Another Machine”
Section 14.2.5.4, “Specifying the Location of a
Tablespace”
Tablespace Copying Internals (Transportable
Tablespaces)

3162

Transportable Tablespace Examples

FLUSH TABLES tbl_list WITH
READ LOCK
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

FLUSH TABLES tbl_name ...
FOR EXPORT
Section 13.7.6.3, “FLUSH Syntax”

FLUSH TABLES tbl_name ...
WITH READ LOCK
Section 13.7.6.3, “FLUSH Syntax”

FLUSH TABLES tbl_name WITH
READ LOCK
Section 13.2.4, “HANDLER Syntax”

FLUSH TABLES WITH READ LOCK
Section 13.7.6.3, “FLUSH Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 8.12.5.2, “General Thread States”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 16.4.1.14, “Replication and FLUSH”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 20.9.11.1, “The metadata_locks Table”

FLUSH USER_RESOURCES
Section 13.7.6.3, “FLUSH Syntax”
Section 6.3.4, “Setting Account Resource Limits”

G

[index top [3145]]

GET DIAGNOSTICS
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”

Section 13.6.7.4, “RESIGNAL Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.6.7, “Condition Handling”
How the Diagnostics Area is Populated
How the Diagnostics Area Stack Works
Section E.2, “Restrictions on Condition Handling”
Section E.1, “Restrictions on Stored Programs”
Section 5.1.4, “Server System Variables”
Signal Condition Information Items
Section C.1, “Sources of Error Information”

GET STACKED DIAGNOSTICS
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
How the Diagnostics Area Stack Works
Section 1.4, “What Is New in MySQL 5.7”

GRANT
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.7.5.20, “SHOW GRANTS Syntax”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 14.2.3.1, “Configuring InnoDB for Read-Only
Operation”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host
Address”
Section 16.1.1.3, “Creating a User for Replication”
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 8.11.4.1, “How MySQL Uses Memory”
Implementing Proxy User Support in Authentication
Plugins
Section 12.14, “Information Functions”
Section 5.1.9, “IPv6 Support”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 8.2.3, “Optimizing Database Privileges”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”

3163

Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.9.1.1, “Problems Running
mysql_install_db”
Section 6.3.10, “Proxy Users”
Section 16.4.1.14, “Replication and FLUSH”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 16.4.1.23, “Replication of the mysql System
Database”
Section 6.1.1, “Security Guidelines”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.2.3, “Specifying Account Names”
Section 6.3.11.4, “SSL Command Options”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”
Section 6.2, “The MySQL Access Privilege System”
Section 6.1.2.6, “The Password Validation Plugin”
Section 6.3.1, “User Names and Passwords”
Section 6.3.11.3, “Using SSL Connections”
Section 6.3.11, “Using SSL for Secure Connections”
Section 6.2.6, “When Privilege Changes Take Effect”

GRANT ALL
Section 13.7.1.4, “GRANT Syntax”

GRANT EVENT
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

GRANT USAGE
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 6.3.4, “Setting Account Resource Limits”

H

[index top [3145]]

HANDLER
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.2.4, “HANDLER Syntax”
Section 21.8.7.3, “mysql_change_user()”
Section 21.8.7.59, “mysql_reset_connection()”
Section 21.8.16, “Controlling Automatic Reconnection
Behavior”
Section 1.8, “MySQL Standards Compliance”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

HANDLER ... CLOSE
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”

HANDLER ... OPEN
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”

HANDLER ... READ
Section E.1, “Restrictions on Stored Programs”

HANDLER OPEN
Section 13.2.4, “HANDLER Syntax”
Section 13.1.27, “TRUNCATE TABLE Syntax”

HELP
Section 13.8.3, “HELP Syntax”
Section 16.4.1.27, “Replication of Server-Side Help
Tables”
Section 5.1.10, “Server-Side Help”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

I

[index top [3145]]

IF
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5.2, “IF Syntax”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 12.4, “Control Flow Functions”
Section 13.6.5, “Flow Control Statements”

IMPORT PARTITION ...
TABLESPACE
Section 13.1.6.1, “ALTER TABLE Partition Operations”

INSERT
Section 4.5.1.1, “mysql Options”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.17.5, “InnoDB Error Codes”
Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key
Locks”

3164

Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 17.2.2, “LIST Partitioning”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.8.2, “MERGE Table Problems”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.38, “mysql_insert_id()”
Section 21.8.7.49, “mysql_num_rows()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.13, “mysql_stmt_field_count()”
Section 21.8.11.16, “mysql_stmt_insert_id()”
Section 21.8.11.18, “mysql_stmt_num_rows()”
Section 21.8.11.21, “mysql_stmt_prepare()”
Section 21.8.7.74, “mysql_store_result()”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 17.2.1, “RANGE Partitioning”
Section 13.2.8, “REPLACE Syntax”
Section 13.7.5.26, “SHOW PROCEDURE CODE Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 7.1, “Backup and Recovery Types”
Section 18.7, “Binary Logging of Stored Programs”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 21.8.6, “C API Function Overview”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.17, “C API Support for Multiple Statement
Execution”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 10.1.13, “Column Character Set Conversion”
Compression Enhancements for OLTP Workloads
Section 8.10.3, “Concurrent Inserts”
Configurable InnoDB Auto-Increment Locking
Section 1.8.3.3, “Constraints on Invalid Data”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.9.2.1, “Creating a FEDERATED Table Using
CONNECTION”
Section 11.5, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”

Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 2.10.2.1, “Downgrading to MySQL 5.6”
Section 7.3.1, “Establishing a Backup Policy”
Section 12.19.3, “Expression Handling”
Section 8.12.5.2, “General Thread States”
Section 14.2.6.3, “Grouping DML Operations with
Transactions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 21.8.15.3, “How to Get the Unique ID for the
Last Inserted Row”
Section 12.14, “Information Functions”
Section 8.10.1, “Internal Locking Methods”
Section 3.3.3, “Loading Data into a Table”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 12.16, “Miscellaneous Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 8.8.3, “Obtaining Execution Plan Information
for a Named Connection”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.2, “Optimizing DML Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.5, “Other Optimization Tips”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 14.2.11.1, “Overview of Online DDL”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.4, “Partition Pruning”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 20.9.6, “Performance Schema Statement Event
Tables”
Section 12.18.4.4, “Populating Spatial Columns”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 8.12.5.3, “Query Cache Thread States”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.28, “Replication and Server SQL Mode”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.32, “Replication and Triggers”
Section 16.4.1.34, “Replication and Variables”
Section 16.1.4.2, “Replication Master Options and
Variables”
Section 16.2.3.3, “Replication Rule Application”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.4.1.7, “Row-Level Probes”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”

3165

Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 16.4.1.26, “Slave Errors During Replication”
Section 8.2.2.1, “Speed of INSERT Statements”
Section 14.2.17.2, “Starting InnoDB on a Corrupted
Database”
Section 5.4.1.12, “Statement Probes”
Section 13.2.10, “Subquery Syntax”
Section 8.10.2, “Table Locking Issues”
Section 10.1.7.6, “The _bin and binary Collations”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 19.23, “The INFORMATION_SCHEMA TABLES
Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 14.8, “The MERGE Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
Section 5.2.4, “The Binary Log”
Section 6.2, “The MySQL Access Privilege System”
Section 8.9.3, “The MySQL Query Cache”
Section 5.1.12, “The Shutdown Process”
Traditional InnoDB Auto-Increment Locking
Section 18.3.1, “Trigger Syntax and Examples”
Section 14.2.16.8, “Troubleshooting the InnoDB
memcached Plugin”
Section 18.5.3, “Updatable and Insertable Views”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 18.3, “Using Triggers”
Section 1.4, “What Is New in MySQL 5.7”
Section 21.8.15.2, “What Results You Can Get from a
Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 21.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query()
Returns Success”

INSERT ... ()
Section 5.4.1.12, “Statement Probes”

INSERT ... ON DUPLICATE KEY
UPDATE
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.38, “mysql_insert_id()”
Configurable InnoDB Auto-Increment Locking
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”

Section 12.16, “Miscellaneous Functions”
Section 17.6.4, “Partitioning and Locking”

INSERT ... SELECT
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.7.38, “mysql_insert_id()”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 8.10.3, “Concurrent Inserts”
Configurable InnoDB Auto-Increment Locking
Section C.5.8, “Known Issues in MySQL”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 16.4.1.16, “Replication and LIMIT”
Section 5.1.4, “Server System Variables”
Section 5.4.1.12, “Statement Probes”
Section 5.2.4, “The Binary Log”

INSERT ... SELECT ON
DUPLICATE KEY UPDATE
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”

INSERT ... SET
Section 13.2.5, “INSERT Syntax”

INSERT ... VALUES
Section 13.2.5, “INSERT Syntax”
Section 21.8.7.36, “mysql_info()”

INSERT DELAYED
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 1.8.2.3, “Transaction and Atomic Operation
Differences”
Section 1.4, “What Is New in MySQL 5.7”

INSERT IGNORE
Section 1.8.3.4, “ENUM and SET Constraints”
Section 13.2.5, “INSERT Syntax”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 12.14, “Information Functions”
Section 5.1.7, “Server SQL Modes”

INSERT IGNORE ... SELECT
Section 13.2.5.1, “INSERT ... SELECT Syntax”

3166

INSERT INTO ... SELECT
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 1.8.2.1, “SELECT INTO TABLE Differences”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 14.2.2.4, “Consistent Nonlocking Reads”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 14.4, “The MEMORY Storage Engine”

INSERT INTO ... SELECT ...
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 21.8.7.36, “mysql_info()”
Section 21.8.15.2, “What Results You Can Get from a
Query”

INSERT INTO ... SELECT FROM
memory_table
Section 16.4.1.21, “Replication and MEMORY Tables”

INSERT LOW_PRIORITY
Section 8.2.5, “Other Optimization Tips”

INSTALL PLUGIN
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 13.7.5.24, “SHOW PLUGINS Syntax”
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.13.1, “Installing the Audit Log Plugin”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.1.8.2, “Obtaining Server Plugin Information”
Password Validation Plugin Installation
Password Validation Plugin Options and Variables
Section 6.3.8, “Pluggable Authentication”
Section 14.12.1, “Pluggable Storage Engine
Architecture”
Section 22.2.2, “Plugin API Components”
Section 22.2.4.2, “Plugin Data Structures”
Section 16.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.3, “Server Command Options”
Server Plugin Library and Plugin Descriptors
Section 19.15, “The INFORMATION_SCHEMA PLUGINS
Table”
Section 22.2, “The MySQL Plugin API”
Section 22.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 22.2.4.8, “Writing Audit Plugins”

Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4.10, “Writing Password-Validation
Plugins”
Writing the Server-Side Authentication Plugin

ITERATE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.2, “Statement Label Syntax”

K

[index top [3145]]

KILL
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.7.39, “mysql_kill()”
Section 13.7.5.28, “SHOW PROCESSLIST Syntax”
Section 4.6.11, “mysql_zap — Kill Processes That
Match a Pattern”
Section 8.12.5.2, “General Thread States”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

KILL CONNECTION
Section 13.7.6.4, “KILL Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 5.1.12, “The Shutdown Process”

KILL QUERY
Section 13.7.6.4, “KILL Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 5.1.12, “The Shutdown Process”

L

[index top [3145]]

LEAVE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section 13.6.5.7, “RETURN Syntax”
Section 13.6.5, “Flow Control Statements”
Section E.1, “Restrictions on Stored Programs”
Section 13.6.2, “Statement Label Syntax”

LOAD DATA
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 8.10.3, “Concurrent Inserts”

3167

Configurable InnoDB Auto-Increment Locking
Section C.5.8, “Known Issues in MySQL”
Section 3.3.3, “Loading Data into a Table”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section E.1, “Restrictions on Stored Programs”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 3.3.4.1, “Selecting All Data”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.4.4, “The ENUM Type”
Section 9.4, “User-Defined Variables”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 18.3, “Using Triggers”

LOAD DATA INFILE
Section 4.5.1.1, “mysql Options”
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.3.1, “MyISAM Startup Options”
Section 9.1.7, “NULL Values”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section 6.3.13.4, “Audit Log Plugin Logging Control”
Section 6.3.13.6, “Audit Log Plugin Restrictions”
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 8.10.3, “Concurrent Inserts”
Section 7.2, “Database Backup Methods”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section 12.14, “Information Functions”
Section C.5.8, “Known Issues in MySQL”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 8.2.5, “Other Optimization Tips”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 4.1, “Overview of MySQL Programs”
Section 6.2.1, “Privileges Provided by MySQL”

Section C.5.5.3, “Problems with NULL Values”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 16.4.1.17, “Replication and LOAD DATA
INFILE”
Section 16.4.2, “Replication Compatibility Between
MySQL Versions”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 8.12.5.6, “Replication Slave SQL Thread
States”
Section E.7, “Restrictions on Character Sets”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.2.2.1, “Speed of INSERT Statements”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.2.10, “Subquery Syntax”
Section 14.4, “The MEMORY Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section C.5.4.4, “Where MySQL Stores Temporary
Files”
Section E.10.6, “Windows Platform Limitations”

LOAD DATA INFILE ...
Section 21.8.7.36, “mysql_info()”
Section 21.8.15.2, “What Results You Can Get from a
Query”

LOAD DATA LOCAL
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 21.8.7.50, “mysql_options()”
Section 21.8.7.54, “mysql_real_connect()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

LOAD DATA LOCAL INFILE
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 21.8.7.68,
“mysql_set_local_infile_handler()”
Section 21.8.6, “C API Function Overview”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

LOAD INDEX INTO CACHE
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 8.9.2.4, “Index Preloading”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

3168

LOAD INDEX INTO CACHE ...
IGNORE LEAVES
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”

LOAD XML
Section 13.2.7, “LOAD XML Syntax”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.5, “Partition Selection”

LOAD XML INFILE
Section 13.2.7, “LOAD XML Syntax”

LOAD XML LOCAL
Section 13.2.7, “LOAD XML Syntax”

LOAD XML LOCAL INFILE
Section 13.2.7, “LOAD XML Syntax”

LOCK TABLE
Section 8.10.3, “Concurrent Inserts”
Section 8.12.5.2, “General Thread States”
Section C.5.7.1, “Problems with ALTER TABLE”

LOCK TABLES
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 13.3.5.2, “LOCK TABLES and Triggers”
Section 14.8.2, “MERGE Table Problems”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 14.2.2.10, “Deadlock Detection and Rollback”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 14.2.2.11, “How to Cope with Deadlocks”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 8.10.1, “Internal Locking Methods”
Section 14.2.6.7, “Limits on InnoDB Tables”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 17.6.4, “Partitioning and Locking”
Section 6.2.1, “Privileges Provided by MySQL”
Section 14.3.4.2, “Problems from Tables Not Being
Closed Properly”
Section E.1, “Restrictions on Stored Programs”

Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 8.11.1, “System Factors and Startup Parameter
Tuning”
Section 8.10.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 1.8.2.3, “Transaction and Atomic Operation
Differences”

LOCK TABLES ... READ
Section 13.7.6.3, “FLUSH Syntax”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.6.7, “Limits on InnoDB Tables”

LOCK TABLES ... WRITE
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.6.7, “Limits on InnoDB Tables”

LOOP
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.2, “Statement Label Syntax”

O

[index top [3145]]

OPEN
Section 13.6.6.4, “Cursor OPEN Syntax”

OPTIMIZE TABLE
Section 4.6.3.1, “myisamchk General Options”
Section 13.2.2, “DELETE Syntax”
FULLTEXT Indexes
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.7.6.4, “KILL Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 22.4.1, “Debugging a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 14.3.3.2, “Dynamic Table Characteristics”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.12.5.2, “General Thread States”

3169

Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section 14.2.5.2, “InnoDB File-Per-Table Mode”
Section 14.2.11.9, “Limitations of Online DDL”
Section 17.3.4, “Maintenance of Partitions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.5, “Other Optimization Tips”
Section 14.2.11.1, “Overview of Online DDL”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.14, “Replication and FLUSH”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 14.3.3.1, “Static (Fixed-Length) Table
Characteristics”
Section 14.6, “The ARCHIVE Storage Engine”
Section 19.30.25, “The INFORMATION_SCHEMA
INNODB_FT_BEING_DELETED Table”
Section 19.30.24, “The INFORMATION_SCHEMA
INNODB_FT_DELETED Table”
Section 19.30.23, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_CACHE Table”
Section 5.1.12, “The Shutdown Process”
Section 5.2.5, “The Slow Query Log”
Using Symbolic Links for MyISAM Tables on Unix
Section 1.4, “What Is New in MySQL 5.7”

P

[index top [3145]]

PREPARE
Section 13.2.1, “CALL Syntax”
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.2, “EXECUTE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section 21.8.20, “C API Support for Prepared CALL
Statements”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 9.2.2, “Identifier Case Sensitivity”
Section 8.10.4, “Metadata Locking”
Section E.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 20.9.6.4, “The
prepared_statements_instances Table”

PURGE BINARY LOGS
Section 13.7.1.4, “GRANT Syntax”

Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

R

[index top [3145]]

RELEASE SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 20.9.7, “Performance Schema Transaction
Tables”
Section 20.9.7.1, “The
events_transactions_current Table”

RENAME INDEX
Section 14.2.11.1, “Overview of Online DDL”

RENAME TABLE
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 8.12.5.2, “General Thread States”
Section 9.2.2, “Identifier Case Sensitivity”
Section 14.2.6.2, “Moving or Copying InnoDB Tables
to Another Machine”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Using Symbolic Links for MyISAM Tables on Unix

RENAME USER
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.5, “RENAME USER Syntax”
Section 12.14, “Information Functions”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

3170

Section 6.2.6, “When Privilege Changes Take Effect”

REPAIR TABLE
Section 4.6.3.1, “myisamchk General Options”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 14.3.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”
Section 14.3.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 8.10.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.12.5.2, “General Thread States”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 17.3.4, “Maintenance of Partitions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 6.2.1, “Privileges Provided by MySQL”
Section 14.3.4.2, “Problems from Tables Not Being
Closed Properly”
Section C.5.7.1, “Problems with ALTER TABLE”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 16.4.1.14, “Replication and FLUSH”
Section 16.4.1.18, “Replication and REPAIR TABLE”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 14.6, “The ARCHIVE Storage Engine”
Section 5.1.12, “The Shutdown Process”
Section 5.2.5, “The Slow Query Log”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Using Symbolic Links for MyISAM Tables on Unix

REPEAT
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”

Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.6, “REPEAT Syntax”
Section 18.1, “Defining Stored Programs”
Section 13.6.5, “Flow Control Statements”
Section 13.6.2, “Statement Label Syntax”

REPLACE
Section 13.1.14.1, “CREATE TABLE ... SELECT
Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 13.2.5, “INSERT Syntax”
Section 14.8.2, “MERGE Table Problems”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.7.1, “mysql_affected_rows()”
Section 13.2.8, “REPLACE Syntax”
Section 13.2.11, “UPDATE Syntax”
Configurable InnoDB Auto-Increment Locking
Section 11.5, “Data Type Default Values”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 12.14, “Information Functions”
Section C.5.8, “Known Issues in MySQL”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 8.8.3, “Obtaining Execution Plan Information
for a Named Connection”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 5.1.3, “Server Command Options”
Section 13.2.10, “Subquery Syntax”
Section 14.6, “The ARCHIVE Storage Engine”

REPLACE ... SELECT
Configurable InnoDB Auto-Increment Locking
Section C.5.8, “Known Issues in MySQL”

REPLACE DELAYED
Section 1.4, “What Is New in MySQL 5.7”

RESET
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.6.6, “RESET Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

3171

RESET MASTER
Section 21.8.7.57, “mysql_refresh()”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.3.6, “Switching Masters During Failover”
Section 20.9.10.2, “The
replication_connection_status Table”
Section 20.9.10.5, “The
replication_execute_status_by_coordinator
Table”
Section 20.9.10.6, “The
replication_execute_status_by_worker
Table”
Section 5.2.4, “The Binary Log”

RESET QUERY CACHE
Section 8.12.5.3, “Query Cache Thread States”

RESET SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 21.8.7.57, “mysql_refresh()”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.3.9, “Delayed Replication”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 20.9.10.2, “The
replication_connection_status Table”
Section 20.9.10.5, “The
replication_execute_status_by_coordinator
Table”
Section 20.9.10.6, “The
replication_execute_status_by_worker
Table”

RESIGNAL
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
RESIGNAL Alone
RESIGNAL Requires Condition Handler Context
Section 13.6.7.4, “RESIGNAL Syntax”
RESIGNAL with a Condition Value and Optional New
Signal Information
RESIGNAL with New Signal Information
Section 13.6.7, “Condition Handling”
Diagnostics Area Information Items
Diagnostics Area-Related System Variables
How the Diagnostics Area is Populated
How the Diagnostics Area Stack Works
Section E.2, “Restrictions on Condition Handling”
Section E.1, “Restrictions on Stored Programs”

Section 13.6.7.6, “Scope Rules for Handlers”
Signal Condition Information Items

RETURN
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section 13.6.5.7, “RETURN Syntax”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 13.6.5, “Flow Control Statements”
How the Diagnostics Area Stack Works
Section E.1, “Restrictions on Stored Programs”

REVOKE
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 14.2.3.1, “Configuring InnoDB for Read-Only
Operation”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 12.14, “Information Functions”
Section 5.1.9, “IPv6 Support”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 1.8.2, “MySQL Differences from Standard SQL”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.9.1.1, “Problems Running
mysql_install_db”
Section 6.3.10, “Proxy Users”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 16.4.1.23, “Replication of the mysql System
Database”
Section 6.1.1, “Security Guidelines”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”
Section 6.2, “The MySQL Access Privilege System”
Section 6.3.1, “User Names and Passwords”
Section 6.2.6, “When Privilege Changes Take Effect”

REVOKE ALL PRIVILEGES
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

ROLLBACK
Section 14.2.17.4, “InnoDB Error Handling”
Section 21.8.7.3, “mysql_change_user()”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”

3172

Section 18.7, “Binary Logging of Stored Programs”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.2.10, “Deadlock Detection and Rollback”
Section 14.2.6.3, “Grouping DML Operations with
Transactions”
Section 12.14, “Information Functions”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 14.2.2.1, “MySQL and the ACID Model”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 20.9.7, “Performance Schema Transaction
Tables”
Section 16.4.1.31, “Replication and Transactions”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section C.5.5.5, “Rollback Failure for Nontransactional
Tables”
Section 5.1.4, “Server System Variables”
Section 13.3.2, “Statements That Cannot Be Rolled
Back”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 20.9.7.1, “The
events_transactions_current Table”
Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”
Section 5.2.4, “The Binary Log”
Section 1.8.2.3, “Transaction and Atomic Operation
Differences”
Section 18.3.1, “Trigger Syntax and Examples”

ROLLBACK TO SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 20.9.7, “Performance Schema Transaction
Tables”
Section 20.9.7.1, “The
events_transactions_current Table”

S

[index top [3145]]

SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 20.9.7, “Performance Schema Transaction
Tables”
Section 20.9.7.1, “The
events_transactions_current Table”

SELECT
Section 4.5.1.1, “mysql Options”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.2.1, “CALL Syntax”

Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.14.1, “CREATE TABLE ... SELECT
Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.2.3, “DO Syntax”
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.7.6.3, “FLUSH Syntax”
FULLTEXT Indexes
Section 13.7.1.4, “GRANT Syntax”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 13.2.4, “HANDLER Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.2.9.2, “JOIN Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 7.6.4, “MyISAM Table Optimization”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.17, “mysql_fetch_field()”
Section 21.8.7.22, “mysql_field_count()”
Section 21.8.7.48, “mysql_num_fields()”
Section 21.8.7.49, “mysql_num_rows()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.11, “mysql_stmt_fetch()”
Section 21.8.11.18, “mysql_stmt_num_rows()”
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 17.2.3.1, “RANGE COLUMNS partitioning”
Section 13.2.8, “REPLACE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 13.2.9, “SELECT Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.4, “SET Syntax”
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.9, “SHOW CREATE PROCEDURE Syntax”
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 13.7.5.16, “SHOW ERRORS Syntax”
Section 13.7.5.26, “SHOW PROCEDURE CODE Syntax”
Section 13.7.5.28, “SHOW PROCESSLIST Syntax”
Section 13.7.5.31, “SHOW RELAYLOG EVENTS Syntax”
Section 13.7.5.38, “SHOW VARIABLES Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section 13.7.5, “SHOW Syntax”

3173

Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.2.9.4, “UNION Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 12.3.4, “Assignment Operators”
Section 14.2.2.7, “Avoiding the Phantom Problem
Using Next-Key Locking”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.17, “C API Support for Multiple Statement
Execution”
Section 21.8.20, “C API Support for Prepared CALL
Statements”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 8.10.3, “Concurrent Inserts”
Configurable InnoDB Auto-Increment Locking
Section 10.1.4, “Connection Character Sets and
Collations”
Section 14.2.2.4, “Consistent Nonlocking Reads”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.9.2.1, “Creating a FEDERATED Table Using
CONNECTION”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”
Section 14.2.2.10, “Deadlock Detection and Rollback”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 8.4.3.2, “Disadvantages of Creating Many
Tables in the Same Database”
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”
Section 5.1.5.2, “Dynamic System Variables”
Section 3.2, “Entering Queries”
Section 18.4.2, “Event Scheduler Configuration”
Section 10.1.7.8, “Examples of the Effect of Collation”
Section 1.8.2.4, “Foreign Key Differences”
Chapter 12, Functions and Operators
Section 8.12.5.2, “General Thread States”
Section 14.2.6.3, “Grouping DML Operations with
Transactions”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 17.2.7, “How MySQL Partitioning Handles
NULL”
Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”

Section 8.9.3.1, “How the Query Cache Operates”
Section 14.2.2.11, “How to Cope with Deadlocks”
Section 1.7, “How to Report Bugs or Problems”
Section 9.2.1, “Identifier Qualifiers”
Section 13.2.9.3, “Index Hint Syntax”
Section 12.14, “Information Functions”
Section 8.10.1, “Internal Locking Methods”
Section C.5.8, “Known Issues in MySQL”
Section 13.6.4.2, “Local Variable Scope and
Resolution”
Section 14.2.2.5, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 8.3.5, “Multiple-Column Indexes”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Chapter 20, MySQL Performance Schema
Section 12.9.1, “Natural Language Full-Text Searches”
Section 8.8.3, “Obtaining Execution Plan Information
for a Named Connection”
Section 17.3.5, “Obtaining Information About Partitions”
Section 8.3, “Optimization and Indexes”
Optimizations for Read-Only Transactions
Section C.5.6, “Optimizer-Related Issues”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.1, “Optimizing SELECT Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Optimizing Subqueries in the FROM Clause (Derived
Tables)
Optimizing Subqueries with EXISTS Strategy
Optimizing Subqueries with Semi-Join Transformations
Section 4.6.3.4, “Other myisamchk Options”
Section 8.2.5, “Other Optimization Tips”
Section 14.2.11.1, “Overview of Online DDL”
Section 17.4, “Partition Pruning”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 20.4, “Performance Schema Instrument
Naming Conventions”
Section 20.9.10, “Performance Schema Replication
Tables”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5.5.2, “Problems Using DATE Columns”
Section C.5.5.8, “Problems with Floating-Point Values”
Section 8.9.3.2, “Query Cache SELECT Options”
Section 8.9.3.4, “Query Cache Status and
Maintenance”
Section 8.12.5.3, “Query Cache Thread States”

3174

Section 14.5.1, “Repairing and Checking CSV Tables”
Section 16.2, “Replication Implementation”
Section 16.1.4.2, “Replication Master Options and
Variables”
Section 16.4.1.4, “Replication of CREATE ... IF NOT
EXISTS Statements”
Section 16.4.1.11, “Replication of Invoked Features”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 9.3, “Reserved Words”
Section E.1, “Restrictions on Stored Programs”
Section E.5, “Restrictions on Views”
Section 3.3.4, “Retrieving Information from a Table”
Section 3.6.7, “Searching on Two Keys”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 3.3.4.1, “Selecting All Data”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.7, “Server SQL Modes”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section C.5.5.7, “Solving Problems with No Matching
Rows”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 14.2.17.2, “Starting InnoDB on a Corrupted
Database”
Section 5.4.1.12, “Statement Probes”
Section 18.2.1, “Stored Routine Syntax”
Section 9.1.1, “String Literals”
Section 13.2.10.8, “Subqueries in the FROM Clause”
Section 13.2.10.6, “Subqueries with EXISTS or NOT
EXISTS”
Section 13.2.10.9, “Subquery Errors”
Section 13.2.10, “Subquery Syntax”
Section 8.10.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 14.6, “The ARCHIVE Storage Engine”
Section 11.4.4, “The ENUM Type”
Section 20.9.13.1, “The host_cache Table”
Section 19.4, “The INFORMATION_SCHEMA COLUMNS
Table”
Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 14.8, “The MERGE Storage Engine”
Section 20.9.13.3, “The threads Table”
Section 5.2.4, “The Binary Log”
Section 6.2, “The MySQL Access Privilege System”
Section 8.9.3, “The MySQL Query Cache”
The Range Access Method for Single-Part Indexes
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 18.3.1, “Trigger Syntax and Examples”
Section 12.2, “Type Conversion in Expression
Evaluation”
Section 1.2, “Typographical and Syntax Conventions”
Section 9.4, “User-Defined Variables”

Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 12.18.6.2, “Using a Spatial Index”
Section 22.4.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 5.1.5, “Using System Variables”
Using the --safe-updates Option
Section 10.1.12, “UTF-8 for Metadata”
Section 18.5.1, “View Syntax”
Section C.5.4.4, “Where MySQL Stores Temporary
Files”
Section 22.2.4.8, “Writing Audit Plugins”

SELECT *
Section 11.4.3, “The BLOB and TEXT Types”

SELECT * FROM t PARTITION ()
Section 17.1, “Overview of Partitioning in MySQL”

SELECT * INTO OUTFILE
'file_name' FROM tbl_name
Section 7.2, “Database Backup Methods”

SELECT ... FOR UPDATE
Section 14.2.2.3, “InnoDB Lock Modes”
Section 14.2.2.11, “How to Cope with Deadlocks”
Section 14.2.2.5, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... FROM
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... FROM ... FOR
UPDATE
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... FROM ... LOCK IN
SHARE MODE
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... INTO
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 1.8.2.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Syntax”
Section 13.6.4.2, “Local Variable Scope and
Resolution”
Section 16.4.1.15, “Replication and System Functions”

3175

SELECT ... INTO DUMPFILE
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section 5.1.4, “Server System Variables”

SELECT ... INTO OUTFILE
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 9.1.7, “NULL Values”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 1.8.2.1, “SELECT INTO TABLE Differences”
Section 7.1, “Backup and Recovery Types”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.17.2, “Starting InnoDB on a Corrupted
Database”
Section 1.2, “Typographical and Syntax Conventions”
Section E.10.6, “Windows Platform Limitations”

SELECT ... INTO OUTFILE
'file_name'
Section 13.2.9.1, “SELECT ... INTO Syntax”

SELECT ... INTO var_list
Section E.1, “Restrictions on Stored Programs”
Section 13.6.4, “Variables in Stored Programs”

SELECT ... LOCK IN SHARE
MODE
Section 14.2.2.3, “InnoDB Lock Modes”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.2.5, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”

SELECT DISTINCT
Section 8.12.5.2, “General Thread States”
Optimizing Subqueries with Semi-Join Transformations
Section E.4, “Restrictions on Subqueries”

SELECT HIGH_PRIORITY
Section 8.2.5, “Other Optimization Tips”

SET
Section 14.2.13, “InnoDB Startup Options and System
Variables”

Section 13.7.4, “SET Syntax”
Section 13.7.5.38, “SHOW VARIABLES Syntax”
Section 12.3.4, “Assignment Operators”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 18.1, “Defining Stored Programs”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 5.1.5.2, “Dynamic System Variables”
Section 18.4.2, “Event Scheduler Configuration”
Chapter 12, Functions and Operators
How the Diagnostics Area is Populated
Section 12.14, “Information Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 17.6.4, “Partitioning and Locking”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 8.9.3.3, “Query Cache Configuration”
Section 16.1.4.2, “Replication Master Options and
Variables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.2.10, “Subquery Syntax”
Section 18.3.1, “Trigger Syntax and Examples”
Section 9.4, “User-Defined Variables”
Section 4.2.3.5, “Using Options to Set Program
Variables”
Section 5.1.5, “Using System Variables”
Using the --safe-updates Option
Section 13.6.4, “Variables in Stored Programs”

SET @@global.gtid_purged
Section 4.5.4, “mysqldump — A Database Backup
Program”

SET autocommit
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 13.3, “MySQL Transactional and Locking
Statements”

SET autocommit = 0
Section 16.3.8, “Semisynchronous Replication”

SET GLOBAL
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.4, “SET Syntax”
Section 5.1.5.2, “Dynamic System Variables”
Section 8.9.2.2, “Multiple Key Caches”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.5, “Using System Variables”

3176

SET GLOBAL
sql_slave_skip_counter
Section 13.4.2.5, “SET GLOBAL
sql_slave_skip_counter Syntax”

SET GLOBAL TRANSACTION
Section 13.3.6, “SET TRANSACTION Syntax”

SET NAMES
Section 10.1.6, “Character Set for Error Messages”
Section 5.1.4, “Server System Variables”
Section 12.2, “Type Conversion in Expression
Evaluation”

SET PASSWORD
Section 13.7.1.1, “ALTER USER Syntax”
Section C.5.2.4, “Client does not support
authentication protocol”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.7.4, “SET Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 12.14, “Information Functions”
Section 2.5.3, “Installing MySQL on Linux Using RPM
Packages”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 6.3.6, “Password Expiration Policy”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 6.2.2, “Privilege System Grant Tables”
Section 16.4.1.34, “Replication and Variables”
Section 16.4.1.7, “Replication of CURRENT_USER()”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 5.1.4, “Server System Variables”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 6.1.2.6, “The Password Validation Plugin”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 1.4, “What Is New in MySQL 5.7”
Section 6.2.6, “When Privilege Changes Take Effect”

SET SESSION
Section 13.7.4, “SET Syntax”
Section 5.1.5.2, “Dynamic System Variables”
Section 5.1.5, “Using System Variables”

SET SESSION TRANSACTION
Section 13.3.6, “SET TRANSACTION Syntax”

SET TIMESTAMP = value
Section 8.12.5, “Examining Thread Information”

SET TRANSACTION
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”

SET TRANSACTION ISOLATION
LEVEL
Section 13.7.4, “SET Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”

SHOW
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 21.8.11.28, “mysql_stmt_store_result()”
Section 21.8.7.74, “mysql_store_result()”
Section 21.8.7.76, “mysql_use_result()”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.21, “SHOW INDEX Syntax”
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”
Section 13.7.5.36, “SHOW TABLES Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.7.5, “SHOW Syntax”
Section 21.8.5, “C API Data Structures”
Section 21.8.6, “C API Function Overview”
Section 3.3, “Creating and Using a Database”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”
Section 19.31, “Extensions to SHOW Statements”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 20.1, “Performance Schema Quick Start”
Section E.1, “Restrictions on Stored Programs”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”
Section 19.1, “The INFORMATION_SCHEMA
CHARACTER_SETS Table”
Section 19.3, “The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY
Table”
Section 19.2, “The INFORMATION_SCHEMA
COLLATIONS Table”

3177

Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.4, “The INFORMATION_SCHEMA COLUMNS
Table”
Section 19.6, “The INFORMATION_SCHEMA ENGINES
Table”
Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 19.8, “The INFORMATION_SCHEMA FILES
Table”
Section 19.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”
Section 19.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”
Section 19.11, “The INFORMATION_SCHEMA
KEY_COLUMN_USAGE Table”
Section 19.14, “The INFORMATION_SCHEMA
PARTITIONS Table”
Section 19.15, “The INFORMATION_SCHEMA PLUGINS
Table”
Section 19.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”
Section 19.17, “The INFORMATION_SCHEMA
PROFILING Table”
Section 19.18, “The INFORMATION_SCHEMA
REFERENTIAL_CONSTRAINTS Table”
Section 19.21, “The INFORMATION_SCHEMA
SCHEMA_PRIVILEGES Table”
Section 19.20, “The INFORMATION_SCHEMA
SCHEMATA Table”
Section 19.22, “The INFORMATION_SCHEMA
STATISTICS Table”
Section 19.25, “The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table”
Section 19.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 19.23, “The INFORMATION_SCHEMA TABLES
Table”
Section 19.24, “The INFORMATION_SCHEMA
TABLESPACES Table”
Section 19.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 19.28, “The INFORMATION_SCHEMA
USER_PRIVILEGES Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 5.2.4, “The Binary Log”
Section 10.1.12, “UTF-8 for Metadata”

SHOW BINARY LOGS
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”
Section 4.6.7.3, “Using mysqlbinlog to Back Up
Binary Log Files”

SHOW BINLOG EVENTS
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 16.1.3.1, “GTID Concepts”
Section E.3, “Restrictions on Server-Side Cursors”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”

SHOW CHARACTER SET
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.7.5.3, “SHOW CHARACTER SET Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 10.1.2, “Character Sets and Collations in
MySQL”
Section 10.1.14, “Character Sets and Collations That
MySQL Supports”
Section 19.31, “Extensions to SHOW Statements”

SHOW COLLATION
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.7.5.4, “SHOW COLLATION Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 21.8.5, “C API Data Structures”
Section 10.5, “Character Set Configuration”
Section 10.1.2, “Character Sets and Collations in
MySQL”
Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 10.4.2, “Choosing a Collation ID”
Section 10.1.3.4, “Column Character Set and Collation”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 10.1.3.3, “Table Character Set and Collation”
Section 19.3, “The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY
Table”
Section 19.2, “The INFORMATION_SCHEMA
COLLATIONS Table”

SHOW COLUMNS
Section 13.8.2, “EXPLAIN Syntax”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 19.31, “Extensions to SHOW Statements”
Section 8.2.1.19, “Optimizing LIMIT Queries”

SHOW COLUMNS FROM tbl_name
LIKE 'enum_col'
Section 11.4.4, “The ENUM Type”

SHOW COUNT()
Section 13.7.5.16, “SHOW ERRORS Syntax”

3178

Section 13.7.5.39, “SHOW WARNINGS Syntax”

SHOW CREATE DATABASE
Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 5.1.4, “Server System Variables”

SHOW CREATE EVENT
Section 13.7.5.7, “SHOW CREATE EVENT Syntax”
Section 13.7.5.17, “SHOW EVENTS Syntax”
Section 18.4.4, “Event Metadata”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

SHOW CREATE FUNCTION
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.7.5.8, “SHOW CREATE FUNCTION Syntax”
Section 13.7.5.9, “SHOW CREATE PROCEDURE Syntax”
Section 1.7, “How to Report Bugs or Problems”
Section 18.2.3, “Stored Routine Metadata”

SHOW CREATE PROCEDURE
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.7.5.8, “SHOW CREATE FUNCTION Syntax”
Section 13.7.5.9, “SHOW CREATE PROCEDURE Syntax”
Section 1.7, “How to Report Bugs or Problems”
Section 18.2.3, “Stored Routine Metadata”

SHOW CREATE SCHEMA
Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”

SHOW CREATE TABLE
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 17.2.5, “KEY Partitioning”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.10, “SHOW CREATE TABLE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 11.5, “Data Type Default Values”
Section 3.4, “Getting Information About Databases and
Tables”
Section 14.9.2, “How to Create FEDERATED Tables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 17.3.5, “Obtaining Information About Partitions”
Section 2.10.4, “Rebuilding or Repairing Tables or
Indexes”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.1.14.3, “Silent Column Specification
Changes”

Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 3.6.6, “Using Foreign Keys”

SHOW CREATE TRIGGER
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 19.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 18.3.2, “Trigger Metadata”

SHOW CREATE VIEW
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 18.5.4, “View Metadata”

SHOW DATABASES
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 13.7.5.13, “SHOW DATABASES Syntax”
Section 3.3, “Creating and Using a Database”
Section 19.31, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and
Tables”
Section 9.2.2, “Identifier Case Sensitivity”
Section 20.2.1, “Performance Schema Build
Configuration”
Section 6.2.2, “Privilege System Grant Tables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

SHOW ENGINE
Section 13.7.5.14, “SHOW ENGINE Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

SHOW ENGINE INNODB MUTEX
Section 13.7.5.14, “SHOW ENGINE Syntax”
Section 1.4, “What Is New in MySQL 5.7”

SHOW ENGINE INNODB STATUS
Section 14.2.6.6, “InnoDB and FOREIGN KEY
Constraints”
InnoDB Standard Monitor and Lock Monitor Output
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.7.5.14, “SHOW ENGINE Syntax”
Adaptive Hash Indexes
Section 14.2.3.1, “Configuring InnoDB for Read-Only
Operation”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Enabling InnoDB Monitors
Section 14.2.2.11, “How to Cope with Deadlocks”

3179

Section 14.2.6.2, “Moving or Copying InnoDB Tables
to Another Machine”
Optimizations for Read-Only Transactions
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section C.1, “Sources of Error Information”
Section 19.30.18, “The INFORMATION_SCHEMA
INNODB_BUFFER_POOL_STATS Table”
Section 19.30.19, “The INFORMATION_SCHEMA
INNODB_METRICS Table”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

SHOW ENGINE
PERFORMANCE_SCHEMA STATUS
Section 13.7.5.14, “SHOW ENGINE Syntax”
Section 20.5, “Performance Schema Status Monitoring”

SHOW ENGINES
Section 13.7.5.15, “SHOW ENGINES Syntax”
Section 14.2.1.2, “Checking InnoDB Availability”
Section 20.2.1, “Performance Schema Build
Configuration”
Section 20.1, “Performance Schema Quick Start”
Section 2.3.5.3, “Selecting a MySQL Server Type”
Section 5.1.4, “Server System Variables”
Chapter 14, Storage Engines
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”

SHOW ERRORS
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 14.2.6.6, “InnoDB and FOREIGN KEY
Constraints”
RESIGNAL with a Condition Value and Optional New
Signal Information
Section 13.7.5.16, “SHOW ERRORS Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
How the Diagnostics Area is Populated
Section 5.1.4, “Server System Variables”
Signal Condition Information Items
Section C.1, “Sources of Error Information”

SHOW EVENTS
Section 13.7.5.17, “SHOW EVENTS Syntax”
Section 18.4.4, “Event Metadata”
Section 16.4.1.11, “Replication of Invoked Features”
Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

SHOW FULL COLUMNS
Section 13.1.14, “CREATE TABLE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

SHOW FULL PROCESSLIST
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 8.12.5, “Examining Thread Information”

SHOW FULL TABLES
Section 13.7.5.36, “SHOW TABLES Syntax”
Section 4.5.6, “mysqlshow — Display Database,
Table, and Column Information”

SHOW FUNCTION CODE
Section 13.7.5.18, “SHOW FUNCTION CODE Syntax”
Section 13.7.5.26, “SHOW PROCEDURE CODE Syntax”

SHOW FUNCTION STATUS
Section 13.7.5.19, “SHOW FUNCTION STATUS Syntax”
Section 13.7.5.27, “SHOW PROCEDURE STATUS
Syntax”
Section 18.2.3, “Stored Routine Metadata”

SHOW GLOBAL STATUS
Section 5.1.4, “Server System Variables”
Section 19.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

SHOW GLOBAL VARIABLES
Section 19.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW GRANTS
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.7.5.20, “SHOW GRANTS Syntax”
Section 13.7.5.25, “SHOW PRIVILEGES Syntax”
Section 6.3.2, “Adding User Accounts”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.1.1, “Security Guidelines”
Section 6.2, “The MySQL Access Privilege System”

SHOW INDEX
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.21, “SHOW INDEX Syntax”
Section 13.2.9.3, “Index Hint Syntax”
Section 14.2.6.7, “Limits on InnoDB Tables”
Section 4.6.3.4, “Other myisamchk Options”
Section 19.22, “The INFORMATION_SCHEMA
STATISTICS Table”

3180

Section 19.25, “The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table”

SHOW MASTER LOGS
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”

SHOW MASTER STATUS
Section 13.7.5.22, “SHOW MASTER STATUS Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.3.1, “GTID Concepts”
Section 16.4.5, “How to Report Replication Bugs or
Problems”
Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”
Section 16.4.4, “Troubleshooting Replication”

SHOW OPEN TABLES
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”

SHOW PLUGINS
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 13.7.5.24, “SHOW PLUGINS Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.13.1, “Installing the Audit Log Plugin”
Section 5.1.8.2, “Obtaining Server Plugin Information”
Chapter 17, Partitioning
Password Validation Plugin Installation
Section 6.3.8, “Pluggable Authentication”
Section 22.2.1, “Plugin API Characteristics”
Section 22.2.2, “Plugin API Components”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Server Plugin Library and Plugin Descriptors
Section 19.15, “The INFORMATION_SCHEMA PLUGINS
Table”
Section 22.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4.10, “Writing Password-Validation
Plugins”
Writing the Server-Side Authentication Plugin

SHOW PRIVILEGES
Section 13.7.5.25, “SHOW PRIVILEGES Syntax”

SHOW PROCEDURE CODE
Section 13.7.5.18, “SHOW FUNCTION CODE Syntax”

Section 13.7.5.26, “SHOW PROCEDURE CODE Syntax”

SHOW PROCEDURE STATUS
Section 13.7.5.19, “SHOW FUNCTION STATUS Syntax”
Section 13.7.5.27, “SHOW PROCEDURE STATUS
Syntax”
Section 18.2.3, “Stored Routine Metadata”

SHOW PROCESSLIST
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 14.2.17.4, “InnoDB Error Handling”
Section 13.7.6.4, “KILL Syntax”
Section 21.8.7.44, “mysql_list_processes()”
Section 13.7.5.28, “SHOW PROCESSLIST Syntax”
Section 13.7.5.29, “SHOW PROFILE Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section C.5.2.7, “Too many connections”
Section 16.1.5.1, “Checking Replication Status”
Section 5.4.1.2, “Command Probes”
Section 5.4.1.1, “Connection Probes”
Section 16.3.9, “Delayed Replication”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 18.4.2, “Event Scheduler Configuration”
Section 8.12.5, “Examining Thread Information”
Section 8.12.5.2, “General Thread States”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 8.8.3, “Obtaining Execution Plan Information
for a Named Connection”
Section 20.4, “Performance Schema Instrument
Naming Conventions”
Section 20.9.5, “Performance Schema Stage Event
Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.4.1.6, “Query Execution Probes”
Section 5.4.1.3, “Query Probes”
Section 16.2.1, “Replication Implementation Details”
Section 16.3.6, “Switching Masters During Failover”
Section 19.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”
Section 20.9.13.3, “The threads Table”
Section 16.4.4, “Troubleshooting Replication”

SHOW PROFILE
Section 13.7.5.29, “SHOW PROFILE Syntax”
Section 13.7.5.30, “SHOW PROFILES Syntax”
Section 8.12.5, “Examining Thread Information”
Section 8.12.5.2, “General Thread States”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”
Section 19.17, “The INFORMATION_SCHEMA
PROFILING Table”

3181

SHOW PROFILES
Section 13.7.5.29, “SHOW PROFILE Syntax”
Section 13.7.5.30, “SHOW PROFILES Syntax”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”
Section 19.17, “The INFORMATION_SCHEMA
PROFILING Table”

SHOW RELAYLOG EVENTS
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.31, “SHOW RELAYLOG EVENTS Syntax”
Section 13.4.2, “SQL Statements for Controlling Slave
Servers”

SHOW SCHEMAS
Section 13.7.5.13, “SHOW DATABASES Syntax”

SHOW SESSION STATUS
Section 19.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

SHOW SESSION VARIABLES
Section 19.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW SLAVE HOSTS
Section 13.7.5.32, “SHOW SLAVE HOSTS Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”

SHOW SLAVE STATUS
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.7.5.22, “SHOW MASTER STATUS Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.3.9, “Delayed Replication”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.3.1, “GTID Concepts”
Section 16.4.5, “How to Report Replication Bugs or
Problems”
Section 20.9.10, “Performance Schema Replication
Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 16.2.1, “Replication Implementation Details”
Section 8.12.5.5, “Replication Slave I/O Thread States”

Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.3.7, “Setting Up Replication Using SSL”
Section 16.4.1.26, “Slave Errors During Replication”
Section 16.2.2.2, “Slave Status Logs”
Section C.1, “Sources of Error Information”
Section 13.4.2, “SQL Statements for Controlling Slave
Servers”
Section 20.9.10.1, “The
replication_connection_configuration
Table”
Section 20.9.10.2, “The
replication_connection_status Table”
Section 20.9.10.3, “The
replication_execute_configuration Table”
Section 20.9.10.4, “The
replication_execute_status Table”
Section 20.9.10.5, “The
replication_execute_status_by_coordinator
Table”
Section 20.9.10.6, “The
replication_execute_status_by_worker
Table”
Section 16.4.4, “Troubleshooting Replication”
Section 1.4, “What Is New in MySQL 5.7”

SHOW STATUS
Section 13.7.5.34, “SHOW STATUS Syntax”
Section 22.2.1, “Plugin API Characteristics”
Section 8.9.3.4, “Query Cache Status and
Maintenance”
Section 16.4.1.22, “Replication and Temporary Tables”
Section 16.2.1, “Replication Implementation Details”
Section 16.4.1.29, “Replication Retries and Timeouts”
Section E.1, “Restrictions on Stored Programs”
Section 16.3.8.3, “Semisynchronous Replication
Monitoring”
Server Plugin Library and Plugin Descriptors
Server Plugin Status and System Variables
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.2.1.7, “Use of Index Extensions”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4, “Writing Plugins”

SHOW STATUS LIKE 'perf%'
Section 20.5, “Performance Schema Status Monitoring”

SHOW TABLE STATUS
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.35, “SHOW TABLE STATUS Syntax”

3182

Section 14.2.12.5, “Controlling Optimizer Statistics
Estimation”
Section 14.2.6.1, “Creating InnoDB Tables”
Section 14.2.10.2, “File Space Management”
Section 14.2.6.7, “Limits on InnoDB Tables”
Section 17.3.5, “Obtaining Information About Partitions”
Physical Row Structure
Section 14.6, “The ARCHIVE Storage Engine”
Traditional InnoDB Auto-Increment Locking

SHOW TABLES
Chapter 19, INFORMATION_SCHEMA Tables
Section 13.7.5.35, “SHOW TABLE STATUS Syntax”
Section 13.7.5.36, “SHOW TABLES Syntax”
Section C.5.2.16, “Table 'tbl_name' doesn't
exist”
Section C.5.7.2, “TEMPORARY Table Problems”
Section 3.3.2, “Creating a Table”
Section 19.31, “Extensions to SHOW Statements”
Section 9.2.2, “Identifier Case Sensitivity”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 5.1.3, “Server Command Options”

SHOW TRIGGERS
Section 13.7.5.37, “SHOW TRIGGERS Syntax”
Section 19.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 18.3.2, “Trigger Metadata”

SHOW VARIABLES
Section 13.7.4, “SET Syntax”
Section 13.7.5.38, “SHOW VARIABLES Syntax”
Section 22.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 18.4.2, “Event Scheduler Configuration”
Section 20.2.2, “Performance Schema Startup
Configuration”
Section 22.2.1, “Plugin API Characteristics”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 16.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.4, “Server System Variables”
Section 5.1.5, “Using System Variables”
Section 22.2.4.10, “Writing Password-Validation
Plugins”
Section 22.2.4, “Writing Plugins”

SHOW WARNINGS
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”

Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 13.7.5.16, “SHOW ERRORS Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 10.4.4.3, “Diagnostics During Index.xml
Parsing”
Effect of Signals on Handlers, Cursors, and Statements
Section 9.2.4, “Function Name Parsing and Resolution”
How the Diagnostics Area is Populated
Section 5.2.4.3, “Mixed Binary Logging Format”
Optimizing Subqueries with EXISTS Strategy
Optimizing Subqueries with Semi-Join Transformations
Optimizing Subqueries with Subquery Materialization
Section 5.1.4, “Server System Variables”
Signal Condition Information Items
Section C.1, “Sources of Error Information”

SIGNAL
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7.4, “RESIGNAL Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.6.7, “Condition Handling”
Diagnostics Area Information Items
Effect of Signals on Handlers, Cursors, and Statements
How the Diagnostics Area is Populated
Section 12.14, “Information Functions”
Section E.2, “Restrictions on Condition Handling”
Section E.1, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Signal Condition Information Items

START SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 16.3.9, “Delayed Replication”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.3.1, “GTID Concepts”
Section 6.1.2.3, “Passwords and Logging”
Section 16.1.5.2, “Pausing Replication on the Slave”
Section 20.9.10, “Performance Schema Replication
Tables”
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 16.2.1, “Replication Implementation Details”

3183

Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 16.4.1.26, “Slave Errors During Replication”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 16.3.6, “Switching Masters During Failover”
Section 16.4.4, “Troubleshooting Replication”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

START SLAVE SQL_THREAD
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”

START SLAVE UNTIL
Section 16.1.4.3, “Replication Slave Options and
Variables”

START SLAVE UNTIL
SQL_AFTER_MTS_GAPS
Section 16.1.4.3, “Replication Slave Options and
Variables”

START TRANSACTION
Section 13.6.1, “BEGIN ... END Compound-
Statement Syntax”
Section 14.2.17.4, “InnoDB Error Handling”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 14.2.6.3, “Grouping DML Operations with
Transactions”
Section 14.2.2.11, “How to Cope with Deadlocks”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 14.2.2.5, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 20.9.7, “Performance Schema Transaction
Tables”
Section E.1, “Restrictions on Stored Programs”
Section 16.3.8, “Semisynchronous Replication”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 20.9.7.1, “The
events_transactions_current Table”
Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”
Section 18.3.1, “Trigger Syntax and Examples”

Section 13.3.7.2, “XA Transaction States”

START TRANSACTION READ ONLY
Optimizations for Read-Only Transactions

START TRANSACTION WITH
CONSISTENT SNAPSHOT
Section 14.2.2.4, “Consistent Nonlocking Reads”

STOP SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.3.9, “Delayed Replication”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”
Section 16.1.5.2, “Pausing Replication on the Slave”
Section 20.9.10, “Performance Schema Replication
Tables”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 16.3.6, “Switching Masters During Failover”
Section 20.9.10.6, “The
replication_execute_status_by_worker
Table”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”
Section 1.4, “What Is New in MySQL 5.7”

STOP SLAVE SQL_THREAD
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

T

[index top [3145]]

TRUNCATE TABLE
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.2.2, “DELETE Syntax”

3184

Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.2.4, “HANDLER Syntax”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.8.2, “MERGE Table Problems”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 14.3.3.3, “Compressed Table Characteristics”
Section 20.9.12.8, “Connection Summary Tables”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 20.2.3.3, “Event Pre-Filtering”
Section 20.9.12.1, “Event Wait Summary Tables”
Section 20.9.12.6, “File I/O Summary Tables”
Section 8.9.3.1, “How the Query Cache Operates”
Section 14.2.5.2, “InnoDB File-Per-Table Mode”
Section 14.2.16.7, “Internals of the InnoDB memcached
Plugin”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 17.3.4, “Maintenance of Partitions”
Section 17.3.1, “Management of RANGE and LIST
Partitions”
Section 20.9.12.10, “Memory Summary Tables”
Section 20.9.12.5, “Object Wait Summary Table”
Section 8.5.6, “Optimizing InnoDB DDL Operations”
Section 20.9.8, “Performance Schema Connection
Tables”
Section 20.2.3.1, “Performance Schema Event Timing”
Section 20.8, “Performance Schema General Table
Characteristics”
Section 20.9.12, “Performance Schema Summary
Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.21, “Replication and MEMORY Tables”
Section 16.4.1.33, “Replication and TRUNCATE TABLE”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 20.9.12.9, “Socket Summary Tables”
Section 20.9.12.2, “Stage Summary Tables”
Section 20.9.12.3, “Statement Summary Tables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 20.9.8.1, “The accounts Table”
Section 20.9.5.1, “The events_stages_current
Table”
Section 20.9.5.2, “The events_stages_history
Table”
Section 20.9.5.3, “The
events_stages_history_long Table”
Section 20.9.6.1, “The
events_statements_current Table”
Section 20.9.6.2, “The
events_statements_history Table”

Section 20.9.6.3, “The
events_statements_history_long Table”
Section 20.9.7.1, “The
events_transactions_current Table”
Section 20.9.7.2, “The
events_transactions_history Table”
Section 20.9.7.3, “The
events_transactions_history_long Table”
Section 20.9.4.1, “The events_waits_current
Table”
Section 20.9.4.2, “The events_waits_history
Table”
Section 20.9.4.3, “The
events_waits_history_long Table”
Section 20.9.13.1, “The host_cache Table”
Section 20.9.8.2, “The hosts Table”
Section 19.30.8, “The INFORMATION_SCHEMA
INNODB_SYS_INDEXES Table”
Section 19.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 14.4, “The MEMORY Storage Engine”
Section 20.9.6.4, “The
prepared_statements_instances Table”
Section 20.9.2.5, “The setup_timers Table”
The table_io_waits_summary_by_index_usage
Table
The table_io_waits_summary_by_table Table
The table_lock_waits_summary_by_table Table
Section 20.9.8.3, “The users Table”
Section 20.9.12.4, “Transaction Summary Tables”
Section 14.2.16.6, “Using the InnoDB memcached
Plugin with Replication”
Section 1.4, “What Is New in MySQL 5.7”
Section 21.8.15.2, “What Results You Can Get from a
Query”

TRUNCATE TABLE host_cache
Section 20.9.13.1, “The host_cache Table”

U

[index top [3145]]

