MySQL 5.7 Reference Manual

MySQL 5.7 Reference Manual

Abstract

This is the MySQL™ Reference Manual. It documents MySQL 5.7 through 5.7.5.

MySQL Cluster is currently not supported in MySQL 5.7. For information about MySQL Cluster, please see
MySQL Cluster NDB 7.3.

MySQL 5.7 features.

This manual describes features that are not included in every edition of MySQL 5.7; such

features may not be included in the edition of MySQL 5.7 licensed to you. If you have any questions about the
features included in your edition of MySQL 5.7, refer to your MySQL 5.7 license agreement or contact your Oracle
sales representative.

For release notes detailing the changes in each release, see the MySQL 5.7 Release Notes.

For legal information, see the Legal Notices.

Document generated on: 2014-04-11 (revision: 38404)

General Administrators |MySQL Developers & Connectors & HA/Scalability
Enterprise Functionality APIs
Tutorial Installation & MySQL MySQL Connectors and |» HA/Scalability
Upgrades Enterprise Edition | Workbench APlIs Guide
Server MySQL Yum MySQL Globalization Connector/J MySQL and
Administration Repository Enterprise DRBD
Monitor
SQL Syntax » MySQL Installer| MySQL Optimization Connector/ODBC |memcached
Enterprise
Backup
Storage Engines |» Security MySQL Functions and Connector/Net MySQL and
Enterprise Operators Virtualization
Security
Server Option/ |» Startup / MySQL Views and Stored |Connector/ MySQL Proxy
Variable Shutdown Enterprise Audit |Programs Python
Reference
» Release Notes |» Backup and MySQL Thread |Partitioning PHP Replication
Recovery Pool
Overview
» MySQL Version |» MySQL Utilities Precision Math C API Semisynchronous
Reference Replication
FAQs » Linux/Unix Information Connector/C
Platform Guide Schema
» Windows Performance Connector/C++
Platform Guide Schema
» Mac OS X Spatial » MySQL for
Platform Guide Extensions Excel

» Solaris Platform
Guide

Restrictions and
Limitations

» Building from
Source

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/doc/workbench/en/wb-intro.html
http://dev.mysql.com/doc/workbench/en/wb-intro.html
http://dev.mysql.com/doc/mysql-ha-scalability/en/index.html
http://dev.mysql.com/doc/mysql-ha-scalability/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/mysql-installer/en/
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/mysql-security-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/mysql-startstop-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-startstop-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/doc/mysql-backup-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-backup-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-backup-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/apis-php/en/index.html
http://dev.mysql.com/doc/mysqld-version-reference/en/
http://dev.mysql.com/doc/mysqld-version-reference/en/
http://dev.mysql.com/doc/workbench/en/mysql-utilities.html
http://dev.mysql.com/doc/mysql-linuxunix-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-linuxunix-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/mysql-windows-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-windows-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://dev.mysql.com/doc/mysql-macosx-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-macosx-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-for-excel/en/
http://dev.mysql.com/doc/mysql-for-excel/en/
http://dev.mysql.com/doc/mysql-solaris-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-solaris-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-sourcebuild-excerpt/5.7/en/index.html
http://dev.mysql.com/doc/mysql-sourcebuild-excerpt/5.7/en/index.html

Table of Contents

Preface and Legal NOUICEScoiuiuuiiiiii et et e et e e e XXi
1 General INFOMMALIONuuiiii et et e et et e et e e e e et e e e e ebe s 1
1.1 ADBOUL TRIS MANUAI ...ttt et e et e e et e e e e et e e e enbaeeees 2
1.2 Typographical and Syntax CONVENTIONSuuiiiiitiiieiiiiie ettt e et e et e eera e eens 2
1.3 Overview of the MySQL Database Management SYStemcc.ovveviiiiieiiiiinneeiiineeeeeninnnn 4
1.3.1 What IS MYS QL2 ettt 4
1.3.2 The Main Features Of MYSQLcouuuiiiiiiiieiii e 5
1.3.3 HiStory Of MYSQL ...ttt ettt e e e e 8
1.4 What IS NeW in MYSQL 5.7 ..ottt 9
1.5 MySQL Development HISTOIYcoouuuiiiiiiei et 14
1.6 MySQL INfOrMAtioN SOUICEScouvuiiiiiiiiieeiiit ettt e e eenans 15
1.6.1 MySQL MailiNG LISIS ...ceeiiiiiiiiiieiiiii ettt e 15
1.6.2 MySQL Community Support at the MySQL FOruUMScc.ovieiimiiiieiiiiinneciiineeeennnn 17
1.6.3 MySQL Community Support on Internet Relay Chat (IRC)ccccoiviiiiiiiniiiinnnnnn. 18
1.6.4 MySQL ENEEIPIISE ..ooitiiiiiiiii ettt ettt e e et e et e e e e e eens 18
1.7 How to Report Bugs OF Problemsi i 18
1.8 MySQL Standards COMPlIANCEiiiiiiiieiiiie e e 22
1.8.1 MySQL Extensions to Standard SQL ..o 23
1.8.2 MySQL Differences from Standard SQLcc.iiiiiiiiiiiiii e 26
1.8.3 How MySQL Deals With CONSLIAINTScccuuuiiiiiiiiiiiiii e 30
S B O =T [£ PP PP PP RPPPPT 34
1.9.1 Contributors t0 MYSQLcciiiiiiiiii e 34
1.9.2 Documenters and tranSIatorsco.uui it 38
1.9.3 Packages that support MySQLccoouiiiiiiiiiii e e 40
1.9.4 Tools that were used to create MYSQLccoouuiiiiiiiiii e 40
1.9.5 SUPPOItErs Of MYSQL ...oouuiiiiiii ettt 41
2 Installing and Upgrading MYSQL ...t 43
2.1 General INStallation GUIJANCEcouuuiiiiiiieiii e 45
2.1.1 Operating Systems Supported by MySQL Community Servercccoovveveviinneeens 45
2.1.2 Choosing Which MySQL Distribution to Installccccooiiiiiiiii e, 45
2.1.3 HOW t0 Get MYSQL ..o 48
2.1.4 Verifying Package Integrity Using MD5 Checksums or GhUuPGcccoiveiiiiinienes 49
2.1.5 INStallation LAYOULScceeriieieiiie ettt ettt e e e e e e enans 58
2.1.6 Compiler-Specific Build CharacCteriStiCsoveiiriiieiiiiiieeiii e 58
2.2 Installing MySQL on Unix/Linux Using Generic BIiNAriesccccvovieiiiiiiieiiiiineeciieeeees 58
2.3 Installing MySQL on MicCroSoft WINAOWSc.uuiiiiiiiiiiiiiiie e 61
2.3.1 MySQL Installation Layout on Microsoft WiNdOWSoveviiiiiieiiiiinieeiiiineeeeiinne, 62
2.3.2 Choosing An Installation PacKageccouvuiieiiiiiiieiii e 63
2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installerccoouen.n. 63
2.3.4 MySQL Notifier for Microsoft WINQOWSuiiiiiiiiiiiiiiieec e 80
2.3.5 Installing MySQL on Microsoft Windows Using a noi nst al | Zip Archive 91
2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation 98
2.3.7 Upgrading MYySQL 0N WINOOWSccouuiiiiiiiieeiiiie et 100
2.3.8 Windows Postinstallation ProCeAUIESooiiiuiiiiiiiiiieiiiieeeei e 101
2.4 Installing MySQL 0N MAC OS X ..iiiiiiiiiiiiee ittt 103
2.4.1 General Notes on Installing MySQL 0n Mac OS Xooiiiiiiiiiiiiinieiiiieeeeiieeeeens 103
2.4.2 Installing MySQL on Mac OS X Using Native Packagesccooccevviiveiiiinnennnn. 105
2.4.3 Installing the MySQL Startup ITeM ... 107
2.4.4 Installing and Using the MySQL Preference Panecccccooeeviiiiiiiiiiiieciiineeeens 110
2.4.5 Using the Bundled MySQL on Mac OS X SEIVENcccuoiieiiiiiiiiiiiiineeeeiiieeeeeiien 112
2.5 Installing MYSQL 0N LINUX .eetuiiiiiiieiiii ettt ettt e et e e e 112
2.5.1 Installing MySQL on Linux Using the MySQL Yum ReposSitorycccoeeveeeennnnn. 113
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum
=T 0 [0S (o] oY PP 117
2.5.3 Installing MySQL on Linux Using RPM Packagesc.ccouuiiiiiiiiniieiiiineeciinn. 119

MySQL 5.7 Reference Manual

2.5.4 Installing MySQL on Linux Using Debian Packagesc.cccoeveviiieiiiniiiiieeiiees 123
2.5.5 Installing MySQL on Linux Using Native Package Managerscccccueeevvnnnnen. 124

2.6 Installing MySQL on Solaris and OpenSolarisccc.oveiiiiiiiiiieiie e 128
2.6.1 Installing MySQL on Solaris Using a Solaris PKGcocccoiiiiiiiiiiiciinecees 129
2.6.2 Installing MySQL on OpensSolaris USINg IPSccoioiiiiiiiei e, 130

2.7 Installing MySQL 0N FrEEBSDccouuiiiiiiiii e 131
2.8 Installing MYySQL frOM SOUICEuuiiiiiiiii e e e et e e e eaes 131
2.8.1 MySQL Layout for Source Installationccceiiiiiiiiiiiiei e 133
2.8.2 Installing MySQL Using a Standard Source Distributionccooviiiiiiiiniiinnes 133
2.8.3 Installing MySQL Using a Development SOUrce Treecccvvevviieeiiieviiiieeiinenaneens 137
2.8.4 MySQL Source-Configuration OPLIONSoovvviiiiiieii e e 139
2.8.5 Dealing with Problems Compiling MySQLccooviiiiiiiiiiiiiec e, 151
2.8.6 MySQL Configuration and Third-Party TOOIScccoovviiiiiiiiieiiii e 153

2.9 Postinstallation Setup and TEeSHNGuiviiiieiiii e e e e e e 153
2.9.1 Postinstallation Procedures for Unix-like SysStemscccooeiviiiiiiiiiin i, 153
2.9.2 Securing the Initial MySQL ACCOUNEScvvviiiiiicii e e 164

2.10 Upgrading or Downgrading MYSQLcoiiiiiiiiiiii e e e 168
2.10.1 Upgrading MYSQLcccuuieiiii e e e e e e e e e e e e e e 168
2.10.2 Downgrading MYSOQLouiiiiiiii e 175
2.10.3 Checking Whether Tables or Indexes Must Be Rebuiltcccooeiiiiiiiins 177
2.10.4 Rebuilding or Repairing Tables or INAEXEScccviiiiiiiiiiieiii e 179
2.10.5 Copying MySQL Databases to Another Machineccooooiiiiiiiiiiiieceeeeen, 180

2.11 Environment Variablesooooiiiiiii e 181
2.12 Perl INSallation NOESccieiiiieeiiii e e e e e s 183
2.12.1 Installing Perl 0N UNIXuiiiiiiiiiii e e e e e e e e e e aaaees 183
2.12.2 Installing ActiveState Perl on WINAOWSccuiiiiiioiiiieiieecii e e 184
2.12.3 Problems Using the Perl DBI /DBD INterfacecccccooveviiieiiiiieiieei e 185

G T (o] - | PP 187
3.1 Connecting to and Disconnecting from the Servercoooiiiiiii i, 187
T = 01 (=Y T O U= T P 188
3.3 Creating and UsSINg @ Databasecooiuiiiiiiiiiiii i 191
3.3.1 Creating and Selecting a Databasec..cvevuieiiiiiiiiiic e 192
3.3.2 Creating @ Table ..o 193
3.3.3 Loading Data into @ Tablecccouiiiiiii e 194
3.3.4 Retrieving Information from a Tableccoooiiii i 195

3.4 Getting Information About Databases and Tablescccooviiiiiiiiicin e 208
3.5 Using nysql in BatCh MOEcoouniiiiiiii e e e 209
3.6 Examples of CommON QUETIEScivuniiiiiiiii et e e e e e e e e e e e e eanns 211
3.6.1 The Maximum Value for @ COIUMNoiiiiiiiiiiei e 211
3.6.2 The Row Holding the Maximum of a Certain Columnccooeeviieiiiieeinennnn, 211
3.6.3 Maximum Of ColUMN P GIOUP ...uuuiiieeiii e et ee e e e e e e e e e e et e e e e e e 212
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 212
3.6.5 Using User-Defined Variablesoooiiiiiiiiin e 213
3.6.6 USING FOrEIign KEBYS ...iiuuiiiiiieiii ittt e et e e e e et e e e e e e e aanaaes 213
3.6.7 Searching 0N TWO KEYSuiiiiiiiiii e et e e e e e e e aees 215
3.6.8 Calculating ViSitS PEIr DAYccvuuieiiiieiiiieiie et e e e e e e e e e e eaes 215
3.6.9 UsSiNg AUTO | NCRENMENTcieiiiiiiiiiieeeeeeeeeeaiiie s e s e e eeeesasinnsaseeseessssnsnnaaaeeeesannnns 216

3.7 Using MySQL With APACRNEcouiiiiii e 218
4 MY S QL PrOgIaMS ittt et e e e e e e et an 219
4.1 Overview of MySQL Programscccuiiiiiiiiiie e e et e e e e e e e e e e e e aan s 220
4.2 USING MYSQL PrOQramSuuiiiiiii it et e e e e e e e e e et e e e e et e e et e e eanaaees 223
4.2.1 InvoKING MYSQL PrOgramsuuiiiiiieiiieiiii e e e e e e e e s e e e et e e et e e aaeeeanees 223
4.2.2 Connecting to the MYSQL SEIVELcvvuiiiiiee e e 224
4.2.3 Specifying Program OPLiONSccuuiiiiiiiiii e e e e e 227
4.2.4 Setting Environment Variables ..o 240

4.3 MySQL Server and Server-Startup Programscooceuieiiiieiiiieei e eeeiee e e e e eeens 241
4.3.1 nysqgl d — The MYSQL SEIVELuuciiiiiiii et e e e 241
4.3.2 nysql d_saf e — MySQL Server Startup SCriptccceveiiiiiiiiiieiieceeee e 241

MySQL 5.7 Reference Manual

4.3.3 nysql . server — MySQL Server Startup SCrPtoevvieiiiiiiiiieeeeee e 246
4.3.4 nysql d_nul ti — Manage Multiple MySQL SErversc.cccoeveviieeviiieiiineeiieeenn, 247

4.4 MySQL Installation-Related Programsccovuuiiiiiiiiiiieeie e e e e e 251
4.4.1 conp_err — Compile MySQL Error Message Filecccooiiviiiiiiiiciineceeenn, 251
4.4.2 nysql bug — Generate Bug REPOITcovniiiiiiii e 252
4.43 nysql _install _db — Initialize MySQL Data DireCtorycccoeevvvvevivnneennnnns 252
4.4.4 nysql _pl ugi n — Configure MySQL Server Pluginsccooveviiiiviiiiiiiieiieen, 257
4.45 nysqgl secure_installation— Improve MySQL Installation Security 259
446 nysql _tzinfo to sqgl — Load the Time Zone Tablesccoeevviviiinieninnnnns 262
4.4.7 nysql _upgrade — Check and Upgrade MySQL Tablescccoeevviveviieiinnennnnn. 262

4.5 MySQL ClIeNt PrOgramsSuuiiiiiii e e e e e e e e e e e e e e et e e et e e eanaaees 267
4.5.1 nysql — The MySQL Command-Line Toolccoiiiiiiiiiiiiiiice e, 267
4.5.2 nysql adm n — Client for Administering a MySQL Servercccoeeeivevineeinnnns 292
4.5.3 nysql check — A Table Maintenance Programc.ccceeeiiiiiviiieeiineeeiineeieeens 300
4.5.4 nysql dunp — A Database Backup Programccoeeeiiiieiiiieeineeiiiieeeeeieens 307
455 nysql i nport — A Data Import Programoeeuieiieiiei e ee e 326
4.5.6 nysql show— Display Database, Table, and Column Information 332
4.5.7 nysql sl ap — Load Emulation Clientccoooiiiiiiiiiiii e 336

4.6 MySQL Administrative and Utility Programsccoieiiiieiiiieiiii e e e 344
4.6.1 i nnochecksum— Offline InnoDB File Checksum Utilitycccooviiiiiiiieinnnns 344
4.6.2 nyi sam ft dunp — Display Full-Text Index informationcccoeevvieeinnne. 350
4.6.3 nyi santhk — MyISAM Table-Maintenance Utilityccc.ccoviiiiiiiiiiiinceens 351
4.6.4 nyi sam og — Display MyISAM Log File Contentscccoovviiiiiiiieiiiiiiiieeiis 367
4.6.5 nyi sanpack — Generate Compressed, Read-Only MyISAM Tables 368
4.6.6 nysql _config_editor — MySQL Configuration Utilitycccocoeiiiiiinnennnn.. 374
4.6.7 nysql bi nl og — Utility for Processing Binary Log Filesccccocooiviiiiiiiineennnnn. 380
4.6.8 nysql dunpsl ow— Summarize Slow Query Log Filescccocceveiiiiiiineinnne, 400
4.6.9 nysql hot copy — A Database Backup Programccccoeveviiieeiineiiineeiineennnnn, 402
4.6.10 nysql wai t pi d — Kill Process and Wait for Its Termination 405
4.6.11 nysql _zap — Kill Processes That Match a Patterncccooceeviiiiiiiineeinnnnns 405

4.7 MySQL Program Development ULIIILIESooveuiiiiiiiiii e 406
4.7.1 nysql _confi g — Display Options for Compiling Clientscccccccoivevinnennnnn. 406
4.7.2ny _print_defaul t s — Display Options from Option Filesccccocevvvevinnens 407
4.7.3resol ve_stack dunp — Resolve Numeric Stack Trace Dump to Symbols 408

4.8 MiISCEIIAaNEOUS PrOQIaIMScuuiiiiiieiii e e e e e e e e e e e e e et e e et e eaanas 409
4.8.1 perror — EXplain Error COUESocvvvniiiiiiii e e e e 409
4.8.2 repl ace — A String-Replacement Utilityccooeviiiiiiiiiiiie e, 410
4.8.3 resol vei p — Resolve Host name to IP Address or Vice Versacc.ccuuueee.. 410

5 MySQL Server AAMINISITAtIONcc.uieiiiiiiii e e e e e e e e e e e e e e e e e e e aanaas 413
5.1 The MYSQL SEIVET ..uuiiiiiii ettt ettt e et e e et e e et e e e e e e e et e e et e e arnee et 413
5.1.1 Server Option and Variable REfErencCecooveviiiiiiiiiiiiieie e 414
5.1.2 Server Configuration Defaultscc.ooeiiiiiiiiiii 444
5.1.3 Server Command OPLIONSc.uuiiiiiieiiie i e e e e e e e e e e e 444
5.1.4 Server System Variablescoiviiiiiiiii 477
5.1.5 Using System Variablesc.cooiiiiiiiiii e 587
5.1.6 Server Status Variablesccoouiiiiiiiiiiiii e 600
5.1.7 Server SQL MOUEScouuiiiiiiiii ettt e e e e e e e 626
5.1.8 SEIVEI PIUGQINS ..ouuiiiiiiiiiiiei ettt e e e e e e e e e e e e e e s e e et e e eanaeee 638
LN e T | Y T o] o Lo 642
5.1.10 Server-Side HEIPouoiiiiiiii e 646
5.1.11 Server Response t0 SigNalSocvuuiiiiiiiiii e 647
5.1.12 The ShUutdOWN PrOCESSiiiiiiiieiiiiie ettt 647

5.2 MYSQL SEIVEI LOGS .uituiitiiiiiieiii ettt e e e e e e e e e et e e e e e e et eea e an e e aneeaneeenns 649
5.2.1 Selecting General Query and Slow Query Log Output Destinations 649
o I 1= = (o G 1o Yo 651
5.2.3 The General QUETY LOQ ...uiiiuuiiiiieiiie et e e et e e e e e e aanes 653
L I 1= =T o= U YA 1o o [N 654
5.2.5 The SIOW QUEIY LOQ ..ivuiiiiiiiiii ettt e e e e e e e e e et e e et eeaaeees 665

MySQL 5.7 Reference Manual

5.2.6 Server Log MaiNtENANCEuiiuiiiiii e et e e e e e e e e e e e eaens 667

5.3 Running Multiple MySQL Instances on One Machingcccoceeeiiiiiiiiiieccie e, 668
5.3.1 Setting Up Multiple Data Dir€CIOMEScccuuiiiriieiiiieiiie e 669
5.3.2 Running Multiple MySQL Instances on WINAOWSccoeevuiiiiiiieiiieeiiiieeiineeaies 671
5.3.3 Running Multiple MySQL Instances on UNIXcccouveiiiieiiinieiiiieciieeceeeeeeaiees 673
5.3.4 Using Client Programs in a Multiple-Server Environmentcccooeviiieiiieeennnnns 674

5.4 Tracing mysSql d USING DTIACEcvvniiiiiieiii e e e e e e e e e e e e e e e e e eaes 675
5.4.1 nysql d DTrace Probe REefErenCeccouiiiiiiiiiiiicie e 676

LSS T= o 1 PPN 693
6.1 GENEral SECUNLY ISSUES ...ovuiiiiiiiii ettt e e e e e e e e e e e e e e et e e aaneeeens 694
6.1.1 Security GUIAEIINESc.uiiiiiiii e e et 694
6.1.2 Keeping PasSWOIrAS SECUIcccuuieiiiieiiiieiiie e e e e eete e e e e e e e e et e e et eeaaeeannaees 695
6.1.3 Making MySQL Secure Against Attackersccocviiiiiiiiii e 708
6.1.4 Security-Related nmysql d Options and Variablescccccccoiviiiiiiiiiiiiinieees 710
6.1.5 How to Run MySQL as a NOrmal USErcoeiiiieiiiiiiiieei e e 710
6.1.6 Security Issues with LOAD DATA LOCAL ..oovviiiiiiiieeeeeeeeeiiiense e e e e eeeaiiineeaeeaaeaaes 711
6.1.7 Client Programming Security GUIAEIINESc.cveiiiiiiiiiiiiiec e, 712

6.2 The MySQL ACCESS Privilege SYSIEMciiiiiiiii e 713
6.2.1 Privileges Provided by MYSQLcoouiiiiiiiiie e e 714
6.2.2 Privilege System Grant TabIEScouiiiiiiiiiii e 718
6.2.3 SpecCifying ACCOUNT NAMEScouuiiiiiiii e e e e e e e e e 724
6.2.4 Access Control, Stage 1: Connection Verificationcccoeeviiiiiiiiiii i, 726
6.2.5 Access Control, Stage 2: Request Verificationcccooeviiiiiiiii i 729
6.2.6 When Privilege Changes Take EffeCtcocciiiiiiiiiii e, 730
6.2.7 Causes Of ACCESS-DENIEA EITOISiiiieuiiieiiiiiii ettt e e eeaees 731

6.3 MySQL User AcCount ManagemENToeeuiiiriei e e e e e e e e e e e e e eanes 736
6.3.1 User Names and PaSSWOITScoeuuuieiiiiiieiiiiiee et e et e e e aeaen e eeannn e eenees 736
6.3.2 AdAING USEI ACCOUNLS ...uuuiiiiieiiieii e et e e e e e e e e e et e e e e e e e e e eaanes 738
6.3.3 REMOVING USEI ACCOUNTSccvuiiiiiieiii e e ettt e e e e e e e e e e et e eeaa e eeen 741
6.3.4 Setting Account ReSoUrce LIMItSccvuuiiiiiiieiiiiii e e e e e 741
6.3.5 ASSIgNING ACCOUNE PASSWOITSc.uuiiiiiiiiii i ee e e e e e e e e e 743
6.3.6 Password EXpiration POLICYc.uciiiiiiiiieiii e e e e e e 744
6.3.7 Password Expiration and Sandbox Modec.cccoiiiiiiiii i 746
6.3.8 Pluggable AUthenticationccoooiiiiiiii e 747
6.3.9 Authentication Plugins Available in MySQLcccoooviiiiiiiiii e, 750
B.3.10 PrOXY USEBIS .uiiiiiiiiiiiiiei ittt et et e et e e e e e e e e e 760
6.3.11 Using SSL for Secure CONNECLIONScciiviiiiiiieii e e 764
6.3.12 Connecting to MySQL Remotely from Windows with SSHcccocoiivee. 776
6.3.13 MySQL Enterprise Audit LOg PIUGINcccoviiiiiiiiice e 776
6.3.14 SQL-Based MySQL Account Activity AUditingccoceviiiiiiiiiiii e 793

7 BACKUP AN RECOVETY ..uiiiiiiiii et it e et e e et e e e e e e e e e et e e et e e e e e aa e e et e e et e e et e eaaeeanss 797
7.1 Backup and RECOVEIY TYPES ..uiiuuieiiiieii et e et e et e et e e e e e e e e e et e e e e et e e et e e ean e eaes 798
7.2 Database Backup MEthOUScoouuiiiiiiii e e e e 801
7.3 Example Backup and RECOVEIY SIrat@gyoevuuiiiiiieiiieeiiii e e e e e e e e aanees 803
7.3.1 Establishing a Backup POICYooiiiiiii e 804
7.3.2 Using Backups fOr RECOVEIYccuuiiiiiiiiii et e e e 805
7.3.3 Backup Strategy SUMMAIYcoouuiiiiieiii e e e e e e eaas 806

7.4 Using nysql dunp for BaCKUPScovuiiiiiiii et e e e e e e e e e e e 806
7.4.1 Dumping Data in SQL Format with mysql dunpcccoeeviiiiiiiiiii e 807
7.4.2 Reloading SQL-Format Backupsooviuiiiiiiiiiie e 808
7.4.3 Dumping Data in Delimited-Text Format with nysql dunpcoeeeviviiiiiineeinen, 808
7.4.4 Reloading Delimited-Text Format Backupsc.ccocvuiiiiiiiiiiiiieiiie e 809
A ST 10 VAT o L LU T g o T o 810

7.5 Point-in-Time (Incremental) Recovery Using the Binary LOgccoovvviiiiiiiiiiiiiieeeeeee, 812
7.5.1 Point-in-Time Recovery Using Event TIMEScccoveiiiiiiiiiiiiinieceee e 813
7.5.2 Point-in-Time Recovery Using Event POSItIONSccocoviiiiiiieiiiieeii e 814

7.6 Myl SAMTable Maintenance and Crash RECOVEIYcc.viiiiiiiiiiiiiii i 815
7.6.1 Using nyi santhk for Crash RECOVEIYc..uoiiiiiiiiii e 815

vi

MySQL 5.7 Reference Manual

7.6.2 How to Check Myl SAMTabIes for EITOrscccouviiiiiieiiieeii e 816
7.6.3 How to Repair Myl SAMTADBIEScocvniiiiii e 816
7.6.4 Myl SAM Table Optimizationcouiiiiiiiii e e 819
7.6.5 Setting Up a Myl SAMTable Maintenance Schedulecccoooviiiiiiiiiiieeeennn, 819

LS 0111212 140 o PPN 821
8.1 OPtIMIZAtION OVEIVIEWiiiiiiiii ettt e e e e e e e e e e e e e e et e e et e e eanaeeees 822
8.2 Optimizing SQL StateMENLSuiiiti i e e e e e e e eaes 823
8.2.1 Optimizing SELECT Stat€MENTScccvuiiiiiieiiiieei e e e e 823
8.2.2 Optimizing DML StatemMENLSuiiiiieiiieii e e e e e e e e e e 871
8.2.3 Optimizing Database PriVIIEgESoviiiiiiii e 872
8.2.4 Optimizing | NFORMATI ON_SCHENMA QUEIIES .. .cvuueeiieeeiiieeiieeeiieeaieeeaieeeainaeeanaaens 873
8.2.5 Other Optimization TIPS ..uuiiieiiiiii e e e e 877

8.3 Optimization aNd INAEXESuiiiiiiiii et e e e e e e et e e e eanes 880
8.3.1 HOW MYSQL USES INAEXESceviieiiiieii et ee ettt e e e e e e e 880
8.3.2 USING PriMary KEBYSiiiiiiiiiieiii ettt e e e e e e e e e e ans 881
8.3.3 USING FOrEign KEBYS ...iiiiiiiiiciii ittt e e e e e e et e e e e aaaaes 881
I A o] 0] 4] o I [0 (=3t (= PP 882
8.3.5 MUItiple-ColumN INAEXEScceuneiiiieiii e e e ean s 883
8.3.6 Verifying INAEX USAQJEiiiiiiiiiiiii et e e e e e e aanas 884
8.3.7 | nnoDB and Myl SAMIndex Statistics Collectioncccoocviviviiiiiiiiii e, 884
8.3.8 Comparison of B-Tree and Hash INAEXESoevviiiiiiiiiiiii e 886

8.4 Optimizing Database StIUCLUIEciiuiiiiii e e e e e 887
8.4.1 OptiMIZING DAA SIZE ...vuiiiiii i e e e e e 887
8.4.2 Optimizing MYSQL Data TYPES ..ocvuiiiiieiiii i et e e e e e e e e e aaaaes 889
8.4.3 Optimizing for Many TabIEScoouiiiiii e 890
8.4.4 How MySQL Uses Internal Temporary Tablesccooveviiiiiiiiiiiiiiieeee e, 892

8.5 Optimizing for | NNODB TabIESco.uiiiici e 893
8.5.1 Optimizing Storage Layout for | NNODB TabIescccoveviiiiiiiiiieee e, 893
8.5.2 Optimizing | NnoDB Transaction Managementcccuiveiiiieiiiieiiieeeiieeeiieeaies 894
8.5.3 Optimizing | NNODB LOGQING ...cvvuneiiiieii e e e e e e e e e e e e e e e e e eanes 895
8.5.4 Bulk Data Loading for | NnnoDB Tablesccoviiiiiiiiiiii e, 895
8.5.5 Optimizing | NNODB QUEIIESuuiiiiiieii et et e e e e e e e e e e 896
8.5.6 Optimizing | NNODB DDL OPEratiONsScceuuiiiiiieiiieeiiiieeiieeei e e e e eieeeanaeen 897
8.5.7 Optimizing | NNODB DiSK /Occviiiiiiee e e 897
8.5.8 Optimizing | nnoDB Configuration Variablesccccciiiiiiiiii e, 898
8.5.9 Optimizing | nnoDB for Systems with Many Tablesc..ccooviiiiiiiiins 900

8.6 Optimizing for Myl SAMTADBIEScoouniiiici e 900
8.6.1 Optimizing My SAM QUEIIESvuiiiiiieei et e et e e e e e e e e e e e e e aaaaes 900
8.6.2 Bulk Data Loading for Myl SAMTabBIEScocovviiiiiiiiii e, 901
8.6.3 Speed of REPAI R TABLE Statementsoviiuiiiiieiiiieiieeeie e e e e 902

8.7 Optimizing for MEMORY TabIEScoouiiiiiiii e 904
8.8 Understanding the Query EXecution Plancooiiiiiiii i 904
8.8.1 Optimizing Queries With EXPLAI Niiiiiiiiiiiiii e e e e e e e 904
8.8.2 EXPLAI N OULPUL FOIMAL ... iiiiiiieiiiiie e e et e e e e e eaees 905
8.8.3 Obtaining Execution Plan Information for a Named Connection 916
8.8.4 EXPLAI N EXTENDED OUPUL FOIMALceiiiiieiiiiiie e 917
8.8.5 Estimating Query PerformanCec.uiiiiiiiiiii i 919
8.8.6 Controlling the QUery OPLIMIZETcouuiiiiiiei e 919

8.9 Buffering and CacChingccciuiiiiiiii e e e 922
8.9.1 The |1 NNODB BUFfEr POOIcciiiiiiie e e 923
8.9.2 The Myl SAMKEY CACNEouiiiiiiiii e 925
8.9.3 The MySQL QUEIY CaChEuiiiiiieii e 929
8.9.4 Caching of Prepared Statements and Stored Programsccccceeeeviiviiiieeinns 936

8.10 Optimizing LocKING OPEratiONSccvuuiiiiiiiiii e e e e e e e e e eaens 937
8.10.1 Internal Locking MethOdScooviiiiiiiiiici e 937
8.10.2 Table LOCKING ISSUESc.uiiiiiieiii e ettt e e e e e et e e e aaneees 939
8.10.3 CONCUITENT INSEITS ...ttt et e e e ea e e e enns 940
8.10.4 Metadata LOCKINGcvvunieiiiiii i e e e e e e e e e e e e e eees 941

Vii

MySQL 5.7 Reference Manual

N O ST 4 (=] = L I Yo 4 T P 942

8.11 Optimizing the MYSQL SEIVETccouiieiii e e e e e e e aaens 943
8.11.1 System Factors and Startup Parameter TUNINGccevivviiiiiiiiieeiieeeieeee e, 943
8.11.2 TUNING SEIVEr ParameterScccuuiiiiiieiii i et e e et e e e e e e e e e e et e e e aaaees 943
8.11.3 Optimizing DiSK /O ...couiiiiiii e 948
8.11.4 OptimiziNg MEMOIY USE ...ovuiiiiiii i e e e e 952
8.11.5 Optimizing NEtWOIK USEccvuiiiiiiiiiii et e e e e e e e 955

8.12 Measuring Performance (Benchmarking)c.cc.oiiiiuiiiiiiiiiin e e 957
8.12.1 Measuring the Speed of Expressions and FUNCLONSccooveviiviiiiieiiiieeiis 957
8.12.2 The MySQL Benchmark SUILEcc.oeiiiiiiiiii i 958
8.12.3 Using Your Own Benchmarksccoiiiiiiiiiiiiii e 958
8.12.4 Measuring Performance with per f or mance_schenac.ccccovvviiiiiiinevieee, 959
8.12.5 Examining Thread INformationcccooiiiiiiiiiii e 959

LS B I T o [F= Vo [T £ U Tod (1] = 973
9.1 LITEIal VAIUBS . .oeeiiieiiii ettt e et e e e et e e e et e e e e et e e e eera e aees 973
LS 0 I A T Vo T) =T = S 973

L 2 10] o= gl I (= = LSO PPRTPPP 976
9.1.3 Date and Time LItEralSuiiiiiiiiiiiiii e 976
9.1.4 Hexadecimal LItEIalSiiiiiiiiiieieiii et et e et e e et e e eena e eees 978
9.1.5 BOOIEAN LItEIAIS ..eevinieeiiii et 979
9.1.6 Bit-Field LItEralSuuiiiiiiiiieiiii e 979

S A O I - 0 1= S 979

9.2 Schema ODbJECT NAIMESiuuiiiiiiiii et e e e e e e e e e et e et e e aaaees 979
9.2.1 Identifier QUANIFIEISvuiiii e 981
9.2.2 Identifier Case SENSIIVILYcceuuiiiiicii e 982
9.2.3 Mapping of Identifiers t0 File NamMeSscouiiiiiiiiiii e 984
9.2.4 Function Name Parsing and ReSOoIUtioNccooiiiiiiiii e 986

9.3 RESEIVEU WOIUS ...vuiiiiiiii ettt e e e et e e e et e e e et e e e e et e e e eeannaas 989
9.4 User-Defined Variables ... 992
9.5 EXPIrESSION SYNMIAX .vuiitniiiiiieiiiieiiieeee e et e e st e e et e e et e et e e et e e et e e et e e eta e eateean e eatnaeeanaeenes 995
9.6 COMMENT SYNTAX ouuiitiiii i et e e e et et e e e e et e et e et e an e e aneean e eaneeaneenns 997
O] lo] o T= 172 o] o KPP UPPP 999
10.1 CharacCter St SUPPOIieeiieii et e e e e e e e e e e e e e e et e e et e eetnees 999
10.1.1 Character Sets and Collations in Generalccooveveiiiieiiiiiiieie e 1000
10.1.2 Character Sets and Collations in MySQLc.ccooiviiiiiiiiiiiiieee e 1001
10.1.3 Specifying Character Sets and Collationscccoiviiiiiiiiiiin e 1002
10.1.4 Connection Character Sets and Collationsccovviiiiiiiiiiiiiiieee e 1009
10.1.5 Configuring the Character Set and Collation for Applicationsccc.c.uu.... 1011
10.1.6 Character Set for Error MESSAGESuevvrnieiiieiiieiiiieee e e e e e e e e et e e eeens 1013
10.1.7 COllAatiON ISSUEBS ...vuueiiiiiiiee it e et e e et e e et e e e eetaneaaees 1014
O S I [o 2 LT 01T (o 1023
10.1.9 Operations Affected by Character Set SUPPOrtcooeviiiiiiiiiiiie e, 1024
0 0 00 KO W 1o To [T U]] o Lo o (TSP 1027
10.1.11 Upgrading from Previous to Current Unicode SUpportcccoeevvvvevinierinnnnnn. 1032
10.1.12 UTF-8 fOr Metadatacceeuuuieiiiiiiee ettt e eeeri e 1034
10.1.13 Column Character Set CONVEISIONc..uuieiiiiiieeiiiiiee et e et e et e e 1035
10.1.14 Character Sets and Collations That MySQL SUpportsccccceveveviiieeeineennnnnns 1036

10.2 Setting the Error Message LaNQUAGEccvuviiiiiiiii ettt e e e 1049
10.3 AdAING @ CharacCter Stcouuiiiii i e e 1050
10.3.1 Character Definition AITAYSoiiiunieiiieiie e e e e e e e e 1052
10.3.2 String Collating Support for Complex Character Setscoccovvviivviiiieiieennnnn. 1053
10.3.3 Multi-Byte Character Support for Complex Character Setsccccevevvvnennnnn. 1053

10.4 Adding a Collation to @ Character Setcccvuiiiiiiiiiii e 1053
10.4.1 Collation Implementation TYPES ...cceuuiiiinieiiieei e eee e e e e e e e e e e eaaes 1055
10.4.2 Choosing a Collation Dc.uiiiiiieii e 1057
10.4.3 Adding a Simple Collation to an 8-Bit Character Setcccoeevviiiiiiieeiinenn, 1058
10.4.4 Adding a UCA Collation to a Unicode Character Setc.occceveviiieiineeinnnnnn. 1059

10.5 Character Set ConfigUurationcccouiiiiiiiiii e e e e e e aanas 1066

viii

MySQL 5.7 Reference Manual

10.6 MySQL Server Time ZONE SUPPOIuiiiiieiieeei et e e e e e e e e e e e e e e e e e eanas 1067
10.6.1 Staying Current with Time Zone Changesccocvviiiiiiieiiiieiie e 1069
10.6.2 Time Zone Leap Second SUPPOITcouuiiiiiieiiieeie e ee e e e e e e e e e 1070

10.7 MySQL Server LOCaAle SUPPOITiiuiieiiii e e e e e e e e e e e et e e e aan s 1072

R B = = R Y/ o= PP 1075

I B = = W Y o LT @ LY== 1076
11.1.1 NUMENC TYPE OVEIVIEW ...eevuniiiiiieiii e e e e e e e e a e e e e et e e s e e e e e et e e eaaaeeaneees 1076
11.1.2 Date and Time TYPE OVEIVIEWucviunieiiiieiiiieeiiiee e ee et ee e e eaaeeei e e eeanaeeeen 1079
11.1.3 String TYPE OVEIVIEW ...ovuiiiiiiiiiiieiie e e e e e e e e e e e e e e et e e et e e e eaaaeeeen 1081

52 NN 100 = o I o = 1084
11.2.1 Integer Types (Exact Value) - | NTEGER, | NT, SMALLI NT, TI NYI NT,

VEDI UM NT, Bl GlNT ittt ettt e e et s e e e et s e e e et s e e eseaneeennen 1085
11.2.2 Fixed-Point Types (Exact Value) - DECI MAL, NUVERI Cccocvvveviieiiiieeiieeenn, 1085
11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLEc.cccevevennnnns 1086
11.2.4 Bit-Value TYPE = Bl T ouiiieiiiieiiii ettt ettt e et aeeaan s 1086
11.2.5 NUmeEric TYPE ALHDULESiiieiii e e e e 1086
11.2.6 Out-of-Range and Overflow Handlingccooiiiiiiiiiiii e, 1087

11.3 Date and TiME TYPES ouuiiiinieiiiieiii et et e e e e e e e e e e e et e e e e e e e e et e et e e et e e aneaeenas 1088
11.3.1 The DATE, DATETI ME, and Tl NESTANP TYPES ...uviiiiiiieeieiiieeeeiiineeeeeineeeeninnnns 1090
IO T I o = N I I o= SRR 1091
11.3.3 THE YEAR TY P uiiiiiitiieieiii ettt e ettt e ettt e et e e e et e e e et e e e et e e eeann s 1092
11.3.4 YEAR(2) Limitations and Migrating to YEAR(4)ccvvieiiiiiiiiieeeieeciieeeee e 1092
11.3.5 Automatic Initialization and Updating for TI MESTAMP and DATETI ME 1095
11.3.6 Fractional Seconds in TiMe ValUEScoooiiiiiiiiiiiiiieecii e 1098
11.3.7 Conversion Between Date and Time TYPESocvvniiiinieiiiieiiiieeiieeeeeei e e eeaens 1099
11.3.8 TWO-Digit YEArs iN DAtESiciuuieiiieiii e e e e eanas 1100

] o T I3/ 1= 1100
11.4.1 The CHAR and VARCHAR TYPES ...uuuiiiiiiiieeiiiiieee et e e et e e et eeeetin e e eeninaeeeees 1100
11.4.2 The Bl NARY and VARBI NARY TYPES ...civuuuieiiiiiieiiiiie et e et e et e e 1102
11.4.3 The BLOB @Nnd TEXT TYPES .ieeuuuieieeiiieeeiiia ettt aeeeain e e eeainaeeetinaeeeainaeeenennes 1103
11.4.4 THE ENUM TYPE .uuieiiiiieeeiii ettt e ettt e ettt e e et e e e et e e et a e e e eaa e e eennn s 1105
R S I =TS I 1Y/ o1 S P 1107

11.5 Data Type Default ValUEScoouniiiiiiiii e e e s 1110

11.6 Data Type Storage REQUITEMENTScuuiiiiiiiiiiieiii e ee e e e e e e e e e e e e e e eanees 1111

11.7 Choosing the Right Type for @ COolUmMNooiiiiiiiii e e 1114

11.8 Using Data Types from Other Database ENQINESccoveviiieiiiiiiiiiiecieecie e 1114

12 FUNCLIONS @Nd OPEIALOISvuuiiiiieiiieeii et et e e e e e e e et e e et e et e e et e e et e e et eeateeateeetnaeeanaees 1117

12.1 Function and Operator REfEIENCEiiiiiiiii e 1118

12.2 Type Conversion in EXpression Evaluationccociiiiiiiiiiiiicii e 1125

G T @ o 1T =1 (0] £ T PP 1128
12.3.1 Operator PreCERUEBNCEcovuuiiiiieiii ettt e e e e e e e e e e e eeas 1129
12.3.2 Comparison Functions and OPEratorsc.ccucveviiieeiiieeiiiieeiie e e e e e 1130
e e B oo [[or | @) 0= = | (o] ¢ T 1135
12.3.4 ASSIGNMENT OPEIALOIS ..ovuiiiiieiii i ee i ee e et e e e e e e e e e e e e e e e et e e et e eeanaaees 1137

12.4 Control FIOW FUNCLIONSiiiiiiii ettt e et e e et e e e ena e eeees 1138

SIS (o T ¥ o £ 1140
12.5.1 String Comparison FUNCHONSco.uiiiiiiiiii e e e e 1155
12.5.2 Regular EXPreSSIONScc.uiiiiiiiiiieeii et e e e e e e e e e et e e e e e eaaees 1159

12.6 Numeric FUNCtions and OPEIatOrSociuuiiiiieiii e e e e e e e e e e e e aanes 1164
12.6.1 ArithmetiC OPEIAtOrSiveviieiiiieiii e e e e e e e e e e e e e e eaens 1165
12.6.2 Mathematical FUNCLIONScooouiiiiiiiiii e 1167

12.7 Date and TiIMeE FUNCLONSuuiiiiiiiii it e e e et e e e e eaenns 1176

12.8 What Calendar Is Used By MYSQL?ocuuiiiiiiiiiiciii et e e e e e e e 1197

12.9 Full-Text Search FUNCLONSoooiiiiiiiii e et e e et e eeee 1197
12.9.1 Natural Language Full-Text Searchescccccoviiiiiiii i, 1198
12.9.2 Boolean Full-Text SEarchescoooiiiiiiiiiiiiii e 1202
12.9.3 Full-Text Searches with Query EXPanSioncocciviiiiieiiiieriie e, 1204
12.9.4 FUl-TEXt STOPWOITS ..oevniiii et e e e e e e e e eaeas 1205

MySQL 5.7 Reference Manual

12.9.5 FUll-Text RESIHCHONSiiiiiiiiieiii e e e e eees 1208
12.9.6 Fine-Tuning MySQL Full-Text Searchccccciiiiiiii i 1209
12.9.7 Adding a Collation for Full-Text INdeXingcccciiieiiiieiiieii e, 1211
12.10 Cast FUNCtioNS and OPEIALONScc.uuiiiuuieiiieiie e e e e e e e e e e e e e e e et e e et eeaneens 1212
2 A | T o 1T 1 = PP 1215
2 2 = 1 U ot o) o PP 1226
12.13 Encryption and Compression FUNCHONSoiiiiiiiiiii e 1227
12.14 Information FUNCHIONSuuiiiiiiiie et e e e et eeeaees 1236
12.15 Functions Used with Global Transaction IDScceuuiiiiiiiiiiniiiiine e 1244
12.16 MISCellan@ous FUNCHONSccocuuiiiiiiiieee e e 1246
12.17 Functions and Modifiers for Use with GROUP BY ClauSescccovveveviiievirinienennnn. 1253
12.17.1 GROUP BY (Aggregate) FUNCHONSviiiiiiiiieiiiie e e e e e 1253
12.17.2 CROUP BY MOUIfIEIS ..vuiiiiiiiiieeiii ettt e e e e 1257
12.17.3 MySQL Extensions to GROUP BY ...c.iiiiiiiiiiiciii e e et 1260
12.18 Spatial EXIENSIONSiieiiiiiii e et e e e e e e e e e et e et e e e e e 1261
12.18.1 Introduction to MySQL Spatial SUPPOItcovviiiiiiiiec e, 1262
12.18.2 The OpenGIS Geometry MOCElocvuniiiiiiiii e 1262
12.18.3 Supported Spatial Data FOrmMatScccceuiiiiiieiiiiec e e 1268
12.18.4 Creating a Spatially Enabled MySQL Databasecccooevviieiiiieiiiieeinneenn, 1269
12.18.5 Spatial Analysis FUNCLIONSoiiiiiiiicie e e 1274
12.18.6 Optimizing Spatial ANAIYSIScouuniiiiei e 1285
12.18.7 MySQL Conformance and Compatibilityccoooevieiiiiiiiiiii e 1288
12.19 PreciSion MAathiiiiiiii e e 1288
12.19.1 Types of NUMETIC VAIUESccoeviiiiiiieii i e 1289
12.19.2 DECI MAL Data Type CharacCteriStiCSccuuieiviiiiiiieiiii e e e e 1289
12.19.3 EXpression Handlingc..oiiiiiiiiiici e 1290
12.19.4 Rounding BEhAVIOrccuuiiiiiii e 1292
12.19.5 Precision Math EXamMPIESiiiiiiiiicie e e 1292

13 SOQL StatemMENT SYNTAX ..ovuieeiiiiii i e e e et e et e e e e e et e e e e e et e et e etneeaaennns 1297
13.1 Data Definition StatemMENTScccuuiiiiiiii e 1298
13.1.1 ALTER DATABASE SYNAX eettueiiiiinieiiiiiieeeeiiaaeeeetiaeeeetiaeeeettaeeeeniaeeeennnaaaees 1298
13.1.2 ALTER EVENT SYNEAX ..eiiittnieiiiiiieeeiii e teiii e eeeiaseeeaiinaeaestnnseaesnnnaeeennnaeeesnnns 1299
13.1.3 ALTER FUNCTT ON SYNEAX evttueiiiiinieeiiiiieeeeiiaeeeetiaeeeetinaeeeestseeeesenaeseeninaaaees 1301
13.1.4 ALTER PROCEDURE SYNAX .ttuuiiiiiinieeiiiiieeteiineeeeiiiaeeeetiaeeeetineeeeaineeeeninaeas 1301
13.1.5 ALTER SERVER SYNEAX ..ievvuiiiiiiiiiietiiiiiae et et e et s e eeeis s e aeaennaeeennnnaeeenens 1301
13.1.6 ALTER TABLE SYNEAX ..eiivvtiiiiiiiiieeiiii e et e e e et e e et e e e eaan e eeannns 1302
13.2.7 ALTER VI EWSYNEAX ...iiiiiiiieiiiiii ettt e et e et e e e et aeeeean s 1318
13.1.8 CREATE DATABASE SYNAX t.vtuiiiiiiieeiiiiiee et e e et e et e et e e e eeeae s 1318
13.1.9 CREATE EVENT SYNEAX .eiivttiieiiiiiietiiiieeeeeiiaeeeetineeeeaiiaaeaestnnseeeaensesesnnaeeennns 1318
13.1.10 CREATE FUNCTI ON SYNEAX ttvvtunetietineeeetinieeeiiiaeeeetinaeeessinseeessinseeessnneeenenns 1323
13.1.11 CREATE | NDEX SYNEAX ...iiiiiineiiiiiieeeii e eeei e e e et e e et e e e et e e et e e aeaan e 1323
13.1.12 CREATE PROCEDURE and CREATE FUNCTI ON SYNtaXcccovvevevinneerernnnnnn. 1326
13.1.13 CREATE SERVER SYNEAX ...ceevtuiiiiiiiieiiiii e e e e e e e e et e e aetn e e enene s 1331
13.1.14 CREATE TABLE SYNIAX ...iiiitiiiiiiiiiie e ettt e et e e et e e e 1332
13.1.15 CREATE TRl GGER SYNEAX .itvvtuiiiiiiiieeeiiiieeeeti e eeeii e aeesin e eeesin e eesnan e aesnnnns 1358
13.1.16 CREATE VI EWSYNTAX .tuuieiiiiiieieiiiie ettt e et e e e et e e et eeeain s 1360
13.1.17 DROP DATABASE SYNEAX ..ceevvuuiiiiiiieiiiiie ettt e e e eiisaeeetin e e eetineeeerineeeenenas 1365
13.1.18 DROP EVENT SYNEAX tettueiiiiiieeeiiiiee et eeeetia e e e e et s e e e et s e e eeti s e e eeriaaeeeaineens 1366
13.1.19 DROP FUNCTI ON SYNEAX ..etevveneiiiiiieiiiiieeeeiiaaeeeein e aetineeeenineeeeninneeeennnas 1366
13.1.20 DROP | NDEX SYNEAX tettueiiiiieeeiiiieee et eeeetiaaeeeeti s e e e etiaeeeeti s eeeesiaeeeennnns 1366
13.1.21 DROP PROCEDURE and DROP FUNCTI ON SYNtaXccvvvveniereiiinieeeiiineeeeiinnnn 1367
13.1.22 DROP SERVER SYNAX .tuuiiiiiiiieiiiiiiee ettt e e e et e et e e e et e eeeaan s 1367
13.1.23 DROP TABLE SYNAX t.ttuiiiiiiiiieiiiii ettt e et e et e e e 1367
13.1.24 DROP TRI GGER SYNIAX ...eviiiiieieiiiieieii et e et e et e e et e e et eeeaan e 1368
13.1.25 DROP VI EWSYNEAX tevttuieiiiitieeiiiiie ettt e e et e e e et e e e et eeeeettsaeeeatenaeeennnaeaees 1368
13.1.26 RENANE TABLE SYNTAX ...eiiiiiniiiiiiiie ittt e et e e e e et eeeaa e 1368
13.1.27 TRUNCATE TABLE SYNEAX ..iivvtuiiiiiiiieiiiiiieeeiii e eeeii e e et eeeai e e eani e aeenenns 1369

13.2 Data Manipulation StateMENTSccuuiiiiiieiii e e e 1370

MySQL 5.7 Reference Manual

R T T O I 1Y | = USRI 1370
13.2.2 DELETE SYNEAX .itittuieiiiiinieetiiie e e et e e et s e e et e e e et s e e e et e e e et e e e eatn e eeenenaeas 1372
13.2.3 DO SYNEAX teettuietiitiaeetiii e e ettt e e ettt e e e ettt e e e e et e e e e et e e e e et e e e e et eeaat e aeataaaaaes 1376
13.2.4 HANDLER SYNEAX tttttiiiiiiiiiieeiiii e et e et e et e e et e e et s e e et e e e e et e e e aeren s 1377
13.2.5 I NSERT SYNTAX .itittniiiiiiiee it e ettt e e e ettt e et e e e et e e e et e e e e at e e e eaen s 1378
13.2.6 LOAD DATA | NFI LE SYNEAX tevtunieiiiiiiieieii ettt e s 1385
13.2.7 LOAD XV SYNEAX tetuiiiiiiiieeteiii e e ettt s e e e et e e et a e e e et e e e e et e e e e et e e e e et e e eeannnans 1394
13.2.8 REPLACE SYNEAX ettttiiiiiiiiiieiiiiiie e et e e e et a e e et e e e et e e e et e e e e et e e e e et e eeeeranns 1399
13.2.9 SELECT SYNTAX oitittiiiiiiiiiee it e ettt e e e e ettt e e et r e e e et e e e et e e e e at e e eeatn s 1401
13.2.10 SUDQUETY SYNTAX t1uuiiiiiiiiieeii et e e e e ean s 1420
13.2.11 UPDATE SYNEAX ..uettittnietiiiiieeeiii e ettt e e e et e e et s e e eati s e e eatn e e aeatn e eeeannaeeennnns 1432
13.3 MySQL Transactional and Locking Statementscccovevviiiiiiiieiiiiece e 1434
13.3.1 START TRANSACTI ON, COW T, and ROLLBACK SYNtaXxcceeeeevvnieeeerennaanns 1434
13.3.2 Statements That Cannot Be Rolled Backccoooeviiiiiiiiiiiiiieiiieeecineeees 1437
13.3.3 Statements That Cause an Implicit Commitccccooiiiiiiiiiiii e, 1437
13.3.4 SAVEPO NT, ROLLBACK TO SAVEPO NT, and RELEASE SAVEPO NT Syntax . 1438
13.3.5 LOCK TABLES and UNLOCK TABLES SYNtaXccccvuiieiiiiiiieeeiiiieeeeeineeeeeiinnnn 1439
13.3.6 SET TRANSACT] ON SYNAX tettuieiiiinieeeiiiieeeiiiee e et e e et e e et eeeain e aeainae s 1444
13.3.7 XA TFANSACLONS ..eevtuiiiiiii ettt e e et e e e et e e e et e e e et e e e eaennas 1447
13.4 Replication StatemMENLSciuuieiii e e e e 1451
13.4.1 SQL Statements for Controlling Master SErversccooveviieiiieeeiineeieeeeeeen, 1451
13.4.2 SQL Statements for Controlling Slave Serverscccovvviiiiiiiciieeee e, 1453
13.5 SQL Syntax for Prepared Statementsooviiiiiiiieiiieeiee e 1466
13.5.1 PREPARE SYNEAX ittttiiiiiiiiiieiiiii e et e et e e et e e e et e e e e et s e e e et e e e e et e eeaerenns 1469
13.5.2 EXECUTE SYNEAX ttvttiiiiiiiiiieiiiiee e et e e e et e e et e e e et e e e et s e e e et e e e e et e e eaeren s 1470
13.5.3 DEALLOCATE PREPARE SYNEAX ...evvvtiiiiiiiiieeeiiiiaeeeiieeeeain e eeiinaeeeninneeeeninnns 1470
13.6 MySQL Compound-Statement SYNTAXeivuniiiiieiii e e e e e e e e e eeees 1471
13.6.1 BEG N ... END Compound-Statement SYyntaxXcc.ccoevevuuneeinieriiniennnnennnnn 1471
13.6.2 Statement Label SYNTAXcccuiiiiiiiiiiicii e 1471
13.6.3 DECLARE SYNEAX tttttuiiiiitiieieiiiiaeeteti e e e et e e e eetia e e e eete s e e e et s e e aete e e e eetaaaeaerannns 1472
13.6.4 Variables in Stored Programsco.eeiuieiiiiee e e e e e aaens 1472
13.6.5 FIow Control StatemMENTScooeuuniiiiiiiei e e 1474
R I I O U] 1o] £ TP PRPT 1478
13.6.7 Condition HaNAINGccouiiiiiieiiiei e e e e e e 1480
13.7 Database Administration StatemMENtScc.uiiiiiiiiiiiiii e 1505
13.7.1 Account Management STatemMENTSooiiiiiiiiiiii e 1505
13.7.2 Table Maintenance StatemMENtScooviuiiieeiiiii e 1523
13.7.3 Plugin and User-Defined Function Statementscccooeviiiviiieiii e, 1532
R T S I 1Y | = OO 1535
13.7.5 SHOWSYNIAX L.ueiiitiieeiiie ettt e et e et e e e e et e e e e et e e e aete e eeeeraaeeees 1538
13.7.6 Other Administrative StatemMeNtSoveveeiiiiiiiiiiii e 1578
13.8 MySQL Utility STatE@MENTSceuiiiiiieii e e e e e 1586
13.8.1 DESCRI BE SYNEAX tevtuiieiiitiieeeiiiiieeeeiiaeeeeii e e e ettt s e e e eetneeaeatnseesestnnaeeestnnaeaesnnnnns 1586
13.8.2 EXPLAI N SYNEAX ttittiieiiiiiiieeiiii et e et e e et e e et e e et e e e e et e e e aeren s 1586
13.8.3 HELP SYNAX ..uiiiiiiieiiiii ettt e et e e e et e e e e et e e e eete e e e eanaaeeees 1588
13.8.4 USE SYNEAX t.tuiiiiiitiieeiiii e ettt e ettt e e ettt e e e et e e e eatr e e e eat e e e e eatnaeeeestn s eeeentnaaeeees 1590
Y (o] = o T =t o 1 = 1591
14.1 Setting the Storage ENGINEcoouiiiiiiiii e e e e e 1594
14.2 The | NNODB Storage ENQINEcouniiiiiii e e e e e e e 1595
14.2.1 Introduction t0 | NNODBciiiiiieeii e e e et e e e et e eeeaes 1595
14.2.2 1 nnoDB Concepts and ArchiteCtureccooeeviiiiiiiiiiie e 1600
14.2.3 1 NNODB CoNfIQUIatioNcoouuiiiiieiiie e e e e e e 1620
14.2.4 1 NNODB AdMINISIIALION ...ciivtiiiiiiiie et e e e e e eeeens 1626
14.2.5 1 nnoDB Tablespace Managementcvevuuieiiiieiiiieeii e e e e eeans 1626
14.2.6 | NNODB Table ManagemeNntcc.uieiiuieiiiiei e e e e e e e 1641
14.2.7 | nnoDB Compressed Tablescccoouiiiiiiiiiii e, 1659
14.2.8 | nnoDB File-Format Managementc.coouiiiiiiiiiie e e 1670
14.2.9 | nnoDB Row Storage and ROW FOrMatscccoveviiiiiiiiiiiiiiecceee e, 1676

Xi

MySQL 5.7 Reference Manual

14.2.10 | nnoDB Disk I/O and File Space Managementcccccoeveevieeiiiieiiiieenneenn, 1678
14.2.11 1 NnNODB @nd ONlINE DDLuiiiiiiiiiieiii et e et e 1681
14.2.12 1 nnoDB Performance TUNINGcccuuiiiiieiiieeii e e e e e e e e e e e eanes 1715
14.2.13 1 nnoDB Startup Options and System Variablesccoocoviviiiiiiiiniieeees 1762
14.2.14 1 nnoDB Backup and RECOVEIYiiiuiiiiiiieiii e 1827
14.2.15 1 nnoDB and MySQL Replicationcccoeuiiiiiiiiiiiieiie e 1829
14.2.16 1 nnoDB Integration with memcachedcoooiiiiiiiiin e 1831
14.2.17 1 NNODB TroubleShOOtINGc.vuiiiicii e 1860

14.3 The Myl SAM SIOrage ENQINEcovniiiiiiiii et e e e e e e anaee e 1869
14.3.1 Myl SAM Startup OPLIONScveinieiiee e e e e e e e e e e aaaas 1871
14.3.2 Space Needed fOr KEYS ..ot 1873
14.3.3 Myl SAM Table Storage FOMMALScccoviiiiiiiiiiiiieie e e 1873
14.3.4 Myl SAMTable Problemsccooiiiiii e e 1875

14.4 The NEMORY Storage ENQINEccouuiiiiiiiiii e e e e e e e e e e eanae e 1877
14.5 The CSV StOrage ENQINGcviiiiiiii e e e e e e e e e e e e e eaes 1880
14.5.1 Repairing and Checking CSV TabIesccciiiiiiiiiiiiiei e 1881
14.5.2 CSV LIMIALIONS ...eeeviiieiiiiii ettt e e e et e e et e e e e e e ean s 1882

14.6 The ARCHI VE Storage ENQINEcoouiiiiieiiic et e e e e e e e aae e 1882
14.7 The BLACKHOLE Storage ENQINEccovuiiiiiiii e e e 1883
14.8 The VERGE Storage ENQINEocovniiiiiii et e e e e 1886
14.8.1 MERGE Table Advantages and Disadvantagescccoveveviieiiieiiieviineenieennnn. 1888
14.8.2 VERGE Table Problemscoouuiiiiiiiiie e 1889

14.9 The FEDERATED Storage ENQINEccovuiiiiiiiiii e e e e 1890
14.9.1 FEDERATED Storage ENging OVEIVIEWccvuniviiiiiiiieii e e e e e e e 1891
14.9.2 How to Create FEDERATED TabIesoviiiiiiiiiiiiii e 1892
14.9.3 FEDERATED Storage Engine Notes and TiPS ...cc.uvevvriiiiiieiiiieiiieeriieeiineeeieeeen 1894
14.9.4 FEDERATED Storage ENngine RESOUICESccvvviiiiiieiiiieiiieee e 1896
14.10 The EXANPLE Storage ENQINEGccouniiiiiiiei e e e e e e e e e e 1896
14.11 Other Storage ENQINESuiiiiiieii et e e e e e e e e e e e e et e e et e e eaaaeees 1896
14.12 Overview of MySQL Storage Engine ArchiteCtureccooeviiiiiiiii i 1896
14.12.1 Pluggable Storage Engine ArchiteCtureccooeeiiiiiiiiiiii e, 1897
14.12.2 The Common Database Server Layercccouvieiiiiiiii e e 1897

15 High Availability and Scalabilitycoiiiiiii e 1899
15.1 Oracle VM Template for MySQL Enterprise Editionccoeeviiiiiiiiiiiiiiciiieveeeies 1902
15.2 Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linuxcc.ccuvneeeen. 1902
15.3 Overview of MySQL with Windows Failover CIUSteringccooevviieviiiiiiiiciiii e, 1905
15.4 Using MySQL within an Amazon EC2 INStANCEvevivieiiiieiii e 1907
15.4.1 Setting Up MySQL 0n an EC2 AMIovviiiiiicii e 1907
15.4.2 EC2 Instance LIMItatioNSuuiiiiiiiiiiiiiiii et 1909
15.4.3 Deploying a MySQL Database USINg EC2cccoveviiiiiiiiiiiiicei e 1909

15.5 USING ZFS REPICALIONciiiiiiiiiii e e e e e 1912
15.5.1 Using ZFS for File System Replicationcccoiviiiiiiiiiieiiiece e 1914
15.5.2 Configuring MySQL for ZFS Replicationccoooviiiiiiiiiiiiicie e, 1914
15.5.3 Handling MySQL Recovery With ZFScoooiiiiiiiii e, 1915

15.6 Using MySQL With MENMTACHEA ..ccvvniiiiici e 1915
15.6.1 Installing MENMTACKHET ...cvviiii e e e 1916
15.6.2 USINg MEBMCACNEA ..ovuiiii e e e e 1918
15.6.3 Developing a mencached AppPlICAtioNcoiviiiiiiiiiiiii e 1936
15.6.4 Getting mentached StatiStiCSccvviiiiiiiiie e 1961
15.6.5 MENTAChEd FAQ oo e et e e e e e e e aans 1969

15.7 MYSQL PrOXY euuiieiiiiiieiiii ettt e et e et e e e e e et e e et et e e e eatnr e e e ettt e e e eatnnaeeeatnaaeeees 1972
15.7.1 MySQL Proxy Supported Platformscccoeeiiiiiiii e 1973
15.7.2 Installing MYSQL PrOXY ...ccuueiiiieiiieeie et e e e e e e e e e e e e et e e et e e e e eeens 1973
15.7.3 MySQL Proxy Command OPtiONSeeiuuieiiiieiiii et e e e 1977
15.7.4 MySQL Proxy SCHPLNG ..ovuiiitieiiii et e e e e e e e e e e e an s 1986
15.7.5 USING MYSQL PrOXY .oovuiiiiiiiiiiiii ettt e e e e e e e e e e e e e aaaas 2000
15.7.6 MYSQL ProxXy FAQ ..ottt et e 2006

LG =T o] o7 11T o I 2011

Xii

MySQL 5.7 Reference Manual

16.1 Replication ConfigUrationcieiiiiiiiiiiii e e 2012
16.1.1 How to Set Up RePliCAtiONccevuiiiiieiii e e 2013
16.1.2 Replication FOrMALScviiiiiiiei e e e e e e e e e e aeas 2022
16.1.3 Replication with Global Transaction Identifiersccccoceiiiiiiiiiiiiiee e, 2029
16.1.4 Replication and Binary Logging Options and Variablescccocoiivevinennn. 2036
16.1.5 Common Replication Administration TasKScccceuiieiiiieiiinieiii e, 2103

16.2 Replication IMplemeNntationccciuuiiiiiiiii e e 2106
16.2.1 Replication Implementation DetailScooeviiiiiiiiiii e, 2106
16.2.2 Replication Relay and Status LOgSoovvviiiiiiiiiiieee e 2108
16.2.3 How Servers Evaluate Replication Filtering RUleSccooiiiiiiiiiiiieen, 2113

16.3 Replication SOIULIONSiiiiiiii e e e e e e e e aaens 2120
16.3.1 Using Replication for BaCkUPScoovuiiiiiiiiiii e 2121
16.3.2 Using Replication with Different Master and Slave Storage Engines 2124
16.3.3 Using Replication for Scale-Outcooviiiiiiiieiiii e 2125
16.3.4 Replicating Different Databases to Different Slavesccccocviviiiiiiiiiees 2126
16.3.5 Improving Replication Performanceccoovviiiiiiiiiiii e 2128
16.3.6 Switching Masters During FailoVercoooiviiiiiiiiii e 2129
16.3.7 Setting Up Replication USING SSLccocviiiiiiiiiiii e eaee 2131
16.3.8 Semisynchronous RepliCAtiONccouuiiiiiiiiiiii e 2132
16.3.9 Delayed RepliCAtiONiiiiiiiiii e e e 2137

16.4 Replication NOtES @Nd TIPS ..vuiiiuieiiiieiiiee et e e e e e e e e e e et e e e e aanes 2138
16.4.1 Replication Features and ISSUESccccuuiiiiiiieiiiiiiii e e e 2138
16.4.2 Replication Compatibility Between MySQL VErsionsccc.cccevevvieviineeennnenn. 2163
16.4.3 Upgrading a Replication SEtUPccouiviiiiiiiiiicie e e 2164
16.4.4 Troubleshooting RepliCatioNcccouuiiiiiiiiii e e 2165
16.4.5 How to Report Replication Bugs or Problemscccooeviiiiiiiiinii e, 2167

A - 1 1o o 11 o R PP 2169

17.1 Overview of Partitioning in MySQLiiiiiiiiiii e e 2171

17.2 PartitionNing TYPES .vvvuiiiinieii i et ettt et e e et et e e e e e e et e e et e e e e e e e e e aaan 2173
17.2.1 RANGE PartitiOnNingccuueeiiieiii e e e e e e e e e e e e e e eaens 2175
A W I I - 4 1110 11 o 2179
17.2.3 COLUMNS PartitiOninguovevueiiieeiieeiiiee e e e e e e e e e e e e e e e e e et e e eaneeeanaeeeen 2181
17.2.4 HASH Partitioningcveuneeiieeii e e e e e e e e e e e et e e e e et e e e e eaens 2189
17.2.5 KEY Partitioningcccuuiiiiiiiiiiii e e e e e e e e et e e e e e e e aanas 2192
A SIS] o] o = g 11 o) 1 o [P 2193
17.2.7 How MySQL Partitioning Handles NULLccoooiiiiiiiiiiiiicceeee e 2196

17.3 Partition ManagemENTciuuuieii e e e e e e e e e e e e e e e e e e 2200
17.3.1 Management of RANGE and LI ST Partitionsccccocviveviiiiii e, 2201
17.3.2 Management of HASH and KEY Partitionsccoooeviiiiiiiiiiii e 2207
17.3.3 Exchanging Partitions and Subpartitions with Tablesccoooiiiiinenn. 2208
17.3.4 Maintenance Of PartitioNScoooveuiiiiiiiiiieie e 2213
17.3.5 Obtaining Information About Partitionscccccoiiiiiiiiiiiii e 2214

A o V14T T g T = 1] T o PP 2217

17.5 Partition SEIECHONiiiiiiie e 2220

17.6 Restrictions and Limitations on Partitioningcccoeieiiiiiii i 2225
17.6.1 Partitioning Keys, Primary Keys, and Unique Keysccccccieveviiieiiiieiiiieeeiees 2231
17.6.2 Partitioning Limitations Relating to Storage ENginesccccceeevviveviineeinneennnn. 2234
17.6.3 Partitioning Limitations Relating to FUNCLIONSccocoviiiiiiiiiiie e, 2235
17.6.4 Partitioning and LOCKINGcouuiiiiiiiiiiici e e e e e e e eae e 2236

18 Stored Programs and VIBWSuiiiiiiiiiieii e e e e e e e e e e e e e e e e e e et e e e eaas 2239

18.1 Defining StOred Programsccouuiiiiiiieii e e e e e e e e e e aanas 2240

18.2 Using Stored Routines (Procedures and FUNCLONS)cooevviiiiiiiiiin e 2241
18.2.1 Stored ROULINE SYNEAX ..ucviviiiiiiieiiieeie e e e e e e e e e e e e e e e e eees 2241
18.2.2 Stored Routines and MySQL Privilegescoovviiiiiiiciiii e 2242
18.2.3 Stored RoUtiNe Metadataccouvuiiiiiiiiiiii e e 2243
18.2.4 Stored Procedures, Functions, Triggers, and LAST | NSERT | D()cccvveennnn. 2243

ST L U T Vo T o o = PP 2243
18.3.1 Trigger Syntax and EXamPlEScc.uieiiiiiiiiiieii e 2244

Xiii

MySQL 5.7 Reference Manual

18.3.2 Trigger Metadatalccvuuiiiiieiiie e et e e e e 2247
18.4 Using the EVENt SChEAUIETcouuiiiii e 2248
18.4.1 Event Scheduler OVEIVIEWooiiiuiiiiiiii e e e 2248
18.4.2 Event Scheduler Configurationcooiviiiiiiiii e 2249
18.4.3 EVENT SYNTAX ..ivtuiitiiiieiiei et e e e e et e e e e e e e e e e e e e e s e e e e e e e e etaeanaaanns 2251
18.4.4 EVENt METAUALA .. cceevvneiiiiii et 2251
18.4.5 Event SCheduler STAtUScoouuiiiiiiiiiec e 2252
18.4.6 The Event Scheduler and MySQL Privilegescccoceoiviiiiiiiniiiiieceve e, 2253
18.5 USING VIBWS ..oiiiiiiiiieiiii e e ettt et e e e e e e e e e e e e e et e e et e e et e e e e e tn e e et e e aaneeeanss 2255
L18.5.1 VIBW SYNTAX 1.tuiiiiiiiiiiieiiii et et e et e et ettt e e e e e e et e e et e e e et e e st e e st e eeanaeeannaees 2256
18.5.2 View Processing AlgOrithmsco.uiiiiiiiiiii e 2256
18.5.3 Updatable and Insertable VIEWScc.oiiiiiiiiiiicie e 2258
18.5.4 VIEW MELAUALA .. .ccevvnieiiii e 2259
18.6 Access Control for Stored Programs and VIEWScc.cveiiiiiiiiiiiiiiiicieece e 2260
18.7 Binary Logging of Stored Programsoviiuuieiiieiiieei e e e e e e e e e 2261
19 | NFORVATI ON_SCHENMA TaADIESeieiiiieeiiii ettt e et e e et e eeeaae e e eenens 2269
19.1 The | NFORVATI ON_SCHEVMA CHARACTER _SETS Tableccviiiiiiiiieeiiieeee e 2272
19.2 The | NFORVATI ON_SCHENMA COLLATI ONS Tableooovvvviiieiiiiieei e 2272
19.3 The | NFORVATI ON_SCHEVA COLLATI ON_CHARACTER_SET_APPLI CABI LI TY
1= 10 PP 2273
19.4 The | NFORVATI ON_SCHEMA COLUMNS Table ...covuiiiiiiiieeiii e 2273
19.5 The | NFORVATI ON_SCHEMA COLUMN_PRI VI LEGES Tableccccovviviiiiiiiiiinee, 2274
19.6 The | NFORVATI ON_SCHEMA ENG NES Table ...c.ouiiiviiiiiieiiiieee e 2275
19.7 The | NFORVATI ON_SCHEMA EVENTS Table ...ocvviiiiiiiiiieii e 2275
19.8 The | NFORVATI ON_SCHEMA FI LES Tablecoovvviiiiiiieeeeee e 2279
19.9 The | NFORVATI ON_SCHEMA GLOBAL_STATUS and SESSI ON_STATUS Tables 2280
19.10 The | NFORVATI ON_SCHEMA GLOBAL_VARI ABLES and SESSI ON_VARI ABLES
JLIE= 1] LS SR 2280
19.11 The | NFORVATI ON_SCHENMA KEY_COLUMN _USAGE Tablecccovveviiiiieiiiiiieeeceiin, 2280
19.12 The | NFORVATI ON_SCHENA OPTI M ZER _TRACE Tableccocvviviiiiiiiieiiiiieeeci, 2281
19.13 The | NFORVATI ON_SCHENVA PARANETERS Tablecoviviiiiiiiiiieec e 2282
19.14 The | NFORVATI ON_SCHENMA PARTI TI ONS Tablevvviiiiiiieiiieeec e 2282
19.15 The | NFORVATI ON_SCHENVA PLUG NS Tablecccoviiiiiiiiiiiiiii e 2285
19.16 The | NFORVATI ON_SCHEMA PROCESSLI ST Tablecooovvvviiiiiiiiiieeie e 2286
19.17 The | NFORVATI ON_SCHENVA PROFI LI NG TabIe ..o 2287
19.18 The | NFORVATI ON_SCHEMA REFERENTI AL_CONSTRAI NTS Tablecccooeevvvnnnnnn. 2288
19.19 The | NFORVATI ON_SCHENVA ROUTI NES Table ...ccoovviiiiiiiiiieeeee e 2289
19.20 The | NFORVATI ON_SCHENVA SCHENMATA TabIe ...ooiiiiiieiii e 2290
19.21 The | NFORVATI ON_SCHENA SCHEMA PRI VI LEGES Tableccooevvviiiiiiiiiinieciiie, 2290
19.22 The | NFORVATI ON_SCHEMA STATI STI CS Table ...covvviiiiiieeiiieee e 2291
19.23 The | NFORMVATI ON_SCHENVA TABLES Tableccccvvviiiiiiiiiiii e 2291
19.24 The | NFORVATI ON_SCHENMA TABLESPACES Tableccocuviiieiiiiiieeiiin e 2293
19.25 The | NFORVATI ON_SCHENA TABLE_CONSTRAI NTS Tableccooeviviiiiiiiiiieeciiie, 2293
19.26 The | NFORVATI ON_SCHENMA TABLE PRI VI LEGES Tablecccovveiiiiiiieiiiiiieeeciin, 2293
19.27 The | NFORVATI ON_SCHENVA TRI GGERS Table ...ccovvviiiiiiiiiecee e 2294
19.28 The | NFORVATI ON_SCHENMA USER PRI VI LEGES Tableccocvviviiiiiiiiiiiieeecie, 2296
19.29 The | NFORVATI ON_SCHENA VI EWS TabIeoooiiiiiieiiii e 2296
19.30 | NFORMATI ON_SCHEMA Tables for | NNODBccuivviiieiiie e 2297
19.30.1 The | NFORVATI ON_SCHENMA | NNODB_CMP and | NNODB_CVP_RESET
JLIE= 1] [OOSR 2298
19.30.2 The | NFORVATI ON_SCHENMA | NNODB_CMP_PER_| NDEX and
| NNCDB_CVP_PER | NDEX_RESET TabBIEScoiviiiiieiiiiieeeee et 2298
19.30.3 The | NFORVATI ON_SCHENA | NNODB_CMPMEMand | NNODB_CVPMEM _RESET
JLIE= 1] [OOSR 2299
19.30.4 The | NFORVATI ON_SCHENMA | NNODB_TRX Tableccccvvveiiiiiieiiiiinieeennnn, 2300
19.30.5 The | NFORVATI ON_SCHEMA | NNCDB_LOCKS Tablecccvvvviiiiiiiiiiiineees 2301
19.30.6 The | NFORVATI ON_SCHENMA | NNODB_LOCK_WAI TS Tableccccvvvivenennn. 2302
19.30.7 The | NFORVATI ON_SCHENMA | NNODB_SYS TABLES Tableccccvvvveeenn. 2303

Xiv

MySQL 5.7 Reference Manual

19.30.8 The | NFORVATI ON_SCHENMA | NNODB_SYS | NDEXES Tableccccoo. 2303
19.30.9 The | NFORVATI ON_SCHENMA | NNODB_SYS_COLUWNS Tableccceeeeee. 2304
19.30.10 The | NFORVATI ON_SCHENMA | NNODB_SYS FI ELDS Tablecccoveevennnn. 2305
19.30.11 The | NFORVATI ON_SCHENMA | NNODB_SYS FOREI GNTablecccocevvennn.. 2305
19.30.12 The | NFORVATI ON_SCHENMA | NNODB_SYS FOREI GN_COLS Table 2305
19.30.13 The | NFORVATI ON_SCHENA | NNCDB_SYS TABLESTATS VieWc.cco.c.... 2306
19.30.14 The | NFORVATI ON_SCHENMA | NNODB_SYS DATAFI LES Table 2307
19.30.15 The | NFORVATI ON_SCHENA | NNODB_SYS TABLESPACES Table 2307
19.30.16 The | NFORVATI ON_SCHENMA | NNODB_BUFFER_PAGE Tableccc.uun.... 2307
19.30.17 The | NFORVATI ON_SCHENA | NNODB_BUFFER_PAGE_LRU Table 2309
19.30.18 The | NFORVATI ON_SCHENMA | NNODB_BUFFER_POOL_STATS Table 2309
19.30.19 The | NFORVATI ON_SCHENMA | NNODB_METRI CS Tablecccvvveviiiiniennn. 2310
19.30.20 The | NFORVATI ON_SCHENMA | NNODB_FT_CONFI GTablecccvvvveevinnnnnnn. 2316
19.30.21 The | NFORVATI ON_SCHENMA | NNODB_FT_DEFAULT_STOPWORD Table 2317
19.30.22 The | NFORVATI ON_SCHENMA | NNODB_FT_| NDEX_TABLE Table 2317
19.30.23 The | NFORVATI ON_SCHENA | NNODB_FT_| NDEX_CACHE Table 2318
19.30.24 The | NFORVATI ON_SCHEMA | NNODB_FT_DELETED Tableccoeeevenenn. 2318
19.30.25 The | NFORVATI ON_SCHENMA | NNODB_FT_BEI NG_DELETED Table 2319
19.30.26 The | NFORVATI ON_SCHENA | NNODB_TEMP_TABLE_| NFOTable 2319
19.31 Extensions t0 SHOWSIAEMENTSc.uuiiiiiiiiieiiiii et e et e b 2320
20 MySQL Performance SCREMAiiiiiiiii e e e s 2323
20.1 Performance Schema QUICK Startccooiiiiiiiiii e 2324
20.2 Performance Schema Configurationoooiiiiiiiiie i 2330
20.2.1 Performance Schema Build Configurationc.ccoeeiiiiiiiiiieiiii e 2331
20.2.2 Performance Schema Startup Configurationccooeviiiiiiiieiii e, 2332
20.2.3 Performance Schema Runtime Configurationcccccoiviiiiiiiii i, 2334

20.3 Performance Schema QUETIESiiiiiiii e e e e e aen 2351
20.4 Performance Schema Instrument Naming Conventionscccocvuiviviiiieiiiieciiieceeeann, 2352
20.5 Performance Schema Status MONItONNGovvviiiiiei e 2354
20.6 Performance Schema Atom and Molecule EVENLSc.ocoeeviiiiiiiiiiieiiiiii e 2358
20.7 Performance Schema Statement DIgESESc.uiviiiiiiiiiiiie e 2358
20.8 Performance Schema General Table CharacteristiCsooooiiiiiiiiiiieiiiiieeees 2360
20.9 Performance Schema Table DEeSCIPLONSc.uuiiiiiieiiiiciie e 2360
20.9.1 Performance Schema Table INdeXcovviiiiiiiiiiiii e 2360
20.9.2 Performance Schema Setup TabIeScoovviiiiiiiiii e 2363
20.9.3 Performance Schema Instance Tablesccooviiiiiiiiiiiiin e, 2367
20.9.4 Performance Schema Wait Event Tablesc.occoiiiiiiiiiiiiii e, 2372
20.9.5 Performance Schema Stage Event Tablesccoooeviiiiiiiii i, 2376
20.9.6 Performance Schema Statement Event Tablesccccoovviviiiiiiiiic, 2378
20.9.7 Performance Schema Transaction Tablesccoovviiiiiiiiiiiiie e 2388
20.9.8 Performance Schema Connection Tablesccooooviiiiiiiiiiiiii e 2394
20.9.9 Performance Schema Connection Attribute Tablesccccoiviiiiiiiiiiiiineeees 2396
20.9.10 Performance Schema Replication Tablescccoociiviiiiiiiiiine e, 2397
20.9.11 Performance Schema Lock Tablescoooiiiiiiiiiiiiiii e 2404
20.9.12 Performance Schema Summary Tablescccoiviiiiiiii i, 2407
20.9.13 Performance Schema Miscellaneous Tablesc..coovvvviiiiiiiiiiin e, 2424
20.10 Performance Schema Option and Variable Referenceccooooviiiiiiiiiiiiceeeennn, 2431
20.11 Performance Schema Command OPLiONSccccuuieiiiieiiiieeii e ee e e 2434
20.12 Performance Schema System Variablescccoiviiiiiiiiii e 2435
20.13 Performance Schema Status Variablescooiiiiiiiiiiiiiii e 2448
20.14 Performance Schema and PIUGQINSooouiiiiiiiiiiec e e 2450
20.15 Using the Performance Schema to Diagnose Problemscccoovviiiiiiiiiiinciinens 2450
21 CONNECLOIS NG APIS .ot e e e e e e e et e et a e 2453
21.1 MySQL CoNNECIOIODBCiiiiiiiiie it e e e e e et e e e e aaeaes 2456
21.2 MySQL CONNECIOINEL .. couiiiiiee e e e e e e e e an s 2457
21.3 MYSQL CONNECIONJ .. ettt e et e e e e e e e e e e e e et e e e eeanns 2457
21.4 MySQL CONNECIONCH ooiiiiiiii et e e e e e e e e e e et e e e aaeaes 2457
21.5 MySQL CONNECIONC ...ouiiiiieii et e e e e e e e e e et e ean s 2457

XV

MySQL 5.7 Reference Manual

21.6 MySQL ConNECIOr/PYINONciiiiiii e e 2457
21.7 libmysqld, the Embedded MySQL Server Librarycooovviiiiiiiiiiiecie e 2457
21.7.1 Compiling Programs with | i brmysgl dooeiiiiiii e, 2458
21.7.2 Restrictions When Using the Embedded MySQL Servercocccevevviievineennnnn. 2458
21.7.3 Options with the Embedded SEervercoooiiiiiiiiiiii e, 2459
21.7.4 Embedded Server EXamplesccoouiiiiiiiiiiii e 2459

21.8 MYSQL € APl et 2462
21.8.1 MySQL C API Implementationscccvuuiiiiiieeiiiieiii e e e e e e e 2463
21.8.2 Simultaneous MySQL Server and MySQL Connector/C Installations 2464
21.8.3 Example C API Client Programscoocuieiiieiiiieee e e e e eae e e 2465
21.8.4 Building and Running C API Client Programscccoeeveiiieiiieeiiiieeiineeeeeeeenn 2465
21.8.5 C API Data SIUCIUIEScviieeiiiiieeie ettt et e e e e e eens 2469
21.8.6 C API FUNCHON OVEIVIEWciiiiiiieiiiiii ettt e et e et e e et e e et eeeean s 2474
21.8.7 C API FUNCtion DESCIPLONSuiiiiieiiiieiii e e e e e e e e e e e 2478
21.8.8 C API Prepared StatemMeNntSoeiuuieiiiieiii e e e e e e e 2534
21.8.9 C API Prepared Statement Data StrUCtUIEScovviiiiieiiiiiiii e, 2534
21.8.10 C API Prepared Statement FUNCtion OVEIVIEWcccevvieiiiiiiiiieiiiiecieeeiees 2540
21.8.11 C API Prepared Statement Function DesCriptionsccccceveviiieiiiiiiiieeeinns 2543
21.8.12 C API Threaded Function DesCriptioNSccocvuieiiiieiiiiieiii e e e 2565
21.8.13 C API Embedded Server Function DescCriptionscccccovveviieiiieiiineeeineennn, 2566
21.8.14 C API Client Plugin FUNCONSccoiiiiiiiiiii e e e 2567
21.8.15 Common Questions and Problems When Using the C APlcocceiveenn. 2570
21.8.16 Controlling Automatic Reconnection Behaviorcccccoovviviiiiiiiiiii e, 2572
21.8.17 C API Support for Multiple Statement EXECULIONccoveviiieiiiiiiiiiieiieeeinns 2573
21.8.18 C API Prepared Statement Problemscccooiiiiiiiiiiiiii e, 2575
21.8.19 C API Prepared Statement Handling of Date and Time Values 2575
21.8.20 C API Support for Prepared CALL Statementsccocceviviiiieiiiieiiiieeiieeiins 2577

21.9 MYSQL PHP AP i e et e et e et et e a e aaa 2580
21.20 MYSQL PEeIT AP .. 2581
21.11 MySQL PYINON APl L. e e 2581
21.12 MySQL RUBY APIS .t e aaaa 2582
21.12.1 The MySQL/RUDY AP ... e 2582
21.12.2 The RUDY/MYSQL AP ... e 2582
21.13 MYSQL TCl AP ettt e e e e e e e 2582
21.14 MYSQL EIffel WIAPPET ...t e e e et e e e e aneees 2582
22 EXIENING MYSQL ..ottt 2583
P N VST @ T I 1) (=1 = | PP 2583
22.1.1 MYSQL TRIEAAS ...ceevuieeiiii ettt e et e e e e et e e e s 2583
22.1.2 The MYSQL TESt SUILE ...ceeuuniiiiiiiieeiii et e e et eeeeens 2584

22.2 The MySQL PIUGIN APL ... e e 2584
22.2.1 Plugin APl CharacteriStiCSiiiiuuieiiieiiiie e e e e e 2585
22.2.2 Plugin APl COMPONENTSuiiitiiiiieeii et e e e e e e e e e e e e eanes 2586
22.2.3 TYPES Of PIUQINS ...uiiiiiiiiiieei et e e e e e e e e e 2587
22.2.4 WIItING PIUGINS ...oiiii et e e e e aaaaes 2590
22.2.5 MySQL Services for PIUQINSoiiiiieiiicii e 2638

22.3 Adding New FUNCtions t0 MYSOQLiiiiiiiiiiii e e e 2639
22.3.1 Features of the User-Defined Function Interfaceccccoovveviiiiiiiiiiiniencinnnnn. 2640
22.3.2 Adding a New User-Defined FUNCLONccooiviiiiiiiii e 2640
22.3.3 Adding a New Native FUNCLIONcocuiiiiiiiiiie e 2650

22.4 Debugging and Porting MySQLccuuiiiiiii e e 2651
22.4.1 Debugging a MYSQL SEIVETccvuuieiiiiei e e e e e e 2652
22.4.2 Debugging a MySQL ClENtooiiiiiii e e e e e e 2658
22.4.3 The DBUG PaCKAQgEuoviiiieiii et e e e e e e 2658

23 MySQL ENterprise EditiONccouiiiiiiiii e e 2663
23.1 MySQL ENterpriSE€ MONIOLciiiiiii e e e e e e e e e e e e e e e eanas 2663
23.2 MySQL ENterpriSe€ BaCKUPciviieiiiie et e e e e e e e e aanas 2664
23.3 MYSQL ENtErPriSE SECUILY ..cvvuiiiiieeiii ettt et e e eeanas 2664
23.4 MySQL ENterpriSe€ AUGILciuuiiii e e e e e e e e e e e e e e aaens 2665

XVi

MySQL 5.7 Reference Manual

23.5 MySQL Enterprise Thread POOlcccouiiiiiiiiii e 2665
W Y VST @ I VY 4= o] o 2667
P25 T [11 Yo [N od 1o o I PP 2669

25.1 Installing and ConfigUIINGcoeuiiiiiii e e e e e eaa s 2669

25.2 Edit MySQL Data iN EXCEIoiieeiiieiiiii ettt 2671

25.3 Import MySQL Data int0 EXCElcvvuiiiici e 2673

25.4 Append Excel Data int0 MySQLcc.uiiiiiiii e 2676

25.5 Export Excel Data iNt0 MYSQLcuuiiiiiiii e e e 2679

25.6 What Is New In MySQL fOr EXCElcvuniiiiiiii e 2682

25.7 MySQL fOr EXCElI FAQ ...ttt 2683
A Licenses for Third-Party COMPONENEScouuiiiiiiiiiiee e e e e e e e e e e e et e e et e eeaaaeens 2685

A.L Artistic LICENSE (PErI) 1.0 ... e e e e e e e e 2687

A.2 BOOSE LIDrary LICENSEciieiiiii it e e e e e e 2689

A3 L 08, C LICEBNSE ..niiiiiiiii e 2689

A.4 Editline Library (I i bedi 1) LICENSEciiuiiiiiici et e e 2690

AL EXPECE . PIMLICENSE .iiiiiiiii ettt e e e e e e e e e e e 2693

A.6 Facebook Fast Checksum PatCh LICENSEviiiiiiiiiiiiii e 2699

A.7 Facebook PatChes LICENSEuuiiiiiiiiieiii e e e e e e e e eeeei e eees 2700

A.8 Fi NAGTEST . CMBKE LICENSE ...uuiiiiiii ettt eaeens 2701

A.9 Fred Fish's Dbug Library LICENSEccviuiiiiiiiii e 2701

F N O o L=y A= U o T IR o7 =T o 1 P 2702

A.11 GLib License (for MySQL PrOXY) ..couuiciiiiiiiieeii e e e e e e e e e e e eanas 2703

A.12 GNU General Public License Version 2.0, June 1991cccoeviiiiiieiiiiiiieeiiiineeeeiinen 2703

A.13 GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library

Exception Version 3.1, 31 March 2009ccooiiiiiiiiiiiiie e e 2708

A.14 GNU Lesser General Public License Version 2.1, February 1999c...ccoevivinen. 2719

A.15 GNU ReEAdINE LICENSEoiiiiiiiieiii et e et e e e 2727

A.16 GNU Standard C++ Library (libstdc++) LICENSEcccuiviiiiiiiiiiii e 2727

A.17 Google Controlling Master Thread I/0O Rate Patch LiCENSec.cccevevviieviiiiiiineennnnn. 2728

A.18 Google Perftools (TCMalloc utility) LICENSEccvuiviiiiiiiieiie e 2729

A.19 Google SMP PatCh LICENSEcovviiiiiiiii i e 2729

F N O B o T o | A o o I o =1 1 - 2730

A.21 LIDAIO LICENSE ...ttt e et e et e e aaat e aae 2730

A22 1 T DEVENT LICENSE ..ttt e e et e e et e e e et e eeenens 2730

A.23 LIDICONV LICENSE ..ovtiiiiiii ettt ettt e et e e e et n e e e eatn e e e eeatnaeeeee 2732

YN T o T o B T =T TSP 2732

A.25 LINUX-PAM LICENSE .. ittt ettt e et e et e e e e et r e e e eatn e e e aatnnaeeenes 2733

A.26 LPeg LIBrary LICENSEcouuiiiiiiiii ettt et e e e e e e e e e e e e eeas 2734

A.27 Lua (lIBIUA) LICEBNSE . ovviiiiiiei ettt e e e e e e e e e e s 2734

A.28 LuaFi | eSyst emLIbrary LICENSEciiuniiiii i e e e 2735

A.29 md5 (Message-Digest Algorithm 5) LICENSEiviiniiiiiiiiii e 2735

A.30 MECAD LICEBNSE ...uiiiiiiii ettt e e et e et e e et e e e e 2735

A.31 MENMTACKNEA LICENSE ..ttt e e et e e ettt e e e et e e e eatnneeeenes 2736

A.32 MENTACHEA. PMLICENSE ..uiiiiiieii ettt e e e e e e e et e e e e e et 2736

A.33 MKPASSWH. Pl LICENSE ..ouiiiiiiciii e e 2737

A.34 nt_servc (Windows NT Service class library) LICENSEcocvvveiiiiiiiiiieiicicece e, 2740

A.35 OPENPAM LICENSE ...uiiiiiiiiie ettt e e e e e e e e e et e e aan e eaas 2740

A.36 OPENSSL V1.0 LICENSE ..ouiiiiiieiiii it e e e e e e e e et e e et e e aaaees 2741

A.B7 PCRE LICEINSE ..iiitiieeiiii ettt ettt e et e e et e e e e et r e e e e et e e e eatenaeeeateaeeenes 2743

A.38 Percona Multiple I/O Threads Patch LICENSEcccovviiiiiiiiiiiiciie e 2744

A.39 Red HAT RPM SPEC Fil@ LICENSEcovviiiiiiiii et e e 2744

A.40 RegEX-Spencer Library LICENSEcciiuuiiiiiiii e e e 2744

A.41 Richard A. O'Keefe String Library LICENSEcc.uiviiiiiiiiiieiie e 2745

A42 SHA-L IN € LICEMNSE ..iieitiieeeiii ettt ettt e et e ettt e e e et r e e e eat s e e e ettn e e eeeaenaaeeee 2745

A 43 UNICOAE DAta FIlESovuiiiiiiiiii et 2745

ABL ZI T D LICENSE ittt e e 2746
B MySQL 5.7 Frequently Asked QUESLIONScciiuiiiiiiiii e 2747

B.1 MySQL 5.7 FAQ: GENEIAI ...uuiiiiiiiieiiiii ettt e et e e e e 2747

XVii

MySQL 5.7 Reference Manual

B.2 MySQL 5.7 FAQ: Storage ENQINESouiiiiiiiiiiieiie et e e e e 2749

B.3 MySQL 5.7 FAQ: Server SQL MOEccovuviiiiiiiiiieeeee e 2749

B.4 MySQL 5.7 FAQ: Stored Procedures and FUNCLIONSccooevviiiiiiiiiiii e, 2750

B.5 MYSQL 5.7 FAQ: THOUEIS .uuiiiiiieiiiieii et e e et e et e e e e e e e e e et e e et e e e eannas 2754

B.6 MYSQL 5.7 FAQ: VIBWS ..oiiiiiiiiiiiieitiii ettt e et e e e e et e e et e e e et e e e eran s 2757

B.7 MySQL 5.7 FAQ: | NFORVATI ON_SCHEMA ..ottt 2758

B.8 MySQL 5.7 FAQ: MiIGIratiOniiiiiiiieiiiii ettt e e e et eeeaa e eeaees 2758

B.9 MySQL 5.7 FAQ: SECUIMY ..eieeuinieiiiiiii ettt e ettt e e ettt et s e e et s e e eaa s e e eaan e e eennes 2759

B.10 MySQL 5.7 FAQ: MYSQL CIUSIET ...ieeiiiiiiiiiie ettt 2760

B.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 2760

B.12 MySQL 5.7 FAQ: CoNNECLOrS & APISouiiiiii e 2773

B.13 MySQL 5.7 FAQ: RePlCAtIONuuuiiiiiiiieie e 2773

C Errors, Error Codes, and Common ProblemSoiiiiiiiiiec e 2779
C.1 Sources of Error INfOrmMationooeuuiiiiiiiii e e e e e e 2779

C.2 TYPES Of EITOr VAIUEBSoeiiiiiiiiiii ettt e e e e e e e et e e aanaaes 2779

C.3 Server Error Codes and MESSAJESccuuueiiueiiiiieiiiee et e e e e e e e e e e e e e e e aaanaes 2780

C.4 Client Error Codes and MESSAJEScvuuuiiiiniiiiiieiiiieeiiee e e e e e e e e e e e e et eeanaeee 2843

C.5 Problems and COMMON EFTOISuuiiiuiiiiiiieeiie et e e e e e e e e et e e e e eaa s 2847
C.5.1 How to Determine What Is Causing a Problemccoooviiiiiiiiiiinin e, 2847

C.5.2 Common Errors When Using MySQL Programscccoeevviieiiiieeineeiieeeieeeannn, 2849

C.5.3 Installation-Related ISSUESc.oiiiiiiiiii i e e e 2861

C.5.4 Administration-Related ISSUEScccuiiiiiiiiiiii e 2862

C.5.5 QUEIY-REIALEA ISSUEScvviieiiiieii e e e e s 2869

C.5.6 Optimizer-Related ISSUESccouuiiiiiiiiii e e ea e 2876

C.5.7 Table Definition-Related ISSUEScccuiiiiiiiiiiiecii e 2876

C.5.8 KNOWN ISSUES IN MYSQL ..covuiiiiiieiiici e e e e e e e e e e 2877

D MYSQL REIEASE NOLES ...ouiiiiiiiiiiiei et e e e e e e e et e e et e e et e e et e e e e eanaees 2881
E RESHCHONS @Nd LIMILS ..uuiiiiiiiii e e e e e e e e e e et e et e e e e eeanns 2883
E.1 Restrictions on Stored Programsco.uiiiiiiiiiiciie e e e 2883

E.2 Restrictions on Condition HanNdlingcccooiiiiiiiiiii e e 2886

E.3 Restrictions 0N SErver-Side CUISOISiiiuuieiiiieii et ee e e e e e e e e et e et esae e et 2886

E.4 ReStrictions 0N SUBQUETIESoiiiiii e 2887

E.5 RESIICHONS ON VIEBWSiiiiiiiiiiiiii et e e e e e e e e e e e e et e e eanaeees 2889

E.6 Restrictions 0N XA TraNSACONSiiiiiiiiiieiii e e e e e e e e e e e et e eaeeaanes 2890

E.7 ReStrictions 0N CharaCter SESccuuuiiiiiiiiiie et e e e e eaens 2891

E.8 Restrictions on Performance SChEMaAcccouiiiiiiiiiii e 2891

E.9 Restrictions on Pluggable AuthentiCationccoiiiiiiiiiiiiii e 2891

E.L10 LimitsS IN IMYSQL oouuniiiiiii ettt e e et e e e et e e e e et e e et e e eaaan 2893
E.10.1 LIMItS Of JOINS .uuiiiiiiiiiieii e e e e e e e e e e e aaaas 2893

E.10.2 Limits on Number of Databases and Tablesccoooeviiiiiiiiin i, 2893

E.10.3 LiMits 0N TabIe SiZEciiiiiii e 2894

E.10.4 Limits on Table Column Count and ROW Sizec.ccoiviiiiiiiiiieiiieeieeeieee, 2895

E.10.5 Limits Imposed by . fr mFile Structureccooeviieiiiiiii e, 2896

E.10.6 Windows Platform Limitationscoeviiiiiiiieiiicii e e e 2897

Y1 @ T] [0 7= 1 Y N 2901
LCT=T =T |1 o = 2955
LR U Tox 1 0] o TN [Vo [G P 3029
(@] 12114 F= T o 1 1 o = G 3039
LT ox 1T o TN [T [G 3059
| NFORNVATI ON_SCHEMA INAEX .vvuiieiiiiiieeieii e e et e et e e e e e e e e e e e et e e e et e e e e et e e e e st eeeeaaanans 3077
B [T 1 T 1Y o TS 1 o - P 3083
(@0 =1 = 1 (0] g 1 o 1= PP 3085
(@11 I g To [G 3089
L L VZ1 =T TSN 1 o = 3135
Y@]I 1Y oo 1= o [3141
StAteMENY/SYNIAX INAEX ...uniiiiiiiii et e e e e e e e e et e e et e e e et eeaaneeeanaas 3145
System Variable INAEXoiiiiii et e e e e e e e e e e 3189
Status Variable INOEXc..iiiiiei e e e e e e e e e 3217

XViii

MySQL 5.7 Reference Manual

Transaction Isolation Level Index

XiX

XX

Preface and Legal Notices

This is the Reference Manual for the MySQL Database System, version 5.7, through release 5.7.5.
Differences between minor versions of MySQL 5.7 are noted in the present text with reference to
release numbers (5.7.x). For license information, see the Legal Notices. This product may contain
third-party code. For license information on third-party code, see Appendix A, Licenses for Third-Party
Components.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 5.7 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.6
Reference Manual covers the 5.6 series of MySQL software releases.

Legal Notices

Copyright © 1997, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government
contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc.,
500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the
safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark
of Oracle Corporation and/or its affiliates, and shall not be used without Oracle's express written
authorization. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only.
It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this

XXi

http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/refman/5.6/en/

Legal Notices

documentation and will not be responsible for any loss, costs, or damages incurred due to the use of
this documentation.

The information contained in this document is for informational sharing purposes only and should

be considered in your capacity as a customer advisory board member or pursuant to your beta trial
agreement only. It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of any features or
functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this material is subject to the terms and
conditions of your Oracle Software License and Service Agreement, which has been executed and with
which you agree to comply. This document and information contained herein may not be disclosed,
copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle

or as specifically provided below. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is
built and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products,
see Preface and Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you
can discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into
other languages, and downloadable versions in variety of formats, including HTML and PDF formats,
see the MySQL Documentation Library.

XXii

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Chapter 1 General Information

Table of Contents

1.1 ADOUL TRIS IMANUAI ...t e e et e et e e e et e e e eab e e e eatnneeeees 2
1.2 Typographical and SyntaxX CONVENTIONSuiiiiiiiiiiiiie e e e e e e e eeeens 2
1.3 Overview of the MySQL Database Management SYSIEMcoveiiiiiiiiiiiinieiiiin e 4
1.3.1 WAt IS MYS QL ettt ettt e ettt e e e e et e e e e etta e e e ent e e eeatnaaaaes 4
1.3.2 The Main Features Of MYSQLcouuiiiiiiiii i e e e e e 5
1.3.3 HiStOry Of MYSQL ...iiiiiiiiiii ettt ettt e e et e e aa e e enans 8
1.4 What IS NeW in MYSQL 5.7 ..ottt e ettt e e et e e e et e e e e entnaeeeee 9
1.5 MySQL DeVelopmMENt HISTOMYoiiiiii ittt e et e e b 14
1.6 MySQL INfOrMALION SOUICES ...cceviiiiiiiii ettt ettt e e e e e et e e eeean s 15
1.6.1 MySQL MaIlING LISES ...ieuuiiiiiiiieieii ettt ettt e et e e 15
1.6.2 MySQL Community Support at the MySQL FOrUMScooviiiiiiiiiiiiie e 17
1.6.3 MySQL Community Support on Internet Relay Chat (IRC)coeveviiiiiiiieiieeieieeeeeee, 18
1.6.4 MYSQL ENEEIPIISE «.oetiiiiiiiii ettt ettt e e et e et e e e eabe e e e eaba e eeene 18
1.7 How to Report Bugs OF ProbIEmSeiiii e e 18
1.8 MySQL Standards COMPIANCEiiiiiiiieii e 22
1.8.1 MySQL Extensions to Standard SQLcc.uvveieiiiiieiieee e e e e e 23
1.8.2 MySQL Differences from Standard SQLcc.veviiiiiiiieiiiei e 26
1.8.3 How MySQL Deals With CONSIIAINTSuuiiiiiiiiiiiii e e 30
R T O =0 [£ PP 34
1.9.1 Contributors t0 MYSQLcoiiiiiiiiii e 34
1.9.2 Documenters and tranSIatorsoioiiiiiiii e 38
1.9.3 Packages that SUPPOrt MYSQLcooeuuiiiiiiie et e e e eeeaes 40
1.9.4 Tools that were used to create MYSQLc.uuiiiiiiiiiieiiii e 40
1.9.5 SUPPOIErS Of MYSQL ..oiiiiiiii et ettt e et e et e s 41

The MySQL™ software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured
Query Language) database server. MySQL Server is intended for mission-critical, heavy-load
production systems as well as for embedding into mass-deployed software. Oracle is a registered
trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/
or its affiliates, and shall not be used by Customer without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open
Source product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or
can purchase a standard commercial license from Oracle. See http://www.mysgl.com/company/legal/
licensing/ for more information on our licensing policies.

The following list describes some sections of particular interest in this manual:

» For a discussion of MySQL Database Server capabilities, see Section 1.3.2, “The Main Features of
MySQL".

» For an overview of new MySQL features, see Section 1.4, “What Is New in MySQL 5.7”. For
information about the changes in each version, see the Release Notes.

 For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about
upgrading MySQL, see Section 2.10.1, “Upgrading MySQL".

 For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.

» For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server
Administration.

» For information about security in MySQL, see Chapter 6, Security.

http://www.fsf.org/licenses/
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

About This Manual

» For information about setting up replication servers, see Chapter 16, Replication.

» For information about MySQL Enterprise, the commercial MySQL release with advanced features
and management tools, see Chapter 23, MySQL Enterprise Edition.

» For answers to a number of questions that are often asked concerning the MySQL Database Server
and its capabilities, see Appendix B, MySQL 5.7 Frequently Asked Questions.

» For a history of new features and bug fixes, see the Release Notes.

Important

A To report problems or bugs, please use the instructions at Section 1.7, “How
to Report Bugs or Problems”. If you find a sensitive security bug in MySQL
Server, please let us know immediately by sending an email message to
<secal ert _us@r acl e. conr. Exception: Support customers should report
all problems, including security bugs, to Oracle Support.

1.1 About This Manual

This is the Reference Manual for the MySQL Database System, version 5.7, through release 5.7.5.
Differences between minor versions of MySQL 5.7 are noted in the present text with reference to
release numbers (5.7.x). For license information, see the Legal Notices. This product may contain
third-party code. For license information on third-party code, see Appendix A, Licenses for Third-Party
Components.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 5.7 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.6
Reference Manual covers the 5.6 series of MySQL software releases.

Because this manual serves as a reference, it does not provide general instruction on SQL or relational
database concepts. It also does not teach you how to use your operating system or command-line
interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is updated
frequently as well. The most recent version of the manual is available online in searchable form at
http://dev.mysqgl.com/doc/. Other formats also are available there, including HTML, PDF, and EPUB
versions.

The Reference Manual source files are written in DocBook XML format. The HTML version and other
formats are produced automatically, primarily using the DocBook XSL stylesheets. For information
about DocBook, see http://docbook.org/

If you have questions about using MySQL, you can ask them using our mailing lists or forums. See
Section 1.6.1, “MySQL Mailing Lists”, and Section 1.6.2, “MySQL Community Support at the MySQL
Forums”. If you have suggestions concerning additions or corrections to the manual itself, please send
them to the http://www.mysql.com/company/contact/.

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by
the MySQL Documentation Team, consisting of Paul DuBois, Stefan Hinz, Philip Olson, Daniel Price,
Daniel So, Edward Gilmore, and Jon Stephens.

1.2 Typographical and Syntax Conventions

This manual uses certain typographical conventions:

« Text in this styleisusedfor SQL statements; database, table, and column names; program
listings and source code; and environment variables. Example: “To reload the grant tables, use the
FLUSH PRI VI LEGES statement.”

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/
http://docbook.org/

Typographical and Syntax Conventions

e Text in this styl e indicates input that you type in examples.

e Text in this styl eindicates the names of executable programs and scripts, examples being
nysql (the MySQL command-line client program) and nysql d (the MySQL server executable).

« Text in this styl eisused for variable input for which you should substitute a value of your
own choosing.

e Textin this style is used for emphasis.
» Text in this style is used in table headings and to convey especially strong emphasis.

« Text in this styl eisused toindicate a program option that affects how the program is
executed, or that supplies information that is needed for the program to function in a certain way.
Example: “The - - host option (short form - h) tells the mysql client program the hostname or IP
address of the MySQL server that it should connect to”.

» File names and directory names are written like this: “The global my. cnf file is located in the / et c
directory.”

» Character sequences are written like this: “To specify a wildcard, use the ‘% character.”

When commands are shown that are meant to be executed from within a particular program, the
prompt shown preceding the command indicates which command to use. For example, shel | >
indicates a command that you execute from your login shell, r oot - shel | > is similar but should be
executed as r oot , and mysql > indicates a statement that you execute from the mysql client program:

shel | > type a shell command here
root-shell > type a shell conmand as root here
nysqgl > type a nysql statenent here

In some areas different systems may be distinguished from each other to show that commands should
be executed in two different environments. For example, while working with replication the commands
might be prefixed with mast er and sl ave:

master> type a nmysql command on the replication master here
sl ave> type a nysqgl command on the replication slave here

The “shell” is your command interpreter. On Unix, this is typically a program such as sh, csh, or bash.
On Windows, the equivalent program is command. comor cnd. exe, typically run in a console window.

When you enter a command or statement shown in an example, do not type the prompt shown in the
example.

Database, table, and column names must often be substituted into statements. To indicate that such
substitution is necessary, this manual uses db_nan®e, t bl _nane, and col _nane. For example, you
might see a statement like this:

nmysql > SELECT col _nanme FROM db_nane. t bl _nane;

This means that if you were to enter a similar statement, you would supply your own database, table,
and column names, perhaps like this:

nysql > SELECT aut hor _nane FROM bi bl i o_db. aut hor _|i st;

SQL keywords are not case sensitive and may be written in any lettercase. This manual uses
uppercase.

In syntax descriptions, square brackets (“[" and “] ") indicate optional words or clauses. For example, in
the following statement, | F EXI STS is optional:

Overview of the MySQL Database Management System

DROP TABLE [I F EXI STS] tbl _nane

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical
bars (“| "). When one member from a set of choices may be chosen, the alternatives are listed within
square brackets (“[" and “] "):

TRIM[[BOTH | LEADING | TRAILING [renmstr] FROM str)

When one member from a set of choices must be chosen, the alternatives are listed within braces (“{”
and “}"):

{DESCRI BE | DESC} tbl_nanme [col _name | wild]

An ellipsis (. . .) indicates the omission of a section of a statement, typically to provide a shorter
version of more complex syntax. For example, SELECT ... | NTO OUTFI LE is shorthand for the form
of SELECT statement that has an | NTO OUTFI LE clause following other parts of the statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In
the following example, multiple r eset _opt i on values may be given, with each of those after the first
preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence
to set the CC environment variable and run the conf i gur e command looks like this in Bourne shell
syntax:

shel | > CC=gcc ./configure
If you are using csh or t csh, you must issue commands somewhat differently:

shel | > setenv CC gcc
shel | > ./configure

1.3 Overview of the MySQL Database Management System
1.3.1 What is MySQL?

MySQL, the most popular Open Source SQL database management system, is developed, distributed,
and supported by Oracle Corporation.

The MySQL Web site (http://www.mysqgl.com/) provides the latest information about MySQL software.
 MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to

a picture gallery or the vast amounts of information in a corporate network. To add, access, and
process data stored in a computer database, you need a database management system such

as MySQL Server. Since computers are very good at handling large amounts of data, database
management systems play a central role in computing, as standalone utilities, or as parts of other
applications.

* MySQL databases are relational.

A relational database stores data in separate tables rather than putting all the data in one big
storeroom. The database structures are organized into physical files optimized for speed. The
logical model, with objects such as databases, tables, views, rows, and columns, offers a flexible
programming environment. You set up rules governing the relationships between different data
fields, such as one-to-one, one-to-many, unique, required or optional, and “pointers” between

The Main Features of MySQL

different tables. The database enforces these rules, so that with a well-designed database, your
application never sees inconsistent, duplicate, orphan, out-of-date, or missing data.

The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common
standardized language used to access databases. Depending on your programming environment,
you might enter SQL directly (for example, to generate reports), embed SQL statements into code
written in another language, or use a language-specific API that hides the SQL syntax.

SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986
and several versions exist. In this manual, “SQL-92" refers to the standard released in 1992,
“SQL:1999" refers to the standard released in 1999, and “SQL:2003" refers to the current version
of the standard. We use the phrase “the SQL standard” to mean the current version of the SQL
Standard at any time.

» MySQL software is Open Source.

Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you wish, you
may study the source code and change it to suit your needs. The MySQL software uses the GPL
(GNU General Public License), http://www.fsf.org/licenses/, to define what you may and may not do
with the software in different situations. If you feel uncomfortable with the GPL or need to embed
MySQL code into a commercial application, you can buy a commercially licensed version from us.
See the MySQL Licensing Overview for more information (http://www.mysgl.com/company/legal/
licensing/).

» The MySQL Database Server is very fast, reliable, scalable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a
desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no
attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage
of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of
machines, networked together.

You can find a performance comparison of MySQL Server with other database managers on our
benchmark page. See Section 8.12.2, “The MySQL Benchmark Suite”.

MySQL Server was originally developed to handle large databases much faster than existing
solutions and has been successfully used in highly demanding production environments for several
years. Although under constant development, MySQL Server today offers a rich and useful set of
functions. Its connectivity, speed, and security make MySQL Server highly suited for accessing
databases on the Internet.

» MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multi-threaded SQL
server that supports different backends, several different client programs and libraries, administrative
tools, and a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that you can link into your
application to get a smaller, faster, easier-to-manage standalone product.

* A large amount of contributed MySQL software is available.
MySQL Server has a practical set of features developed in close cooperation with our users. It is

very likely that your favorite application or language supports the MySQL Database Server.

The official way to pronounce “MySQL" is “My Ess Que EIlI” (not “my sequel”), but we do not mind if you
pronounce it as “my sequel” or in some other localized way.

1.3.2 The Main Features of MySQL

http://www.fsf.org/licenses/

The Main Features of MySQL

This section describes some of the important characteristics of the MySQL Database Software. See
also Section 1.5, “MySQL Development History”. In most respects, the roadmap applies to all versions
of MySQL. For information about features as they are introduced into MySQL on a series-specific
basis, see the “In a Nutshell” section of the appropriate Manual:

MySQL 5.6: MySQL 5.6 in a Nutshell
MySQL 5.5: MySQL 5.5 in a Nutshell
MySQL 5.1: MySQL 5.1 in a Nutshell
MySQL 5.0: MySQL 5.0 in a Nutshell

Internals and Portability:

Written in C and C++.
Tested with a broad range of different compilers.

Works on many different platforms. See http://www.mysqgl.com/support/supportedplatforms/
database.html.

For portability, uses CVvake in MySQL 5.5 and up. Previous series use GNU Automake, Autoconf,
and Libtool.

Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool
(http://developer.kde.org/~sewardj/).

Uses multi-layered server design with independent modules.

Designed to be fully multi-threaded using kernel threads, to easily use multiple CPUs if they are
available.

Provides transactional and nontransactional storage engines.
Uses very fast B-tree disk tables (Myl SAM) with index compression.

Designed to make it relatively easy to add other storage engines. This is useful if you want to provide
an SQL interface for an in-house database.

Uses a very fast thread-based memory allocation system.
Executes very fast joins using an optimized nested-loop join.
Implements in-memory hash tables, which are used as temporary tables.

Implements SQL functions using a highly optimized class library that should be as fast as possible.
Usually there is no memory allocation at all after query initialization.

Provides the server as a separate program for use in a client/server networked environment, and as
a library that can be embedded (linked) into standalone applications. Such applications can be used
in isolation or in environments where no network is available.

Data Types:

Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR,
VARCHAR, Bl NARY, VARBI NARY, TEXT, BLOB, DATE, TI VE, DATETI ME, TI MESTAMP, YEAR, SET,
ENUM and OpenGIS spatial types. See Chapter 11, Data Types.

Fixed-length and variable-length string types.

Statements and Functions:

Full operator and function support in the SELECT list and WHERE clause of queries. For example:

http://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-nutshell.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://developer.kde.org/~sewardj/

The Main Features of MySQL

Security:

nmysql > SELECT CONCAT(first_nane, ' ', |ast_nane)
-> FROM citi zen
-> WHERE i ncone/ dependents > 10000 AND age > 30;

Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT() ,
AVQ(), STD(), SUM), MAX() , M N() , and GROUP_CONCAT()).

Support for LEFT OUTER JO Nand Rl GAT OUTER JO Nwith both standard SQL and ODBC
syntax.

Support for aliases on tables and columns as required by standard SQL.

Support for DELETE, | NSERT, REPLACE, and UPDATE to return the number of rows that were
changed (affected), or to return the number of rows matched instead by setting a flag when
connecting to the server.

Support for MySQL-specific SHOWstatements that retrieve information about databases, storage
engines, tables, and indexes. MySQL 5.0 adds support for the | NFORVATI ON_SCHENA database,
implemented according to standard SQL.

An EXPLAI N statement to show how the optimizer resolves a query.

Independence of function names from table or column names. For example, ABS is a valid column
name. The only restriction is that for a function call, no spaces are permitted between the function
name and the “(" that follows it. See Section 9.3, “Reserved Words”.

You can refer to tables from different databases in the same statement.

A privilege and password system that is very flexible and secure, and that enables host-based
verification.

Password security by encryption of all password traffic when you connect to a server.

Scalability and Limits:

Support for large databases. We use MySQL Server with databases that contain 50 million records.
We also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.

Support for up to 64 indexes per table (32 before MySQL 4.1.2). Each index may consist of 1 to 16
columns or parts of columns. The maximum index width is 767 bytes for | nnoDB tables, or 1000 for
My SAM before MySQL 4.1.2, the limit is 500 bytes. An index may use a prefix of a column for CHAR,
VARCHAR, BLOB, or TEXT column types.

Connectivity:

Clients can connect to MySQL Server using several protocols:
¢ Clients can connect using TCP/IP sockets on any platform.

« On Windows systems in the NT family (NT, 2000, XP, 2003, or Vista), clients can connect using
named pipes if the server is started with the - - enabl e- naned- pi pe option. In MySQL 4.1 and
higher, Windows servers also support shared-memory connections if started with the - - shar ed-
menor y option. Clients can connect through shared memory by using the - - pr ot ocol =nenory
option.

< On Unix systems, clients can connect using Unix domain socket files.

MySQL client programs can be written in many languages. A client library written in C is available for
clients written in C or C++, or for any language that provides C bindings.

APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL
clients to be written in many languages. See Chapter 21, Connectors and APIs.

History of MySQL

e The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use
ODBC (Open Database Connectivity) connections. For example, you can use MS Access to connect
to your MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available.
All ODBC 2.5 functions are supported, as are many others. See MySQL Connector/ODBC Developer
Guide.

» The Connector/J interface provides MySQL support for Java client programs that use JDBC
connections. Clients can be run on Windows or Unix. Connector/J source is available. See MySQL
Connector/J Developer Guide.

» MySQL Connector/Net enables developers to easily create .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET
languages. MySQL Connector/Net is a fully managed ADO.NET driver written in 100% pure C#. See
MySQL Connector/Net Developer Guide.

Localization:

» The server can provide error messages to clients in many languages. See Section 10.2, “Setting the
Error Message Language”.

* Full support for several different character sets, including | at i n1 (cp1252), ger man, bi g5, uj i s,
and more. For example, the Scandinavian characters “a”, “4” and “6” are permitted in table and
column names. Unicode support is available as of MySQL 4.1.

» All data is saved in the chosen character set.

» Sorting and comparisons are done according to the chosen character set and collation (using
| at i n1 and Swedish collation by default). It is possible to change this when the MySQL server is
started. To see an example of very advanced sorting, look at the Czech sorting code. MySQL Server
supports many different character sets that can be specified at compile time and runtime.

» As of MySQL 4.1, the server time zone can be changed dynamically, and individual clients can
specify their own time zone. Section 10.6, “MySQL Server Time Zone Support”.

Clients and Tools:

* MySQL includes several client and utility programs. These include both command-line programs
such as nysqgl dunp and mysql adm n, and graphical programs such as MySQL Workbench.

» MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These
statements are available from the command line through the nmysql check client. MySQL also
includes nyi santhk, a very fast command-line utility for performing these operations on Myl SAM
tables. See Chapter 4, MySQL Programs.

» MySQL programs can be invoked with the - - hel p or - ? option to obtain online assistance.

1.3.3 History of MySQL

We started out with the intention of using the nSQL database system to connect to our tables using

our own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that
nSQL was not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our
database but with almost the same API interface as nSQL. This AP| was designed to enable third-party
code that was written for use with nSQL to be ported easily for use with MySQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names
suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose
Twebaze, an Open Source software developer from Swaziland, Africa. According to Ambrose, the
feminine name Sakila has its roots in SiSwati, the local language of Swaziland. Sakila is also the name
of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html

What Is New in MySQL 5.7

1.4 What Is New in MySQL 5.7

This section summarizes what has been added to, deprecated in, and removed from MySQL 5.7.

Added Features

The following features have been added to MySQL 5.7:

» Security improvements. The server now requires account rows in the nmysql . user table to
have a nonempty pl ugi n column value and disables accounts with an empty value. For server
upgrade instructions, see Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”. DBAs are advised
to also convert accounts that use the deprecated nysqgl ol d_passwor d authentication plugin to
use nysql native_ password instead. For account upgrade instructions, see Section 6.3.9.3,
“Migrating Away from Pre-4.1 Password Hashing and the nysql ol d_passwor d Plugin”.

MySQL now enables database administrators to establish a policy for automatic password expiration:
Any user who connects to the server using an account for which the password is past its permitted
lifetime must change the password. For more information, see Section 6.3.6, “Password Expiration
Policy”.

MySQL deployments installed using RPM packages now are secure by default. The following
changes have been implemented as the default deployment characteristics:

« The installation process creates only a single r oot account, ' root' @ | ocal host ",
automatically generates a random password for this account, and marks the password
expired. The MySQL administrator must connect as r oot using the random password
and use SET PASSWORD to select a new password. (The random password is found in the
$HOVE/ . nysql _secr et file.)

« Installation creates no anonymous-user accounts.
« Installation creates not est database.

* Online ALTER TABLE. ALTER TABLE now supports a RENAMVE | NDEX clause that renames an
index. The change is made in place without a table-copy operation. It works for all storage engines.
See Section 13.1.6, “ALTER TABLE Syntax”.

* | nnoDB enhancements. These | nnoDB enhancements were added:

* VARCHAR size may be increased using an in-place ALTER TABLE, as in this example:

ALTER TABLE t1 ALGORI THVFI NPLACE, CHANGE COLUWN c1 cl VARCHAR(255);

This is true as long as the number of length bytes required by a VARCHAR column remains the
same. For VARCHAR values of 0 to 255, one length byte is required to encode the value. For
VARCHAR values of 256 bytes or more, two length bytes are required. As a result, in-place ALTER
TABLE only supports increasing VARCHAR size from 0 to 255 bytes or increasing VARCHAR size
from a value equal to or greater than 256 bytes.

In-place ALTER TABLE does not support increasing VARCHAR size from less than 256 bytes to a
value equal to or greater than 256 bytes. In this case, the number of required length bytes would
change from 1 to 2, which is only supported by a table copy (ALGORI THVECOPY). For example,
attempting to change VARCHAR column size from 255 to 256 using in-place ALTER TABLE would
return an error:

ALTER TABLE t1 ALGORI THWVFI NPLACE, CHANGE COLUWN cl cl VARCHAR(256);
ERROR 0A000: ALGORI THVEI NPLACE is not supported. Reason: Cannot change
colum type | NPLACE. Try ALGORI THVE=COPY.

Added Features

Decreasing VARCHAR size using in-place ALTER TABLE is not supported. Decreasing VARCHAR
size requires a table copy (ALGORI THVECOPRY).

DDL performance for | nnoDB temporary tables is improved through optimization of CREATE
TABLE, DROP TABLE, TRUNCATE TABLE, and ALTER TABLE statements.

InnoDB temporary table metadata is no longer stored to InnoDB system tables. Instead, a new
table, | NNODB_TEMP_TABLE | NFQ, provides users with a snapshot of active temporary tables.
The table contains metadata and reports on all user and system-created temporary tables that are
active within a given InnoDB instance. The table is created when the first SELECT statement is run
against it.

I nnoDB now supports MySQL-supported spatial data types. Prior to this release, InnoDB would
store spatial data as binary BLOB data. BLOB remains the underlying data type but spatial data
types are now mapped to a new InnoDB internal data type, DATA GEOVETRY.

There is now a separate tablespace for all non-compressed InnoDB temporary tables. The new
tablespace is always recreated on server startup and is located in DATADI R by default. A newly
added configuration file option, i nnodb_t enp_dat a_fi | e_pat h, allows for a user-defined
temporary data file path.

In MySQL 5.7.2, i nnochecksumfunctionality is enhanced with several new options and extended
capabilities. See Section 4.6.1, “i nnochecksum— Offline InnoDB File Checksum Utility”.

A new type of non-redo undo log for both normal and compressed temporary tables and related
objects now resides in the temporary tablespace. For more information, see Section 14.2.2.13,
“I nnoDB Temporary Table Undo Logs”.

In MySQL 5.7.2, | nnoDB buffer pool dump and load operations are enhanced. A new system
variable, i nnodb_buf fer _pool dunp_pct, allows you to specify the percentage of most
recently used pages in each buffer pool to read out and dump. When there is other I/O activity
being performed by | nnoDB background tasks, | nnoDB attempts to limit the number of buffer pool
load operations per second using the i nnodb_i o_capaci ty setting.

In MySQL 5.7.3, support is added to | nnoDB for full-text parser plugins. For information about full-
text parser plugins, see Section 22.2.3.2, “Full-Text Parser Plugins” and Section 22.2.4.4, “Writing
Full-Text Parser Plugins”.

As of MySQL 5.7.4, | nnoDB supports multiple page_cleaner threads for flushing dirty pages
from buffer pool instances. A new system variable, i nnodb_page cl eaner s, is used to specify
the number of page_cleaner threads. The default value of 1 maintains the pre-MySQL 5.7.4
configuration in which there is a single page_cleaner thread. This enhancement builds on work
completed in MySQL 5.6.2, which introduced a single page_cleaner thread to offload buffer pool
flushing work from the | nnoDB master thread.

As of MySQL 5.7.4, MySQL supports rebuilding regular and partitioned | nnoDB tables using
online DDL (ALGORI THV=I NPLACE) for the following operations:

« OPTI M ZE TABLE
« ALTER TABLE ... FORCE

 ALTER TABLE ... ENG NE=I NNODB (when run on an | nnoDB table)

Online DDL support reduces table rebuild time and permits concurrent DML, which helps reduce
user application downtime. For additional information, see Section 14.2.11.1, “Overview of Online
DDL".

10

Added Features

« The Fusion-io Non-Volatile Memory (NVM) file system on Linux provides atomic write capability,
which makes the | nnoDB doublewrite buffer redundant. In MySQL 5.7.4, the | nnoDB doublewrite
buffer is automatically disabled for system tablespace files (ibdata files) located on Fusion-io
devices that support atomic writes.

« As of MySQL 5.7.4, | nnoDB supports the Transportable Tablespace feature for partitioned
| nnoDB tables and individual | nnoDB table partitions. This enhancement eases backup
procedures for partitioned tables and enables copying of partitioned tables and individual table
partitions between MySQL instances. For additional information, see Section 14.2.5.5, “Copying
Tablespaces to Another Server (Transportable Tablespaces)”.

MySQL Enterprise. The format of the file generated by the audit log plugin was changed for
better compatibility with Oracle Audit Vault. See Section 6.3.13, “MySQL Enterprise Audit Log
Plugin”, and Section 6.3.13.3, “The Audit Log File”.

Condition handling. MySQL now supports stacked diagnostics areas. When the diagnostics area
stack is pushed, the first (current) diagnostics area becomes the second (stacked) diagnostics area
and a new current diagnostics area is created as a copy of it. Within a condition handler, executed
statements modify the new current diagnostics area, but GET STACKED DI AGNOSTI CS can be

used to inspect the stacked diagnostics area to obtain information about the condition that caused
the handler to activate, independent of current conditions within the handler itself. (Previously, there
was a single diagnostics area. To inspect handler-activating conditions within a handler, it was
necessary to check this diagnostics area before executing any statements that could change it.)

See Section 13.6.7.3, “CET DI AGNOSTI CS Syntax”, and Section 13.6.7.7, “The MySQL Diagnostics
Area”.