UNINSTALL PLUGIN
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 13.7.5.24, “SHOW PLUGINS Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 20.14, “Performance Schema and Plugins”
Section 14.12.1, “Pluggable Storage Engine
Architecture”
Section 22.2.2, “Plugin API Components”
Server Plugin Library and Plugin Descriptors

3185

Section 19.15, “The INFORMATION_SCHEMA PLUGINS
Table”
Section 22.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4.10, “Writing Password-Validation
Plugins”
Writing the Server-Side Authentication Plugin

UNION
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.9, “SELECT Syntax”
Section 13.2.9.4, “UNION Syntax”
Section 21.8.5, “C API Data Structures”
Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”
Section 12.14, “Information Functions”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 11.2.5, “Numeric Type Attributes”
Optimizing Subqueries with Semi-Join Transformations
Section E.5, “Restrictions on Views”
Section 10.1.9.1, “Result Strings”
Section 3.6.7, “Searching on Two Keys”
Section 5.1.6, “Server Status Variables”
Section 13.2.10, “Subquery Syntax”
Section 14.8, “The MERGE Storage Engine”
The Range Access Method for Single-Part Indexes
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”
Section 18.5.1, “View Syntax”
Section 12.11, “XML Functions”

UNION ALL
Section 13.2.9.4, “UNION Syntax”
Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”
Section 12.14, “Information Functions”
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”

UNION DISTINCT
Section 13.2.9.4, “UNION Syntax”

UNLOCK TABLES
Section 13.7.6.3, “FLUSH Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 7.2, “Database Backup Methods”

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 14.2.2.11, “How to Cope with Deadlocks”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 14.2.6.7, “Limits on InnoDB Tables”
Section E.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 8.11.1, “System Factors and Startup Parameter
Tuning”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Tablespace Copying Internals (Transportable
Tablespaces)
Section 1.8.2.3, “Transaction and Atomic Operation
Differences”
Transportable Tablespace Examples

UPDATE
Section 4.5.1.1, “mysql Options”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 8.8.4, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.2.9.2, “JOIN Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 21.8.7.1, “mysql_affected_rows()”
Section 21.8.7.36, “mysql_info()”
Section 21.8.7.38, “mysql_insert_id()”
Section 21.8.7.49, “mysql_num_rows()”
Section 21.8.7.50, “mysql_options()”
Section 21.8.11.10, “mysql_stmt_execute()”
Section 21.8.11.16, “mysql_stmt_insert_id()”
Section 21.8.11.18, “mysql_stmt_num_rows()”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Section 1.8.2.2, “UPDATE Differences”
Section 13.2.11, “UPDATE Syntax”

3186

Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 16.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 12.3.4, “Assignment Operators”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 21.8.6, “C API Function Overview”
Section 21.8.10, “C API Prepared Statement Function
Overview”
Section 21.8.17, “C API Support for Multiple Statement
Execution”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 10.1.13, “Column Character Set Conversion”
Compression Enhancements for OLTP Workloads
Configurable InnoDB Auto-Increment Locking
Section 14.2.2.4, “Consistent Nonlocking Reads”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.9.2.1, “Creating a FEDERATED Table Using
CONNECTION”
Section 11.5, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 2.10.2.1, “Downgrading to MySQL 5.6”
Chapter 12, Functions and Operators
Section 8.12.5.2, “General Thread States”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 8.10.1, “Internal Locking Methods”
Section C.5.8, “Known Issues in MySQL”
Section 14.2.2.5, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 12.16, “Miscellaneous Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 8.8.3, “Obtaining Execution Plan Information
for a Named Connection”
Section 8.2.2, “Optimizing DML Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 14.2.11.1, “Overview of Online DDL”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.4, “Partition Pruning”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 6.2.2, “Privilege System Grant Tables”

Section 6.2.1, “Privileges Provided by MySQL”
Section C.5.5.2, “Problems Using DATE Columns”
Section 16.4.1.16, “Replication and LIMIT”
Section 16.4.1.24, “Replication and the Query
Optimizer”
Section 16.4.1.32, “Replication and Triggers”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Resetting the Root Password: Unix Systems
Resetting the Root Password: Windows Systems
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section E.5, “Restrictions on Views”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 2.9.2, “Securing the Initial MySQL Accounts”
Section 3.3.4.1, “Selecting All Data”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 16.4.1.26, “Slave Errors During Replication”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 14.2.17.2, “Starting InnoDB on a Corrupted
Database”
Section 5.4.1.12, “Statement Probes”
Section 13.2.10.9, “Subquery Errors”
Section 13.2.10, “Subquery Syntax”
Section 8.10.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 10.1.7.6, “The _bin and binary Collations”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 19.23, “The INFORMATION_SCHEMA TABLES
Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 14.8, “The MERGE Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
Section 5.2.4, “The Binary Log”
Section 6.2, “The MySQL Access Privilege System”
Section 5.1.12, “The Shutdown Process”
Section 18.3.1, “Trigger Syntax and Examples”
Section 18.5.3, “Updatable and Insertable Views”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Using the --safe-updates Option
Section 1.4, “What Is New in MySQL 5.7”
Section 21.8.15.2, “What Results You Can Get from a
Query”
Section 6.2.6, “When Privilege Changes Take Effect”

3187

Section 21.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query()
Returns Success”

UPDATE ... ()
Section 14.2.2.4, “Consistent Nonlocking Reads”

UPDATE ... WHERE ...
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”

UPDATE IGNORE
Section 13.2.11, “UPDATE Syntax”
Section 5.1.7, “Server SQL Modes”

UPDATE t1,t2 ...
Section 5.4.1.12, “Statement Probes”

USE
Section 4.5.1.1, “mysql Options”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 13.8.4, “USE Syntax”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 3.3.1, “Creating and Selecting a Database”
Section 3.3, “Creating and Using a Database”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 13.2.9.3, “Index Hint Syntax”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 18.2.1, “Stored Routine Syntax”

USE db2
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

USE db_name
Section 4.5.1.1, “mysql Options”

USE test
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

W

[index top [3145]]

WHILE
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.8, “WHILE Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.2, “Statement Label Syntax”

X

[index top [3145]]

XA BEGIN
Section 20.9.7, “Performance Schema Transaction
Tables”

XA COMMIT
Section 20.9.7, “Performance Schema Transaction
Tables”
Section 5.1.4, “Server System Variables”
Section 20.9.7.1, “The
events_transactions_current Table”
Section 13.3.7.2, “XA Transaction States”

XA END
Section E.6, “Restrictions on XA Transactions”
Section 20.9.7.1, “The
events_transactions_current Table”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA PREPARE
Section 20.9.7.1, “The
events_transactions_current Table”
Section 13.3.7.2, “XA Transaction States”

XA RECOVER
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA ROLLBACK
Section 20.9.7, “Performance Schema Transaction
Tables”
Section 5.1.4, “Server System Variables”
Section 20.9.7.1, “The
events_transactions_current Table”
Section 13.3.7.2, “XA Transaction States”

XA START
Section 20.9.7, “Performance Schema Transaction
Tables”
Section E.6, “Restrictions on XA Transactions”

3188

Section 20.9.7.1, “The
events_transactions_current Table”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

3189

System Variable Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q
| R | S | T | U | V | W

A

[index top [3189]]

audit_log_buffer_size
Section 6.3.13.4, “Audit Log Plugin Logging Control”
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”

audit_log_file
Section 6.3.13.4, “Audit Log Plugin Logging Control”
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”
Section 6.3.13.2, “Audit Log Plugin Security
Considerations”
Section 6.3.13, “MySQL Enterprise Audit Log Plugin”

audit_log_flush
Section 6.3.13.4, “Audit Log Plugin Logging Control”
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”

audit_log_format
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”
Section 6.3.13, “MySQL Enterprise Audit Log Plugin”
Section 6.3.13.3, “The Audit Log File”

audit_log_policy
Section 6.3.13.4, “Audit Log Plugin Logging Control”
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”
Section 6.3.13, “MySQL Enterprise Audit Log Plugin”

audit_log_rotate_on_size
Section 6.3.13.4, “Audit Log Plugin Logging Control”
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”

audit_log_strategy
Section 6.3.13.4, “Audit Log Plugin Logging Control”
Section 6.3.13.5, “Audit Log Plugin Options and
Variables”

auto_increment_increment
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 16.1.4.2, “Replication Master Options and
Variables”
Traditional InnoDB Auto-Increment Locking

Section 3.6.9, “Using AUTO_INCREMENT”

auto_increment_offset
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 16.1.4.2, “Replication Master Options and
Variables”
Traditional InnoDB Auto-Increment Locking
Section 3.6.9, “Using AUTO_INCREMENT”

AUTOCOMMIT
Section 16.4.1.31, “Replication and Transactions”

autocommit
Section 13.2.2, “DELETE Syntax”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.2.10, “Deadlock Detection and Rollback”
Section 14.2.11.5, “Examples of Online DDL”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 14.2.6.7, “Limits on InnoDB Tables”
Section 14.2.2.5, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 20.9.7, “Performance Schema Transaction
Tables”
Section 16.4.1.31, “Replication and Transactions”
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”
Section 5.1.4, “Server System Variables”
Section 1.8.2.3, “Transaction and Atomic Operation
Differences”

automatic_sp_privileges
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL
Privileges”

B

[index top [3189]]

back_log
Section 5.1.4, “Server System Variables”

basedir
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.4, “Server System Variables”

3190

big_tables
Section 5.1.4, “Server System Variables”

bind_address
Section 5.1.4, “Server System Variables”

binlog_cache_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”
Section 5.2.4, “The Binary Log”

binlog_checksum
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4, “The Binary Log”

binlog_direct_non_transactional_updates
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.4.1.31, “Replication and Transactions”

binlog_format
Section 16.1.4.4, “Binary Log Options and Variables”
Section 12.7, “Date and Time Functions”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 16.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 5.2.4.4, “Logging Format for Changes to
mysql Database Tables”
Section 12.6.2, “Mathematical Functions”
Section 12.16, “Miscellaneous Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.2, “Replication and BLACKHOLE Tables”
Section 16.4.1.21, “Replication and MEMORY Tables”
Section 16.4.1.22, “Replication and Temporary Tables”
Section 16.4.1.31, “Replication and Transactions”
Section 16.1.2, “Replication Formats”
Section 16.4.1.23, “Replication of the mysql System
Database”
Section 5.1.3, “Server Command Options”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 5.2.3, “The General Query Log”
Section 16.4.3, “Upgrading a Replication Setup”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”
Section 14.2.16.6, “Using the InnoDB memcached
Plugin with Replication”

binlog_max_flush_queue_time
Section 16.1.4.4, “Binary Log Options and Variables”

binlog_order_commits
Section 16.1.4.4, “Binary Log Options and Variables”

binlog_row_image
Section 16.1.4.4, “Binary Log Options and Variables”

binlog_rows_query_log_events
Section 16.1.4.4, “Binary Log Options and Variables”

binlog_stmt_cache_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”

block_encryption_mode
Section 12.13, “Encryption and Compression
Functions”
Section 5.1.4, “Server System Variables”

bulk_insert_buffer_size
Section 14.3.1, “MyISAM Startup Options”
Section 5.1.4, “Server System Variables”
Section 8.2.2.1, “Speed of INSERT Statements”

C

[index top [3189]]

character_set_client
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.7.4, “SET Syntax”
Section 13.7.5.7, “SHOW CREATE EVENT Syntax”
Section 13.7.5.9, “SHOW CREATE PROCEDURE Syntax”
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 13.7.5.17, “SHOW EVENTS Syntax”
Section 13.7.5.27, “SHOW PROCEDURE STATUS
Syntax”
Section 13.7.5.37, “SHOW TRIGGERS Syntax”
Section 21.8.9.1, “C API Prepared Statement Type
Codes”
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 19.19, “The INFORMATION_SCHEMA
ROUTINES Table”
Section 19.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 5.2.4, “The Binary Log”

character_set_connection
Section 10.1.9.2, “CONVERT() and CAST()”
Section 13.7.4, “SET Syntax”

3191

Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 10.1.7.5, “Collation of Expressions”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression
Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 10.7, “MySQL Server Locale Support”
Section 16.4.1.34, “Replication and Variables”
Section 10.1.9.1, “Result Strings”
Section 5.1.4, “Server System Variables”
Section 9.1.1, “String Literals”
Section 10.1.8, “String Repertoire”
Section 12.2, “Type Conversion in Expression
Evaluation”

character_set_database
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.7.4, “SET Syntax”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”

character_set_filesystem
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

character_set_results
Section 13.7.4, “SET Syntax”
Section 21.8.5, “C API Data Structures”
Section 10.1.6, “Character Set for Error Messages”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 5.1.4, “Server System Variables”
Section 10.1.12, “UTF-8 for Metadata”

character_set_server
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.3, “Replication and Character Sets”
Section 16.4.1.34, “Replication and Variables”
Section 10.1.3.1, “Server Character Set and Collation”

Section 5.1.4, “Server System Variables”

character_set_system
Section 10.5, “Character Set Configuration”
Section 5.1.4, “Server System Variables”
Section 10.1.12, “UTF-8 for Metadata”

character_sets_dir
Section 10.4.3, “Adding a Simple Collation to an 8-Bit
Character Set”
Section 10.4.4.1, “Defining a UCA Collation Using
LDML Syntax”
Section 5.1.4, “Server System Variables”

collation_connection
Section 10.1.9.2, “CONVERT() and CAST()”
Section 13.7.4, “SET Syntax”
Section 13.7.5.7, “SHOW CREATE EVENT Syntax”
Section 13.7.5.9, “SHOW CREATE PROCEDURE Syntax”
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 13.7.5.17, “SHOW EVENTS Syntax”
Section 13.7.5.27, “SHOW PROCEDURE STATUS
Syntax”
Section 13.7.5.37, “SHOW TRIGGERS Syntax”
Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 10.1.7.5, “Collation of Expressions”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression
Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 10.1.9.1, “Result Strings”
Section 5.1.4, “Server System Variables”
Section 19.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 19.19, “The INFORMATION_SCHEMA
ROUTINES Table”
Section 19.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 5.2.4, “The Binary Log”
Section 12.2, “Type Conversion in Expression
Evaluation”

collation_database
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 5.2.4.3, “Mixed Binary Logging Format”

3192

Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”

collation_server
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.3, “Replication and Character Sets”
Section 16.4.1.34, “Replication and Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”

completion_type
Section 21.8.7.6, “mysql_commit()”
Section 21.8.7.60, “mysql_rollback()”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 5.1.4, “Server System Variables”

concurrent_insert
Section 8.10.3, “Concurrent Inserts”
Section 8.10.1, “Internal Locking Methods”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.5, “Other Optimization Tips”
Section 5.1.4, “Server System Variables”

connect_timeout
Section C.5.2.3, “Lost connection to MySQL
server”
Section 21.8.7.54, “mysql_real_connect()”
Section C.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.1.4, “Server System Variables”

core_file
Section 5.1.4, “Server System Variables”

D

[index top [3189]]

daemon_memcached_engine_lib_name
Installing and Configuring the InnoDB memcached
Plugin

daemon_memcached_engine_lib_path
Installing and Configuring the InnoDB memcached
Plugin

daemon_memcached_option
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”

Installing and Configuring the InnoDB memcached
Plugin
Password-Protecting the memcached Interface through
SASL
Section 14.2.16.8, “Troubleshooting the InnoDB
memcached Plugin”

daemon_memcached_r_batch_size
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Installing and Configuring the InnoDB memcached
Plugin
Performing DML and DDL Statements on the
Underlying InnoDB Table
Tuning Performance of the InnoDB memcached Plugin
Section 14.2.16.6, “Using the InnoDB memcached
Plugin with Replication”

daemon_memcached_w_batch_size
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Controlling Transactional Behavior of the InnoDB
memcached Plugin
Installing and Configuring the InnoDB memcached
Plugin
Performing DML and DDL Statements on the
Underlying InnoDB Table
Tuning Performance of the InnoDB memcached Plugin
Section 14.2.16.6, “Using the InnoDB memcached
Plugin with Replication”

DATADIR
Section 14.2.5.4, “Specifying the Location of a
Tablespace”

datadir
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 5.1.4, “Server System Variables”
Section C.5.4.4, “Where MySQL Stores Temporary
Files”

date_format
Section 5.1.4, “Server System Variables”

datetime_format
Section 5.1.4, “Server System Variables”

debug
Section 5.1.4, “Server System Variables”
Section 22.4.3, “The DBUG Package”

debug_sync
Section 5.1.4, “Server System Variables”

3193

default_authentication_plugin
Section 13.7.1.2, “CREATE USER Syntax”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

default_password_lifetime
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.6, “Password Expiration Policy”
Section 6.2.2, “Privilege System Grant Tables”
Section 5.1.4, “Server System Variables”

default_storage_engine
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 14.1, “Setting the Storage Engine”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 1.4, “What Is New in MySQL 5.7”

default_tmp_storage_engine
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.1, “Setting the Storage Engine”

default_week_format
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to
Functions”
Section 5.1.4, “Server System Variables”

delay_key_write
Section 13.1.14, “CREATE TABLE Syntax”
Section 5.1.4, “Server System Variables”

delayed_insert_limit
Section 5.1.4, “Server System Variables”

delayed_insert_timeout
Section 5.1.4, “Server System Variables”

delayed_queue_size
Section 5.1.4, “Server System Variables”

disconnect_on_expired_password
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 5.1.4, “Server System Variables”

div_precision_increment
Section 12.6.1, “Arithmetic Operators”
Section 5.1.4, “Server System Variables”

E

[index top [3189]]

end_markers_in_json
Section 5.1.4, “Server System Variables”

eq_range_index_dive_limit
Equality Range Optimization of Many-Valued
Comparisons
Section 5.1.4, “Server System Variables”

error_count
Section 13.7.5.16, “SHOW ERRORS Syntax”
Diagnostics Area-Related System Variables
Section 5.1.4, “Server System Variables”
Section C.1, “Sources of Error Information”
Section 13.5, “SQL Syntax for Prepared Statements”

event_scheduler
Section 18.4.2, “Event Scheduler Configuration”
Section 21.7.2, “Restrictions When Using the
Embedded MySQL Server”
Section 5.1.4, “Server System Variables”
Section 18.4.6, “The Event Scheduler and MySQL
Privileges”

expire_logs_days
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”

explicit_defaults_for_timestamp
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 11.5, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 5.1.4, “Server System Variables”

external_user
Implementing Proxy User Support in Authentication
Plugins
Section 6.3.10, “Proxy Users”
Section 5.1.4, “Server System Variables”
Writing the Server-Side Authentication Plugin

F

[index top [3189]]

flush
Section 5.1.4, “Server System Variables”

flush_time
Section 5.1.4, “Server System Variables”

3194

foreign_key_checks
Section 14.2.5.5, “Copying Tablespaces to Another
Server (Transportable Tablespaces)”
Section 14.2.11.6, “Implementation Details of Online
DDL”
Section 5.2.4.3, “Mixed Binary Logging Format”
Online DDL
Section 14.2.11.1, “Overview of Online DDL”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

ft_boolean_syntax
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.4, “Server System Variables”

ft_max_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 22.2.3.2, “Full-Text Parser Plugins”
Section 5.1.4, “Server System Variables”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”

ft_min_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 22.2.3.2, “Full-Text Parser Plugins”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 5.1.4, “Server System Variables”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”

ft_query_expansion_limit
Section 5.1.4, “Server System Variables”

ft_stopword_file
Section 12.9.2, “Boolean Full-Text Searches”
Section 16.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9, “Full-Text Search Functions”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 5.1.4, “Server System Variables”

G

[index top [3189]]

general_log
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”

Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

general_log_file
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

group_concat_max_len
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 5.1.4, “Server System Variables”

gtid_executed
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.7.5.22, “SHOW MASTER STATUS Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.3.1, “GTID Concepts”
Section 20.9.10, “Performance Schema Replication
Tables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

gtid_mode
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 12.15, “Functions Used with Global
Transaction IDs”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 20.9.7.1, “The
events_transactions_current Table”
Section 20.9.10.6, “The
replication_execute_status_by_worker
Table”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

gtid_next
Section 13.1.5, “ALTER SERVER Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.1.13, “CREATE SERVER Syntax”
Section 13.1.22, “DROP SERVER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”

3195

Section 13.7.6.6, “RESET Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.3.1, “GTID Concepts”
Section 20.9.7.1, “The
events_transactions_current Table”
Section 20.9.10.6, “The
replication_execute_status_by_worker
Table”

gtid_owned
Section 16.1.4.5, “Global Transaction ID Options and
Variables”

gtid_purged
Section 13.4.1.2, “RESET MASTER Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.3.1, “GTID Concepts”
Section 16.1.3.3, “Using GTIDs for Failover and
Scaleout”

H

[index top [3189]]

have_compress
Section 5.1.4, “Server System Variables”

have_crypt
Section 5.1.4, “Server System Variables”

have_dynamic_loading
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.4, “Server System Variables”

have_geometry
Section 5.1.4, “Server System Variables”

have_openssl
Section 5.1.4, “Server System Variables”

have_partitioning
Chapter 17, Partitioning

have_profiling
Section 5.1.4, “Server System Variables”

have_query_cache
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”

have_rtree_keys
Section 5.1.4, “Server System Variables”

have_ssl
Section 6.3.11.2, “Configuring MySQL for SSL”
Section 5.1.4, “Server System Variables”

have_symlink
Section 5.1.4, “Server System Variables”
Using Symbolic Links for MyISAM Tables on Unix

host_cache_size
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

hostname
Section 5.1.4, “Server System Variables”

I

[index top [3189]]

identity
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”

ignore_db_dirs
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

init_connect
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 20.9.13.1, “The host_cache Table”

init_file
Section 5.1.4, “Server System Variables”

init_slave
Section 16.1.4.3, “Replication Slave Options and
Variables”

innodb
Section 14.2.3.1, “Configuring InnoDB for Read-Only
Operation”

innodb_adaptive_flushing
Controlling the Flushing Rate of Dirty Pages from the
InnoDB Buffer Pool
Improvements to Buffer Pool Flushing
Section 8.5.7, “Optimizing InnoDB Disk I/O”

3196

innodb_adaptive_flushing_lwm
Improvements to Buffer Pool Flushing

innodb_adaptive_hash_index
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Adaptive Hash Indexes
Controlling Adaptive Hash Indexing

innodb_adaptive_max_sleep_delay
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Changes Regarding Thread Concurrency

innodb_additional_mem_pool_size
Using Operating System Memory Allocators
Section 1.4, “What Is New in MySQL 5.7”

innodb_api_bk_commit_interval
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Controlling Transactional Behavior of the InnoDB
memcached Plugin

innodb_api_disable_rowlock
Controlling Transactional Behavior of the InnoDB
memcached Plugin

innodb_api_enable_binlog
Section 14.2.16.6, “Using the InnoDB memcached
Plugin with Replication”

innodb_api_enable_mdl
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Controlling Transactional Behavior of the InnoDB
memcached Plugin

innodb_api_trx_level
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Controlling Transactional Behavior of the InnoDB
memcached Plugin

innodb_autoextend_increment
Section 14.2.3, “InnoDB Configuration”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.5.7, “Changing the Number or Size
of InnoDB Log Files and Resizing the InnoDB
Tablespace”
Section 14.2.5.2, “InnoDB File-Per-Table Mode”

innodb_autoinc_lock_mode
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”

Configurable InnoDB Auto-Increment Locking

innodb_buffer_pool_dump_at_shutdown
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Faster Restart by Preloading the InnoDB Buffer Pool

innodb_buffer_pool_dump_now
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Faster Restart by Preloading the InnoDB Buffer Pool

innodb_buffer_pool_dump_pct
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 1.4, “What Is New in MySQL 5.7”

innodb_buffer_pool_filename
Faster Restart by Preloading the InnoDB Buffer Pool

innodb_buffer_pool_instances
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Improvements to Performance from Multiple Buffer
Pools
Section 8.9.1, “The InnoDB Buffer Pool”
Tuning Performance of the InnoDB memcached Plugin

innodb_buffer_pool_load_abort
Faster Restart by Preloading the InnoDB Buffer Pool
Section 5.1.6, “Server Status Variables”

innodb_buffer_pool_load_at_startup
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Faster Restart by Preloading the InnoDB Buffer Pool
Section 5.1.6, “Server Status Variables”

innodb_buffer_pool_load_now
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Faster Restart by Preloading the InnoDB Buffer Pool
Section 5.1.6, “Server Status Variables”

innodb_buffer_pool_size
Section 14.2.17.5, “InnoDB Error Codes”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Compression Enhancements for OLTP Workloads
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”

3197

Improvements to Performance from Multiple Buffer
Pools
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 5.1.6, “Server Status Variables”
Section 8.9.1, “The InnoDB Buffer Pool”
Tuning Performance of the InnoDB memcached Plugin

innodb_change_buffer_max_size
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_change_buffering
Section 14.2.3.1, “Configuring InnoDB for Read-Only
Operation”
Controlling InnoDB Change Buffering
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”

innodb_checksum_algorithm
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Fast CRC32 Checksum Algorithm

innodb_checksums
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Fast CRC32 Checksum Algorithm

innodb_cmp_per_index_enabled
Section 14.2.7.4, “Monitoring Compression at Runtime”
Section 19.30.2, “The INFORMATION_SCHEMA
INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 14.2.7.3, “Tuning Compression for InnoDB
Tables”

innodb_compression_failure_threshold_pct
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Compression Enhancements for OLTP Workloads
Section 14.2.7.5, “How Compression Works for InnoDB
Tables”
Section 14.2.7.3, “Tuning Compression for InnoDB
Tables”

innodb_compression_level
Compression Enhancements for OLTP Workloads
Section 14.2.7.5, “How Compression Works for InnoDB
Tables”
Section 14.2.7.3, “Tuning Compression for InnoDB
Tables”

innodb_compression_pad_pct_max
Compression Enhancements for OLTP Workloads
Section 14.2.7.5, “How Compression Works for InnoDB
Tables”

Section 14.2.7.3, “Tuning Compression for InnoDB
Tables”

innodb_concurrency_tickets
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Changes Regarding Thread Concurrency
Section 8.5.8, “Optimizing InnoDB Configuration
Variables”

innodb_data_file_path
Section 14.2.3, “InnoDB Configuration”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.5.7, “Changing the Number or Size
of InnoDB Log Files and Resizing the InnoDB
Tablespace”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 14.2.17.1, “Troubleshooting InnoDB I/O
Problems”
Section 14.2.5.8, “Using Raw Disk Partitions for the
Shared Tablespace”

innodb_data_home_dir
Section 14.2.3, “InnoDB Configuration”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Section 14.2.17.1, “Troubleshooting InnoDB I/O
Problems”

innodb_doublewrite
Section 14.2.2.1, “MySQL and the ACID Model”
Tuning Performance of the InnoDB memcached Plugin

innodb_fast_shutdown
Compatibility Check When InnoDB Is Started
Section 14.2.14.1, “The InnoDB Recovery Process”
Section 5.1.12, “The Shutdown Process”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”

innodb_file_format
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.2.9.3, “DYNAMIC and COMPRESSED Row
Formats”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Compatibility Check When InnoDB Is Started
Compatibility Check When a Table Is Opened
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.7.2, “Enabling Compression for a Table”
Section 14.2.8.1, “Enabling File Formats”

3198

Section 14.2.8.3, “Identifying the File Format in Use”
Section 14.2.9.1, “Overview of InnoDB Row Storage”
Section 14.2.7.6, “SQL Compression Syntax Warnings
and Errors”

innodb_file_format_check
Compatibility Check When InnoDB Is Started
Compatibility Check When a Table Is Opened

innodb_file_format_max
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_file_per_table
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.2.15, “InnoDB and MySQL Replication”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
InnoDB Tablespace Monitor Output
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.5.5, “Copying Tablespaces to Another
Server (Transportable Tablespaces)”
Section 14.2.6.1, “Creating InnoDB Tables”
Section 14.2.5.1, “Creating the InnoDB Tablespace”
Section 14.2.5.3, “Enabling and Disabling File-Per-
Table Mode”
Section 14.2.7.2, “Enabling Compression for a Table”
Section 14.2.8.1, “Enabling File Formats”
Section 14.2.11.6, “Implementation Details of Online
DDL”
Section 14.2.5.2, “InnoDB File-Per-Table Mode”
Section 14.2.1, “Introduction to InnoDB”
Section 14.2.6.2, “Moving or Copying InnoDB Tables
to Another Machine”
Section 14.2.2.1, “MySQL and the ACID Model”
Section 14.2.9.1, “Overview of InnoDB Row Storage”
Physical Row Structure
Section 14.2.10.5, “Reclaiming Disk Space with
TRUNCATE TABLE”
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 14.2.7.6, “SQL Compression Syntax Warnings
and Errors”
Section 14.2.17.3, “Troubleshooting InnoDB Data
Dictionary Operations”

innodb_flush_log_at_timeout
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_flush_log_at_trx_commit
Section 14.2.2.1, “MySQL and the ACID Model”

Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Tuning Performance of the InnoDB memcached Plugin

innodb_flush_method
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.5.2, “InnoDB File-Per-Table Mode”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 5.1.6, “Server Status Variables”
Tuning Performance of the InnoDB memcached Plugin

innodb_flush_neighbors
Improvements to Buffer Pool Flushing
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_flushing_avg_loops
Improvements to Buffer Pool Flushing

innodb_force_load_corrupted
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_force_recovery
Section 1.7, “How to Report Bugs or Problems”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 14.2.17.2, “Starting InnoDB on a Corrupted
Database”
Section 14.2.14.1, “The InnoDB Recovery Process”

innodb_ft_aux_table
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 19.30.25, “The INFORMATION_SCHEMA
INNODB_FT_BEING_DELETED Table”
Section 19.30.20, “The INFORMATION_SCHEMA
INNODB_FT_CONFIG Table”
Section 19.30.24, “The INFORMATION_SCHEMA
INNODB_FT_DELETED Table”
Section 19.30.23, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_CACHE Table”
Section 19.30.22, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_TABLE Table”

innodb_ft_cache_size
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_ft_enable_diag_print
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_ft_enable_stopword
Section 14.2.13, “InnoDB Startup Options and System
Variables”

3199

Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9, “Full-Text Search Functions”
Section 12.9.1, “Natural Language Full-Text Searches”

innodb_ft_max_token_size
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 22.2.3.2, “Full-Text Parser Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”

innodb_ft_min_token_size
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 22.2.3.2, “Full-Text Parser Plugins”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”

innodb_ft_num_word_optimize
FULLTEXT Indexes
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”

innodb_ft_result_cache_limit
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_ft_server_stopword_table
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9, “Full-Text Search Functions”
Section 12.9.4, “Full-Text Stopwords”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 19.30.21, “The INFORMATION_SCHEMA
INNODB_FT_DEFAULT_STOPWORD Table”

innodb_ft_sort_pll_degree
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_ft_total_cache_size
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_ft_user_stopword_table
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”

Section 12.9, “Full-Text Search Functions”
Section 12.9.4, “Full-Text Stopwords”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 19.30.21, “The INFORMATION_SCHEMA
INNODB_FT_DEFAULT_STOPWORD Table”

innodb_io_capacity
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Controlling the InnoDB Master Thread I/O Rate
Improvements to Buffer Pool Flushing
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 1.4, “What Is New in MySQL 5.7”

innodb_io_capacity_max
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Improvements to Buffer Pool Flushing

innodb_large_prefix
Section 2.10.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 8.3.4, “Column Indexes”
Section 14.2.6.7, “Limits on InnoDB Tables”

innodb_lock_wait_timeout
Section 14.2.17.5, “InnoDB Error Codes”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.2.10, “Deadlock Detection and Rollback”
Section 16.4.1.29, “Replication Retries and Timeouts”
Section 16.1.4.3, “Replication Slave Options and
Variables”

innodb_locks_unsafe_for_binlog
Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.2.4, “Consistent Nonlocking Reads”

innodb_log_buffer_size
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_log_file_size
Section 14.2.3, “InnoDB Configuration”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.5.7, “Changing the Number or Size
of InnoDB Log Files and Resizing the InnoDB
Tablespace”
Section 14.2.3.1, “Configuring InnoDB for Read-Only
Operation”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

3200

Improvements to Buffer Pool Flushing
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_log_files_in_group
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.5.7, “Changing the Number or Size
of InnoDB Log Files and Resizing the InnoDB
Tablespace”

innodb_log_group_home_dir
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”

innodb_lru_scan_depth
Improvements to Buffer Pool Flushing
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_max_dirty_pages_pct
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Controlling the Flushing Rate of Dirty Pages from the
InnoDB Buffer Pool
Improvements to Buffer Pool Flushing
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_max_dirty_pages_pct_lwm
Improvements to Buffer Pool Flushing

innodb_max_purge_lag
Section 14.2.2.12, “InnoDB Multi-Versioning”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_max_purge_lag_delay
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_monitor_disable
Section 19.30.19, “The INFORMATION_SCHEMA
INNODB_METRICS Table”

innodb_monitor_enable
Section 19.30.19, “The INFORMATION_SCHEMA
INNODB_METRICS Table”

innodb_monitor_reset
Section 19.30.19, “The INFORMATION_SCHEMA
INNODB_METRICS Table”

innodb_monitor_reset_all
Section 19.30.19, “The INFORMATION_SCHEMA
INNODB_METRICS Table”

innodb_old_blocks_pct
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Making the Buffer Pool Scan Resistant
Section 8.9.1, “The InnoDB Buffer Pool”

innodb_old_blocks_time
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Making the Buffer Pool Scan Resistant
Section 8.9.1, “The InnoDB Buffer Pool”

innodb_online_alter_log_max_size
Section 14.2.11.6, “Implementation Details of Online
DDL”

innodb_open_files
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 5.1.4, “Server System Variables”

innodb_optimize_fulltext_only
FULLTEXT Indexes
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”

innodb_page_size
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.10.2, “File Space Management”
Section 14.2.7.5, “How Compression Works for InnoDB
Tables”
Section 14.2.6.7, “Limits on InnoDB Tables”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Physical Structure of an InnoDB Index
Section 14.2.16.8, “Troubleshooting the InnoDB
memcached Plugin”

innodb_print_all_deadlocks
Section 14.2.17, “InnoDB Troubleshooting”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.2.11, “How to Cope with Deadlocks”

innodb_purge_batch_size
Better Scalability with Improved Purge Scheduling

innodb_purge_threads
Better Scalability with Improved Purge Scheduling
Controlling the InnoDB Master Thread I/O Rate

innodb_random_read_ahead
Changes in the Read-Ahead Algorithm
Section 8.5.7, “Optimizing InnoDB Disk I/O”

3201

innodb_read_ahead_threshold
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Changes in the Read-Ahead Algorithm
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_read_io_threads
InnoDB Standard Monitor and Lock Monitor Output
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Multiple Background InnoDB I/O Threads
Section 22.1.1, “MySQL Threads”
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_rollback_segments
Better Scalability with Multiple Rollback Segments
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_sort_buffer_size
Section 14.2.13, “InnoDB Startup Options and System
Variables”

innodb_spin_wait_delay
Control of Spin Lock Polling

innodb_stats_auto_recalc
Section 13.1.14, “CREATE TABLE Syntax”
Persistent Optimizer Statistics for InnoDB Tables

innodb_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”

innodb_stats_persistent
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.6.7, “Limits on InnoDB Tables”
Persistent Optimizer Statistics for InnoDB Tables

innodb_stats_persistent_sample_pages
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.6.7, “Limits on InnoDB Tables”
Persistent Optimizer Statistics for InnoDB Tables

innodb_stats_transient_sample_pages
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.12.5, “Controlling Optimizer Statistics
Estimation”
Section 14.2.6.7, “Limits on InnoDB Tables”

innodb_status_output
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Enabling InnoDB Monitors
Section 1.4, “What Is New in MySQL 5.7”

innodb_status_output_locks
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Enabling InnoDB Monitors
Section 1.4, “What Is New in MySQL 5.7”

innodb_strict_mode
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.2.7.5, “How Compression Works for InnoDB
Tables”
Section 5.1.7, “Server SQL Modes”
Section 14.2.7.6, “SQL Compression Syntax Warnings
and Errors”

innodb_support_xa
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Tuning Performance of the InnoDB memcached Plugin

innodb_table_locks
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.6.7, “Limits on InnoDB Tables”

innodb_temp_data_file_path
Section 14.2.2.13, “InnoDB Temporary Table Undo
Logs”
Section 1.4, “What Is New in MySQL 5.7”
Section C.5.4.4, “Where MySQL Stores Temporary
Files”

innodb_thread_concurrency
InnoDB Standard Monitor and Lock Monitor Output
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Changes Regarding Thread Concurrency
Section 8.5.8, “Optimizing InnoDB Configuration
Variables”

innodb_thread_sleep_delay
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Changes Regarding Thread Concurrency

innodb_undo_directory
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.3.1, “Configuring InnoDB for Read-Only
Operation”

3202

Separate Tablespaces for InnoDB Undo Logs

innodb_undo_logs
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Separate Tablespaces for InnoDB Undo Logs
Section 5.1.6, “Server Status Variables”

innodb_undo_tablespaces
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 14.2.3.1, “Configuring InnoDB for Read-Only
Operation”
Separate Tablespaces for InnoDB Undo Logs

innodb_use_native_aio
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Asynchronous I/O on Linux

innodb_use_sys_malloc
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Using Operating System Memory Allocators
Section 1.4, “What Is New in MySQL 5.7”

innodb_write_io_threads
InnoDB Standard Monitor and Lock Monitor Output
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Multiple Background InnoDB I/O Threads
Section 22.1.1, “MySQL Threads”
Section 8.5.7, “Optimizing InnoDB Disk I/O”

insert_id
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 5.1.4, “Server System Variables”

interactive_timeout
Section 21.8.7.54, “mysql_real_connect()”
Section C.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.1.4, “Server System Variables”

J

[index top [3189]]

join_buffer_size
Batched Key Access Joins
Section 8.2.1.10, “Nested-Loop Join Algorithms”
Section 5.1.4, “Server System Variables”

K

[index top [3189]]

keep_files_on_create
Section 5.1.4, “Server System Variables”

key_buffer_size
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 8.8.5, “Estimating Query Performance”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 7.6.3, “How to Repair MyISAM Tables”
Section C.5.8, “Known Issues in MySQL”
Section 8.9.2.2, “Multiple Key Caches”
Section 8.9.2.6, “Restructuring a Key Cache”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.2.2.3, “Speed of DELETE Statements”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
Section 5.1.5.1, “Structured System Variables”
Section 8.9.2, “The MyISAM Key Cache”
Section 8.11.2, “Tuning Server Parameters”
Section 4.2.3.3, “Using Option Files”

key_cache_age_threshold
Section 8.9.2.3, “Midpoint Insertion Strategy”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”

key_cache_block_size
Section 8.9.2.5, “Key Cache Block Size”
Section 8.9.2.6, “Restructuring a Key Cache”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”

key_cache_division_limit
Section 8.9.2.3, “Midpoint Insertion Strategy”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”

L

[index top [3189]]

large_files_support
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”

large_page_size
Section 5.1.4, “Server System Variables”

large_pages
Section 5.1.4, “Server System Variables”

last_insert_id
Section 5.2.4.3, “Mixed Binary Logging Format”

3203

Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”

lc_messages
Section 5.1.4, “Server System Variables”
Section 10.2, “Setting the Error Message Language”

lc_messages_dir
Section 5.1.4, “Server System Variables”
Section 10.2, “Setting the Error Message Language”

lc_time_names
Section 12.7, “Date and Time Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 10.7, “MySQL Server Locale Support”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

license
Section 5.1.4, “Server System Variables”

local
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

local_infile
Section 5.1.4, “Server System Variables”

lock_wait_timeout
Section 5.1.4, “Server System Variables”

locked_in_memory
Section 5.1.4, “Server System Variables”

log
Section 14.2.16.6, “Using the InnoDB memcached
Plugin with Replication”

log_bin
Section 16.1.4.4, “Binary Log Options and Variables”

log_bin_basename
Section 16.1.4.4, “Binary Log Options and Variables”

log_bin_index
Section 16.1.4.4, “Binary Log Options and Variables”

log_bin_trust_function_creators
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 5.1.4, “Server System Variables”

log_bin_use_v
Section 16.1.4.4, “Binary Log Options and Variables”

log_error
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”

log_error_verbosity
Section C.5.2.9, “MySQL server has gone away”
Section C.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”
Section 1.4, “What Is New in MySQL 5.7”

log_output
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

log_queries_not_using_indexes
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

log_slave_updates
Section 16.1.4.4, “Binary Log Options and Variables”

log_slow_admin_statements
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

log_slow_slave_statements
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.2.5, “The Slow Query Log”

log_throttle_queries_not_using_indexes
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

log_timestamps
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

log_warnings
Section 16.1.4.3, “Replication Slave Options and
Variables”

3204

Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”
Section 1.4, “What Is New in MySQL 5.7”

long_query_time
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 5.2, “MySQL Server Logs”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

low_priority_updates
Section 5.1.4, “Server System Variables”
Section 8.10.2, “Table Locking Issues”

lower_case_file_system
Section 5.1.4, “Server System Variables”

lower_case_table_names
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.7.5.36, “SHOW TABLES Syntax”
Section 10.1.7.9, “Collation and
INFORMATION_SCHEMA Searches”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 1.7, “How to Report Bugs or Problems”
Section 9.2.2, “Identifier Case Sensitivity”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 19.30.9, “The INFORMATION_SCHEMA
INNODB_SYS_COLUMNS Table”
Section 19.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”

M

[index top [3189]]

master_info_repository
Section 16.1.4.3, “Replication Slave Options and
Variables”

master_verify_checksum
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4, “The Binary Log”

max_allowed_packet
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section C.5.2.3, “Lost connection to MySQL
server”
Section C.5.2.9, “MySQL server has gone away”

Section 21.8.11.26,
“mysql_stmt_send_long_data()”
Section 21.8.7.76, “mysql_use_result()”
Section C.5.2.11, “Communication Errors and Aborted
Connections”
Section 12.3.2, “Comparison Functions and Operators”
Section C.5.5.6, “Deleting Rows from Related Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 21.8, “MySQL C API”
Section C.5.2.10, “Packet Too Large”
Section 16.4.1.20, “Replication and
max_allowed_packet”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”
Section 4.2.3.3, “Using Option Files”

max_binlog_cache_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4, “The Binary Log”

max_binlog_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2, “MySQL Server Logs”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
Section 16.2.2.1, “The Slave Relay Log”

max_binlog_stmt_cache_size
Section 16.1.4.4, “Binary Log Options and Variables”

max_connect_errors
Section 13.7.6.3, “FLUSH Syntax”
Section C.5.2.6, “Host 'host_name' is blocked”
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”
Section 5.1.4, “Server System Variables”
Section 20.9.13.1, “The host_cache Table”

max_connections
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section C.5.2.7, “Too many connections”
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.11.5.1, “How MySQL Uses Threads for Client
Connections”
Section 20.12, “Performance Schema System
Variables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

3205

max_delayed_threads
Section 5.1.4, “Server System Variables”

max_error_count
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.6.7.4, “RESIGNAL Syntax”
Section 13.7.5.16, “SHOW ERRORS Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Diagnostics Area-Related System Variables
Section 5.1.4, “Server System Variables”

max_heap_table_size
Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”
Section E.10.3, “Limits on Table Size”
Section 16.4.1.21, “Replication and MEMORY Tables”
Section 16.4.1.34, “Replication and Variables”
Section E.3, “Restrictions on Server-Side Cursors”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 14.4, “The MEMORY Storage Engine”

max_insert_delayed_threads
Section 5.1.4, “Server System Variables”

max_join_size
Section 8.8.2, “EXPLAIN Output Format”
Section 13.7.4, “SET Syntax”
Section 5.1.4, “Server System Variables”
Section 5.1.5, “Using System Variables”

max_length_for_sort_data
Section 8.2.1.15, “ORDER BY Optimization”
Section 5.1.4, “Server System Variables”

max_prepared_stmt_count
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”
Section 20.12, “Performance Schema System
Variables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.5, “SQL Syntax for Prepared Statements”

max_relay_log_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 16.2.2.1, “The Slave Relay Log”

max_seeks_for_key
Section 14.2.6.7, “Limits on InnoDB Tables”
Section 5.1.4, “Server System Variables”

max_sort_length
Section 13.1.14, “CREATE TABLE Syntax”
Section C.5.8, “Known Issues in MySQL”
Section 5.1.4, “Server System Variables”
Section 11.4.3, “The BLOB and TEXT Types”

max_sp_recursion_depth
Section 5.1.4, “Server System Variables”
Section 18.2.1, “Stored Routine Syntax”

max_statement_time
Section 13.2.9, “SELECT Syntax”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

max_tmp_tables
Section 5.1.4, “Server System Variables”

max_user_connections
Section 13.7.1.4, “GRANT Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 5.1.4, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”

max_write_lock_count
Section 5.1.4, “Server System Variables”
Section 8.10.2, “Table Locking Issues”

metadata_locks_cache_size
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

metadata_locks_hash_instances
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

min_examined_row_limit
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

myisam_data_pointer_size
Section 13.1.14, “CREATE TABLE Syntax”
Section E.10.3, “Limits on Table Size”
Section 5.1.4, “Server System Variables”

myisam_max_sort_file_size
Section 14.3.1, “MyISAM Startup Options”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”
Section 8.6.3, “Speed of REPAIR TABLE Statements”

myisam_mmap_size
Section 5.1.4, “Server System Variables”

3206

myisam_recover_options
Section 5.1.4, “Server System Variables”

myisam_repair_threads
Section 5.1.4, “Server System Variables”

myisam_sort_buffer_size
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.3.1, “MyISAM Startup Options”
Section 5.1.4, “Server System Variables”
Section 8.6.3, “Speed of REPAIR TABLE Statements”

myisam_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 5.1.4, “Server System Variables”

myisam_use_mmap
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”

N

[index top [3189]]

named_pipe
Section 5.1.4, “Server System Variables”

net_buffer_length
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 21.8, “MySQL C API”
Section 5.1.4, “Server System Variables”

net_read_timeout
Section C.5.2.3, “Lost connection to MySQL
server”
Section 5.1.4, “Server System Variables”

net_retry_count
Section 5.1.4, “Server System Variables”

net_write_timeout
Section 5.1.4, “Server System Variables”

new
Section 5.1.4, “Server System Variables”

O

[index top [3189]]

old
Section 13.2.9.3, “Index Hint Syntax”
Section 5.1.4, “Server System Variables”

old_alter_table
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 14.2.11.2, “Performance and Concurrency
Considerations for Online DDL”
Section 5.1.4, “Server System Variables”
Section 14.2.11.3, “SQL Syntax for Online DDL”

old_passwords
Section 13.7.1.1, “ALTER USER Syntax”
Section C.5.2.4, “Client does not support
authentication protocol”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 6.3.6, “Password Expiration Policy”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.4, “Server System Variables”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”

open_files_limit
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section 20.12, “Performance Schema System
Variables”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”

optimizer_join_cache_level
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Join Buffer Management for Block Nested-Loop and
Batched Key Access Algorithms

optimizer_prune_level
Section 8.8.6.1, “Controlling Query Plan Evaluation”
Section 5.1.4, “Server System Variables”

optimizer_search_depth
Section 8.8.6.1, “Controlling Query Plan Evaluation”
Section 5.1.4, “Server System Variables”

optimizer_switch
Batched Key Access Joins
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 8.8.6.2, “Controlling Switchable Optimizations”
Section 8.2.1.5, “Engine Condition Pushdown
Optimization”

3207

Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Join Buffer Management for Block Nested-Loop and
Batched Key Access Algorithms
Section 8.2.1.13, “Multi-Range Read Optimization”
Optimizing Subqueries with Semi-Join Transformations
Optimizing Subqueries with Subquery Materialization
Section 5.1.4, “Server System Variables”
Section 8.2.1.7, “Use of Index Extensions”

optimizer_trace
Section 5.1.4, “Server System Variables”
Section 19.12, “The INFORMATION_SCHEMA
OPTIMIZER_TRACE Table”

optimizer_trace_features
Section 5.1.4, “Server System Variables”

optimizer_trace_limit
Section 5.1.4, “Server System Variables”

optimizer_trace_max_mem_size
Section 5.1.4, “Server System Variables”

optimizer_trace_offset
Section 5.1.4, “Server System Variables”

P

[index top [3189]]

performance_schema
Section 20.1, “Performance Schema Quick Start”
Section 20.2.2, “Performance Schema Startup
Configuration”
Section 20.12, “Performance Schema System
Variables”

performance_schema_accounts_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.8.1, “The accounts Table”

performance_schema_digests_size
Section 20.7, “Performance Schema Statement
Digests”
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”
Section 20.9.12.3, “Statement Summary Tables”

performance_schema_events_stages_history_long_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.5.3, “The
events_stages_history_long Table”

performance_schema_events_stages_history_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.5.2, “The events_stages_history
Table”

performance_schema_events_statements_history_long_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.6.3, “The
events_statements_history_long Table”

performance_schema_events_statements_history_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.6.2, “The
events_statements_history Table”

performance_schema_events_transactions_history_long_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.7.3, “The
events_transactions_history_long Table”

performance_schema_events_transactions_history_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.7.2, “The
events_transactions_history Table”

performance_schema_events_waits_history_long_size
Section 13.7.5.14, “SHOW ENGINE Syntax”
Section 20.12, “Performance Schema System
Variables”
Section 20.9, “Performance Schema Table
Descriptions”
Section 20.9.4.3, “The
events_waits_history_long Table”

performance_schema_events_waits_history_size
Section 13.7.5.14, “SHOW ENGINE Syntax”
Section 20.12, “Performance Schema System
Variables”
Section 20.9, “Performance Schema Table
Descriptions”
Section 20.9.4.2, “The events_waits_history
Table”

performance_schema_hosts_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.8.2, “The hosts Table”

performance_schema_max_cond_classes
Section 20.12, “Performance Schema System
Variables”

3208

performance_schema_max_cond_instances
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_file_classes
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_file_handles
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_file_instances
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_memory_classes
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_metadata_locks
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”
Section 20.9.11.1, “The metadata_locks Table”

performance_schema_max_mutex_classes
Section 20.5, “Performance Schema Status Monitoring”
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_mutex_instances
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_prepared_statements_instances
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”
Section 20.9.6.4, “The
prepared_statements_instances Table”

performance_schema_max_program_instances
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_rwlock_classes
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_rwlock_instances
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_socket_classes
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_socket_instances
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_stage_classes
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_statement_classes
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_statement_stack
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_table_handles
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”
Section 20.9.11.2, “The table_handles Table”

performance_schema_max_table_instances
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_thread_classes
Section 20.12, “Performance Schema System
Variables”

performance_schema_max_thread_instances
Section 13.7.5.14, “SHOW ENGINE Syntax”
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”

performance_schema_session_connect_attrs_size
Section 20.12, “Performance Schema System
Variables”

performance_schema_setup_actors_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.2.1, “The setup_actors Table”

performance_schema_setup_objects_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.2.4, “The setup_objects Table”

3209

performance_schema_users_size
Section 20.12, “Performance Schema System
Variables”
Section 20.9.8.3, “The users Table”

pid_file
Section 5.1.4, “Server System Variables”

plugin_dir
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
Defined Functions”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 13.7.5.24, “SHOW PLUGINS Syntax”
Section 6.1.2.2, “Administrator Guidelines for Password
Security”
Section 22.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 22.3.2.5, “Compiling and Installing User-
Defined Functions”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.13.1, “Installing the Audit Log Plugin”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Password Validation Plugin Installation
Section 6.3.8, “Pluggable Authentication”
Section 14.12.1, “Pluggable Storage Engine
Architecture”
Section 22.2.2, “Plugin API Components”
Section 2.9.1, “Postinstallation Procedures for Unix-like
Systems”
Section E.9, “Restrictions on Pluggable Authentication”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 19.15, “The INFORMATION_SCHEMA PLUGINS
Table”
Section 6.3.9.6, “The Socket Peer-Credential
Authentication Plugin”
Section 6.3.9.7, “The Test Authentication Plugin”
Section 22.3.2.6, “User-Defined Function Security
Precautions”
Using the Authentication Plugins
Using Your Own Protocol Trace Plugins
Section 22.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4.10, “Writing Password-Validation
Plugins”
Section 22.2.4.7, “Writing Semisynchronous
Replication Plugins”

port
Section C.5.2.2, “Can't connect to [local]
MySQL server”

Section 5.1.4, “Server System Variables”

preload_buffer_size
Section 5.1.4, “Server System Variables”

profiling
Section 13.7.5.29, “SHOW PROFILE Syntax”
Section 5.1.4, “Server System Variables”
Section 19.17, “The INFORMATION_SCHEMA
PROFILING Table”

profiling_history_size
Section 13.7.5.29, “SHOW PROFILE Syntax”
Section 5.1.4, “Server System Variables”

protocol_version
Section 5.1.4, “Server System Variables”

proxy_user
Section 6.3.10, “Proxy Users”
Section 5.1.4, “Server System Variables”

pseudo_slave_mode
Section 5.1.4, “Server System Variables”

pseudo_thread_id
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”

Q

[index top [3189]]

query_alloc_block_size
Section 5.1.4, “Server System Variables”

query_cache_limit
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”

query_cache_min_res_unit
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”

query_cache_size
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”
Section 8.9.3, “The MySQL Query Cache”
Section 5.1.5, “Using System Variables”

query_cache_type
Section 13.2.9, “SELECT Syntax”
Section 8.9.3.2, “Query Cache SELECT Options”
Section 8.9.3.3, “Query Cache Configuration”

3210

Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

query_cache_wlock_invalidate
Section 5.1.4, “Server System Variables”

query_prealloc_size
Section 5.1.4, “Server System Variables”

R

[index top [3189]]

rand_seed
Section 5.1.4, “Server System Variables”

range_alloc_block_size
Section 5.1.4, “Server System Variables”

read_buffer_size
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”
Section 8.6.3, “Speed of REPAIR TABLE Statements”

read_only
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 16.3.1.3, “Backing Up a Master or Slave by
Making It Read Only”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.34, “Replication and Variables”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”

read_rnd_buffer_size
Section 8.2.1.15, “ORDER BY Optimization”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 8.2.1.13, “Multi-Range Read Optimization”
Section 5.1.4, “Server System Variables”
Section 8.11.2, “Tuning Server Parameters”

relay_log
Section 16.1.4.3, “Replication Slave Options and
Variables”

relay_log_basename
Section 16.1.4.3, “Replication Slave Options and
Variables”

relay_log_index
Section 16.1.4.3, “Replication Slave Options and
Variables”

relay_log_info_file
Section 16.1.4.3, “Replication Slave Options and
Variables”

relay_log_info_repository
Section 16.1.4.3, “Replication Slave Options and
Variables”

relay_log_purge
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 5.1.4, “Server System Variables”

relay_log_recovery
Section 13.4.2.6, “START SLAVE Syntax”
Section 16.1.4.3, “Replication Slave Options and
Variables”

relay_log_space_limit
Section 8.12.5.5, “Replication Slave I/O Thread States”
Section 5.1.4, “Server System Variables”

report_host
Section 5.1.4, “Server System Variables”

report_password
Section 5.1.4, “Server System Variables”

report_port
Section 5.1.4, “Server System Variables”

report_user
Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_enabled
Section 16.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 16.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_timeout
Section 16.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_trace_level
Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_wait_for_slave_count
Section 16.3.8, “Semisynchronous Replication”

3211

Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_wait_no_slave
Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_wait_point
Section 16.3.8, “Semisynchronous Replication”
Section 5.1.4, “Server System Variables”

rpl_semi_sync_slave_enabled
Section 16.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 16.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.4, “Server System Variables”

rpl_semi_sync_slave_trace_level
Section 5.1.4, “Server System Variables”

rpl_stop_slave_timeout
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 16.1.4.3, “Replication Slave Options and
Variables”

S

[index top [3189]]

secure_auth
Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password
Plugin”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.4, “Server System Variables”

secure_file_priv
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

server_id
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 12.16, “Miscellaneous Functions”
Section 20.9.10, “Performance Schema Replication
Tables”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 5.1.4, “Server System Variables”
Section 6.3.13.3, “The Audit Log File”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

server_uuid
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 16.1.3.1, “GTID Concepts”
Section 20.9.10, “Performance Schema Replication
Tables”
Section 16.1.4, “Replication and Binary Logging
Options and Variables”
Section 20.9.10.2, “The
replication_connection_status Table”

session_track_schema
Section 21.8.7.64,
“mysql_session_track_get_first()”
Section 5.1.4, “Server System Variables”

session_track_state_change
Section 21.8.7.64,
“mysql_session_track_get_first()”
Section 5.1.4, “Server System Variables”

session_track_system_variables
Section 21.8.7.64,
“mysql_session_track_get_first()”
Section 5.1.4, “Server System Variables”

sha
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”

shared_memory
Section 5.1.4, “Server System Variables”

shared_memory_base_name
Section 5.1.4, “Server System Variables”

skip_external_locking
Section 8.10.5, “External Locking”
Section 5.1.4, “Server System Variables”

skip_name_resolve
Section 5.1.4, “Server System Variables”

skip_networking
Section 5.1.4, “Server System Variables”

skip_show_database
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

slave_allow_batching
Section 16.1.4.3, “Replication Slave Options and
Variables”