Optimizer. EXPLAI N can now be used to obtain the execution plan for an explainable statement
executing in a named connection:

EXPLAI N [options] FOR CONNECTI ON connection_i d;

For more information, see Section 8.8.3, “Obtaining Execution Plan Information for a Named
Connection”.

Triggers. Previously, a table could have at most one trigger for each combination of trigger event
(I NSERT, UPDATE, DELETE) and action time (BEFORE, AFTER). This limitation has been lifted and
multiple triggers are permitted. For more information, see Section 18.3, “Using Triggers”.

Logging. Thenysql client now has a - - sysl og option that causes interactive statements to
be sent to the system sysl og facility. Logging is suppressed for statements that match the default
“ignore” pattern list (" * | DENTI FI ED* : * PASSWORD* "), as well as statements that match any
patterns specified using the - - hi st i gnor e option. See Section 4.5.1.3, “nysql Logging”.

Test suite. The MySQL test suite now uses | nnoDB as the default storage engine.

nysql client. Previously, Control+C in mysql interrupted the current statement if there was one,
or exited mysql if not. Now Control+C interrupts the current statement if there was one, or cancels
any partial input line otherwise, but does not exit.

Database name rewriting with nysql bi nl og. Renaming of databases by mysql bi nl og
when reading from binary logs written using the row-based format is now supported using the - -
rew ite-db option added in MySQL 5.7.1.

This option uses the format - -rew i t e- db=" dbol dnane- >dbnewnane' . You can implement
multiple rewrite rules, by specifying the option multiple times.

HANDLER with partitioned tables. = The HANDLER statement may now be used with user-
partitioned tables. Such tables may use any of the available partitioning types (see Section 17.2,
“Partitioning Types”).

11

Deprecated Features

Index condition pushdown support for partitioned tables. In MySQL 5.7.3 and later, queries
on partitioned tables using the | nnoDB or My SAMstorage engine may employ the index condition
pushdown optimization that was introduced in MySQL 5.6. See Section 8.2.1.6, “Index Condition
Pushdown Optimization”, for more information.

» Master dump thread improvements. The master dump thread was refactored to reduce lock
contention and improve master throughput. Previous to MySQL 5.7.2, the dump thread took a lock
on the binary log whenever reading an event; in MySQL 5.7.2 and later, this lock is held only while
reading the position at the end of the last successfully written event. This means both that multiple
dump threads are now able to read concurrently from the binary log file, and that dump threads are
now able to read while clients are writing to the binary log.

* Globalization improvements. MySQL 5.7.4 includes a gh18030 character set that supports the
China National Standard GB18030 character set. For more information about MySQL character set
support, see Section 10.1, “Character Set Support”.

e Changing the replication master without STOP SLAVE. In MySQL 5.7.4 and later, the strict
requirement to execute STOP SLAVE prior to issuing any CHANGE MASTER TOstatement is
removed. Instead of depending on whether the slave is stopped, the behavior of CHANGE MASTER
TOnow depends on the states of the slave SQL thread and slave I/O threads; which of these
threads is stopped or running now determines the options that can or cannot be used with a CHANGE
MASTER TOstatement at a given point in time. The rules for making this determination are listed
here:

« If the SQL thread is stopped, you can execute CHANGE MASTER TOusing any combination of
RELAY LOG FI LE, RELAY LOG PGS, and MASTER DELAY options, even if the slave 1/O thread is
running. No other options may be used with this statement when the I/O thread is running.

« If the I/O thread is stopped, you can execute CHANGE MASTER TOusing any of the options for
this statement (in any allowed combination) except RELAY LOG FI LE, RELAY LOG PCS, or
MASTER DELAY, even when the SQL thread is running. These three options may not be used
when the 1/O thread is running.

« Both the SQL thread and the I/O thread must be stopped before issuing CHANGE MASTER
TO ... MASTER AUTO POSITION = 1.

You can check the current state of the slave SQL and I/O threads using SHON SLAVE STATUS.

If you are using statement-based replication and temporary tables, it is possible for a CHANGE
MASTER TOstatement following a STOP SLAVE statement to leave behind temporary tables

on the slave. As part of this set of improvements, a warning is now issued whenever CHANGE
MASTER TOis issued following STOP SLAVE when statement-based replication is in use and
Sl ave_open_t enp_t abl es remains greater than 0.

For more information, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”, and Section 16.3.6,
“Switching Masters During Failover”.

Deprecated Features

The following features are deprecated in MySQL 5.7 and may be or will be removed in a future series.
Where alternatives are shown, applications should be updated to use them.

« The ERROR_FOR DI VI SI ON_BY_ZERO, NO_ZERO DATE, and NO ZERO | N_DATE SQL
modes that were deprecated in MySQL 5.6 remain deprecated in 5.7 but do nothing. Instead,
their previous effects are included in the effects of strict SQL mode (STRI CT_ALL_TABLES
or STRI CT_TRANS TABLES). In other words, strict mode now means the same thing as the
previous meaning of strict mode plus the ERROR_FOR_DI VI SI ON_BY_ZERO, NO_ZERO DATE,
and NO_ZERO | N_DATE modes. This change reduces the number of SQL modes with an effect
dependent on strict mode and makes them part of strict mode itself.

12

Removed Features

To prepare for these SQL mode changes, it is advisable before upgrading to read SQL Mode
Changes in MySQL 5.7. That discussion provides guidelines to assess whether your applications will
be affected by these changes.

The deprecated ERROR_FOR_DI VI SI ON_BY_ZERO, NO_ZERO DATE, and NO_ZERO | N_DATE
SQL modes are still recognized so that statements that name them do not produce an error, but will
be removed in a future version of MySQL. To make advance preparation for versions of MySQL in
which these modes do not exist, applications should be modified to not refer to those mode names.

Relying on implicit GROUP BY sorting in MySQL 5.7 is deprecated. To achieve a specific sort order of
grouped results, it is preferable to use an explicit ORDER BY clause. GROUP BY sorting is a MySQL
extension that may change in a future release; for example, to make it possible for the optimizer to
order groupings in whatever manner it deems most efficient and to avoid the sorting overhead.

The EXTENDED and PARTI TI ONS keywords for the EXPLAI N statement. These keywords are still
recognized but are now unnecessary because their effect is always enabled.

The | og_war ni ngs system variable and - - | og- war ni ngs server option. Use the
| og_error_verbosity system variable instead.

The net adat a_| ocks_cache_si ze and net adat a_| ocks_hash_i nst ances system variables.
These do nothing as of MySQL 5.7.4.

The ti med_rnut exes system variable. It does nothing and has no effect.
The ENCODE() and DECODE() functions. Use AES _ENCRYPT() and AES DECRYPT() instead.

The | NFORVATI ON_SCHENA. PROFI LI NGtable. Use the Performance Schema instead; see
Chapter 20, MySQL Performance Schema.

Removed Features

The following constructs are obsolete and have been removed in MySQL 5.7. Where alternatives are
shown, applications should be updated to use them.

The i nnodb_mi rrored_| og_groups system variable. The only supported value was 1, so it had
no purpose.

The st or age_engi ne system variable. Use def aul t _st or age_engi ne instead.
The t hr ead_concur r ency system variable.
The | GNORE clause for ALTER TABLE.

| NSERT DELAYED is no longer supported. The server recognizes but ignores the

DELAYED keyword, handles the insert as a nondelayed insert, and generates an

ER WARN LEGACY SYNTAX CONVERTEDwarning. (“INSERT DELAYED is no longer supported. The
statement was converted to INSERT.”) Similarly, REPLACE DELAYED is handled as a nondelayed
replace. The DELAYED keyword will be removed in a future release.

In addition, several DELAYED-related options or features were removed:
e The - -del ayed-i nsert option for nysql dunp.

e The COUNT_WRI TE_DELAYED, SUM Tl MER_ WRI TE_DELAYED, M N_TI MER_WRI TE_DELAYED,
AVG TI MER VWRI TE_DELAYED, and MAX_TI MER_WRI TE_DELAYED columns of the Performance
Schematabl e | ock_waits_summary_ by tabl e table.

* nmysgl bi nl og no longer writes comments mentioning | NSERT DELAYED.

Database symlinking on Windows using for . symfiles has been removed because it is redundant
with native symlink support available using nkl i nk. Any . symfile symbolic links will be ignored and

13

MySQL Development History

should be replaced with symlinks created using nkl i nk. See Using Symbolic Links for Databases
on Windows.

e The unused - - basedi r and - - dat adi r options for mysqgl _upgr ade were removed.

» Previously, program options could be specified in full or as any unambiguous prefix. For example,
the - - conpr ess option could be given to mysql dunp as - - conpr, but not as - - conp because the
latter is ambiguous. Option prefixes are no longer supported; only full options are accepted. This is
because prefixes can cause problems when new options are implemented for programs and a prefix
that is currently unambiguous might become ambiguous in the future.

e SHOW ENG NE | NNODB MUTEX output is removed in MySQL 5.7.2. Comparable information can be
generated by creating views on Performance Schema tables.

» The | nnoDB Tablespace Monitor and | nnoDB Table Monitor are removed in MySQL 5.7.4. For the
Tablespace Monitor, equivalent functionality will be introduced before the GA release of MySQL 5.7.
For the Table Monitor, equivalent information can be obtained from | nnoDB | NFORVATI ON_SCHENA
tables.

» The specially named tables used to enable and disable the standard | nnoDB Monitor and
| nnoDB Lock Monitor (i nnodb_noni t or and i nnodb_I| ock_noni t or) are removed in
MySQL 5.7.4 and replaced by two dynamic system variables: i nnodb_st at us_out put and
i nnodb_st at us_out put _| ocks. For additional information, see Section 14.2.12.4, “| nnoDB
Monitors”.

e Theinnodb use sys nalloc andinnodb_addi tional nem pool si ze system variables,
which were deprecated in MySQL 5.6.3, are removed in MySQL 5.7.4.

1.5 MySQL Development History

This section describes the general MySQL development history, provides an overview about features
that have been implemented in previous series and that are new in MySQL 5.7, the release series
covered in this manual. The maturity level this release series is m15. Information about maturity levels
can be found in Section 2.1.2.1, “Choosing Which Version of MySQL to Install”.

Before upgrading from one release series to the next, please see the notes in Section 2.10.1,
“Upgrading MySQL".

The most requested features and the versions in which they were implemented are summarized in the
following table.

Feature MySQL Series
Unions 4.0
Subqueries 4.1

R-trees 4.1 (for the Myl SAMstorage engine)
Stored procedures and functions 5.0

Views 5.0

Cursors 5.0

XA transactions 5.0

Triggers 5.0and 5.1
Event scheduler 51

Partitioning 5.1

Pluggable storage engine API 5.1

Plugin API 51

14

MySQL Information Sources

Feature MySQL Series
Row-based replication 51

Server log tables 5.1

Scalability and performance 5.1 (with InnoDB Plugin)
improvements

DTrace support 55

Semisynchronous replication 5.5

SIGNAL/RESIGNAL supportin |55
stored routines

Performance Schema 55
Supplementary Unicode 55
characters

1.6 MySQL Information Sources

This section lists sources of additional information that you may find helpful, such as the MySQL
mailing lists and user forums, and Internet Relay Chat.

1.6.1 MySQL Mailing Lists

This section introduces the MySQL mailing lists and provides guidelines as to how the lists should be
used. When you subscribe to a mailing list, you receive all postings to the list as email messages. You
can also send your own questions and answers to the list.

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit http://
lists.mysql.com/. For most of them, you can select the regular version of the list where you get
individual messages, or a digest version where you get one large message per day.

Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because
such messages are distributed automatically to thousands of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may have a local
mailing list, so that messages sent from | i st s. mysql . comto your site are propagated to the local
list. In such cases, please contact your system administrator to be added to or dropped from the local
MySQL list.

To have traffic for a mailing list go to a separate mailbox in your mail program, set up a filter based on
the message headers. You can use either the Li st -1 D: or Del i ver ed- To: headers to identify list
messages.

The MySQL mailing lists are as follows:
e announce

The list for announcements of new versions of MySQL and related programs. This is a low-volume
list to which all MySQL users should subscribe.

« nysql
The main list for general MySQL discussion. Please note that some topics are better discussed on
the more-specialized lists. If you post to the wrong list, you may not get an answer.

* bugs

The list for people who want to stay informed about issues reported since the last release of MySQL
or who want to be actively involved in the process of bug hunting and fixing. See Section 1.7, “How
to Report Bugs or Problems”.

15

http://lists.mysql.com/
http://lists.mysql.com/

MySQL Mailing Lists

internal s

The list for people who work on the MySQL code. This is also the forum for discussions on MySQL
development and for posting patches.

nysql doc
The list for people who work on the MySQL documentation.
benchmar ks

The list for anyone interested in performance issues. Discussions concentrate on database
performance (not limited to MySQL), but also include broader categories such as performance of the
kernel, file system, disk system, and so on.

packagers

The list for discussions on packaging and distributing MySQL. This is the forum used by distribution
maintainers to exchange ideas on packaging MySQL and on ensuring that MySQL looks and feels as
similar as possible on all supported platforms and operating systems.

j ava

The list for discussions about the MySQL server and Java. It is mostly used to discuss JDBC drivers
such as MySQL Connector/J.

w n32

The list for all topics concerning the MySQL software on Microsoft operating systems, such as
Windows 9x, Me, NT, 2000, XP, and 2003.

myodbc

The list for all topics concerning connecting to the MySQL server with ODBC.

gui -tool s

The list for all topics concerning MySQL graphical user interface tools such as MySQL Workbench.
cl uster

The list for discussion of MySQL Cluster.

dot net

The list for discussion of the MySQL server and the .NET platform. It is mostly related to MySQL
Connector/Net.

pl uspl us

The list for all topics concerning programming with the C++ API for MySQL.
per |

The list for all topics concerning Perl support for MySQL with DBD: : nysql .

If you're unable to get an answer to your questions from a MySQL mailing list or forum, one option is to
purchase support from Oracle. This puts you in direct contact with MySQL developers.

The following MySQL mailing lists are in languages other than English. These lists are not operated by

Oracle.

e <nysql - france-subscri be@ahoogr oups. con

16

MySQL Community Support at the MySQL Forums

A French mailing list.
e <list@inc.net>

A Korean mailing list. To subscribe, email subscri be nysql your @nai | . addr ess to this list.
e <nysqgl -de-request @i sts. 4t 2. conp

A German mailing list. To subscribe, email subscri be nysql -de your @nri | . addr ess to this
list. You can find information about this mailing list at http://www.4t2.com/mysq|l/.

e <nysql -br-request @i stas. |inkway. com br>

A Portuguese mailing list. To subscribe, email subscri be nysql - br your @nai | . addr ess to
this list.

e <nysql -al ta@l i stas. net>
A Spanish mailing list. To subscribe, email subscri be nysql your @nei |l . addr ess to this list.
1.6.1.1 Guidelines for Using the Mailing Lists

Please do not post mail messages from your browser with HTML mode turned on. Many users do not
read mail with a browser.

When you answer a question sent to a mailing list, if you consider your answer to have broad interest,
you may want to post it to the list instead of replying directly to the individual who asked. Try to make
your answer general enough that people other than the original poster may benefit from it. When you
post to the list, please make sure that your answer is not a duplication of a previous answer.

Try to summarize the essential part of the question in your reply. Do not feel obliged to quote the entire
original message.

When answers are sent to you individually and not to the mailing list, it is considered good etiquette to
summarize the answers and send the summary to the mailing list so that others may have the benefit
of responses you received that helped you solve your problem.

1.6.2 MySQL Community Support at the MySQL Forums

The forums at http://forums.mysqgl.com are an important community resource. Many forums are
available, grouped into these general categories:

* Migration

* MySQL Usage

* MySQL Connectors

* Programming Languages
* Tools

» 3rd-Party Applications

» Storage Engines

* MySQL Technology

» SQL Standards

* Business

17

http://www.4t2.com/mysql/
http://forums.mysql.com

MySQL Community Support on Internet Relay Chat (IRC)

1.6.3 MySQL Community Support on Internet Relay Chat (IRC)

In addition to the various MySQL mailing lists and forums, you can find experienced community people
on Internet Relay Chat (IRC). These are the best networks/channels currently known to us:

freenode (see http://www.freenode.net/ for servers)

« #nysql is primarily for MySQL questions, but other database and general SQL questions are
welcome. Questions about PHP, Perl, or C in combination with MySQL are also common.

If you are looking for IRC client software to connect to an IRC network, take a look at xChat (http://
www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as for Windows platforms (a free
Windows build of X-Chat is available at http://www.silverex.org/download/).

1.6.4 MySQL Enterprise

Oracle offers technical support in the form of MySQL Enterprise. For organizations that rely on the
MySQL DBMS for business-critical production applications, MySQL Enterprise is a commercial
subscription offering which includes:

* MySQL Enterprise Server

MySQL Enterprise Monitor

Monthly Rapid Updates and Quarterly Service Packs

MySQL Knowledge Base
» 24x7 Technical and Consultative Support

MySQL Enterprise is available in multiple tiers, giving you the flexibility to choose the level of service
that best matches your needs. For more information, see MySQL Enterprise.

1.7 How to Report Bugs or Problems

Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been
reported already:

 Start by searching the MySQL online manual at http://dev.mysqgl.com/doc/. We try to keep the
manual up to date by updating it frequently with solutions to newly found problems. In addition, the
release notes accompanying the manual can be particularly useful since it is quite possible that a
newer version contains a solution to your problem. The release notes are available at the location
just given for the manual.

 If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find
something wrong with it, it is extremely likely that your current version of MySQL Server doesn't
support the syntax you are using. If you are using the current version and the manual doesn't cover
the syntax that you are using, MySQL Server doesn't support your statement.

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you
should check the MySQL change history to see when the syntax was implemented. In this case, you
have the option of upgrading to a newer version of MySQL Server.

» For solutions to some common problems, see Section C.5, “Problems and Common Errors”.

» Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and
fixed.

» Search the MySQL mailing list archives at http://lists.mysgl.com/. See Section 1.6.1, “MySQL Mailing
Lists”.

18

http://www.freenode.net/
http://www.xchat.org/
http://www.xchat.org/
http://www.silverex.org/download/
http://www.mysql.com/products/enterprise/
http://dev.mysql.com/doc/
http://bugs.mysql.com/
http://lists.mysql.com/

How to Report Bugs or Problems

* You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual)
that are located at the MySQL Web site.

If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with
your local MySQL expert. If you still cannot find an answer to your question, please use the following
guidelines for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are
noted in the release notes.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an
email message to <secal ert _us@r acl e. conr. Exception: Support customers should report all
problems, including security bugs, to Oracle Support at http://support.oracle.com/.

To discuss problems with other users, you can use one of the MySQL mailing lists. Section 1.6.1,
“MySQL Mailing Lists”.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
the bug in the next release. This section helps you write your report correctly so that you do not waste
your time doing things that may not help us much or at all. Please read this section carefully and make
sure that all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL
Server before posting. Anyone should be able to repeat the bug by just using nysql test <

script _fil e onyourtestcase or by running the shell or Perl script that you include in the bug report.
Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a
good example of everything you did that led to the problem and describe, in exact detail, the problem
itself. The best reports are those that include a full example showing how to reproduce the bug or
problem. See Section 22.4, “Debugging and Porting MySQL".

Remember that it is possible for us to respond to a report containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem
and assume that some details do not matter. A good principle to follow is that if you are in doubt about
stating something, state it. It is faster and less troublesome to write a couple more lines in your report
than to wait longer for the answer if we must ask you to provide information that was missing from the
initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL
distribution that you use, and (b) not fully describing the platform on which the MySQL server is
installed (including the platform type and version number). These are highly relevant pieces of
information, and in 99 cases out of 100, the bug report is useless without them. Very often we get
guestions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't
implemented in that MySQL version, or that a bug described in a report has been fixed in newer
MySQL versions. Errors often are platform-dependent. In such cases, it is next to impossible for us to
fix anything without knowing the operating system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if

it is related to the problem. Often people find bugs in compilers and think the problem is MySQL-
related. Most compilers are under development all the time and become better version by version. To
determine whether your problem depends on your compiler, we need to know what compiler you used.
Note that every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If
we try to search for something from the archives, it is better that the error message reported exactly

19

http://bugs.mysql.com/
http://bugs.mysql.com/
http://support.oracle.com/

How to Report Bugs or Problems

matches the one that the program produces. (Even the lettercase should be observed.) It is best
to copy and paste the entire error message into your report. You should never try to reproduce the
message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it
with your report. See How to Report Connector/ODBC Problems or Bugs.

If your report includes long query output lines from test cases that you run with the nysql command-
line tool, you can make the output more readable by using the - - verti cal option or the \ Gstatement
terminator. The EXPLAI N SELECT example later in this section demonstrates the use of \ G

Please include the following information in your report:

» The version number of the MySQL distribution you are using (for example, MySQL 5.0.19). You can
find out which version you are running by executing nysql adm n ver si on. The nysql adni n
program can be found in the bi n directory under your MySQL installation directory.

» The manufacturer and model of the machine on which you experience the problem.

» The operating system name and version. If you work with Windows, you can usually get the name
and version number by double-clicking your My Computer icon and pulling down the “Help/About
Windows” menu. For most Unix-like operating systems, you can get this information by executing the
command unane - a.

» Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

« If you are using a source distribution of the MySQL software, include the name and version number
of the compiler that you used. If you have a binary distribution, include the distribution hame.

* If the problem occurs during compilation, include the exact error messages and also a few lines of
context around the offending code in the file where the error occurs.

» If nysql d died, you should also report the statement that crashed nysql d. You can usually get this
information by running nysql d with query logging enabled, and then looking in the log after mysql d
crashes. See Section 22.4, “Debugging and Porting MySQL”".

« If a database table is related to the problem, include the output from the SHOW CREATE TABLE
db_nane. t bl _nane statement in the bug report. This is a very easy way to get the definition of
any table in a database. The information helps us create a situation matching the one that you have
experienced.

» The SQL mode in effect when the problem occurred can be significant, so please report the value
of the sgl _node system variable. For stored procedure, stored function, and trigger objects, the
relevant sgql _node value is the one in effect when the object was created. For a stored procedure
or function, the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTI ON statement shows the
relevant SQL mode, or you can query | NFORVATI ON_SCHENA for the information:

SELECT ROUTI NE_SCHEMA, ROUTI NE_NAME, SQL_MODE
FROM | NFORVMATI ON_SCHENMA. ROUTI NES;

For triggers, you can use this statement:

SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT TABLE, TRI GGER NAME, SQL_MODE
FROM | NFORMATI ON_SCHEMA. TRI GGERS;

» For performance-related bugs or problems with SELECT statements, you should always include
the output of EXPLAI N SELECT . . ., and at least the number of rows that the SELECT statement
produces. You should also include the output from SHOW CREATE TABLE t bl _nane for each
table that is involved. The more information you provide about your situation, the more likely it is that
someone can help you.

20

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-support-bug-report.html

How to Report Bugs or Problems

The following is an example of a very good bug report. The statements are run using the nmysq|l
command-line tool. Note the use of the \ G statement terminator for statements that would otherwise
provide very long output lines that are difficult to read.

mysql > SHOW VARI ABLES;
nysql > SHOW COLUMNS FROM ...\ G
<out put from SHOW COLUWNS>
nysql > EXPLAIN SELECT ...\G
<out put from EXPLAI N>
nysql > FLUSH STATUS;
mysql > SELECT .. .;
<A short version of the output from SELECT,
including the time taken to run the query>
mysql > SHOW STATUS;
<out put from SHOW STATUS>

If a bug or problem occurs while running nmysql d, try to provide an input script that reproduces the
anomaly. This script should include any necessary source files. The more closely the script can
reproduce your situation, the better. If you can make a reproducible test case, you should upload it to
be attached to the bug report.

If you cannot provide a script, you should at least include the output from nmysql adni n vari abl es
ext ended- st at us processli st inyour report to provide some information on how your system
is performing.

If you cannot produce a test case with only a few rows, or if the test table is too big to be included in
the bug report (more than 10 rows), you should dump your tables using mysql dunp and create a
READIVE file that describes your problem. Create a compressed archive of your files using t ar and
gzi p or zi p. After you initiate a bug report for our bugs database at http://bugs.mysql.com/, click the
Files tab in the bug report for instructions on uploading the archive to the bugs database.

If you believe that the MySQL server produces a strange result from a statement, include not only the
result, but also your opinion of what the result should be, and an explanation describing the basis for
your opinion.

When you provide an example of the problem, it is better to use the table names, variable names,
and so forth that exist in your actual situation than to come up with new names. The problem could
be related to the name of a table or variable. These cases are rare, perhaps, but it is better to be
safe than sorry. After all, it should be easier for you to provide an example that uses your actual
situation, and it is by all means better for us. If you have data that you do not want to be visible

to others in the bug report, you can upload it using the Files tab as previously described. If the
information is really top secret and you do not want to show it even to us, go ahead and provide an
example using other names, but please regard this as the last choice.

Include all the options given to the relevant programs, if possible. For example, indicate the
options that you use when you start the nysql d server, as well as the options that you use to run
any MySQL client programs. The options to programs such as nysql d and nysql , and to the
confi gur e script, are often key to resolving problems and are very relevant. It is never a bad idea
to include them. If your problem involves a program written in a language such as Perl or PHP,
please include the language processor's version number, as well as the version for any modules
that the program uses. For example, if you have a Perl script that uses the DBl and DBD: : mysq|l
modules, include the version numbers for Perl, DBl , and DBD: : nysql .

If your question is related to the privilege system, please include the output of nysql access,

the output of nysql adm n rel oad, and all the error messages you get when trying to connect.
When you test your privileges, you should first run nysgl access. After this, execute nysql adni n
rel oad versi on and try to connect with the program that gives you trouble. nysqgl access can be
found in the bi n directory under your MySQL installation directory.

If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that
we can use it, if you do not provide some necessary information such as test cases showing the bug

21

http://bugs.mysql.com/

MySQL Standards Compliance

that your patch fixes. We might find problems with your patch or we might not understand it at all. If
S0, we cannot use it.

If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show
that the patch handles all the situations that may occur. If we find a borderline case (even a rare one)
where the patch will not work, it may be useless.

» Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team cannot guess such things without first using a debugger to determine the real cause of
a bug.

* Indicate in your bug report that you have checked the reference manual and mail archive so that
others know you have tried to solve the problem yourself.

« If your data appears corrupt or you get errors when you access a particular table, first check your
tables with CHECK TABLE. If that statement reports any errors:

« The | nnoDB crash recovery mechanism handles cleanup when the server is restarted after being
killed, so in typical operation there is no need to “repair” tables. If you encounter an error with
| nnoDB tables, restart the server and see whether the problem persists, or whether the error
affected only cached data in memory. If data is corrupted on disk, consider restarting with the
i nnodb_f orce_recovery option enabled so that you can dump the affected tables.

» For non-transactional tables, try to repair them with REPAI R TABLE or with myi santhk. See
Chapter 5, MySQL Server Administration.

If you are running Windows, please verify the value of | ower case_t abl e_nanes using the SHOW
VARI ABLES LI KE ' | ower case_tabl e_nanes' statement. This variable affects how the server
handles lettercase of database and table names. Its effect for a given value should be as described
in Section 9.2.2, “Identifier Case Sensitivity”.

« If you often get corrupted tables, you should try to find out when and why this happens. In this case,
the error log in the MySQL data directory may contain some information about what happened. (This
is the file with the . er r suffix in the name.) See Section 5.2.2, “The Error Log”. Please include any
relevant information from this file in your bug report. Normally nysql d should never crash a table
if nothing killed it in the middle of an update. If you can find the cause of mysql d dying, it is much
easier for us to provide you with a fix for the problem. See Section C.5.1, “How to Determine What Is
Causing a Problem”.

« If possible, download and install the most recent version of MySQL Server and check whether it
solves your problem. All versions of the MySQL software thoroughly tested and should work without
problems. We believe in making everything as backward-compatible as possible, and you should
be able to switch MySQL versions without difficulty. See Section 2.1.2, “Choosing Which MySQL
Distribution to Install”.

1.8 MySQL Standards Compliance

This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many
extensions to the SQL standard, and here you can find out what they are and how to use them. You
can also find information about functionality missing from MySQL Server, and how to work around
some of the differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92"
refers to the standard released in 1992, “SQL:1999" refers to the standard released in 1999,
“SQL:2003" refers to the standard released in 2003, and “SQL:2008" refers to the most recent version
of the standard, released in 2008. We use the phrase “the SQL standard” or “standard SQL” to mean
the current version of the SQL Standard at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL
standard, but without sacrificing speed or reliability. We are not afraid to add extensions to SQL
or support for non-SQL features if this greatly increases the usability of MySQL Server for a large

22

Selecting SQL Modes

segment of our user base. The HANDLER interface is an example of this strategy. See Section 13.2.4,
“HANDL ER Syntax”.

We continue to support transactional and nontransactional databases to satisfy both mission-critical
24/7 usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows,
or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-
sized databases, but the code can also be compiled in a reduced version suitable for hand-held and
embedded devices. The compact design of the MySQL server makes development in both directions
possible without any conflicts in the source tree.

Currently, we are not targeting real-time support, although MySQL replication capabilities offer
significant functionality.

MySQL supports ODBC levels 0 to 3.51.

MySQL supports high-availability database clustering using the NDBCLUSTER storage engine. See
MySQL Cluster NDB 7.3.

We implement XML functionality which supports most of the W3C XPath standard. See Section 12.11,
“XML Functions”.

Selecting SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sgql _node system variable. DBAs can set the global
SQL mode to match site server operating requirements, and each application can set its session SQL
mode to its own requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes
it easier to use MySQL in different environments and to use MySQL together with other database
servers.

For more information on setting the SQL mode, see Section 5.1.7, “Server SQL Modes”".

Running MySQL in ANSI Mode

To run MySQL Server in ANSI mode, start mysql d with the - - ansi option. Running the server in
ANSI mode is the same as starting it with the following options:

--transaction-isol ati on=SERI ALI ZABLE - - sql - rode=ANSI

To achieve the same effect at runtime, execute these two statements:

SET GLOBAL TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE;
SET GLOBAL sql _node = ' ANSI ' ;

You can see that setting the sql _node system variable to ' ANSI ' enables all SQL mode options that
are relevant for ANSI mode as follows:

nysqgl > SET GLOBAL sql _node=' ANS| ' ;
nysql > SELECT @@l obal . sql _node;
-> ' REAL_AS _FLOAT, PI PES_AS_CONCAT, ANSI _QUOTES, | GNORE_SPACE, ANS| '

Running the server in ANSI mode with - - ansi is not quite the same as setting the SQL mode to
" ANSI ' because the - - ansi option also sets the transaction isolation level.

See Section 5.1.3, “Server Command Options”.

1.8.1 MySQL Extensions to Standard SQL

23

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL Extensions to Standard SQL

MySQL Server supports some extensions that you probably won't find in other SQL DBMSs. Be
warned that if you use them, your code won't be portable to other SQL servers. In some cases, you can
write code that includes MySQL extensions, but is still portable, by using comments of the following
form:

/[*] MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other
SQL statement, but other SQL servers will ignore the extensions. For example, MySQL Server
recognizes the STRAI GHT_JO N keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JO N */ col1l FROM tabl el, tabl e2 WHERE . . .

If you add a version number after the “! ” character, the syntax within the comment is executed only if
the MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword
in the following comment is executed only by servers from MySQL 3.23.02 or higher:

CREATE /*!132302 TEMPORARY */ TABLE t (a INT);
The following descriptions list MySQL extensions, organized by category.

» Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables
within a database to file names in the database directory. This has a few implications:

« Database and table names are case sensitive in MySQL Server on operating systems that
have case-sensitive file names (such as most Unix systems). See Section 9.2.2, “Identifier Case
Sensitivity”.

« You can use standard system commands to back up, rename, move, delete, and copy tables that
are managed by the My| SAMstorage engine. For example, it is possible to rename a Myl SAMtable
by renaming the . MYD, . M1, and . f r mfiles to which the table corresponds. (Nevertheless, it is
preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the server rename the
files.)

« General language syntax

< By default, strings can be enclosed by either “" " or “ ”, not just by “ ”. (If the ANSI _ QUOTES SQL
mode is enabled, strings can be enclosed only by “ " and the server interprets strings enclosed by
“'" as identifiers.)

* “\'"is the escape character in strings.

* In SQL statements, you can access tables from different databases with the db_nan®e. t bl _nane
syntax. Some SQL servers provide the same functionality but call this User space. MySQL
Server doesn't support tablespaces such as used in statements like this: CREATE TABLE
ral ph.nmy_table ... I N ny_tabl espace.

* SQL statement syntax
e The ANALYZE TABLE, CHECK TABLE, OPTI M ZE TABLE, and REPAI R TABLE statements.

* The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See
Section 13.1.8, “CREATE DATABASE Syntax”, Section 13.1.17, “DROP DATABASE Syntax”, and
Section 13.1.1, “ALTER DATABASE Syntax”.

¢ The DOstatement.

« EXPLAI N SELECT to obtain a description of how tables are processed by the query optimizer.

24

MySQL Extensions to Standard SQL

The FLUSH and RESET statements.
The SET statement. See Section 13.7.4, “SET Syntax”.

The SHOWSstatement. See Section 13.7.5, “SHOWSyntax”. The information produced by many of
the MySQL-specific SHOWstatements can be obtained in more standard fashion by using SELECT
to query | NFORVATI ON_SCHEMNA. See Chapter 19, | NFORVATI ON_SCHENA Tables.

Use of LOAD DATA | NFI LE. In many cases, this syntax is compatible with Oracle's LOAD DATA
I NFI LE. See Section 13.2.6, “LOAD DATA | NFI LE Syntax”.

Use of RENAVE TABLE. See Section 13.1.26, “RENAVE TABLE Syntax”.
Use of REPLACE instead of DELETE plus | NSERT. See Section 13.2.8, “REPLACE Syntax”.

Use of CHANGE col _nane, DROP col _nane, or DROP | NDEX, | GNORE or RENAME in ALTER
TABLE statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE
statement. See Section 13.1.6, “ALTER TABLE Syntax”.

Use of index names, indexes on a prefix of a column, and use of | NDEX or KEY in CREATE TABLE
statements. See Section 13.1.14, “CREATE TABLE Syntax”.

Use of TEMPORARY or | F NOT EXI STS with CREATE TABLE.

Use of | F EXI STS with DROP TABLE and DROP DATABASE.

The capability of dropping multiple tables with a single DROP TABLE statement.

The ORDER BY and LI M T clauses of the UPDATE and DELETE statements.

I NSERT | NTO tbl _nanme SET col _nanme = ... syntax.

The DELAYED clause of the | NSERT and REPLACE statements.

The LOW PRI ORI TY clause of the | NSERT, REPLACE, DELETE, and UPDATE statements.

Use of | NTO QUTFI LE or | NTO DUMPFI LE in SELECT statements. See Section 13.2.9, “SELECT
Syntax”.

Options such as STRAI GHT_JO Nor SQL_SMALL_RESULT in SELECT statements.

You don't need to name all selected columns in the GROUP BY clause. This gives better
performance for some very specific, but quite normal queries. See Section 12.17, “Functions and
Modifiers for Use with GROUP BY Clauses”.

You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

The ability to set variables in a statement with the : = assignment operator. See Section 9.4, “User-
Defined Variables”.

Data types

e The MEDI UM NT, SET, and ENUMdata types, and the various BLOB and TEXT data types.

e The AUTO | NCREMENT, Bl NARY, NULL, UNSI GNED, and ZEROFI LL data type attributes.

Functions and operators

« To make it easier for users who migrate from other SQL environments, MySQL Server supports

aliases for many functions. For example, all string functions support both standard SQL syntax and
ODBC syntax.

25

MySQL Differences from Standard SQL

MySQL Server understands the | | and && operators to mean logical OR and AND, as in the C
programming language. In MySQL Server, | | and OR are synonyms, as are &% and AND. Because
of this nice syntax, MySQL Server doesn't support the standard SQL | | operator for string
concatenation; use CONCAT() instead. Because CONCAT() takes any number of arguments, it is
easy to convert use of the | | operator to MySQL Server.

Use of COUNT(DI STI NCT val ue_list) where val ue_I i st has more than one element.

String comparisons are case-insensitive by default, with sort ordering determined by the collation
of the current character set, which is | at i n1 (cp1252 West European) by default. If you don't like
this, you should declare your columns with the Bl NARY attribute or use the Bl NARY cast, which
causes comparisons to be done using the underlying character code values rather than a lexical
ordering.

The %operator is a synonym for MOD() . That is, N % Mis equivalent to MOD(N, M) . %is
supported for C programmers and for compatibility with PostgreSQL.

The =, <>, <=, <, >=, >, <<, >>, <=> AND, OR, or LI KE operators may be used in expressions in
the output column list (to the left of the FROM) in SELECT statements. For example:
nmysqgl > SELECT col 1=1 AND col 2=2 FROM ny_t abl e;

The LAST | NSERT | D() function returns the most recent AUTO | NCREVENT value. See
Section 12.14, “Information Functions”.

LI KE is permitted on numeric values.
The REGEXP and NOT REGEXP extended regular expression operators.

CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these
functions can take a variable number of arguments.)

The BI T_COUNT(), CASE, ELT(), FROM DAYS(), FORVAT(), | F(), PASSWORD() , ENCRYPT() ,
VD5 () , ENCODE() , DECODE() , PERI OD_ADIX) , PERI OD DI FF(), TO_DAYS(), and WEEKDAY()
functions.

Use of TRI M) to trim substrings. Standard SQL supports removal of single characters only.

The GROUP BY functions STD(), BI T_OR(), BI T_AND(), Bl T_XOR(), and GROUP_CONCAT() .
See Section 12.17, “Functions and Modifiers for Use with GROUP BY Clauses”.

1.8.2 MySQL Differences from Standard SQL

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but
MySQL Server performs operations differently in some cases:

There are several differences between the MySQL and standard SQL privilege systems. For
example, in MySQL, privileges for a table are not automatically revoked when you delete a table.
You must explicitly issue a REVOKE statement to revoke privileges for a table. For more information,
see Section 13.7.1.6, “REVOKE Syntax”.

The CAST() function does not support cast to REAL or Bl G NT. See Section 12.10, “Cast Functions
and Operators”.

1.8.2.1 SELECT | NTO TABLE Differences

MySQL Server doesn't support the SELECT ... | NTO TABLE Sybase SQL extension. Instead,
MySQL Server supports the | NSERT | NTO ... SELECT standard SQL syntax, which is basically the
same thing. See Section 13.2.5.1, “I NSERT ... SELECT Syntax”. For example:

26

MySQL Differences from Standard SQL

I NSERT I NTO tbhl _tenp2 (fld_id)
SELECT tbl _tenpl.fld_order_id
FROM t bl _tenpl WHERE tbl _tenpl.fld_order_id > 100;

Alternatively, you can use SELECT ... | NTO OUTFI LE or CREATE TABLE ... SELECT.

You can use SELECT ... | NTOwith user-defined variables. The same syntax can also be used
inside stored routines using cursors and local variables. See Section 13.2.9.1, “SELECT ... [INTO
Syntax”.

1.8.2.2 UPDATE Differences

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. The second assignment in the following statement sets col 2 to the current (updated)
col 1 value, not the original col 1 value. The result is that col 1 and col 2 have the same value. This
behavior differs from standard SQL.

UPDATE t1 SET coll = coll + 1, col2 = col 1;

1.8.2.3 Transaction and Atomic Operation Differences

MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions with the

| nnoDB transactional storage engine. In MySQL 5.5 and up, newly created tables use | nnoDB by
default, as explained in Section 14.2.1.1, “| nnoDB as the Default MySQL Storage Engine”. By default,
I nnoDB provides full ACID compliance; see Section 14.2.2.1, “MySQL and the ACID Model” for

ways that you can adjust settings to balance ACID compliance with raw performance. For information
about | nnoDB differences from standard SQL with regard to treatment of transaction errors, see
Section 14.2.17.4, “| nnoDB Error Handling”.

The nontransactional storage engines in MySQL Server (such as Myl SAM) follow a different paradigm
for data integrity called “atomic operations”. Myl SAMtables effectively always operate in aut oconmi t
= 1 mode. Because changed data is written to disk one statement at a time, it is harder to guarantee
the consistency of a sequence of related DML operations, which could be interrupted partway through.
Thus, this mode is suitable for read-mostly workloads. In transactional terms, while each specific
update is running, no other user can interfere with it, there can never be an automatic rollback, and
there are no dirty reads. However, these features apply to single operations, not related updates that
succeed or fail as a unit. Workarounds such as the LOCK TABLES statement limit concurrent write
access to nontransactional tables.

You can choose which paradigm to use, even for different tables within the same application:
transactional features for reliability combined with high performance, or atomic operations for non-
critical, read-mostly data (for example, on replication slave servers).

Transactional storage engines such as | nnoDB offer many significant features to support high
reliability for heavy read/write workloads. As a result, transactional tables can have higher memory
and disk space requirements, and more CPU overhead. MySQL Server's modular design enables
the concurrent use of different storage engines to suit different requirements and deliver optimum
performance in all situations.

Workarounds for Reliability with Non-Transactional Tables

But how do you use the features of MySQL Server to maintain integrity even with the nontransactional
My | SAMtables, and how do these features compare with the transactional storage engines?

« If your applications are written in a way that is dependent on being able to call ROLLBACK rather
than COVM T in critical situations, transactions are more convenient. Transactions also ensure that
unfinished updates or corrupting activities are not committed to the database; the server is given the
opportunity to do an automatic rollback and your database is saved.

27

MySQL Differences from Standard SQL

If you use nontransactional tables, you must resolve potential problems at the application level by
including checks before updates and by running scripts that check the databases for inconsistencies
and automatically repair or warn if such an inconsistency occurs. You can normally fix tables with no
data integrity loss by using the MySQL log or even adding one extra log.

» Sometimes, critical transactional updates can be rewritten to be atomic. Multiple DML operations
can be done with LOCK TABLES or atomic updates, ensuring that there are no deadlocks by limiting
concurrent write access. If you obtain a READ LOCAL lock (as opposed to a write lock) for a table
that enables concurrent inserts at the end of the table, reads are permitted, as are inserts by other
clients. The newly inserted records are not be seen by the client that has the read lock until it
releases the lock. With | NSERT DELAYED, you can write inserts that go into a local queue until
the locks are released, without having the client wait for the insert to complete. See Section 8.10.3,
“Concurrent Inserts”, and Section 13.2.5.2, “I| NSERT DELAYED Syntax”.

» To be safe with MySQL Server, regardless of what kinds of tables you use, make regular backups
and have binary logging turned on. It is always good to have backups, regardless of which database
system you use.

Following are some techniques for working with nontransactional tables:

» Loops that need transactions normally can be coded with the help of LOCK TABLES, and you don't
need cursors to update records on the fly.

e To avoid using ROLLBACK, you can employ the following strategy:
1. Use LOCK TABLESto lock all the tables you want to access.
2. Test the conditions that must be true before performing the update.
3. Update if the conditions are satisfied.

4. Use UNLOCK TABLES to release your locks.

Note

@ This solution does not handle the situation when someone kills the threads in
the middle of an update. In that case, all locks are released but some of the
updates may not have been executed.

* You can also use functions to update records in a single operation, using the following techniques:

« Modify columns relative to their current value. This makes the update correct even if another client
has changed the column values in the meantime.

< Update only those columns that actually have changed. This is a good database practice in
general.

* When managing unique identifiers, you can avoid statements such as LOCK TABLES or ROLLBACK
by using an AUTO | NCREMENT column and either the LAST | NSERT | D() SQL function or
the nysql _i nsert _i d() C API function. See Section 12.14, “Information Functions”, and
Section 21.8.7.38, “nysql _insert _id()".

For situations that require row-level locking, use | nnoDB tables. Otherwise, with Myl SAMtables, you
can use a flag column in the table and do something like the following:

UPDATE t bl _nanme SET row_flag=1 WHERE i d=I D;

MySQL returns 1 for the number of affected rows if the row was found and r ow f | ag wasn't 1 in the
original row. You can think of this as though MySQL Server changed the preceding statement to:

28

MySQL Differences from Standard SQL

UPDATE t bl _nane SET row_flag=1 WHERE i d=ID AND row flag <> 1;

1.8.2.4 Foreign Key Differences

The | nnoDB storage engine supports checking of foreign key constraints, including CASCADE, ON
DELETE, and ON UPDATE. See Section 14.2.6.6, “l nnoDB and FOREI GN KEY Constraints”.

For storage engines other than | nnoDB, MySQL Server parses the FOREI GN KEY syntax in CREATE
TABLE statements, but does not use or store it. This information is also present in nysql dunp, and
can be retrieved using Connector/ODBC. You can see which tables have foreign key constraints by
checking the | NFORVATI ON_SCHENMA. TABLE_CONSTRAI NTS table in the | NFORVATI ON_SCHENA
information database. You can obtain more detailed information about foreign keys from the

| NFORVATI ON_SCHENMA. REFERENTI AL CONSTRAI NTS table. In addition, | nnoDB provides a number
of | NFORVATI ON_SCHEMNA tables containing information about foreign keys on | nnoDB tables; see
Section 19.30, “I NFORVATI ON_SCHENA Tables for | nnoDB".

Foreign key enforcement offers several benefits to database developers:

» Assuming proper design of the relationships, foreign key constraints make it more difficult for a
programmer to introduce an inconsistency into the database.

» Centralized checking of constraints by the database server makes it unnecessary to perform these
checks on the application side. This eliminates the possibility that different applications may not all
check the constraints in the same way.

» Using cascading updates and deletes can simplify the application code.
» Properly designed foreign key rules aid in documenting relationships between tables.

Foreign keys in SQL are used to check and enforce referential integrity, not to join tables. If you want
to get results from multiple tables from a SELECT statement, you do this by performing a join between
them:

SELECT * FROMt1 INNER JONt2 ONtl.id = t2.id;
See Section 13.2.9.2, “JA N Syntax”, and Section 3.6.6, “Using Foreign Keys".

The FOREI GN KEY syntax without ON DELETE . . . is often used by ODBC applications to produce
automatic VVWHERE clauses.

1.8.2.5'--"as the Start of a Comment

Standard SQL uses the Csyntax/* this is a conmment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific
SQL to be embedded in the comment, as described in Section 9.6, “Comment Syntax”.

Standard SQL uses “- - " as a start-comment sequence. MySQL Server uses “#” as the start comment
character. MySQL Server 3.23.3 and up also supports a variant of the “- - ” comment style. That is,

the “- - " start-comment sequence must be followed by a space (or by a control character such as a
newline). The space is required to prevent problems with automatically generated SQL queries that use
constructs such as the following, where we automatically insert the value of the payment for paynent :

UPDATE account SET credit=credit-paynent

Consider about what happens if paynent has a negative value such as - 1:

UPDATE account SET credit=credit--1

credit--1isavalid expression in SQL, but “- - " is interpreted as the start of a comment, part of
the expression is discarded. The result is a statement that has a completely different meaning than
intended:

29

How MySQL Deals with Constraints

UPDATE account SET credit=credit

The statement produces no change in value at all. This illustrates that permitting comments to start with
“- - " can have serious consequences.

Using our implementation requires a space following the “- - ” for it to be recognized as a start-comment
sequence in MySQL Server 3.23.3 and newer. Therefore, cr edi t - - 1 is safe to use.

Another safe feature is that the mysql command-line client ignores lines that start with “- - .
The following information is relevant only if you are running a MySQL version earlier than 3.23.3:

If you have an SQL script in a text file that contains “- - " comments, you should use the r epl ace utility
as follows to convert the comments to use “#” characters before executing the script:

shell > replace " --" " #" < text-file-w th-funny-comrents.sql \
| mysql db_nane

That is safer than executing the script in the usual way:

shel | > nysqgl db_nanme < text-file-w th-funny-coments. sq

You can also edit the script file “in place” to change the “- - " comments to “#” comments:

shell > replace " --" " #" -- text-file-w th-funny-comrents. sq

Change them back with this command:

shell > replace " #" " --" -- text-file-w th-funny-coments. sq

See Section 4.8.2, “r epl ace — A String-Replacement Utility”.

1.8.3 How MySQL Deals with Constraints

MySQL enables you to work both with transactional tables that permit rollback and with
nontransactional tables that do not. Because of this, constraint handling is a bit different in MySQL
than in other DBMSs. We must handle the case when you have inserted or updated a lot of rows in a
nontransactional table for which changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect
while parsing a statement to be executed, and tries to recover from any errors that occur while
executing the statement. We do this in most cases, but not yet for all.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover as
well as possible from the problem and continue. By default, the server follows the latter course. This
means, for example, that the server may coerce invalid values to the closest valid values.

Several SQL mode options are available to provide greater control over handling of bad data values
and whether to continue statement execution or abort when errors occur. Using these options, you
can configure MySQL Server to act in a more traditional fashion that is like other DBMSs that reject
improper input. The SQL mode can be set globally at server startup to affect all clients. Individual
clients can set the SQL mode at runtime, which enables each client to select the behavior most
appropriate for its requirements. See Section 5.1.7, “Server SQL Modes”.

The following sections describe how MySQL Server handles different types of constraints.

1.8.3.1 PRI MARY KEY and UNI QUE Index Constraints

30

How MySQL Deals with Constraints

Normally, errors occurs for data-change statements (such as | NSERT or UPDATE) that would violate
primary-key, unique-key, or foreign-key constraints. If you are using a transactional storage engine
such as | nnoDB, MySQL automatically rolls back the statement. If you are using a nontransactional
storage engine, MySQL stops processing the statement at the row for which the error occurred and
leaves any remaining rows unprocessed.

MySQL supports an | GNORE keyword for | NSERT, UPDATE, and so forth. If you use it, MySQL ignores
primary-key or unique-key violations and continues processing with the next row. See the section for
the statement that you are using (Section 13.2.5, “I| NSERT Syntax”, Section 13.2.11, “UPDATE Syntax”,
and so forth).

You can get information about the number of rows actually inserted or updated with the
nysql _i nfo() C API function. You can also use the SHOWN WARNI NGS statement. See
Section 21.8.7.36, “nysql _i nf o() ", and Section 13.7.5.39, “SHOW WARNI NGS Syntax”.

Currently, only | nnoDB tables support foreign keys. See Section 14.2.6.6, “| nnoDB and FOREI GN KEY
Constraints”.

1.8.3.2 FOREI GN KEY Constraints

Foreign keys let you cross-reference related data across tables, and foreign key constraints help keep
this spread-out data consistent.

MySQL supports ON UPDATE and ON DELETE foreign key references in CREATE TABLE and ALTER
TABLE statements. The available referential actions are RESTRI CT (the default), CASCADE, SET NULL,
and NO ACTI ON.

SET DEFAULT is also supported by the MySQL Server but is currently rejected as invalid by | nnoDB.
Since MySQL does not support deferred constraint checking, NO ACTI ONis treated as RESTRI CT. For
the exact syntax supported by MySQL for foreign keys, see Section 13.1.14.2, “Using FOREI GN KEY
Constraints”.

MATCH FULL, MATCH PARTI AL, and MATCH SI MPLE are allowed, but their use should be avoided,
as they cause the MySQL Server to ignore any ON DELETE or ON UPDATE clause used in the same
statement. MATCH options do not have any other effect in MySQL, which in effect enforces MATCH

SI MPLE semantics full-time.

MySQL requires that foreign key columns be indexed; if you create a table with a foreign key constraint
but no index on a given column, an index is created.

You can obtain information about foreign keys from the | NFORVATI ON_SCHENMA. KEY_ COLUMN_USAGE
table. An example of a query against this table is shown here:

nysql > SELECT TABLE_SCHEMA, TABLE NAME, COLUMN NAVE, CONSTRAI NT_NAVE
> FROM | NFORMATI ON_SCHEMA. KEY_COLUWN_USAGE
> WHERE REFERENCED TABLE SCHEMA |'S NOT NULL;

dimccoccsoocooos dieoccoccsoococoso dimccoccsooc=os dimocccosoccoooc=oo +
| TABLE_SCHEMA | TABLE_NAME | COLUMN NAMVE | CONSTRAI NT_NAME |
dimccoccsoocooos dieoccoccsoococoso dimccoccsooc=os dimocccosoccoooc=oo +
| fki | myuser | myuser_id | f |
| fki | product_order | customer_id | f2

| fki | product_order | product_id | f1

dimccoccsoocooos dieoccoccsoococoso dimccoccsooc=os dimocccosoccoooc=oo +

3 rows in set (0.01 sec)

Information about foreign keys on | nnoDB tables can also be found in the | NNODB_SYS FOREI GN and
| NNCDB_SYS_FOREI GN_COLS tables, in the | NFORVATI ON_SCHENA database.

Currently, only | nnoDB tables support foreign keys. See Section 14.2.6.6, “| nnoDB and FOREI GN KEY
Constraints”, for information specific to foreign key support in | nnoDB.

31

How MySQL Deals with Constraints

Deviations from SQL Standards
MySQL's implementation of foreign keys differs from the SQL standard in the following key respects:

* If there are several rows in the parent table that have the same referenced key value, | nnoDB acts
in foreign key checks as if the other parent rows with the same key value do not exist. For example,
if you have defined a RESTRI CT type constraint, and there is a child row with several parent rows,
| nnoDB does not permit the deletion of any of those parent rows.

I nnoDB performs cascading operations through a depth-first algorithm, based on records in the
indexes corresponding to the foreign key constraints.

e A FOREI G\ KEY constraint that references a non-UNI QUE key is not standard SQL but rather an
| nnoDB extension.

» If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the same cascade, it acts like RESTRI CT. This means that you cannot
use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent
infinite loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the
other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not
be nested more than 15 levels deep.

» In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique
constraints) are checked row-by-row. When performing foreign key checks, | nnoDB sets shared row-
level locks on child or parent records that it must examine. MySQL checks foreign key constraints
immediately; the check is not deferred to transaction commit. According to the SQL standard, the
default behavior should be deferred checking. That is, constraints are only checked after the entire
SQL statement has been processed. This means that it is not possible to delete a row that refers to
itself using a foreign key.

For information how | nnoDB foreign keys differ from the SQL standard, see Section 14.2.6.6, “| nnoDB
and FOREI GN KEY Constraints”.

1.8.3.3 Constraints on Invalid Data

By default, MySQL is forgiving of invalid or improper data values and coerces them to valid values
for data entry. However, you can change the server SQL mode to select more traditional treatment
of bad values such that the server rejects them and aborts the statement in which they occur. See
Section 5.1.7, “Server SQL Modes”".

This section describes the default (forgiving) behavior of MySQL, as well as the strict SQL mode and
how it differs.

If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as
a NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the
column to the “best possible value” instead of producing an error: The following rules describe in more
detail how this works:

« If you try to store an out of range value into a numeric column, MySQL Server instead stores zero,
the smallest possible value, or the largest possible value, whichever is closest to the invalid value.

» For strings, MySQL stores either the empty string or as much of the string as can be stored in the
column.

* If you try to store a string that doesn't start with a number into a numeric column, MySQL Server
stores 0.

 Invalid values for ENUMand SET columns are handled as described in Section 1.8.3.4, “ENUMand
SET Constraints”.

* MySQL enables you to store certain incorrect date values into DATE and DATETI ME columns (such
as' 2000- 02- 31" or' 2000-02-00'). The idea is that it is not the job of the SQL server to validate

32

How MySQL Deals with Constraints

dates. If MySQL can store a date value and retrieve exactly the same value, MySQL stores it as
given. If the date is totally wrong (outside the server's ability to store it), the special “zero” date value
' 0000- 00- 00" is stored in the column instead.

« If you try to store NULL into a column that doesn't take NULL values, an error occurs for single-
row | NSERT statements. For multiple-row | NSERT statements or for | NSERT | NTO ... SELECT
statements, MySQL Server stores the implicit default value for the column data type. In general, this
is 0 for numeric types, the empty string (' ') for string types, and the “zero” value for date and time
types. Implicit default values are discussed in Section 11.5, “Data Type Default Values”.

 If an | NSERT statement specifies no value for a column, MySQL inserts its default value if the
column definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT clause,
MySQL inserts the implicit default value for the column data type.

The reason for using the preceding rules in nonstrict mode is that we can't check these conditions until
the statement has begun executing. We can't just roll back if we encounter a problem after updating

a few rows, because the storage engine may not support rollback. The option of terminating the
statement is not that good; in this case, the update would be “half done,” which is probably the worst
possible scenario. In this case, it is better to “do the best you can” and then continue as if nothing
happened.

In MySQL 5.0.2 and up, you can select stricter treatment of input values by using the
STRI CT_TRANS_TABLES or STRI CT_ALL_TABLES SQL modes:

SET sql _node
SET sql _node

= ' STRI CT_TRANS_TABLES' ;
= ' STRICT_ALL_TABLES' ;

STRI CT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some
extent for nontransactional engines. It works like this:

» For transactional storage engines, bad data values occurring anywhere in a statement cause the
statement to abort and roll back.

» For nontransactional storage engines, a statement aborts if the error occurs in the first row to be
inserted or updated. (When the error occurs in the first row, the statement can be aborted to leave
the table unchanged, just as for a transactional table.) Errors in rows after the first do not abort the
statement, because the table has already been changed by the first row. Instead, bad data values
are adjusted and result in warnings rather than errors. In other words, with STRI CT_TRANS TABLES,
a wrong value causes MySQL to roll back all updates done so far, if that can be done without
changing the table. But once the table has been changed, further errors result in adjustments and
warnings.

For even stricter checking, enable STRI CT_ALL_TABLES. This is the same as

STRI CT_TRANS_TABLES except that for nontransactional storage engines, errors abort the statement
even for bad data in rows following the first row. This means that if an error occurs partway through

a multiple-row insert or update for a nontransactional table, a partial update results. Earlier rows are
inserted or updated, but those from the point of the error on are not. To avoid this for nontransactional
tables, either use single-row statements or else use STRI CT_TRANS_TABLES if conversion warnings
rather than errors are acceptable. To avoid problems in the first place, do not use MySQL to check
column content. It is safest (and often faster) to let the application ensure that it passes only valid
values to the database.

With either of the strict mode options, you can cause errors to be treated as warnings by using | NSERT
| GNORE or UPDATE | GNORE rather than | NSERT or UPDATE without | GNORE.

1.8.3.4 ENUMand SET Constraints

ENUMand SET columns provide an efficient way to define columns that can contain only a given set of
values. See Section 11.4.4, “The ENUMType”, and Section 11.4.5, “The SET Type”. However, before
MySQL 5.0.2, ENUMand SET columns do not provide true constraints on entry of invalid data:

33

Credits

* ENUMcolumns always have a default value. If you specify no default value, then it is NULL for
columns that can have NULL, otherwise it is the first enumeration value in the column definition.

« If you insert an incorrect value into an ENUMcolumn or if you force a value into an ENUMcolumn with
| GNORE, it is set to the reserved enumeration value of 0, which is displayed as an empty string in
string context.

« If you insert an incorrect value into a SET column, the incorrect value is ignored. For example, if the
column can contain the values ' a' ,' b' , and ' c', an attempt to assign' a, x, b, y' resultsin a
value of " a, b" .

As of MySQL 5.0.2, you can configure the server to use strict SQL mode. See Section 5.1.7, “Server
SQL Modes”. With strict mode enabled, the definition of a ENUMor SET column does act as a constraint
on values entered into the column. An error occurs for values that do not satisfy these conditions:

« An ENUMvalue must be one of those listed in the column definition, or the internal numeric equivalent
thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined as
ENUM"a','b'","c'"),valuessuchas'','d',or'ax" areinvalid and are rejected.

» A SET value must be the empty string or a value consisting only of the values listed in the column
definition separated by commas. For a column defined as SET('a', ' b','c¢'), valuessuchas' d'
or'a, b, c,d areinvalid and are rejected.

Errors for invalid values can be suppressed in strict mode if you use | NSERT | GNORE or UPDATE

| GNORE. In this case, a warning is generated rather than an error. For ENUM the value is inserted as
the error member (0). For SET, the value is inserted as given except that any invalid substrings are
deleted. For example, ' a, x, b, y' resultsinavalue of' a, b' .

1.9 Credits

The following sections list developers, contributors, and supporters that have helped to make MySQL
what it is today.

1.9.1 Contributors to MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL ser ver and the
MySQL manual , we wish to recognize those who have made contributions of one kind or another to
the MySQL di stri buti on. Contributors are listed here, in somewhat random order:

» Gianmassimo Vigazzola <gwer g@rbox. vol . it>or<gqwerg@in.it>
The initial port to Win32/NT.
* Per Eric Olsson
For constructive criticism and real testing of the dynamic record format.
 Irena Pancirov <i r ena@ai | . yacc.it>
Win32 port with Borland compiler. mysql shut down. exe and nysql wat ch. exe.
e David J. Hughes

For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we
started with n5QL, but found that it couldn't satisfy our purposes so instead we wrote an SQL
interface to our application builder Unireg. mysqgl adm n and nysql client are programs that were
largely influenced by their nSQL counterparts. We have put a lot of effort into making the MySQL
syntax a superset of n5QL. Many of the API's ideas are borrowed from nSQL to make it easy to port
free nSQL programs to the MySQL API. The MySQL software doesn't contain any code from nSQL.
Two files in the distribution (cl i ent/insert _test.candclient/select test.c)arebased

34

Contributors to MySQL

on the corresponding (noncopyrighted) files in the nSQL distribution, but are modified as examples
showing the changes necessary to convert code from nSQL to MySQL Server. (n5QL is copyrighted
David J. Hughes.)

Patrick Lynch
For helping us acquire http://www.mysqgl.com/.
Fred Lindberg

For setting up gmail to handle the MySQL mailing list and for the incredible help we got in managing
the MySQL mailing lists.

Igor Romanenko <i gor @ r og. ki ev. ua>

nysql dunp (previously nsql dunp, but ported and enhanced by Monty).
Yuri Dario

For keeping up and extending the MySQL OS/2 port.

Tim Bunce

Author of nysql hot copy.

Zarko Mocnik <zar ko. nocni k@em si >

Sorting for Slovenian language.

"TAMITO" <t ormy @al | ey. ne. j p>

The _MB character set macros and the ujis and sjis character sets.
Joshua Chamas <j oshua@hanas. conw

Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL
mailing list.

Yves Carlier <Yves. Car | i er @ ug. ac. be>

nysql access, a program to show the access rights for a user.
Rhys Jones <r hys@wal es. con> (And GWE Technologies Limited)
For one of the early JDBC drivers.

Dr Xiaokun Kelvin ZHU <X. Zhu@r ad. ac. uk>

Further development of one of the early JDBC drivers and other MySQL-related Java tools.
James Cooper <pi xel @r gani c. conp

For setting up a searchable mailing list archive at his site.

Rick Mehalick <Ri ck_Mehal i ck@ - 0. con®

For xmysql , a graphical X client for MySQL Server.

Doug Sisk <si sk@u x. conw

For providing RPM packages of MySQL for Red Hat Linux.

Diemand Alexander V. <axel d@i al . et hz. ch>

35

Contributors to MySQL

For providing RPM packages of MySQL for Red Hat Linux-Alpha.
Antoni Pamies Olive <t oni @ eadysoft. es>

For providing RPM versions of a lot of MySQL clients for Intel and SPARC.
Jay Bloodworth <j ay @at hways. sde. st at e. sc. us>

For providing RPM versions for MySQL 3.21.

David Sacerdote <davi ds@ecnet . con>

Ideas for secure checking of DNS host names.

Wei-Jou Chen <j ou@enatic. i eo. nctu. edu. t w>

Some support for Chinese(BIG5) characters.

Wei He <hewei @i | . i ed. ac. cn>

A lot of functionality for the Chinese(GBK) character set.

Jan Pazdziora <adel ton@i . muni . cz>

Czech sorting order.

Zeev Suraski <bour bon@net vi si on. net.il >

FROM UNI XTI ME() time formatting, ENCRYPT() functions, and bi son advisor. Active mailing list

member.

Luuk de Boer <l uuk@uxs. nl >

Ported (and extended) the benchmark suite to DBI /DBD. Have been of great help with cr ash- ne
and running benchmarks. Some new date functions. The nysql _set per m ssi on script.

Alexis Mikhailov <r oot @redi nf . chuvashi a. su>

User-defined functions (UDFs); CREATE FUNCTI ONand DROP FUNCTI ON.
Andreas F. Bobak <bobak@ el og. ch>

The AGGREGATE extension to user-defined functions.

Ross Wakelin <R. Wakel i n@rar ch. co. uk>

Help to set up InstallShield for MySQL-Win32.

Jethro Wright lll <j et man@ 1 . net >

The | i bnysqgl . dl | library.

James Pereria <j perei ra@afri ca. conp

Mysglmanager, a Win32 GUI tool for administering MySQL Servers.
Curt Sampson <cj s@ortal . ca>

Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.
Martin Ramsch <m r ansch@onput er. or g>

Examples in the MySQL Tutorial.

36

Contributors to MySQL

Steve Harvey

For making mysql access more secure.

Konark IA-64 Centre of Persistent Systems Private Limited
http://lwww.pspl.co.in/konark/. Help with the Win64 port of the MySQL server.

Albert Chin-A-Young.

Configure updates for Tru64, large file support and better TCP wrappers support.

John Birrell

Emulation of pt hr ead_nut ex() for OS/2.

Benjamin Pflugmann

Extended MERCE tables to handle | NSERTS. Active member on the MySQL mailing lists.
Jocelyn Fournier

Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).
Marc Liyanage

Maintaining the Mac OS X packages and providing invaluable feedback on how to create Mac OS X
packages.

Robert Rutherford
Providing invaluable information and feedback about the QNX port.
Previous developers of NDB Cluster

Lots of people were involved in various ways summer students, master thesis students, employees.
In total more than 100 people so too many to mention here. Notable name is Ataullah Dabaghi who
up until 1999 contributed around a third of the code base. A special thanks also to developers of

the AXE system which provided much of the architectural foundations for NDB Cluster with blocks,
signals and crash tracing functionality. Also credit should be given to those who believed in the ideas
enough to allocate of their budgets for its development from 1992 to present time.

Google Inc.

We wish to recognize Google Inc. for contributions to the MySQL distribution: Mark Callaghan's SMP
Performance patches and other patches.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech

Tryc, Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, <j ehanby@ i ght si de>,

<psm t h@ayNet wor ks. conP, <duane@onnect. com au>, Ted Deppner <t ed@syber. conp,
Mike Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

» Daniel Koch <dkoch@nctity. cone

Irix setup.

e Luuk de Boer <l uuk@vxs. nl >

Benchmark questions.

37

http://www.pspl.co.in/konark/

Documenters and translators

e Tim Sailer <t ps@iser s. buoy. con®
DBD: : nysql questions.
e Boyd Lynn Gerber <ger ber b@enez. conr
SCO-related questions.
* Richard Mehalick <RML86061@hel | us. con®
xnysql -related questions and basic installation questions.
» Zeev Suraski <bour bon@et vi si on. net. il >

Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related
questions and other general questions.

» Francesc Guasch <franki e@i tel . upc. es>
General questions.
« Jonathan J Smith <j sni t h@w p. net >

Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some
work.

» David Sklar <skl ar @t udent . net >
Using MySQL from PHP and Perl.
* Alistair MacDonald <A. MacDonal d@iel . ac. uk>
Is flexible and can handle Linux and perhaps HP-UX.
» John Lyon <j | yon@ nmag. net >

Questions about installing MySQL on Linux systems, using either . r pmfiles or compiling from
source.

e Lorvid Ltd. <l or vi d@\OLFENET. con®
Simple billing/license/support/copyright issues.
» Patrick Sherrill <pat ri ck@oconet . conr
ODBC and VisualC++ interface questions.
* Randy Harmon <r j har non@upt i neconput ers. con

DBD, Linux, some SQL syntax questions.

1.9.2 Documenters and translators

The following people have helped us with writing the MySQL documentation and translating the
documentation or error messages in MySQL.

» Paul DuBois

Ongoing help with making this manual correct and understandable. That includes rewriting Monty's
and David's attempts at English into English as other people know it.

« Kim Aldale

Helped to rewrite Monty's and David's early attempts at English into English.

38

Documenters and translators

Michael J. Miller Jr. <nke@errapi n. turbolift.conr

For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the
MySQL manual a long time ago).

Yan Cailin

First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which
the Big5 and HK coded (http://mysql.hitstar.com/) versions were based. Personal home page at
linuxdb.yeah.net.

Jay Flaherty <f t y@redi apul se. conp

Big parts of the Perl DBI /DBD section in the manual.

Paul Southworth <paul s@t ext . or g>, Ray Loyzaga <yar @s. su. 0z. au>
Proof-reading of the Reference Manual.

Therrien Gilbert <gi | bert @ can. net >, Jean-Marc Pouyot <j np@cal aire. fr>
French error messages.

Petr Snajdr, <snaj dr @vt . net >

Czech error messages.

Jaroslaw Lewandowski <j ot el @t net. com pl >

Polish error messages.

Miguel Angel Fernandez Roiz

Spanish error messages.

Roy-Magne Mo <r mnro@ww. hi vol da. no>

Norwegian error messages and testing of MySQL 3.21.xx.

Timur |. Bakeyev <root @i nmur . t at ar st an. ru>

Russian error messages.

<brenno@ew nt er. con® & Filippo Grassilli <phi | @yppo. con>
Italian error messages.

Dirk Munzinger <di rk@ri ni ty. saar. de>

German error messages.

Billik Stefan <bi | [i k@un. uni ag. sk>

Slovak error messages.

Stefan Saroiu <t zoonpy@s. washi ngt on. edu>

Romanian error messages.

Peter Feher

Hungarian error messages.

Roberto M. Serqueira

39

http://mysql.hitstar.com/
http://linuxdb.yeah.net
http://linuxdb.yeah.net

Packages that support MySQL

Portuguese error messages.
» Carsten H. Pedersen
Danish error messages.
» Arjen Lentz

Dutch error messages, completing earlier partial translation (also work on consistency and spelling).
1.9.3 Packages that support MySQL

The following is a list of creators/maintainers of some of the most important APIl/packages/applications
that a lot of people use with MySQL.

We cannot list every possible package here because the list would then be way to hard to maintain. For
other packages, please refer to the software portal at http://solutions.mysqgl.com/software/.

» Tim Bunce, Alligator Descartes
For the DBD (Perl) interface.
» Andreas Koenig <a. koeni g@ri nd. de>
For the Perl interface for MySQL Server.
» Jochen Wiedmann <wi edmann@eckar - al b. de>
For maintaining the Perl DBD: : nysqgl module.
» Eugene Chan <eugene@cenet.com sg>
For porting PHP for MySQL Server.
» Georg Richter

MySQL 4.1 testing and bug hunting. New PHP 5.0 nysql i extension (API) for use with MySQL 4.1
and up.

* Giovanni Maruzzelli <maruzz@matrice.it>
For porting iODBC (Unix ODBC).
o Xavier Leroy <Xavi er. Leroy@nria.fr>

The author of LinuxThreads (used by the MySQL Server on Linux).

1.9.4 Tools that were used to create MySQL

The following is a list of some of the tools we have used to create MySQL. We use this to express our
thanks to those that has created them as without these we could not have made MySQL what it is
today.

* Free Software Foundation

From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the | i bc library
(from which we have borrowed st rt o. ¢ to get some code working in Linux).

» Free Software Foundation & The XEmacs development team

For a really great editor/environment.

40

http://solutions.mysql.com/software/

Supporters of MySQL

Julian Seward

Author of val gri nd, an excellent memory checker tool that has helped us find a lot of otherwise

hard to find bugs in MySQL.

Dorothea Litkehaus and Andreas Zeller

For DDD (The Data Display Debugger) which is an excellent graphical front end to gdb).

1.9.5 Supporters of MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL ser ver and
the MySQL manual , we wish to recognize the following companies, which helped us finance the
development of the MySQL ser ver, such as by paying us for developing a new feature or giving us

hardware for development of the MySQL ser ver.

VA Linux / Andover.net

Funded replication.

NuSphere

Editing of the MySQL manual.

Stork Design studio

The MySQL Web site in use between 1998-2000.
Intel

Contributed to development on Windows and Linux platforms.
Compagq

Contributed to Development on Linux/Alpha.
SWSoft

Development on the embedded mysql d version.
FutureQuest

The - - ski p- show dat abase option.

41

42

Chapter 2 Installing and Upgrading MySQL

Table of Contents

2.1 General INStallation GUIJANCEccc.uuiiiiiiie e e s 45
2.1.1 Operating Systems Supported by MySQL Community SErvercc.cceveeeineveiiieennnennnnn 45
2.1.2 Choosing Which MySQL Distribution to Installcccooviiiiiin e, 45
2.1.3 HOW 10 GEE MYSQL ..ottt et e e e e e e e e e e e e et e en e an e eanes 48
2.1.4 Verifying Package Integrity Using MD5 Checksums or GNUPGcccoveviiviviiiiciieeeen, 49
P T [1S3 -1 = U T T = 0T £ 58
2.1.6 Compiler-Specific Build CharacteriStiCScocvuiiiiiiiiiiiiii e e 58

2.2 Installing MySQL on Unix/Linux Using GeNEriC BINAIEScocvuuiiiiiiiiiiiieiiiievie e eene e e 58

2.3 Installing MySQL on MiIiCrosoft WINGOWSccuuiiiiiiiiiciii e ee e e e e e e e e e e ean s 61
2.3.1 MySQL Installation Layout on Microsoft WINAOWScccovvviiiiiiiiiiii e 62
2.3.2 Choosing An Installation Packageccouuiiiiiiiiiiiii e e e 63
2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installercccocceveviiiieinnnnn. 63
2.3.4 MySQL Noatifier for Microsoft WINAOWSoiiuniiiiiies e e e e 80
2.3.5 Installing MySQL on Microsoft Windows Using a noi nst al | Zip Archive 91
2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installationccooeeviieeennnns 98
2.3.7 Upgrading MySQL 0N WINAOWSuiiiiiiiiiieeisce e ee e e e e e e e e e e e e s e eanaeeeen 100
2.3.8 Windows Postinstallation ProCeAUIEScoviiiiiiiiiiiiiiec e 101

2.4 Installing MYSQL 0N MAC OS X ..iiuiiiiiiiiiiiii e e e e e e e e e et e et e e e e eeanas 103
2.4.1 General Notes on Installing MySQL on Mac OS Xcccuiiiiiiiiiiii e e e 103
2.4.2 Installing MySQL on Mac OS X Using Native Packagesc.cccovevviiiiiiiiiiiieiiinenanneens 105
2.4.3 Installing the MySQL Startup IeMccoeuiiii e e e 107
2.4.4 Installing and Using the MySQL Preference Paneccovvviiiiiiiiii i, 110
2.4.5 Using the Bundled MySQL 0N Mac OS X SEIVELccuuiiiiiieiiieeeiieeiie e e eeaeeeanaeeeen 112

2.5 InStalling MYSQL 0N LINUX ..uuiveieiiiierieee e e e e e e e e e e e et s e e e e e e e et s e ean e e eanaeeaeeeenneeeenss 112
2.5.1 Installing MySQL on Linux Using the MySQL Yum RepOSItorycccevevvveviineeennnnnnn. 113
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository 117
2.5.3 Installing MySQL on Linux Using RPM Packagesccccevvviiieeiiiiiiiieeiineeie e eeeaaeens 119
2.5.4 Installing MySQL on Linux Using Debian Packagescccoovveuiiiiiiiiiiiiciiiecee e, 123
2.5.5 Installing MySQL on Linux Using Native Package Managersccc.cccevevenieveineeennennn, 124

2.6 Installing MySQL on Solaris and OPENSOIANSccvuuieiiiiieiieie e e e eaes 128
2.6.1 Installing MySQL on Solaris Using a Solaris PKGcccovviiiiiiiiiiiiecei e eeeeeeieens 129
2.6.2 Installing MySQL on OpenSolaris UsiNg IPScooveiiiiiiiiii e 130

2.7 Installing MySQL 0N FrEEBSDouiiiiiiiiii et e et e e e e 131

2.8 Installing MYSQL frOM SOUICEuiiiiiii et e e e e e e e et e e n e et eaaaeeaanaees 131
2.8.1 MySQL Layout for Source INStallationcoovuiiiiiiiiiii e 133
2.8.2 Installing MySQL Using a Standard Source Distributionccooevviiiiiiiiiiiiiineeees 133
2.8.3 Installing MySQL Using a Development SOUrCe Treeoovvvveerieiiieiiii e eeeieeeaeeeenn 137
2.8.4 MySQL Source-Configuration OPLiONSccvuuiiiiiiiiiieci e e e e e 139
2.8.5 Dealing with Problems Compiling MYSQLooviiiiiiieiiiee e 151
2.8.6 MySQL Configuration and Third-Party TOOIScc.viviiiiiiiiiciie e 153

2.9 Postinstallation Setup and TeSHNGcvuviiei e e e e e e e e e e e eaneees 153
2.9.1 Postinstallation Procedures for Unix-like Systemsccccccoviviiiiiiiiiiii e, 153
2.9.2 Securing the Initial MySQL ACCOUNTScivuuiiiiieeiiee e e e e e e e e e e e e e eeens 164

2.10 Upgrading or Downgrading MYSQLciuuiiiiiieii e e e e e e e e e e e et e e aeean e 168
22 0 R U T o = Vo [T T TR 1Y/ V21 168
2.10.2 DowWNGrading MYSQL ...cuuuiiiiieiiieee r e raaae 175
2.10.3 Checking Whether Tables or Indexes Must Be Rebuiltccoooviiiiiiiiii i 177
2.10.4 Rebuilding or Repairing Tables or INAEXEScoevuiiiiiiiiiii e 179
2.10.5 Copying MySQL Databases to Another Machingccovevviviiiiiiiii e 180

2.11 Environment Variablescooouiiiiiiii e 181

2.12 Perl INSAllAtioN NOTESccoiiiiieiiiie e e et e e e eeeaa s 183
2.12.1 Installing Perl 0N URNIXccuuiiiiieiisei e an e eaneeenns 183

2.12.2 Installing ActiveState Perl on WINAOWSc.uoviiiiiiiiiiciii e 184
2.12.3 Problems Using the Perl DBI /DBD INterfaceccuviiiiiiiiiiieii e 185

This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later
sections provide the details. If you plan to upgrade an existing version of MySQL to a hewer version
rather than install MySQL for the first time, see Section 2.10.1, “Upgrading MySQL", for information
about upgrade procedures and about issues that you should consider before upgrading.

If you are interested in migrating to MySQL from another database system, you may wish to read
Section B.8, “MySQL 5.7 FAQ: Migration”, which contains answers to some common questions
concerning migration issues.

Installation of MySQL generally follows the steps outlined here:
1. Determine whether MySQL runs and is supported on your platform.

Please note that not all platforms are equally suitable for running MySQL, and that not all platforms
on which MySQL is known to run are officially supported by Oracle Corporation:

2. Choose which distribution to install.

Several versions of MySQL are available, and most are available in several distribution formats.
You can choose from pre-packaged distributions containing binary (precompiled) programs or
source code. When in doubt, use a binary distribution. We also provide public access to our current
source tree for those who want to see our most recent developments and help us test new code.
To determine which version and type of distribution you should use, see Section 2.1.2, “Choosing
Which MySQL Distribution to Install”.

3. Download the distribution that you want to install.

For instructions, see Section 2.1.3, “How to Get MySQL". To verify the integrity of the distribution,
use the instructions in Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or
GhuPG.

4. Install the distribution.

To install MySQL from a binary distribution, use the instructions in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”.

To install MySQL from a source distribution or from the current development source tree, use the
instructions in Section 2.8, “Installing MySQL from Source”.

5. Perform any necessary postinstallation setup.

After installing MySQL, see Section 2.9, “Postinstallation Setup and Testing” for information about
making sure the MySQL server is working properly. Also refer to the information provided in
Section 2.9.2, “Securing the Initial MySQL Accounts”. This section describes how to secure the
initial MySQL user accounts, which have no passwords until you assign passwords. The section
applies whether you install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See
Section 2.12, “Perl Installation Notes”.

Instructions for installing MySQL on different platforms and environments is available on a platform by
platform basis:

e Unix, Linux, FreeBSD

For instructions on installing MySQL on most Linux and Unix platforms using a generic binary (for
example, a . t ar . gz package), see Section 2.2, “Installing MySQL on Unix/Linux Using Generic
Binaries”.

44

General Installation Guidance

For information on building MySQL entirely from the source code distributions or the source code
repositories, see Section 2.8, “Installing MySQL from Source”

For specific platform help on installation, configuration, and building from source see the
corresponding platform section:

 Linux, including notes on distribution specific methods, see Section 2.5, “Installing MySQL on
Linux”.

« Solaris and OpenSolaris, including PKG and IPS formats, see Section 2.6, “Installing MySQL on
Solaris and OpenSolaris”.

« IBM AlX, see Section 2.6, “Installing MySQL on Solaris and OpenSolaris”.
« FreeBSD, see Section 2.7, “Installing MySQL on FreeBSD".
* Microsoft Windows

For instructions on installing MySQL on Microsoft Windows, using either a Zipped binary or an MSI
package, see Section 2.3, “Installing MySQL on Microsoft Windows”.

For information on using the MySQL Server Instance Config Wizard, see MySQL Server Instance
Configuration Wizard.

For details and instructions on building MySQL from source code using Microsoft Visual Studio, see
Section 2.8, “Installing MySQL from Source”.

e Mac OS X

For installation on Mac OS X, including using both the binary package and native PKG formats, see
Section 2.4, “Installing MySQL on Mac OS X",

For information on making use of the MySQL Startup Item to automatically start and stop MySQL,
see Section 2.4.3, “Installing the MySQL Startup Item”.

For information on the MySQL Preference Pane, see Section 2.4.4, “Installing and Using the MySQL
Preference Pane”.

2.1 General Installation Guidance

The immediately following sections contain the information necessary to choose, download, and verify
your distribution. The instructions in later sections of the chapter describe how to install the distribution
that you choose. For binary distributions, see the instructions at Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries” or the corresponding section for your platform if available. To build
MySQL from source, use the instructions in Section 2.8, “Installing MySQL from Source”.

2.1.1 Operating Systems Supported by MySQL Community Server

MySQL is available on many operating systems and platforms. For information about platforms
supported by GA releases of MySQL, see http://www.mysql.com/support/supportedplatforms/
database.html. For development versions of MySQL, builds are available for a number of platforms
at http://dev.mysqgl.com/downloads/mysql/5.7.html. To learn more about MySQL Support, see http://
www.mysgl.com/support/.

2.1.2 Choosing Which MySQL Distribution to Install

When preparing to install MySQL, you should decide which version to use. MySQL development
occurs in several release series, and you can pick the one that best fits your needs. After deciding
which version to install, you can choose a distribution format. Releases are available in binary or
source format.

45

http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard.html
http://dev.mysql.com/doc/mysql-development-cycle/en/ga-releases.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/downloads/mysql/5.7.html
http://www.mysql.com/support/
http://www.mysql.com/support/

Choosing Which MySQL Distribution to Install

2.1.2.1 Choosing Which Version of MySQL to Install

The first decision to make is whether you want to use a production (stable) release or a development
release. In the MySQL development process, multiple release series co-exist, each at a different stage
of maturity.

Production Releases
* MySQL 5.6: Latest General Availability (Production) release
* MySQL 5.5: Previous General Availability (Production) release
* MySQL 5.1: Older General Availability (Production) release
» MySQL 5.0: Older Production release nearing the end of the product lifecycle
MySQL 4.1, 4.0, and 3.23 are old releases that are no longer supported.
See http://www.mysqgl.com/about/legal/lifecycle/ for information about support policies and schedules.

Normally, if you are beginning to use MySQL for the first time or trying to port it to some system for
which there is no binary distribution, use the most recent General Availability series listed in the
preceding descriptions. All MySQL releases, even those from development series, are checked with
the MySQL benchmarks and an extensive test suite before being issued.

If you are running an older system and want to upgrade, but do not want to take the chance of having
a nonseamless upgrade, you should upgrade to the latest version in the same release series you are
using (where only the last part of the version number is newer than yours). We have tried to fix only
fatal bugs and make only small, relatively “safe” changes to that version.

If you want to use new features not present in the production release series, you can use a version
from a development series. Be aware that development releases are not as stable as production
releases.

We do not use a complete code freeze because this prevents us from making bugfixes and other fixes
that must be done. We may add small things that should not affect anything that currently works in a
production release. Naturally, relevant bugfixes from an earlier series propagate to later series.

If you want to use the very latest sources containing all current patches and bugfixes, you can use one
of our source code repositories (see Section 2.8.3, “Installing MySQL Using a Development Source
Tree”). These are not “releases” as such, but are available as previews of the code on which future
releases are to be based.

The naming scheme in MySQL 5.7 uses release names that consist of three numbers and a suffix; for
example, mysql-5.7.1-m1. The numbers within the release name are interpreted as follows:

* The first number (5) is the major version and describes the file format. All MySQL 5 releases have
the same file format.

» The second number (7) is the release level. Taken together, the major version and release level
constitute the release series number.

» The third number (1) is the version number within the release series. This is incremented for each
new release. Usually you want the latest version for the series you have chosen.

For each minor update, the last number in the version string is incremented. When there are major new
features or minor incompatibilities with previous versions, the second number in the version string is
incremented. When the file format changes, the first number is increased.

Release names also include a suffix to indicates the stability level of the release. Releases within a
series progress through a set of suffixes to indicate how the stability level improves. The possible
suffixes are:

46

Choosing Which MySQL Distribution to Install

 mN (for example, m1, m2, m3, ...) indicate a milestone number. MySQL development uses a
milestone model, in which each milestone proceeds through a small number of versions with a tight
focus on a small subset of thoroughly tested features. Following the releases for one milestone,
development proceeds with another small number of releases that focuses on the next small set of
features, also thoroughly tested. Features within milestone releases may be considered to be of pre-
production quality.

* rc indicates a Release Candidate. Release candidates are believed to be stable, having passed all of
MySQL's internal testing, and with all known fatal runtime bugs fixed. However, the release has not
been in widespread use long enough to know for sure that all bugs have been identified. Only minor
fixes are added.

« If there is no suffix, it indicates that the release is a General Availability (GA) or Production release.
GA releases are stable, having successfully passed through all earlier release stages and are
believed to be reliable, free of serious bugs, and suitable for use in production systems. Only critical
bugfixes are applied to the release.

All releases of MySQL are run through our standard tests and benchmarks to ensure that they are
relatively safe to use. Because the standard tests are extended over time to check for all previously
found bugs, the test suite keeps getting better.

All releases have been tested at least with these tools:

* Aninternal test suite. The nysql -t est directory contains an extensive set of test cases.
We run these tests for every server binary. See Section 22.1.2, “The MySQL Test Suite”, for more
information about this test suite.

* The MySQL benchmark suite. This suite runs a range of common queries. It is also a
test to determine whether the latest batch of optimizations actually made the code faster. See
Section 8.12.2, “The MySQL Benchmark Suite”.

We also perform additional integration and nonfunctional testing of the latest MySQL version in our
internal production environment. Integration testing is done with different connectors, storage engines,
replication modes, backup, partitioning, stored programs, and so forth in various combinations.
Additional nonfunctional testing is done in areas of performance, concurrency, stress, high volume,
upgrade and downgrade.

2.1.2.2 Choosing a Distribution Format

After choosing which version of MySQL to install, you should decide whether to use a binary
distribution or a source distribution. In most cases, you should probably use a binary distribution, if one
exists for your platform. Binary distributions are available in native format for many platforms, such as
RPM packages for Linux, DMG packages for Mac OS X, and PKG packages for Solaris. Distributions
are also available in more generic formats such as Zip archives or compressed t ar files.

Reasons to choose a binary distribution include the following:
 Binary distributions generally are easier to install than source distributions.

» To satisfy different user requirements, we provide several servers in binary distributions. nysql d
is an optimized server that is a smaller, faster binary. mysql d- debug is compiled with debugging
support.

Each of these servers is compiled from the same source distribution, though with different
configuration options. All native MySQL clients can connect to servers from either MySQL version.

Under some circumstances, you may be better off installing MySQL from a source distribution:

» You want to install MySQL at some explicit location. The standard binary distributions are ready
to run at any installation location, but you might require even more flexibility to place MySQL
components where you want.

47

How to Get MySQL

You want to configure nmysql d to ensure that features are available that might not be included in the
standard binary distributions. Here is a list of the most common extra options that you may want to
use to ensure feature availability:

e -DW TH_LI BWRAP=1 for TCP wrappers support.

e -DW TH _ZLI B={ syst en| bundl ed} for features that depend on compression

e - DW TH_DEBUG=1 for debugging support

For additional information, see Section 2.8.4, “MySQL Source-Configuration Options”.

You want to configure mysql d without some features that are included in the standard binary
distributions. For example, distributions normally are compiled with support for all character sets. If
you want a smaller MySQL server, you can recompile it with support for only the character sets you
need.

You want to use the latest sources from one of the Bazaar repositories to have access to all current
bugfixes. For example, if you have found a bug and reported it to the MySQL development team, the
bugfix is committed to the source repository and you can access it there. The bugfix does not appear
in a release until a release actually is issued.

You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you
should get a source distribution, because the source code is always the ultimate manual.

Source distributions contain more tests and examples than binary distributions.

2.1.2.3 How and When Updates Are Released

MySQL is evolving quite rapidly and we want to share new developments with other MySQL users. We
try to produce a new release whenever we have new and useful features that others also seem to have
a need for.

We also try to help users who request features that are easy to implement. We take note of what our
licensed users want, and we especially take note of what our support customers want and try to help
them in this regard.

No one is required to download a new release. The Release Notes help you determine whether the
new release has something you really want.

We use the following policy when updating MySQL.:

Enterprise Server releases are meant to appear every 18 months, supplemented by quarterly service
packs and monthly rapid updates. Community Server releases are meant to appear 2 to 3 times per
year.

Releases are issued within each series. For each release, the last number in the version is one more
than the previous release within the same series.

Binary distributions for some platforms are made by us for major releases. Other people may make
binary distributions for other systems, but probably less frequently.

We make fixes available as soon as we have identified and corrected small or noncritical but
annoying bugs. The fixes are available in source form immediately from our public Bazaar
repositories, and are included in the next release.

If by any chance a security vulnerability or critical bug is found in a release, our policy is to fix it in a
new release as soon as possible. (We would like other companies to do this, too!)

2.1.3 How to Get MySQL

Check our downloads page at http://dev.mysql.com/downloads/ for information about the current
version of MySQL and for downloading instructions. For a complete up-to-date list of MySQL download

48

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/downloads/

Verifying Package Integrity Using MD5 Checksums or GhuPG

mirror sites, see http://dev.mysql.com/downloads/mirrors.html. You can also find information there
about becoming a MySQL mirror site and how to report a bad or out-of-date mirror.

For RPM-based Linux platforms that use Yum as their package management system, MySQL can be
installed using the MySQL Yum repository. See Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository” for details.

To obtain the latest development source, see Section 2.8.3, “Installing MySQL Using a Development
Source Tree”.

2.1.4 Verifying Package Integrity Using MD5 Checksums or GhuPG

After you have downloaded the MySQL package that suits your needs and before you attempt to install
it, you should make sure that it is intact and has not been tampered with. There are three means of
integrity checking:

* MD5 checksums

» Cryptographic signatures using GhuPG, the GNU Privacy Guard

» For RPM packages, the built-in RPM integrity verification mechanism
The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the
respective package one more time, perhaps from another mirror site.

2.1.4.1 Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum that

you can verify against the package that you downloaded. The correct MD5 checksum is listed on the
downloads page for each MySQL product, and you will compare it against the MD5 checksum of the
file (product) that you download.

Each operating system and setup offers its own version of tools for checking the MD5 checksum.
Typically the command is named nd5sum or it may be named nd5, and some operating systems do
not ship it at all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide
range of platforms. You can also download the source code from http://www.gnu.org/software/textutils/.
If you have OpenSSL installed, you can use the command openssl nd5 package_nane instead.

A Windows implementation of the nd5 command line utility is available from http://www.fourmilab.ch/
md5/. wi nMd5Sumis a graphical MD5 checking tool that can be obtained from http://www.nullriver.com/
index/products/winmd5sum. Our Microsoft Windows examples will assume the name nd5. exe.

Linux and Microsoft Windows examples:

shel | > md5sum nysql - st andard-5. 7. 5-1i nux-i 686. tar. gz
aaab65abbec64d5e907dcd41b8699945 nysql - standard-5. 7. 5-1i nux-i 686.tar. gz

shel | > nmd5. exe nysql -install er-community-5.7.5. msi
aaab65abbec64d5e907dcd41b8699945 nysql -install er-community-5.7.5. nsi

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one
displayed on the download page immediately below the respective package.

.tar.gz,or.nsi file)and not of the files that are contained inside of the

Note
@ Make sure to verify the checksum of the archive file (for example, the . zi p,
archive. In other words, verify the file before extracting its contents.

49

http://dev.mysql.com/downloads/mirrors.html
http://dev.mysql.com/downloads/repo/
http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.nullriver.com/index/products/winmd5sum

Verifying Package Integrity Using MD5 Checksums or GhuPG

2.1.4.2 Signature Checking Using GhuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic
signatures. This is more reliable than using MD5 checksums, but requires more work.

We sign MySQL downloadable packages with GhuPG (GNU Privacy Guard). GhuPGis an Open
Source alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See http://
www.gnupg.org/ for more information about GhuPG and how to obtain and install it on your system.
Most Linux distributions ship with GhuPGinstalled by default. For more information about GhuPG, see
http://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of our public GPG build
key, which you can download from http://pgp.mit.edu/. The key that you want to obtain is named
mysql - bui | d@ss. or acl e. com Alternatively, you can cut and paste the key directly from the
following text:

————— BEG N PGP PUBLI C KEY BLOCK---- -
Ver si on: GiuPG v1.4.9 (SunOS)

QG BD4+owwRBAC14d f Uf CyEDSI ePvEWBSAFUdJ Bt oQHH nJKZy QT7h9bPl UVWC3
ROD] QReyCl TRr dwy r KUGku2Fme VGm 2u2 WDIMNABLnppr WPk BdCk 96+QOrSLNSbr Z
f w2v OUg CiYv2hWohy DHuv Yl Q&/ BThQoADgj 8AW6/ OLo7V1V8/ 8VuHPOgQWCgvzV3
BgOxRznNCRCRxAuAuVzt HRCEAJooQK1+i Si unZMYD1WIf eXf shc57S/ +yeJkegNw
hxwROp RWAr NYJdDRT+r f 2RUe3vpquKNQU/ hnEl UHJRQqYHo8gTxvxXNQc 7f JYLV
K2Ht kr PbP72vws EKMYhhr 0eKCbt LG | s9kr j J6sBgACy P/ Vb7hi Pwxh6r DZ71 TnE
k' YpXBACMAP8NJ TkanEnPCi a2ZoOHODANWp UK P43 7] sDngt obZX9gnr AXw+uNDI

QIEXM5FSbi OLLt Zci NI Ysaf wAPEOVDKpMjAKG! yi sNt PvaLd8l HObPAnWjcyef ep
r vOosxxgqUEM: MBo7wwgf N83PCk Das Dbs3pj wPhxvhz 6/ / 62zQI7Q2TX TUUwg Umvs

ZWFzZSBFbndpbmVl e uZy ABbXl zcWit YnVpbGRAb3NzLmAy YWNsZS5) b20+i GKE
Ex ECACK CGy MOwk | BMVICBBUCCAMEFgI DAQ e AQI XgAl ZAQUCUWHUZgUJ Grb Ly wAK
CRCMeYO7UHLh9V+DAKG S1gGmg VI / eut +5L+| 2v3ybl +ZgCcD7Z0A341Ht or 0V3U
6xRDO9f Ugeq0C015ULFM FBhY2t hZ2Ugc2l nbm uZyBr ZXkgKHd3dy 5t e XNxbC5j

b20pl Dxi dW sZEBt eXNxbC5j b20+i GBEMBECAC8FAk53Pa00HSBi dW sZEBt e XNx
bC5j b20gd2| sbCBzd@®w Hdvcnt pbntge29vbgAKCRCME YO7UHLh9bU9AJ 9x DKOO
XJFLOVTI 90SZCAl XOK9AzZWCc Cr S9cnJyz79eaRj LOs2r/ Ccl j dyl ZQQTEQ AHQUC
Réy Ut AUJDTBYgqAUL Bwo DBAMVAW DFgl BAheAABI JEI xxj Tt QcuH1B2VHUEC AAQGU
kgCf f z4GUE] zXkQ 71VewgCxASTgbeOANn34LPr 1j 9f Cor X\WKOL4ns| ADf b5pi EwE
Ex ECAAWFA] 4+09EFgW mALs ACgk QSVDhKr Jykf | k4QCE WhEeKN+3TRspe+5xKj +k
QI Samm Anj UzOxFWPI Vx0f 8038qNGLbq0cU9i EWEEXECAAWFA] 5CggMgwl i | okA
CgkQ vXNTca6JD+WQCgi GmoG Moj ynp5ppvMXky Ukf nyk AoK79E6h8r wk SDZou
i Z7nMRi sH8uyi EYEEBECAAYFA] +s468ACgkQ 8Uj SH DdA/ 21 gCg211 hl MVABTYd
p/ | Bi UsP/ JQLi EoAnRz MywEt uj Qz/ E9ono7H1DkebDa4i EYEEBECAAYFA] +0(BCcA
CgkhZavgzBz Tmh GmvCdFgDL1f r Vi C7WRt 8 GKoOS7hzNN32kAni r | bwpnT7a6N0s Q
83nk1la2dePhi EYEEBECAAYFAKNbs+0ACgkQ 9gubz C5S1x/ dACIELKoXQKkwJd NO
gZzt sM7kj sl gy FMANRRMOHQ7V39XC900A paPj k3a01lt gi EYEEXECAAYFAK TX My YA
Cgk Q@knE9GCCTUMMKC QCgi bak/ SwhxWHLi j RhgYCo5G MAvcAnAht zL57wewlKglX
m7/nVGet UgJ 7f i EnEEBECAAWFAK GBy WEFgwYi 2Ys ACgk QG-nQH2d70exCj QCcD8sJ

NDc/ n58m8OGDUOX 9VMAE NGk Anj 1YWOD+Chxo3m / Ul 90EAhNK] cf i EWEEBECAAWF
AkGBy z QFgwYi 2VgACgkQgcL36+I Tt pl i | wCdFVNVUB8xe8nFXoPmid9Z54PTj pVA
ni SPA/ Zsf J300OM_Kar 4FOQPPr dr G EWEEBECAAWFAK GBy 21 FgwYi 2SoACgk Qa3Ds
2V3DOHMIqgChBYzr 5GPXOXgP88j Kzndbj weqXeEANRss4& G 3qD7uhTL1SPT1SH
j WUXi EWEEBECAAWFAK HQky QFgWXUEWIACgk OF SXKCs Epp8Ji VQCghv W k Pgows w8
w/WsseTcwlt f | vkAni +vLH / Dgl | yOLKkZYn5j zK1dpvf i EWEEBECAAWFAKI r W oF
gWV5SNI ACgk @dhuki RXr uavzEwCgkzL5QKLSy pcwOLGHcFSx1ya0VL4An35nXkum
g6CcCI1NP8r 21 4ANcZW r qi EWEEhECAAWFAKAqQWIoFgwd6S11 ACgk QPKEf NI T6+GEmM
XACc D+A53A50GW7w750WL1ukq4i Z9ckAnRM/ndAqn3YTOx x| LPj 2UPZi SgSqi EwE
EhECAAWFAK A9+r oFgwdngdl ACgk @Bt dcY+COcZZyy3wCgt Dcwl aq20w0cNuXFLLNe
EUaFFTwWAni 6RHN80n SVAdDTRkz ZacJU3M6Q EwWEEhECAAWFAK ECCo QFgwaWiggA
CgkQCcor 9D1qi | / 83QCel TZ9W 07 XAM Coy4ZWIL4m+edZs AoMOhRI Ri 42f nr NFu
vNZbnMzej 81vi EWEEhECAAWFAKKAp TQFgWUj / 1gACgk QBA3AhXy Dn6j j JACcD1A4
Ut Xk84J13JQyoHI+dy24714Ani W sso/ 9ndl CICkgs2j 5dI HFq6o0i EWEEX ECAAWF
Al SNTYQFgW XVWwgACgk QLbt 2v63Uy TMFDACgl TSGENVKf 5M 65bFSI Pzb92zk2QA
nluc2h19/ | ww sbl yK/ 9PQI+IMP7i EWEEX ECAAWFAK HXgHYFgwXNJ BYACgk QZu/ b
yMeC/ T4/ vACE Xe67xi SHB8OWKknFZ2kr b+oz/ gBAAnj R2ucpbaonkQQynC3GnBgnC
vNaJi EwEEx ECAAWFAK| YgQ4FgwWM 34ACgk Qds EDHKI xbqGg7gCf Q 2Hcr Hn+yLF
uNl H10SCh48ZM)oAn3hKVOul RIphonHaUYi UP1t t WjdBi GUEEX ECABOFOwe KAWQD
FQVCAX YCAQ XgAUCS3AvygUJ EPPz pwASB2VHUEC AAQEJEI xxj Tt QcuHLsNsAni Yp
YBGqy/ HhMhw3WE8k Xah OOREKAJ 4x UMAPGYP4| 3hKxy NK9QAUbpDVYI h7 BDARAgAT

50

http://www.gnupg.org/
http://www.gnupg.org/
http://www.openpgp.org/
http://pgp.mit.edu/

Verifying Package Integrity Using MD5 Checksums or GhuPG

BQJCdzX1NBOAT29wcy4uLi Bza®1bGQyaG-2ZSBi ZW/ul GxvY2Fs| SBJJ20gKnNv
Ki BzdHVWaWQuLi 4ACgkQCcor 9D1qi | / vRWCdFo08f 660KLi uEAqzI f 9i DI PozEEA
n2EgvCYLCCH f Gosr kr U3SVK5NFVgi | SEMBECAE8FAK WAL9I HQBTaG1bGCQyaGr2
ZSBi ZW/ul GEgh@®j YWngc2l nbnF0dXJ| LCBvci Bzb21l dGhpbntgLSBXVEYgd2Fz
| EkgdGhpbnt pbnt/ AAcJEDNKK/ Q@aopf oPsAn3BVgKCal JeFOXPSVLRIOPSRI nmG
AJ440i sY7TI 3NJbPgZal 8WB2f bggbl kCl gQQAQ ADAUCQYHLhQADBI LZBWAKCRCq
4+bOZgFEaKgvEACCEr naHGy UYaOWET] j 6DLEXsgeG Xad4i 9aBQxnD35GUgcFof C
/ nCY4XcnCMVEnndof UuU3O0BI6BNJI bEusAabgLooebP/ 3KEai Cl i yhHYU5j ar p
ZAh+Zopgs3Cc11mQlt | aS69i Jxr GTLodk AsAJAeEUWTPq9f HFFz CleGBysoy F\Wj4
bljz/zCd | +qy TbFA5g6t Roi XTo8ko7ChY2AA5UGEg+83Hdb6ak C04Z2QREr x KAqr
phHzj 8Xpj VCs QAdAI / qVKQeNKRA J+i q6+Yesnt W& zeb87dG\weVFDJ| GAOqY27
pTbh2l ExYj sRFNACb13Nf odAbMIOxc AWZ7j APCX APl HUGHmHM hQXEToZnBFE4nb
nC7vOBNgWj UgXcpkUCkop4b17BFpR+k8Zt YLSS8p2LLz4uAeCcSn2/ nsJIxT7r C/
FvoH84280H ncqgs2l Co9zQ Ud4HMMO0O+SsZdVKI | j i nGyOVWWH40OOzk Al nnhEZ30
6hAHC REI sBgPWEYVT| / 9ZdCOAC44N 9cU7awaqgt r nwwf r / 04V2gl 8bLSkl t ZU27
/ 29HeuCeFG | FeOYr Dd/ aRNsxbyb2028H4s GLCVZnC5uKli QBDi SyA7Q@bbdof CW
oQznbt W pKWNYB8COeOub9XP5p/ sVf ck4dFceWFHw +/ PCORz S| 331 Qevvewl kCl gQT
AQ ADAUCQr8KHAWDBQWAC AAKCRDYWgoJW RXzyE+D/ Quc7z6f | sal f OYoLN60aj A
bQol / uRKBFugyZ5Roal t usn9Z2r At n61W Fhu4uCSJt FN1ny2RERg40f 56pTghKr
D+YEt +Nze6+FKQALG dFsR/ 2bUk+ZZRSt 83e14Lcb6i i / f If zkol ox9l t ki f Qxqg
Y7Tvk4noKu4oLSc80LWsf ¢/ y0B9s YUUCTUf cng58DENTE e9ovUs| myt S5NPnveXxp
5UeaRc5Rqt 9t K2B4A+7/ cqENr dZIJbAMBunt 2+2f kYi RunAFPKPBdJBsY1sxel/ A9
aKeOvi KEXQAAWIdNZKNCI 8r d/ oOP99/ 91 MoFudAbX6nL2DSh10&2Z7NVEqgl Azj m
pwWYYPCKeVz5@BR+i f 9/ f e5+STY/ 55Cal 33f J2H3v+U435V] Ygbr er We36xJI t cJe
qUzW'1f @t Xi 1CTEl 3w2ch7VF50j / Qyj abLnAl HgSl kSi 6p7By5C2MhbCH Cf Pnl
nPhFORCcRGP] Je9nFwGs+Qbl vS/ Chzc2WK3s/ 2SWrdgEUKRX4zsAJ5o0cyf a/ vkx Ck
SxK/ er W CPf / J1T70+i 5waXDN E3enSet / W.7h94p(Kpj z8 dE.4J SBHUAVGA+a+
dkngnPFOKMKLhj r gV+L7084FhbmAP7PXnBxm MPr i Xf +el 5f ZZequQol agf 8r dRH
HhRIxQgl OHNknkaOgs8dt r k CDQQR+PgMIEAgA7 +&f xbMiIY4ws| Pnj HOr FAN2gf
EN/ | xaZoJYc3a6M2WCnH 6ahT2/ t BK2wlQ 4YFt eR47gCvt gb6OLIHf f Co2Hf Lm
RDRi Rj d1DTCHgey X7CHhcghj / dNRI W2Z0l 5QFEcnmVOUOVhp3aFf WCAUj f s3LU+hk
AW E7zaD5cHIJ7yv/ 6xuzZVwd11x0h4Ugs TcWWUOi MLBz ELgX1DY7LwoPEb/ GORkb
f 4f mLe11Ez| aCa4PgARXQZc4dhSi nM 6K3X4Br RsKTf 0zBu74F47D8I | bf 5vSYHb
UE5p/ 1ol Dznkg/ p8kW3FxuW ycci qFTcNz215yyX39LXFnl LzKUb/ F5SGNADBCY +
Lwgga8CG Rf sQAJIxi m63CHf t y5miJc5r USnTs| GYElI OCR1Be Qauy PZbPDs DDOMZ1Z
aSaf anFvwFGSLI x9xk U7t zg+vKLoVWknmdu5xf 3vn55V) nSdla@eMUcXi L4cnBGo
ThOW 39Ecyzgsl zBdC++MPj cQTcA7p6JUVs P60AB3FQN)54t uUoOEc8bsMBb3Ev4
2LmuQT5NdKHGMs XTPt | Okl k4bGk4QCaj Hsi y1BMahpT27j W JI M Jc+1 WIOnghkK
Ht 926s/ ynf df 5HkdQLlcyvsz5t r yVI 3Fx78XeSYf Qvuuwgp2H139pXGEKkgOn6KdUO
et dZWhe70YGNPwlyj W T1l hUBBgRAgAVBQI Cdz 3t BQk T+WGAABI HZUd QRWABACK Q
j HGNOL By 4f UUmwCbBYr 2+bBEn/ L2BCcnw9Z/ QFWihRMAoKVgCFnbf ad BAf i +UQ
AcOphr nJ

=443

————— END PGP PUBLI C KEY BLOCK- - - --

To import the build key into your personal public GPG keyring, use gpg - -i nport. For example, if
you have saved the key in a file named nysql _pubkey. asc, the import command looks like this:

shel |l > gpg --inport nysql _pubkey. asc

gpg: key 5072E1F5: public key "MySQL Rel ease Engi neering
<nysql - bui | d@ss. oracl e. con>" inported

gpg: Total nunmber processed: 1

gpg: imported: 1

gpg: no ultimately trusted keys found

You can also download the key from the public keyserver using the public key id, 5072E1F5:

shel | > gpg --recv-keys 5072E1F5

gpg: requesting key 5072E1F5 from hkp server keys. gnupg. net

gpg: key 5072E1F5: "MySQ. Rel ease Engi neering <nysgl - bui |l d@ss. or acl e. con»"
1 new user ID

gpg: key 5072E1F5: "MySQ. Rel ease Engi neering <nysgql - buil d@ss. or acl e. con»"
53 new si gnat ures

gpg: no ultimately trusted keys found

gpg: Total nunmber processed: 1

gpg: new user |Ds: 1

gpg: new si gnatures: 53

If you want to import the key into your RPM configuration to validate RPM install packages, you should
be able to import the key directly:

51

Verifying Package Integrity Using MD5 Checksums or GhuPG

shel | > rpm --inmport nysqgl _pubkey. asc

If you experience problems or require RPM specific information, see Section 2.1.4.4, “Signature
Checking Using RPM.

After you have downloaded and imported the public build key, download your desired MySQL package
and the corresponding signature, which also is available from the download page. The signature file
has the same name as the distribution file with an . asc extension, as shown by the examples in the
following table.

Table 2.1 MySQL Package and Signature Files for Source files

File Type File Name
Distribution file nysql - standard-5. 7. 5-1i nux-i 686.tar. gz
Signature file nysql - standard-5. 7. 5-1i nux-i 686.tar.gz. asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file:

shel | > gpg --verify package_nane. asc

If the downloaded package is valid, you will see a "Good signature” similar to:

shel | > gpg --verify nmysqgl-standard-5.7.5-1inux-i 686.tar.gz.asc
gpg: Signature made Tue 01 Feb 2011 02: 38: 30 AM CST usi ng DSA key | D 5072E1F5
gpg: Cood signature from"M/SQL Rel ease Engi neering <nysqgl - bui | d@ss. oracl e. com"

The Good si gnat ur e message indicates that the file signature is valid, when compared to the
signature listed on our site. But you might also see warnings, like so:

shel |l > gpg --verify nysqgl -standard-5.7.5-1inux-i 686.tar.gz.asc

gpg: Signature nmade Wed 23 Jan 2013 02: 25: 45 AM PST usi ng DSA key | D 5072E1F5
gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: Cood signature from"M/SQL Rel ease Engi neering <nysql - bui | d@ss. oracl e. com"
gpg: WARNING This key is not certified with a trusted signature!

gpg: There is no indication that the signature bel ongs to the owner.
Primary key fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8Cr1 8D3B 5072 E1F5

That is normal, as they depend on your setup and configuration. Here are explanations for these
warnings:

* gpg: no ultimately trusted keys found: This means that the specific key is not "ultimately trusted" by
you or your web of trust, which is okay for the purposes of verifying file signatures.

« WARNING: This key is not certified with a trusted signature! There is no indication that the signature
belongs to the owner.: This refers to your level of trust in your belief that you possess our real public
key. This is a personal decision. Ideally, a MySQL developer would hand you the key in person,
but more commonly, you downloaded it. Was the download tampered with? Probably not, but this
decision is up to you. Setting up a web of trust is one method for trusting them.

See the GPG documentation for more information on how to work with public keys.
2.1.4.3 Signature Checking Using Gog4w n for Windows

The Section 2.1.4.2, “Signature Checking Using GhuPG’ section describes how to verify MySQL
downloads using GPG. That guide also applies to Microsoft Windows, but another option is to use a

52

Verifying Package Integrity Using MD5 Checksums or GhuPG

GUI tool like Gpg4win. You may use a different tool but our examples are based on Gpg4win, and
utilize its bundled KI eopat r a GUI.

Download and install Gpg4win, and then load Kleopatra. The dialog should look similar to:

Figure 2.1 Initial screen after loading Kleopatra

File VWiew Certificates Tools Settings Window Help

g c % £

Import Certificates Export Certificates Redisplay Stop Operation Lookup Certificates on Server

Find: [My Certificates
My Certificates | Trusted Certificates | Other Certificates E
Name E-Mail Walid From Walid Lintil Details Key-ID

Next, add the MySQL Release Engineering certificate. Do this by clicking File, Lookup Certificates on
Server. Type "Mysql Release Engineering" into the search box and press Search.

Figure 2.2 Finding the MySQL Release Engineering certificate

™ Ceriificateserver Certificate Lookup - v ‘-?-
Find: mysql release engineering « Search
Name E-Mail Valid From Valid Until Details Fingerprint ~ Key-D Select All
MySQL Release Engineering mysgl-build@oss.oracle.com 2003-02-03 OpenPGP S072E1FS S5072E1FS Deselect Al

| mpot || Close |

Select the "MySQL Release Engineering" certificate. The Fingerprint and Key-ID must be "5072E1F5",
or choose Details... to confirm the certificate is valid. Now, import it by clicking Import. An import dialog

53

http://www.gpg4win.org/

Verifying Package Integrity Using MD5 Checksums or GhuPG

will be displayed, choose Okay, and this certificate will now be listed under the Imported Certificates
tab.

Next, configure the trust level for our certificate. Select our certificate, then from the main menu select
Certificates, Change Owner Trust.... We suggest choosing | believe checks are very accurate for our
certificate, as otherwise you might not be able to verify our signature. Select | believe checks are very
accurate and then press OK.

Figure 2.3 Changing the Trust level

™ Change Trust Level of MySQL Release Engineering <mysql-build@oss.oracle.com> (S072E1F)

How much do you trust certifications made by MySQL Release Engineering (5072E1F5) to correctly
verify authenticity of certificates?

1 don't know (unkmnowr frust)

Choose this if you have no opinion about the trustworthyness of the cerificate’s owner.
Certifications at thiz trust level are ignored when checking the validity of OpenPGP cerificates.

© 1 do NOT trust them (mever trust)

Choose this if vou explicithy do not trust the certificate owner, e.g. becauze you have knowledge of him certifying without
checking or without the cerificate owners consent.
Certifications at this trust level are ignored when checking the validity of OpenPGP cerificates.

1 | believe checks are casual {marginal trust]

Choose this if vou trust certifications are not done blindly, but not very accuratly, either.
Certificates will onhy become valid with multiple cerifications (typicalty three) at this trust level. This is usually a good choice.

i@ | believe checks are very accurate (full trust) l

Choose this if vou trust certifications are done very accurately.
Certificates will become valid with just a single cerification at this trust level, so assign this much trust with care.

This is my certificate (ultimate frusi]

Choose this if and only if this is your cerificate. This iz the default if the secret key is available, but if you imported this
certificate, you might need to adjust the trust level yvourself.
Certificates will become valid with just a =ingle cedification at this trust level

[DIk] [Cancel

Next, verify the downloaded MySQL package file. This requires files for both the packaged file, and
the signature. The signature file must have the same name as the packaged file but with an appended
. asc extension, as shown by the example in the following table. The signature is linked to on the
downloads page for each MySQL product. You must create the . asc file with this signature.

Table 2.2 MySQL Package and Signature Files for MySQL Installer for Microsoft Windows

File Type File Name
Distribution file mysql -instal l er-conmunity-5.7.5. nsi
Signature file nmysql -instal | er-comunity-5.7.5. nsi.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file. Either drag and drop the signature (. asc) file into Kleopatra, or
load the dialog from File, Decrypt/Verify Files..., and then choose either the . nsi or . asc file.

54

Verifying Package Integrity Using MD5 Checksums or GhuPG

Figure 2.4 The Decrypt/Verify Files dialog

™ Decrypt/Verify Files

Choose operations to be performed

Here you can check and, if needed, override the operations Kleopatra detected for the input
given.

Input file: C:/docs/mysghinstaller-community-5.6.10.0.msi.asc

Input file is a detached signature

Signed data: C:/docs/mysgl-installer-community-5.6.10.0_msi
Input file is an archive; unpack with: |TAR (PGPE-compatible) -

Create all output files in a single folder
Output folder: C:/docs

Back [Decrypt!‘bferify” Cancel]

L ~

Click Decrypt/Verify to check the file. The two most common results will look like the following, and
although the yellow warning looks problematic, the following means that the file check passed with
success. You may how run this installer.

55

Verifying Package Integrity Using MD5 Checksums or GhuPG

Figure 2.5 The Decrypt/Verify Results: Good

™ Decrypt/Verify Files

Results

All operations completed.

R %

mysqgl-installer-community-5.6.10.0 msi.asc: Not enough information to : :
check signature validity. Hide Details

Signed on 2013-02-01 11:13 by mysgl-build@oss.oracle.com (Key ID: 0x5072E1F5).
The validity of the signature cannot be verified.

Keep open after operation completed

Back W DK Cancel

~

L

Seeing a red "The signature is bad" error means the file is invalid. Do not execute the MSiI file if you
see this error.

56

Verifying Package Integrity Using MD5 Checksums or GhuPG

Figure 2.6 The Decrypt/Verify Results: Bad

™ Decrypt/Verify Files L ?]

Results

All operations completed.

e 100

Keep open after operation completed

Back W OK Cancel

b,

The Section 2.1.4.2, “Signature Checking Using GhuPG’ section explains why you probably don't see a
green Good si gnat ur e result.

2.1.4.4 Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

shel | > rpm - - checksi g package_nane. rpm

Example:

shel | > rpm --checksi g MySQL-server-5.7.5-0.1inux_glibc2.5.i386.rpm
MySQ.- server-5.7.5-0.1inux_glibc2.5.i386.rpm nd5 gpg K

Note

S If you are using RPM 4.1 and it complains about (GPG) NOT OK (M SSI NG
KEYS: GPG#5072elf5), even though you have imported the MySQL public
build key into your own GPG keyring, you need to import the key into the RPM
keyring first. RPM 4.1 no longer uses your personal GPG keyring (or GPG
itself). Rather, RPM maintains a separate keyring because it is a system-wide
application and a user's GPG public keyring is a user-specific file. To import the

57

Installation Layouts

MySQL public key into the RPM keyring, first obtain the key, then use r pm - -
i mport to import the key. For example:

shel | > gpg --export -a 5072elf5 > 5072elf5. asc
shel | > rpm --i nport 5072elf5. asc

Alternatively, r pmalso supports loading the key directly from a URL, and you can use this manual
page:
shell > rpm --inport http://dev. nmysql.com doc/ref man/ 5. 7/ en/ checki ng- gpg- si gnat ure. ht m

If you need to obtain the MySQL public key, see Section 2.1.4.2, “Signature Checking Using GhuPG'.

2.1.5 Installation Layouts

The installation layout differs for different installation types (for example, native packages, binary
tarballs, and source tarballs), which can lead to confusion when managing different systems or using
different installation sources. The individual layouts are given in the corresponding installation type or
platform chapter, as described following. Note that the layout of installations from vendors other than
Oracle may differ from these layouts.

» Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”

Section 2.8.1, “MySQL Layout for Source Installation”

Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”

Table 2.9, “MySQL Installation Layout for Linux RPM Packages”

Table 2.6, “MySQL Installation Layout on Mac OS X"

2.1.6 Compiler-Specific Build Characteristics

In some cases, the compiler used to build MySQL affects the features available for use. The notes in
this section apply for binary distributions provided by Oracle Corporation or that you compile yourself
from source.

i cc (Intel C++ Compiler) Builds
A server built with i cc has these characteristics:

e SSL support is not included.

2.2 Installing MySQL on Unix/Linux Using Generic Binaries

Oracle provides a set of binary distributions of MySQL. These include binary distributions in the form of
compressed t ar files (files with a . t ar . gz extension) for a number of platforms, as well as binaries in
platform-specific package formats for selected platforms.

This section covers the installation of MySQL from a compressed t ar file binary distribution. For other
platform-specific package formats, see the other platform-specific sections. For example, for Windows
distributions, see Section 2.3, “Installing MySQL on Microsoft Windows”.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL".

MySQL compressed t ar file binary distributions have names of the form

nysql - VERSI ON- CS. t ar . gz, where VERSI ONis a number (for example, 5. 7. 5), and OS indicates
the type of operating system for which the distribution is intended (for example, pc-1 i nux-i 686 or
Wi nx64).

58

Installing MySQL on Unix/Linux Using Generic Binaries

To install MySQL from a compressed t ar file binary distribution, your system must have GNU gunzi p
to uncompress the distribution and a reasonable t ar to unpack it. If your t ar program supports the z
option, it can both uncompress and unpack the file.

GNU t ar is known to work. The standard t ar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU t ar , or if
available, use a preinstalled version of GNU tar. Usually this is available as gnut ar, gt ar, or ast ar
within a GNU or Free Software directory, such as/ usr/ sfw bi nor/usr/| ocal /bin.GNUtar is
available from http://www.gnu.org/software/tar/.

Warning

O If you have previously installed MySQL using your operating system native
package management system, such as yumor apt - get , you may experience
problems installing using a native binary. Make sure your previous MySQL
previous installation has been removed entirely (using your package
management system), and that any additional files, such as old versions of your
data files, have also been removed. You should also check the existence of
configuration files such as / et c/ my. cnf orthe / et ¢/ nysql directory have
been deleted.

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How
to Report Bugs or Problems”.

On Unix, to install a compressed t ar file binary distribution, unpack it at the installation location you
choose (typically / usr/ | ocal / mysql). This creates the directories shown in the following table.

Table 2.3 MySQL Installation Layout for Generic Unix/Linux Binary Package

Directory Contents of Directory

bin Client programs and the nysql d server

dat a Log files, databases

docs Manual in Info format

man Unix manual pages

i ncl ude Include (header) files

lib Libraries

scripts nysql _install _db

share Miscellaneous support files, including error messages,
sample configuration files, SQL for database installation

sql - bench Benchmarks

Debug versions of the mysql d binary are available as nysql d- debug. To compile your own debug
version of MySQL from a source distribution, use the appropriate configuration options to enable
debugging support. For more information on compiling from source, see Section 2.8, “Installing MySQL
from Source”.

To install and use a MySQL binary distribution, the basic command sequence looks like this:

shel | > groupadd nysql

shel | > useradd -r -g nysqgl nysql

shel | > cd /usr/| ocal

shel | > tar zxvf /path/to/ mysqgl-VERSI ON-CS. tar. gz
shell> In -s full-path-to-mysql - VERSI ON-CS nysql
shel | > cd nysql

shel | > chown -R nysql

shel | > chgrp -R nysql

shel | > scripts/nysqgl _install _db --user=nysql

shel | > chown -R root .

59

http://www.gnu.org/software/tar/

Create a nysqgl User and Group

Create

Obtain

shel | > chown -R nysqgl data

shel | > bi n/ nysql d_safe --user=nysqgl &

Next command is optional

shel |l > cp support-files/nysql.server /etc/init.d/ nysqgl.server

nysqgl i nstall _db creates a default option file named ny. cnf in the base installation directory.
This file is created from a template included in the distribution package named ny- def aul t . cnf . For
more information, see Using a Sample Default Server Configuration File.

A more detailed version of the preceding description for installing a binary distribution follows.

Note

@ This procedure assumes that you have r oot (administrator) access to your
system. Alternatively, you can prefix each command using the sudo (Linux) or
pf exec (OpenSolaris) command.

The procedure does not set up any passwords for MySQL accounts. After
following the procedure, proceed to Section 2.9.2, “Securing the Initial MySQL
Accounts”.

anysqgl User and Group

If your system does not already have a user and group for mysql d to run as, you may need to create
one. The following commands add the nmysql group and the nmysql user. You might want to call the
user and group something else instead of mysql . If so, substitute the appropriate name in the following
instructions. The syntax for user add and gr oupadd may differ slightly on different versions of Unix, or
they may have different names such as adduser and addgr oup.

shel | > groupadd nysql
shel | > useradd -r -g nysgl nysql

Note

@ Because the user is required only for ownership purposes, not login purposes,
the user add command uses the - r option to create a user that does not have
login permissions to your server host. Omit this option to permit logins for the
user (or if your user add does not support the option).

and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it. The
example here unpacks the distribution under / usr/ | ocal . The instructions, therefore, assume that
you have permission to create files and directories in / usr/ | ocal . If that directory is protected, you
must perform the installation as r oot .

shell > cd /usr/ I ocal

Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL". For a given
release, binary distributions for all platforms are built from the same MySQL source distribution.

Unpack the distribution, which creates the installation directory. Then create a symbolic link to that
directory. t ar can uncompress and unpack the distribution if it has z option support:

shel | > tar zxvf /path/to/ mysqgl-VERSI ON-CS.tar. gz
shell > In -s full-path-to-nmysqgl - VERSI ON- OS nysql

The t ar command creates a directory named nmysql - VERSI ON- CS. The | n command makes a
symbolic link to that directory. This enables you to refer more easily to the installation directory as /
usr/ 1 ocal / nysql .

60

http://dev.mysql.com/doc/refman/5.6/en/server-default-configuration-file.html

Perform Postinstallation Setup

If your t ar does not have z option support, use gunzi p to unpack the distribution and t ar to unpack
it. Replace the preceding t ar command with the following alternative command to uncompress and
extract the distribution:

shel | > gunzip < /path/to/ nysqgl-VERSION-COS. tar.gz | tar xvf -

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core
databases, and starting the MySQL server. For next steps, see Section 2.9, “Postinstallation Setup and

Testing”.
Note
@ The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.9.2, “Securing the Initial MySQL Accounts”.

2.3 Installing MySQL on Microsoft Windows

MySQL is available for Microsoft Windows, for both 32-bit and 64-bit versions. For supported Windows
platform information, see http://www.mysqgl.com/support/supportedplatforms/database.html.

It is possible to run MySQL as a standard application or as a Windows service. By using a service,
you can monitor and control the operation of the server through the standard Windows service
management tools. For more information, see Section 2.3.5.7, “Starting MySQL as a Windows
Service”.

Generally, you should install MySQL on Windows using an account that has administrator rights.
Otherwise, you may encounter problems with certain operations such as editing the PATH environment
variable or accessing the Servi ce Control Manager. Once installed, MySQL does not need to be
executed using a user with Administrator privileges.

For a list of limitations on the use of MySQL on the Windows platform, see Section E.10.6, “Windows
Platform Limitations”.

In addition to the MySQL Server package, you may need or want additional components to use MySQL
with your application or development environment. These include, but are not limited to:

e To connect to the MySQL server using ODBC, you must have a Connector/ODBC driver. For more
information, including installation and configuration instructions, see MySQL Connector/ODBC
Developer Guide. But note that MySQL Installer will install and configure Connector/ODBC for you.

» To use MySQL server with .NET applications, you must have the Connector/Net driver. For more
information, including installation and configuration instructions, see MySQL Connector/Net
Developer Guide. But note that MySQL Installer will install and configure Connector/NET for you.

MySQL distributions for Windows can be downloaded from http://dev.mysqgl.com/downloads/. See
Section 2.1.3, “How to Get MySQL".

MySQL for Windows is available in several distribution formats, detailed following. Generally speaking,
you should use MySQL Installer. It is simpler to use than the Zip file, and you need no additional tools
to get MySQL up and running. MySQL Installer automatically installs MySQL Server and additional
MySQL products, creates an options file, starts the server, and enables you to create default user
accounts. For more information on choosing a package, see Section 2.3.2, “Choosing An Installation
Package”.

* A MySQL Installer distribution includes MySQL Server and additional MySQL products including
MySQL Workbench, MySQL Notifier, and MySQL for Excel. MySQL Installer can also be used to
upgrade these products in the future.

61

http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/downloads/

MySQL Installation Layout on Microsoft Windows

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”.

» The standard binary distribution (packaged as a Zip file) contains all of the necessary files that you
unpack into your chosen location. This package contains all of the files in the full Windows MSI
Installer package, but does not include an installation program.

For instructions on installing MySQL using the Zip file, see Section 2.3.5, “Installing MySQL on
Microsoft Windows Using a noi nst al | Zip Archive”.

» The source distribution format contains all the code and support files for building the executables
using the Visual Studio compiler system.

For instructions on building MySQL from source on Windows, see Section 2.8, “Installing MySQL
from Source”.

MySQL on Windows considerations:
» Large Table Support

If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer file system. Do
not forget to use MAX_ROWS and AVG_ROW LENGTH when you create tables. See Section 13.1.14,
“CREATE TABLE Syntax”.

» MySQL and Virus Checking Software

Virus-scanning software such as Norton/Symantec Anti-Virus on directories containing MySQL data
and temporary tables can cause issues, both in terms of the performance of MySQL and the virus-
scanning software misidentifying the contents of the files as containing spam. This is due to the
fingerprinting mechanism used by the virus-scanning software, and the way in which MySQL rapidly
updates different files, which may be identified as a potential security risk.

After installing MySQL Server, it is recommended that you disable virus scanning on the main
directory (dat adi r) used to store your MySQL table data. There is usually a system built into the
virus-scanning software to enable specific directories to be ignored.

In addition, by default, MySQL creates temporary files in the standard Windows temporary directory.
To prevent the temporary files also being scanned, configure a separate temporary directory for
MySQL temporary files and add this directory to the virus scanning exclusion list. To do this, add

a configuration option for the t npdi r parameter to your ny. i ni configuration file. For more
information, see Section 2.3.5.2, “Creating an Option File”.