3212

slave_checkpoint_group
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_checkpoint_period
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_compressed_protocol
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_exec_mode
Section 16.4.1.21, “Replication and MEMORY Tables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.1.2.2, “Usage of Row-Based Logging and
Replication”

slave_load_tmpdir
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

slave_max_allowed_packet
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_net_timeout
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.4.1.19, “Replication and Master or Slave
Shutdowns”
Section 8.12.5.5, “Replication Slave I/O Thread States”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

slave_parallel_type
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_parallel_workers
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 20.9.10, “Performance Schema Replication
Tables”
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_pending_jobs_size_max
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_rows_search_algorithms
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_skip_errors
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_sql_verify_checksum
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.2.4, “The Binary Log”

slave_transaction_retries
Section 16.4.1.29, “Replication Retries and Timeouts”
Section 16.1.4.3, “Replication Slave Options and
Variables”

slave_type_conversions
Section 16.1.4.3, “Replication Slave Options and
Variables”

slow_launch_time
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

slow_query_log
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

slow_query_log_file
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

socket
Section 5.1.4, “Server System Variables”

sort_buffer_size
Section 8.2.1.15, “ORDER BY Optimization”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 8.2.1.19, “Optimizing LIMIT Queries”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

sql_auto_is_null
Section 12.3.2, “Comparison Functions and Operators”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”

3213

sql_big_selects
Section 5.1.4, “Server System Variables”

sql_buffer_result
Section 5.1.4, “Server System Variables”

sql_log_bin
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.1.4.1, “Replication and Binary Logging
Option and Variable Reference”
Section 5.1.4, “Server System Variables”
Section 16.4.3, “Upgrading a Replication Setup”

sql_log_off
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.1.4.1, “Replication and Binary Logging
Option and Variable Reference”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

SQL_MODE
Section 14.2.11.5, “Examples of Online DDL”
Section 14.2.11.1, “Overview of Online DDL”

sql_mode
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.7.5.12, “SHOW CREATE VIEW Syntax”
Section 4.4.3, “mysql_install_db — Initialize
MySQL Data Directory”
Effect of Signals on Handlers, Cursors, and Statements
Section 12.19.3, “Expression Handling”
Section 1.7, “How to Report Bugs or Problems”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 1.8, “MySQL Standards Compliance”
Section 16.4.1.34, “Replication and Variables”
Section 17.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.2, “Server Configuration Defaults”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 19.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 5.2.4, “The Binary Log”
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”
Section 5.1.5, “Using System Variables”

sql_notes
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Diagnostics Area-Related System Variables
Section 5.1.4, “Server System Variables”

sql_quote_show_create
Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”
Section 13.7.5.10, “SHOW CREATE TABLE Syntax”
Section 5.1.4, “Server System Variables”

sql_safe_updates
Section 5.1.4, “Server System Variables”

sql_select_limit
Section 5.1.4, “Server System Variables”

sql_slave_skip_counter
Section 13.4.2.5, “SET GLOBAL
sql_slave_skip_counter Syntax”
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.1.4.5, “Global Transaction ID Options and
Variables”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 16.1.3.4, “Restrictions on Replication with
GTIDs”

sql_warnings
Section 5.1.4, “Server System Variables”

ssl_ca
Section 5.1.4, “Server System Variables”

ssl_capath
Section 5.1.4, “Server System Variables”

ssl_cert
Section 5.1.4, “Server System Variables”

ssl_cipher
Section 5.1.4, “Server System Variables”

ssl_crl
Section 5.1.4, “Server System Variables”

ssl_crlpath
Section 5.1.4, “Server System Variables”

ssl_key
Section 5.1.4, “Server System Variables”

storage_engine
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 1.4, “What Is New in MySQL 5.7”

stored_program_cache
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”

3214

Section 5.1.4, “Server System Variables”

sync_binlog
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 14.2.2.1, “MySQL and the ACID Model”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 16.4.1.19, “Replication and Master or Slave
Shutdowns”
Section 5.2.4, “The Binary Log”

sync_frm
Section 5.1.4, “Server System Variables”

sync_master_info
Section 16.1.4.3, “Replication Slave Options and
Variables”

sync_relay_log
Section 16.1.4.3, “Replication Slave Options and
Variables”

sync_relay_log_info
Section 16.4.1.19, “Replication and Master or Slave
Shutdowns”
Section 16.1.4.3, “Replication Slave Options and
Variables”

system_time_zone
Section 10.6, “MySQL Server Time Zone Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

T

[index top [3189]]

table_definition_cache
Section 5.1.4, “Server System Variables”

table_open_cache
Section C.5.2.18, “'File' Not Found and Similar
Errors”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 8.12.5.2, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.11.2, “Tuning Server Parameters”

table_open_cache_instances
Section 5.1.6, “Server Status Variables”

Section 5.1.4, “Server System Variables”

thread_cache_size
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 8.11.5.1, “How MySQL Uses Threads for Client
Connections”
Section 8.2.5, “Other Optimization Tips”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

thread_concurrency
Section 5.1.4, “Server System Variables”

thread_handling
Section 5.1.4, “Server System Variables”

thread_stack
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”
Section 18.2.1, “Stored Routine Syntax”

time_format
Section 5.1.4, “Server System Variables”

time_zone
Section 13.1.9, “CREATE EVENT Syntax”
Section 12.7, “Date and Time Functions”
Section 18.4.4, “Event Metadata”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

timed_mutexes
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

timestamp
Section 14.9.3, “FEDERATED Storage Engine Notes
and Tips”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”

tmp_table_size
Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”
Section E.3, “Restrictions on Server-Side Cursors”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

3215

tmpdir
Section C.5.2.13, “Can't create/write to file”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 8.2.1.15, “ORDER BY Optimization”
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.2, “Database Backup Methods”
Section 14.2.11.6, “Implementation Details of Online
DDL”
Section 14.2.11.9, “Limitations of Online DDL”
Section 2.8.4, “MySQL Source-Configuration Options”
Section 14.2.11.2, “Performance and Concurrency
Considerations for Online DDL”
Section 16.1.4.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section C.5.4.4, “Where MySQL Stores Temporary
Files”

transaction_alloc_block_size
Section 5.1.4, “Server System Variables”

transaction_prealloc_size
Section 5.1.4, “Server System Variables”

tx_isolation
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

tx_read_only
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

U

[index top [3189]]

unique_checks
Section 14.2.6.4, “Converting Tables from MyISAM to
InnoDB”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.34, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”

updatable_views_with_limit
Section 5.1.4, “Server System Variables”
Section 18.5.3, “Updatable and Insertable Views”

V

[index top [3189]]

validate_password_dictionary_file
Password Validation Plugin Options and Variables

validate_password_length
Section 12.13, “Encryption and Compression
Functions”
Password Validation Plugin Options and Variables

validate_password_mixed_case_count
Password Validation Plugin Options and Variables

validate_password_number_count
Password Validation Plugin Options and Variables

validate_password_policy
Password Validation Plugin Options and Variables
Section 6.1.2.6, “The Password Validation Plugin”

validate_password_special_char_count
Password Validation Plugin Options and Variables

validate_user_plugins
Section 5.1.4, “Server System Variables”

version
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 12.14, “Information Functions”
Section 5.1.4, “Server System Variables”
Section 6.3.13.3, “The Audit Log File”

version_comment
Section 5.1.4, “Server System Variables”

version_compile_machine
Section 5.1.4, “Server System Variables”

version_compile_os
Section 5.1.4, “Server System Variables”

W

[index top [3189]]

wait_timeout
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.7.54, “mysql_real_connect()”
Section C.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.1.4, “Server System Variables”

warning_count
Section 13.7.5.16, “SHOW ERRORS Syntax”
Section 13.7.5.39, “SHOW WARNINGS Syntax”
Diagnostics Area-Related System Variables
Effect of Signals on Handlers, Cursors, and Statements
Section 5.1.4, “Server System Variables”
Section C.1, “Sources of Error Information”
Section 13.5, “SQL Syntax for Prepared Statements”

3216

3217

Status Variable Index

A | B | C | D | F | H | I | K | L | M | N | O | P | Q | R | S | T
| U

A

[index top [3217]]

Aborted_clients
Section C.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.1.6, “Server Status Variables”

Aborted_connects
Section C.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.1.6, “Server Status Variables”

B

[index top [3217]]

Binlog_cache_disk_use
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”
Section 5.2.4, “The Binary Log”

Binlog_cache_use
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”
Section 5.2.4, “The Binary Log”

Binlog_stmt_cache_disk_use
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”

Binlog_stmt_cache_use
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”

Bytes_received
Section 5.1.6, “Server Status Variables”

Bytes_sent
Section 5.1.6, “Server Status Variables”

C

[index top [3217]]

Com_flush
Section 5.1.6, “Server Status Variables”

Com_stmt_reprepare
Section 8.9.4, “Caching of Prepared Statements and
Stored Programs”

Compression
Section 5.1.6, “Server Status Variables”

Connection_errors_accept
Section 5.1.6, “Server Status Variables”

Connection_errors_internal
Section 5.1.6, “Server Status Variables”

Connection_errors_max_connections
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Connection_errors_peer_addr
Section 5.1.6, “Server Status Variables”

Connection_errors_select
Section 5.1.6, “Server Status Variables”

Connection_errors_tcpwrap
Section 5.1.6, “Server Status Variables”

Connection_errors_xxx
Section 8.11.5.2, “DNS Lookup Optimization and the
Host Cache”
Section 5.1.6, “Server Status Variables”

Connections
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Created_tmp_disk_tables
Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 20.9.6.1, “The
events_statements_current Table”

Created_tmp_files
Section 5.1.6, “Server Status Variables”

Created_tmp_tables
Section 13.7.5.34, “SHOW STATUS Syntax”
Section 8.4.4, “How MySQL Uses Internal Temporary
Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 20.9.6.1, “The
events_statements_current Table”

3218

D

[index top [3217]]

Delayed_errors
Section 5.1.6, “Server Status Variables”

Delayed_insert_threads
Section 5.1.6, “Server Status Variables”

Delayed_writes
Section 5.1.6, “Server Status Variables”

F

[index top [3217]]

Flush_commands
Section 5.1.6, “Server Status Variables”

H

[index top [3217]]

Handler_commit
Section 5.1.6, “Server Status Variables”

Handler_delete
Section 5.1.6, “Server Status Variables”

Handler_external_lock
Section 5.1.6, “Server Status Variables”

Handler_mrr_init
Section 5.1.6, “Server Status Variables”

Handler_prepare
Section 5.1.6, “Server Status Variables”

Handler_read_first
Range Optimization of Row Constructor Expressions
Section 5.1.6, “Server Status Variables”

Handler_read_key
Range Optimization of Row Constructor Expressions
Section 5.1.6, “Server Status Variables”

Handler_read_last
Section 5.1.6, “Server Status Variables”

Handler_read_next
Range Optimization of Row Constructor Expressions
Section 5.1.6, “Server Status Variables”

Section 8.2.1.7, “Use of Index Extensions”

Handler_read_prev
Section 5.1.6, “Server Status Variables”

Handler_read_rnd
Section 5.1.6, “Server Status Variables”

Handler_read_rnd_next
Section 5.1.6, “Server Status Variables”

Handler_rollback
Section 5.1.6, “Server Status Variables”

Handler_savepoint
Section 5.1.6, “Server Status Variables”

Handler_savepoint_rollback
Section 5.1.6, “Server Status Variables”

Handler_update
Section 5.1.6, “Server Status Variables”

Handler_write
Section 5.1.6, “Server Status Variables”

I

[index top [3217]]

Innodb_available_undo_logs
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_bytes_data
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_bytes_dirty
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_dump_status
Faster Restart by Preloading the InnoDB Buffer Pool
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_load_status
Faster Restart by Preloading the InnoDB Buffer Pool
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_data
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_dirty
Section 5.1.6, “Server Status Variables”

3219

Innodb_buffer_pool_pages_flushed
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_free
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_latched
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_misc
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_total
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_read_ahead
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Changes in the Read-Ahead Algorithm
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_read_ahead_evicted
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Changes in the Read-Ahead Algorithm
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_read_requests
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_reads
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_wait_free
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_write_requests
Section 5.1.6, “Server Status Variables”

Innodb_data_fsyncs
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 5.1.6, “Server Status Variables”

Innodb_data_pending_fsyncs
Section 5.1.6, “Server Status Variables”

Innodb_data_pending_reads
Section 5.1.6, “Server Status Variables”

Innodb_data_pending_writes
Section 5.1.6, “Server Status Variables”

Innodb_data_read
Section 5.1.6, “Server Status Variables”

Innodb_data_reads
Section 5.1.6, “Server Status Variables”

Innodb_data_writes
Section 5.1.6, “Server Status Variables”

Innodb_data_written
Section 5.1.6, “Server Status Variables”

Innodb_dblwr_pages_written
Section 5.1.6, “Server Status Variables”

Innodb_dblwr_writes
Section 5.1.6, “Server Status Variables”

Innodb_have_atomic_builtins
Section 5.1.6, “Server Status Variables”

Innodb_log_waits
Section 5.1.6, “Server Status Variables”

Innodb_log_write_requests
Section 5.1.6, “Server Status Variables”

Innodb_log_writes
Section 5.1.6, “Server Status Variables”

Innodb_num_open_files
Section 5.1.6, “Server Status Variables”

Innodb_os_log_fsyncs
Section 5.1.6, “Server Status Variables”

Innodb_os_log_pending_fsyncs
Section 5.1.6, “Server Status Variables”

Innodb_os_log_pending_writes
Section 5.1.6, “Server Status Variables”

Innodb_os_log_written
Section 5.1.6, “Server Status Variables”

Innodb_page_size
Section 5.1.6, “Server Status Variables”

Innodb_pages_created
Section 5.1.6, “Server Status Variables”

Innodb_pages_read
Section 5.1.6, “Server Status Variables”

3220

Innodb_pages_written
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_current_waits
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_time
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_time_avg
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_time_max
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_waits
Section 5.1.6, “Server Status Variables”

Innodb_rows_deleted
Section 5.1.6, “Server Status Variables”

Innodb_rows_inserted
Section 5.1.6, “Server Status Variables”

Innodb_rows_read
Section 5.1.6, “Server Status Variables”

Innodb_rows_updated
Section 5.1.6, “Server Status Variables”

Innodb_truncated_status_writes
Section 5.1.6, “Server Status Variables”

K

[index top [3217]]

Key_blocks_not_flushed
Section 5.1.6, “Server Status Variables”

Key_blocks_unused
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_blocks_used
Section 5.1.6, “Server Status Variables”

Key_read_requests
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_reads
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_write_requests
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_writes
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

L

[index top [3217]]

Last_query_cost
Section 5.1.6, “Server Status Variables”

Last_query_partial_plans
Section 5.1.6, “Server Status Variables”

M

[index top [3217]]

Max_statement_time_exceeded
Section 5.1.6, “Server Status Variables”

Max_statement_time_set
Section 5.1.6, “Server Status Variables”

Max_statement_time_set_failed
Section 5.1.6, “Server Status Variables”

Max_used_connections
Section 13.7.6.3, “FLUSH Syntax”
Section 5.1.6, “Server Status Variables”

Max_used_connections_time
Section 5.1.6, “Server Status Variables”

N

[index top [3217]]

Not_flushed_delayed_rows
Section 5.1.6, “Server Status Variables”

O

[index top [3217]]

Open_files
Section 5.1.6, “Server Status Variables”

Open_streams
Section 5.1.6, “Server Status Variables”

3221

Open_table_definitions
Section 5.1.6, “Server Status Variables”

Open_tables
Section 5.1.6, “Server Status Variables”

Opened_files
Section 5.1.6, “Server Status Variables”

Opened_table_definitions
Section 5.1.6, “Server Status Variables”

Opened_tables
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

P

[index top [3217]]

Performance_schema_digest_lost
Section 20.12, “Performance Schema System
Variables”

Performance_schema_memory_classes_lost
Section 20.13, “Performance Schema Status Variables”

Performance_schema_metadata_lock_lost
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”

Performance_schema_mutex_classes_lost
Section 20.5, “Performance Schema Status Monitoring”

Performance_schema_mutex_instances_lost
Section 20.5, “Performance Schema Status Monitoring”

Performance_schema_nested_statement_lost
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”

Performance_schema_prepared_statements_lost
Section 20.13, “Performance Schema Status Variables”
Section 20.12, “Performance Schema System
Variables”
Section 20.9.6.4, “The
prepared_statements_instances Table”

Performance_schema_program_lost
Section 20.13, “Performance Schema Status Variables”

Section 20.12, “Performance Schema System
Variables”

Performance_schema_session_connect_attrs_lost
Section 20.12, “Performance Schema System
Variables”

Performance_schema_table_handles_lost
Section 20.12, “Performance Schema System
Variables”

Performance_schema_thread_instances_lost
Section 20.12, “Performance Schema System
Variables”

Prepared_stmt_count
Section 5.1.6, “Server Status Variables”

Q

[index top [3217]]

Qcache_free_blocks
Section 8.9.3.3, “Query Cache Configuration”
Section 8.9.3.4, “Query Cache Status and
Maintenance”
Section 5.1.6, “Server Status Variables”

Qcache_free_memory
Section 5.1.6, “Server Status Variables”

Qcache_hits
Section 8.9.3.1, “How the Query Cache Operates”
Section 5.1.6, “Server Status Variables”

Qcache_inserts
Section 5.1.6, “Server Status Variables”

Qcache_lowmem_prunes
Section 8.9.3.3, “Query Cache Configuration”
Section 8.9.3.4, “Query Cache Status and
Maintenance”
Section 5.1.6, “Server Status Variables”

Qcache_not_cached
Section 5.1.6, “Server Status Variables”

Qcache_queries_in_cache
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.6, “Server Status Variables”

Qcache_total_blocks
Section 8.9.3.3, “Query Cache Configuration”
Section 8.9.3.4, “Query Cache Status and
Maintenance”

3222

Section 5.1.6, “Server Status Variables”

Queries
Section 5.1.6, “Server Status Variables”

Questions
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 5.1.6, “Server Status Variables”

R

[index top [3217]]

Rpl_semi_sync_master_clients
Section 16.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_net_avg_wait_time
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_net_wait_time
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_net_waits
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_no_times
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_no_tx
Section 16.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_status
Section 16.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_timefunc_failures
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_tx_avg_wait_time
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_tx_wait_time
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_tx_waits
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_wait_pos_backtraverse
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_wait_sessions
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_yes_tx
Section 16.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_slave_status
Section 16.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rsa_public_key
Section 5.1.6, “Server Status Variables”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”

S

[index top [3217]]

Select_full_join
Section 5.1.6, “Server Status Variables”
Section 20.9.6.1, “The
events_statements_current Table”

Select_full_range_join
Section 5.1.6, “Server Status Variables”
Section 20.9.6.1, “The
events_statements_current Table”

Select_range
Section 5.1.6, “Server Status Variables”
Section 20.9.6.1, “The
events_statements_current Table”

Select_range_check
Section 5.1.6, “Server Status Variables”
Section 20.9.6.1, “The
events_statements_current Table”

Select_scan
Section 5.1.6, “Server Status Variables”
Section 20.9.6.1, “The
events_statements_current Table”

3223

Slave_heartbeat_period
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 5.1.6, “Server Status Variables”

Slave_last_heartbeat
Section 5.1.6, “Server Status Variables”

Slave_open_temp_tables
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 16.4.1.22, “Replication and Temporary Tables”
Section 5.1.6, “Server Status Variables”
Section 1.4, “What Is New in MySQL 5.7”

Slave_received_heartbeats
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 5.1.6, “Server Status Variables”

Slave_retried_transactions
Section 5.1.6, “Server Status Variables”

Slave_running
Section 13.7.5.33, “SHOW SLAVE STATUS Syntax”
Section 16.2.1, “Replication Implementation Details”
Section 5.1.6, “Server Status Variables”

Slow_launch_threads
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Slow_queries
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Sort_merge_passes
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 20.9.6.1, “The
events_statements_current Table”

Sort_range
Section 5.1.6, “Server Status Variables”
Section 20.9.6.1, “The
events_statements_current Table”

Sort_rows
Section 5.1.6, “Server Status Variables”
Section 20.9.6.1, “The
events_statements_current Table”

Sort_scan
Section 5.1.6, “Server Status Variables”
Section 20.9.6.1, “The
events_statements_current Table”

Ssl_accept_renegotiates
Section 5.1.6, “Server Status Variables”

Ssl_accepts
Section 5.1.6, “Server Status Variables”

Ssl_callback_cache_hits
Section 5.1.6, “Server Status Variables”

Ssl_cipher
Section 5.1.6, “Server Status Variables”
Section 6.3.11.3, “Using SSL Connections”

Ssl_cipher_list
Section 5.1.6, “Server Status Variables”
Section 6.3.11.4, “SSL Command Options”

Ssl_client_connects
Section 5.1.6, “Server Status Variables”

Ssl_connect_renegotiates
Section 5.1.6, “Server Status Variables”

Ssl_ctx_verify_depth
Section 5.1.6, “Server Status Variables”

Ssl_ctx_verify_mode
Section 5.1.6, “Server Status Variables”

Ssl_default_timeout
Section 5.1.6, “Server Status Variables”

Ssl_finished_accepts
Section 5.1.6, “Server Status Variables”

Ssl_finished_connects
Section 5.1.6, “Server Status Variables”

Ssl_server_not_after
Section 5.1.6, “Server Status Variables”

Ssl_server_not_before
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_hits
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_misses
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_mode
Section 5.1.6, “Server Status Variables”

3224

Ssl_session_cache_overflows
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_size
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_timeouts
Section 5.1.6, “Server Status Variables”

Ssl_sessions_reused
Section 5.1.6, “Server Status Variables”

Ssl_used_session_cache_entries
Section 5.1.6, “Server Status Variables”

Ssl_verify_depth
Section 5.1.6, “Server Status Variables”

Ssl_verify_mode
Section 5.1.6, “Server Status Variables”

Ssl_version
Section 5.1.6, “Server Status Variables”

T

[index top [3217]]

Table_locks_immediate
Section 8.10.1, “Internal Locking Methods”
Section 5.1.6, “Server Status Variables”

Table_locks_waited
Section 8.10.1, “Internal Locking Methods”
Section 5.1.6, “Server Status Variables”

Table_open_cache_hits
Section 5.1.6, “Server Status Variables”

Table_open_cache_misses
Section 5.1.6, “Server Status Variables”

Table_open_cache_overflows
Section 5.1.6, “Server Status Variables”

Tc_log_max_pages_used
Section 5.1.6, “Server Status Variables”

Tc_log_page_size
Section 5.1.6, “Server Status Variables”

Tc_log_page_waits
Section 5.1.6, “Server Status Variables”

Threads_cached
Section 8.11.5.1, “How MySQL Uses Threads for Client
Connections”
Section 5.1.6, “Server Status Variables”

Threads_connected
Section 5.1.6, “Server Status Variables”

Threads_created
Section 8.11.5.1, “How MySQL Uses Threads for Client
Connections”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Threads_running
Section 5.1.6, “Server Status Variables”

U

[index top [3217]]

Uptime
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 5.1.6, “Server Status Variables”

Uptime_since_flush_status
Section 5.1.6, “Server Status Variables”

3225

Transaction Isolation Level
Index
R | S

R

[index top [3225]]

READ COMMITTED
Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.2.4, “Consistent Nonlocking Reads”
Section 14.2.2.11, “How to Cope with Deadlocks”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”

READ UNCOMMITTED
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.16.2, “Architecture of InnoDB and
memcached Integration”
Section 14.2.2.4, “Consistent Nonlocking Reads”
Performing DML and DDL Statements on the
Underlying InnoDB Table
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”

READ-COMMITTED
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”

READ-UNCOMMITTED
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”

REPEATABLE READ
Section 14.2.2.6, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 14.2.2.4, “Consistent Nonlocking Reads”

Controlling Transactional Behavior of the InnoDB
memcached Plugin
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”
Section 13.3.7, “XA Transactions”

REPEATABLE-READ
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

S

[index top [3225]]

SERIALIZABLE
Section 14.2.13, “InnoDB Startup Options and System
Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 14.2.2.4, “Consistent Nonlocking Reads”
Section 8.9.3.1, “How the Query Cache Operates”
Section 14.2.2.8, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 5.1.3, “Server Command Options”
Section 14.2.2.2, “The InnoDB Transaction Model and
Locking”
Section 13.3.7, “XA Transactions”

3226

	MySQL 5.7 Reference Manual
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 About This Manual
	1.2 Typographical and Syntax Conventions
	1.3 Overview of the MySQL Database Management System
	1.3.1 What is MySQL?
	1.3.2 The Main Features of MySQL
	1.3.3 History of MySQL

	1.4 What Is New in MySQL 5.7
	1.5 MySQL Development History
	1.6 MySQL Information Sources
	1.6.1 MySQL Mailing Lists
	1.6.1.1 Guidelines for Using the Mailing Lists

	1.6.2 MySQL Community Support at the MySQL Forums
	1.6.3 MySQL Community Support on Internet Relay Chat (IRC)
	1.6.4 MySQL Enterprise

	1.7 How to Report Bugs or Problems
	1.8 MySQL Standards Compliance
	1.8.1 MySQL Extensions to Standard SQL
	1.8.2 MySQL Differences from Standard SQL
	1.8.2.1 SELECT INTO TABLE Differences
	1.8.2.2 UPDATE Differences
	1.8.2.3 Transaction and Atomic Operation Differences
	1.8.2.4 Foreign Key Differences
	1.8.2.5 '--' as the Start of a Comment

	1.8.3 How MySQL Deals with Constraints
	1.8.3.1 PRIMARY KEY and UNIQUE Index Constraints
	1.8.3.2 FOREIGN KEY Constraints
	1.8.3.3 Constraints on Invalid Data
	1.8.3.4 ENUM and SET Constraints

	1.9 Credits
	1.9.1 Contributors to MySQL
	1.9.2 Documenters and translators
	1.9.3 Packages that support MySQL
	1.9.4 Tools that were used to create MySQL
	1.9.5 Supporters of MySQL

	Chapter 2 Installing and Upgrading MySQL
	2.1 General Installation Guidance
	2.1.1 Operating Systems Supported by MySQL Community Server
	2.1.2 Choosing Which MySQL Distribution to Install
	2.1.2.1 Choosing Which Version of MySQL to Install
	2.1.2.2 Choosing a Distribution Format
	2.1.2.3 How and When Updates Are Released

	2.1.3 How to Get MySQL
	2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.1.4.1 Verifying the MD5 Checksum
	2.1.4.2 Signature Checking Using GnuPG
	2.1.4.3 Signature Checking Using Gpg4win for Windows
	2.1.4.4 Signature Checking Using RPM

	2.1.5 Installation Layouts
	2.1.6 Compiler-Specific Build Characteristics

	2.2 Installing MySQL on Unix/Linux Using Generic Binaries
	2.3 Installing MySQL on Microsoft Windows
	2.3.1 MySQL Installation Layout on Microsoft Windows
	2.3.2 Choosing An Installation Package
	2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installer
	2.3.3.1 MySQL Installer GUI
	2.3.3.2 MySQL Installer Console

	2.3.4 MySQL Notifier for Microsoft Windows
	2.3.4.1 Remote monitoring set up and installation instructions

	2.3.5 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive
	2.3.5.1 Extracting the Install Archive
	2.3.5.2 Creating an Option File
	2.3.5.3 Selecting a MySQL Server Type
	2.3.5.4 Starting the Server for the First Time
	2.3.5.5 Starting MySQL from the Windows Command Line
	2.3.5.6 Customizing the PATH for MySQL Tools
	2.3.5.7 Starting MySQL as a Windows Service
	2.3.5.8 Testing The MySQL Installation

	2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation
	2.3.7 Upgrading MySQL on Windows
	2.3.8 Windows Postinstallation Procedures

	2.4 Installing MySQL on Mac OS X
	2.4.1 General Notes on Installing MySQL on Mac OS X
	2.4.2 Installing MySQL on Mac OS X Using Native Packages
	2.4.3 Installing the MySQL Startup Item
	2.4.4 Installing and Using the MySQL Preference Pane
	2.4.5 Using the Bundled MySQL on Mac OS X Server

	2.5 Installing MySQL on Linux
	2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository
	2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository
	2.5.3 Installing MySQL on Linux Using RPM Packages
	2.5.4 Installing MySQL on Linux Using Debian Packages
	2.5.5 Installing MySQL on Linux Using Native Package Managers

	2.6 Installing MySQL on Solaris and OpenSolaris
	2.6.1 Installing MySQL on Solaris Using a Solaris PKG
	2.6.2 Installing MySQL on OpenSolaris Using IPS

	2.7 Installing MySQL on FreeBSD
	2.8 Installing MySQL from Source
	2.8.1 MySQL Layout for Source Installation
	2.8.2 Installing MySQL Using a Standard Source Distribution
	2.8.3 Installing MySQL Using a Development Source Tree
	2.8.4 MySQL Source-Configuration Options
	2.8.5 Dealing with Problems Compiling MySQL
	2.8.6 MySQL Configuration and Third-Party Tools