2.3.1 MySQL Installation Layout on Microsoft Windows

For MySQL 5.7 on Windows, the default installation directory is C: \ Program Fi | es\ MySQL\ My SQL
Server 5. 7.Some Windows users prefer to install in C: \ nysql , the directory that formerly was used
as the default. However, the layout of the subdirectories remains the same.

All of the files are located within this parent directory, using the structure shown in the following table.

Table 2.4 Default MySQL Installation Layout for Microsoft Windows

Directory Contents of Directory Notes

bin Client programs and the nysql d server

%ALLUSERSPROFI LE% Log files, databases (Windows XP, The Windows

\ MySQL\ MySQL Ser ver Windows Server 2003) system variable

5.7\ YALL USERSPROFI LE%

defaults to C: \ Docunent s
and Settings\All Users
\ Appl i cati on Data

62

Choosing An Installation Package

Directory

Contents of Directory

Notes

%PROGRAMDATA% My SQL
\MySQL Server 5.7\

Log files, databases (Vista, Windows 7,
Windows Server 2008, and newer)

The Windows system
variable %°ROGRANDATA
%defaults to C:

\ Progr anDat a

exanpl es Example programs and scripts

i ncl ude Include (header) files

lib Libraries

scripts Utility scripts

share Miscellaneous support files, including

error messages, character set files,
sample configuration files, SQL for
database installation

If you install MySQL using the MySQL Installer, this package creates and sets up the data directory
that the installed server will use, and also creates a pristine “template” data directory named dat a
under the installation directory. After an installation has been performed using this package, the
template data directory can be copied to set up additional MySQL instances. See Section 5.3, “Running
Multiple MySQL Instances on One Machine”.

2.3.2 Choosing An Installation Package

For MySQL 5.7, there are installation package formats to choose from when installing MySQL on
Windows:

* MySQL Installer: This package has a file name similar to mysql -i nstal | er -
conmuni ty-5.7.5.0.nsi ornysql -installer-comercial-5.7.5.0.nsi,and utilizes
MSiIs to automatically install MySQL server and other products. It will download and apply updates to
itself, and for each of the installed products. It also configures the additional non-server products.

The installed products are configurable, and this includes: documentation with samples and
examples, connectors (such as C, C++, J, NET, and ODBC), MySQL Workbench, MySQL Notifier for
Microsoft Windows, MySQL for Excel, and the MySQL Server with its components.

MySQL Installer will run on all Windows platforms that are supported by MySQL (see http://
www.mysqgl.com/support/supportedplatforms/database.html).

and depends on .NET, it will not work on minimal installation options like the

Note
@ Because MySQL Installer is not a native component of Microsoft Windows
"Server Core" version of Windows Server 2008.

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”.

» The Noinstall Archive: This package has a file name similar to nysql - 5. 7. 5-wi n32. zi p or
nysql - 5. 7. 5- wi nx64. zi p, and contains all the files found in the Complete install package,
with the exception of the GUI. This package does not include an automated installer, and must be
manually installed and configured.

Your choice of install package affects the installation process you must follow. If you choose to use
MySQL Installer, see Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”.
If you choose to install a Noinstall archive, see Section 2.3.5, “Installing MySQL on Microsoft Windows
Using a noi nst al | Zip Archive”.

2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installer

63

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html

Installing MySQL on Microsoft Windows Using MySQL Installer

MySQL Installer is an application that simplifies the installation and updating process for a wide range
of MySQL products, including MySQL Notifier for Microsoft Windows, MySQL Workbench, and MySQL
for Excel. From this central application, you can see which MySQL products are already installed,
configure them, and update or remove them if necessary. The installer can also install plugins,
documentation, tutorials, and example databases. The MySQL Installer is only available for Microsoft
Windows, and includes both a GUI and command-line interface.

Installer package types

e Ful I : Bundles all of the MySQL products (including MySQL Server). The file' size is over 160MB,
and its name has the form mysql -i nst al | er- communi t y- VERSI ON. N. nsi where VERSI ON is
the MySQL Server version number such as 5.6 and Nis the package number, which begins at 0.

« \Aeb: Only contains the Installer and configuration files, and it only downloads the MySQL products
you choose to install. The size of this file is about 2MB; the name of the file has the form nysql -
instal | er-community-web- VERSI ON. N. nsi where VERS| ONis the MySQL Server version
number such as 5.6 and Nis the package number, which begins at 0.

Installer editions

e Communi ty edition: Downloadable at http://dev.mysgl.com/downloads/installer/. It installs the
community edition of all MySQL products.

e Commercial edition: Downloadable at either My Oracle Support (MOS) or https://
edelivery.oracle.com/. It installs the commercial version of all MySQL products, including Workbench
SE. It also integrates with your MOS account, so enter in your MOS credentials to automatically
receive updates for your commercial MySQL products.

For release notes detailing the changes in each release of MySQL Installer, see MySQL Installer
Release Notes.

MySQL Installer is compatible with pre-existing installations, and adds them to its list of installed
components. While the MySQL Installer is bundled with a specific version of MySQL Server, a single
MySQL Installer instance can install and manage multiple MySQL Server versions. For example,

a single MySQL Installer instance can install versions 5.1, 5.5, and 5.6. It can also manage either
commercial or community editions of the MySQL Server.

Note
@ A single host can not have both community and commercial editions of
MySQL Server installed. For example, if you want both MySQL Server 5.5
and 5.6 installed on a single host, then both must be the same commercial or
community edition.
MySQL Installer handles the initial configuration and setup of the applications. For example:
1. It will create MySQL Server connections in MySQL Workbench.

2. It creates the configuration file (ny. i ni) that is used to configure the MySQL Server. The values
written to this file are influenced by choices you make during the installation process.

3. Itimports example databases.

4. It creates MySQL Server user accounts with configurable permissions based on general roles, such
as DB Administrator, DB Designer, and Backup Admin. It optionally creates a Windows user named
Mysql Sys with limited privileges, which would then run the MySQL Server.

This feature is only available during the initial installation of the MySQL Server, and not during
future updates. User accounts may also be added with MySQL Workbench.

5. If the "Advanced Configuration" option is checked, then the Logging Options are also configured.
This includes defining file paths for the error log, general log, slow query log (including the
configuration of seconds it requires to execute a query), and the binary log.

64

http://dev.mysql.com/downloads/installer/
https://support.oracle.com/
https://edelivery.oracle.com/
https://edelivery.oracle.com/
http://dev.mysql.com/doc/relnotes/mysql-installer/en/
http://dev.mysql.com/doc/relnotes/mysql-installer/en/

Installing MySQL on Microsoft Windows Using MySQL Installer

MySQL Installer can optionally check for updated components and download them for you
automatically.

2.3.3.1 MySQL Installer GUI

After installation of the GUI version, the installer will have add its own Start Menu item under MySQL.

that executes MySQL Installer, including my. i ni . This does not apply to files
and directories for specific products such as the MySQL Server data directory in

Note
@ Files that are generated by MySQL Installer grant full permissions to the user
Pr ogr anDat a, that is owned by SYSTEM

After the installer itself has been installed and started, the following screen is displayed:

Figure 2.7 MySQL Installer - Welcome Screen

Welcome My

The MySQL Installer guides you through the installation and configuration of your
MySQL products. Run it from the Start Menu to perform maintenance tasks later.

Select one of the actions below:

_'IL Install MySOL Products

{ Guide you through the installation and configuration of your
L MySQL products.

('T About MySQL
L 1y Learn more about MySQL products and better understand how
‘\—,/ you can benefit the most.

Resources
E Get more information on how to install MySQL and configure it

to run efficiently on your machine.

ORACLE

There are three main options:
1. Install MySQL Products - The Installation Wizard.
2. About MySQL - Learn about MySQL products and features.

3. Resources - Information to help install and configure MySQL.

To Install MySQL Products after executing MySQL Installer for the first time, you must accept the
license agreement before proceeding with the installation process.

65

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.8 MySQL Installer - License Agreement

- b4
‘E\-: License Agreement
MySQL. Installer
To install MySQL, you must accept the Oracle Software License Terms.
GMU GEMERAL PUBLIC LICEMSE -
Version 2, June 1991 El
License Information Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. {(Some other Free Software Foundation software is covered by
the GMU Library General Public License instead.) You can apply it to
'your programs, oo,
When we speak of free saftware, we are referring to freedom, not price.
Cur General Public Licenses are designed to make sure that you have
the freedom to distribute copies of free software (and charge for this
zervice if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of itin new
free programs; and that you know you can do these things. -
1 accept the license terms I
< Back] | Mext = | l Cancel]

If you are connected to the Internet, then the Installer will search for the latest MySQL components and
add them to the installation bundle. Click Connect to the Internet to complete this step, or otherwise
check the Ski p checkbox and then Continue.

66

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.9 MySQL Installer - Find latest products

\:\: Find latest products
MySQL. Installer

Before the installation is performed, the Installer will check if there are newer
versions of the products you are about to install / already installed are available.

Find latest products
() Connect to the Internet

() Fetch product update information

[] skip the check for updates {not recommended)

[<o [oeae | [cond]

If you chose "Connect to the Internet," the next page will show the progress of MySQL Installer's
search for available updates. When the search is complete (or if you opted to skip the search), you will
be taken to the Choose Setup Type page:

67

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.10 MySQL Installer - Choosing a Setup Type

AN Choosin
-2 g a Setup Type
MySQL. Installer

Please select the Setup Type that suits your use case.

@ Developer Default Setup Type Description
Installs all products needed for Installs the My3QL Server and the tools -
MvECL devel " required for MySQL application development.
ySQL development purpases. This is useful if you intend to develop

applications for an existing server,

© Server on
Setup Type - by This Setup Type indudes:
Installs only the MySQL Server
product. = MySOL Server
P *=MySGL Workbench
© Client only The GUI application to develop for and manage
Installs only the MySQL Client the server,

products, without a server,

© Full Installation Path: e~
Installs all induded MySQL products |C= \Program Files\MySQLY, | E]
and features.
© Custom Data Path: e~
Manually select the products that |C= \ProgramData\MySQLMySQL Server 5.5Y | E]
should be installed on the system,
l < Back] ’ MNext = l l Cancel]

Determine the option most compatible with your preferences by reading the Setup Type Description
descriptions.

The Installation and Data paths are also defined here, and a caution flag will notify you if the data path
you define already exists.

After you select a setup type, the MySQL Installer will check your system for the necessary external
requirements and download then install missing components onto your system.

68

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.11 MySQL Installer - Check Requirements

™,
MySQL. Installer

Check Requirements

Check Requirements

The following requirements must be installed before the selected products can be
installed. If you don't want a particular requirement then go back and deselect the
product that requires it.

Reguirement For Product Status
& Visual Studio Tools for Office 2010 Runt.. MySQL For Bxcel 1.1.0
& Microsoft .NET Framewark 4 Client Profile MySQL For Bxcel 1.1.0
& Microsoft Excel 2007 or greater MySQL For Bxcel 1.1.0
& Microsoft .MET Framewark 4 Client Profile MySQL Notifier 1.0.3
& Microsoft Visual C++ 2010 32-bit runtime MySQL Workbench CE 5.2.46
& Microsoft .MET Framewark 4 Client Profile MySQL Warkbench CE5.2.46

Current Task

All required prerequisites are met. Continue by dicking on the Mext button,

l < Back ” Mext = H Cancel

The next window lists the MySQL products that are scheduled to be installed:

69

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.12 MySQL Installer - Installation Progress

= =0
L\; Installation Progress
MySQL. Installer
The following products will be installed or updated.
Product Status Progress Motes
MySQL Server 5.6.10 To beinstalled
| MysSQL Workbench CE 5.2.46 To be installed
- MySQL Motifier 1.0.3 To beinstalled
MySQL For Excel 1.1.0 To beinstalled
Connector/ODBC 5.2.4 To beinstalled
Installation Connector/C++ 1.1.2 To beinstalled
Connectorf 5.1.23 To beinstalled
Connector/MET 6.6.5 To beinstalled
MySQL Documentation 5.6.10 To beinstalled
Samples and Bxamples 5.6.10 To beinstalled

Click [Execute] to install or update the following packages

| <sak || Breare || conce

As components are installed, you'll see their status change from "to be installed" to "install success."

70

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.13 MySQL Installer - Installation Progress status

=1L E X
‘E\.‘ Installation Progress
MySQL. Installer
The following products will be installed or updated.
Product Status Progress Motes
MySQL Server 5.6.10 Install success
MySQL Workbench CE 5.2.46 Installing -_||
i MySQL Notifier 1.0.3 To beinstalled
- MySQL For Excel 1.1.0 To beinstalled
Connector/ODBC 5.2.4 To beinstalled
Installation Connector/C++ 1.1.2 To beinstalled
Connectorf] 5.1.23 To beinstalled
Connector/MET 6.6.5 To beinstalled
MySQL Documentation 5.6.10 To beinstalled
Samples and Bxamples 5.6.10 To beinstalled
Show Details =
| < Back | | Mext = | l Cancel]

After all components are installed, the next step involves configuring the products. The
Confi guration Overvi ewwindow displays the progress and then loads a configuration window if it
is required.

71

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.14 MySQL Installer - Configuration Overview

=[O x
\:.\:_ Configuration Overview
MySQL. Installer
The following products will now be configured.
Product Action to be performed Progress
=1 ﬂ MySQL Server 5.6.10 Initial Configuration.
Configuration
| < Back | ’ Mext = l l Cancel]

The ideal MySQL Server configuration depends on your intended use, as explained in the next window.
Choose the description that most closely applies to your machine.

You may enable TCP/IP Networking here as otherwise only localhost connections are allowed.
Checking the "Advanced Configuration" option provides additional Logging Options to configure. This

includes defining file paths for the error log, general log, slow query log (including the configuration of
seconds it requires to execute a query), and the binary log.

72

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.15 MySQL Installer - MySQL Server Configuration: Define platform, networking, and
logging options

AAN M i
Y y¥SQL Server Configuration 1/4
MySQL. Installer

Server Configuration Type

T Choose the correct server configuration type for this MySQL Server
| installation. This setting will define how much system rescurces are assigned
to the MySOL Server instance,

Config Type: Development Machine -

Enable TCP/IP Networking

Enable this to allow TCP(IP networking. Only localhost connections
‘l.:\\ 2 through named pipes are gllowed when this option is skipped.

Port Number: 3306

Configuration Open Firewall port for network access

Advanced Configuration
b \ Select the checkbox below to get additional configuration page where
\ wou can set advanced opotions for this server instance.

Show Advanced Options

Next, choose your account information. Defining a root password is required, whereas it's optional
to create additional users. There are several different predefined user roles that each have different
permission levels. For example, a "DB Admin" will have more privileges than a "DB Designer.".

73

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.16 MySQL Installer - MySQL Server Configuration: User accounts

AN M i
Y y¥SQL Server Configuration 2/4
MySQL. Installer

Root Account Password

Enter the password for the root account. Please remember to store
this password in & secure place.

MySQL Root Password: weesssssssess

Repeat Password: ITTITTIIITIILIY]

Password Strenath:

MySQL User Accounts

2

Configuration Create MySQL user accounts for your users and applications.

Assign a role to the user that consists of a set of privileges.

MySQL Username Host User Role i Add User I
’_J jon % Backup Admin | Edit Uiser |
| Delete User |
< Back] ’ MNext = l l Cancel]
Note
3 If the MySQL Server is already installed, then the Cur r ent Root Password

will also be needed.

Next, configure the Windows Service Details. This includes the service name, how the MySQL Server
should be loaded at startup, and how the Windows Service for MySQL Server will be run.

74

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.17 MySQL Installer - MySQL Server Configuration: Windows service details

IAN M i
=y vSQL Server Configuration 3/4
MySQL. Installer

Windows Service Details

Please specify a Windows Service name to be usaed for this MySQL
EJ Server instance. A unigus name is required for each instance.

Windows Service Name: MySQLSE

Start the MySQL Server at System Startup

r Run Windows Service as ...
“{? The MySQL Server needs to run under a given user account.

Based on the security requirements of your system you need to
pick ane of the cptions below.

Configuration Standard System Account
Recommended for most scenarios.

() Custom User

An existing user account can be selected for advanced scenarics.

< Back] ’ MNext = l l Cancel

Note
3 When configuring Run Windows Services as ... using a Custom User, the
custom user must have privileges to log on to Windows as a service. And the
Next button will be disabled until this user is given these user rights.

On Microsoft Windows 7, this is configured by loading the St art Menu,
Control Panel, Admi nistrative Tool s,Local Security Policy,
Local Policies,User Rights Assignnment,thenLog On As A
Servi ce. Choose Add User or G oup here to add the custom user, and
then OK, OK to save.

The final configuration step is available if the Advanced Configuration option was checked, and it
includes configuration options related to log file names:

75

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.18 MySQL Installer - MySQL Server Configuration: Logging options

PN
MySQL. Installer

Configuration

= 3
MySQL Server Configuration 4/a
Logging Options

orme
o=—

i

Plezse select the logs you want to activate for this server in addition to the Error Leg. On
preduction machines it can be benefitizl to separat the log files from the data,

ErrorLog: PHILIP-US.er [

General Log

The general query log is 2 general record of what the MySQL Server is deing, It
should anly be used to track down issues.

File Path: PHILIP-US.log]

Slow Query Log

The slowr query log consists of SQL statements that tock more than the given
value of seconds to execute, It s recommended to turn this kog on.

File Path: PHILIP-US-slow.log [..] sSeconds: 10

Bin Log

The binary log contsins 2l database events and i used for replication and dsta
recovery operstions. It has a performance impact on the server. Only 2 filename
bazse should be given as the szrver will zppend an approriste xtension

File Path: ~ PHILIP-US-bin [

l < Back ” Mext = H Cancel

After the MySQL Installer configuration process is completed, you may save the installation log, and
then load MySQL Workbench if the Start MySQL Workbench after Setup option is checked:

76

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.19 MySQL Installer - Installation Complete

= =S
E\. Installation Complete
MySQL. Installer
The installation procedure has been completed.
I Copy Log to Clipboard I
Start MySQL Workbench after Setup
| < Back | ’ Finish l | Cancel |

You can now open MySQL Installer from the Microsoft Windows Start menu under the My SQL group,
which will load the MySQL Installer Mai nt enance Scr een. This is used to add, update, and remove
features.

77

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.20 MySQL Installer - Maintenance Screen

| MySQL Installer =[=] X'

Maintenance My

The My5SQL Installer guides you through the installation and configuration of your
MySQL products. Run it from the Start Menu to perform maintenance tasks later.

Select one of the actions below:

Add [Modify Products and Features
a Add additional MySQL products or make changes to the
e features of already installed products.

"y Check for Updates
Run this check to see if new maintenance release are available
and to install them,

e Remove MySOL Products
1t ._/ Remeove individual MySQL products from your machine. Also
e select this item to remove all MySQL products.

Copyright © 2013, Oracle andor its affilistes. Al rights reserved. Oracle i 2 registered trademark of .
Oracke Corporation and/or its affiliates. Other names may be rademarks of ther respective owners, DRACI—E

with older products installed, as opposed to the Mai nt enance Screen shown

Note
3 An Updat e Scr een screen is shown if MySQL Installer is used on a machine
above. However, the functionality remains the same.

Add/Modify Products and Features will list all installed and available MySQL products.

78

Installing MySQL on Microsoft Windows Using MySQL Installer

Figure 2.21 MySQL Installer - Add/Modify Products and Features

1‘:\ Feature Selection
MySQL. Installer

Please select the products and features you would like to install on this machine.

o Product Catalog: Architecture:

T P . o
A ‘e MySQL 5.6 Community Edition - |64-Bit -
Feature Selection
MySQL Server 5.6.10 MySQL Server
— e The core MyS0L database server
Applications MySQL Server
Client Programs
MySQL Connectors Debug binaries
Development Companents
Client C API library (shared)
Documentation Embedded serverlibrary
Debug Symbaols
Server data files

Space availsble on drive: 211.01G

Estimsted Totzl Space required on drive: 0K

l < Back] ’ Next =] l Cancel

The installation is now complete. MySQL Server should be running, and most MySQL products
installed and available for use.

See also the MySQL Workbench documentation (http://dev.mysql.com/doc/workbench/en/).

2.3.3.2 MySQL Installer Console

MySQLI nst al | er Consol e provides functionality similar to the GUI version of MySQL Installer, but
from the command-line. It is installed when MySQL Installer is initially executed, and then available
within the MySQL | nst al | er directory. Typically thatisin C. \ Program Fi | es (x86)\ MySQL
\MySQL I nstaller\,andthe console must be executed with administrative privileges.

To use, invoke the Command Prompt with administrative privileges by choosing Start, Accessaories,
then right-click on Command Prompt and choose Run as admi ni strat or. And from the command-
line, optionally change the directory to where MySQLI nst al | er Consol e is located:

C\>cd "C\Program Files (x86)\M/SQ.\MSQ I|nstaller"
MySQLI nst al | er Consol e supports the following options, which are specified on the command line:
e --help,-h,or-?

Displays a help message with usage examples, and then exits.

C.\> WSQ.I nstal |l erConsol e --help

e --updates (or-u)

79

http://dev.mysql.com/doc/workbench/en/

MySQL Notifier for Microsoft Windows

Checks for new products before any further action is taken. Disabled by default.
e --nowait

Skips the final pause when the program finishes. Otherwise, a "Press Enter to continue."
dialogue is generated. It is used in conjunction with other options.

e --catal og=catal og_nane (or-c)

Sets the default catalog. Use - - | i st to view a list of available catalogs.
e --type=installation_type (or-t)

Sets the installation type.

The possible values for i nst al | ati on_t ype are: developer, server, client, full, and custom.
e --action=action_nane

The action being performed.

The possible values are: install, remove, upgrade, list, and status.

install: Installs a product or products, as defined by - - pr oduct s
upgrade: Upgrades a product or products, as defined by - - pr oduct s.
remove: Removes a product or products, as defined by - - pr oduct s.
list: Lists the product manifest, both installed and available products.

status: Shows the status after another action is performed.
e --product=product_nane[: f eat ur el],[f eat ure?2], [...] (or - p)

Set the feature list of a product. Use - - | i st to view available products, or pass in - - pr oduct =*
(an asterisk) to install all available products.

e --config=product _nane:passwd=r oot _passwor d[; par anet er 1=val ue],
[;par anmet er 2=val ue], ...

The configuration parameters for the most recently listed products.

e --user=product nanme:name=user nane,host:host nane,role=r ol enane,password=passwor d
or - -user =pr oduct _nane:name=user nane,host:host nane,role=r ol enane,tokens=t okens

Creates a new user.

Requires: name, host, role, and the password or tokens. Tokens are separated by pipe ("|")
characters.

2.3.4 MySQL Notifier for Microsoft Windows

The MySQL Notifier for Microsoft Windows is a tool that enables you to monitor and adjust the status
of your local and remote MySQL Server instances through an indicator that resides in the system tray.
The MySQL Notifier for Microsoft Windows also gives quick access to several MySQL GUI tools (such
as MySQL Workbench) through its context menu.

80

MySQL Notifier for Microsoft Windows

The MySQL Notifier for Microsoft Windows is installed by MySQL Installer, and (by default) will start-up
when Microsoft Windows is started.

Note

@ To install, download and execute the MySQL Installer, be sure the MySQL
Notifier for Microsoft Windows product is selected, then proceed with the
installation. See the MySQL Installer manual for additional details.

For release notes detailing the changes in each release of MySQL Notifier for
Microsoft Windows, see the MySQL Notifier Release Notes.

Visit the MySQL Noatifier forum for additional MySQL Noatifier for Microsoft
Windows help and support.

Features include:
» Start, Stop, and Restart instances of the MySQL Server.

« Automatically detects (and adds) new MySQL Server services. These are listed under Manage
Monitored Items, and may also be configured.

* The Tray icon changes, depending on the status. It's green if all monitored MySQL Server instances
are running, or red if at least one service is stopped. The Update MySQL Notifier tray icon based
on service status option, which dictates this behavior, is enabled by default for each service.

« Links to other applications like MySQL Workbench, MySQL Installer, and the MySQL Utilities. For
example, choosing Configure Instance will load the MySQL Workbench Server Administration
window for that particular instance.

 If MySQL Workbench is also installed, then the Configure Instance and SQL Editor options are
available for local (but not remote) MySQL instances.

» Monitoring of both local and remote MySQL instances.

Note
@ Remote monitoring is available since MySQL Notifier for Microsoft Windows
1.1.0.

The MySQL Notifier for Microsoft Windows resides in the system tray and provides visual status
information for your MySQL Server instances. A green icon is displayed at the top left corner of the tray
icon if the current MySQL Server is running, or a red icon if the service is stopped.

The MySQL Notifier for Microsoft Windows automatically adds discovered MySQL Services on the

local machine, and each service is saved and configurable. By default, the Automatically add new
services whose name contains option is enabled and set to nysql . Related Notifications Options
include being notified when new services are either discovered or experience status changes, and are
also enabled by default. And uninstalling a service will also remove the service from the MySQL Notifier
for Microsoft Windows.

Note
@ The Automatically add new services whose name contains option default
changed from ".*mysqld.*" to "mysql" in Notifier 1.1.0.

Clicking the system tray icon will reveal several options, as seen in the screenshots below:

The Service Instance menu is the main MySQL Notifier for Microsoft Windows window, and enables
you to Stop, Start, and Restart the MySQL Server.

81

http://dev.mysql.com/downloads/installer/
http://dev.mysql.com/doc/relnotes/mysql-notifier/en/
http://forums.mysql.com/list.php?173

MySQL Notifier for Microsoft Windows

Figure 2.22 MySQL Notifier for Microsoft Windows Service Instance menu

[Ty MySQL56 - Running »
F=

Configure Instance...
SQL Editor... »

(% MySQL55 - Running »
Configure Instance...
SQL Editor...

Actions
- m [me 57) 5:20 PM

The Actions menu includes several links to external applications (if they are installed), and a a Refresh
Status option to manually refresh the status of all monitored services (in both local and remote
computers) and MySQL instances.

Note
@ The main menu will not show the Actions menu when there are no services
being monitored by MySQL Notifier for Microsoft Windows.

Note
@ The Refresh Status feature is available since MySQL Notifier for Microsoft
Windows 1.1.0.

Figure 2.23 MySQL Notifier for Microsoft Windows Actions menu

Manage Monitored Items...
localhost (Online)

Launch My5QL Installer... -
= _ .
Check for Updates... & MySQL36.1- Running '

MySQL Utilities Shell

Configure Instance...

5QL Editor... 3

& BPEE

Refresh Status

il MySQL Enterprise MySQL - Running »
Options...

About...
Close MySQL Notifier

Configure Instance...

5QL Editor...

Actions »

The Actions, Options menu configures MySQL Notifier for Microsoft Windows and includes options to:

» Use colorful status icons: Enables a colorful style of icons for the tray of the MySQL Notifier for
Microsoft Windows.

* Run at Windows Startup: Allows the application to be loaded when Microsoft Windows starts.

« Automatically Check For Updates Every # Weeks: Checks for a new version of MySQL Notifier for
Microsoft Windows, and runs this check every # weeks.

» Automatically add new services whose name contains: The text used to filter services and add
them automatically to the monitored list of the local computer running MySQL Notifier, and on remote
computers already monitoring Windows services. monitored services, and also filters the list of the
Microsoft Windows services for the Add New Service dialog.

Prior to version 1.1.0, this option was named "Automatically add new services that match this
pattern.”

* Notify me when a service is automatically added: Will display a balloon notification from the
taskbar when a newly discovered service is added to the monitored services list.

82

MySQL Notifier for Microsoft Windows

* Notify me when a service changes status: Will display a balloon natification from the taskbar when
a monitored service changes its status.

Figure 2.24 MySQL Notifier for Microsoft Windows Options menu

Option

MySQL Notifier Options
General Options

Uze colorful status icons
Run at Windows Startup

Automatically Check For Updates Every |4 = Weeks

-

Autornatically add new services whose name contains:
mysql
Matifications Options

Motify me when a service is automatically added.

Motify me when a service or instance changes status,

[apply | [Cancel |

The Actions, Manage Monitored Items menu enables you to configure the monitored services and
MySQL instances. First, with the Services tab open:

Figure 2.25 MySQL Notifier for Microsoft Windows Manage Services menu

Manage Monitored Items
Windows Services and MySQL Instances

Local MySQL services will be automatically added. Press Add to monitor other
Windows services or MySQL instances.

Services | Instances

| Name | Running On Status
MySQL55 localhost Running
My5QL56 localhost Running

Options

Motify me when status changes
Update MySQL MNotifier tray icon based on service status

Maonitor MySQL Instance status every |0 =| | minutes

Close

83

MySQL Notifier for Microsoft Windows

The Instances tab is similar:

Figure 2.26 MySQL Notifier for Microsoft Windows Manage Instances menu

Manage Monitored Items
Windows Services and MySQL Instances

Local MySQL services will be automatically added. Press Add to moenitor other
Windows services or MySQL instances,

Instances

MName DB Driver Status
Mysgl@localhost:3306 Tep Refusing Connectio...
Options

Motify me when status changes
Update MyS0L Notifier tray icon based on service status

Monitor MySQL Instance status every |2 =

Adding a service or instance (after clicking Add in the Manage Monitored Items window) enables you to
select a running Microsoft Windows service or instance connection, and configure MySQL Notifier for
Microsoft Windows to monitor it. Add a new service or instance by clicking service name from the list,
then OK to accept. Multiple services and instances may be selected.

84

MySQL Notifier for Microsoft Windows

Figure 2.27 MySQL Notifier for Microsoft Windows Adding new services

T 5
Add Service " |

Choose a Machine:

Select the machine you want to monitar services on, The machines need to be on your
local nebwork.

Computer: |Local - Edit Delete

Choose a Windows Service:
Select the service you want to monitor, You can filter the list by typing into the filter

Filter: [T] Only show services that match auto-add filter?
Display Name Status i
ActiveX Installer (AxInstsY) Stopped
Adaptive Brightness Stopped
Adobe Acrobat Update Service Running
Adobe Flash Player Update Service Stopped
Application Experience Stopped
Application [dentity Stopped
Application Information Stopped
Application Layer Gateway Service Stopped
Application Management Running
ASP.MNET State Service Stopped
Background Intelligent Transfer Service Running
Ease Filtering Engine Running =
4 1 | 3

[OK] [Cancel

And instances:

85

MySQL Notifier for Microsoft Windows

Figure 2.28 MySQL Notifier for Microsoft Windows Adding new instances

Menitor MySQL Server Instance 2

Choose a MySQL Server connection:

Select a connection from My5QL Workbench that you want to monitor, You can filter the list by typing
into the filter control,

Filter: [T] Show MySQL instances already being monitored?

Metheod Mame Host Port Menitored

[Add Mew Connection... I Cancel

Note
@ The Instances tab available since MySQL Notifier for Microsoft Windows 1.1.0.

2.3.4.1 Remote monitoring set up and installation instructions

The MySQL Notifier for Microsoft Windows uses Windows Management Instrumentation (WMI) to
manage and monitor services in remote computers running Windows XP or later. This guide explains
how it works, and how to set up your system to monitor remote MySQL instances.

Note
@ Remote monitoring is available since MySQL Notifier for Microsoft Windows
1.1.0.

In order to configure WMI, it is important to understand that the underlying Distributed Component
Object Model (DCOM) architecture is doing the WMI work. Specifically, MySQL Notifier for Microsoft
Windows is using asynchronous notification queries on remote Microsoft Windows hosts as .NET
events. These events send an asynchronous callback to the computer running the MySQL Notifier

for Microsoft Windows so it knows when a service status has changed on the remote computer.
Asynchronous notifications offer the best performance compared to semi-synchronous notifications or
synchronous notifications that use timers.

Asynchronous notifications requires the remote computer to send a callback to the client computer
(thus opening a reverse connection), so the Windows Firewall and DCOM settings must be properly
configured for the communication to function properly.

86

MySQL Notifier for Microsoft Windows

Figure 2.29 MySQL Notifier for Microsoft Windows Distributed Component Object Model
(DCOM)

Camputer A Computer B

Windaws
Firewall

Client Client makes asynchron:

Unsecapp exs

Windows |/

DCOM i TR

Most of the common errors thrown by asynchronous WMI notifications are related to Windows Firewall
blocking the communication, or to DCOM / WMI settings not being set up properly. For a list of
common errors with solutions, see Common Errors.

The following steps are required to make WMI function. These steps are divided between two
machines. A single host computer that runs MySQL Notifier for Microsoft Windows (Computer A), and
multiple remote machines that are being monitored (Computer B).

Computer running MySQL Notifier for Microsoft Windows (Computer A)

1. Allow for remote administration by either editing the Group Policy Editor, or using NETSH:

Using the Group Policy Editor:

a.

b.

f.

g.

Click Start, click Run, type GPEDI T. MSC, and then click OK.
Under the Local Computer Policy heading, double-click Computer Configuration.

Double-click Administrative Templates, then Network, Network Connections, and then
Windows Firewall.

If the computer is in the domain, then double-click Domain Profile; otherwise, double-click
Standard Profile.

Click Windows Firewall: Allow inbound remote administration exception.
On the Action menu either select Edit, or double-click the selection from the previous step.

Check the Enabled radio button, and then click OK.

Using the NETSH command:

a.

Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

Execute the following command:

NETSH firewal | set service RenoteAdm n enabl e

2. Open the DCOM port TCP 135:

a.

Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator) .

Execute the following command:

NETSH firewal | add portopeni ng protocol =tcp port=135 name=DCOM TCP135

87

MySQL Notifier for Microsoft Windows

3. Add the client application which contains the sink for the callback (MySql Not i fi er. exe) to the
Windows Firewall Exceptions List (use either the Windows Firewall configuration or NETSH):

Using the Windows Firewall configuration:
a. Inthe Control Panel, double-click Windows Firewall.

b. Inthe Windows Firewall window's left panel, click Allow a program or feature through
Windows Firewall.

c. Inthe Allowed Programs window, click Change Settings.

d. IfMySqgl Notifier.exeisinthe Allowed programs and features list, make sure it is checked
for the type of networks the computer connects to (Private, Public or both).

e. IfMySqgl Notifi er.exeisnotin the list, click Allow another program....

f. Inthe Add a Program window, select the MySql Not i fi er. exe if it exists in the Programs list,
otherwise click Browse... and go to the directory where MySql Not i fi er . exe was installed to
select it, then click Add.

g. Make sure MySqgl Not i fi er. exe is checked for the type of networks the computer connects to
(Private, Public or both).

Using the NETSH command:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command, where you change "[YOUR_| NSTALL DI RECTCORY] ":

NETSH firewal | add al | owedprogram progranr[YOUR | NSTALL_DI RECTORY] \ MySqgl Not i fi er. exe name=MySql Not i f

4. If Computer B is either a member of WORKGROUP or is in a different domain that is untrusted by
Computer A, then the callback connection (Connection 2) is created as an Anonymous connection.
To grant Anonymous connections DCOM Remote Access permissions:

a. Click Start, click Run, type DCOVCNFG, and then click OK.

b. Inthe Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. Inthe My Computer Properties dialog box, click the COM Security tab.
d. Under Access Permissions, click Edit Limits.

e. Inthe Access Permission dialog box, select ANONYMOUS LOGON name in the Group or user
names box. In the Allow column under Permissions for User, select Remote Access, and then
click OK.

Monitored Remote Computer (Computer B)

If the user account that is logged into the computer running the MySQL Notifier for Microsoft Windows
(Computer A) is a local administrator on the remote computer (Computer B), such that the same
account is an administrator on Computer B, you can skip to the "Allow for remote administration" step.

Setting DCOM security to allow a non-administrator user to access a computer remotely:
1. Grant "DCOM remote launch" and activation permissions for a user or group:

a. Click Start, click Run, type DCOVCNFG, and then click OK.

88

MySQL Notifier for Microsoft Windows

In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

In the My Computer Properties dialog box, click the COM Security tab.
Under Access Permissions, click Edit Limits.

In the Launch Permission dialog box, follow these steps if your name or your group does not
appear in the Groups or user names list:

i. Inthe Launch Permission dialog box, click Add.

ii. Inthe Select Users, Computers, or Groups dialog box, add your name and the group in the
"Enter the object names to select" box, and then click OK.

In the Launch Permission dialog box, select your user and group in the Group or user names
box. In the Allow column under Permissions for User, select Remote Launch, select Remote
Activation, and then click OK.

Grant DCOM remote access permissions:

Click Start, click Run, type DCOVCNFG, and then click OK.

In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

In the My Computer Properties dialog box, click the COM Security tab.
Under Access Permissions, click Edit Limits.

In the Access Permission dialog box, select ANONYMOUS LOGON name in the Group or user
names box. In the Allow column under Permissions for User, select Remote Access, and then
click OK.

. Allowing non-administrator users access to a specific WMI namespace:

g.

In the Control Panel, double-click Administrative Tools.
In the Administrative Tools window, double-click Computer Management.

In the Computer Management window, expand the Services and Applications tree and
double-click the WMI Control.

Right-click the WMI Control icon and select Properties.
In the WMI Control Properties window, click the Security tab.
In the Security tab, select the namespace and click Security.

Locate the appropriate account and check Remote Enable in the Permissions list.

. Allow for remote administration by either editing the Group Policy Editor or using NETSH:

Using the Group Policy Editor:

a.

b.

Click Start, click Run, type GPEDI T. MSC, and then click OK.
Under the Local Computer Policy heading, double-click Computer Configuration.

Double-click Administrative Templates, then Network, Network Connections, and then
Windows Firewall.

89

MySQL Notifier for Microsoft Windows

d. If the computer is in the domain, then double-click Domain Profile; otherwise, double-click
Standard Profile.

e. Click Windows Firewall: Allow inbound remote administration exception.

f. On the Action menu either select Edit, or double-click the selection from the previous step.
g. Check the Enabled radio button, and then click OK.

Using the NETSH command:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command:

NETSH firewal | set service RenpteAdm n enabl e
4. Now, be sure the user you are logging in with uses the Nane value and not the Ful | Nane value:
a. Inthe Control Panel, double-click Administrative Tools.
b. Inthe Administrative Tools window, double-click Computer Management.

c. Inthe Computer Management window, expand the System Tools then Local Users and
Groups.

d. Click the Users node, and on the right side panel locate your user and make sure it uses the
Name value to connect, and not the Full Name value.

5. If the remote computer is running on W ndows XP Pr of essi onal , make sure that remote logins
are not being forcefully changed to the guest account user (also known as For ceGuest), which is
enabled by default on computers that are not attached to a domain.

a. Click Start, click Run, type SECPCL. M5C, and then click OK.
b. Under the Local Policies node, double-click Security Options.
c. Select Network Access: Sharing and security model for local accounts and save.
Common Errors
* 0x80070005

« DCOM Security was not configured properly (see Computer B, the Setti ng DCOM
security... step).

« The remote computer (Computer B) is a member of WORKGROUP or is in a domain that is
untrusted by the client computer (Computer A) (see Computer A, the Grant Anonynous
connecti ons DCOM Renote Access perm Ssi ons step).

* 0x8007000E

e The remote computer (Computer B) is a member of WORKGROUP or is in a domain that is
untrusted by the client computer (Computer A) (see Computer A, the G- ant Anonynous
connections DCOM Renote Access perni ssions step).

» 0x80041003

» Access to the remote WMI namespace was not configured properly (see Computer B, the
Al I owi ng non-adni ni strator users access to a specific WM nanespace step).

90

Installing MySQL on Microsoft Windows Using a noi nst al | Zip Archive

* 0x800706BA

e The DCOM port is hot open on the client computers (Computer A) firewall. See the Open t he
DCOM port TCP 135 step for Computer A.

* The remote computer (Computer B) is inaccessible because its network location is set to Public.
Make sure you can access it through the Windows Explorer.

2.3.5 Installing MySQL on Microsoft Windows Using a noi nstal | Zip
Archive

Users who are installing from the noi nst al | package can use the instructions in this section to
manually install MySQL. The process for installing MySQL from a Zip archive is as follows:

1. Extract the archive to the desired install directory
2. Create an option file

3. Choose a MySQL server type

4. Start the MySQL server

5. Secure the default user accounts

This process is described in the sections that follow.

2.3.5.1 Extracting the Install Archive
To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.3.7, “Upgrading MySQL on
Windows”, before beginning the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C: \ mysql . The
MySQL Installer installs MySQL under C: \ Program Fi | es\ MySQL. If you do not install MySQL at
C.\ nysql , you must specify the path to the install directory during startup or in an option file. See
Section 2.3.5.2, “Creating an Option File”.

4. Extract the install archive to the chosen installation location using your preferred Zip archive tool.
Some tools may extract the archive to a folder within your chosen installation location. If this occurs,
you can move the contents of the subfolder into the chosen installation location.

2.3.5.2 Creating an Option File

If you need to specify startup options when you run the server, you can indicate them on the command
line or place them in an option file. For options that are used every time the server starts, you may find
it most convenient to use an option file to specify your MySQL configuration. This is particularly true
under the following circumstances:

» The installation or data directory locations are different from the default locations (C: \ Pr ogr am
Fil es\ MySQL\ MySQL Server 5.7 and C:.\ Program Fil es\ MySQ.\ MySQL Ser ver
5. 7\ dat a).

* You need to tune the server settings, such as memory, cache, or InnoDB configuration information.

When the MySQL server starts on Windows, it looks for option files in several locations, such as

the Windows directory, C: \ , and the MySQL installation directory (for the full list of locations, see
Section 4.2.3.3, “Using Option Files”). The Windows directory typically is named something like C:

\ W NDOWE. You can determine its exact location from the value of the W NDI R environment variable
using the following command:

91

Installing MySQL on Microsoft Windows Using a noi nst al | Zip Archive

C.\> echo %N NDI R%

MySQL looks for options in each location first in the my. i ni file, and then in the ny. cnf file. However,
to avoid confusion, it is best if you use only one file. If your PC uses a boot loader where C: is not the
boot drive, your only option is to use the ny. i ni file. Whichever option file you use, it must be a plain
text file.

Note

@ When using the MySQL Installer to install MySQL Server, it will create the
ny. i ni atthe default location. And as of MySQL Server 5.5.27, the user
running MySQL Installer is granted full permissions to this new ny. i ni .

In other words, be sure that the MySQL Server user has permission to read the
my.ini file.

You can also make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.

An option file can be created and modified with any text editor, such as Notepad. For example, if
MySQL is installed in E: \ nysql and the data directory is in E: \ mydat a\ dat a, you can create an
option file containing a [mysql d] section to specify values for the basedi r and dat adi r options:

[mysql d]

set basedir to your installation path

basedi r =E: / nysql

set datadir to the |location of your data directory
dat adi r =E: / nydat a/ dat a

Note that Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysql d]

set basedir to your installation path

basedi r =E: \ \ nysql

set datadir to the |location of your data directory
dat adi r=E: \\ nydat a\\ dat a

The rules for use of backslash in option file values are given in Section 4.2.3.3, “Using Option Files”.
The data directory is located within the AppDat a directory for the user running MySQL.

If you would like to use a data directory in a different location, you should copy the entire contents
of the dat a directory to the new location. For example, if you want to use E: \ nydat a as the data
directory instead, you must do two things:

1. Move the entire dat a directory and all of its contents from the default location (for example C:
\ Program Fi | es\ MySQL\ MySQL Server 5.7\ data)toE:\mnmydat a.

2. Use a--dat adi r option to specify the new data directory location each time you start the server.
2.3.5.3 Selecting a MySQL Server Type

The following table shows the available servers for Windows in MySQL 5.7.

Binary Description

nysql d Optimized binary with named-pipe support

nysql d- debug Like nysql d, but compiled with full debugging and automatic memory allocation
checking

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel
i386-class or higher processor.

92

Installing MySQL on Microsoft Windows Using a noi nst al | Zip Archive

Each of the servers in a distribution support the same set of storage engines. The SHON ENG NES
statement displays which engines a given server supports.

All Windows MySQL 5.7 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows also support named
pipes, if you start the server with the - - enabl e- naned- pi pe option. It is necessary to use this option
explicitly because some users have experienced problems with shutting down the MySQL server when
named pipes were used. The default is to use TCP/IP regardless of platform because named pipes are
slower than TCP/IP in many Windows configurations.

2.3.5.4 Starting the Server for the First Time

This section gives a general overview of starting the MySQL server. The following sections provide
more specific information for starting the MySQL server from the command line or as a Windows
service.

The information here applies primarily if you installed MySQL using the Noi nst al | version, or if you
wish to configure and test MySQL manually rather than with the GUI tools.

the MySQL Notifier for Microsoft Windows GUI can be used to start/stop/restart

Note
@ The MySQL server will automatically start after using the MySQL Installer, and
at any time.

The examples in these sections assume that MySQL is installed under the default location of C.
\ Program Fi | es\ MySQL\ \ySQL Server 5. 7. Adjust the path names shown in the examples if
you have MySQL installed in a different location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports
named-pipe connections.

MySQL for Windows also supports shared-memory connections if the server is started with
the - - shar ed- nmenor y option. Clients can connect through shared memory by using the - -
pr ot ocol =MEMORY option.

For information about which server binary to run, see Section 2.3.5.3, “Selecting a MySQL Server
Type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you
can have the server display status messages in the window where they are easy to see. If something is
wrong with your configuration, these messages make it easier for you to identify and fix any problems.

To start the server, enter this command:

C\> "C \Program Fi | es\ \ySQL\ M\ySQL Server 5.7\bin\nysqgld" --console

For a server that includes | nnoDB support, you should see the messages similar to those following as
it starts (the path names and sizes may differ):

2013- 09- 24T12: 55: 18. 897250Z
2013- 09- 24T12: 55: 18. 8972997
2013- 09- 24T12: 55: 18. 8974927
2013- 09- 24T12: 55: 18. 8975097

0
0 [Note] InnoDB: Need to create new data file "ibdata2"

0 [Note] InnoDB: Setting file "./ibdatal" size to 128 MB

0 [Note] InnoDB: Database physically wites the file full: wait ...
2013- 09- 24T12: 55: 19. 013723Z 0 [Note] InnoDB: Setting file "./ibdata2" size to 250 MB

2013- 09- 24T12: 55: 19. 013766Z 0 [Note] |nnoDB: Dat abase physically wites the file full: wait ...
2013- 09- 24T12: 55: 19. 131808Z 0 [Note] InnoDB: Setting log file ./ib_|logfilel0l size to 48 MB
2013- 09- 24T12: 55: 19. 571493Z 0 [Note] InnoDB: Setting log file ./ib_logfilel size to 48 MB

2013- 09- 24T12: 55: 20. 226902Z 0 [Note] I nnoDB: Renaning log file ./ib_logfilel0l to ./ib_logfile0
2013- 09- 24T12: 55: 20. 227251Z 0 [Warning] I nnoDB: New log files created, LSN=45781

2013- 09- 24T12: 55: 21. 227716Z 0 [Note] InnoDB: Creating shared tabl espace for tenporary tables
2013- 09- 24T12: 55: 21. 228286Z 0 [Note] InnoDB: Setting file "./ibtnpl" size to 12 MB

2013- 09- 24T12: 55: 21. 228334Z 0 [Note] |nnoDB: Database physically wites the file full: wait ...

93

[Note] InnoDB: The first specified data file "ibdatal" did not exist :

Installing MySQL on Microsoft Windows Using a noi nst al | Zip Archive

2013- 09- 24T12: 55: 21. 3295367
2013- 09- 24T12: 55: 21. 476956Z
2013- 09- 24T12: 55: 22. 0775247
2013- 09- 24T12: 55: 22. 0775647
2013- 09- 24T12: 55: 22. 182853Z
2013- 09- 24T12: 55: 22. 1956217
2013- 09- 24T12: 55: 22. 1957917
2013- 09- 24T12: 55: 22. 202725Z
2013- 09- 24T12: 55: 22. 2028447
2013- 09- 24T12: 55: 22. 2533427

[Note] |nnoDB: Doublewite buffer not found: creating new

[Note] |nnoDB: Doublewite buffer created

[Note] | nnoDB: 96 redo rollback segnment (s) found. 96 redo roll back segnent(s)
[Note] I nnoDB: 32 non-redo roll back segnent(s) are active.

[Warni ng] I nnoDB: Creating foreign key constraint systemtables.

[Note] I nnoDB: Foreign key constraint systemtabl es created

[Note] I nnoDB: Creating tabl espace and datafil e systemtabl es.

[Note] | nnoDB: Tabl espace and datafile systemtabl es created.

[Note] InnoDB: Waiting for purge to start

0
0
0
0
0
0
0
0
0
O [Note] InnoDB: 5.7.5 started; |og sequence nunber 0

When the server finishes its startup sequence, you should see something like this, which indicates that
the server is ready to service client connections:

nmysql d: ready for connections
Version: '5.7.5" socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a
new console window in which to run client programs.

If you omit the - - consol e option, the server writes diagnostic output to the error log in the data
directory (C: \ Program Fi | es\ MySQL\ MySQL Server 5. 7\ dat a by default). The error log is the
file with the . er r extension, and may be set using the - - | og- err or option.

passwords. After starting the server, you should set up passwords for them

Note
@ The accounts that are listed in the MySQL grant tables initially have no
using the instructions in Section 2.9.2, “Securing the Initial MySQL Accounts”.

2.3.5.5 Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on any version
of Windows.

Note
@ The MySQL Notifier for Microsoft Windows GUI can also be used to start/stop/
restart the MySQL server.

To start the mysql d server from the command line, you should start a console window (or “DOS
window") and enter this command:

C\> "C \Program Fi | es\ \ySQL\ M\ySQL Server 5. 7\bi n\nysql d"
The path to nysql d may vary depending on the install location of MySQL on your system.

You can stop the MySQL server by executing this command:

C\> "C \Program Fi |l es\ MySQL\ MySQL Server 5. 7\bin\nysqgl adm n" -u root shutdown

Note
@ If the MySQL r oot user account has a password, you need to invoke
nysql admi n with the - p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysql adni n to connect to the server

and tell it to shut down. The command connects as the MySQL r oot user, which is the default
administrative account in the MySQL grant system. Note that users in the MySQL grant system are
wholly independent from any login users under Windows.

If mysql d doesn't start, check the error log to see whether the server wrote any messages there to
indicate the cause of the problem. By default, the error log is located in the C. \ Program Fi | es

94

Installing MySQL on Microsoft Windows Using a noi nst al | Zip Archive

\ MySQL\ MySQL Server 5. 7\ dat a directory. It is the file with a suffix of . er r, or may be specified
by passing in the - - | og- er r or option. Alternatively, you can try to start the server as nysql d - -
consol e; in this case, you may get some useful information on the screen that may help solve the
problem.

The last option is to start mysql d with the - - st andal one and - - debug options. In this case, nysql d
writes a log file C: \ mysql d. t r ace that should contain the reason why nysql d doesn't start. See
Section 22.4.3, “The DBUG Package”.

Use nysqgl d --verbose --hel p to display all the options that nysql d supports.
2.3.5.6 Customizing the PATH for MySQL Tools

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bi n directory
to your Windows system PATH environment variable:

» On the Windows desktop, right-click the My Computer icon, and select Properties.

» Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

» Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

» Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bi n directory (for example, C: \ Program Fi | es\ MySQL
\ MySQL Server 5.7\bin)

Note
@ There must be a semicolon separating this path from any values present in
this field.

Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were
opened have been dismissed. You should now be able to invoke any MySQL executable program
by typing its name at the DOS prompt from any directory on the system, without having to supply
the path. This includes the servers, the mysql client, and all MySQL command-line utilities such as
nmysql adm n and nysql dunp.

You should not add the MySQL bi n directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

accidental deletion or modification of any portion of the existing PATH value can

Warning
O You must exercise great care when editing your system PATH by hand;
leave you with a malfunctioning or even unusable system.

2.3.5.7 Starting MySQL as a Windows Service

On Windows, the recommended way to run MySQL is to install it as a Windows service, so that MySQL
starts and stops automatically when Windows starts and stops. A MySQL server installed as a service
can also be controlled from the command line using NET commands, or with the graphical Ser vi ces
utility. Generally, to install MySQL as a Windows service you should be logged in using an account that
has administrator rights.

Note
@ The MySQL Notifier for Microsoft Windows GUI can also be used to monitor the
status of the MySQL service.

95

Installing MySQL on Microsoft Windows Using a noi nst al | Zip Archive

The Ser vi ces utility (the Windows Ser vi ce Control Manager) can be found in the Windows
Control Panel (under Administrative Tools on Windows 2000, XP, Vista, and Server 2003). To avoid
conflicts, it is advisable to close the Ser vi ces utility while performing server installation or removal
operations from the command line.

Installing the service

Before installing MySQL as a Windows service, you should first stop the current server if it is running
by using the following command:

C\> "C \Program Fi | es\ \ySQ.\ MySQ. Server 5. 7\ bi n\ nysqgl adm n"
-u root shutdown

Note
@ If the MySQL r oot user account has a password, you need to invoke
nysql adm n with the - p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysql adni n to connect to the server

and tell it to shut down. The command connects as the MySQL r oot user, which is the default
administrative account in the MySQL grant system. Note that users in the MySQL grant system are
wholly independent from any login users under Windows.

Install the server as a service using this command:

C\> "C \Program Fi | es\ MySQL\ MySQL Server 5.7\bin\nysqgld" --install

The service-installation command does not start the server. Instructions for that are given later in this
section.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bi n directory
to your Windows system PATH environment variable:

» On the Windows desktop, right-click the My Computer icon, and select Properties.

* Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

» Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

» Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bi n directory (for example, C: \ Program Fi | es\ MySQL
\ MySQL Server 5. 7\bin), Note that there should be a semicolon separating this path from any
values present in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of
the dialogues that were opened have been dismissed. You should now be able to invoke any MySQL
executable program by typing its name at the DOS prompt from any directory on the system, without
having to supply the path. This includes the servers, the nysql client, and all MySQL command-line
utilities such as nysql adnmi n and mysql dunp.

You should not add the MySQL bi n directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

accidental deletion or modification of any portion of the existing PATH value can

Warning
O You must exercise great care when editing your system PATH by hand;
leave you with a malfunctioning or even unusable system.

The following additional arguments can be used when installing the service:

96

Installing MySQL on Microsoft Windows Using a noi nst al | Zip Archive

* You can specify a service name immediately following the - - i nst al | option. The default service
name is My SQL.

« If a service name is given, it can be followed by a single option. By convention, this should be - -
defaul ts-file=fil e_name to specify the name of an option file from which the server should
read options when it starts.

The use of a single option other than - - def aul t s-fi | e is possible but discouraged. - -
def aul t s-fi | e is more flexible because it enables you to specify multiple startup options for the
server by placing them in the named option file.

» You can also specify a - - | ocal - ser vi ce option following the service name. This causes the
server to run using the Local Ser vi ce Windows account that has limited system privileges. This
account is available only for Windows XP or newer. If both - - def aul t s-fil eand--1 ocal -
ser Vi ce are given following the service name, they can be in any order.

For a MySQL server that is installed as a Windows service, the following rules determine the service
name and option files that the server uses:

« If the service-installation command specifies no service name or the default service name (MySQL)
following the - - i nst al | option, the server uses the a service name of My SQL and reads options
from the [mysql d] group in the standard option files.

« If the service-installation command specifies a service name other than My SQL following the - -
i nst al | option, the server uses that service name. It reads options from the [nysql d] group
and the group that has the same name as the service in the standard option files. This enables you
to use the [nysql d] group for options that should be used by all MySQL services, and an option
group with the service name for use by the server installed with that service name.

* If the service-installation command specifies a - - def aul t s-f i | e option after the service name,
the server reads options the same way as described in the previous item, except that it reads options
only from the the named file and ignores the standard option files.

As a more complex example, consider the following command:

C\> "C \Program Fi | es\ \ySQ.\ MySQL Server 5. 7\bi n\nysql d"
--install MySQL --defaults-file=C \ny-opts.cnf

Here, the default service name (MySQL) is given after the - - i nst al | option. If no - - def aul t s-

fi | e option had been given, this command would have the effect of causing the server to read the

[mysqgl d] group from the standard option files. However, because the - - def aul t s-fi | e option is
present, the server reads options from the [mysql d] option group, and only from the named file.

Note

@ On Windows, if the server is started with the - - def aul ts-fil e and - -
i nstall options, --i nstal |l must be first. Otherwise, nysql d. exe will
attempt to start the MySQL server.

You can also specify options as Start parameters in the Windows Ser vi ces utility before you start the
MySQL service.

Starting the service

Once a MySQL server has been installed as a service, Windows starts the service automatically
whenever Windows starts. The service also can be started immediately from the Ser vi ces utility, or
by using a NET START MySQL command. The NET command is not case sensitive.

When run as a service, nysql d has no access to a console window, so no messages can be seen
there. If mysql d does not start, check the error log to see whether the server wrote any messages
there to indicate the cause of the problem. The error log is located in the MySQL data directory (for

97

Troubleshooting a Microsoft Windows MySQL Server Installation

example, C: \ Program Fi | es\ MySQL\ MySQL Server 5.7\ dat a). Itis the file with a suffix of
.err.

When a MySQL server has been installed as a service, and the service is running, Windows stops the
service automatically when Windows shuts down. The server also can be stopped manually by using
the Ser vi ces utility, the NET STOP MySQL command, or the nysql adm n shut down command.

You also have the choice of installing the server as a manual service if you do not wish for the service
to be started automatically during the boot process. To do this, use the - - i nst al | - nenual option
rather than the - - i nst al | option:

C\> "C \Program Fi | es\ MySQL\ MySQ. Server 5.7\bin\nysqgld" --install-nmanual
Removing the service

To remove a server that is installed as a service, first stop it if it is running by executing NET STOP
My SQL. Then use the - - r enove option to remove it:

C\> "C \Program Fi |l es\ My/SQ.\ MySQ. Server 5.7\bin\nysqgld" --renove

If mysqgl d is not running as a service, you can start it from the command line. For instructions, see
Section 2.3.5.5, “Starting MySQL from the Windows Command Line”".

If you encounter difficulties during installation. see Section 2.3.6, “Troubleshooting a Microsoft
Windows MySQL Server Installation”.

2.3.5.8 Testing The MySQL Installation

You can test whether the MySQL server is working by executing any of the following commands:

C\> "C \Program Fi | es\ \ySQL\ MySQL Server 5. 7\ bi n\ nysql show"

C\> "C \Program Fi | es\ \ySQL\ M\ySQ. Server 5.7\ bin\nysqgl show' -u root nysql

C\> "C \Program Fi | es\ \ySQL\ M\ySQ. Server 5.7\ bin\nysqgl adm n" version status proc
C\> "C \Program Fi | es\ \ySQL\ M\ySQL Server 5.7\bin\nysqgl" test

If mysql d is slow to respond to TCP/IP connections from client programs, there is probably a problem
with your DNS. In this case, start mysqgl d with the - - ski p- nanme- r esol ve option and use only
| ocal host and IP addresses in the Host column of the MySQL grant tables.

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the - -
pi pe or - - pr ot ocol =PI PE option, or by specifying . (period) as the host name. Use the - - socket
option to specify the name of the pipe if you do not want to use the default pipe name.

Note that if you have set a password for the r oot account, deleted the anonymous account, or created
a new user account, then to connect to the MySQL server you must use the appropriate - u and - p
options with the commands shown previously. See Section 4.2.2, “Connecting to the MySQL Server”.

For more information about mysql show, see Section 4.5.6, “mysql show— Display Database, Table,
and Column Information”.

2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation

When installing and running MySQL for the first time, you may encounter certain errors that prevent the
MySQL server from starting. This section helps you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the
error log to record information relevant to the error that prevents the server from starting. The error log
is located in the data directory specified in your my. i ni file. The default data directory location is C:

\ Program Fi | es\ MySQL\ MySQL Server 5.7\ data, orC:\ ProgranDat a\ Mysql on Windows
7 and Windows Server 2008. The C: \ Pr ogr anDat a directory is hidden by default. You need to
change your folder options to see the directory and contents. For more information on the error log and
understanding the content, see Section 5.2.2, “The Error Log".

98

Troubleshooting a Microsoft Windows MySQL Server Installation

For information regarding possible errors, also consult the console messages displayed when the
MySQL service is starting. Use the NET START MySQL command from the command line after
installing mysql d as a service to see any error messages regarding the starting of the MySQL server
as a service. See Section 2.3.5.7, “Starting MySQL as a Windows Service”.

The following examples show other common error messages you might encounter when installing
MySQL and starting the server for the first time:

* If the MySQL server cannot find the nmysql privileges database or other critical files, it displays these
messages:

System error 1067 has occurred.
Fatal error: Can't open and | ock privil ege tables:
Tabl e ' nysql .user' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different
locations than the default locations (C. \ Program Fi | es\ MySQL\ MySQL Server 5.7 and C:
\ Program Fi | es\ MySQL\ MySQL Server 5.7\ dat a, respectively).

This situation can occur when MySQL is upgraded and installed to a new location, but the
configuration file is not updated to reflect the new location. In addition, old and new configuration files
might conflict. Be sure to delete or rename any old configuration files when upgrading MySQL.

If you have installed MySQL to a directory other than C. \ Pr ogram Fi | es\ MySQL\ MySQL Ser ver
5. 7, ensure that the MySQL server is aware of this through the use of a configuration (rmy. i ni)

file. Put the ny. i ni file in your Windows directory, typically C. \ W NDOAS. To determine its exact
location from the value of the W NDI R environment variable, issue the following command from the
command prompt:

C:\> echo %N NDI R%

You can create or modify an option file with any text editor, such as Notepad. For example, if MySQL
is installed in E: \ mysqgl and the data directory is D: \ My SQLdat a, you can create the option file and
setup a[nysql d] section to specify values for the basedi r and dat adi r options:

[nysql d]

set basedir to your installation path

basedi r =E: / nysq|l

set datadir to the location of your data directory
dat adi r =D: / M\ySQLdat a

Note that Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[nysql d]

set basedir to your installation path

basedi r=C:\\ Program Fi | es\\ M\ySQ.\\ M\ySQ. Server 5.7

set datadir to the |ocation of your data directory
dat adi r=D: \\ M\ySQLdat a

The rules for use of backslash in option file values are given in Section 4.2.3.3, “Using Option Files”.

If you change the dat adi r value in your MySQL configuration file, you must move the contents of
the existing MySQL data directory before restarting the MySQL server.

See Section 2.3.5.2, “Creating an Option File”.

« If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service
and install MySQL using the MySQL Installer, you might see this error:

99

Upgrading MySQL on Windows

Error: Cannot create Wndows service for MySql. Error: O

This occurs when the Configuration Wizard tries to install the service and finds an existing service
with the same name.

One solution to this problem is to choose a service name other than mysqgl when using the
configuration wizard. This enables the new service to be installed correctly, but leaves the outdated
service in place. Although this is harmless, it is best to remove old services that are no longer in use.

To permanently remove the old nysql service, execute the following command as a user with
administrative privileges, on the command line:

C:\> sc del ete nysql
[SC] Del et eServi ce SUCCESS

If the sc utility is not available for your version of Windows, download the del sr v utility from http://
www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o0.asp and use the del srv
nysql syntax.

2.3.7 Upgrading MySQL on Windows

To upgrade MySQL on Windows, follow these steps:

1.

Review Section 2.10.1, “Upgrading MySQL”, for additional information on upgrading MySQL that is
not specific to Windows.

Always back up your current MySQL installation before performing an upgrade. See Section 7.2,
“Database Backup Methods”.

Download the latest Windows distribution of MySQL from http://dev.mysqgl.com/downloads/.
Before upgrading MySQL, stop the server. If the server is installed as a service, stop the service
with the following command from the command prompt:

C:\> NET STOP MySQL

If you are not running the MySQL server as a service, use nysql admi n to stop it. For example,
before upgrading from MySQL 5.6 to 5.7, use nysql adm n from MySQL 5.6 as follows:

C\> "C \Program Fi | es\ \ySQL\ M\ySQL Server 5.6\bin\nysqgl adm n" -u root shutdown

Note
@ If the MySQL r oot user account has a password, invoke mysql adni n with
the - p option and enter the password when prompted.

Before upgrading to MySQL 5.7 from a version previous to 4.1.5, or from a version of MySQL
installed from a Zip archive to a version of MySQL installed with the MySQL Installation Wizard, you
must first manually remove the previous installation and MySQL service (if the server is installed as
a service).

To remove the MySQL service, use the following command:

C\> C\nysqgl\bin\nysqgld --renove

If you do not remove the existing service, the MySQL Installation Wizard may fail to properly
install the new MySQL service.

If you are using the MySQL Installer, start it as described in Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”.

100

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://dev.mysql.com/downloads/

Windows Postinstallation Procedures

7. If you are upgrading MySQL from a Zip archive, extract the archive. You may either overwrite your
existing MySQL installation (usually located at C: \ nysql), or install it into a different directory,
such as C: \ mysqgl 5. Overwriting the existing installation is recommended. However, for upgrades
(as opposed to installing for the first time), you must remove the data directory from your existing
MySQL installation to avoid replacing your current data files. To do so, follow these steps:

a. Unzip the Zip archive in some location other than your current MySQL installation
b. Remove the data directory

c. Rezip the Zip archive

d. Unzip the modified Zip archive on top of your existing installation

Alternatively:

a. Unzip the Zip archive in some location other than your current MySQL installation
b. Remove the data directory

c. Move the data directory from the current MySQL installation to the location of the just-removed
data directory

d. Remove the current MySQL installation
e. Move the unzipped installation to the location of the just-removed installation

8. If you were running MySQL as a Windows service and you had to remove the service earlier in this
procedure, reinstall the service. (See Section 2.3.5.7, “Starting MySQL as a Windows Service”.)

9. Restart the server. For example, use NET START My SQL if you run MySQL as a service, or invoke
nysql d directly otherwise.

10. As Administrator, run mysql _upgr ade to check your tables, attempt to repair them if necessary,
and update your grant tables if they have changed so that you can take advantage of any new
capabilities. See Section 4.4.7, “nysql _upgr ade — Check and Upgrade MySQL Tables”.

11. If you encounter errors, see Section 2.3.6, “Troubleshooting a Microsoft Windows MySQL Server
Installation”.

2.3.8 Windows Postinstallation Procedures
GUI tools exist that perform most of the tasks described below, including:
» MySQL Installer: Used to install and upgrade MySQL products.
» MySQL Workbench: Manages the MySQL server and edits SQL queries.
» MySQL Notifier: Starts, stops, or restarts the MySQL server, and monitors its status.
» MySQL for Excel: Edits MySQL data with Microsoft Excel.

On Windows, you need not create the data directory and the grant tables. MySQL Windows
distributions include the grant tables with a set of preinitialized accounts in the mysql database under
the data directory. Regarding passwords, if you installed MySQL using the MySQL Installer, you may
have already assigned passwords to the accounts. (See Section 2.3.3, “Installing MySQL on Microsoft
Windows Using MySQL Installer”.) Otherwise, use the password-assignment procedure given in
Section 2.9.2, “Securing the Initial MySQL Accounts”.

Before setting up passwords, you might want to try running some client programs to make sure that
you can connect to the server and that it is operating properly. Make sure that the server is running
(see Section 2.3.5.4, “Starting the Server for the First Time”), and then issue the following commands
to verify that you can retrieve information from the server. You may need to specify directory different

101

Windows Postinstallation Procedures

from C: \ nysql \ bi n on the command line. If you used the MySQL Installer, the default directory is C:
\ Program Fi | es\ MySQL\ MySQL Server 5.7, andthe mysqgl and nysql showclient programs
arein C:\ Program Fi | es\ MySQL\ MySQL Server 5. 7\ bi n. See Section 2.3.3, “Installing MySQL
on Microsoft Windows Using MySQL Installer”, for more information.

Use nysql showto see what databases exist:

C.\> C \nysqgl\bi n\ nysqgl show

ooccccocsocccoscoooso +
| Dat abases |
ooccccocsocccoscoooso +
| informati on_schenma

| nysql I
| test
ooccccocsocccoscoooso +

The list of installed databases may vary, but will always include the minimum of nysql and
i nformati on_schemna. In most cases, the t est database will also be installed automatically.

The preceding command (and commands for other MySQL programs such as nysql) may not work if
the correct MySQL account does not exist. For example, the program may fail with an error, or you may
not be able to view all databases. If you installed using MySQL Installer, then the r oot user will have
been created automatically with the password you supplied. In this case, you should use the - u r oot
and - p options. (You will also need to use the - u r oot and - p options if you have already secured
the initial MySQL accounts.) With - p, you will be prompted for the r oot password. For example:

C.\> C\nysqgl\bin\nysqgl show -u root -p
Enter password: (enter root password here)

. +
| Dat abases |
. +
| information_schema

| nmysql |
| test
. +

If you specify a database name, nysql showdisplays a list of the tables within the database:

C.\> C\nysql\bin\nysqgl show nysq
Dat abase: mnysq

col ums_pri v

db

event

func

hel p_cat egory

hel p_keywor d

hel p_rel ation

hel p_t opi c

host

pl ugin

proc

procs_priv

servers

tables_priv

ti me_zone

ti me_zone_| eap_second
ti me_zone_nane
time_zone_transition
time_zone_transition_type
user

Use the nysql program to select information from a table in the mysql database:

102

Installing MySQL on Mac OS X

C\> C\nysqgl\bin\nysql -e "SELECT Host, Db, User FROM nysql . db"

doocooo doocoocooo doocooo +
| host | db | user |
doocooo doocoocooo doocooo +
| % | test | |
| % | test_%| |
doocooo doocoocooo doocooo +

For more information about nysql showand nysql , see Section 4.5.6, “nysql show— Display
Database, Table, and Column Information”, and Section 4.5.1, “nysql — The MySQL Command-Line
Tool".

If you are running a version of Windows that supports services, you can set up the MySQL server to
run automatically when Windows starts. See Section 2.3.5.7, “Starting MySQL as a Windows Service”.

2.4 Installing MySQL on Mac OS X

MySQL for Mac OS X is available in a number of different forms:

» Native Package Installer format, which uses the native Mac OS X installer to walk you through the
installation of MySQL. For more information, see Section 2.4.2, “Installing MySQL on Mac OS X
Using Native Packages”. You can use the package installer with Mac OS X 10.3 and later, and the
package is available for both PowerPC and Intel architectures, and 32-bit and 64-bit architectures.
There is no Universal Binary available using the package installation method. The user you use to
perform the installation must have administrator privileges.

» Tar package format, which uses a file packaged using the Unix t ar and gzi p commands. To
use this method, you will need to open a Ter m nal window. You do not need administrator
privileges using this method, as you can install the MySQL server anywhere using this method.
For more information on using this method, you can use the generic instructions for using a tarball,
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.You can use the package
installer with Mac OS X 10.3 and later, and available for both PowerPC and Intel architectures,
and both 32-bit and 64-bit architectures. A Universal Binary, incorporating both Power PC and Intel
architectures and 32-bit and 64-bit binaries is available.

In addition to the core installation, the Package Installer also includes Section 2.4.3, “Installing the
MySQL Startup Iltem” and Section 2.4.4, “Installing and Using the MySQL Preference Pane”, both of
which simplify the management of your installation.

» Mac OS X server includes a version of MySQL as standard. If you want to use a more recent version
than that supplied with the Mac OS X server release, you can make use of the package or tar
formats. For more information on using the MySQL bundled with Mac OS X, see Section 2.4.5,
“Using the Bundled MySQL on Mac OS X Server”.

For additional information on using MySQL on Mac OS X, see Section 2.4.1, “General Notes on
Installing MySQL on Mac OS X".

2.4.1 General Notes on Installing MySQL on Mac OS X

You should keep the following issues and notes in mind:

e The default location for the MySQL Unix socket is different on Mac OS X and Mac OS X Server
depending on the installation type you chose. The following table shows the default locations by
installation type.

Table 2.5 MySQL Unix Socket Locations on Mac OS X by Installation Type

Installation Type Socket Location
Package Installer from MySQL /tmp/ nysql . sock
Tarball from MySQL [tmp/ nysql . sock

103

General Notes on Installing MySQL on Mac OS X

Installation Type Socket Location

MySQL Bundled with Mac OS X Server /var/ nysql / mysqgl . sock

To prevent issues, you should either change the configuration of the socket used within your
application (for example, changing php. i ni), or you should configure the socket location using a
MySQL configuration file and the socket option. For more information, see Section 5.1.3, “Server
Command Options”.

You may need (or want) to create a specific mysql user to own the MySQL directory and data. On
Mac OS X 10.4 and lower you can do this by using the Net i nf o Manager application, located
within the Ut i | i ti es folder within the Appl i cat i ons folder. On Mac OS X 10.5 and later you

can do this through the Di rect ory Utility. From Mac OS X 10.5 and later (including Mac OS X
Server 10.5) the mysql should already exist. For use in single user mode, an entry for _nysql (note
the underscore prefix) should already exist within the system / et ¢/ passwd file.

Due to a bug in the Mac OS X package installer, you may see this error message in the destination
disk selection dialog:

You cannot install this software on this disk. (null)

If this error occurs, click the Go Back button once to return to the previous screen. Then click
Cont i nue to advance to the destination disk selection again, and you should be able to choose the
destination disk correctly. We have reported this bug to Apple and it is investigating this problem.

If you get an “insecure startup item disabled” error when MySQL launches, use the following
procedure. Adjust the pathnames appropriately for your system.

1. Modify the mysql . scri pt using this command (enter it on a single line):

shel | > sudo / Appl i cations/ Text Edi t . app/ Cont ent s/ MacOS/ Text Edi t
/usr/local /mysql / support-files/nysql.server

2. Locate the option file that defines the basedi r value and modify it to contain these lines:

basedi r=/usr/ | ocal / nysql
dat adi r =/ usr /| ocal / nysql / dat a

Inthe/ Li brary/ Startupltens/ MySQLCOM directory, make the following group ID changes
from st af f to wheel :

shel | > sudo chgrp wheel MySQLCOM StartupParaneters. pli st
3. Start the server from System Preferences or Terminal.app.

Because the MySQL package installer installs the MySQL contents into a version and platform
specific directory, you can use this to upgrade and migrate your database between versions. You
will need to either copy the dat a directory from the old version to the new version, or alternatively
specify an alternative dat adi r value to set location of the data directory.

You might want to add aliases to your shell's resource file to make it easier to access commonly
used programs such as nysql and mysql admi n from the command line. The syntax for bash is:

al i as nysql =/ usr/ | ocal / mysql / bi n/ nysql
al i as nysql adm n=/usr /| ocal / mysql / bi n/ mysqgl adm n

For t csh, use:

alias nmysqgl /usr/local/nmysql/bin/nmysql

104

Installing MySQL on Mac OS X Using Native Packages

al i as mysql admi n /usr/ | ocal / nysql / bi n/ mysql admi n

Even better, add / usr/ | ocal / mysqgl / bi n to your PATH environment variable. You can do this
by modifying the appropriate startup file for your shell. For more information, see Section 4.2.1,
“Invoking MySQL Programs”.

» After you have copied over the MySQL database files from the previous installation and have
successfully started the new server, you should consider removing the old installation files to save
disk space. Additionally, you should also remove older versions of the Package Receipt directories
located in/ Li brary/ Recei pt s/ nysql - VERSI ON. pkg.

2.4.2 Installing MySQL on Mac OS X Using Native Packages

You can install MySQL on Mac OS X 10.3.x (“Panther”) or newer using a Mac OS X binary package in
DMG format instead of the binary tarball distribution. Please note that older versions of Mac OS X (for
example, 10.1.x or 10.2.x) are not supported by this package.

The package is located inside a disk image (. dnp) file that you first need to mount by double-clicking
its icon in the Finder. It should then mount the image and display its contents.

Note
@ Before proceeding with the installation, be sure to stop all running MySQL
server instances by using either the MySQL Manager Application (on Mac OS X
Server) or nysql adm n shut down on the command line.
When installing from the package version, you should also install the MySQL Preference Pane, which
will enable you to control the startup and execution of your MySQL server from System Preferences.
For more information, see Section 2.4.4, “Installing and Using the MySQL Preference Pane”.

When installing using the package installer, the files are installed into a directory within / usr/

| ocal matching the name of the installation version and platform. For example, the installer file
mysql - 5. 1. 39- 0sx10. 5- x86_64. pkg installs MySQL into / usr/ | ocal / nysql -5. 1. 39-
0sx10. 5-x86_64 . The following table shows the layout of the installation directory.

Table 2.6 MySQL Installation Layout on Mac OS X

Directory Contents of Directory

bin Client programs and the nysql d server

dat a Log files, databases

docs Manual in Info format

i ncl ude Include (header) files

lib Libraries

man Unix manual pages

mysql -t est MySQL test suite

scripts nysql _install _db

share Miscellaneous support files, including error messages,
sample configuration files, SQL for database installation

sql - bench Benchmarks

support-files Scripts and sample configuration files

/tnp/ nysql . sock Location of the MySQL Unix socket

During the package installer process, a symbolic link from / usr /| ocal / nysql to the version/platform
specific directory created during installation will be created automatically.

105

Installing MySQL on Mac OS X Using Native Packages

1. Download and open the MySQL package installer, which is provided on a disk image (. dng) that
includes the main MySQL installation package, the MySQLSt ar t upl t em pkg installation package,
and the MySQL. pr ef Pane. Double-click the disk image to open it.

2. Double-click the MySQL installer package. It will be named according to the version of MySQL
you have downloaded. For example, if you have downloaded MySQL 5.1.39, double-click
nysql - 5. 1. 39- osx10. 5- x86. pkg.

3. You will be presented with the opening installer dialog. Click Continue to begin installation.

d0O0n < Install MySQL 5.1.39-community for Mac 0S X

Welcome to the MySQL 5.1.39-community for Mac OS5 X Installer

& Introduction

Read Me You will be guided through the steps necessary to

install this software,
License k-

Destination:Seleft %
nstallation Type
nstallation

M. Summary

Go Back Continue
A

4. A copy of the installation instructions and other important information relevant to this installation are
displayed. Click Continue .

5. If you have downloaded the community version of MySQL, you will be shown a copy of the relevant
GNU General Public License. Click Continue .

6. Select the drive you want to use to install the MySQL Startup Item. The drive must have a valid,
bootable, Mac OS X operating system installed. Click Continue.

106

Installing the MySQL Startup Item

[o NN < Install MySQL 5.1.39-community for Mac 0S X
Select a Destination
Select the volume where you want to install the MySQL

& Introduction 5.1.39-community for Mac OS X software.
& Read Me 1 S ,L
& License e
© Destination Select C

nstallagion Type Macintosh HD

47.7 GB available

nstallation 92.8 GB total

W Summary
‘ Co Back . Continue
A

You will be asked to confirm the details of the installation, including the space required for the
installation. To change the drive on which the startup item is installed, click either Go Back or
Change Install Location.... To install the startup item, click Install.

Once the installation has been completed successfully, you will be shown an Install Succeeded
message.

For convenience, you may also want to install the startup item and preference pane. See Section 2.4.3,
“Installing the MySQL Startup Item”, and Section 2.4.4, “Installing and Using the MySQL Preference
Pane”.

2.4.3 Installing the MySQL Startup Item

The MySQL Installation Package includes a startup item that can be used to automatically start and
stop MySQL.

To install the MySQL Startup Item:

1.

Download and open the MySQL package installer, which is provided on a disk image (. dng) that
includes the main MySQL installation package, the MySQLSt ar t upl t em pkg installation package,
and the My SQL. pr ef Pane. Double-click the disk image to open it.

Double-click the MySQLSt art | t em pkg file to start the installation process.

You will be presented with the Install MySQL Startup Item dialog.

107

Installing the MySQL Startup Item

e 00 « Install MySQL Startup Item

Welcome to the MySQL Startup Item Installer

& Introduction

Read Me You will be guided through the steps necessary to

install this software.
DestinationtGeleg
nstallatian 'rype'.
nstallagion
Summary

v ———
Co Back Continue)

A

Click Continue to continue the installation process.

4. A copy of the installation instructions and other important information relevant to this installation are
displayed. Click Continue .

5. Select the drive you want to use to install the MySQL Startup Item. The drive must have a valid,
bootable, Mac OS X operating system installed. Click Continue.

108

Installing the MySQL Startup Item

00 & Install MySQL Startup Item

Select a Destination

Select the volume where you want to install the MySQL
Startup ltem software.

& Introduction

) Read Me
© Destination Sel

Installatian Tyga

Installagion Macintosh HD
47.7 GB available
Sumrmiary 92.8 GB total
e a Installing this software requires 8.0 KB of space.

You have chosen to install this software on the volume
"*Macintosh HD".

(" Go Back \'I (" Continue \'I
A

6. You will be asked to confirm the details of the installation. To change the drive on which the startup
item is installed, click either Go Back or Change Install Location.... To install the startup item, click
Install.

7. Once the installation has been completed successfully, you will be shown an Install Succeeded
message.

109

Installing and Using the MySQL Preference Pane

|00 we Install MySQL Startup ltem

Installation completed successfully

& Introduction
& Read Me
o Destination Select

& Installation Type

© Installation Install Succeeded

O Summary

The software was successfully installed.

I!_ Close _:I

£

The Startup Item for MySQL is installed into / Li brary/ St art upl t enms/ MySQLCOM The Startup Item
installation adds a variable MYSQLCOVE=- YES- to the system configuration file / et ¢/ host confi g. If
you want to disable the automatic startup of MySQL, change this variable to MYSQLCOVE- NO- .

After the installation, you can start and stop MySQL by running the following commands in a terminal
window. You must have administrator privileges to perform these tasks, and you may be prompted for
your password.

If you have installed the Startup Item, use this command to start the server:

shel | > sudo /Library/ Startupltens/ M/SQ.COM MySQLCOM st ar t

If you have installed the Startup Item, use this command to stop the server:

shel | > sudo /Library/ Startupltenms/ M/SQLCOM MySQLCOM st op

2.4.4 Installing and Using the MySQL Preference Pane

The MySQL Package installer disk image also includes a custom MySQL Preference Pane that
enables you to start, stop, and control automated startup during boot of your MySQL installation.

To install the MySQL Preference Pane:

1. Download and open the MySQL package installer package, which is provided on a disk image
(. dng) that includes the main MySQL installation package, the MySQLSt ar t upl t em pkg
installation package, and the MySQL. pr ef Pane. Double-click the disk image to open it.

2. Double-click the MySQL. pr ef Pane. The MySQL System Preferences will open.

3. If this is the first time you have installed the preference pane, you will be asked to confirm
installation and whether you want to install the preference pane for all users, or only the current

110

Installing and Using the MySQL Preference Pane

user. To install the preference pane for all users you will need administrator privileges. If necessary,
you will be prompted for the username and password for a user with administrator privileges.

4. If you already have the MySQL Preference Pane installed, you will be asked to confirm whether you
want to overwrite the existing MySQL Preference Pane.

from the MySQL package installation that have been installed in the default

Note
@ The MySQL Preference Pane only starts and stops MySQL installation installed
location.

Once the MySQL Preference Pane has been installed, you can control your MySQL server instance
using the preference pane. To use the preference pane, open the System Preferences... from the
Apple menu. Select the MySQL preference pane by clicking the MySQL logo within the Other section
of the preference panes list.

SOoOC MySQL
| <[> || ShowaAll | Q

MySQL Server Status
The MySQL Database Server is currently stopped.

/ i;w-\'\.}
i‘;‘? To start it, use the "Start MySQL Server” button.
S

The MySQL Server Instance is stopped .f Start MySQL Server \‘

[Automatically Start MySQOL Server on Startup
You may select to have the MySQOL server start C
automatically whenewver your computer starts up. la,

My

The MySQL Preference Pane shows the current status of the MySQL server, showing stopped (in
red) if the server is not running and running (in green) if the server has already been started. The
preference pane also shows the current setting for whether the MySQL server has been set to start
automatically.

* To start MySQL using the preference pane:

Click Start MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to start the MySQL server.

» To stop MySQL using the preference pane:

Click Stop MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to stop the MySQL server.

» To automatically start the MySQL server when the system boots:
Check the check box next to Automatically Start MySQL Server on Startup.

e To disable automatic MySQL server startup when the system boots:
Uncheck the check box next to Automatically Start MySQL Server on Startup.

You can close the Syst em Pr ef er ences. . . window once you have completed your settings.

111

Using the Bundled MySQL on Mac OS X Server

2.4.5 Using the Bundled MySQL on Mac OS X Server

If you are running Mac OS X Server, a version of MySQL should already be installed. The following
table shows the versions of MySQL that ship with Mac OS X Server versions.

Table 2.7 MySQL Versions Preinstalled with Mac OS X Server

Mac OS X Server Version MySQL Version
10.2-10.2.2 3.23.51
10.2.3-10.2.6 3.23.53

10.3 4.0.14

10.3.2 4.0.16

10.4.0 4.1.10a

10.5.0 5.0.45

10.6.0 5.0.82

The following table shows the installation layout of MySQL on Mac OS X Server.

Table 2.8 MySQL Directory Layout for Preinstalled MySQL Installations on Mac OS X Server

Directory Contents of Directory

/usr/bin Client programs

[var/ nmysql Log files, databases

lusr/libexec The nmysql d server

[usr/ shar e/ man Unix manual pages

[usr/share/ nysql / nysql - MySQL test suite

t est

[usr/ shar e/ nysql Miscellaneous support files, including error messages, character
set files, sample configuration files, SQL for database installation

/var/ nysql / mysql . sock Location of the MySQL Unix socket

Additional Resources

» For more information on managing the bundled MySQL instance in Mac OS X Server 10.5, see Mac
OS X Server: Web Technologies Administration For Version 10.5 Leopard.

» For more information on managing the bundled MySQL instance in Mac OS X Server 10.6, see Mac
OS X Server: Web Technologies Administration Version 10.6 Snow Leopard.

» The MySQL server bundled with Mac OS X Server does not include the MySQL client libraries and
header files required to access and use MySQL from a third-party driver, such as Perl DBI or PHP.
For more information on obtaining and installing MySQL libraries, see Mac OS X Server version
10.5: MySQL libraries available for download. Alternatively, you can ignore the bundled MySQL
server and install MySQL from the package or tarball installation.

2.5 Installing MySQL on Linux

Linux supports a number of different solutions for installing MySQL. We recommend that you use one
of the distributions from Oracle, for which several methods for installation are available:

« Installing from a generic binary package in . t ar. gz format. See Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries” for more information.

» Extracting and compiling MySQL from a source distribution. For detailed instructions, see
Section 2.8, “Installing MySQL from Source”.

112

http://images.apple.com/server/macosx/docs/Web_Technologies_Admin_v10.5.pdf
http://images.apple.com/server/macosx/docs/Web_Technologies_Admin_v10.5.pdf
http://manuals.info.apple.com/en_US/WebTech_v10.6.pdf
http://manuals.info.apple.com/en_US/WebTech_v10.6.pdf
http://support.apple.com/kb/TA25017
http://support.apple.com/kb/TA25017

Installing MySQL on Linux Using the MySQL Yum Repository

« Installing with Yum using the MySQL Yum repository. For detailed instructions, see Section 2.5.1,
“Installing MySQL on Linux Using the MySQL Yum Repository”.

« Installing using a precompiled RPM package. For more information, see Section 2.5.3, “Installing
MySQL on Linux Using RPM Packages”.

« Installing using a precompiled Debian package. For more information, see Section 2.5.4, “Installing
MySQL on Linux Using Debian Packages”.

As an alternative, you can use the package manager on your system to automatically download

and install MySQL with packages from the native software repositories of your Linux distribution.
These native packages are often several versions behind the currently available release. You will also
normally be unable to install development milestone releases (DMRS), as these are not usually made
available in the native repositories. For more information on using the native package installers, see
Section 2.5.5, “Installing MySQL on Linux Using Native Package Managers”.

Note

@ For many Linux installations, you will want to set up MySQL to be started
automatically when your machine starts. Many of the native package
installations perform this operation for you, but for source, binary and RPM
solutions you may need to set this up separately. The required script,
nysql . server, can be found in the suppor t-fi | es directory under the
MySQL installation directory or in a MySQL source tree. You can install it
as/etc/init.d/ nysql forautomatic MySQL startup and shutdown. See
Section 2.9.1.2, “Starting and Stopping MySQL Automatically”.

2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository
MySQL provides a Yum-style software repository for the following Linux platforms:

» ELS5, EL6, and EL7-based platforms (for example, the relevant versions of Red Hat Enterprise Linux,
Oracle Linux, and CentOS)

* Fedora 19 and 20

Currently, the MySQL Yum repository for the above-mentioned platforms provides RPM packages for
installing the MySQL server, client, MySQL Workbench, MySQL Utilities (not available for EL5-based
platforms), Connector/ODBC, and Connector/Python (not available for EL5-based platforms).

Before You Start

As a popular, open-source software, MySQL, in its original or re-packaged form, is widely installed on
many systems from various sources, including different software download sites, software repositories,
and so on. The following instructions assume that no versions of MySQL (whether distributed by
Oracle or other parties) have already been installed on your system; if that is not the case, see
Section 2.10.1.1, “Upgrading MySQL with the MySQL Yum Repository” or Section 2.5.2, “Replacing a
Third-Party Distribution of MySQL Using the MySQL Yum Repository”.

Steps for a Fresh Installation of the latest GA Version of MySQL
Follow the steps below to install the latest GA version of MySQL with the MySQL Yum repository:
Adding the MySQL Yum Repository

First, add the MySQL Yum repository to your system's repository list. This is a one-time operation,
which can be performed by installing an RPM provided by MySQL. Follow these steps:

a. Go to the Download MySQL Yum Repository page (http://dev.mysqgl.com/downloads/repo) in the
MySQL Developer Zone.

b. Select and download the release package for your platform.

113

http://dev.mysql.com/downloads/repo/
http://dev.mysql.com/downloads/repo/
http://dev.mysql.com/downloads/repo

Installing MySQL on Linux Using the MySQL Yum Repository

c. Install the downloaded release package with the following command (except for EL5-based
systems), replacing pl at f or m and- ver si on- speci f i ¢ with the name of the downloaded
RPM file:

shel | > sudo yum | ocalinstall platform and-version-specific.rpm

For an EL6-based system, the command is in the form of:

shel | > sudo yum |l ocalinstall nysql-conmmunity-rel ease-el 6-{versi on-nunber}.noarch.rpm

For an EL7-based system:

shel | > sudo yum | ocal install mysql-community-rel ease-el 7-{versi on-nunber}. noarch.rpm

For Fedora 19:

shel | > sudo yum | ocal i nstall mysql - communi ty-rel ease-fcl19-{version-nunber}.noarch.rpm

For Fedora 20:

shel | > sudo yum |l ocalinstall nysql-conmmunity-rel ease-fc20-{version-nunber}.noarch.rpm

For an EL5-based system, use the following command instead:

shel | > sudo rpm - Uvh nysql - communi ty-rel ease- el 5-{versi on- nunber }. noarch. rpm

The installation command adds the MySQL Yum repository to your system's repository and
downloads the GnuPG key to check the integrity of the software packages. See Section 2.1.4.2,
“Signature Checking Using GhuPG’ for details on GnuPG key checking.

You can check that the MySQL Yum repository has been successfully added by the following
command:

shel | > yum repol i st enabled | grep "nysqgl.*-community.*"

Note

@ Once the MySQL Yum repository is enabled on your system, any system-
wide update by the yum updat e command will upgrade MySQL packages
on your system and also replace any native third-party packages, if Yum
finds replacements for them from within the MySQL Yum repository; see
Section 2.10.1.1, “Upgrading MySQL with the MySQL Yum Repository”
and, for a discussion on some possible effects of that on your system, see
Upgrading to the Shared Client Libraries.

Installin@-MySQL with Yum

Install MySQL by the following command:

shel | > sudo yuminstall mnysql-server

This installs the package for MySQL server (nysql - conmruni t y- ser ver) and also packages for
the components required to run the server, including packages for the client (mysql - comuni t y-
cl i ent), the common error messages and character sets for client and server (nysql -

conmuni t y- conmon), and the shared client libraries (mysql - communi ty-11i bs).

114

Installing MySQL on Linux Using the MySQL Yum Repository

Starting @nd Stopping the MySQL Server

Start the MySQL server with the following command:

shel | > sudo service nysqld start

This is a sample output of the above command:

Starting nysqgld:[OK]

You can check the status of the MySQL server with the following command:
shel | > sudo service nmysqld status

This is a sample output of the above command:

nmysqld (pid 3066) is running

Stop the MySQL server with the following command:

shel | > sudo service nmysqld stop

Securingtthe MySQL Installation

Always run the program nysqgl _secure_i nstal | ati on to secure your MySQL installation:

shel | > mysql _secure_installation

nysql secure_install ation allows you to perform important operations like setting
root password, removing anonymous users, and so on. The program is safe and easy to
use. It is important to remember the root password you set though. See Section 4.4.5,
“nmysql secure_installation— Improve MySQL Installation Security” for details.

For more information on the postinstallation procedures, see Section 2.9, “Postinstallation Setup and
Testing”.

Installing Additional MySQL Products and Components with Yum

You can use Yum to install and manage individual components of MySQL. Some of these components
are hosted in sub-repositories of the MySQL Yum repository: for example, the MySQL Connectors

are to be found in the MySQL Connectors Community sub-repository, and the MySQL Workbench in
MySQL Tools Community. You can use the following command to list the packages for all the MySQL
components available for your platform from the MySQL Yum repository:

shel | > sudo yum - -di sabl erepo=* --enabl erepo='nysql *-community*' |ist avail able

Install any packages of your choice with the following command, replacing package- nane with name
of the package:

shel | > sudo yuminstall package-nane

For example, to install MySQL Workbench:

shel | > sudo yuminstall mysql-workbench-community
To install the shared client libraries:
shel | > sudo yuminstall mysql-community-Iibs
Steps for a Fresh Installation of a Developer Milestone Release (DMR) of MySQL

Follow the steps below to install a developer milestone release (DMR) of MySQL with the MySQL Yum
repository:

115

Installing MySQL on Linux Using the MySQL Yum Repository

Warning
O Developer milestone releases (DMRs) are for use at your own risk. Significant
development changes take place in milestone releases and you may encounter
compatibility issues, such as data format changes that require attention in
addition to the usual procedure of running mysql_upgrade. For example, you
may find it necessary to dump your data with mysqldump before the upgrade
and reload it afterward.

1. Add the MySQL Yum repository by following the instructions given in Adding the MySQL Yum

Repository.

Enable and disable the appropriate sub-repositories. Inside the MySQL Yum repositories, different
release series of the MySQL Community Server are hosted in different sub-repositories. Sub-
repository for the latest GA series (currently 5.6) is enabled by default, and sub-repositories for

all other series (for example, the 5.7 series, currently still in developer milestone release (DMR)
status) are disabled by default. Use this command to see all the sub-repositories in the MySQL
Yum repository:

shell > yumrepolist all | grep "nysqgl.*-community.*"

To install the latest release from a specific series other than the latest GA series, simply disable the
sub-repository for the latest GA series and enable the sub-repository for the specific series before
running the yum i nst al | command. This is how it can be done, if, for example, you want to install
the 5.7 DMR series:

shel | > sudo yum confi g- manager --di sable nysql 56- comunity
shel | > sudo yum confi g- manager --enable nysql 57- conmuni ty-dnr

You can also enable and disable sub-repositories by editing manually the / et ¢/ yum r epos. d/
nysql - conmuni ty. r epo file. This is a typical entry for a sub-repository in the file:

Enable to use MySQL 5.6

[mysql 56- conmuni ty]

name=MySQL 5.6 Community Server

baseur| =//repo. nysql . conl yuni nysql - 5. 6- conmuni ty/ el / 5/ $basear ch/
enabl ed=1

gpgcheck=1

gpgkey=fil e:/etc/pki/rpm gpg/ RPM GPG KEY- nysq

Find the entry for the sub-repository you want to configure, and edit the enabl ed= line. Make
enabl ed=0 to disable a sub-repository, or enabl ed=1 to enable a sub-repository.

You can verify that the enabling and disabling of sub-repositories have been done correctly by run
the following command and check its output:

shel |l > yum repol i st enabled | grep "nysql.*-community.*"

sub-repositories for more than one release series are enabled, the latest

Note
@ You can only enable sub-repository for one release series at a time. When
series will be used by Yum.

Then, install the MySQL server from the chosen series by the command:

shel | > sudo yuminstall nysql-server

Follow the instructions given in Securing the MySQL Installation and Starting and Stopping the
MySQL Server.

116

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

Updating MySQL with Yum

Besides installation, you can also perform updates for MySQL products and components using the
MySQL Yum repository. See Section 2.10.1.1, “Upgrading MySQL with the MySQL Yum Repository”
for details.

2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum
Repository

Different distributions of MySQL are distributed by different parties through their own software
repositories or download sites. You can replace a third-party distribution of MySQL using the MySQL
Yum repository in a few steps.

Backing LJp Your Database

To avoid loss of data, always back up your database before trying to replace your MySQL
installation using the MySQL Yum repository. See Chapter 7, Backup and Recovery on how to back
up your database.

StoppindYum from Receiving MySQL Packages from Third-Party, Non-Native
Repositories

Before you can use the MySQL Yum repository for installing (or updating) MySQL, you must stop
your system from receiving MySQL packages from any third-party, non-native Yum repositories.

One way to check whether Yum is now receiving third-party MySQL distributions from other
repositories is to use the following command:

shell> yumlist installed nmysql*

This is a sample output for the command:

nysql . i 686 5.1.69-1.el6_4 @pdat es
nysql -1i bs. i 686 5.1.69-1.el6_4 @pdat es
nysql - server. i 686 5.1.69-1.el6_4 @pdat es

The output shows the names of the packages of the third-party MySQL distribution that are installed
and, on the right-hand side, the repository (which is named updat es, a native repository for the
Linux distribution) from which they were installed.

However, sometimes the names of the packages of the third-party distribution might not contain the
string “mysql” in it. It might be useful to search also with this command:

shel | > yum - - di sabl erepo=* provi des nysql*

The following is a sample output of the command:

Mar i aDB- conpat - 10. 0. 4-1.i 686 ...

Repo : installed
Mat ched from
Q her : nysql-libs

Mari aDB- server-10.0.4-1.i686 ...

Repo : installed
Mat ched from
Q her : nysql -server

117

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

From the result we can see the names of some of the packages for the installed third-party
distribution of MySQL (Mar i aDB- ser ver and Mar i aDB- conpat). To try to get an exhaustive
list of packages installed for this third-party distribution of MySQL, it might be helpful to search for
installed packages of similar names with, for example, the following command:

shell> yumlist installed mariadb*

This is a sample output for the command:

Mar i aDB- cormon. i 686 10.0.4-1 @rar i adb
Mar i aDB- conpat . i 686 10.0.4-1 @rar i adb
Mar i aDB- ser ver. i 686 10.0.4-1 @rar i adb

From the command output, we can identify all the installed packages (Mar i aDB- conmon,
Mar i aDB- conpat , and Mar i aDB- ser ver) and the third-party Yum repository from which they
were installed (named mar i adb).

The next step is to stop Yum from receiving packages from the third-party Yum repository:

shel | > sudo yum confi g- manager --di sable mari adb

repositories, this step is usually not required, unless you have explicitly

Note
@ For platforms like Fedora 19 and 20 that install MySQL from the native
added a third-party Yum repository for MySQL packages.

Adding the MySQL Yum Repository

Once the third-party Yum repository has been disabled, add the MySQL Yum repository to your
system's repository list by following the instructions given in Adding the MySQL Yum Repository.

Uninstaling the Third-Party MySQL Distribution and Installing MySQL with the MySQL
Yum Repository

The installed third-party MySQL distribution must first be uninstalled before you can use the MySQL
Yum repository to install MySQL, or the installation process will give an error.

Assuming that, as in the example above, the third-part MySQL packages you have found are
named Mar i aDB- conmon, Mar i aDB- conpat , and Mar i aDB- ser ver, uninstall them with the
following command:

shel | > sudo yum renove MariaDB-common Mari aDB- conpat Mari aDB- server

Note

@ If your third-party MySQL distribution was not installed by Yum or by an
RPM installer, you will not be able to detect and then uninstall it by Yum. If
you are not sure what to do in that case, consult a system administrator or
the original third-party distributor.

Then, install MySQL from the MySQL Yum repository with the following command:

shel | > sudo yuminstall nysql-server

The MySQL server and other components required to run the server, including the client, the
shared client libraries, and the common error messages and character sets for client and server,
are now installed from the MySQL Yum repository. To install more components for MySQL, see

118

Installing MySQL on Linux Using RPM Packages

Installing Additional MySQL Products and Components with Yum. Follow the postinstallation
procedures explained in Section 2.9, “Postinstallation Setup and Testing”.

2.5.3 Installing MySQL on Linux Using RPM Packages

Note
@ To install or upgrade to MySQL 5.7.2, be sure to read the special instructions at
the end of this section.

The recommended way to install MySQL on RPM-based Linux distributions that use gl i bc is by

using the RPM packages provided by MySQL. There are two methods for doing so: for EL5, EL6, or
EL7-based platforms and Fedora 19 or 20, this can be done using the MySQL Yum repository (see
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository” for details); for other
platforms, we provide various RPM packages that work for different platforms, and this section explains
how these packages work.

For non-RPM Linux distributions, you can install MySQL using a . t ar . gz package. See Section 2.2,
“Installing MySQL on Unix/Linux Using Generic Binaries”.

Installations created from our Linux RPM distributions result in files under the system directories shown
in the following table.

Table 2.9 MySQL Installation Layout for Linux RPM Packages

Directory Contents of Directory

[usr/bin Client programs and scripts

/usr/sbin The nysql d server

[var/lib/mysqgl Log files, databases

/usr/share/info Manual in Info format

[usr/ shar e/ man Unix manual pages

/usr/incl ude/ nysql Include (header) files

lusr/1ib/mysqgl Libraries

[usr/ shar e/ nysql Miscellaneous support files, including error messages,
character set files, sample configuration files, SQL for
database installation

[usr/ sharel/ sql - bench Benchmarks

Note
@ RPM distributions of MySQL are also provided by other vendors. Be aware that

they may differ from those built by us in features, capabilities, and conventions
(including communication setup), and that the instructions in this manual do
not necessarily apply to installing them. The vendor's instructions should be
consulted instead. Because of these differences, RPM packages built by us
check whether such RPMs built by other vendors are installed. If so, the RPM
does not install and produces a message explaining this.

Conflicts can arise when an RPM from another vendor is already installed, such
as when a vendor's convention about which files belong with the server and
which belong with the client library differ from the breakdown used for Oracle
packages. In such cases, attempts to install an Oracle RPM withr pm -i may
result in messages that files in the RPM to be installed conflict with files from an
installed package (denoted mysql - | i bs in the following paragraphs).

We provide a MySQL- shar ed- conpat package with each MySQL release.
This package is meant to replace nmysql - | i bs and provides a replacement-

119

Installing MySQL on Linux Using RPM Packages

compatible client library for older MySQL series. MySQL- shar ed- conpat is
set up to make nmysql - | i bs obsolete, but r pmexplicitly refuses to replace
obsoleted packages when invoked with - i (unlike - U), which is why installation
with r pm -1 produces a conflict.

MySQL- shar ed- conpat can safely be installed alongside mysql -1 i bs
because libraries are installed to different locations. Therefore, it is possible

to install shared-compat first, then manually remove nysql - | i bs before
continuing with the installation. After mysql-libs is removed, the dynamic linker
stops looking for the client library in the location where nysql -1 i bs puts it, and

the library provided by the MySQL- shar ed- conpat package takes over.

Another alternative is to install packages using yum In a directory containing all
RPM packages for a MySQL release, yum i nstal | MySQL* r pminstalls them
in the correct order and removes nysql - | i bs in one step without conflicts.

In most cases, you need to install only the MySQL- ser ver and MySQL- cl i ent packages to get a
functional MySQL installation. The other packages are not required for a standard installation.

As of MySQL 5.7.4, MySQL deployments installed using RPM packages are secure by default and
have these characteristics:

» The installation process creates a single r oot account, ' root' @ | ocal host "', automatically
generates a random password for this account, and marks the password expired.

e The initial random r oot password is written to the . mysql _secr et file in the directory named
by the HOVE environment variable. Depending on operating system, using a command such
as sudo may cause the value of HOVE to refer to the home directory of the r oot system user.
. mysgl _secret is created with mode 600 to be accessible only to the system user for whom it is
created.

If . mysqgl _secr et already exists, the new password information is appended to it. Each password
entry includes a timestamp so that in the event of multiple install operations it is possible to
determine the password associated with each one.

» No anonymous-user MySQL accounts are created.
* Notest database is created.

As a result of these actions, it is necessary after installation to start the server, connect as r oot
using the password written to the . nysql _secr et file, and select a new r oot password. Until
this is done, r oot cannot do anything else. To change the password, you can use the SET
PASSWORD statement (for example, with the nysqgl client). You can also use nysql admi n or
nysqgl secure_installation.

Before MySQL 5.7.4, new RPM install operations produce similar deployment characteristics, except
that multiple r oot accounts may be created, and the t est database is created.

For upgrades, if your installation was originally produced by installing multiple RPM packages, it is
best to upgrade all the packages, not just some. For example, if you previously installed the server and
client RPMs, do not upgrade just the server RPM.

If the data directory exists at RPM installation time, the installation process does not modify existing
data. This has the effect, for example, that accounts in the grant tables are not initialized to the default
set of accounts.

If you get a dependency failure when trying to install MySQL packages (for example, er r or :

removi ng these packages woul d break dependencies: |ibnysglclient.so.10 is
needed by ...), you should also install the MySQL- shar ed- conpat package, which includes the
shared libraries for older releases for backward compatibility.

120

Installing MySQL on Linux Using RPM Packages

The RPM packages shown in the following list are available. The names shown here use a suffix of
.linux_glibc2.5.i386.rpm but particular packages can have different suffixes, described later.

* MySQL-server-VERSION. |inux_glibc2.5.i386.rpm

The MySQL server. You need this unless you only want to connect to a MySQL server running on
another machine.

e MySQ.-client-VERSION.Iinux_glibc2.5.i386.rpm

The standard MySQL client programs. You probably always want to install this package.

e MySQL-devel -VERSI ON. | i nux_glibc2.5.i386.rpm

The libraries and include files that are needed if to compile other MySQL clients, such as the Perl
modules. Install this RPM if you intend to compile C API applications.

* MySQL-shared- VERSI ON. | i nux_gl i bc2.5.i386.rpm

This package contains the shared libraries (I i brmysql cl i ent . so*) that certain languages and
applications need to dynamically load and use MySQL. It contains single-threaded and thread-
safe libraries. Install this RPM if you intend to compile or run C API applications that depend on the
shared client library.

* MySQ.- shar ed- conpat - VERSI ON. | i nux_gl i bc2.5.1386.rpm

This package includes the shared libraries for older releases, but not the libraries for the current
release. It contains single-threaded and thread-safe libraries. Install this package if you have
applications installed that are dynamically linked against older versions of MySQL but you want to
upgrade to the current version without breaking the library dependencies.

The MySQL- shar ed- conpat RPM package enables users of Red Hat-provided nysql -*-5. 1
RPM packages to migrate to Oracle-provided My SQL- *- 5. 5 packages. MySQL- shar ed- conpat
replaces the Red Hat nysql - | i bs package by replacing | i brrysql cl i ent . so files of the latter
package, thus satisfying dependencies of other packages on mysql - | i bs. This change affects only
users of Red Hat (or Red Hat-compatible) RPM packages. Nothing is different for users of Oracle
RPM packages.

« MySQL- enbedded- VERSI ON. | i nux_gl i bc2. 5.1 386.rpm

The embedded MySQL server library.

e MySQL-test-VERSION. |inux_glibc2.5.i386.rpm

This package includes the MySQL test suite.

« MySQL- VERSI ON. src. rpm

This contains the source code for all of the previous packages. It can also be used to rebuild the
RPMs on other architectures (for example, Alpha or SPARC).

The suffix of RPM package names (following the VERSI ON value) has the following syntax:

. PLATFORM CPU. r pm

The PLATFORMand CPU values indicate the type of system for which the package is built. PLATFORM
indicates the platform and CPU indicates the processor type or family.

All packages are dynamically linked against gl i bc 2.5. The PLATFORMvalue indicates whether the
package is platform independent or intended for a specific platform, as shown in the following table.

121

Installing MySQL on Linux Using RPM Packages

Table 2.10 MySQL Linux Installation Packages

PLATFORMValue Intended Use

i nux_glibc25 Platform independent, should run on any Linux distribution that supports
glibc25

rhel 5,rhel 6 Red Hat Enterprise Linux 5 or 6

el 6 Enterprise Linux 6

sl es10, sl esl1 SUSE Linux Enterprise Server 10 or 11

In MySQL 5.7, only | i nux_gl i bc2. 5 packages are available currently.
The CPU value indicates the processor type or family for which the package is built.

Table 2.11 MySQL Installation Packages for Linux CPU Identifiers

CPU Value Intended Processor Type or Family
i 386, 586,i 686 Pentium processor or better, 32 bit
x86_64 64-bit x86 processor

i a64 Itanium (1A-64) processor

To see all files in an RPM package (for example, a MySQL- ser ver RPM), run a command like this:

shel | > rpm -gpl MySQL-server-VERSI ON. | i nux_glibc2.5.i386.rpm

To perform a standard minimal installation, install the server and client RPMs:

shell > rpm -i M/SQL-server-VERS|I ON. | i nux_glibc2.5.i386.rpm
shell > rpm-i MySQ.-client-VERSION |inux_glibc2.5.i386.rpm

To install only the client programs, install just the client RPM:

shell > rpm-i MySQ.-client-VERSION |inux_glibc2.5.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing them. To
learn more about this feature, see Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums
or GuPG'.

The server RPM places data under the / var /| i b/ mysql directory. The RPM also creates a login
account for a user named nysql (if one does not exist) to use for running the MySQL server, and
creates the appropriate entriesin/ et c/ i ni t. d/ to start the server automatically at boot time. (This
means that if you have performed a previous installation and have made changes to its startup script,
you may want to make a copy of the script so that you do not lose it when you install a newer RPM.)
See Section 2.9.1.2, “Starting and Stopping MySQL Automatically”, for more information on how
MySQL can be started automatically on system startup.

In MySQL 5.7, during a new installation, the server boot scripts are installed, but the MySQL server is
not started at the end of the installation, since the status of the server during an unattended installation
is not known.

In MySQL 5.7, during an upgrade installation using the RPM packages, if the MySQL server is running
when the upgrade occurs, the MySQL server is stopped, the upgrade occurs, and the MySQL server
is restarted. If the MySQL server is not already running when the RPM upgrade occurs, the MySQL
server is not started at the end of the installation.

If something goes wrong, you can find more information in the binary installation section. See
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

122

Installing MySQL on Linux Using Debian Packages

passwords. After starting the server, you should set up passwords for them

Note
@ The accounts that are listed in the MySQL grant tables initially have no
using the instructions in Section 2.9, “Postinstallation Setup and Testing”.

During RPM installation, a user named nmysql and a group named nmysql are created on the system.
This is done using the user add, gr oupadd, and user nod commands. Those commands require
appropriate administrative privileges, which is required for locally managed users and groups (as listed
inthe / et c/ passwd and / et ¢/ gr oup files) by the RPM installation process being run by r oot .

If you log in as the mysqgl user, you may find that MySQL displays “Invalid (old?) table or

database name” errors that mention . nysql gui , | ost +f ound, . nysql gui , . bash_hi story,
.fonts.cache-1,.1esshst,.nysql _history,.profile,.vimnfo,and similar files created
by MySQL or operating system utilities. You can safely ignore these error messages or remove the files
or directories that cause them if you do not need them.

For nonlocal user management (LDAP, NIS, and so forth), the administrative tools may require
additional authentication (such as a password), and will fail if the installing user does not provide this
authentication. Even if they fail, the RPM installation will not abort but succeed, and this is intentional.
If they failed, some of the intended transfer of ownership may be missing, and it is recommended that
the system administrator then manually ensures some appropriate user and group exists and manually
transfers ownership following the actions in the RPM spec file.

In MySQL 5.7.2, the RPM spec file has been updated, which has the following consequences:

» For a non-upgrade installation (no existing MySQL version installed), it possible to install MySQL
using yum

» For upgrades, it is necessary to clean up any earlier MySQL installations. In effect, the update is
performed by removing the old installations and installing the new one.

Additional details follow.

For a non-upgrade installation of MySQL 5.7.2, it is possible to install using yum

shel | > yuminstall MySQL-server- NEW/ERSI ON. | i nux_glibc2.5.i386.rpm

For upgrades to MySQL 5.7.2, the upgrade is performed by removing the old installation and installing
the new one. To do this, use the following procedure:

1. Remove the existing 5.7.X installation. OLDVERSI ON is the version to remove.

shell > rpm -e MySQ.-server-OLDVERSI ON. | i nux_gl i bc2.5.i386.rpm
Repeat this step for all installed MySQL RPMs.

2. Install the new version. NEW/ERSI ON is the version to install.

shell > rpm -ivh MySQL-server- NEWWERSI ON. | i nux_gl i bc2.5.i386.rpm

Alternatively, the removal and installation can be done using yum

shel | > yum renove MySQL-server- OLDVERSI ON. | i nux_gli bc2.5.i386.rpm
shel | > yuminstall M/SQL-server-NEWERSI ON. |inux_glibc2.5.i386.rpm

2.5.4 Installing MySQL on Linux Using Debian Packages

Oracle provides Debian packages for installation on Debian or Debian-like Linux systems. To obtain a
package, see Section 2.1.3, “How to Get MySQL".

123

Installing MySQL on Linux Using Native Package Managers

|

Note

Debian distributions of MySQL are also provided by other vendors. Be aware
that they may differ from those built by us in features, capabilities, and
conventions (including communication setup), and that the instructions in this
manual do not necessarily apply to installing them. The vendor's instructions
should be consulted instead.

Debian package files have names in nysql - \WWVER- DVER- CPU. deb format. \WER is the MySQL
version and DVER is the Debian version. The CPU value indicates the processor type or family for which
the package is built, as shown in the following table.

Table 2.12 MySQL Installation Packages for Linux CPU Identifiers

CPU Value Intended Processor Type or Family
i 686 Pentium processor or better, 32 bit
x86_64 64-bit x86 processor

After downloading a Debian package, use the following command to install it;

shel | > dpkg -i nysql - WER- DVER- CPU. deb

The Debian package installs files in the / opt / nysql / server - 5. 7 directory.

You may also need to install the | i bai o library if it is not already present on your system:

shel | > apt-get install |ibaiol

2.5.5 Installing MySQL on Linux Using Native Package Managers

Many Linux distributions include a version of the MySQL server, client tools, and development
components in their standard package management system. This section provides basic instructions
for installing MySQL using those package management systems.

|

Important

Native packages are often several versions behind the currently available
release. You will also normally be unable to install development milestone
releases (DMRs), as these are not usually made available in the native
repositories. Before proceeding, we recommend that you check out the other
installation options described in Section 2.5, “Installing MySQL on Linux”.

Distribution specific instructions are shown below:

* Red Hat Linux,

K

Fedora, CentOS
Note

For EL5, EL6, or EL7-based Linux platforms and Fedora 19 or 20, you can
install MySQL using the MySQL Yum repository. See Section 2.5.1, “Installing
MySQL on Linux Using the MySQL Yum Repository” for details.

For Red Hat and similar distributions, the MySQL distribution is divided into a number of separate
packages, nysql for the client tools, nysql - ser ver for the server and associated tools, and
nysql - 1i bs for the libraries. The libraries are required if you want to provide connectivity from
different languages and environments such as Perl, Python and others.

To install, use the yumcommand to specify the packages that you want to install. For example:

root-shell> yuminstall nysql nysql-server nysql-libs nysql-server

Loaded pl ugi ns:

presto, refresh-packagekit

124

Installing MySQL on Linux Using Native Package Managers

Setting up Install Process

Resol vi ng Dependenci es

--> Runni ng transacti on check

---> Package nysql .x86_64 0:5.1.48-2.fcl13 set to be updated

---> Package nysql -1ibs.x86_64 0:5.1.48-2.fcl3 set to be updated

---> Package mnysql -server.x86_64 0:5.1.48-2.fcl13 set to be updated

--> Processi ng Dependency: perl-DBD-MSQL for package: nysql-server-5.1.48-2.fcl13.x86_64
--> Runni ng transacti on check

---> Package perl-DBD- MySQL. x86_64 0:4.017-1.fcl13 set to be updated

--> Fini shed Dependency Resol ution

Dependenci es Resol ved

Package Arch Ver si on Reposi tory Si ze
Instal ling

mysql x86_64 5.1.48-2.fcl13 updat es 889 k
nmysql -1i bs x86_64 5.1.48-2.fcl13 updat es 1.2 M
nmysql - server x86_64 5.1.48-2.fcl13 updat es 8.1 M
Installing for dependencies

per| - DBD- My SQL x86_64 4.017-1.fc13 updat es 136 k

Transaction Sunmary

I nstal | 4 Package(s)
Upgr ade 0 Package(s)

Total downl oad size: 10 M

Installed size: 30 M

Is this ok [y/N: y

Downl oadi ng Packages:

Setting up and readi ng Presto delta netadata
Processi ng del ta netadata

Package(s) data still to downl oad: 10 M

(1/4): mysql-5.1.48-2.fcl13.x86_64.rpm | 889 kB 00: 04
(2/4): mysql-1ibs-5.1.48-2.fc13.x86_64.rpm | 1.2 MB 00: 06
(3/4): mysql-server-5.1.48-2.fcl13.x86_64.rpm | 8.1 MB 00: 40
(4/4): perl-DBD- M\ySQ.-4.017-1.fc13.x86_64.rpm | 136 kB 00: 00
Tot al 201 kB/s | 10 MB 00: 52
Runni ng rpm check_debug
Runni ng Transacti on Test
Transaction Test Succeeded
Runni ng Transacti on
Instal i ng : mysql-1ibs-5.1.48-2.fcl13. x86_64 1/ 4
Instal i ng . mysql-5.1.48-2.fcl3. x86_64 2/ 4
Instal i ng : perl-DBD MySQL-4.017-1.fc13. x86_64 3/ 4
Instal i ng : mysql -server-5.1.48-2.fcl13. x86_64 4/ 4
I nstall ed:
mysql . x86_64 0:5.1.48-2.fcl3 mysql -1ibs.x86_64 0:5.1.48-2.fcl3

mysql - server.x86_64 0:5.1.48-2.fcl3

Dependency Installed
per| - DBD- \ySQL. x86_64 0: 4.017-1.fc13

Conpl et e
MySQL and the MySQL server should now be installed. A sample configuration file is installed into /

et ¢/ ny. cnf . An init script, to start and stop the server, will have been installed into/ et c/init. d/
mysql d. To start the MySQL server use ser vi ce:

root-shell > service nmysqld start

To enable the server to be started and stopped automatically during boot, use chkconf i g:

root -shel | > chkconfig --1evels 235 nysqgld on

125

Installing MySQL on Linux Using Native Package Managers

Which enables the MySQL server to be started (and stopped) automatically at the specified the run
levels.

The database tables will have been automatically created for you, if they do not already exist. You
should, however, run nysql _secure_i nstal | ati on to set the root passwords on your server.

Debian, Ubuntu, Kubuntu

On Debian and related distributions, there are two packages, nysqgl - cl i ent and nysql - server,
for the client and server components respectively. You should specify an explicit version, for example
mysql - cli ent-5. 1, to ensure that you install the version of MySQL that you want.

To download and install, including any dependencies, use the apt - get command, specifying the
packages that you want to install.

Note
E Before installing, make sure that you update your apt - get index files to
ensure you are downloading the latest available version.

A sample installation of the MySQL packages might look like this (some sections trimmed for clarity):

root-shell> apt-get install mysql-client-5.1 nysql-server-5.1

Readi ng package lists... Done

Bui | di ng dependency tree

Readi ng state informati on... Done

The fol |l owi ng packages were autonatically installed and are no | onger required
| i nux- headers-2.6.28-11 |inux-headers-2.6.28-11-generic

Use 'apt-get autorenpve' to renpve them

The followi ng extra packages will be installed
bsd-nai | x |ibdbd-nysql -perl |ibdbi-perl I|ibhtmn -tenplate-perl
I'i bmysqgl client150ff |ibmysqglclient16 |ibnet-daenon-perl |ibplrpc-perl nailx
nmysql - common post fi x

Suggest ed packages:
dbi shel | i bi pc-sharedcache-perl tinyca procmail postfix-mysql postfix-pgsq
postfix-1dap postfix-pcre sasl 2-bin resol vconf postfix-cdb

The fol | owi ng NEW packages will be installed
bsd- mai | x |ibdbd-nysql -perl |ibdbi-perl I|ibhtmn -tenplate-perl
I'i bmysqgl client150ff |ibmysqglclient16 |ibnet-daenon-perl |ibplrpc-perl nailx
nmysql -client-5.1 nysql -conmon nysql -server-5.1 postfix

0 upgraded, 13 newly installed, O to renmove and 182 not upgraded

Need to get 1907kB/25.3MB of archives

After this operation, 59.5MB of additional disk space will be used

Do you want to continue [Y/n]? Y

Get: 1 http://gb.archive. ubuntu.com jaunty-updates/ main nysqgl -common 5. 1. 30real | y5. 0. 75- Oubunt ul0.5 [63. ¢

Get: 2 http://gb.archive. ubuntu.com jaunty-updates/ main |ibmysqglclient150ff 5.1.30really5.0.75-0ubuntul0

Fet ched 1907kB in 9s (205kB/s)

Preconfi guring packages ...

Sel ecting previously desel ected package nysqgl - conmon

(Readi ng database ... 121260 files and directories currently installed.)

Processing 1 added doc-base file(s)...

Regi stering documents with scroll keeper. ..

Setting up |ibnet-daenon-perl (0.43-1)

Setting up |ibplrpc-perl (0.2020-1)

Setting up |ibdbi-perl (1.607-1) ...

Setting up |ibmysqglclient150ff (5.1.30really5.0.75-0ubuntul0.5)

Setting up |ibdbd-nysql -perl (4.008-1) ..
Setting up |ibmysqglclient16 (5.1.31- 1ubuntu2)

Setting up nysql-client-5.1 (5.1.31- 1ubunt u2)

Setting up nysql-server-5.1 (5. 1. 31- 1lubunt u2)
* Stopping M/SQL dat abase server nysqld
...done
2013- 09-24T13: 03: 09. 0483532 0 [Note] InnoDB: 5.7.5 started; |og sequence nunber 1566036

126

Installing MySQL on Linux Using Native Package Managers

2013- 09- 24T13: 03: 10. 057269Z 0 [Note] InnoDB: Starting shutdown..
2013- 09-24T13: 03: 10. 857032Z 0 [Note] |nnoDB: Shutdown conpl eted; |og sequence nunber 1566036
* Starting MySQL dat abase server nysqld
...done
* Checking for corrupt, not cleanly closed and upgrade needing tabl es

Processing triggers for libc6 ...
I dconfi g deferred processing now taking place

Note

3 The apt - get command will install a number of packages, including
the MySQL server, in order to provide the typical tools and application
environment. This can mean that you install a large number of packages in
addition to the main MySQL package.
During installation, the initial database will be created, and you will be prompted for the MySQL root
password (and confirmation). A configuration file will have been created in / et ¢/ nysql / ny. cnf .
An init script will have been created in/etc/init.d/ nmysql .

The server will already be started. You can manually start and stop the server using:

root-shell > service nmysql [start]|stop]

The service will automatically be added to the 2, 3 and 4 run levels, with stop scripts in the single,
shutdown and restart levels.

Gentoo Linux

As a source-based distribution, installing MySQL on Gentoo involves downloading the source,
patching the Gentoo specifics, and then compiling the MySQL server and installing it. This process is
handled automatically by the ener ge command. Depending on the version of MySQL that you want
to install, you may need to unmask the specific version that you want for your chosen platform.

The MySQL server and client tools are provided within a single package, dev- db/ mysql . You can
obtain a list of the versions available to install by looking at the portage directory for the package:

root-shell> |Is /usr/portagel/ dev-db/ mysql/ mysqgl -5. 1*

mysql -5.1.39-r1. ebui | d
nmysql -5.1.44-r1. ebui | d
nmysql -5.1.44-r2. ebui | d
mysql -5.1.44-r3. ebui | d
nmysql -5.1.44. ebui |l d
nmysql -5.1.45-r1. ebui | d
nmysql -5.1.45. ebui l d
nmysql -5. 1. 46. ebui I d

To install a specific MySQL version, you must specify the entire atom. For example:

root - shel | > energe =dev-db/ nysql -5. 1. 46

A simpler alternative is to use the vi rt ual / mysql - 5. 1 package, which will install the latest
version:

root-shell > emerge =virtual /mysql-5.1

If the package is masked (because it is not tested or certified for the current platform), use the
ACCEPT_KEYWORDS environment variable. For example:

root - shel | > ACCEPT_KEYWORDS="~x86" energe =virtual/mysqgl-5.1

127

Installing MySQL on Solaris and OpenSolaris

After installation, you should create a new database using nysql i nstal | _db, and set the
password for the root user on MySQL. You can use the configuration interface to set the password
and create the initial database:

root-shel |l > energe --config =dev-db/ nysql -5. 1. 46

A sample configuration file will have been created for you in/ et ¢/ nysql / ny. cnf , and an init script
will have been createdin/etc/init.d/ nysql.

To enable MySQL to start automatically at the normal (default) run levels, you can use:

root-shell> rc-update add nysqgl default

2.6 Installing MySQL on Solaris and OpenSolaris

MySQL on Solaris and OpenSolaris is available in a number of different formats.

For information on installing using the native Solaris PKG format, see Section 2.6.1, “Installing
MySQL on Solaris Using a Solaris PKG”.

On OpenSolaris, the standard package repositories include MySQL packages specially built for
OpenSolaris that include entries for the Service Management Framework (SMF) to enable control of
the installation using the SMF administration commands. For more information, see Section 2.6.2,
“Installing MySQL on OpenSolaris Using IPS”.

To use a standard t ar binary installation, use the notes provided in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”. Check the notes and hints at the end of this section for
Solaris specific notes that you may need before or after installation.

To obtain a binary MySQL distribution for Solaris in tarball or PKG format, http://dev.mysql.com/
downloads/mysql/5.7.html.

Additional notes to be aware of when installing and using MySQL on Solaris:

If you want to use MySQL with the mysql user and group, use the gr oupadd and user add
commands:

gr oupadd nysql
useradd -g nysqgl nysql

If you install MySQL using a binary tarball distribution on Solaris, you may run into trouble even
before you get the MySQL distribution unpacked, as the Solaris t ar cannot handle long file names.
This means that you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU t ar (gt ar) to unpack the distribution. In Solaris 10 and
OpenSolaris gt ar is normally located in / usr/ sf w/ bi n/ gt ar, but may not be included in the
default path definition.

When using Solaris 10 for x86_64, you should mount any file systems on which you intend to store
I nnoDB files with the f or cedi r ect i o option. (By default mounting is done without this option.)
Failing to do so will cause a significant drop in performance when using the | nnoDB storage engine
on this platform.

If you would like MySQL to start automatically, you can copy support-files/ nmysql.server to/
etc/init.dand create a symbolic link to it named / et c/ rc3. d/ S99nysql . server.

If too many processes try to connect very rapidly to nysql d, you should see this error in the MySQL
log:

128

http://dev.mysql.com/downloads/mysql/5.7.html
http://dev.mysql.com/downloads/mysql/5.7.html

Installing MySQL on Solaris Using a Solaris PKG

Error in accept: Protocol error
You might try starting the server with the - - back | 0og=50 option as a workaround for this.

» To configure the generation of core files on Solaris you should use the cor eadmcommand. Because
of the security implications of generating a core on a set ui d() application, by default, Solaris
does not support core files on set ui d() programs. However, you can modify this behavior using
cor eadm If you enable set ui d() core files for the current user, they will be generated using the
mode 600 and owned by the superuser.

2.6.1 Installing MySQL on Solaris Using a Solaris PKG

You can install MySQL on Solaris and OpenSolaris using a binary package using the native Solaris
PKG format instead of the binary tarball distribution.

To use this package, download the corresponding mysql - VERSI ON- sol ari s10-
PLATFORM pkg. gz file, then uncompress it. For example:

shel | > gunzip nysql -5.7.5-sol ari s10- x86_64. pkg. gz

To install a new package, use pkgadd and follow the onscreen prompts. You must have root privileges
to perform this operation:

shel | > pkgadd -d nysql -5.7.5-sol ari s10- x86_64. pkg

The foll owi ng packages are avail abl e:
1 nysql MySQL Conmunity Server (GPL)
(i86pc) 5.7.5

Sel ect package(s) you wish to process (or 'all' to process
al | packages). (default: all) [?,?2,q]:

The PKG installer installs all of the files and tools needed, and then initializes your database if
one does not exist. To complete the installation, you should set the root password for MySQL
as provided in the instructions at the end of the installation. Alternatively, you can run the
nmysqgl _secure_install ati on script that comes with the installation.

By default, the PKG package installs MySQL under the root path / opt / nysqgl . You can change only
the installation root path when using pkgadd, which can be used to install MySQL in a different Solaris
zone. If you need to install in a specific directory, use a binary t ar file distribution.