	2.9 Postinstallation Setup and Testing
	2.9.1 Postinstallation Procedures for Unix-like Systems
	2.9.1.1 Problems Running mysql_install_db
	2.9.1.2 Starting and Stopping MySQL Automatically
	2.9.1.3 Starting and Troubleshooting the MySQL Server

	2.9.2 Securing the Initial MySQL Accounts

	2.10 Upgrading or Downgrading MySQL
	2.10.1 Upgrading MySQL
	2.10.1.1 Upgrading MySQL with the MySQL Yum Repository
	2.10.1.2 Upgrading from MySQL 5.6 to 5.7

	2.10.2 Downgrading MySQL
	2.10.2.1 Downgrading to MySQL 5.6

	2.10.3 Checking Whether Tables or Indexes Must Be Rebuilt
	2.10.4 Rebuilding or Repairing Tables or Indexes
	2.10.5 Copying MySQL Databases to Another Machine

	2.11 Environment Variables
	2.12 Perl Installation Notes
	2.12.1 Installing Perl on Unix
	2.12.2 Installing ActiveState Perl on Windows
	2.12.3 Problems Using the Perl DBI/DBD Interface

	Chapter 3 Tutorial
	3.1 Connecting to and Disconnecting from the Server
	3.2 Entering Queries
	3.3 Creating and Using a Database
	3.3.1 Creating and Selecting a Database
	3.3.2 Creating a Table
	3.3.3 Loading Data into a Table
	3.3.4 Retrieving Information from a Table
	3.3.4.1 Selecting All Data
	3.3.4.2 Selecting Particular Rows
	3.3.4.3 Selecting Particular Columns
	3.3.4.4 Sorting Rows
	3.3.4.5 Date Calculations
	3.3.4.6 Working with NULL Values
	3.3.4.7 Pattern Matching
	3.3.4.8 Counting Rows
	3.3.4.9 Using More Than one Table

	3.4 Getting Information About Databases and Tables
	3.5 Using mysql in Batch Mode
	3.6 Examples of Common Queries
	3.6.1 The Maximum Value for a Column
	3.6.2 The Row Holding the Maximum of a Certain Column
	3.6.3 Maximum of Column per Group
	3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column
	3.6.5 Using User-Defined Variables
	3.6.6 Using Foreign Keys
	3.6.7 Searching on Two Keys
	3.6.8 Calculating Visits Per Day
	3.6.9 Using AUTO_INCREMENT

	3.7 Using MySQL with Apache

	Chapter 4 MySQL Programs
	4.1 Overview of MySQL Programs
	4.2 Using MySQL Programs
	4.2.1 Invoking MySQL Programs
	4.2.2 Connecting to the MySQL Server
	4.2.3 Specifying Program Options
	4.2.3.1 Using Options on the Command Line
	4.2.3.2 Program Option Modifiers
	4.2.3.3 Using Option Files
	4.2.3.4 Command-Line Options that Affect Option-File Handling
	4.2.3.5 Using Options to Set Program Variables
	4.2.3.6 Option Defaults, Options Expecting Values, and the = Sign

	4.2.4 Setting Environment Variables

	4.3 MySQL Server and Server-Startup Programs
	4.3.1 mysqld — The MySQL Server
	4.3.2 mysqld_safe — MySQL Server Startup Script
	4.3.3 mysql.server — MySQL Server Startup Script
	4.3.4 mysqld_multi — Manage Multiple MySQL Servers

	4.4 MySQL Installation-Related Programs
	4.4.1 comp_err — Compile MySQL Error Message File
	4.4.2 mysqlbug — Generate Bug Report
	4.4.3 mysql_install_db — Initialize MySQL Data Directory
	4.4.4 mysql_plugin — Configure MySQL Server Plugins
	4.4.5 mysql_secure_installation — Improve MySQL Installation Security
	4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables
	4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

	4.5 MySQL Client Programs
	4.5.1 mysql — The MySQL Command-Line Tool
	4.5.1.1 mysql Options
	4.5.1.2 mysql Commands
	4.5.1.3 mysql Logging
	4.5.1.4 mysql Server-Side Help
	4.5.1.5 Executing SQL Statements from a Text File
	4.5.1.6 mysql Tips
	Input-Line Editing
	Unicode Support on Windows
	Displaying Query Results Vertically
	Using the --safe-updates Option
	Disabling mysql Auto-Reconnect

	4.5.2 mysqladmin — Client for Administering a MySQL Server
	4.5.3 mysqlcheck — A Table Maintenance Program
	4.5.4 mysqldump — A Database Backup Program
	4.5.5 mysqlimport — A Data Import Program
	4.5.6 mysqlshow — Display Database, Table, and Column Information
	4.5.7 mysqlslap — Load Emulation Client

	4.6 MySQL Administrative and Utility Programs
	4.6.1 innochecksum — Offline InnoDB File Checksum Utility
	4.6.2 myisam_ftdump — Display Full-Text Index information
	4.6.3 myisamchk — MyISAM Table-Maintenance Utility
	4.6.3.1 myisamchk General Options
	4.6.3.2 myisamchk Check Options
	4.6.3.3 myisamchk Repair Options
	4.6.3.4 Other myisamchk Options
	4.6.3.5 Obtaining Table Information with myisamchk
	4.6.3.6 myisamchk Memory Usage

	4.6.4 myisamlog — Display MyISAM Log File Contents
	4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables
	4.6.6 mysql_config_editor — MySQL Configuration Utility
	4.6.7 mysqlbinlog — Utility for Processing Binary Log Files
	4.6.7.1 mysqlbinlog Hex Dump Format
	4.6.7.2 mysqlbinlog Row Event Display
	4.6.7.3 Using mysqlbinlog to Back Up Binary Log Files
	4.6.7.4 Specifying the mysqlbinlog Server ID

	4.6.8 mysqldumpslow — Summarize Slow Query Log Files
	4.6.9 mysqlhotcopy — A Database Backup Program
	4.6.10 mysql_waitpid — Kill Process and Wait for Its Termination
	4.6.11 mysql_zap — Kill Processes That Match a Pattern

	4.7 MySQL Program Development Utilities
	4.7.1 mysql_config — Display Options for Compiling Clients
	4.7.2 my_print_defaults — Display Options from Option Files
	4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

	4.8 Miscellaneous Programs
	4.8.1 perror — Explain Error Codes
	4.8.2 replace — A String-Replacement Utility
	4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa

	Chapter 5 MySQL Server Administration
	5.1 The MySQL Server
	5.1.1 Server Option and Variable Reference
	5.1.2 Server Configuration Defaults
	5.1.3 Server Command Options
	5.1.4 Server System Variables
	5.1.5 Using System Variables
	5.1.5.1 Structured System Variables
	5.1.5.2 Dynamic System Variables

	5.1.6 Server Status Variables
	5.1.7 Server SQL Modes
	5.1.8 Server Plugins
	5.1.8.1 Installing and Uninstalling Plugins
	5.1.8.2 Obtaining Server Plugin Information

	5.1.9 IPv6 Support
	5.1.9.1 Verifying System Support for IPv6
	5.1.9.2 Configuring the MySQL Server to Permit IPv6 Connections
	5.1.9.3 Connecting Using the IPv6 Local Host Address
	5.1.9.4 Connecting Using IPv6 Nonlocal Host Addresses
	5.1.9.5 Obtaining an IPv6 Address from a Broker

	5.1.10 Server-Side Help
	5.1.11 Server Response to Signals
	5.1.12 The Shutdown Process

	5.2 MySQL Server Logs
	5.2.1 Selecting General Query and Slow Query Log Output Destinations
	5.2.2 The Error Log
	5.2.3 The General Query Log
	5.2.4 The Binary Log
	5.2.4.1 Binary Logging Formats
	5.2.4.2 Setting The Binary Log Format
	5.2.4.3 Mixed Binary Logging Format
	5.2.4.4 Logging Format for Changes to mysql Database Tables

	5.2.5 The Slow Query Log
	5.2.6 Server Log Maintenance

	5.3 Running Multiple MySQL Instances on One Machine
	5.3.1 Setting Up Multiple Data Directories
	5.3.2 Running Multiple MySQL Instances on Windows
	5.3.2.1 Starting Multiple MySQL Instances at the Windows Command Line
	5.3.2.2 Starting Multiple MySQL Instances as Windows Services

	5.3.3 Running Multiple MySQL Instances on Unix
	5.3.4 Using Client Programs in a Multiple-Server Environment

	5.4 Tracing mysqld Using DTrace
	5.4.1 mysqld DTrace Probe Reference
	5.4.1.1 Connection Probes
	5.4.1.2 Command Probes
	5.4.1.3 Query Probes
	5.4.1.4 Query Parsing Probes
	5.4.1.5 Query Cache Probes
	5.4.1.6 Query Execution Probes
	5.4.1.7 Row-Level Probes
	5.4.1.8 Read Row Probes
	5.4.1.9 Index Probes
	5.4.1.10 Lock Probes
	5.4.1.11 Filesort Probes
	5.4.1.12 Statement Probes
	5.4.1.13 Network Probes
	5.4.1.14 Keycache Probes

	Chapter 6 Security
	6.1 General Security Issues
	6.1.1 Security Guidelines
	6.1.2 Keeping Passwords Secure
	6.1.2.1 End-User Guidelines for Password Security
	6.1.2.2 Administrator Guidelines for Password Security
	6.1.2.3 Passwords and Logging
	6.1.2.4 Password Hashing in MySQL
	6.1.2.5 Implications of Password Hashing Changes in MySQL 4.1 for Application Programs
	6.1.2.6 The Password Validation Plugin
	Password Validation Plugin Installation
	Password Validation Plugin Options and Variables

	6.1.3 Making MySQL Secure Against Attackers
	6.1.4 Security-Related mysqld Options and Variables
	6.1.5 How to Run MySQL as a Normal User
	6.1.6 Security Issues with LOAD DATA LOCAL
	6.1.7 Client Programming Security Guidelines

	6.2 The MySQL Access Privilege System
	6.2.1 Privileges Provided by MySQL
	6.2.2 Privilege System Grant Tables
	6.2.3 Specifying Account Names
	6.2.4 Access Control, Stage 1: Connection Verification
	6.2.5 Access Control, Stage 2: Request Verification
	6.2.6 When Privilege Changes Take Effect
	6.2.7 Causes of Access-Denied Errors

	6.3 MySQL User Account Management
	6.3.1 User Names and Passwords
	6.3.2 Adding User Accounts
	6.3.3 Removing User Accounts
	6.3.4 Setting Account Resource Limits
	6.3.5 Assigning Account Passwords
	6.3.6 Password Expiration Policy
	6.3.7 Password Expiration and Sandbox Mode
	6.3.8 Pluggable Authentication
	6.3.9 Authentication Plugins Available in MySQL
	6.3.9.1 The Native Authentication Plugin
	6.3.9.2 The “Old” Native Authentication Plugin
	6.3.9.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin
	6.3.9.4 The SHA-256 Authentication Plugin
	6.3.9.5 The Cleartext Client-Side Authentication Plugin
	6.3.9.6 The Socket Peer-Credential Authentication Plugin
	6.3.9.7 The Test Authentication Plugin

	6.3.10 Proxy Users
	6.3.11 Using SSL for Secure Connections
	6.3.11.1 Basic SSL Concepts
	6.3.11.2 Configuring MySQL for SSL
	6.3.11.3 Using SSL Connections
	6.3.11.4 SSL Command Options
	6.3.11.5 Setting Up SSL Certificates and Keys for MySQL

	6.3.12 Connecting to MySQL Remotely from Windows with SSH
	6.3.13 MySQL Enterprise Audit Log Plugin
	6.3.13.1 Installing the Audit Log Plugin
	6.3.13.2 Audit Log Plugin Security Considerations
	6.3.13.3 The Audit Log File
	6.3.13.4 Audit Log Plugin Logging Control
	6.3.13.5 Audit Log Plugin Options and Variables
	6.3.13.6 Audit Log Plugin Restrictions

	6.3.14 SQL-Based MySQL Account Activity Auditing

	Chapter 7 Backup and Recovery
	7.1 Backup and Recovery Types
	7.2 Database Backup Methods
	7.3 Example Backup and Recovery Strategy
	7.3.1 Establishing a Backup Policy
	7.3.2 Using Backups for Recovery
	7.3.3 Backup Strategy Summary

	7.4 Using mysqldump for Backups
	7.4.1 Dumping Data in SQL Format with mysqldump
	7.4.2 Reloading SQL-Format Backups
	7.4.3 Dumping Data in Delimited-Text Format with mysqldump
	7.4.4 Reloading Delimited-Text Format Backups
	7.4.5 mysqldump Tips
	7.4.5.1 Making a Copy of a Database
	7.4.5.2 Copy a Database from one Server to Another
	7.4.5.3 Dumping Stored Programs
	7.4.5.4 Dumping Table Definitions and Content Separately
	7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

	7.5 Point-in-Time (Incremental) Recovery Using the Binary Log
	7.5.1 Point-in-Time Recovery Using Event Times
	7.5.2 Point-in-Time Recovery Using Event Positions

	7.6 MyISAM Table Maintenance and Crash Recovery
	7.6.1 Using myisamchk for Crash Recovery
	7.6.2 How to Check MyISAM Tables for Errors
	7.6.3 How to Repair MyISAM Tables
	7.6.4 MyISAM Table Optimization
	7.6.5 Setting Up a MyISAM Table Maintenance Schedule

	Chapter 8 Optimization
	8.1 Optimization Overview
	8.2 Optimizing SQL Statements
	8.2.1 Optimizing SELECT Statements
	8.2.1.1 Speed of SELECT Statements
	8.2.1.2 How MySQL Optimizes WHERE Clauses
	8.2.1.3 Range Optimization
	The Range Access Method for Single-Part Indexes
	The Range Access Method for Multiple-Part Indexes
	Equality Range Optimization of Many-Valued Comparisons
	Range Optimization of Row Constructor Expressions

	8.2.1.4 Index Merge Optimization
	The Index Merge Intersection Access Algorithm
	The Index Merge Union Access Algorithm
	The Index Merge Sort-Union Access Algorithm

	8.2.1.5 Engine Condition Pushdown Optimization
	8.2.1.6 Index Condition Pushdown Optimization
	8.2.1.7 Use of Index Extensions
	8.2.1.8 IS NULL Optimization
	8.2.1.9 LEFT JOIN and RIGHT JOIN Optimization
	8.2.1.10 Nested-Loop Join Algorithms
	8.2.1.11 Nested Join Optimization
	8.2.1.12 Outer Join Simplification
	8.2.1.13 Multi-Range Read Optimization
	8.2.1.14 Block Nested-Loop and Batched Key Access Joins
	Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms
	Block Nested-Loop Algorithm for Outer Joins and Semi-Joins
	Batched Key Access Joins

	8.2.1.15 ORDER BY Optimization
	8.2.1.16 GROUP BY Optimization
	Loose Index Scan
	Tight Index Scan

	8.2.1.17 DISTINCT Optimization
	8.2.1.18 Subquery Optimization
	Optimizing Subqueries with Semi-Join Transformations
	Optimizing Subqueries with Subquery Materialization
	Optimizing Subqueries in the FROM Clause (Derived Tables)
	Optimizing Subqueries with EXISTS Strategy

	8.2.1.19 Optimizing LIMIT Queries
	8.2.1.20 How to Avoid Full Table Scans

	8.2.2 Optimizing DML Statements
	8.2.2.1 Speed of INSERT Statements
	8.2.2.2 Speed of UPDATE Statements
	8.2.2.3 Speed of DELETE Statements

	8.2.3 Optimizing Database Privileges
	8.2.4 Optimizing INFORMATION_SCHEMA Queries
	8.2.5 Other Optimization Tips

	8.3 Optimization and Indexes
	8.3.1 How MySQL Uses Indexes
	8.3.2 Using Primary Keys
	8.3.3 Using Foreign Keys
	8.3.4 Column Indexes
	8.3.5 Multiple-Column Indexes
	8.3.6 Verifying Index Usage
	8.3.7 InnoDB and MyISAM Index Statistics Collection
	8.3.8 Comparison of B-Tree and Hash Indexes

	8.4 Optimizing Database Structure
	8.4.1 Optimizing Data Size
	8.4.2 Optimizing MySQL Data Types
	8.4.2.1 Optimizing for Numeric Data
	8.4.2.2 Optimizing for Character and String Types
	8.4.2.3 Optimizing for BLOB Types
	8.4.2.4 Using PROCEDURE ANALYSE

	8.4.3 Optimizing for Many Tables
	8.4.3.1 How MySQL Opens and Closes Tables
	8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

	8.4.4 How MySQL Uses Internal Temporary Tables

	8.5 Optimizing for InnoDB Tables
	8.5.1 Optimizing Storage Layout for InnoDB Tables
	8.5.2 Optimizing InnoDB Transaction Management
	8.5.3 Optimizing InnoDB Logging
	8.5.4 Bulk Data Loading for InnoDB Tables
	8.5.5 Optimizing InnoDB Queries
	8.5.6 Optimizing InnoDB DDL Operations
	8.5.7 Optimizing InnoDB Disk I/O
	8.5.8 Optimizing InnoDB Configuration Variables
	8.5.9 Optimizing InnoDB for Systems with Many Tables

	8.6 Optimizing for MyISAM Tables
	8.6.1 Optimizing MyISAM Queries
	8.6.2 Bulk Data Loading for MyISAM Tables
	8.6.3 Speed of REPAIR TABLE Statements

	8.7 Optimizing for MEMORY Tables
	8.8 Understanding the Query Execution Plan
	8.8.1 Optimizing Queries with EXPLAIN
	8.8.2 EXPLAIN Output Format
	8.8.3 Obtaining Execution Plan Information for a Named Connection
	8.8.4 EXPLAIN EXTENDED Output Format
	8.8.5 Estimating Query Performance
	8.8.6 Controlling the Query Optimizer
	8.8.6.1 Controlling Query Plan Evaluation
	8.8.6.2 Controlling Switchable Optimizations

	8.9 Buffering and Caching
	8.9.1 The InnoDB Buffer Pool
	8.9.2 The MyISAM Key Cache
	8.9.2.1 Shared Key Cache Access
	8.9.2.2 Multiple Key Caches
	8.9.2.3 Midpoint Insertion Strategy
	8.9.2.4 Index Preloading
	8.9.2.5 Key Cache Block Size
	8.9.2.6 Restructuring a Key Cache

	8.9.3 The MySQL Query Cache
	8.9.3.1 How the Query Cache Operates
	8.9.3.2 Query Cache SELECT Options
	8.9.3.3 Query Cache Configuration
	8.9.3.4 Query Cache Status and Maintenance

	8.9.4 Caching of Prepared Statements and Stored Programs

	8.10 Optimizing Locking Operations
	8.10.1 Internal Locking Methods
	8.10.2 Table Locking Issues
	8.10.3 Concurrent Inserts
	8.10.4 Metadata Locking
	8.10.5 External Locking

	8.11 Optimizing the MySQL Server
	8.11.1 System Factors and Startup Parameter Tuning
	8.11.2 Tuning Server Parameters
	8.11.3 Optimizing Disk I/O
	8.11.3.1 Using Symbolic Links
	Using Symbolic Links for Databases on Unix
	Using Symbolic Links for MyISAM Tables on Unix
	Using Symbolic Links for Databases on Windows

	8.11.4 Optimizing Memory Use
	8.11.4.1 How MySQL Uses Memory
	8.11.4.2 Enabling Large Page Support

	8.11.5 Optimizing Network Use
	8.11.5.1 How MySQL Uses Threads for Client Connections
	8.11.5.2 DNS Lookup Optimization and the Host Cache

	8.12 Measuring Performance (Benchmarking)
	8.12.1 Measuring the Speed of Expressions and Functions
	8.12.2 The MySQL Benchmark Suite
	8.12.3 Using Your Own Benchmarks
	8.12.4 Measuring Performance with performance_schema
	8.12.5 Examining Thread Information
	8.12.5.1 Thread Command Values
	8.12.5.2 General Thread States
	8.12.5.3 Query Cache Thread States
	8.12.5.4 Replication Master Thread States
	8.12.5.5 Replication Slave I/O Thread States
	8.12.5.6 Replication Slave SQL Thread States
	8.12.5.7 Replication Slave Connection Thread States
	8.12.5.8 Event Scheduler Thread States

	Chapter 9 Language Structure
	9.1 Literal Values
	9.1.1 String Literals
	9.1.2 Number Literals
	9.1.3 Date and Time Literals
	9.1.4 Hexadecimal Literals
	9.1.5 Boolean Literals
	9.1.6 Bit-Field Literals
	9.1.7 NULL Values

	9.2 Schema Object Names
	9.2.1 Identifier Qualifiers
	9.2.2 Identifier Case Sensitivity
	9.2.3 Mapping of Identifiers to File Names
	9.2.4 Function Name Parsing and Resolution

	9.3 Reserved Words
	9.4 User-Defined Variables
	9.5 Expression Syntax
	9.6 Comment Syntax

	Chapter 10 Globalization
	10.1 Character Set Support
	10.1.1 Character Sets and Collations in General
	10.1.2 Character Sets and Collations in MySQL
	10.1.3 Specifying Character Sets and Collations
	10.1.3.1 Server Character Set and Collation
	10.1.3.2 Database Character Set and Collation
	10.1.3.3 Table Character Set and Collation
	10.1.3.4 Column Character Set and Collation
	10.1.3.5 Character String Literal Character Set and Collation
	10.1.3.6 National Character Set
	10.1.3.7 Examples of Character Set and Collation Assignment
	10.1.3.8 Compatibility with Other DBMSs

	10.1.4 Connection Character Sets and Collations
	10.1.5 Configuring the Character Set and Collation for Applications
	10.1.6 Character Set for Error Messages
	10.1.7 Collation Issues
	10.1.7.1 Collation Names
	10.1.7.2 Using COLLATE in SQL Statements
	10.1.7.3 COLLATE Clause Precedence
	10.1.7.4 Collations Must Be for the Right Character Set
	10.1.7.5 Collation of Expressions
	10.1.7.6 The _bin and binary Collations
	10.1.7.7 The BINARY Operator
	10.1.7.8 Examples of the Effect of Collation
	10.1.7.9 Collation and INFORMATION_SCHEMA Searches

	10.1.8 String Repertoire
	10.1.9 Operations Affected by Character Set Support
	10.1.9.1 Result Strings
	10.1.9.2 CONVERT() and CAST()
	10.1.9.3 SHOW Statements and INFORMATION_SCHEMA

	10.1.10 Unicode Support
	10.1.10.1 The ucs2 Character Set (UCS-2 Unicode Encoding)
	10.1.10.2 The utf16 Character Set (UTF-16 Unicode Encoding)
	10.1.10.3 The utf16le Character Set (UTF-16LE Unicode Encoding)
	10.1.10.4 The utf32 Character Set (UTF-32 Unicode Encoding)
	10.1.10.5 The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)
	10.1.10.6 The utf8mb3 “Character Set” (Alias for utf8)
	10.1.10.7 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

	10.1.11 Upgrading from Previous to Current Unicode Support
	10.1.12 UTF-8 for Metadata
	10.1.13 Column Character Set Conversion
	10.1.14 Character Sets and Collations That MySQL Supports
	10.1.14.1 Unicode Character Sets
	10.1.14.2 West European Character Sets
	10.1.14.3 Central European Character Sets
	10.1.14.4 South European and Middle East Character Sets
	10.1.14.5 Baltic Character Sets
	10.1.14.6 Cyrillic Character Sets
	10.1.14.7 Asian Character Sets
	The cp932 Character Set

	10.2 Setting the Error Message Language
	10.3 Adding a Character Set
	10.3.1 Character Definition Arrays
	10.3.2 String Collating Support for Complex Character Sets
	10.3.3 Multi-Byte Character Support for Complex Character Sets

	10.4 Adding a Collation to a Character Set
	10.4.1 Collation Implementation Types
	10.4.2 Choosing a Collation ID
	10.4.3 Adding a Simple Collation to an 8-Bit Character Set
	10.4.4 Adding a UCA Collation to a Unicode Character Set
	10.4.4.1 Defining a UCA Collation Using LDML Syntax
	10.4.4.2 LDML Syntax Supported in MySQL
	10.4.4.3 Diagnostics During Index.xml Parsing

	10.5 Character Set Configuration
	10.6 MySQL Server Time Zone Support
	10.6.1 Staying Current with Time Zone Changes
	10.6.2 Time Zone Leap Second Support

	10.7 MySQL Server Locale Support

	Chapter 11 Data Types
	11.1 Data Type Overview
	11.1.1 Numeric Type Overview
	11.1.2 Date and Time Type Overview
	11.1.3 String Type Overview

	11.2 Numeric Types
	11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
	11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
	11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
	11.2.4 Bit-Value Type - BIT
	11.2.5 Numeric Type Attributes
	11.2.6 Out-of-Range and Overflow Handling

	11.3 Date and Time Types
	11.3.1 The DATE, DATETIME, and TIMESTAMP Types
	11.3.2 The TIME Type
	11.3.3 The YEAR Type
	11.3.4 YEAR(2) Limitations and Migrating to YEAR(4)
	11.3.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME
	11.3.6 Fractional Seconds in Time Values
	11.3.7 Conversion Between Date and Time Types
	11.3.8 Two-Digit Years in Dates

	11.4 String Types
	11.4.1 The CHAR and VARCHAR Types
	11.4.2 The BINARY and VARBINARY Types
	11.4.3 The BLOB and TEXT Types
	11.4.4 The ENUM Type
	11.4.5 The SET Type

	11.5 Data Type Default Values
	11.6 Data Type Storage Requirements
	11.7 Choosing the Right Type for a Column
	11.8 Using Data Types from Other Database Engines

	Chapter 12 Functions and Operators
	12.1 Function and Operator Reference
	12.2 Type Conversion in Expression Evaluation
	12.3 Operators
	12.3.1 Operator Precedence
	12.3.2 Comparison Functions and Operators
	12.3.3 Logical Operators
	12.3.4 Assignment Operators

	12.4 Control Flow Functions
	12.5 String Functions
	12.5.1 String Comparison Functions
	12.5.2 Regular Expressions

	12.6 Numeric Functions and Operators
	12.6.1 Arithmetic Operators
	12.6.2 Mathematical Functions

	12.7 Date and Time Functions
	12.8 What Calendar Is Used By MySQL?
	12.9 Full-Text Search Functions
	12.9.1 Natural Language Full-Text Searches
	12.9.2 Boolean Full-Text Searches
	12.9.3 Full-Text Searches with Query Expansion
	12.9.4 Full-Text Stopwords
	12.9.5 Full-Text Restrictions
	12.9.6 Fine-Tuning MySQL Full-Text Search
	12.9.7 Adding a Collation for Full-Text Indexing

	12.10 Cast Functions and Operators
	12.11 XML Functions
	12.12 Bit Functions
	12.13 Encryption and Compression Functions
	12.14 Information Functions
	12.15 Functions Used with Global Transaction IDs
	12.16 Miscellaneous Functions
	12.17 Functions and Modifiers for Use with GROUP BY Clauses
	12.17.1 GROUP BY (Aggregate) Functions
	12.17.2 GROUP BY Modifiers
	12.17.3 MySQL Extensions to GROUP BY

	12.18 Spatial Extensions
	12.18.1 Introduction to MySQL Spatial Support
	12.18.2 The OpenGIS Geometry Model
	12.18.2.1 The Geometry Class Hierarchy
	12.18.2.2 Class Geometry
	12.18.2.3 Class Point
	12.18.2.4 Class Curve
	12.18.2.5 Class LineString
	12.18.2.6 Class Surface
	12.18.2.7 Class Polygon
	12.18.2.8 Class GeometryCollection
	12.18.2.9 Class MultiPoint
	12.18.2.10 Class MultiCurve
	12.18.2.11 Class MultiLineString
	12.18.2.12 Class MultiSurface
	12.18.2.13 Class MultiPolygon

	12.18.3 Supported Spatial Data Formats
	12.18.3.1 Well-Known Text (WKT) Format
	12.18.3.2 Well-Known Binary (WKB) Format

	12.18.4 Creating a Spatially Enabled MySQL Database
	12.18.4.1 MySQL Spatial Data Types
	12.18.4.2 Creating Spatial Values
	Creating Geometry Values Using WKT Functions
	Creating Geometry Values Using WKB Functions
	Creating Geometry Values Using MySQL-Specific Functions

	12.18.4.3 Creating Spatial Columns
	12.18.4.4 Populating Spatial Columns
	12.18.4.5 Fetching Spatial Data

	12.18.5 Spatial Analysis Functions
	12.18.5.1 Geometry Format Conversion Functions
	12.18.5.2 Geometry Property Functions
	General Geometry Functions
	Point Functions
	LineString Functions
	MultiLineString Functions
	Polygon Functions
	MultiPolygon Functions
	GeometryCollection Functions

	12.18.5.3 Functions That Create New Geometries from Existing Ones
	Geometry Functions That Produce New Geometries
	Spatial Operators