The pkg installer copies a suitable startup script for MySQL into/ et c/ i nit. d/ mysql . To enable
MySQL to startup and shutdown automatically, you should create a link between this file and the init
script directories. For example, to ensure safe startup and shutdown of MySQL you could use the
following commands to add the right links:

shell> In /etc/init.d/ mysqgl /etc/rc3.d/ S91lnysql
shell> In /etc/init.d/ mysqgl /etc/rc0.d/ KO2nmysql

To remove MySQL, the installed package name is nysql . You can use this in combination with the
pkgr mcommand to remove the installation.

To upgrade when using the Solaris package file format, you must remove the existing installation
before installing the updated package. Removal of the package does not delete the existing database
information, only the server, binaries and support files. The typical upgrade sequence is therefore:

shel | > nysqgl adm n shut down
shel | > pkgr m nysql
shel | > pkgadd -d nysql -5. 7. 5-sol ari s10- x86_64. pkg

129

Installing MySQL on OpenSolaris Using IPS

shel | > nysqgl d_safe &
shel | > nysql _upgr ade

You should check the notes in Section 2.10, “Upgrading or Downgrading MySQL" before performing
any upgrade.

2.6.2 Installing MySQL on OpenSolaris Using IPS

OpenSolaris includes standard packages for MySQL in the core repository. The MySQL packages
are based on a specific release of MySQL and updated periodically. For the latest release you must
use either the native Solaris PKG, t ar, or source installations. The native OpenSolaris packages
include SMF files so that you can easily control your MySQL installation, including automatic startup
and recovery, using the native service management tools.

To install MySQL on OpenSolaris, use the pkg command. You will need to be logged in as root, or use
the pf exec tool, as shown in the example below:

shel | > pfexec pkg install SUNWrysql 57

The package set installs three individual packages, SUNWrysql 571 i b, which contains the MySQL
client libraries; SUNWrysql 57r which contains the root components, including SMF and configuration
files; and SUNWrysql 57u which contains the scripts, binary tools and other files. You can install these
packages individually if you only need the corresponding components.

The MySQL files are installed into / usr / mysql which symbolic links for the sub directories (bi n,

I'i b, etc.) to a version specific directory. For MySQL 5.7, the full installation is located in / usr /

nysql / 5. 7. The default data directory is / var / mysql / 5. 7/ dat a. The configuration file is installed
in/etc/mysql /5. 7/ ny. cnf. This layout permits multiple versions of MySQL to be installed, without
overwriting the data and binaries from other versions.

Once installed, you must run nysql _i nstal | _db to initialize the database, and use the
nysqgl secure_install ation tosecure your installation.

Using SMF to manage your MySQL installation

Once installed, you can start and stop your MySQL server using the installed SMF configuration. The
service name is mysql , or if you have multiple versions installed, you should use the full version name,
for example nmysql : ver si on_57. To start and enable MySQL to be started at boot time:

shel | > svcadm enabl e nysq
To disable MySQL from starting during boot time, and shut the MySQL server down if it is running, use:
shel | > svcadm di sabl e nmysq

To restart MySQL, for example after a configuration file changes, use the r est art option:

shel | > svcadm restart nysq

You can also use SMF to configure the data directory and enable full 64-bit mode. For example, to set
the data directory used by MySQL.:

shel | > svccfg
svc: > sel ect nysql : versi on_57
svc:/applicati on/ dat abase/ mysql : versi on_57> set prop nysql / dat a=/ dat a0/ nmysq

By default, the 32-bit binaries are used. To enable the 64-bit server on 64-bit platforms, set the
enabl e_64bi t parameter. For example:

svc: /application/ dat abase/ nmysql : versi on_57> setprop nysql / enabl e_64bi t =1

You need to refresh the SMF after settings these options:

130

Installing MySQL on FreeBSD

shel | > svcadm refresh nmysq

2.7 Installing MySQL on FreeBSD

This section provides information about installing MySQL on variants of FreeBSD Unix.

You can install MySQL on FreeBSD by using the binary distribution provided by Oracle. For more
information, see Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

The easiest (and preferred) way to install MySQL is to use the nysql - server and nysql - cl i ent
ports available at http://www.freebsd.org/. Using these ports gives you the following benefits:

» A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.
» Automatic configuration and build.

 Startup scripts installed in / usr/ | ocal /et c/ rc. d.

The ability to use pkg_i nf o - L to see which files are installed.

The ability to use pkg_del et e to remove MySQL if you no longer want it on your machine.

The MySQL build process requires GNU make (gnake) to work. If GNU nmake is not available, you
must install it first before compiling MySQL.

To install using the ports system:

cd /usr/ports/databases/ nysql 51-server
make

cd /usr/ports/databases/ nysql 51-cl i ent
make

The standard port installation places the server into / usr/ | ocal / | i bexec/ nysql d, with the startup
script for the MySQL server placed in/ usr/ | ocal / etc/rc. d/ nmysql - server.

Some additional notes on the BSD implementation:

» To remove MySQL after installation using the ports system:

cd /usr/ports/databases/ nysql 51-server
make dei nstal

cd /usr/ ports/databases/ nysqgl 51-cli ent
make dei nstal

« If you get problems with the current date in MySQL, setting the TZ variable should help. See
Section 2.11, “Environment Variables”.

2.8 Installing MySQL from Source

Building MySQL from the source code enables you to customize build parameters, compiler
optimizations, and installation location. For a list of systems on which MySQL is known to run, see
http://www.mysqgl.com/support/supportedplatforms/database.html.

Before you proceed with an installation from source, check whether Oracle produces a precompiled
binary distribution for your platform and whether it works for you. We put a great deal of effort into
ensuring that our binaries are built with the best possible options for optimal performance. Instructions
for installing binary distributions are available in Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”.

131

http://www.freebsd.org/
http://www.mysql.com/support/supportedplatforms/database.html

Source Installation Methods

Source Installation Methods

There are two methods for installing MySQL from source:

Use a standard MySQL source distribution. To obtain a standard distribution, see Section 2.1.3,
“How to Get MySQL". For instructions on building from a standard distribution, see Section 2.8.2,
“Installing MySQL Using a Standard Source Distribution”.

Standard distributions are available as compressed t ar files, Zip archives, or RPM packages.
Distribution files have names of the form nysql - VERSI ON. t ar . gz, mysql - VERSI ON. zi p, or
nysql - VERSI ON. r pm where VERSI ONis a number like 5. 7. 5. File names for source distributions
can be distinguished from those for precompiled binary distributions in that source distribution names
are generic and include no platform name, whereas binary distribution names include a platform
name indicating the type of system for which the distribution is intended (for example, pc- | i nux-

i 686 or wi nx64).

Use a MySQL development tree. Development trees have not necessarily received the same level
of testing as standard release distributions, so this installation method is usually required only if you
need the most recent code changes. For information on building from one of the development trees,
see Section 2.8.3, “Installing MySQL Using a Development Source Tree”.

Source Installation System Requirements

Installation of MySQL from source requires several development tools. Some of these tools are needed
no matter whether you use a standard source distribution or a development source tree. Other tool
requirements depend on which installation method you use.

To install MySQL from source, your system must have the following tools, regardless of installation
method:

CWMake, which is used as the build framework on all platforms. CMake can be downloaded from http://
www.cmake.org.

A good meke program. Although some platforms come with their own nmake implementations, it is
highly recommended that you use GNU nmake 3.75 or newer. It may already be available on your
system as gmake. GNU nmake is available from http://www.gnu.org/software/make/.

A working ANSI C++ compiler. GCC 4.2.1 or later, Sun Studio 12 or later, Visual Studio 2010 or later,
and many current vendor-supplied compilers are known to work.

Perl is needed if you intend to run test scripts. Most Unix-like systems include Perl. On Windows, you
can use a version such as ActiveState Perl.

To install MySQL from a standard source distribution, one of the following tools is required to unpack
the distribution file:

Fora.tar.gz compressedt ar file: GNU gunzi p to uncompress the distribution and a reasonable
tar to unpack it. If your t ar program supports the z option, it can both uncompress and unpack the
file.

GNU t ar is known to work. The standard t ar provided with some operating systems is not able to

unpack the long file names in the MySQL distribution. You should download and install GNU t ar , or
if available, use a preinstalled version of GNU tar. Usually this is available as gnut ar, gt ar, or as

t ar within a GNU or Free Software directory, such as/ usr/ sfw bi nor/usr/ I ocal / bi n. GNU
t ar is available from http://www.gnu.org/softwaref/tar/.

For a. zi p Zip archive: W nZi p or another tool that can read . zi p files.

For an . r pmRPM package: The r prbui | d program used to build the distribution unpacks it.

To install MySQL from a development source tree, the following additional tools are required:

132

http://www.cmake.org
http://www.cmake.org
http://www.gnu.org/software/make/
http://www.gnu.org/software/tar/

MySQL Layout for Source Installation

» To obtain the source tree, you must have Bazaar installed. The Bazaar VCS Web site has
instructions for downloading and installing Bazaar on different platforms. Bazaar is supported on any
platform that supports Python, and is therefore compatible with any Linux, Unix, Windows, or Mac
OS X host.

» bi son is needed to generate sql _yacc. cc from sqgl _yacc. yy You should use the latest version
of bi son where possible. Versions 1.75 and 2.1 are known to work. There have been reported
problems with bi son 1.875. If you experience problems, upgrade to a later, rather than earlier,
version.

bi son is available from http://www.gnu.org/software/bison/. bi son for Windows can be downloaded
from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete
package, excluding sources”. On Windows, the default location for bi son is the C. \ Pr ogr am

Fi | es\ GhuW n32 directory. Some utilities may fail to find bi son because of the space in the
directory name. Also, Visual Studio may simply hang if there are spaces in the path. You can

resolve these problems by installing into a directory that does not contain a space; for example C.

\ GhuW n32.

» On OpenSolaris and Solaris Express, n4 must be installed in addition to bi son. m is available from
http://www.gnu.org/software/m4/.

include any directories in which the programs are located. See Section 4.2.4,

Note
@ If you have to install any programs, modify your PATH environment variable to
“Setting Environment Variables”.

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How
to Report Bugs or Problems”.

2.8.1 MySQL Layout for Source Installation

By default, when you install MySQL after compiling it from source, the installation step installs files
under / usr /| ocal / mysql . The component locations under the installation directory are the same
as for binary distributions. See Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary
Package”, and Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”. To configure
installation locations different from the defaults, use the options described at Section 2.8.4, “MySQL
Source-Configuration Options”.

2.8.2 Installing MySQL Using a Standard Source Distribution

To install MySQL from a standard source distribution:

1. Verify that your system satisfies the tool requirements listed at Section 2.8, “Installing MySQL from
Source”.

2. Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL".
3. Configure, build, and install the distribution using the instructions in this section.

4. Perform postinstallation procedures using the instructions in Section 2.9, “Postinstallation Setup
and Testing”.

In MySQL 5.7, CVake is used as the build framework on all platforms. The instructions given here
should enable you to produce a working installation. For additional information on using CMvake to build
MySQL, see How to Build MySQL Server with CMake.

If you start from a source RPM, use the following command to make a binary RPM that you can install.
If you do not have r pnbui | d, use r pminstead.

shell > rprmbuild --rebuild --clean MySQL- VERSI ON. src. rpm

133

http://bazaar-vcs.org
http://www.gnu.org/software/bison/
http://gnuwin32.sourceforge.net/packages/bison.htm
http://www.gnu.org/software/m4/
http://dev.mysql.com/doc/internals/en/cmake.html

Installing MySQL Using a Standard Source Distribution

The result is one or more binary RPM packages that you install as indicated in Section 2.5.3, “Installing
MySQL on Linux Using RPM Packages”.

The sequence for installation from a compressed t ar file or Zip archive source distribution is similar to
the process for installing from a generic binary distribution (see Section 2.2, “Installing MySQL on Unix/
Linux Using Generic Binaries”), except that it is used on all platforms and includes steps to configure
and compile the distribution. For example, with a compressed t ar file source distribution on Unix, the
basic installation command sequence looks like this:

Preconfiguration setup

shel | > groupadd nysql

shel | > useradd -r -g nysqgl nysql

Begi nni ng of source-build specific instructions
shel | > tar zxvf mysqgl-VERSION. tar. gz

shel | > cd nysql - VERSI ON

shel | > crmake .

shel | > make

shel | > make install

End of source-build specific instructions

Postinstallation setup

shel | > cd /usr/l ocal / nysql

shel | > chown -R nysql

shel | > chgrp -R nysql

shel | > scripts/nysqgl _install _db --user=nysql

shel | > chown -R root .

shel | > chown -R nysqgl data

shel | > bi n/nysql d_safe --user=nysql &

Next conmmand i s optional

shel | > cp support-files/nysql.server /etc/init.d/ nysql.server

nysql _i nstal | _db creates a default option file named ny. cnf in the base installation directory.
This file is created from a template included in the distribution package named ny- def aul t . cnf . For
more information, see Using a Sample Default Server Configuration File.

A more detailed version of the source-build specific instructions is shown following.

Note

S The procedure shown here does not set up any passwords for MySQL
accounts. After following the procedure, proceed to Section 2.9, “Postinstallation
Setup and Testing”, for postinstallation setup and testing.

Perform Preconfiguration Setup

On Unix, set up the mysql user and group that will be used to run and execute the MySQL server and
own the database directory. For details, see Creating a nysql System User and Group, in Section 2.2,
“Installing MySQL on Unix/Linux Using Generic Binaries”. Then perform the following steps as the
nmysql user, except as noted.

Obtain and Unpack the Distribution
Pick the directory under which you want to unpack the distribution and change location into it.
Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL".
Unpack the distribution into the current directory:

e To unpack a compressed t ar file, t ar can uncompress and unpack the distribution if it has z option
support:

shel | > tar zxvf nysqgl-VERSION. tar.gz

If your t ar does not have z option support, use gunzi p to unpack the distribution and t ar to
unpack it:

134

http://dev.mysql.com/doc/refman/5.6/en/server-default-configuration-file.html

Installing MySQL Using a Standard Source Distribution

shel | > gunzip < nysql-VERSION. tar.gz | tar xvf -

Alternatively, CVake can uncompress and unpack the distribution:

shel | > cmake -E tar zxvf nysqgl-VERSION tar. gz
» To unpack a Zip archive, use W nZi p or another tool that can read . zi p files.

Unpacking the distribution file creates a directory named nysql - VERSI ON.
Configure the Distribution

Change location into the top-level directory of the unpacked distribution:

shel | > cd nysql - VERSI ON

Configure the source directory. The minimum configuration command includes no options to override
configuration defaults:

shel | > cmake .
On Windows, specify the development environment. For example, the following commands configure
MySQL for 32-bit or 64-bit builds, respectively:

shell > cnake . -G "Visual Studio 10 2010"
shel | > cnake . -G "Visual Studio 10 2010 W n64"

On Mac OS X, to use the Xcode IDE:

shel | > cnmake . -G Xcode
When you run crmeke, you might want to add options to the command line. Here are some examples:

« -DBUI LD CONFI G=nysql rel ease: Configure the source with the same build options used by
Oracle to produce binary distributions for official MySQL releases.

» - DCMAKE | NSTALL_PREFI X=di r _nane: Configure the distribution for installation under a
particular location.

e - DCPACK _MONOLI THI C | NSTALL=1: Cause nake package to generate a single installation file
rather than multiple files.

» - DW TH_DEBUG=1: Build the distribution with debugging support.
For a more extensive list of options, see Section 2.8.4, “MySQL Source-Configuration Options”.

To list the configuration options, use one of the following commands:

shel | > cnake . -L # overvi ew

shell > cnake . -LH # overview with help text
shell > cmake . -LAH # all parans with hel p text
shel | > ccnake . # interactive display

If CVake fails, you might need to reconfigure by running it again with different options. If you do
reconfigure, take note of the following:

» If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CVakeCache. t xt . When CVake starts up, it looks
for that file and reads its contents if it exists, on the assumption that the information is still correct.
That assumption is invalid when you reconfigure.

135

Installing MySQL Using a Standard Source Distribution

» Each time you run CVake, you must run nake again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old object files or configuration information from being used, run these commands on Unix
before re-running Cvake:

shel | > make cl ean
shel | > rm CMvakeCache. t xt

Or, on Windows:

shel | > devenv MySQL. sl n /cl ean
shel | > del CMakeCache. t xt

If you build out of the source tree (as described later), the CvakeCache. t xt file and all built files
are in the build directory, so you can remove that directory to object files and cached configuration
information.

If you are going to send mail to a MySQL mailing list to ask for configuration assistance, first check the
files in the C\akeFi | es directory for useful information about the failure. To file a bug report, please
use the instructions in Section 1.7, “How to Report Bugs or Problems”.

Build the Distribution

On Unix:

shel | > make
shel | > make VERBOSE=1

The second command sets VERBOSE to show the commands for each compiled source.
Use gneke instead on systems where you are using GNU nmake and it has been installed as gnake.

On Windows:

shel | > devenv MySQ..sln /build Rel Wt hDebl nfo

It is possible to build out of the source tree to keep the tree clean. If the top-level source directory is
named nysql - sr ¢ under your current working directory, you can build in a directory named bl d at the
same level like this:

shel | > nkdir bld
shel | > cd bl d
shel | > cmake ../ nysql-src

The build directory need not actually be outside the source tree. For example, to build in a directory
directory, you can build in a directory named bl d under the top-level source tree, do this, starting with
nmysqgl - sr c as your current working directory:

shel | > nkdir bld
shel I > cd bl d
shel | > cnmake .

If you have multiple source trees at the same level (for example, to build multiple versions of MySQL),
the second strategy can be advantageous. The first strategy places all build directories at the same
level, which requires that you choose a unique name for each. With the second strategy, you can use
the same name for the build directory within each source tree.

If you have gotten to the compilation stage, but the distribution does not build, see Section 2.8.5,
“Dealing with Problems Compiling MySQL”, for help. If that does not solve the problem, please enter it

136

Installing MySQL Using a Development Source Tree

into our bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”.
If you have installed the latest versions of the required tools, and they crash trying to process our
configuration files, please report that also. However, if you get a conmand not found error or a
similar problem for required tools, do not report it. Instead, make sure that all the required tools are
installed and that your PATH variable is set correctly so that your shell can find them.

Install the Distribution

On Unix:

shel | > make i nst al

This installs the files under the configured installation directory (by default, / usr/ | ocal / mysql). You
might need to run the command as r oot .

To install in a specific directory, add a DESTDI R parameter to the command line:

shel | > make install DESTDI R="/opt/nysql"

Alternatively, generate installation package files that you can install where you like:

shel | > make package

This operation produces one or more . t ar . gz files that can be installed like generic binary distribution
packages. See Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”. If you run CVake
with - DCPACK_MONOLI THI C_| NSTALL=1, the operation produces a single file. Otherwise, it produces
multiple files.

On Windows, generate the data directory, then create a . zi p archive installation package:

shel | > devenv MySQ..sln /build Rel WthDeblnfo /project initial_database
shel | > devenv MySQ..sln /build Rel Wt hDebl nfo /project package

You can install the resulting . zi p archive where you like. See Section 2.3.5, “Installing MySQL on
Microsoft Windows Using a noi nst al | Zip Archive”.

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core
databases, and starting the MySQL server. For instructions, see Section 2.9, “Postinstallation Setup

and Testing”.
Note
@ The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.9, “Postinstallation Setup and Testing”.

2.8.3 Installing MySQL Using a Development Source Tree

This section discusses how to install MySQL from the latest development source code. Development
trees have not necessarily received the same level of testing as standard release distributions, so this
installation method is usually required only if you need the most recent code changes. Do not use a
development tree for production systems. If your goal is simply to get MySQL up and running on your
system, you should use a standard release distribution (either a binary or source distribution). See
Section 2.1.3, “How to Get MySQL".

MySQL development projects are hosted on Launchpad. MySQL projects, including MySQL Server,
MySQL Workbench, and others are available from the Oracle/MySQL Engineering page. For the
repositories related only to MySQL Server, see the MySQL Server page.

137

http://launchpad.net/
http://launchpad.net/~mysql
http://launchpad.net/mysql-server

Installing MySQL Using a Development Source Tree

To install MySQL from a development source tree, your system must satisfy the tool requirements
listed at Section 2.8, “Installing MySQL from Source”, including the requirements for Bazaar and
bi son.

To create a local branch of the MySQL development tree on your machine, use this procedure:

1. To obtain a copy of the MySQL source code, you must create a new Bazaar branch. If you do not
already have a Bazaar repository directory set up, you must initialize a new directory:

shel | > nkdi r mysql - server
shell > bzr init-repo --trees nysql -server

This is a one-time operation.

2. Assuming that you have an initialized repository directory, you can branch from the public MySQL
server repositories to create a local source tree. To create a branch of a specific version:

shel | > cd nysql - server
shel | > bzr branch | p: mysql -server/5.7 nysql-5.7

This is a one-time operation per source tree. You can branch the source trees for several versions
of MySQL under the nysql - ser ver directory.

3. The initial download will take some time to complete, depending on the speed of your connection.
Please be patient. Once you have downloaded the first tree, additional trees should take
significantly less time to download.

4. When building from the Bazaar branch, you may want to create a copy of your active branch so that
you can make configuration and other changes without affecting the original branch contents. You
can achieve this by branching from the original branch:

shel | > bzr branch nysqgl-5.7 nysqgl -5.7-build

5. To obtain changes made after you have set up the branch initially, update it using the pul | option
periodically. Use this command in the top-level directory of the local copy:

shel | > bzr pul

To examine the changeset comments for the tree, use the | og option to bzr :

shel | > bzr | og

You can also browse changesets, comments, and source code online at the Launchpad MySQL
Server page.

If you see diffs (changes) or code that you have a question about, do not hesitate to send email
to the MySQL i nt er nal s mailing list. See Section 1.6.1, “MySQL Mailing Lists”. If you think you
have a better idea on how to do something, send an email message to the list with a patch.

After you have the local branch, you can build MySQL server from the source code. For information,
see Section 2.8.2, “Installing MySQL Using a Standard Source Distribution”, except that you skip the
part about obtaining and unpacking the distribution.

Be careful about installing a build from a distribution source tree on a production machine. The
installation command may overwrite your live release installation. If you already have MySQL
installed and do not want to overwrite it, run CVake with values for the CMAKE | NSTALL_PREFI X,
MYSQL_TCP_PORT, and MYSQL_UNI X ADDR options different from those used by your production
server. For additional information about preventing multiple servers from interfering with each other,
see Section 5.3, “Running Multiple MySQL Instances on One Machine”.

138

http://launchpad.net/mysql-server
http://launchpad.net/mysql-server

MySQL Source-Configuration Options

Play hard with your new installation. For example, try to make new features crash. Start by running
nmake test. See Section 22.1.2, “The MySQL Test Suite”.

2.8.4 MySQL Source-Configuration Options

The CVake program provides a great deal of control over how you configure a MySQL source
distribution. Typically, you do this using options on the C\vake command line. For information about
options supported by CMVake, run either of these commands in the top-level source directory:

shel | > cnmake . -LH
shel | > ccnake .

You can also affect CMake using certain environment variables. See Section 2.11, “Environment
Variables”.

The following table shows the available C\Vake options. In the Def aul t column, PREFI X stands for

the value of the CMAKE | NSTALL_PREFI X option, which specifies the installation base directory. This
value is used as the parent location for several of the installation subdirectories.

Table 2.13 MySQL Source-Configuration Option Reference (Cvake)

Formats Description Default Introduce®emoved
BU LD _CONFI G Use same build options as
official releases
CMAKE_BUI LD _TYPE Type of build to produce Rel Wt hDebl nf o
CMAKE_C_FLAGS Flags for C Compiler
CVAKE_CXX_FLAGS Flags for C++ Compiler
CVAKE | NSTALL _PREFI X |Installation base directory [usr/local/
nysql
COWPI LATI ON_COMVENT Comment about compilation
environment
CPACK_MONCLI THI C I NSTALWhether package build OFF
produces single file
DEFAULT_CHARSET The default server character |l atinl
set
DEFAULT_COLLATI ON The default server collation |l atinl_swedi sh |ci
DI SABLE_PSI _COND Exclude Performance OFF 5.7.3
Schema condition
instrumentation
DI SABLE PSI _FI LE Exclude Performance OFF 5.7.3
Schema file instrumentation
DI SABLE PSI | DLE Exclude Performance OFF 5.7.3
Schema idle instrumentation
Dl SABLE_PSI _ MEMORY Exclude Performance OFF 5.7.3
Schema memory
instrumentation
DI SABLE_PSI _METADATA |Exclude Performance OFF 5.7.3
Schema metadata
instrumentation
DI SABLE_PSI _MJTEX Exclude Performance OFF 5.7.3
Schema mutex
instrumentation

139

MySQL Source-Configuration Options

Formats Description Default Introduce®emoved

DI SABLE_PSI _RW.OCK Exclude Performance OFF 5.7.3
Schema rwlock
instrumentation

Dl SABLE PSI _SOCKET Exclude Performance OFF 5.7.3
Schema socket
instrumentation

DI SABLE_PSI _SP Exclude Performance OFF 5.7.3
Schema stored program
instrumentation

DI SABLE PSI _STAGE Exclude Performance OFF 5.7.3
Schema stage
instrumentation

DI SABLE _PSI _STATEMENT |Exclude Performance OFF 5.7.3
Schema statement
instrumentation

DI SABLE_PSI _STATEMVENT _DEgElGde Performance OFF 573
Schema statement_digest
instrumentation

DI SABLE _PSI _TABLE Exclude Performance OFF 5.7.3
Schema table instrumentation

ENABLE DEBUG SYNC Whether to enable Debug ON
Sync support

ENABLE_DOWNLOADS Whether to download optional | OFF
files

ENABLE_DTRACE Whether to include DTrace
support

ENABLE_GCOV Whether to include gcov
support

ENABLE_GPROF Enable gprof (optimized Linux|OFF
builds only)

ENABLED LOCAL_|I NFI LE |Whether to enable LOCAL for |OFF
LOAD DATA INFILE

ENABLED PROFI LI NG Whether to enable query ON
profiling code

| GNORE_AI O_CHECK With - OFF
DBUILD_CONFIG=mysql_release,
ignore libaio check

| NNODB_PAGE _ATOM C_REF | EQabl€ or disable atomic ON 5.7.4
page reference counting

| NSTALL_BI NDI R User executables directory PREFI X/ bi n

| NSTALL_DOCDI R Documentation directory PREFI X/ docs

| NSTALL_DOCREADMEDI R README file directory PREFI X

I NSTALL_| NCLUDEDI R Header file directory PREFI X/ i ncl ude

| NSTALL_I NFODI R Info file directory PREFI X/ docs

| NSTALL_LAYQUT Select predefined installation |STANDALONE
layout

I NSTALL_LI BDI R Library file directory PREFI X/ 1i b

140

MySQL Source-Configuration Options

Formats Description Default Introduce®emoved
| NSTALL_MANDI R Manual page directory PREFI X/ man
I NSTALL MYSQLSHAREDI R |Shared data directory PREFI X/ shar e
| NSTALL_MYSQLTESTDI R |mysql-test directory PREFI X/ nysql -
t est
| NSTALL_PLUG NDI R Plugin directory PREFI X/ 1'i b/
pl ugi n
| NSTALL_SBI NDI R Server executable directory |PREFI X/ bi n
I NSTALL_SCRI PTDI R Scripts directory PREFI X/ scri pts
I NSTALL_SHAREDI R aclocal/mysql.m4 installation |PREFI X/ shar e
directory
I NSTALL_SQLBENCHDI R sql-bench directory PREFI X
| NSTALL_SUPPORTFI LESDI RExtra support files directory |PREFI X/
support-files
MAX | NDEXES Maximum indexes per table |64 5.7.1
MYSQ._DATADI R Data directory
MYSQL_MAI NTAI NER_MODE |Whether to enable MySQL OFF
maintainer-specific
development environment
MYSQL_PRQIECT _NAME Windows/Mac OS X project |3306
name
MYSQL_TCP_PORT TCP/IP port number 3306
MYSQL_UNI X ADDR Unix socket file /tnpl/
mysql . sock
CODBC_| NCLUDES ODBC includes directory
ODBC LI B DI R ODBC library directory
OPTI M ZER_TRACE Whether to support optimizer
tracing
SYSCONFDI R Option file directory
TWPDI R tmpdir default value 5.7.4
W TH_ASAN Enable AddressSanitizer OFF 5.7.3
W TH_AUTHENTI CATI ON_PAMBuild PAM authentication OFF
plugin
W TH_CLI ENT_PROTOCCL_ TRBGIild\&ient-side protocol ON 5.7.2
tracing framework
W TH_DEBUG Whether to include OFF
debugging support
W TH_DEFAULT_COVPI LER_QORHe@iNg to use default ON
compiler options
W TH DEFAULT FEATURE_ SHKEWhether to use default ON
feature set
W TH_EDI TLI NE Which libedit/editline library to |bundl ed 5.7.2
use
W TH_EMBEDDED SERVER |Whether to build embedded |OFF
server

141

MySQL Source-Configuration Options

Formats Description Default Introduce®emoved
W TH_ xxx_STORAGE_ENG NECompile storage engine xxx
statically into server
W TH_EXTRA CHARSETS Which extra character sets to |al |
include
W TH_| NNODB_MEMCACHED |Whether to generate OFF
memcached shared libraries.
W TH_LI BEVENT Which libevent library to use |bundl ed
W TH_LI BWRAP Whether to include libwrap OFF
(TCP wrappers) support
W TH_MSAN Enable MemorySanitizer OFF 5.7.4
W TH_SSL Type of SSL support no
W TH_TEST_TRACE_PLUG N|Build test protocol trace OFF 5.7.2
plugin
W TH_UNI XCDBC Enable unixODBC support OFF
WTH ZLI B Type of zlib support system
W THOUT xxx_ STORAGE EN@EEElude storage engine xxx
from build
W THOUT _SERVER Do not build the server OFF

The following sections provide more information about CVake options.
» General Options

* Installation Layout Options

» Feature Options

» Compiler Flags

For boolean options, the value may be specified as 1 or ONto enable the option, or as 0 or OFF to
disable the option.

Many options configure compile-time defaults that can be overridden at server startup. For example,
the CVAKE | NSTALL_PREFI X, M\YSQL_TCP_PORT, and MYSQL_ UNI X ADDR options that configure the
default installation base directory location, TCP/IP port number, and Unix socket file can be changed at
server startup with the - - basedi r, - - port, and - - socket options for mysql d. Where applicable,
configuration option descriptions indicate the corresponding nysql d startup option.

General Options
e -DBU LD CONFI G=nysql _rel ease

This option configures a source distribution with the same build options used by Oracle to produce
binary distributions for official MySQL releases.

« -DCMAKE _BU LD TYPE=t ype
The type of build to produce:

e Rel Wt hDebl nf o: Enable optimizations and generate debugging information. This is the default
MySQL build type.

« Debug: Disable optimizations and generate debugging information. This build type is also used
if the W TH_DEBUG option is enabled. That is, - DW TH_DEBUG=1 has the same effect as -
DCVAKE_BUI LD _TYPE=Debug.

142

MySQL Source-Configuration Options

* - DCPACK_MONOLI THI C_I NSTALL=bool

This option affects whether the make package operation produces multiple installation package
files or a single file. If disabled, the operation produces multiple installation package files, which may
be useful if you want to install only a subset of a full MySQL installation. If enabled, it produces a
single file for installing everything.

Installation Layout Options

The CVAKE_| NSTALL_PREFI X option indicates the base installation directory. Other options with
names of the form | NSTALL_xxx that indicate component locations are interpreted relative to the
prefix and their values are relative pathnames. Their values should not include the prefix.

« - DCMAKE | NSTALL_PREFI X=di r _name
The installation base directory.
This value can be set at server startup with the - - basedi r option.
e -DINSTALL_BI NDI R=di r _nane
Where to install user programs.
e -DINSTALL_DOCDI R=di r _name
Where to install documentation.
e - DI NSTALL_DOCREADVEDI R=di r _nane
Where to install READVE files.
e - DINSTALL_I NCLUDEDI R=di r _narme
Where to install header files.
e -DI NSTALL_I NFODI R=di r _name
Where to install Info files.
* -DINSTALL_LAYQUT=nane
Select a predefined installation layout:
* STANDALONE: Same layout as used for . t ar. gz and . zi p packages. This is the default.
« RPM Layout similar to RPM packages.
« SVR4: Solaris package layout.
« DEB: DEB package layout (experimental).

You can select a predefined layout but modify individual component installation locations by
specifying other options. For example:

shel |l > cnmake . - DI NSTALL_LAYOUT=SVR4 - DMYSQL_DATADI R=/ var/ mysql / dat a
e -DINSTALL_LIBDI R=dir_nane

Where to install library files.
e - DI NSTALL_MANDI R=di r _nane

Where to install manual pages.

143

MySQL Source-Configuration Options

- DI NSTALL_MYSQLSHAREDI R=di r _nane
Where to install shared data files.
- DI NSTALL_MYSQLTESTDI R=di r _nane

Where to install the nysql -t est directory. As of MySQL 5.7.2, to suppress installation of this
directory, explicitly set the option to the empty value (- DI NSTALL_MYSQLTESTDI R=).

- DI NSTALL_PLUGQ NDI R=di r _nane
The location of the plugin directory.
This value can be set at server startup with the - - pl ugi n_di r option.
- DI NSTALL_SBI NDI R=di r _nane
Where to install the nysql d server.
- DI NSTALL_SCRI PTDI R=di r _nane
Where to install nysql i nstal | _db.
- DI NSTALL_SHAREDI R=di r _nane
Where to install acl ocal / nysql . ma.
- DI NSTALL_SQLBENCHDI R=di r _nane

Where to install the sql - bench directory. To suppress installation of this directory, explicitly set the
option to the empty value (- DI NSTALL_SQLBENCHDI R=).

- DI NSTALL_SUPPORTFI LESDI R=di r _nane
Where to install extra support files.
- DMYSQL_DATADI R=di r _nane
The location of the MySQL data directory.
This value can be set at server startup with the - - dat adi r option.
- DODBC_| NCLUDES=di r _nane
The location of the ODBC includes directory, and may be used while configuring Connector/ODBC.
-DODBC LI B DI R=di r _name
The location of the ODBC library directory, and may be used while configuring Connector/ODBC.
- DSYSCONFDI R=di r _nane
The default my. cnf option file directory.
This location cannot be set at server startup, but you can start the server with a given option file
using the - - def aul t s-fi | e=fi |l e_nane option, where f i | e_nane is the full path name to the
file.

- DTWMPDI R=di r _nane

The default location to use for the t npdi r system variable. If unspecified, the value defaults to
P_t npdi r in <st di 0. h>. This option was added in MySQL 5.7.4.

144

MySQL Source-Configuration Options

Storage Engine Options

Storage engines are built as plugins. You can build a plugin as a static module (compiled into the
server) or a dynamic module (built as a dynamic library that must be installed into the server using the
| NSTALL PLUGQ N statement or the - - pl ugi n- | oad option before it can be used). Some plugins
might not support static or dynamic building.

The Myl SAM MERGE, MEMORY, and CSV engines are mandatory (always compiled into the server) and
need not be installed explicitly.

To compile a storage engine statically into the server, use - DWW TH_engi ne_ STORAGE_ENG NE=1.
Some permissible engi ne values are ARCHI VE, BLACKHOLE, EXAMPLE, FEDERATED, | NNOBASE
(I nnoDB), PARTI TI ON (partitioning support), and PERFSCHENMA (Performance Schema). Examples:

- DW TH_| NNOBASE_STORAGE_ENG NE=1

- DW TH_ARCHI VE_STORAGE_ENG NE=1

- DW TH_BLACKHOLE _STORAGE_ENG NE=1
- DW TH_PERFSCHEMA_STORAGE ENGI NE=1

As of MySQL 5.7.4, to exclude a storage engine from the build, use -
DW TH_engi ne_ STORAGE ENG NE=0. Examples:

- DW TH_EXAMPLE_STORAGE_ENG NE=0
- DW TH_FEDERATED STORAGE_ENG NE=0
- DW TH_PARTI TI ON_STORAGE_ENG NE=0

Before MySQL 5.7.4, to exclude a storage engine from the build, use -
DW THOUT _engi ne_ STORAGE_ENG NE=1. (That syntax also works in 5.7.4 or later, but -
DW TH_engi ne_ STORAGE _ENG NE=0 is preferred.) Examples:

- DW THOUT_EXAMPLE_STORAGE_ENG NE=1
- DW THOUT_FEDERATED_STORAGE_ENG NE=1
- DW THOUT_PARTI TI ON_STORAGE_ENG NE=1

If neither - DW TH_engi ne_STORAGE_ENG NE nor - DW THOUT _engi ne_STORAGE_ENG NE are
specified for a given storage engine, the engine is built as a shared module, or excluded if it cannot be
built as a shared module.

Feature Options
e - DCOVPI LATI ON_COMVENT=st ri ng
A descriptive comment about the compilation environment.
» -DDEFAULT CHARSET=char set nane

The server character set. By default, MySQL uses the | at i n1 (cp1252 West European) character
set.

char set _nanme may be one of bi nary, arnscii 8, ascii, bi g5, cpl1250, cpl251, cpl256,
cpl257, cp850, cp852, cp866, cp932, dec8, eucj pns, euckr, gh2312, gbk, geost d8,

gr eek, hebr ew, hp8, keybcs?2, koi 8r, koi 8u,l atinl,latin2,latin5,latin7, macce,
macronman, sji s,swe7,tis620,ucs2,ujis,utf8,utf8nb4,utfl6,utfl6le,utf32.The
permissible character sets are listed in the cnmake/ char act er _set s. cnake file as the value of
CHARSETS_AVAI LABLE.

This value can be set at server startup with the - - char act er _set server option.
o - DDEFAULT_COLLATI ON=col | ati on_nane

The server collation. By default, MySQL uses | at i n1_swedi sh_ci . Use the SHON COLLATI ON
statement to determine which collations are available for each character set.

145

MySQL Source-Configuration Options

This value can be set at server startup with the - -col | ati on_ser ver option.
- DDI SABLE_PSI _COND=bool

Whether to exclude the Performance Schema condition instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

- DDl SABLE_PSI _FI LE=bool

Whether to exclude the Performance Schema file instrumentation. The default is OFF (include). This
option was added in MySQL 5.7.3.

- DDl SABLE_PSI _| DLE=bool

Whether to exclude the Performance Schema idle instrumentation. The default is OFF (include). This
option was added in MySQL 5.7.3.

- DDl SABLE_PSI _ MEMORY=bool

Whether to exclude the Performance Schema memory instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

- DDl SABLE_PSI _METADATA=bool

Whether to exclude the Performance Schema metadata instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

- DDl SABLE_PSI _MUTEX=bool

Whether to exclude the Performance Schema mutex instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

- DDl SABLE_PSI _ RW.CCK=bool

Whether to exclude the Performance Schema rwlock instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

- DDI SABLE_PSI _SOCKET=bool

Whether to exclude the Performance Schema socket instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

- DDI SABLE_PSI _SP=bool

Whether to exclude the Performance Schema stored program instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

- DDl SABLE_PSI _STAGE=bool

Whether to exclude the Performance Schema stage instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

- DDI SABLE_PSI _STATEMENT=booOl

Whether to exclude the Performance Schema statement instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

- DDI SABLE_PSI _STATEMENT_DI GEST=bool

Whether to exclude the Performance Schema statement_digest instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

- DDl SABLE_PSI _TABLE=bool

146

MySQL Source-Configuration Options

Whether to exclude the Performance Schema table instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

- DENABLE_DEBUG_SYNC=bool

Whether to compile the Debug Sync facility into the server. This facility is used for testing and
debugging. This option is enabled by default, but has no effect unless MySQL is configured
with debugging enabled. If debugging is enabled and you want to disable Debug Sync, use -
DENABLE_DEBUG_SYNC=0.

When compiled in, Debug Sync is disabled by default at runtime. To enable it, start nysql d with the
- -debug- sync-ti neout =N option, where Nis a timeout value greater than 0. (The default value is
0, which disables Debug Sync.) N becomes the default timeout for individual synchronization points.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

- DENABLE_DOWNLOADS=bool

Whether to download optional files. For example, with this option enabled, CVake downloads the
Google Test distribution that is used by the test suite to run unit tests.

- DENABLE_DTRACE=bool

Whether to include support for DTrace probes. For information about DTrace, wee Section 5.4,
“Tracing mysql d Using DTrace”

- DENABLE_GCOV=bool
Whether to include gcov support (Linux only).
- DENABLE_GPROF=bool
Whether to enable gpr of (optimized Linux builds only).
- DENABLED_LOCAL_| NFI LE=bool
Whether to enable LOCAL capability in the client library for LOAD DATA | NFI LE.

This option controls client-side LOCAL capability, but the capability can be set on the server side at
server startup with the - - | ocal -i nfi | e option. See Section 6.1.6, “Security Issues with LOAD
DATA LOCAL™".

- DENABLED PROFI LI NG=hool
Whether to enable query profiling code (for the SHOW PROFI LE and SHOW PROFI LES statements).
- DI GNORE_AI O_CHECK=bool

If the - DBUI LD_CONFI G=nrysql _r el ease option is given on Linux, the | i bai o library must be
linked in by default. If you do not have | i bai o or do not want to install it, you can suppress the
check for it by specifying - DI GNORE_Al O_CHECK=L1.

- DI NNODB_PAGE_ATOM C_REF_COUNT=bool

Whether to enable or disable atomic page reference counting. Fetching and releasing pages from
the buffer pool and tracking the page state are expensive and complex operations. Using a page
mutex to track these operations does not scale well. With | NNODB_PAGE_ATOM C_REF_COUNT=0N
(default), fetch and release is tracked using atomics where available. For platforms that do not
support atomics, set | NNODB_PAGE_ATOM C_REF COUNT=OFF to disable atomic page reference
counting.

147

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html

MySQL Source-Configuration Options

When atomic page reference counting is enabled (default), “[Not e] | nnoDB: Using atom cs
to ref count buffer pool pages”is printed to the error log at server startup. If atomic page
reference counting is disabled, “[Not €] [nnoDB: Usi ng nutexes to ref count buffer
pool pages”is printed instead.

This build option was introduced with the fix for MySQL Bug #68079.
- DMAX_| NDEXES=num

The maximum number of indexes per table. The default is 64. The maximum is 255. Values smaller
than 64 are ignored and the default of 64 is used.

- DMWYSQL_MAI NTAI NER_MODE=hool

Whether to enable a MySQL maintainer-specific development environment. If enabled, this option
causes compiler warnings to become errors.

- DMYSQL_PROJECT _NANME=narne
For Windows or Mac OS X, the project name to incorporate into the project file name.
- DMYSQL_TCP_PORT=port _num
The port number on on which the server listens for TCP/IP connections. The default is 3306.
This value can be set at server startup with the - - port option.
- DMYSQL_UNI X _ADDR=fi | e_narne

The Unix socket file path on which the server listens for socket connections. This must be an
absolute path name. The defaultis / t np/ mysql . sock.

This value can be set at server startup with the - - socket option.
- DOPTI M ZER _TRACE=bool

Whether to support optimizer tracing. See MySQL Internals: Tracing the Optimizer.
- DW TH_ASAN=bool

Whether to enable AddressSanitizer, for compilers that support it. The default is off. This option was
added in MySQL 5.7.3.

- DW TH_AUTHENTI CATI ON_PAM=bool

Whether to build the PAM authentication plugin, for source trees that include this plugin. (See The
PAM Authentication Plugin.) Beginning with MySQL 5.7.2, if this option is specified and the plugin
cannot e compiled, the build fails.

- DW TH_CLI ENT_PROTOCOL_TRACI NG=bool

Whether to build the client-side protocol tracing framework into the client library. By default, this
option is enabled. This option was added in MySQL 5.7.2.

For information about writing protocol trace client plugins, see Section 22.2.4.11, “Writing Protocol
Trace Plugins”.

See also the W TH_TEST_TRACE_PLUGQ N option.
- DW TH_DEBUG=bool

Whether to include debugging support.

148

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/refman/5.6/en/pam-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.6/en/pam-authentication-plugin.html

MySQL Source-Configuration Options

Configuring MySQL with debugging support enables you to use the - - debug="d, par ser _debug"
option when you start the server. This causes the Bison parser that is used to process SQL
statements to dump a parser trace to the server's standard error output. Typically, this output is
written to the error log.

- DW TH_DEFAULT_FEATURE_SET=bool
Whether to use the flags from crmake/ bui | d_confi gurati ons/feature_set. cnake.
-DW TH_EDI TLI NE=val ue

Which | i bedi t/edi t | i ne library to use. The permitted values are bundl| ed (the default) and
system

W TH_EDI TLI NE was added in MySQL 5.7.2. It replaces W TH_LI BEDI T, which has been removed.
- DW TH_EMBEDDED SERVER=bool

Whether to build the | i bnysqgl d embedded server library.
- DW TH_EXTRA CHARSETS=nane

Which extra character sets to include:

e al | : All character sets. This is the default.

» conpl ex: Complex character sets.

e none: No extra character sets.
- DW TH_| NNODB_EXTRA DEBUG=bool

Whether to include extra InnoDB debugging support.

Enabling W TH_I NNOCDB_EXTRA DEBUGturns on extra InnoDB debug checks. This option can only
be enabled when W TH_DEBUG s enabled.

- DW TH_I NNODB_MEMCACHED=bhool
Whether to generate memcached shared libraries (I i bnentached. so and i nnodb_engi ne. so).
-DW TH_LI BEVENT=st ri ng

Which | i bevent library to use. Permitted values are bundl ed (default), syst em and yes. If
you specify syst emor yes, the system | i bevent library is used if present. If the system library
is not found, the bundled | i bevent library is used. The | i bevent library is required by | nnoDB
memcached.

- DW TH_LI BWRAP=bool
Whether to include | i bwr ap (TCP wrappers) support.
- DW TH_MSAN=bool

Whether to enable MemorySanitizer, for compilers that support it. The default is off. This option was
added in MySQL 5.7.4.

-DW TH_SSL={ssl _t ype|pat h_nane}
The type of SSL support to include or the path name to the OpenSSL installation to use.

e ssl _type can be one of the following values:

149

http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_libedit

MySQL Source-Configuration Options

« yes: Use the system SSL library if present, else the library bundled with the distribution.
e bundl ed: Use the SSL library bundled with the distribution. This is the default.
e syst ent Use the system SSL library.

e pat h_nane is the path name to the OpenSSL installation to use. Using this can be preferable to
using the ssl _t ype value of syst em for it can prevent CMake from detecting and using an older
or incorrect OpenSSL version installed on the system. (Another permitted way to do the same
thing is to set the CMAKE_PREFI X_PATH option to pat h_nane.)

For information about using SSL support, see Section 6.3.11, “Using SSL for Secure Connections”.
- DW TH_TEST_TRACE_PLUG N=bool

Whether to build the test protocol trace client plugin (see Using the Test Protocol Trace

Plugin). By default, this option is disabled. Enabling this option has no effect unless the

W TH_CLI ENT_PROTOCOL_TRACI NG option is enabled. If MySQL is configured with both options
enabled, the | i brmysqgl cl i ent client library is built with the test protocol trace plugin built in, and all
the standard MySQL clients load the plugin. However, even when the test plugin is enabled, it has no
effect by default. Control over the plugin is afforded using environment variables; see Using the Test
Protocol Trace Plugin.

This option was added in MySQL 5.7.2.

Note

3 Do not enable the W TH TEST TRACE PLUG N option if you want to use
your own protocol trace plugins because only one such plugin can be loaded
at a time and an error occurs for attempts to load a second one. If you have
already built MySQL with the test protocol trace plugin enabled to see how
it works, you must rebuild MySQL without it before you can use your own
plugins.

For information about writing trace plugins, see Section 22.2.4.11, “Writing Protocol Trace Plugins”.
- DW TH_UNI XODBC=1

Enables unixODBC support, for Connector/ODBC.
-DWTH ZLI B=zli b_t ype

Some features require that the server be built with compression library support, such as the
COVPRESS() and UNCOVPRESS() functions, and compression of the client/server protocol. The
W TH_ZLI B indicates the source of zI i b support:

e bundl ed: Use the zl i b library bundled with the distribution.
e syst em Use the system zl i b library. This is the default.
- DW THOUT _SERVER=bool

Whether to build without the MySQL server. The default is OFF, which does build the server.

Compiler Flags

- DCMAKE_C FLAGS="fl ags"
Flags for the C Compiler.

- DOMAKE_CXX_FLAGS="f | ags"

150

Dealing with Problems Compiling MySQL

Flags for the C++ Compiler.
« -DW TH DEFAULT_COWPI LER_OPTI ONS=bool

Whether to use the flags from crmake/ bui | d_confi gurati ons/ conpil er _opti ons. crmake.

team. Overriding them can lead to unexpected results and is done at your

Note
@ All optimization flags were carefully chosen and tested by the MySQL build
own risk.

To specify your own C and C++ compiler flags, for flags that do not affect optimization, use the
CVAKE_C FLAGS and CMAKE _CXX_FLAGS CMake options.

When providing your own compiler flags, you might want to specify CMAKE BUI LD TYPE as well.

For example, to create a 32-bit release build on a 64-bit Linux machine, do this:

shel | > nkdir bld
shell > cd bl d
shel | > cmake .. -DCVMAKE C FLAGS=-nB82 \
- DCMAKE_CXX_FLAGS=- n82 \
- DCMAKE_BUI LD _TYPE=Rel Wt hDebl nf o

If you set flags that affect optimization (- Onunber), you must set the CMAKE _C FLAGS bui l d_type
and/or CVAKE_CXX_FLAGS bui | d_t ype options, where bui | d_t ype corresponds

to the CVAKE_BUI LD TYPE value. To specify a different optimization for the default

build type (Rel W t hDebl nf 0) set the CVAKE_C FLAGS RELW THDEBI NFOand
CVAKE_CXX_FLAGS_RELW THDEBI NFO options. For example, to compile on Linux with - O3 and with
debug symbols, do this:

shel | > cmake .. - DCMAKE C FLAGS RELW THDEBI NFO="- C8 -g" \
- DCMAKE_CXX_FLAGS_RELW THDEBI NFO="- O3 - g"

2.8.5 Dealing with Problems Compiling MySQL

The solution to many problems involves reconfiguring. If you do reconfigure, take note of the following:

» If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CVakeCache. t xt . When CVake starts up, it looks
for that file and reads its contents if it exists, on the assumption that the information is still correct.
That assumption is invalid when you reconfigure.

» Each time you run CVake, you must run nake again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old object files or configuration information from being used, run the following commands
before re-running C\vake:

On Unix:

shel | > make cl ean
shel | > rm CMvakeCache. t xt

On Windows:

151

Dealing with Problems Compiling MySQL

shel | > devenv MySQL. sl n /cl ean
shel | > del CMakeCache. t xt

If you build outside of the source tree, remove and recreate your build directory before re-running
ChMake. For instructions on building outside of the source tree, see How to Build MySQL Server with
CMake.

On some systems, warnings may occur due to differences in system include files. The following list
describes other problems that have been found to occur most often when compiling MySQL.:

» To define which C and C++ compilers to use, you can define the CC and CXX environment
variables. For example:

shel | > CC=gcc
shel | > CXX=g++
shel | > export CC CXX

To specify your own C and C++ compiler flags, use the CMAKE C FLAGS and CVAKE CXX_ FLAGS
CMake options. See Compiler Flags.

To see what flags you might need to specify, invoke nysqgl _confi g with the - -cfl ags and - -
cxxf | ags options.

» To see what commands are executed during the compile stage, after using C\Vake to configure
MySQL, run make VERBOSE=1 rather than just nake.

« If compilation fails, check whether the MYSQL_MAI NTAI NER_MODE option is enabled. This mode
causes compiler warnings to become errors, so disabling it may enable compilation to proceed.

« If your compile fails with errors such as any of the following, you must upgrade your version of nake
to GNU neke:

make: Fatal error in reader: Makefile, |ine 18:
Badl y formed macro assi gnnent

Or:

make: file “Makefile' line 18: Must be a separator (:

Or:

pt hread. h: No such file or directory

Solaris and FreeBSD are known to have troublesome nake programs.
GNU rmake 3.75 is known to work.
e The sql yacc. cc file is generated from sql _yacc. yy. Normally, the build process does not need

to create sql _yacc. cc because MySQL comes with a pregenerated copy. However, if you do need
to re-create it, you might encounter this error:

"sql _yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install a recent version of
bi son (the GNU version of yacc) and use that instead.

Versions of bi son older than 1.75 may report this error:

152

http://dev.mysql.com/doc/internals/en/cmake.html
http://dev.mysql.com/doc/internals/en/cmake.html

MySQL Configuration and Third-Party Tools

sql _yacc. yy: #####: fatal error: maxi mumtable size (32767) exceeded

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of
bi son.

For information about acquiring or updating tools, see the system requirements in Section 2.8,
“Installing MySQL from Source”.

2.8.6 MySQL Configuration and Third-Party Tools

Third-party tools that need to determine the MySQL version from the MySQL source can read the
VERSI ON file in the top-level source directory. The file lists the pieces of the version separately. For
example, if the version is MySQL 5.7.4-m14, the file looks like this:

MYSQL_VERSI ON_MAJOR=5
MYSQL_VERSI ON_M NOR=7
MYSQL_VERSI ON_PATCH=4
MYSQL_VERSI ON_EXTRA=- L4

If the source is not for a General Availablility (GA) release, the MYSQL_VERSI ON_EXTRA value will be
nonempty. For the example, the value corresponds to Milestone 14.

To construct a five-digit number from the version components, use this formula:

MYSQL_VERSI ON_MAJOR* 10000 + MYSQL_VERSI ON_M NOR*100 + MYSQL_VERSI ON_PATCH

2.9 Postinstallation Setup and Testing

This section discusses post-installation items for Unix-like systems. If you are using Windows, see
Section 2.3.8, “Windows Postinstallation Procedures”.

After installing MySQL, there are some items that you should address. For example:

» You should initialize the data directory and create the MySQL grant tables, as describe in
Section 2.9.1, “Postinstallation Procedures for Unix-like Systems”.

» An important security concern is that the initial accounts in the grant tables have no passwords. You
should assign passwords to prevent unauthorized access to the MySQL server. For instructions, see
Section 2.9.2, “Securing the Initial MySQL Accounts”.

» Optionally, you can create time zone tables to enable recognition of named time zones. For
instructions, see Section 4.4.6, “nysql tzinfo _to _sql — Load the Time Zone Tables”.

* If you have trouble getting the server to start, see Section 2.9.1.3, “Starting and Troubleshooting the
MySQL Server”.

» When you are ready to create additional user accounts, you can find information on the MySQL
access control system and account management in Section 6.2, “The MySQL Access Privilege
System”, and Section 6.3, “MySQL User Account Management”.

2.9.1 Postinstallation Procedures for Unix-like Systems

After installing MySQL on a Unix-like system, you must initialize the grant tables, start the server,
and make sure that the server works satisfactorily. You may also wish to arrange for the server to
be started and stopped automatically when your system starts and stops. You should also assign
passwords to the accounts in the grant tables.

On a Unix-like system, the grant tables are set up by the nysqgl i nstal | _db program. For some
installation methods, this program is run for you automatically if an existing database cannot be found.

153

Postinstallation Procedures for Unix-like Systems

« If you install MySQL on Linux using RPM distributions, the server RPM runs nysql _i nstal | _db.

» Using the native packaging system on many platforms, including Debian Linux, Ubuntu Linux,
Gentoo Linux and others, the nysql i nstal | _db command is run for you.

* If you install MySQL on Mac OS X using a DMG distribution, the installer runs mysqgl _i nstal | _db.

For other platforms and installation types, including generic binary and source installs, you will need to
run mysql install _db yourself.

The following procedure describes how to initialize the grant tables (if that has not previously been
done) and start the server. It also suggests some commands that you can use to test whether the
server is accessible and working properly. For information about starting and stopping the server
automatically, see Section 2.9.1.2, “Starting and Stopping MySQL Automatically”.

After you complete the procedure and have the server running, you should assign passwords to
the accounts created by mysql i nstal | _db and perhaps restrict access to test databases. For
instructions, see Section 2.9.2, “Securing the Initial MySQL Accounts”.

In the examples shown here, the server runs under the user ID of the mysql login account. This
assumes that such an account exists. Either create the account if it does not exist, or substitute the
name of a different existing login account that you plan to use for running the server. For information
about creating the account, see Creating a nysql System User and Group, in Section 2.2, “Installing
MySQL on Unix/Linux Using Generic Binaries”.

1. Change location into the top-level directory of your MySQL installation, represented here by
BASEDI R:

shel | > cd BASEDI R

BASEDI Ris the installation directory for your MySQL instance. It is likely to be something like /
usr/ 1l ocal / nysqgl or/usr/Il ocal . The following steps assume that you have changed location
to this directory.

You will find several files and subdirectories in the BASEDI R directory. The most important for
installation purposes are the bi n and scri pt s subdirectories:

« The bi n directory contains client programs and the server. You should add the full path name
of this directory to your PATH environment variable so that your shell finds the MySQL programs
properly. See Section 2.11, “Environment Variables”.

e The scri pt s directory contains the mysql _i nstal | _db script used to initialize the nysq|l
database containing the grant tables that store the server access permissions.

2. If necessary, ensure that the distribution contents are accessible to nysql . If you installed the
distribution as nmysql , no further action is required. If you installed the distribution as r oot , its
contents will be owned by r oot . Change its ownership to mysql by executing the following
commands as r oot in the installation directory. The first command changes the owner attribute of
the files to the nysql user. The second changes the group attribute to the mysql group.

shel | > chown -R nysql
shel | > chgrp -R nysql

3. If necessary, run the nysql _i nstal | _db program to set up the initial MySQL grant tables
containing the privileges that determine how users are permitted to connect to the server. You will
need to do this if you used a distribution type for which the installation procedure does not run the
program for you.

shel |l > scripts/nysqgl _install _db --user=nysql

154

Postinstallation Procedures for Unix-like Systems

Typically, nysql i nstal | _db needs to be run only the first time you install MySQL, so you can
skip this step if you are upgrading an existing installation, However, nysql _i nstal | _db does not
overwrite any existing privilege tables, so it should be safe to run in any circumstances.

It might be necessary to specify other options such as - - basedi r or - - dat adi r if
nysql _i nstal | _db does not identify the correct locations for the installation directory or data
directory. For example:

shel | > scripts/nysqgl _install_db --user=nysqgl \
- - basedi r=/opt/ nysql / mysqgl \
--dat adi r=/ opt/ nysql / nysql / dat a

The nysql _i nstal | _db script creates the server's data directory with nysql as the owner.
Under the data directory, it creates directories for the mysql database that holds the grant tables
and the t est database that you can use to test MySQL. The script also creates privilege table
entries for r oot and anonymous-user accounts. The accounts have no passwords initially.
Section 2.9.2, “Securing the Initial MySQL Accounts”, describes the initial privileges. Briefly, these
privileges permit the MySQL r oot user to do anything, and permit anybody to create or use
databases with a name of t est or starting with t est _. See Section 6.2, “The MySQL Access
Privilege System”, for a complete listing and description of the grant tables.

For a more secure installation, invoke nysql _i nst al | _db with the - - random passwor ds
option. This causes it to assign a random password to the MySQL r oot accounts, set the
“password expired” flag for those accounts, and remove the anonymous-user MySQL accounts. For
additional details, see Section 4.4.3, “nmysql _i nstal | _db — Initialize MySQL Data Directory”.
(Install operations using RPMs for Unbreakable Linux Network are unaffected because they do not
use nysql _install _db.)

It is important to make sure that the database directories and files are owned by the mysql login
account so that the server has read and write access to them when you run it later. To ensure this
if yourun nysql _install _dbasroot, include the - - user option as shown. Otherwise, you
should execute the script while logged in as nysql , in which case you can omit the - - user option
from the command.

If you do not want to have the t est database, you can remove it after starting the server, using the
instructions in Section 2.9.2, “Securing the Initial MySQL Accounts”.

If you have trouble with nysql _i nst al | _db at this point, see Section 2.9.1.1, “Problems Running
nysql _install _db"

Most of the MySQL installation can be owned by r oot if you like. The exception is that the data
directory must be owned by nmysql . To accomplish this, run the following commands as r oot in the
installation directory:

shel | > chown -R root .
shel | > chown -R nysqgl data

If the plugin directory (the directory named by the pl ugi n_di r system variable) is writable by
the server, it may be possible for a user to write executable code to a file in the directory using
SELECT ... | NTO DUWMPFI LE. This can be prevented by making pl ugi n_di r read only to
the server or by setting - - secure-fil e-pri v to a directory where SELECT writes can be made
safely.

If you installed MySQL using a source distribution, you may want to optionally copy one of the
provided configuration files from the support - fi | es directory into your / et ¢ directory. There
are different sample configuration files for different use cases, server types, and CPU and RAM
configurations. If you want to use one of these standard files, you should copy itto/ et ¢/ my. cnf ,
or/etc/ nysql / my. cnf and edit and check the configuration before starting your MySQL server
for the first time.

155

Postinstallation Procedures for Unix-like Systems

If you do not copy one of the standard configuration files, the MySQL server will be started with the
default settings.

If you want MySQL to start automatically when you boot your machine, you can copy support -
files/nysql.server tothe location where your system has its startup files. More information
can be found in the nysql . server scriptitself, and in Section 2.9.1.2, “Starting and Stopping
MySQL Automatically”.

Start the MySQL server:

shel | > bi n/ nysql d_safe --user=nysql &

It is important that the MySQL server be run using an unprivileged (non-r oot) login account. To
ensure this if you run nysql d_saf e as r oot , include the - - user option as shown. Otherwise,
you should execute the script while logged in as nysql , in which case you can omit the - - user
option from the command.

For further instructions for running MySQL as an unprivileged user, see Section 6.1.5, “How to Run
MySQL as a Normal User”.

If the command fails immediately and prints nysql d ended, look for information in the error log
(which by default is the host _nane. err file in the data directory).

If you neglected to create the grant tables by running nysql i nstal | _db before proceeding to
this step, the following message appears in the error log file when you start the server:

nmysqld: Can't find file: 'host.frm

This error also occurs if you run nysql _i nstal | _db asr oot without the - - user option.
Remove the dat a directory and run nysql _i nst al | _db with the - - user option as described
previously.

If you have other problems starting the server, see Section 2.9.1.3, “Starting and Troubleshooting
the MySQL Server”. For more information about nysql d_saf e, see Section 4.3.2, “nysql d_saf e
— MySQL Server Startup Script”.

Use nysql admi n to verify that the server is running. The following commands provide simple tests
to check whether the server is up and responding to connections:

shel | > bi n/ mysqgl adm n versi on
shel | > bi n/ mysqgl adm n vari abl es

The output from nysql adm n ver si on varies slightly depending on your platform and version of
MySQL, but should be similar to that shown here:

shel | > bi n/ nysql adm n versi on
nysqladmn Ver 14.12 Distrib 5.7.5, for pc-linux-gnu on i 686

Server version 5.7.5

Pr ot ocol version 10

Connecti on Local host via UN X socket
UNI X socket /var/lib/nysql /nysql . sock
Upti ne: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0O
pens: 0 Flush tables: 1 Open tables: 19
Queri es per second avg: 0.000

To see what else you can do with nysql admni n, invoke it with the - - hel p option.

156

Postinstallation Procedures for Unix-like Systems

9. Verify that you can shut down the server:

shel | > bi n/ nysql admi n -u root shutdown

10. Verify that you can start the server again. Do this by using mysql d_saf e or by invoking nysql d
directly. For example:

shel | > bi n/ nysqgl d_safe --user=nysql &
If mysql d_saf e fails, see Section 2.9.1.3, “Starting and Troubleshooting the MySQL Server”.

11. Run some simple tests to verify that you can retrieve information from the server. The output should
be similar to what is shown here:

shel | > bi n/ mysqgl show

e emeeeeeeaaaa +
| Dat abases |
e emeeeeeeaaaa +
| information_schema |
| nmysql |
| test |
e emeeeeeeaaaa +

shel | > bi n/ mysqgl show nysql
Dat abase: nysql

ti me_zone_| eap_second

ti me_zone_nane
time_zone_transition
time_zone_transition_type
user

Hem e e eemeeeeaaaaaa +
| Tabl es |
Hem e e eemeeeeaaaaaa +
| colums_priv |
| db |
| event |
| func |
| hel p_category |
| hel p_keyword |
| help_relation |
| hel p_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| tables_priv |
| tine_zone |
| |
| |
| |
| |
| |

shel |l > bin/ nysql -e "SELECT Host, Db, User FROM db" nysql

L f - L +
| host | db | user |
L f - L +
| % | test | |
| % | test_%| |
L f - L +

12. There is a benchmark suite in the sql - bench directory (under the MySQL installation directory)
that you can use to compare how MySQL performs on different platforms. The benchmark suite is
written in Perl. It requires the Perl DBI module that provides a database-independent interface to
the various databases, and some other additional Perl modules:

DBl
DBD: : nysql
Dat a: : Dunper

157

Postinstallation Procedures for Unix-like Systems

Dat a: : ShowTabl e

These modules can be obtained from CPAN (http://www.cpan.org/). See also Section 2.12.1,
“Installing Perl on Unix”.