	12.18.5.4 Functions for Testing Spatial Relations Between Geometric Objects
	Relations on Geometry Minimal Bounding Rectangles (MBRs)
	Functions That Test Spatial Relationships Between Geometries

	12.18.6 Optimizing Spatial Analysis
	12.18.6.1 Creating Spatial Indexes
	12.18.6.2 Using a Spatial Index

	12.18.7 MySQL Conformance and Compatibility

	12.19 Precision Math
	12.19.1 Types of Numeric Values
	12.19.2 DECIMAL Data Type Characteristics
	12.19.3 Expression Handling
	12.19.4 Rounding Behavior
	12.19.5 Precision Math Examples

	Chapter 13 SQL Statement Syntax
	13.1 Data Definition Statements
	13.1.1 ALTER DATABASE Syntax
	13.1.2 ALTER EVENT Syntax
	13.1.3 ALTER FUNCTION Syntax
	13.1.4 ALTER PROCEDURE Syntax
	13.1.5 ALTER SERVER Syntax
	13.1.6 ALTER TABLE Syntax
	13.1.6.1 ALTER TABLE Partition Operations
	13.1.6.2 ALTER TABLE Examples

	13.1.7 ALTER VIEW Syntax
	13.1.8 CREATE DATABASE Syntax
	13.1.9 CREATE EVENT Syntax
	13.1.10 CREATE FUNCTION Syntax
	13.1.11 CREATE INDEX Syntax
	13.1.12 CREATE PROCEDURE and CREATE FUNCTION Syntax
	13.1.13 CREATE SERVER Syntax
	13.1.14 CREATE TABLE Syntax
	13.1.14.1 CREATE TABLE ... SELECT Syntax
	13.1.14.2 Using FOREIGN KEY Constraints
	13.1.14.3 Silent Column Specification Changes

	13.1.15 CREATE TRIGGER Syntax
	13.1.16 CREATE VIEW Syntax
	13.1.17 DROP DATABASE Syntax
	13.1.18 DROP EVENT Syntax
	13.1.19 DROP FUNCTION Syntax
	13.1.20 DROP INDEX Syntax
	13.1.21 DROP PROCEDURE and DROP FUNCTION Syntax
	13.1.22 DROP SERVER Syntax
	13.1.23 DROP TABLE Syntax
	13.1.24 DROP TRIGGER Syntax
	13.1.25 DROP VIEW Syntax
	13.1.26 RENAME TABLE Syntax
	13.1.27 TRUNCATE TABLE Syntax

	13.2 Data Manipulation Statements
	13.2.1 CALL Syntax
	13.2.2 DELETE Syntax
	13.2.3 DO Syntax
	13.2.4 HANDLER Syntax
	13.2.5 INSERT Syntax
	13.2.5.1 INSERT ... SELECT Syntax
	13.2.5.2 INSERT DELAYED Syntax
	13.2.5.3 INSERT ... ON DUPLICATE KEY UPDATE Syntax

	13.2.6 LOAD DATA INFILE Syntax
	13.2.7 LOAD XML Syntax
	13.2.8 REPLACE Syntax
	13.2.9 SELECT Syntax
	13.2.9.1 SELECT ... INTO Syntax
	13.2.9.2 JOIN Syntax
	13.2.9.3 Index Hint Syntax
	13.2.9.4 UNION Syntax

	13.2.10 Subquery Syntax
	13.2.10.1 The Subquery as Scalar Operand
	13.2.10.2 Comparisons Using Subqueries
	13.2.10.3 Subqueries with ANY, IN, or SOME
	13.2.10.4 Subqueries with ALL
	13.2.10.5 Row Subqueries
	13.2.10.6 Subqueries with EXISTS or NOT EXISTS
	13.2.10.7 Correlated Subqueries
	13.2.10.8 Subqueries in the FROM Clause
	13.2.10.9 Subquery Errors
	13.2.10.10 Optimizing Subqueries
	13.2.10.11 Rewriting Subqueries as Joins

	13.2.11 UPDATE Syntax

	13.3 MySQL Transactional and Locking Statements
	13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax
	13.3.2 Statements That Cannot Be Rolled Back
	13.3.3 Statements That Cause an Implicit Commit
	13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax
	13.3.5 LOCK TABLES and UNLOCK TABLES Syntax
	13.3.5.1 Interaction of Table Locking and Transactions
	13.3.5.2 LOCK TABLES and Triggers
	13.3.5.3 Table-Locking Restrictions and Conditions

	13.3.6 SET TRANSACTION Syntax
	13.3.7 XA Transactions
	13.3.7.1 XA Transaction SQL Syntax
	13.3.7.2 XA Transaction States

	13.4 Replication Statements
	13.4.1 SQL Statements for Controlling Master Servers
	13.4.1.1 PURGE BINARY LOGS Syntax
	13.4.1.2 RESET MASTER Syntax
	13.4.1.3 SET sql_log_bin Syntax

	13.4.2 SQL Statements for Controlling Slave Servers
	13.4.2.1 CHANGE MASTER TO Syntax
	13.4.2.2 CHANGE REPLICATION FILTER Syntax
	13.4.2.3 MASTER_POS_WAIT() Syntax
	13.4.2.4 RESET SLAVE Syntax
	13.4.2.5 SET GLOBAL sql_slave_skip_counter Syntax
	13.4.2.6 START SLAVE Syntax
	13.4.2.7 STOP SLAVE Syntax

	13.5 SQL Syntax for Prepared Statements
	13.5.1 PREPARE Syntax
	13.5.2 EXECUTE Syntax
	13.5.3 DEALLOCATE PREPARE Syntax

	13.6 MySQL Compound-Statement Syntax
	13.6.1 BEGIN ... END Compound-Statement Syntax
	13.6.2 Statement Label Syntax
	13.6.3 DECLARE Syntax
	13.6.4 Variables in Stored Programs
	13.6.4.1 Local Variable DECLARE Syntax
	13.6.4.2 Local Variable Scope and Resolution

	13.6.5 Flow Control Statements
	13.6.5.1 CASE Syntax
	13.6.5.2 IF Syntax
	13.6.5.3 ITERATE Syntax
	13.6.5.4 LEAVE Syntax
	13.6.5.5 LOOP Syntax
	13.6.5.6 REPEAT Syntax
	13.6.5.7 RETURN Syntax
	13.6.5.8 WHILE Syntax

	13.6.6 Cursors
	13.6.6.1 Cursor CLOSE Syntax
	13.6.6.2 Cursor DECLARE Syntax
	13.6.6.3 Cursor FETCH Syntax
	13.6.6.4 Cursor OPEN Syntax

	13.6.7 Condition Handling
	13.6.7.1 DECLARE ... CONDITION Syntax
	13.6.7.2 DECLARE ... HANDLER Syntax
	13.6.7.3 GET DIAGNOSTICS Syntax
	13.6.7.4 RESIGNAL Syntax
	RESIGNAL Alone
	RESIGNAL with New Signal Information
	RESIGNAL with a Condition Value and Optional New Signal Information
	RESIGNAL Requires Condition Handler Context

	13.6.7.5 SIGNAL Syntax
	Signal Condition Information Items
	Effect of Signals on Handlers, Cursors, and Statements

	13.6.7.6 Scope Rules for Handlers
	13.6.7.7 The MySQL Diagnostics Area
	Diagnostics Area Structure
	Diagnostics Area Information Items
	How the Diagnostics Area is Populated
	How the Diagnostics Area Stack Works
	Diagnostics Area-Related System Variables

	13.7 Database Administration Statements
	13.7.1 Account Management Statements
	13.7.1.1 ALTER USER Syntax
	13.7.1.2 CREATE USER Syntax
	13.7.1.3 DROP USER Syntax
	13.7.1.4 GRANT Syntax
	13.7.1.5 RENAME USER Syntax
	13.7.1.6 REVOKE Syntax
	13.7.1.7 SET PASSWORD Syntax

	13.7.2 Table Maintenance Statements
	13.7.2.1 ANALYZE TABLE Syntax
	13.7.2.2 CHECK TABLE Syntax
	13.7.2.3 CHECKSUM TABLE Syntax
	13.7.2.4 OPTIMIZE TABLE Syntax
	13.7.2.5 REPAIR TABLE Syntax

	13.7.3 Plugin and User-Defined Function Statements
	13.7.3.1 CREATE FUNCTION Syntax for User-Defined Functions
	13.7.3.2 DROP FUNCTION Syntax
	13.7.3.3 INSTALL PLUGIN Syntax
	13.7.3.4 UNINSTALL PLUGIN Syntax

	13.7.4 SET Syntax
	13.7.5 SHOW Syntax
	13.7.5.1 SHOW BINARY LOGS Syntax
	13.7.5.2 SHOW BINLOG EVENTS Syntax
	13.7.5.3 SHOW CHARACTER SET Syntax
	13.7.5.4 SHOW COLLATION Syntax
	13.7.5.5 SHOW COLUMNS Syntax
	13.7.5.6 SHOW CREATE DATABASE Syntax
	13.7.5.7 SHOW CREATE EVENT Syntax
	13.7.5.8 SHOW CREATE FUNCTION Syntax
	13.7.5.9 SHOW CREATE PROCEDURE Syntax
	13.7.5.10 SHOW CREATE TABLE Syntax
	13.7.5.11 SHOW CREATE TRIGGER Syntax
	13.7.5.12 SHOW CREATE VIEW Syntax
	13.7.5.13 SHOW DATABASES Syntax
	13.7.5.14 SHOW ENGINE Syntax
	13.7.5.15 SHOW ENGINES Syntax
	13.7.5.16 SHOW ERRORS Syntax
	13.7.5.17 SHOW EVENTS Syntax
	13.7.5.18 SHOW FUNCTION CODE Syntax
	13.7.5.19 SHOW FUNCTION STATUS Syntax
	13.7.5.20 SHOW GRANTS Syntax
	13.7.5.21 SHOW INDEX Syntax
	13.7.5.22 SHOW MASTER STATUS Syntax
	13.7.5.23 SHOW OPEN TABLES Syntax
	13.7.5.24 SHOW PLUGINS Syntax
	13.7.5.25 SHOW PRIVILEGES Syntax
	13.7.5.26 SHOW PROCEDURE CODE Syntax
	13.7.5.27 SHOW PROCEDURE STATUS Syntax
	13.7.5.28 SHOW PROCESSLIST Syntax
	13.7.5.29 SHOW PROFILE Syntax
	13.7.5.30 SHOW PROFILES Syntax
	13.7.5.31 SHOW RELAYLOG EVENTS Syntax
	13.7.5.32 SHOW SLAVE HOSTS Syntax
	13.7.5.33 SHOW SLAVE STATUS Syntax
	13.7.5.34 SHOW STATUS Syntax
	13.7.5.35 SHOW TABLE STATUS Syntax
	13.7.5.36 SHOW TABLES Syntax
	13.7.5.37 SHOW TRIGGERS Syntax
	13.7.5.38 SHOW VARIABLES Syntax
	13.7.5.39 SHOW WARNINGS Syntax

	13.7.6 Other Administrative Statements
	13.7.6.1 BINLOG Syntax
	13.7.6.2 CACHE INDEX Syntax
	13.7.6.3 FLUSH Syntax
	13.7.6.4 KILL Syntax
	13.7.6.5 LOAD INDEX INTO CACHE Syntax
	13.7.6.6 RESET Syntax

	13.8 MySQL Utility Statements
	13.8.1 DESCRIBE Syntax
	13.8.2 EXPLAIN Syntax
	13.8.3 HELP Syntax
	13.8.4 USE Syntax

	Chapter 14 Storage Engines
	14.1 Setting the Storage Engine
	14.2 The InnoDB Storage Engine
	14.2.1 Introduction to InnoDB
	14.2.1.1 InnoDB as the Default MySQL Storage Engine
	14.2.1.2 Checking InnoDB Availability
	14.2.1.3 Turning Off InnoDB

	14.2.2 InnoDB Concepts and Architecture
	14.2.2.1 MySQL and the ACID Model
	14.2.2.2 The InnoDB Transaction Model and Locking
	14.2.2.3 InnoDB Lock Modes
	14.2.2.4 Consistent Nonlocking Reads
	14.2.2.5 Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)
	14.2.2.6 InnoDB Record, Gap, and Next-Key Locks
	14.2.2.7 Avoiding the Phantom Problem Using Next-Key Locking
	14.2.2.8 Locks Set by Different SQL Statements in InnoDB
	14.2.2.9 Implicit Transaction Commit and Rollback
	14.2.2.10 Deadlock Detection and Rollback
	14.2.2.11 How to Cope with Deadlocks
	14.2.2.12 InnoDB Multi-Versioning
	14.2.2.13 InnoDB Temporary Table Undo Logs
	14.2.2.14 InnoDB Table and Index Structures
	Role of the .frm File for InnoDB Tables
	Clustered and Secondary Indexes
	FULLTEXT Indexes
	Physical Structure of an InnoDB Index
	Insert Buffering
	Adaptive Hash Indexes
	Physical Row Structure

	14.2.3 InnoDB Configuration
	14.2.3.1 Configuring InnoDB for Read-Only Operation

	14.2.4 InnoDB Administration
	14.2.5 InnoDB Tablespace Management
	14.2.5.1 Creating the InnoDB Tablespace
	14.2.5.2 InnoDB File-Per-Table Mode
	14.2.5.3 Enabling and Disabling File-Per-Table Mode
	14.2.5.4 Specifying the Location of a Tablespace
	14.2.5.5 Copying Tablespaces to Another Server (Transportable Tablespaces)
	Transportable Tablespace Examples
	Tablespace Copying Internals (Transportable Tablespaces)

	14.2.5.6 Moving the Undo Log out of the System Tablespace
	14.2.5.7 Changing the Number or Size of InnoDB Log Files and Resizing the InnoDB Tablespace
	14.2.5.8 Using Raw Disk Partitions for the Shared Tablespace

	14.2.6 InnoDB Table Management
	14.2.6.1 Creating InnoDB Tables
	14.2.6.2 Moving or Copying InnoDB Tables to Another Machine
	14.2.6.3 Grouping DML Operations with Transactions
	14.2.6.4 Converting Tables from MyISAM to InnoDB
	14.2.6.5 AUTO_INCREMENT Handling in InnoDB
	Traditional InnoDB Auto-Increment Locking
	Configurable InnoDB Auto-Increment Locking

	14.2.6.6 InnoDB and FOREIGN KEY Constraints
	14.2.6.7 Limits on InnoDB Tables

	14.2.7 InnoDB Compressed Tables
	14.2.7.1 Overview of Table Compression
	14.2.7.2 Enabling Compression for a Table
	14.2.7.3 Tuning Compression for InnoDB Tables
	14.2.7.4 Monitoring Compression at Runtime
	14.2.7.5 How Compression Works for InnoDB Tables
	14.2.7.6 SQL Compression Syntax Warnings and Errors

	14.2.8 InnoDB File-Format Management
	14.2.8.1 Enabling File Formats
	14.2.8.2 Verifying File Format Compatibility
	Compatibility Check When InnoDB Is Started
	Compatibility Check When a Table Is Opened

	14.2.8.3 Identifying the File Format in Use
	14.2.8.4 Downgrading the File Format
	14.2.8.5 Future InnoDB File Formats

	14.2.9 InnoDB Row Storage and Row Formats
	14.2.9.1 Overview of InnoDB Row Storage
	14.2.9.2 Specifying the Row Format for a Table
	14.2.9.3 DYNAMIC and COMPRESSED Row Formats
	14.2.9.4 COMPACT and REDUNDANT Row Formats

	14.2.10 InnoDB Disk I/O and File Space Management
	14.2.10.1 InnoDB Disk I/O
	14.2.10.2 File Space Management
	14.2.10.3 InnoDB Checkpoints
	14.2.10.4 Defragmenting a Table
	14.2.10.5 Reclaiming Disk Space with TRUNCATE TABLE

	14.2.11 InnoDB and Online DDL
	14.2.11.1 Overview of Online DDL
	14.2.11.2 Performance and Concurrency Considerations for Online DDL
	14.2.11.3 SQL Syntax for Online DDL
	14.2.11.4 Combining or Separating DDL Statements
	14.2.11.5 Examples of Online DDL
	14.2.11.6 Implementation Details of Online DDL
	14.2.11.7 How Crash Recovery Works with Online DDL
	14.2.11.8 Online DDL for Partitioned InnoDB Tables
	14.2.11.9 Limitations of Online DDL

	14.2.12 InnoDB Performance Tuning
	14.2.12.1 InnoDB Performance Tuning Tips
	14.2.12.2 InnoDB Performance and Scalability Enhancements
	Overview of InnoDB Performance
	Compression Enhancements for OLTP Workloads
	Optimizations for Read-Only Transactions
	Separate Tablespaces for InnoDB Undo Logs
	Faster Extension for InnoDB Data Files
	Non-Recursive Deadlock Detection
	Fast CRC32 Checksum Algorithm
	Faster Restart by Preloading the InnoDB Buffer Pool
	Improvements to Buffer Pool Flushing
	Persistent Optimizer Statistics for InnoDB Tables
	Faster Locking for Improved Scalability
	Using Operating System Memory Allocators
	Controlling InnoDB Change Buffering
	Controlling Adaptive Hash Indexing
	Changes Regarding Thread Concurrency
	Changes in the Read-Ahead Algorithm
	Multiple Background InnoDB I/O Threads
	Asynchronous I/O on Linux
	Group Commit
	Controlling the InnoDB Master Thread I/O Rate
	Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool
	Using the PAUSE Instruction in InnoDB Spin Loops
	Control of Spin Lock Polling
	Making the Buffer Pool Scan Resistant
	Improvements to Crash Recovery Performance
	Integration with the MySQL Performance Schema
	Improvements to Performance from Multiple Buffer Pools
	Better Scalability with Multiple Rollback Segments
	Better Scalability with Improved Purge Scheduling
	Improved Log Sys Mutex
	Separate Flush List Mutex
	memcached Plugin for InnoDB
	Online DDL

	14.2.12.3 InnoDB INFORMATION_SCHEMA tables
	Information Schema Tables about Compression
	INNODB_CMP and INNODB_CMP_RESET
	INNODB_CMPMEM and INNODB_CMPMEM_RESET
	Using the Compression Information Schema Tables

	Information Schema Tables about Transactions
	Using the Transaction Information Schema Tables

	Information Schema Tables about Full-Text Search
	Special Locking Considerations for InnoDB INFORMATION_SCHEMA Tables
	Understanding InnoDB Locking
	Granularity of INFORMATION_SCHEMA Data
	Possible Inconsistency with PROCESSLIST

	14.2.12.4 InnoDB Monitors
	InnoDB Monitor Types
	Enabling InnoDB Monitors
	InnoDB Standard Monitor and Lock Monitor Output
	InnoDB Tablespace Monitor Output
	InnoDB Table Monitor Output

	14.2.12.5 Controlling Optimizer Statistics Estimation

	14.2.13 InnoDB Startup Options and System Variables
	14.2.13.1 Changes to InnoDB Startup Options and System Variables
	New Parameters
	Removed Parameters

	14.2.14 InnoDB Backup and Recovery
	14.2.14.1 The InnoDB Recovery Process

	14.2.15 InnoDB and MySQL Replication
	14.2.16 InnoDB Integration with memcached
	14.2.16.1 Benefits of the InnoDB / memcached Combination
	14.2.16.2 Architecture of InnoDB and memcached Integration
	14.2.16.3 Getting Started with InnoDB Memcached Plugin
	Prerequisites for the InnoDB memcached Plugin
	Installing and Configuring the InnoDB memcached Plugin
	Verifying the InnoDB and memcached Setup

	14.2.16.4 Security Considerations for the InnoDB memcached Plugin
	Password-Protecting the memcached Interface through SASL

	14.2.16.5 Writing Applications for the InnoDB memcached Interface
	Adapting an Existing MySQL Schema for a memcached Application
	Adapting an Existing memcached Application for the Integrated memcached Daemon
	Tuning Performance of the InnoDB memcached Plugin
	Controlling Transactional Behavior of the InnoDB memcached Plugin
	Adapting DML Statements to memcached Operations
	Performing DML and DDL Statements on the Underlying InnoDB Table

	14.2.16.6 Using the InnoDB memcached Plugin with Replication
	14.2.16.7 Internals of the InnoDB memcached Plugin
	14.2.16.8 Troubleshooting the InnoDB memcached Plugin

	14.2.17 InnoDB Troubleshooting
	14.2.17.1 Troubleshooting InnoDB I/O Problems
	14.2.17.2 Starting InnoDB on a Corrupted Database
	14.2.17.3 Troubleshooting InnoDB Data Dictionary Operations
	14.2.17.4 InnoDB Error Handling
	14.2.17.5 InnoDB Error Codes
	14.2.17.6 Operating System Error Codes

	14.3 The MyISAM Storage Engine
	14.3.1 MyISAM Startup Options
	14.3.2 Space Needed for Keys
	14.3.3 MyISAM Table Storage Formats
	14.3.3.1 Static (Fixed-Length) Table Characteristics
	14.3.3.2 Dynamic Table Characteristics
	14.3.3.3 Compressed Table Characteristics

	14.3.4 MyISAM Table Problems
	14.3.4.1 Corrupted MyISAM Tables
	14.3.4.2 Problems from Tables Not Being Closed Properly

	14.4 The MEMORY Storage Engine
	14.5 The CSV Storage Engine
	14.5.1 Repairing and Checking CSV Tables
	14.5.2 CSV Limitations

	14.6 The ARCHIVE Storage Engine
	14.7 The BLACKHOLE Storage Engine
	14.8 The MERGE Storage Engine
	14.8.1 MERGE Table Advantages and Disadvantages
	14.8.2 MERGE Table Problems

	14.9 The FEDERATED Storage Engine
	14.9.1 FEDERATED Storage Engine Overview
	14.9.2 How to Create FEDERATED Tables
	14.9.2.1 Creating a FEDERATED Table Using CONNECTION
	14.9.2.2 Creating a FEDERATED Table Using CREATE SERVER

	14.9.3 FEDERATED Storage Engine Notes and Tips
	14.9.4 FEDERATED Storage Engine Resources

	14.10 The EXAMPLE Storage Engine
	14.11 Other Storage Engines
	14.12 Overview of MySQL Storage Engine Architecture
	14.12.1 Pluggable Storage Engine Architecture
	14.12.2 The Common Database Server Layer

	Chapter 15 High Availability and Scalability
	15.1 Oracle VM Template for MySQL Enterprise Edition
	15.2 Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux
	15.3 Overview of MySQL with Windows Failover Clustering
	15.4 Using MySQL within an Amazon EC2 Instance
	15.4.1 Setting Up MySQL on an EC2 AMI
	15.4.2 EC2 Instance Limitations
	15.4.3 Deploying a MySQL Database Using EC2

	15.5 Using ZFS Replication
	15.5.1 Using ZFS for File System Replication
	15.5.2 Configuring MySQL for ZFS Replication
	15.5.3 Handling MySQL Recovery with ZFS

	15.6 Using MySQL with memcached
	15.6.1 Installing memcached
	15.6.2 Using memcached
	15.6.2.1 memcached Deployment
	15.6.2.2 Using Namespaces
	15.6.2.3 Data Expiry
	15.6.2.4 memcached Hashing/Distribution Types
	15.6.2.5 Using memcached and DTrace
	15.6.2.6 Memory Allocation within memcached
	15.6.2.7 memcached Thread Support
	15.6.2.8 memcached Logs

	15.6.3 Developing a memcached Application
	15.6.3.1 Basic memcached Operations
	15.6.3.2 Using memcached as a MySQL Caching Layer
	15.6.3.3 Using libmemcached with C and C++
	libmemcached Base Functions
	libmemcached Server Functions
	libmemcached Set Functions
	libmemcached Get Functions
	Controlling libmemcached Behaviors
	libmemcached Command-Line Utilities

	15.6.3.4 Using MySQL and memcached with Perl
	15.6.3.5 Using MySQL and memcached with Python
	15.6.3.6 Using MySQL and memcached with PHP
	15.6.3.7 Using MySQL and memcached with Ruby
	15.6.3.8 Using MySQL and memcached with Java
	15.6.3.9 Using the memcached TCP Text Protocol

	15.6.4 Getting memcached Statistics
	15.6.4.1 memcached General Statistics
	15.6.4.2 memcached Slabs Statistics
	15.6.4.3 memcached Item Statistics
	15.6.4.4 memcached Size Statistics
	15.6.4.5 memcached Detail Statistics
	15.6.4.6 Using memcached-tool

	15.6.5 memcached FAQ

	15.7 MySQL Proxy
	15.7.1 MySQL Proxy Supported Platforms
	15.7.2 Installing MySQL Proxy
	15.7.2.1 Installing MySQL Proxy from a Binary Distribution
	15.7.2.2 Installing MySQL Proxy from a Source Distribution
	15.7.2.3 Installing MySQL Proxy from the Bazaar Repository
	15.7.2.4 Setting Up MySQL Proxy as a Windows Service

	15.7.3 MySQL Proxy Command Options
	15.7.4 MySQL Proxy Scripting
	15.7.4.1 Proxy Scripting Sequence During Query Injection
	15.7.4.2 Internal Structures
	15.7.4.3 Capturing a Connection with connect_server()
	15.7.4.4 Examining the Handshake with read_handshake()
	15.7.4.5 Examining the Authentication Credentials with read_auth()
	15.7.4.6 Accessing Authentication Information with read_auth_result()
	15.7.4.7 Manipulating Queries with read_query()
	15.7.4.8 Manipulating Results with read_query_result()

	15.7.5 Using MySQL Proxy
	15.7.5.1 Using the Administration Interface

	15.7.6 MySQL Proxy FAQ

	Chapter 16 Replication
	16.1 Replication Configuration
	16.1.1 How to Set Up Replication
	16.1.1.1 Setting the Replication Master Configuration
	16.1.1.2 Setting the Replication Slave Configuration
	16.1.1.3 Creating a User for Replication
	16.1.1.4 Obtaining the Replication Master Binary Log Coordinates
	16.1.1.5 Creating a Data Snapshot Using mysqldump
	16.1.1.6 Creating a Data Snapshot Using Raw Data Files
	16.1.1.7 Setting Up Replication with New Master and Slaves
	16.1.1.8 Setting Up Replication with Existing Data
	16.1.1.9 Introducing Additional Slaves to an Existing Replication Environment
	16.1.1.10 Setting the Master Configuration on the Slave

	16.1.2 Replication Formats
	16.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
	16.1.2.2 Usage of Row-Based Logging and Replication
	16.1.2.3 Determination of Safe and Unsafe Statements in Binary Logging

	16.1.3 Replication with Global Transaction Identifiers
	16.1.3.1 GTID Concepts
	16.1.3.2 Setting Up Replication Using GTIDs
	16.1.3.3 Using GTIDs for Failover and Scaleout
	16.1.3.4 Restrictions on Replication with GTIDs

	16.1.4 Replication and Binary Logging Options and Variables
	16.1.4.1 Replication and Binary Logging Option and Variable Reference
	16.1.4.2 Replication Master Options and Variables
	16.1.4.3 Replication Slave Options and Variables
	16.1.4.4 Binary Log Options and Variables
	16.1.4.5 Global Transaction ID Options and Variables

	16.1.5 Common Replication Administration Tasks
	16.1.5.1 Checking Replication Status
	16.1.5.2 Pausing Replication on the Slave

	16.2 Replication Implementation
	16.2.1 Replication Implementation Details
	16.2.2 Replication Relay and Status Logs
	16.2.2.1 The Slave Relay Log
	16.2.2.2 Slave Status Logs

	16.2.3 How Servers Evaluate Replication Filtering Rules
	16.2.3.1 Evaluation of Database-Level Replication and Binary Logging Options
	16.2.3.2 Evaluation of Table-Level Replication Options
	16.2.3.3 Replication Rule Application

	16.3 Replication Solutions
	16.3.1 Using Replication for Backups
	16.3.1.1 Backing Up a Slave Using mysqldump
	16.3.1.2 Backing Up Raw Data from a Slave
	16.3.1.3 Backing Up a Master or Slave by Making It Read Only

	16.3.2 Using Replication with Different Master and Slave Storage Engines
	16.3.3 Using Replication for Scale-Out
	16.3.4 Replicating Different Databases to Different Slaves
	16.3.5 Improving Replication Performance
	16.3.6 Switching Masters During Failover
	16.3.7 Setting Up Replication Using SSL
	16.3.8 Semisynchronous Replication
	16.3.8.1 Semisynchronous Replication Administrative Interface
	16.3.8.2 Semisynchronous Replication Installation and Configuration
	16.3.8.3 Semisynchronous Replication Monitoring

	16.3.9 Delayed Replication

	16.4 Replication Notes and Tips
	16.4.1 Replication Features and Issues
	16.4.1.1 Replication and AUTO_INCREMENT
	16.4.1.2 Replication and BLACKHOLE Tables
	16.4.1.3 Replication and Character Sets
	16.4.1.4 Replication of CREATE ... IF NOT EXISTS Statements
	16.4.1.5 Replication of CREATE TABLE ... SELECT Statements
	16.4.1.6 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
	16.4.1.7 Replication of CURRENT_USER()
	16.4.1.8 Replication of DROP ... IF EXISTS Statements
	16.4.1.9 Replication with Differing Table Definitions on Master and Slave
	Replication with More Columns on Master or Slave
	Replication of Columns Having Different Data Types

	16.4.1.10 Replication and DIRECTORY Table Options
	16.4.1.11 Replication of Invoked Features
	16.4.1.12 Replication and Floating-Point Values
	16.4.1.13 Replication and Fractional Seconds Support
	16.4.1.14 Replication and FLUSH
	16.4.1.15 Replication and System Functions
	16.4.1.16 Replication and LIMIT
	16.4.1.17 Replication and LOAD DATA INFILE
	16.4.1.18 Replication and REPAIR TABLE
	16.4.1.19 Replication and Master or Slave Shutdowns
	16.4.1.20 Replication and max_allowed_packet
	16.4.1.21 Replication and MEMORY Tables
	16.4.1.22 Replication and Temporary Tables
	16.4.1.23 Replication of the mysql System Database
	16.4.1.24 Replication and the Query Optimizer
	16.4.1.25 Replication and Reserved Words
	16.4.1.26 Slave Errors During Replication
	16.4.1.27 Replication of Server-Side Help Tables
	16.4.1.28 Replication and Server SQL Mode
	16.4.1.29 Replication Retries and Timeouts
	16.4.1.30 Replication and Time Zones
	16.4.1.31 Replication and Transactions
	16.4.1.32 Replication and Triggers
	16.4.1.33 Replication and TRUNCATE TABLE
	16.4.1.34 Replication and Variables
	16.4.1.35 Replication and Views

	16.4.2 Replication Compatibility Between MySQL Versions
	16.4.3 Upgrading a Replication Setup
	16.4.4 Troubleshooting Replication
	16.4.5 How to Report Replication Bugs or Problems

	Chapter 17 Partitioning
	17.1 Overview of Partitioning in MySQL
	17.2 Partitioning Types
	17.2.1 RANGE Partitioning
	17.2.2 LIST Partitioning
	17.2.3 COLUMNS Partitioning
	17.2.3.1 RANGE COLUMNS partitioning
	17.2.3.2 LIST COLUMNS partitioning

	17.2.4 HASH Partitioning
	17.2.4.1 LINEAR HASH Partitioning

	17.2.5 KEY Partitioning
	17.2.6 Subpartitioning
	17.2.7 How MySQL Partitioning Handles NULL

	17.3 Partition Management
	17.3.1 Management of RANGE and LIST Partitions
	17.3.2 Management of HASH and KEY Partitions
	17.3.3 Exchanging Partitions and Subpartitions with Tables
	17.3.4 Maintenance of Partitions
	17.3.5 Obtaining Information About Partitions

	17.4 Partition Pruning
	17.5 Partition Selection
	17.6 Restrictions and Limitations on Partitioning
	17.6.1 Partitioning Keys, Primary Keys, and Unique Keys
	17.6.2 Partitioning Limitations Relating to Storage Engines
	17.6.3 Partitioning Limitations Relating to Functions
	17.6.4 Partitioning and Locking

	Chapter 18 Stored Programs and Views
	18.1 Defining Stored Programs
	18.2 Using Stored Routines (Procedures and Functions)
	18.2.1 Stored Routine Syntax
	18.2.2 Stored Routines and MySQL Privileges
	18.2.3 Stored Routine Metadata
	18.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

	18.3 Using Triggers
	18.3.1 Trigger Syntax and Examples
	18.3.2 Trigger Metadata

	18.4 Using the Event Scheduler
	18.4.1 Event Scheduler Overview
	18.4.2 Event Scheduler Configuration
	18.4.3 Event Syntax
	18.4.4 Event Metadata
	18.4.5 Event Scheduler Status
	18.4.6 The Event Scheduler and MySQL Privileges

	18.5 Using Views
	18.5.1 View Syntax
	18.5.2 View Processing Algorithms
	18.5.3 Updatable and Insertable Views
	18.5.4 View Metadata

	18.6 Access Control for Stored Programs and Views
	18.7 Binary Logging of Stored Programs

	Chapter 19 INFORMATION_SCHEMA Tables
	19.1 The INFORMATION_SCHEMA CHARACTER_SETS Table
	19.2 The INFORMATION_SCHEMA COLLATIONS Table
	19.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	19.4 The INFORMATION_SCHEMA COLUMNS Table
	19.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	19.6 The INFORMATION_SCHEMA ENGINES Table
	19.7 The INFORMATION_SCHEMA EVENTS Table
	19.8 The INFORMATION_SCHEMA FILES Table
	19.9 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
	19.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
	19.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	19.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
	19.13 The INFORMATION_SCHEMA PARAMETERS Table
	19.14 The INFORMATION_SCHEMA PARTITIONS Table
	19.15 The INFORMATION_SCHEMA PLUGINS Table
	19.16 The INFORMATION_SCHEMA PROCESSLIST Table
	19.17 The INFORMATION_SCHEMA PROFILING Table
	19.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
	19.19 The INFORMATION_SCHEMA ROUTINES Table
	19.20 The INFORMATION_SCHEMA SCHEMATA Table
	19.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	19.22 The INFORMATION_SCHEMA STATISTICS Table
	19.23 The INFORMATION_SCHEMA TABLES Table
	19.24 The INFORMATION_SCHEMA TABLESPACES Table
	19.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	19.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	19.27 The INFORMATION_SCHEMA TRIGGERS Table
	19.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table
	19.29 The INFORMATION_SCHEMA VIEWS Table
	19.30 INFORMATION_SCHEMA Tables for InnoDB
	19.30.1 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
	19.30.2 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
	19.30.3 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
	19.30.4 The INFORMATION_SCHEMA INNODB_TRX Table
	19.30.5 The INFORMATION_SCHEMA INNODB_LOCKS Table
	19.30.6 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table
	19.30.7 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table
	19.30.8 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table
	19.30.9 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table
	19.30.10 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table
	19.30.11 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table
	19.30.12 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table
	19.30.13 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View
	19.30.14 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table
	19.30.15 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table
	19.30.16 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
	19.30.17 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
	19.30.18 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
	19.30.19 The INFORMATION_SCHEMA INNODB_METRICS Table
	19.30.20 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
	19.30.21 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
	19.30.22 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
	19.30.23 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
	19.30.24 The INFORMATION_SCHEMA INNODB_FT_DELETED Table
	19.30.25 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
	19.30.26 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

	19.31 Extensions to SHOW Statements

	Chapter 20 MySQL Performance Schema
	20.1 Performance Schema Quick Start
	20.2 Performance Schema Configuration
	20.2.1 Performance Schema Build Configuration
	20.2.2 Performance Schema Startup Configuration
	20.2.3 Performance Schema Runtime Configuration
	20.2.3.1 Performance Schema Event Timing
	20.2.3.2 Performance Schema Event Filtering
	20.2.3.3 Event Pre-Filtering
	Pre-Filtering by Instrument
	Pre-Filtering by Object
	Pre-Filtering by Thread
	Pre-Filtering by Consumer
	Example Consumer Configurations

	20.2.3.4 Naming Instruments or Consumers for Filtering Operations
	20.2.3.5 Determining What Is Instrumented

	20.3 Performance Schema Queries
	20.4 Performance Schema Instrument Naming Conventions
	20.5 Performance Schema Status Monitoring
	20.6 Performance Schema Atom and Molecule Events
	20.7 Performance Schema Statement Digests
	20.8 Performance Schema General Table Characteristics
	20.9 Performance Schema Table Descriptions
	20.9.1 Performance Schema Table Index
	20.9.2 Performance Schema Setup Tables
	20.9.2.1 The setup_actors Table
	20.9.2.2 The setup_consumers Table
	20.9.2.3 The setup_instruments Table
	20.9.2.4 The setup_objects Table
	20.9.2.5 The setup_timers Table

	20.9.3 Performance Schema Instance Tables
	20.9.3.1 The cond_instances Table
	20.9.3.2 The file_instances Table
	20.9.3.3 The mutex_instances Table
	20.9.3.4 The rwlock_instances Table
	20.9.3.5 The socket_instances Table

	20.9.4 Performance Schema Wait Event Tables
	20.9.4.1 The events_waits_current Table
	20.9.4.2 The events_waits_history Table
	20.9.4.3 The events_waits_history_long Table

	20.9.5 Performance Schema Stage Event Tables
	20.9.5.1 The events_stages_current Table
	20.9.5.2 The events_stages_history Table
	20.9.5.3 The events_stages_history_long Table

	20.9.6 Performance Schema Statement Event Tables
	20.9.6.1 The events_statements_current Table
	20.9.6.2 The events_statements_history Table
	20.9.6.3 The events_statements_history_long Table
	20.9.6.4 The prepared_statements_instances Table

	20.9.7 Performance Schema Transaction Tables
	20.9.7.1 The events_transactions_current Table
	20.9.7.2 The events_transactions_history Table
	20.9.7.3 The events_transactions_history_long Table

	20.9.8 Performance Schema Connection Tables
	20.9.8.1 The accounts Table
	20.9.8.2 The hosts Table
	20.9.8.3 The users Table

	20.9.9 Performance Schema Connection Attribute Tables
	20.9.10 Performance Schema Replication Tables
	20.9.10.1 The replication_connection_configuration Table
	20.9.10.2 The replication_connection_status Table
	20.9.10.3 The replication_execute_configuration Table
	20.9.10.4 The replication_execute_status Table
	20.9.10.5 The replication_execute_status_by_coordinator Table
	20.9.10.6 The replication_execute_status_by_worker Table

	20.9.11 Performance Schema Lock Tables
	20.9.11.1 The metadata_locks Table
	20.9.11.2 The table_handles Table

	20.9.12 Performance Schema Summary Tables
	20.9.12.1 Event Wait Summary Tables
	20.9.12.2 Stage Summary Tables
	20.9.12.3 Statement Summary Tables
	20.9.12.4 Transaction Summary Tables
	20.9.12.5 Object Wait Summary Table
	20.9.12.6 File I/O Summary Tables
	20.9.12.7 Table I/O and Lock Wait Summary Tables
	The table_io_waits_summary_by_table Table
	The table_io_waits_summary_by_index_usage Table
	The table_lock_waits_summary_by_table Table

	20.9.12.8 Connection Summary Tables
	20.9.12.9 Socket Summary Tables
	20.9.12.10 Memory Summary Tables

	20.9.13 Performance Schema Miscellaneous Tables
	20.9.13.1 The host_cache Table
	20.9.13.2 The performance_timers Table
	20.9.13.3 The threads Table

	20.10 Performance Schema Option and Variable Reference
	20.11 Performance Schema Command Options
	20.12 Performance Schema System Variables
	20.13 Performance Schema Status Variables
	20.14 Performance Schema and Plugins
	20.15 Using the Performance Schema to Diagnose Problems

	Chapter 21 Connectors and APIs
	21.1 MySQL Connector/ODBC
	21.2 MySQL Connector/Net
	21.3 MySQL Connector/J
	21.4 MySQL Connector/C++
	21.5 MySQL Connector/C
	21.6 MySQL Connector/Python
	21.7 libmysqld, the Embedded MySQL Server Library
	21.7.1 Compiling Programs with libmysqld
	21.7.2 Restrictions When Using the Embedded MySQL Server
	21.7.3 Options with the Embedded Server
	21.7.4 Embedded Server Examples

	21.8 MySQL C API
	21.8.1 MySQL C API Implementations
	21.8.2 Simultaneous MySQL Server and MySQL Connector/C Installations
	21.8.3 Example C API Client Programs
	21.8.4 Building and Running C API Client Programs
	21.8.4.1 Building C API Client Programs
	21.8.4.2 Writing C API Threaded Client Programs
	21.8.4.3 Running C API Client Programs
	21.8.4.4 C API Server and Client Library Versions

	21.8.5 C API Data Structures
	21.8.6 C API Function Overview
	21.8.7 C API Function Descriptions
	21.8.7.1 mysql_affected_rows()
	21.8.7.2 mysql_autocommit()
	21.8.7.3 mysql_change_user()
	21.8.7.4 mysql_character_set_name()
	21.8.7.5 mysql_close()
	21.8.7.6 mysql_commit()
	21.8.7.7 mysql_connect()
	21.8.7.8 mysql_create_db()
	21.8.7.9 mysql_data_seek()
	21.8.7.10 mysql_debug()
	21.8.7.11 mysql_drop_db()
	21.8.7.12 mysql_dump_debug_info()
	21.8.7.13 mysql_eof()
	21.8.7.14 mysql_errno()
	21.8.7.15 mysql_error()
	21.8.7.16 mysql_escape_string()
	21.8.7.17 mysql_fetch_field()
	21.8.7.18 mysql_fetch_field_direct()
	21.8.7.19 mysql_fetch_fields()
	21.8.7.20 mysql_fetch_lengths()
	21.8.7.21 mysql_fetch_row()
	21.8.7.22 mysql_field_count()
	21.8.7.23 mysql_field_seek()
	21.8.7.24 mysql_field_tell()
	21.8.7.25 mysql_free_result()
	21.8.7.26 mysql_get_character_set_info()
	21.8.7.27 mysql_get_client_info()
	21.8.7.28 mysql_get_client_version()
	21.8.7.29 mysql_get_host_info()
	21.8.7.30 mysql_get_option()
	21.8.7.31 mysql_get_proto_info()
	21.8.7.32 mysql_get_server_info()
	21.8.7.33 mysql_get_server_version()
	21.8.7.34 mysql_get_ssl_cipher()
	21.8.7.35 mysql_hex_string()
	21.8.7.36 mysql_info()
	21.8.7.37 mysql_init()
	21.8.7.38 mysql_insert_id()
	21.8.7.39 mysql_kill()
	21.8.7.40 mysql_library_end()
	21.8.7.41 mysql_library_init()
	21.8.7.42 mysql_list_dbs()
	21.8.7.43 mysql_list_fields()
	21.8.7.44 mysql_list_processes()
	21.8.7.45 mysql_list_tables()
	21.8.7.46 mysql_more_results()
	21.8.7.47 mysql_next_result()
	21.8.7.48 mysql_num_fields()
	21.8.7.49 mysql_num_rows()
	21.8.7.50 mysql_options()
	21.8.7.51 mysql_options4()
	21.8.7.52 mysql_ping()
	21.8.7.53 mysql_query()
	21.8.7.54 mysql_real_connect()
	21.8.7.55 mysql_real_escape_string()
	21.8.7.56 mysql_real_query()
	21.8.7.57 mysql_refresh()
	21.8.7.58 mysql_reload()
	21.8.7.59 mysql_reset_connection()
	21.8.7.60 mysql_rollback()
	21.8.7.61 mysql_row_seek()
	21.8.7.62 mysql_row_tell()
	21.8.7.63 mysql_select_db()
	21.8.7.64 mysql_session_track_get_first()
	21.8.7.65 mysql_session_track_get_next()
	21.8.7.66 mysql_set_character_set()
	21.8.7.67 mysql_set_local_infile_default()
	21.8.7.68 mysql_set_local_infile_handler()
	21.8.7.69 mysql_set_server_option()
	21.8.7.70 mysql_shutdown()
	21.8.7.71 mysql_sqlstate()
	21.8.7.72 mysql_ssl_set()
	21.8.7.73 mysql_stat()
	21.8.7.74 mysql_store_result()
	21.8.7.75 mysql_thread_id()
	21.8.7.76 mysql_use_result()
	21.8.7.77 mysql_warning_count()

	21.8.8 C API Prepared Statements
	21.8.9 C API Prepared Statement Data Structures
	21.8.9.1 C API Prepared Statement Type Codes
	21.8.9.2 C API Prepared Statement Type Conversions

	21.8.10 C API Prepared Statement Function Overview
	21.8.11 C API Prepared Statement Function Descriptions
	21.8.11.1 mysql_stmt_affected_rows()
	21.8.11.2 mysql_stmt_attr_get()
	21.8.11.3 mysql_stmt_attr_set()
	21.8.11.4 mysql_stmt_bind_param()
	21.8.11.5 mysql_stmt_bind_result()
	21.8.11.6 mysql_stmt_close()
	21.8.11.7 mysql_stmt_data_seek()
	21.8.11.8 mysql_stmt_errno()
	21.8.11.9 mysql_stmt_error()
	21.8.11.10 mysql_stmt_execute()
	21.8.11.11 mysql_stmt_fetch()
	21.8.11.12 mysql_stmt_fetch_column()
	21.8.11.13 mysql_stmt_field_count()
	21.8.11.14 mysql_stmt_free_result()
	21.8.11.15 mysql_stmt_init()
	21.8.11.16 mysql_stmt_insert_id()
	21.8.11.17 mysql_stmt_next_result()
	21.8.11.18 mysql_stmt_num_rows()
	21.8.11.19 mysql_stmt_param_count()
	21.8.11.20 mysql_stmt_param_metadata()
	21.8.11.21 mysql_stmt_prepare()
	21.8.11.22 mysql_stmt_reset()
	21.8.11.23 mysql_stmt_result_metadata()
	21.8.11.24 mysql_stmt_row_seek()
	21.8.11.25 mysql_stmt_row_tell()
	21.8.11.26 mysql_stmt_send_long_data()
	21.8.11.27 mysql_stmt_sqlstate()
	21.8.11.28 mysql_stmt_store_result()

	21.8.12 C API Threaded Function Descriptions
	21.8.12.1 my_init()
	21.8.12.2 mysql_thread_end()
	21.8.12.3 mysql_thread_init()
	21.8.12.4 mysql_thread_safe()

	21.8.13 C API Embedded Server Function Descriptions
	21.8.13.1 mysql_server_init()
	21.8.13.2 mysql_server_end()

	21.8.14 C API Client Plugin Functions
	21.8.14.1 mysql_client_find_plugin()
	21.8.14.2 mysql_client_register_plugin()
	21.8.14.3 mysql_load_plugin()
	21.8.14.4 mysql_load_plugin_v()
	21.8.14.5 mysql_plugin_options()

	21.8.15 Common Questions and Problems When Using the C API
	21.8.15.1 Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success
	21.8.15.2 What Results You Can Get from a Query
	21.8.15.3 How to Get the Unique ID for the Last Inserted Row

	21.8.16 Controlling Automatic Reconnection Behavior
	21.8.17 C API Support for Multiple Statement Execution
	21.8.18 C API Prepared Statement Problems
	21.8.19 C API Prepared Statement Handling of Date and Time Values
	21.8.20 C API Support for Prepared CALL Statements

	21.9 MySQL PHP API
	21.10 MySQL Perl API
	21.11 MySQL Python API
	21.12 MySQL Ruby APIs
	21.12.1 The MySQL/Ruby API
	21.12.2 The Ruby/MySQL API

	21.13 MySQL Tcl API
	21.14 MySQL Eiffel Wrapper

	Chapter 22 Extending MySQL
	22.1 MySQL Internals
	22.1.1 MySQL Threads
	22.1.2 The MySQL Test Suite

	22.2 The MySQL Plugin API
	22.2.1 Plugin API Characteristics
	22.2.2 Plugin API Components
	22.2.3 Types of Plugins
	22.2.3.1 Storage Engine Plugins
	22.2.3.2 Full-Text Parser Plugins
	22.2.3.3 Daemon Plugins
	22.2.3.4 INFORMATION_SCHEMA Plugins
	22.2.3.5 Semisynchronous Replication Plugins
	22.2.3.6 Audit Plugins
	22.2.3.7 Authentication Plugins
	22.2.3.8 Password-Validation Plugins
	22.2.3.9 Protocol Trace Plugins

	22.2.4 Writing Plugins
	22.2.4.1 Overview of Plugin Writing
	22.2.4.2 Plugin Data Structures
	Server Plugin Library and Plugin Descriptors
	Server Plugin Status and System Variables
	Client Plugin Descriptors

	22.2.4.3 Compiling and Installing Plugin Libraries
	22.2.4.4 Writing Full-Text Parser Plugins
	22.2.4.5 Writing Daemon Plugins
	22.2.4.6 Writing INFORMATION_SCHEMA Plugins
	22.2.4.7 Writing Semisynchronous Replication Plugins
	22.2.4.8 Writing Audit Plugins
	22.2.4.9 Writing Authentication Plugins
	Writing the Server-Side Authentication Plugin
	Writing the Client-Side Authentication Plugin
	Using the Authentication Plugins
	Implementing Proxy User Support in Authentication Plugins

	22.2.4.10 Writing Password-Validation Plugins
	22.2.4.11 Writing Protocol Trace Plugins
	Using the Test Protocol Trace Plugin
	Using Your Own Protocol Trace Plugins

	22.2.5 MySQL Services for Plugins

	22.3 Adding New Functions to MySQL
	22.3.1 Features of the User-Defined Function Interface
	22.3.2 Adding a New User-Defined Function
	22.3.2.1 UDF Calling Sequences for Simple Functions
	22.3.2.2 UDF Calling Sequences for Aggregate Functions
	22.3.2.3 UDF Argument Processing
	22.3.2.4 UDF Return Values and Error Handling
	22.3.2.5 Compiling and Installing User-Defined Functions
	22.3.2.6 User-Defined Function Security Precautions

	22.3.3 Adding a New Native Function

	22.4 Debugging and Porting MySQL
	22.4.1 Debugging a MySQL Server
	22.4.1.1 Compiling MySQL for Debugging
	22.4.1.2 Creating Trace Files
	22.4.1.3 Using pdb to create a Windows crashdump
	22.4.1.4 Debugging mysqld under gdb
	22.4.1.5 Using a Stack Trace
	22.4.1.6 Using Server Logs to Find Causes of Errors in mysqld
	22.4.1.7 Making a Test Case If You Experience Table Corruption

	22.4.2 Debugging a MySQL Client
	22.4.3 The DBUG Package

	Chapter 23 MySQL Enterprise Edition
	23.1 MySQL Enterprise Monitor
	23.2 MySQL Enterprise Backup
	23.3 MySQL Enterprise Security
	23.4 MySQL Enterprise Audit
	23.5 MySQL Enterprise Thread Pool

	Chapter 24 MySQL Workbench
	Chapter 25 Introduction
	25.1 Installing and Configuring
	25.2 Edit MySQL Data in Excel
	25.3 Import MySQL Data into Excel
	25.4 Append Excel Data into MySQL
	25.5 Export Excel Data into MySQL
	25.6 What Is New In MySQL for Excel
	25.7 MySQL for Excel FAQ

	Appendix A Licenses for Third-Party Components
	A.1 Artistic License (Perl) 1.0
	A.2 Boost Library License
	A.3 dtoa.c License
	A.4 Editline Library (libedit) License
	A.5 Expect.pm License
	A.6 Facebook Fast Checksum Patch License
	A.7 Facebook Patches License
	A.8 FindGTest.cmake License
	A.9 Fred Fish's Dbug Library License
	A.10 getarg License
	A.11 GLib License (for MySQL Proxy)
	A.12 GNU General Public License Version 2.0, June 1991
	A.13 GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library Exception Version 3.1, 31 March 2009
	A.14 GNU Lesser General Public License Version 2.1, February 1999
	A.15 GNU Readline License
	A.16 GNU Standard C++ Library (libstdc++) License
	A.17 Google Controlling Master Thread I/O Rate Patch License
	A.18 Google Perftools (TCMalloc utility) License
	A.19 Google SMP Patch License
	A.20 lib_sql.cc License
	A.21 Libaio License
	A.22 libevent License
	A.23 Libiconv License
	A.24 libintl License
	A.25 Linux-PAM License
	A.26 LPeg Library License
	A.27 Lua (liblua) License
	A.28 LuaFileSystem Library License
	A.29 md5 (Message-Digest Algorithm 5) License
	A.30 MeCab License
	A.31 memcached License
	A.32 Memcached.pm License
	A.33 mkpasswd.pl License
	A.34 nt_servc (Windows NT Service class library) License
	A.35 OpenPAM License
	A.36 OpenSSL v1.0 License
	A.37 PCRE License
	A.38 Percona Multiple I/O Threads Patch License
	A.39 Red HAT RPM Spec File License
	A.40 RegEX-Spencer Library License
	A.41 Richard A. O'Keefe String Library License
	A.42 SHA-1 in C License
	A.43 Unicode Data Files
	A.44 zlib License

	Appendix B MySQL 5.7 Frequently Asked Questions
	B.1 MySQL 5.7 FAQ: General
	B.2 MySQL 5.7 FAQ: Storage Engines
	B.3 MySQL 5.7 FAQ: Server SQL Mode
	B.4 MySQL 5.7 FAQ: Stored Procedures and Functions
	B.5 MySQL 5.7 FAQ: Triggers
	B.6 MySQL 5.7 FAQ: Views
	B.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA
	B.8 MySQL 5.7 FAQ: Migration
	B.9 MySQL 5.7 FAQ: Security
	B.10 MySQL 5.7 FAQ: MySQL Cluster
	B.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
	B.12 MySQL 5.7 FAQ: Connectors & APIs
	B.13 MySQL 5.7 FAQ: Replication

	Appendix C Errors, Error Codes, and Common Problems
	C.1 Sources of Error Information
	C.2 Types of Error Values
	C.3 Server Error Codes and Messages
	C.4 Client Error Codes and Messages
	C.5 Problems and Common Errors
	C.5.1 How to Determine What Is Causing a Problem
	C.5.2 Common Errors When Using MySQL Programs
	C.5.2.1 Access denied
	C.5.2.2 Can't connect to [local] MySQL server
	Connection to MySQL Server Failing on Windows

	C.5.2.3 Lost connection to MySQL server
	C.5.2.4 Client does not support authentication protocol
	C.5.2.5 Password Fails When Entered Interactively
	C.5.2.6 Host 'host_name' is blocked
	C.5.2.7 Too many connections
	C.5.2.8 Out of memory
	C.5.2.9 MySQL server has gone away
	C.5.2.10 Packet Too Large
	C.5.2.11 Communication Errors and Aborted Connections
	C.5.2.12 The table is full
	C.5.2.13 Can't create/write to file
	C.5.2.14 Commands out of sync
	C.5.2.15 Ignoring user
	C.5.2.16 Table 'tbl_name' doesn't exist
	C.5.2.17 Can't initialize character set
	C.5.2.18 'File' Not Found and Similar Errors
	C.5.2.19 Table-Corruption Issues

	C.5.3 Installation-Related Issues
	C.5.3.1 Problems with File Permissions

	C.5.4 Administration-Related Issues
	C.5.4.1 How to Reset the Root Password
	Resetting the Root Password: Windows Systems
	Resetting the Root Password: Unix Systems
	Resetting the Root Password: Generic Instructions

	C.5.4.2 What to Do If MySQL Keeps Crashing
	C.5.4.3 How MySQL Handles a Full Disk
	C.5.4.4 Where MySQL Stores Temporary Files
	C.5.4.5 How to Protect or Change the MySQL Unix Socket File
	C.5.4.6 Time Zone Problems

	C.5.5 Query-Related Issues
	C.5.5.1 Case Sensitivity in String Searches
	C.5.5.2 Problems Using DATE Columns
	C.5.5.3 Problems with NULL Values
	C.5.5.4 Problems with Column Aliases
	C.5.5.5 Rollback Failure for Nontransactional Tables
	C.5.5.6 Deleting Rows from Related Tables
	C.5.5.7 Solving Problems with No Matching Rows
	C.5.5.8 Problems with Floating-Point Values

	C.5.6 Optimizer-Related Issues
	C.5.7 Table Definition-Related Issues
	C.5.7.1 Problems with ALTER TABLE
	C.5.7.2 TEMPORARY Table Problems

	C.5.8 Known Issues in MySQL

	Appendix D MySQL Release Notes
	Appendix E Restrictions and Limits
	E.1 Restrictions on Stored Programs
	E.2 Restrictions on Condition Handling
	E.3 Restrictions on Server-Side Cursors
	E.4 Restrictions on Subqueries
	E.5 Restrictions on Views
	E.6 Restrictions on XA Transactions
	E.7 Restrictions on Character Sets
	E.8 Restrictions on Performance Schema
	E.9 Restrictions on Pluggable Authentication
	E.10 Limits in MySQL
	E.10.1 Limits of Joins
	E.10.2 Limits on Number of Databases and Tables
	E.10.3 Limits on Table Size
	E.10.4 Limits on Table Column Count and Row Size
	E.10.5 Limits Imposed by .frm File Structure
	E.10.6 Windows Platform Limitations

	MySQL Glossary
	General Index
	C Function Index
	Command Index
	Function Index
	INFORMATION_SCHEMA Index
	Join Types Index
	Operator Index
	Option Index
	Privileges Index
	SQL Modes Index
	Statement/Syntax Index
	System Variable Index
	Status Variable Index
	Transaction Isolation Level Index