The sql - bench/ Resul t s directory contains the results from many runs against different
databases and platforms. To run all tests, execute these commands:

shel | > cd sql - bench
shel | > perl run-all-tests

If you do not have the sql - bench directory, you probably installed MySQL using RPM files
other than the source RPM. (The source RPM includes the sql - bench benchmark directory.)

In this case, you must first install the benchmark suite before you can use it. There are separate
benchmark RPM files named nysql - bench- VERSI ON. i 386. r pmthat contain benchmark code
and data.

If you have a source distribution, there are also tests inits t est s subdirectory that you can run. For
example, to run aut o_i ncrenent . t st, execute this command from the top-level directory of your
source distribution:

shel | > mysql -vvf test < ./tests/auto_increnent.tst
The expected result of the test can be found in the . / t est s/ aut o_i ncrenent . r es file.

13. At this point, you should have the server running. However, none of the initial MySQL accounts
have a password, and the server permits permissive access to test databases. To tighten security,
follow the instructions in Section 2.9.2, “Securing the Initial MySQL Accounts”.

The MySQL 5.7 installation procedure creates time zone tables in the nysql database but does not
populate them. To do so, use the instructions in Section 10.6, “MySQL Server Time Zone Support”.

To make it more convenient to invoke programs installed in the bi n directory under the installation
directory, you can add that directory to your PATH environment variable setting. That enables you
to run a program by typing only its name, not its entire path name. See Section 4.2.4, “Setting
Environment Variables”.

2.9.1.1 Problems Running nysqgl _install db

The purpose of the nysql _i nst al | _db script is to generate new MySQL privilege tables. It does not
overwrite existing MySQL privilege tables, and it does not affect any other data.

If you want to re-create your privilege tables, first stop the nysqgl d server if it is running. Then rename
the mysql directory under the data directory to save it, and then run mysql _i nstal | _db. Suppose
that your current directory is the MySQL installation directory and that nysqgl _i nstal | _db is located
in the bi n directory and the data directory is named dat a. To rename the nysql database and re-run
nmysql i nstall _db, use these commands.

shel | > nv data/ nysqgl data/nysql.old
shel | > scripts/nysqgl _install _db --user=nysq

When you run nysql _i nstal | _db, you might encounter the following problems:
* nysqgl _install _db fails to install the grant tables

You may find that mysql _i nstal | _db fails to install the grant tables and terminates after
displaying the following messages:

Starting nysqld daenon with databases from XXXXXX

158

http://www.cpan.org/

Postinstallation Procedures for Unix-like Systems

nmysql d ended

In this case, you should examine the error log file very carefully. The log should be located in the
directory XXXXXX named by the error message and should indicate why nysql d did not start. If you
do not understand what happened, include the log when you post a bug report. See Section 1.7,
“How to Report Bugs or Problems”.

» Thereis anysql d process running

This indicates that the server is running, in which case the grant tables have probably been created
already. If so, there is no need to run nysql _i nst al | _db at all because it needs to be run only
once (when you install MySQL the first time).

 Installing a second nmysql d server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation
in a different location. For example, you might have a production installation, but you want to create
a second installation for testing purposes. Generally the problem that occurs when you try to run a
second server is that it tries to use a network interface that is in use by the first server. In this case,
you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.3, “Running Multiple MySQL Instances
on One Machine”.

* You do not have write access to the / t np directory

If you do not have write access to create temporary files or a Unix socket file in the default location
(the / t mp directory) or the TMP_DI R environment variable, if it has been set, an error occurs when
you run nmysql _i nstall _db orthe mysql d server.

You can specify different locations for the temporary directory and Unix socket file by executing
these commands prior to starting mnysql _i nstal | _db or nysqgl d, where sone_t np_di r is the full
path name to some directory for which you have write permission:

shel | > TMPDI R=/ sonme_t np_di r/
shel | > MYSQL_UNI X _PORT=/ sone_t np_di r/ mysql . sock
shel | > export TMPDI R MYSQL_UNI X PORT

Then you should be able to run mysql _i nstal | _db and start the server with these commands:

shel | > scripts/nysqgl _install_db --user=nysq
shel | > bin/ nysql d_safe --user=nysql &

If nysql _install _dbislocatedinthe scri pts directory, modify the first command to scri pt s/
nysql _install _db.

See Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”, and Section 2.11,
“Environment Variables”.

There are some alternatives to running the nysql _i nstal | _db script provided in the MySQL
distribution:

« If you want the initial privileges to be different from the standard defaults, you can modify
nysql _i nstal | _db before you run it. However, it is preferable to use GRANT and REVOKE
to change the privileges after the grant tables have been set up. In other words, you can run
nysql _install _db,andthenusenysql -u root nysqgl toconnectto the server as the
MySQL r oot user so that you can issue the necessary GRANT and REVOKE statements.

159

Postinstallation Procedures for Unix-like Systems

If you want to install MySQL on several machines with the same privileges, you can put the
GRANT and REVOKE statements in a file and execute the file as a script using nysql after running
nysqgl i nstall _db. For example:

shel | > scripts/nysqgl _install_db --user=nysql
shel | > bin/nysgl -u root < your_script_file

By doing this, you can avoid having to issue the statements manually on each machine.

It is possible to re-create the grant tables completely after they have previously been created. You
might want to do this if you are just learning how to use GRANT and REVOKE and have made so many
modifications after running nysql _i nst al | _db that you want to wipe out the tables and start over.

To re-create the grant tables, remove all the . f rmy . MYl , and . MyDfiles in the nysqgl database
directory. Then run the nysql _i nstal | _db script again.

You can start mysqgl d manually using the - - ski p- gr ant - t abl es option and add the privilege
information yourself using mysql :

shel | > bi n/ nysql d_safe --user=nysql --skip-grant-tables &
shel | > bi n/ nmysqgl nysql

From nysql , manually execute the SQL commands contained in nysql _i nst al | _db. Make sure
that you run nysql adnmi n flush-privil eges ormnmysqgl adni n rel oad afterward to tell the
server to reload the grant tables.

Note that by not using nysql _i nst al | _db, you not only have to populate the grant tables
manually, you also have to create them first.

2.9.1.2 Starting and Stopping MySQL Automatically

Generally, you start the mysql d server in one of these ways:

Invoke mysql d directly. This works on any platform.

Invoke mysql d_saf e, which tries to determine the proper options for nysql d and then runs it with
those options. This script is used on Unix and Unix-like systems. See Section 4.3.2, “nysql d_safe
— MySQL Server Startup Script”.

Invoke nmysqgl . ser ver . This script is used primarily at system startup and shutdown on systems that
use System V-style run directories (that is, / et ¢/ i ni t . d and run-level specific directories), where

it usually is installed under the name nysql . The nysql . server script starts the server by invoking
nysql d_saf e. See Section 4.3.3, “nysql . ser ver — MySQL Server Startup Script”.

On Mac OS X, install a separate MySQL Startup Item package to enable the automatic startup
of MySQL on system startup. The Startup Item starts the server by invoking nysql . server.
See Section 2.4.3, “Installing the MySQL Startup Item”, for details. A MySQL Preference Pane
also provides control for starting and stopping MySQL through the System Preferences, see
Section 2.4.4, “Installing and Using the MySQL Preference Pane”.

Use the Solaris/OpenSolaris service management framework (SMF) system to initiate and control
MySQL startup. For more information, see Section 2.6.2, “Installing MySQL on OpenSolaris Using
IPS”.

The nysql d_saf e and nysql . server scripts, Solaris/OpenSolaris SMF, and the Mac OS X Startup
Item (or MySQL Preference Pane) can be used to start the server manually, or automatically at system
startup time. nysql . server and the Startup Item also can be used to stop the server.

To start or stop the server manually using the nysql . ser ver script, invoke it with st art or st op
arguments:

160

Postinstallation Procedures for Unix-like Systems

shel | > nysql . server start
shel | > nysql . server stop

Before mysql . ser ver starts the server, it changes location to the MySQL installation directory, and
then invokes mysql d_saf e. If you want the server to run as some specific user, add an appropriate
user option to the [mysql d] group of the / et c/ ny. cnf option file, as shown later in this section.

(It is possible that you will need to edit mysqgl . ser ver if you've installed a binary distribution of
MySQL in a nonstandard location. Maodify it to change location into the proper directory before it runs
nmysql d_saf e. If you do this, your modified version of nysql . ser ver may be overwritten if you
upgrade MySQL in the future, so you should make a copy of your edited version that you can reinstall.)

nmysqgl . server st op stops the server by sending a signal to it. You can also stop the server
manually by executing mysql adnmi n shut down.

To start and stop MySQL automatically on your server, you need to add start and stop commands to
the appropriate places in your / et c/ r c* files.

If you use the Linux server RPM package (MySQL- ser ver - VERSI ON. r pi), or a native Linux package
installation, the nysql . ser ver script may be installed in the / et ¢/ i ni t . d directory with the name
mysql . See Section 2.5.3, “Installing MySQL on Linux Using RPM Packages”, for more information on
the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as
mysql d.

If you install MySQL from a source distribution or using a binary distribution format that does not install
nmysqgl . server automatically, you can install it manually. The script can be found in the support -
fil es directory under the MySQL installation directory or in a MySQL source tree.

Toinstall mysql . ser ver manually, copy ittothe /et c/init. d directory with the name nysql ,
and then make it executable. Do this by changing location into the appropriate directory where
nmysgl . server is located and executing these commands:

shel | > cp nysql .server /etc/init.d/ mysql
shel | > chnod +x /etc/init.d/ mysql

Note

@ Older Red Hat systems use the / et ¢/ rc. d/ i ni t. d directory rather than /
et c/init.d.Adjust the preceding commands accordingly. Alternatively, first
create / et c/ini t.d as asymbolic link that pointsto/etc/rc.d/init.d:

shell> cd /etc
shell>1In -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on your
operating system. On Linux, you can use chkconfi g:

shel | > chkconfig --add nysql

On some Linux systems, the following command also seems to be necessary to fully enable the nmysql
script:

shel | > chkconfig --1evel 345 nysqgl on

On FreeBSD, startup scripts generally should goin/ usr/ 1 ocal /etc/rc.d/.Therc(8) manual
page states that scripts in this directory are executed only if their basename matches the *. sh shell
file name pattern. Any other files or directories present within the directory are silently ignored. In

161

Postinstallation Procedures for Unix-like Systems

other words, on FreeBSD, you should install the nysql . server scriptas/usr/local/etc/rc.d/
nysgl . server . sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems alsouse / etc/rc. | ocal or/etc/
init.d/ boot.|ocal to start additional services on startup. To start up MySQL using this method,
you could append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/nysqgl; ./bin/nysqld_safe --user=nysql &
For other systems, consult your operating system documentation to see how to install startup scripts.

You can add options for nysql . server inaglobal / et c/ ny. cnf file. A typical / et c/ ny. cnf file
might look like this:

[nysql d]

dat adi r=/usr/| ocal / mysql / var
socket =/ var/t nmp/ mysql . sock
port =3306

user =nysql

[mysql . server]
basedi r=/usr/| ocal / nysql

The nysql . server script supports the following options: basedi r, dat adi r,and pi d-fil e. If
specified, they must be placed in an option file, not on the command line. mysql . ser ver supports
only st art and st op as command-line arguments.

The following table shows which option groups the server and each startup script read from option files.

Table 2.14 MySQL Startup scripts and supported server option groups

Script Option Groups

mysql d [mysql d],[server],[nmysql d- maj or _versi on]

nmysql d_safe [mysql d],[server],[nysql d_saf e]

mysql . server [mysgl d], [nysql . server],[server]

[mysql d- maj or _ver si on] means that groups with names like [nysql d- 5. 6] and
[mysqgl d- 5. 7] are read by servers having versions 5.6.x, 5.7.x, and so forth. This feature can be
used to specify options that can be read only by servers within a given release series.

For backward compatibility, nysql . ser ver also reads the [nysql _server] group and
nysql d_saf e also reads the [saf e_mmysql d] group. However, you should update your option files to
use the [mysql . server] and [nysql d_saf e] groups instead when using MySQL 5.7.

For more information on MySQL configuration files and their structure and contents, see
Section 4.2.3.3, “Using Option Files”.

2.9.1.3 Starting and Troubleshooting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server on a Unix-like
system. If you are using Windows, see Section 2.3.6, “Troubleshooting a Microsoft Windows MySQL
Server Installation”.

If you have problems starting the server, here are some things to try:

» Check the error log to see why the server does not start. Log files are located in the data directory
(typically C: \ Program Fi | es\ MySQL\ MySQL Server 5.7\ dataon Windows,/usr/| ocal/
nysql / dat a for a Unix/Linux binary distribution, and / usr/ | ocal / var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host _nane. err and

162

Postinstallation Procedures for Unix-like Systems

host nane. | og, where host _nane is the name of your server host. Then examine the last few
lines of these files. Use t ai | to display them:

shel | > tail host_nane.err
shel | > tail host_nane.| og

Specify any special options needed by the storage engines you are using. You can create a nny. cnf
file and specify startup options for the engines that you plan to use. If you are going to use storage
engines that support transactional tables (I nnoDB, NDB), be sure that you have them configured
the way you want before starting the server. If you are using | nnoDB tables, see Section 14.2.3,

“I nnoDB Configuration” for guidelines and Section 14.2.13, “| nnoDB Startup Options and System
Variables” for option syntax.

Although storage engines use default values for options that you omit, Oracle recommends that
you review the available options and specify explicit values for any options whose defaults are not
appropriate for your installation.

Make sure that the server knows where to find the data directory. The nysql d server uses this
directory as its current directory. This is where it expects to find databases and where it expects to
write log files. The server also writes the pid (process ID) file in the data directory.

The default data directory location is hardcoded when the server is compiled. To determine what

the default path settings are, invoke nysql d with the - - ver bose and - - hel p options. If the data
directory is located somewhere else on your system, specify that location with the - - dat adi r option
tonysql d or mysql d_saf e, on the command line or in an option file. Otherwise, the server will not
work properly. As an alternative to the - - dat adi r option, you can specify nysql d the location of
the base directory under which MySQL is installed with the - - basedi r, and nmysql d looks for the
dat a directory there.

To check the effect of specifying path options, invoke nysql d with those options followed by the - -
ver bose and - - hel p options. For example, if you change location into the directory where nysql d
is installed and then run the following command, it shows the effect of starting the server with a base
directory of / usr/ | ocal :

shel | > ./nmysqgld --basedir=/usr/local --verbose --help

You can specify other options such as - - dat adi r as well, but - - ver bose and - - hel p must be
the last options.

Once you determine the path settings you want, start the server without - - ver bose and - - hel p.
If mysql d is currently running, you can find out what path settings it is using by executing this
command:

shel | > nmysql adm n vari abl es

Or:

shel | > nmysql admi n -h host _nane vari abl es
host nane is the name of the MySQL server host.

Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must allow the server to read and modify them.

If you get Err code 13 (which means Per mi ssi on deni ed) when starting nysql d, this means
that the privileges of the data directory or its contents do not permit server access. In this case, you
change the permissions for the involved files and directories so that the server has the right to use
them. You can also start the server as r oot , but this raises security issues and should be avoided.

163

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Securing the Initial MySQL Accounts

Change location into the data directory and check the ownership of the data directory and its
contents to make sure the server has access. For example, if the data directory is / usr/ | ocal /
nysql / var, use this command:

shell> |s -la /usr/local/nysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use
for running the server, change their ownership to that account. If the account is named nmysql , use
these commands:

shel | > chown -R nysql /usr/|ocal/nysql/var
shel |l > chgrp -R nysqgl /usr/local/nysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running
on your system that manages application access to various parts of the file system. In this case,
reconfigure that software to enable nysql d to access the directories it uses during normal operation.

Verify that the network interfaces the server wants to use are available.

If either of the following errors occur, it means that some other program (perhaps another nmysql d
server) is using the TCP/IP port or Unix socket file that nysql d is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysql d server running. If so, shut down the server
before starting mysql d again. (If another server is running, and you really want to run multiple
servers, you can find information about how to do so in Section 5.3, “Running Multiple MySQL
Instances on One Machine”.)

If no other server is running, execute the command t el net your host nane

tcp_i p_port_nunber. (The default MySQL port number is 3306.) Then press Enter a couple

of times. If you do not get an error message liket el net: Unable to connect to renote
host: Connection refused, some other program is using the TCP/IP port that nysql d is trying
to use. Track down what program this is and disable it, or tell mysql d to listen to a different port with
the - - port option. In this case, specify the same non-default port number for client programs when
connecting to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks
connections to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, make sure that you have an entry in / et ¢/ host s
that looks like this:

127.0.0.1 | ocal host

If you cannot get nysql d to start, try to make a trace file to find the problem by using the - - debug
option. See Section 22.4.3, “The DBUG Package”.

2.9.2 Securing the Initial MySQL Accounts

Part of the MySQL installation process is to set up the nysql database that contains the grant tables:

Windows distributions contain preinitialized grant tables.

On Unix, the nysql _i nst al | _db program populates the grant tables. Some installation methods
run this program for you. Others require that you execute it manually. For details, see Section 2.9.1,
“Postinstallation Procedures for Unix-like Systems”.

164

Securing the Initial MySQL Accounts

The nysql . user grant table defines the initial MySQL user accounts and their access privileges:

» Some accounts have the user name r oot . These are superuser accounts that have all privileges
and can do anything. The initial r oot account passwords are empty, So anyone can connect to the
MySQL server as r oot without a password and be granted all privileges.

* On Windows, r oot accounts are created that permit connections from the local host only.
Connections can be made by specifying the host name | ocal host , the IP address 127. 0. 0. 1,
or the IPv6 address : : 1. If the user selects the Enable root access from remote machines
option during installation, the Windows installer creates another r oot account that permits
connections from any host.

« On Unix, each r oot account permits connections from the local host. Connections can be made
by specifying the host name | ocal host , the IP address 127. 0. 0. 1, the IPv6 address : : 1, or
the actual host name or IP address.

An attempt to connect to the host 127. 0. 0. 1 normally resolves to the | ocal host account.
However, this fails if the server is run with the - - ski p- nanme- r esol ve option, so the 127. 0. 0. 1
account is useful in that case. The : : 1 account is used for IPv6 connections.

« Some accounts are for anonymous users. These have an empty user name. The anonymous
accounts have no password, so anyone can use them to connect to the MySQL server.

¢ On Windows, there is one anonymous account that permits connections from the local host.
Connections can be made by specifying a host name of | ocal host .

* On Unix, each anonymous account permits connections from the local host. Connections can be
made by specifying a host name of | ocal host for one of the accounts, or the actual host name
or IP address for the other.

To display which accounts exist in the nysql . user table and check whether their passwords are
empty, use the following statement:

nysqgl > SELECT User, Host, Password FROM nysql . user;

oo coao ooccccocsocccoocoooso moccoccoas +
| User | Host | Password |
oo coao ooccccocsocccoocoooso moccoccoas +
root	Iocal host	
root	myhost.exanpl e.com	
root	127.0.0.1	
root	::1	
[Iocal host	
	nyhost . exanpl e. com	
oo coao ooccccocsocccoocoooso moccoccoas +

This output indicates that there are several r oot and anonymous-user accounts, none of which
have passwords. The output might differ on your system, but the presence of accounts with empty
passwords means that your MySQL installation is unprotected until you do something about it:

* You should assign a password to each MySQL r oot account.

« If you want to prevent clients from connecting as anonymous users without a password, you should
either assign a password to each anonymous account or else remove the accounts.

In addition, the nmysql . db table contains rows that permit all accounts to access the t est database
and other databases with names that start with t est _. This is true even for accounts that otherwise
have no special privileges such as the default anonymous accounts. This is convenient for testing
but inadvisable on production servers. Administrators who want database access restricted only to
accounts that have permissions granted explicitly for that purpose should remove these nysql . db
table rows.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for
the r oot accounts, then for the anonymous accounts. The instructions also cover how to remove the

165

Securing the Initial MySQL Accounts

anonymous accounts, should you prefer not to permit anonymous access at all, and describe how to
remove permissive access to test databases. Replace newpwd in the examples with the password
that you want to use. Replace host _nane with the name of the server host. You can determine this
name from the output of the preceding SELECT statement. For the output shown, host _nane is
myhost . exanpl e. com

“Assigning Account Passwords”. If you forget your r oot password after setting

Note
@ For additional information about setting passwords, see Section 6.3.5,
it, see Section C.5.4.1, “How to Reset the Root Password”.

You might want to defer setting the passwords until later, to avoid the need to specify them while you
perform additional setup or testing. However, be sure to set them before using your installation for
production purposes.

To set up additional accounts, see Section 6.3.2, “Adding User Accounts”.
Assigning r oot Account Passwords

The r oot account passwords can be set several ways. The following discussion demonstrates three
methods:

+ Use the SET PASSWORD statement
» Use the UPDATE statement
» Use the nysql adn n command-line client program

To assign passwords using SET PASSWORD, connect to the server as r oot and issue a SET
PASSWORD statement for each r oot account listed in the mysql . user table. Be sure to encrypt the
password using the PASSWORD() function.

For Windows, do this:

shel | > nysqgl -u root

nysqgl > SET PASSWORD FOR 'root' @I ocal host' PASSWORD(' newpwd') ;
nysqgl > SET PASSWORD FOR 'root' @127.0.0.1' PASSWORD(' newpwd') ;
nysqgl > SET PASSWORD FOR 'root' @::1' = PASSWORD(' newpwd') ;

nysqgl > SET PASSWORD FOR 'root' @ % = PASSWORD(' newpwd') ;

The last statement is unnecessary if the nysql . user table has no r oot account with a host value of
%

For Unix, do this:

shel | > nysqgl -u root

nmysqgl > SET PASSWORD FOR 'root' @I ocal host' PASSWORD(' newpwd') ;
nysql > SET PASSWORD FOR 'root' @127.0.0.1' PASSWORD(' newpwd') ;
nysql > SET PASSWORD FOR 'root' @:: 1" = PASSWORD(' newpwd') ;

nmysqgl > SET PASSWORD FOR 'root' @ host_nanme' = PASSWORD(' newpwd') ;

You can also use a single statement that assigns a password to all r oot accounts by using UPDATE to
modify the mysql . user table directly. This method works on any platform:

shel | > nysqgl -u root

nmysql > UPDATE nysql . user SET Password = PASSWORD(' newpwd')
-> WHERE User = 'root"';

nysql > FLUSH PRI VI LEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

166

Securing the Initial MySQL Accounts

To assign passwords to the r oot accounts using mysql adm n, execute the following commands:

shel | > nysqgl admi n -u root password "newpwd"
shel | > nysqgl admin -u root -h host_nane password "newpwd"

Those commands apply both to Windows and to Unix. The double quotation marks around the
password are not always necessary, but you should use them if the password contains spaces or other
characters that are special to your command interpreter.

The nysql adm n method of setting the r oot account passwords does not work for the
"root' @127.0.0.1" or'root' @::1" account. Use the SET PASSWORD method shown earlier.

After the r oot passwords have been set, you must supply the appropriate password whenever you
connect as r oot to the server. For example, to shut down the server with nmysql admi n, use this
command:

shel | > nysqgl admin -u root -p shutdown
Enter password: (enter root password here)

Assigning Anonymous Account Passwords

The nysgl commands in the following instructions include a - p option based on the assumption that
you have set the r oot account passwords using the preceding instructions and must specify that
password when connecting to the server.

To assign passwords to the anonymous accounts, connect to the server as r oot , then use either SET
PASSWORD or UPDATE. Be sure to encrypt the password using the PASSWORD() function.

To use SET PASSWORD on Windows, do this:

shel |l > nysgl -u root -p
Enter password: (enter root password here)
nysql > SET PASSWORD FOR '' @1 ocal host' = PASSWORD(' newpwd') ;

To use SET PASSWORD on Unix, do this:

shell > nysgl -u root -p

Enter password: (enter root password here)

nysql > SET PASSWORD FOR '' @1 ocal host' = PASSWORD(' newpwd') ;
nysql > SET PASSWORD FOR '' @ host _nane' PASSWORD(' newpwd') ;

To set the anonymous-user account passwords with a single UPDATE statement, do this (on any
platform):

shel |l > nysgl -u root -p

Enter password: (enter root password here)

nmysqgl > UPDATE nysql . user SET Password = PASSWORD(' newpwd')
-> WHERE User = "'

nysql > FLUSH PRI VI LEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

Removing Anonymous Accounts

If you prefer to remove any anonymous accounts rather than assigning them passwords, do so as
follows on Windows:

167

Upgrading or Downgrading MySQL

shel | > nysql -u root -p
Enter password: (enter root password here)
nmysql > DROP USER '' @1 ocal host ' ;

On Unix, remove the anonymous accounts like this:

shell > nmysgl -u root -p

Ent er password: (enter root password here)
nmysqgl > DROP USER '' @I ocal host ' ;

nysqgl > DROP USER '' @ host _nane' ;

Securing Test Databases

By default, the nysql . db table contains rows that permit access by any user to the t est database
and other databases with names that start with t est _. (These rows have an empty User column
value, which for access-checking purposes matches any user name.) This means that such databases
can be used even by accounts that otherwise possess no privileges. If you want to remove any-user
access to test databases, do so as follows:

shell > nmysgl -u root -p

Ent er password: (enter root password here)

nysqgl > DELETE FROM nysql . db WHERE Db LI KE 'test%;
nysql > FLUSH PRI VI LEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the privilege change
remains unnoticed by the server until you restart it.

With the preceding change, only users who have global database privileges or privileges granted
explicitly for the t est database can use it. However, if you do not want the database to exist at all,
drop it:

nysqgl > DROP DATABASE t est ;

the Configuration Wizard (see The Security Options Dialog). On all platforms,
the MySQL distribution includes nysql secure_instal | ati on, a command-

Note
@ On Windows, you can also perform the process described in this section using
line utility that automates much of the process of securing a MySQL installation.

2.10 Upgrading or Downgrading MySQL
This section describes the steps to upgrade or downgrade a MySQL installation.

Upgrading is a common procedure, as you pick up bug fixes within the same MySQL release series
or significant features between major MySQL releases. You perform this procedure first on some test
systems to make sure everything works smoothly, and then on the production systems.

Downgrading is less common. Typically, you undo an upgrade because of some compatibility or
performance issue that occurs on a production system, and was not uncovered during initial upgrade
verification on the test systems. As with the upgrade procedure, perform and verify the downgrade
procedure on some test systems first, before using it on a production system.

2.10.1 Upgrading MySQL

As a general rule, to upgrade from one release series to another, go to the next series rather than
skipping a series. To upgrade from a release series previous to MySQL 5.6, upgrade to each
successive release series in turn until you have reached MySQL 5.6, and then proceed with the

168

http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard-security.html

Upgrading MySQL

upgrade to MySQL 5.7. For example, if you currently are running MySQL 5.1 and wish to upgrade to
a newer series, upgrade to MySQL 5.5 first before upgrading to 5.6, and so forth. For information on
upgrading to MySQL 5.6, see the MySQL 5.6 Reference Manual.

To upgrade to MySQL 5.7, use the items in the following checklist as a guide:

» Before any upgrade, back up your databases, including the nysql database that contains the grant
tables. See Section 7.2, “Database Backup Methods”.

» Read all the notes in Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”. These notes enable
you to identify upgrade issues that apply to your current MySQL installation. Some incompatibilities
discussed in that section require your attention before upgrading. Others require some action after
upgrading.

* Read the Release Notes as well, which provide information about features that are new in MySQL
5.7 or differ from those found in earlier MySQL releases.

 After upgrading to a new version of MySQL, run nysql _upgr ade (see Section 4.4.7,
“nmysql _upgr ade — Check and Upgrade MySQL Tables”). This program checks your tables, and
attempts to repair them if necessary. It also updates your grant tables to make sure that they have
the current structure so that you can take advantage of any new capabilities. (Some releases of
MySQL introduce changes to the structure of the grant tables to add new privileges or features.)

nysql _upgr ade does not upgrade the contents of the help tables. For upgrade instructions, see
Section 5.1.10, “Server-Side Help”.

nysql _upgr ade should not be used when the server is running with - - gt i d- nnde=0N, since
it may make changes in nontransactional system tables in the nysql database, many of which
are Myl SAMand cannot be changed to use a different storage engine. See GTID mode and

nysql _upgr ade.
* If you run MySQL Server on Windows, see Section 2.3.7, “Upgrading MySQL on Windows”.

« If you use replication, see Section 16.4.3, “Upgrading a Replication Setup”, for information on
upgrading your replication setup.

* If you upgrade an installation originally produced by installing multiple RPM packages, it is best to
upgrade all the packages, not just some. For example, if you previously installed the server and
client RPMs, do not upgrade just the server RPM.

« If you have created a user-defined function (UDF) with a given name and upgrade MySQL to a
version that implements a new built-in function with the same name, the UDF becomes inaccessible.
To correct this, use DROP FUNCTI ONto drop the UDF, and then use CREATE FUNCTI ONto
re-create the UDF with a different nonconflicting name. The same is true if the new version of
MySQL implements a built-in function with the same name as an existing stored function. See
Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

For EL5, EL6, or EL7-based Linux platforms and Fedora 19 or 20, you can perform an in-place
upgrade of MySQL and its components with the MySQL Yum repository. See Section 2.10.1.1,
“Upgrading MySQL with the MySQL Yum Repository”.

For upgrades between versions of a MySQL release series that has reached General Availability
status, you can move the MySQL format files and data files between different versions on systems with
the same architecture. For upgrades to a version of a MySQL release series that is in development
status, that is not necessarily true. Use of development releases is at your own risk.

If you are cautious about using new versions, you can always rename your old mysql d before
installing a newer one. For example, if you are using a version of MySQL 5.6 and want to upgrade
to 5.7, rename your current server from nysql d to nysql d- 5. 6. If your new nysql d then does
something unexpected, you can simply shut it down and restart with your old nysql d.

169

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Upgrading MySQL

If problems occur, such as that the new nysql d server does not start or that you cannot connect
without a password, verify that you do not have an old my. cnf file from your previous installation. You
can check this with the - - pri nt - def aul t s option (for example, nysql d --print-defaul ts).

If this command displays anything other than the program name, you have an active ny. cnf file that
affects server or client operation.

If, after an upgrade, you experience problems with compiled client programs, such as Conmands

out of sync or unexpected core dumps, you probably have used old header or library files when
compiling your programs. In this case, check the date for your nysql . h fileand | i bnysql client. a
library to verify that they are from the new MySQL distribution. If not, recompile your programs

with the new headers and libraries. Recompilation might also be necessary for programs compiled
against the shared client library if the library major version number has changed (for example from

i brmysglclient.so.15tolibnysqglclient. so. 16.

If your MySQL installation contains a large amount of data that might take a long time to convert after
an in-place upgrade, you might find it useful to create a “dummy” database instance for assessing what
conversions might be needed and the work involved to perform them. Make a copy of your MySQL
instance that contains a full copy of the nysql database, plus all other databases without data. Run
your upgrade procedure on this dummy instance to see what actions might be needed so that you can
better evaluate the work involved when performing actual data conversion on your original database
instance.

It is a good idea to rebuild and reinstall the Perl DBD: : nysql module whenever you install a new
release of MySQL. The same applies to other MySQL interfaces as well, such as PHP nysql
extensions and the Python My SQLdb module.

2.10.1.1 Upgrading MySQL with the MySQL Yum Repository

For EL5, EL6, or EL7-based Linux platforms and Fedora 19 or 20, you can upgrade MySQL and its
components to the latest GA releases with the MySQL Yum repository.

Note
@ Before you perform any upgrade actions, please pay attention to the following:

« If your version of MySQL is more than one series older than the latest GA
series (for example, assuming the current GA release series is 5.6 and you
have 5.1.x installed right now), do NOT use the following instructions to
update MySQL, and do NOT enable the MySQL Yum repository on your
system until you have upgraded MySQL by other means (see Section 2.10.1,
“Upgrading MySQL") to at least the last GA series before the latest one.

« Before performing any update to MySQL, follow carefully the instructions in
Section 2.10.1, “Upgrading MySQL”. Among other instructions discussed
there, it is especially important to back up your database before the update.

 If your MySQL installation is a third-party distribution, follow the instructions
in Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the
MySQL Yum Repository” for upgrading the installation.

The Yum update performs an in-place update for MySQL (that is, replaces the old version of the
software and then runs the new version off the old version's data files). It updates MySQL to the latest
release in the same release series. Assuming that you already have the MySQL Yum repository on
your system's repository list (see Adding the MySQL Yum Repository for details), make sure your Yum
repository setup is up-to-date by running:

shel | > sudo yum update nysql - comuni ty-rel ease
You can then update MySQL and its components by the following command:

shel | > sudo yum updat e nysql - server

170

Upgrading MySQL

Alternatively, you can update the MySQL Yum repository setup and MySQL at the same time by telling
Yum to update everything on your system (this might take considerably more time):

shel | > sudo yum update

Note that by default, the yum updat e command will only update MySQL to the latest version in

the same release series, which means, for example, a 5.6.x installation will NOT be updated to a
5.7.x release automatically. To update to the next release series, after updating the MySQL Yum
repository setup as described above, you need to first disable the sub-repository for your original
version and enable the sub-repository for your target version before you run the yum updat e
command for MySQL. See the instructions for doing that in Enable and Disable the Appropriate Sub-
Repositories [116].

Important

A For important information about upgrading from MySQL 5.6 to 5.7, see
Section 2.10.1.2, “Upgrading from MySQL 5.6 to 5.7”

The MySQL server always restarts after an update by Yum. Once the server restarts, you should
run mysql _upgr ade to check and possibly resolve any incompatibilities between the old data
and the upgraded software. nysql _upgr ade also performs other functions; see Section 4.4.7,
“nysql _upgr ade — Check and Upgrade MySQL Tables” for details.

Although we recommend that you update all the MySQL components at the same time, you can also
update only a specific component. You can use the following command to list all the installed packages
for the MySQL components, which can all be updated with the MySQL Yum repository:

shel | > sudo yumlist installed | grep "“nysql"

After identifying the package name of the component of your choice, update the package with the
following command, replacing package- nane with the name of the package:

shel | > sudo yum updat e package- nane
Upgrading the Shared Client Libraries

After updating MySQL using the Yum repository, applications compiled with older versions of the
shared client libraries should continue to work.

If you recompile applications and dynamically link them with the updated libraries: As typical with new
versions of shared libraries where there are differences or additions in symbol versioning between

the newer and older libraries (for example, between the newer, standard 5.7 shared client libraries
and some older—prior or variant—versions of the shared libraries shipped natively by the Linux
distributions' software repositories, or from some other sources), any applications compiled using the
updated, newer shared libraries will require those updated libraries on systems where the applications
are deployed. And, as expected, if those libraries are not in place, the applications requiring the
shared libraries will fail. So, be sure to deploy the packages for the shared libraries from MySQL on
those systems. You can do this by adding the MySQL Yum repository to the systems (see Adding the
MySQL Yum Repository) and install the latest shared libraries using the instructions given in Installing
Additional MySQL Products and Components with Yum.

2.10.1.2 Upgrading from MySQL 5.6 to 5.7

Note

@ It is good practice to back up your data before installing any new version of
software. Although MySQL works very hard to ensure a high level of quality,
protect your data by making a backup.

To upgrade to 5.7 from any previous version, MySQL recommends that you
dump your tables with nysql dunp before upgrading and reload the dump file

171

Upgrading MySQL

after upgrading. Use the - - al | - dat abases option to include all databases in
the dump. If your databases include stored programs, use the - - r out i nes and
- -event s options as well.

In general, do the following when upgrading from MySQL 5.6 to 5.7:
» Read all the items in these sections to see whether any of them might affect your applications:
e Section 2.10.1, “Upgrading MySQL", has general update information.

« The items in the change lists provided later in this section enable you to identify upgrade issues
that apply to your current MySQL installation. Some incompatibilities discussed there require your
attention before upgrading. Others should be dealt with after upgrading.

e The MySQL 5.7 Release Notes describe significant new features you can use in 5.7 or that
differ from those found in earlier MySQL releases. Some of these changes may result in
incompatibilities.

Note particularly any changes that are marked Known issue or Incompatible change. These
incompatibilities with earlier versions of MySQL may require your attention before you upgrade.
Our aim is to avoid these changes, but occasionally they are necessary to correct problems that
would be worse than an incompatibility between releases. If any upgrade issue applicable to your
installation involves an incompatibility that requires special handling, follow the instructions given in
the incompatibility description. Sometimes this involves dumping and reloading tables, or use of a
statement such as CHECK TABLE or REPAI R TABLE.

For dump and reload instructions, see Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.
Any procedure that involves REPAI R TABLE with the USE_FRMoption must be done before
upgrading. Use of this statement with a version of MySQL different from the one used to create the
table (that is, using it after upgrading) may damage the table. See Section 13.7.2.5, “REPAI R TABLE
Syntax”.

» Before upgrading to a new version of MySQL, Section 2.10.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”, to see whether changes to table formats or to character sets or collations were
made between your current version of MySQL and the version to which you are upgrading. If so and
these changes result in an incompatibility between MySQL versions, you will need to upgrade the
affected tables using the instructions in Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.

 After upgrading to a new version of MySQL, run nysql _upgr ade (see Section 4.4.7,
“nmysql _upgr ade — Check and Upgrade MySQL Tables”). This program checks your tables, and
attempts to repair them if necessary. It also updates your grant tables to make sure that they have
the current structure so that you can take advantage of any new capabilities. (Some releases of
MySQL introduce changes to the structure of the grant tables to add new privileges or features.)

nysql _upgr ade does not upgrade the contents of the help tables. For upgrade instructions, see
Section 5.1.10, “Server-Side Help”.

* If you run MySQL Server on Windows, see Section 2.3.7, “Upgrading MySQL on Windows”.

« If you use replication, see Section 16.4.3, “Upgrading a Replication Setup”, for information on
upgrading your replication setup.

* If you use | nnoDB, consider setting i nnodb_f ast _shut down to 0 before shutting down and
upgrading your server. When you seti nnodb_f ast _shut down to 0, | nnoDB does a slow
shutdown, a full purge and an insert buffer merge before shutting down, which ensures that all data
files are fully prepared in case the upgrade process modifies the file format.

If your MySQL installation contains a large amount of data that might take a long time to convert after
an in-place upgrade, you might find it useful to create a “dummy” database instance for assessing what
conversions might be needed and the work involved to perform them. Make a copy of your MySQL
instance that contains a full copy of the nysql database, plus all other databases without data. Run

172

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Upgrading MySQL

your upgrade procedure on this dummy instance to see what actions might be needed so that you can
better evaluate the work involved when performing actual data conversion on your original database
instance.

Read all the items in the following sections to see whether any of them might affect your applications:
Server Changes

» Incompatible change: As of MySQL 5.7.4, the deprecated ERROR_FOR DI VI SI ON_BY_ZERO,
NO ZERO DATE, and NO ZERO | N _DATE SQL modes do nothing. Instead, their previous effects are
included in the effects of strict SQL mode (STRI CT_ALL_TABLES or STRI CT_TRANS_TABLES). In
other words, strict mode now means the same thing as the previous meaning of strict mode plus the
ERROR_FOR DI VI SI ON_BY_ZERO, NO ZERO DATE, and NO ZERO | N_DATE modes. This change
reduces the number of SQL modes with an effect dependent on strict mode and makes them part of
strict mode itself.

To prepare for these SQL mode changes, it is advisable before upgrading to read SQL Mode
Changes in MySQL 5.7. That discussion provides guidelines to assess whether your applications will
be affected by these changes.

The deprecated ERROR_FOR DI VI SI ON_BY_ZERO, NO ZERO DATE, and NO_ZERO | N_DATE
SQL modes are still recognized so that statements that name them do not produce an error, but will
be removed in a future version of MySQL. To make advance preparation for versions of MySQL in
which these modes do not exist, applications should be modified to not refer to those mode names.

» Incompatible change: As of MySQL 5.7.2, the server requires account rows in the mysql . user
table to have a nonempty pl ugi n column value and disables accounts with an empty value. This
requires that you upgrade as follows.

For an upgrade in which you plan to use the data directory from your existing MySQL installation:

1. Stop the server

2. Upgrade MySQL in place

3. Restart the server with the - - ski p- gr ant - t abl es option to disable privilege checking
4. Runnysql _upgrade

5. Restart the server normally (without - - ski p- grant -t abl es)

For an upgrade in which you plan to reload a dump file generated from your existing MySQL
installation:

1. To generate the dump file, run mysql dunp without the - - f | ush- pri vi | eges option
2. Stop the server

3. Upgrade MySQL in place

4. Restart the server with the - - ski p- gr ant - t abl es option to disable privilege checking
5. Reload the dump file (mysql < dunp_file)

6. Execute nysql upgrade

7. Restart the server normally (without - - ski p- gr ant -t abl es)

nysql _upgr ade runs by default as the MySQL r oot user. For either of the preceding procedures,
if the r oot password is expired when you run nysql _upgr ade, you will see a message that your
password is expired and that nysql _upgr ade failed as a result. To correct this, reset the r oot
password to unexpire it and run nysql _upgr ade again:

173

Upgrading MySQL

shel | > nmysgl -u root -p

Enter password: **** <- enter root password here
nysql > SET PASSWORD = PASSWORD(' r oot - password') ;
nysql > quit

shel | > nysql _upgr ade

SET PASSWORD normally does not work if the server is started with - - ski p- gr ant - t abl es, but
the first invocation of mysql _upgr ade flushes the privileges, so when you run nysql , the SET
PASSWORD statement is accepted.

After following the preceding instructions, DBAs are advised to also convert accounts that use the
deprecated nysql _ol d_passwor d authentication plugin to use nysqgl _nati ve_passwor d
instead. For account upgrade instructions, see Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysqgl _ol d_passwor d Plugin”.

Incompatible change: It is possible for a column DEFAULT value to be valid for the sql _node
value at table-creation time but invalid for the sql _node value when rows are inserted or updated.
Example:

SET sql _node = '';

CREATE TABLE t (d DATE DEFAULT 0);

SET sql _node = ' NO_ZERO DATE, STRI CT_ALL_TABLES' ;
INSERT INTO t (d) VALUES(DEFAULT);

In this case, 0 should be accepted for the CREATE TABLE but rejected for the | NSERT. However, the
server did not evaluate DEFAULT values used for inserts or updates against the current sql _node.
In the example, the | NSERT succeeds and inserts ' 0000- 00- 00" into the DATE column.

As of MySQL 5.7.2, the server applies the proper sql _node checks to generate a warning or error
at insert or update time.

A resulting incompatibility for replication if you use statement-based logging

(bi nl og_f or mat =STATEMENT) is that if a slave is upgraded, a nhonupgraded master will execute
the preceding example without error, whereas the | NSERT will fail on the slave and replication will
stop.

To deal with this, stop all new statements on the master and wait until the slaves catch up. Then
upgrade the slaves followed by the master. Alternatively, if you cannot stop new statements,
temporarily change to row-based logging on the master (bi nl og_f or mat =ROW and wait until all
slaves have processed all binary logs produced up to the point of this change. Then upgrade the
slaves followed by the master and change the master back to statement-based logging.

Incompatible change: Several changes were made to the audit log plugin for better compatibility
with Oracle Audit Vault. For upgrading purpose, the main issue is that the format of the audit log file
has changed: Information within <AUDI T_RECORD> elements previously written using attributes now
is written using subelements.

Example of old <AUDI T_RECORD> format:

<AUDI T_RECORD
Tl MESTAWMP="2013- 04- 15T15: 27: 27"
NAME=" Quer y*"
CONNECTI ON_| D="3"
STATUS="0"
SQLTEXT="SELECT 1"
/>

Example of new format:

174

Downgrading MySQL

<AUDI T_RECORD>
<T| MESTAMP>2013- 04- 15T15: 27: 27 UTC</ TI MESTAMP>
<RECORD _| D>3998_2013- 04- 15T15: 27: 27</ RECORD_| D>
<NAME>Quer y</ NAME>
<CONNECTI ON_I D>3</ CONNECTI ON_I D>
<STATUS>0</ STATUS>
<STATUS_CODE>0</ STATUS_CODE>
<USER>root[root] @] ocal host [127.0.0. 1] </ USER>
<OS_LOG N></ OS_LOGE N>
<HOST>| ocal host </ HOST>
<| P>127.0. 0. 1</ | P>
<COMMAND_CLASS>sel ect </ COWAND_CLASS>
<SQLTEXT>SELECT 1</ SQLTEXT>

</ AUDI T_RECORD>

If you previously used an older version of the audit log plugin, use this procedure to avoid writing
new-format log entries to an existing log file that contains old-format entries:

1. Stop the server.
2. Rename the current audit log file manually. This file will contain only old-format log entries.

3. Update the server and restart it. The audit log plugin will create a new log file, which will contain
only new-format log entries.

For information about the audit log plugin, see Section 6.3.13, “MySQL Enterprise Audit Log Plugin”.
SQL Changes

» A trigger can have triggers for different combinations of trigger event (I NSERT, UPDATE, DELETE)
and action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have
the same trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are
permitted. This change has implications for upgrades.

Suppose that you upgrade an old server that does not support multiple triggers to MySQL 5.7.2

or newer. If the new server is a replication master and has old slaves that do not support multiple
triggers, an error occurs on those slaves if a trigger is created on the master for a table that already
has a trigger with the same trigger event and action time. To avoid this problem, upgrade the slaves
first, then upgrade the master.

» Some keywords may be reserved in MySQL 5.7 that were not reserved in MySQL 5.6. See
Section 9.3, “Reserved Words”.

2.10.2 Downgrading MySQL

This section describes what to do to downgrade to an older MySQL version, in the unlikely case that
the previous version worked better than the new one.

It is always a good idea to make a backup beforehand, in case a downgrade fails and leaves the
instance in an unusable state.

To downgrade between General Availability (GA) status versions within the same release series,
typically you just install the new binaries on top of the old ones and do not make any changes to the
databases.

Downgrades between milestone releases (or from a GA release to a milestone release) within the
same release series are not supported and you may encounter issues.

The following items form a checklist of things to do whenever you perform a downgrade:

» Read the upgrading section for the release series from which you are downgrading to be sure that it
does not have any features you really need. See Section 2.10.1, “Upgrading MySQL".

« If there is a downgrading section for that version, read that as well.

175

Downgrading MySQL

To see which new features were added between the version to which you are downgrading and your
current version, see the Release Notes.

Check Section 2.10.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, to see whether
changes to table formats or to character sets or collations were made between your current version
of MySQL and the version to which you are downgrading. If so and these changes result in an
incompatibility between MySQL versions, you will need to downgrade the affected tables using the
instructions in Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.

In most cases, you can move the MySQL format files and data files between different GA versions on
the same architecture as long as you stay within versions for the same release series of MySQL.

If you downgrade from one release series to another, there may be incompatibilities in table storage
formats. In this case, use nysql dunp to dump your tables before downgrading. After downgrading,
reload the dump file using mysql or mysql i nport to re-create your tables. For examples, see
Section 2.10.5, “Copying MySQL Databases to Another Machine”.

A typical symptom of a downward-incompatible table format change when you downgrade is that you
cannot open tables. In that case, use the following procedure:

1
2.
3.

4,
5.

Stop the older MySQL server that you are downgrading to.
Restart the newer MySQL server you are downgrading from.

Dump any tables that were inaccessible to the older server by using nysql dunp to create a dump
file.

Stop the newer MySQL server and restart the older one.

Reload the dump file into the older server. Your tables should be accessible.

If system tables in the nysql database changed, downgrading might introduce some loss of
functionality or require some adjustments. Here are some examples:

Trigger creation requires the TRI GCER privilege as of MySQL 5.1. In MySQL 5.0, there is no
TRI GGER privilege and SUPER is required instead. If you downgrade from MySQL 5.1 to 5.0, you will
need to give the SUPER privilege to those accounts that had the TRI GGER privilege in 5.1.

Triggers were added in MySQL 5.0, so if you downgrade from 5.0 to 4.1, you cannot use triggers at
all.

The nmysql . proc. comment column definition changed between MySQL 5.1 and 5.5. After a
downgrade from 5.5 to 5.1, this table is seen as corrupt and in need of repair. To workaround this
problem, execute nysql _upgr ade from the version of MySQL to which you downgraded.

2.10.2.1 Downgrading to MySQL 5.6

When downgrading to MySQL 5.6 from MySQL 5.7, keep in mind the following issues relating to
features found in MySQL 5.7, but not in MySQL 5.6:

SQL Changes

A trigger can have triggers for different combinations of trigger event (I NSERT, UPDATE, DELETE)
and action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have
the same trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are
permitted. This change has implications for downgrades.

If you downgrade a server that supports multiple triggers to an older version that does not, the
downgrade has these effects:

» For each table that has triggers, all trigger definitions remain in the . TRGfile for the table.
However, if there are multiple triggers with the same trigger event and action time, the server

176

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Checking Whether Tables or Indexes Must Be Rebuilt

executes only one of them when the trigger event occurs. For information about . TRGfiles, see
Table Trigger Storage.

« If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites
the table's . TRGfile. The rewritten file retains only one trigger per combination of trigger event and
action time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed
using NEWand OLD can be passed to the routine using parameters. If the trigger needs a single
result value from the code, you can put the code in a stored function and have the function return
the value. If the trigger needs multiple result values from the code, you can put the code in a
stored procedure and return the values using CUT parameters.

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for
this trigger is thus the same as the multiple triggers it replaces.

2.10.3 Checking Whether Tables or Indexes Must Be Rebuilt

A binary upgrade or downgrade is one that installs one version of MySQL “in place” over an existing
version, without dumping and reloading tables:

1. Stop the server for the existing version if it is running.

2. Install a different version of MySQL. This is an upgrade if the new version is higher than the original
version, a downgrade if the version is lower.

3. Start the server for the new version.

In many cases, the tables from the previous version of MySQL can be used without problem by the
new version. However, sometimes changes occur that require tables or table indexes to be rebuilt,

as described in this section. If you have tables that are affected by any of the issues described here,
rebuild the tables or indexes as necessary using the instructions given in Section 2.10.4, “Rebuilding or
Repairing Tables or Indexes”.

Table Incompatibilities

After a binary upgrade to MySQL 5.1 from a MySQL 5.0 installation that contains ARCHI VE tables,
accessing those tables causes the server to crash, even if you have run mysql _upgr ade or CHECK
TABLE ... FOR UPGRADE. To work around this problem, use nmysql dunp to dump all ARCHI VE
tables before upgrading, and reload them into MySQL 5.1 after upgrading. The same problem occurs
for binary downgrades from MySQL 5.1 to 5.0.

The upgrade problem is fixed in MySQL 5.6.4: The server can open ARCHI VE tables created in MySQL
5.0. However, it remains the recommended upgrade procedure to dump 5.0 ARCHI VE tables before
upgrading and reload them after upgrading.

Index Incompatibilities

In MySQL 5.6.3, the length limit for index prefix keys is increased from 767 bytes to 3072 bytes, for

| nnoDB tables using ROV FORVMAT=DYNAM C or ROW FORVAT=COVPRESSED. See Section 14.2.6.7,
“Limits on | nnoDB Tables” for details. This change is also backported to MySQL 5.5.14. If you
downgrade from one of these releases or higher, to an earlier release with a lower length limit, the
index prefix keys could be truncated at 767 bytes or the downgrade could fail. This issue could

only occur if the configuration option i nnodb_| ar ge_pr ef i x was enabled on the server being
downgraded.

177

http://dev.mysql.com/doc/internals/en/sp-storage.html#sp-storage-trigger

Checking Whether Tables or Indexes Must Be Rebuilt

If you perform a binary upgrade without dumping and reloading tables, you cannot upgrade directly
from MySQL 4.1 to 5.1 or higher. This occurs due to an incompatible change in the Myl SAMtable index
format in MySQL 5.0. Upgrade from MySQL 4.1 to 5.0 and repair all Myl SAMtables. Then upgrade
from MySQL 5.0 to 5.1 and check and repair your tables.

Modifications to the handling of character sets or collations might change the character sort order,
which causes the ordering of entries in any index that uses an affected character set or collation to be
incorrect. Such changes result in several possible problems:

» Comparison results that differ from previous results

Inability to find some index values due to misordered index entries

Misordered ORDER BY results

Tables that CHECK TABLE reports as being in need of repair

The solution to these problems is to rebuild any indexes that use an affected character set or collation,
either by dropping and re-creating the indexes, or by dumping and reloading the entire table. In

some cases, it is possible to alter affected columns to use a different collation. For information about
rebuilding indexes, see Section 2.10.4, “Rebuilding or Repairing Tables or Indexes”.

To check whether a table has indexes that must be rebuilt, consult the following list. It indicates which
versions of MySQL introduced character set or collation changes that require indexes to be rebuilt.
Each entry indicates the version in which the change occurred and the character sets or collations that
the change affects. If the change is associated with a particular bug report, the bug number is given.

The list applies both for binary upgrades and downgrades. For example, Bug #27877 was fixed in
MySQL 5.1.24, so it applies to upgrades from versions older than 5.1.24 to 5.1.24 or newer, and to
downgrades from 5.1.24 or newer to versions older than 5.1.24.

In many cases, you can use CHECK TABLE ... FOR UPGRADE to identify tables for which index
rebuilding is required. It will report this message:

Tabl e upgrade required.
Pl ease do "REPAIR TABLE “tbl _nane'" or dunp/reload to fix it!

In these cases, you can also use nysql check --check-upgrade or nysql _upgr ade, which
execute CHECK TABLE. However, the use of CHECK TABLE applies only after upgrades, not
downgrades. Also, CHECK TABLE is not applicable to all storage engines. For details about which
storage engines CHECK TABLE supports, see Section 13.7.2.2, “CHECK TABLE Syntax”.

These changes cause index rebuilding to be necessary:
e MySQL 5.1.24 (Bug #27877)

Affects indexes that use the ut f 8 _general ci orucs2_general ci collation for columns that
contain ' ' LATIN SMALL LETTER SHARP S (German). The bug fix corrected an error in the
original collations but introduced an incompatibility such that ' ' compares equal to characters with
which it previously compared different.

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.30 (see
Bug #40053).

A workaround for this issue is implemented as of MySQL 5.1.62, 5.5.21, and 5.6.5. The
workaround involves altering affected columns to use the ut f 8_general _nysql 500 _ci and
ucs2_general _mysql 500_ci collations, which preserve the original pre-5.1.24 ordering of
utf 8 _general ci anducs2_general ci.

« MySQL 5.0.48, 5.1.23 (Bug #27562)

178

Rebuilding or Repairing Tables or Indexes

Affects indexes that use the asci i _general _ci collation for columns that contain any of these
characters: ' °' GRAVE ACCENT, ' [' LEFT SQUARE BRACKET,'\' REVERSE SOLIDUS, ']’
RIGHT SQUARE BRACKET, ' ~' TILDE

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29 (see
Bug #39585).

« MySQL 5.0.48, 5.1.21 (Bug #29461)

Affects indexes for columns that use any of these character sets: eucj pns, euc_kr, gh2312,
[atin7, macce, ujis

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29 (see
Bug #39585).

2.10.4 Rebuilding or Repairing Tables or Indexes

This section describes how to rebuild a table, following changes to MySQL such as how data types or
character sets are handled. For example, an error in a collation might have been corrected, requiring

a table rebuild to update the indexes for character columns that use the collation. (For examples, see
Section 2.10.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.) You might also need to repair
or upgrade a table, as indicated by a table check operation such as that performed by CHECK TABLE,
nmysql check, ormysql _upgr ade.

Methods for rebuilding a table include dumping and reloading it, or using ALTER TABLE or REPAI R
TABLE.

Note

@ If you are rebuilding tables because a different version of MySQL will not handle
them after a binary (in-place) upgrade or downgrade, you must use the dump-
and-reload method. Dump the tables before upgrading or downgrading using
your original version of MySQL. Then reload the tables after upgrading or
downgrading.

If you use the dump-and-reload method of rebuilding tables only for the purpose
of rebuilding indexes, you can perform the dump either before or after upgrading
or downgrading. Reloading still must be done afterward.

To rebuild a table by dumping and reloading it, use nysql dunp to create a dump file and nysql to
reload the file:

shel | > nmysqgl dunp db_nanme t1 > dunp. sql
shel | > nmysgl db_nanme < dunp. sql

To rebuild all the tables in a single database, specify the database name without any following table

name:

shel | > nmysql dunp db_nanme > dunp. sql
shel | > nmysqgl db_nanme < dunp. sql

To rebuild all tables in all databases, use the - - al | - dat abases option:

shel | > nysql dunp --all-databases > dunp. sql
shel | > nysqgl < dunp. sql

To rebuild a table with ALTER TABLE, use a “null” alteration; that is, an ALTER TABLE statement that
“changes” the table to use the storage engine that it already has. For example, if t 1 is a Myl SAMtable,
use this statement:

179

Copying MySQL Databases to Another Machine

nmysqgl > ALTER TABLE t1 ENG NE = Myl SAM

If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOV CREATE
TABLE to display the table definition.

If you must rebuild a table because a table checking operation indicates that the table is corrupt or
needs an upgrade, you can use REPAI R TABLE if that statement supports the table's storage engine.
For example, to repair a Myl SAMtable, use this statement:

nysql > REPAI R TABLE t 1;

For storage engines such as | nnoDB that REPAI R TABLE does not support, use nysql dunp to create
a dump file and nysql to reload the file, as described earlier.

For specifics about which storage engines REPAI R TABLE supports, see Section 13.7.2.5, “REPAI R
TABLE Syntax”.

nysql check --repair provides command-line access to the REPAI R TABLE statement. This can
be a more convenient means of repairing tables because you can use the - - dat abases or--al | -
dat abases option to repair all tables in specific databases or all databases, respectively:

shel | > nysqgl check --repair --databases db_nane ...
shel | > nysql check --repair --all-databases

For incompatibilities introduced in MySQL 5.1.24 by the fix for Bug #27877 that corrected the

utf 8 general ci anducs2_general ci collations, a workaround is implemented as of MySQL
5.1.62, 5.5.21, and 5.6.5. Upgrade to one of those versions, then convert each affected table using
one of the following methods. In each case, the workaround altering affected columns to use the

ut f 8 _general nysqgl 500 _ci and ucs2_general nysql 500_ci collations, which preserve the
original pre-5.1.24 ordering of ut f 8_general _ci anducs2_general _ci .

» To convert an affected table after a binary upgrade that leaves the table files in place, alter the table
to use the new collation. Suppose that the table t 1 contains one or more problematic ut f 8 columns.
To convert the table at the table level, use a statement like this:

ALTER TABLE t1
CONVERT TO CHARACTER SET utf8 COLLATE utf8_general _nmysql 500_ci ;

To apply the change on a column-specific basis, use a statement like this (be sure to repeat the
column definition as originally specified except for the COLLATE clause):

ALTER TABLE t1
MODI FY c¢1 CHAR(N) CHARACTER SET utf8 COLLATE utf8_general _nmysql 500_ci ;

e To upgrade the table using a dump and reload procedure, dump the table using nysql dunp, modify
the CREATE TABLE statement in the dump file to use the new collation, and reload the table.

After making the appropriate changes, CHECK TABLE should report no error.

2.10.5 Copying MySQL Databases to Another Machine

You can copy the . frm . MYl , and . MYDfiles for Myl SAMtables between different architectures
that support the same floating-point format. (MySQL takes care of any byte-swapping issues.) See
Section 14.3, “The Myl SAM Storage Engine”.

In cases where you need to transfer databases between different architectures, you can use
nysgl dunp to create a file containing SQL statements. You can then transfer the file to the other
machine and feed it as input to the nysql client.

180

Environment Variables

Use nysql dunp --hel p to see what options are available.

The easiest (although not the fastest) way to move a database between two machines is to run the
following commands on the machine on which the database is located:

shel | > nysgl admi n -h ' ot her _hostnane' create db_nane
shel | > nysqgl dunp db_name | nysqgl -h 'other_hostnanme' db_nane

If you want to copy a database from a remote machine over a slow network, you can use these
commands:

shel | > nysqgl adm n create db_nane
shel | > nysqgl dunp -h ' ot her_host nanme' --conpress db_nanme | nysql db_nane

You can also store the dump in a file, transfer the file to the target machine, and then load the file
into the database there. For example, you can dump a database to a compressed file on the source
machine like this:

shel | > nysqgl dunp --quick db_name | gzip > db_nane. gz

Transfer the file containing the database contents to the target machine and run these commands
there:

shel | > nysqgl admi n create db_nane
shel | > gunzip < db_nane.gz | nysql db_nane

You can also use nysql dunp and nmysql i nport to transfer the database. For large tables, this is
much faster than simply using nysql dunp. In the following commands, DUVPDI R represents the full
path name of the directory you use to store the output from nysql dunp.

First, create the directory for the output files and dump the database:

shel | > nkdi r DUMPDI R
shel | > nysql dunp --tab=DUVPDI R db_nane

Then transfer the files in the DUMPDI R directory to some corresponding directory on the target machine
and load the files into MySQL there:

shel | > nysqgl admi n create db_nane # create database
shel | > cat DUWDI R/ *.sqgl | nysqgl db_nane # create tables in database
shel | > nysql i nport db_nanme DUWPDI R/ *. t xt # load data into tables

Do not forget to copy the nysql database because that is where the grant tables are stored. You
might have to run commands as the MySQL r oot user on the new machine until you have the nmysql
database in place.

After you import the nysql database on the new machine, execute nysql adnmi n fl ush-
privil eges so that the server reloads the grant table information.

2.11 Environment Variables

This section lists all the environment variables that are used directly or indirectly by MySQL. Most of
these can also be found in other places in this manual.

Note that any options on the command line take precedence over values specified in option files
and environment variables, and values in option files take precedence over values in environment
variables.

181

Environment Variables

In many cases, it is prefer

able to use an option file instead of environment variables to modify the

behavior of MySQL. See Section 4.2.3.3, “Using Option Files”.

Variable Description

CXX The name of your C++ compiler (for running CVake).

cC The name of your C compiler (for running CVake).

DBl _USER The default user name for Perl DBI.

DBl _TRACE Trace options for Perl DBI.

HOVE The default path for the mysql history file is $HOVE/ . mysql _hi st ory.
LD _RUN_PATH Used to specify the location of | i brmysqgl cl i ent . so.

LI BWSQL_ENABLE_CLH

FERABETMRLAGIG &N ear _passwor d authentication plugin; see
Section 6.3.9.5, “The Cleartext Client-Side Authentication Plugin”.

LI BMYSQL_PLUG N_Di H

RDirectory in which to look for client plugins.

LI BMYSQL_PLUG NS

Client plugins to preload.

MYSQL_DEBUG

Debug trace options when debugging.

MYSQL_GROUP_SUFFI X

Option group suffix value (like specifying - - def aul t s- gr oup- suf fi x).

MYSQL_HI STFI LE

The path to the mysqgl history file. If this variable is set, its value overrides
the default for SHOVE/ . nysql _hi st ory.

MYSQL_HI STI GNORE

Patterns specifying statements that nysql should not log to
$HOVE/ . nysql _hi story, orsysl ogif--sysl og is given.

MYSQL_HOVE The path to the directory in which the server-specific ny. cnf file resides.
MYSQL_HOST The default host name used by the mysql command-line client.
MYSQL_PS1 The command prompt to use in the nysql command-line client.
MYSQ._PWD The default password when connecting to nysql d. Note that using this is

”

insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

MYSQL_TCP_PORT

The default TCP/IP port number.

MYSQL_TEST_LOG N_FI

The name of the . nyl ogi n. cnf login file.

MYSQL_TEST_TRACE_CH

RMABether the test protocol trace plugin crashes clients. See note following
table

MYSQL_TEST_TRACE_Df

‘Rliether the test protocol trace plugin produces output. See note following
table

MYSQL_UNI X_PORT

The default Unix socket file name; used for connections to | ocal host .

PATH

Used by the shell to find MySQL programs.

TWMPDI R The directory where temporary files are created.

TZ This should be set to your local time zone. See Section C.5.4.6, “Time Zone
Problems”.

UMASK The user-file creation mode when creating files. See note following table.

UVASK_DI R The user-directory creation mode when creating directories. See note
following table.

USER The default user name on Windows when connecting to mysql d.

For information about the

MYSQL_TEST LOG N_FI
nysqgl _config editor

nmysql history file, see Section 4.5.1.3, “nmysql Logging”.

LE is the path name of the login file (the file created by
). If not set, the default value is %APPDATA% MySQL\ . nyl ogi n. cnf

directory on Windows and $HOVE/ . nyl ogi n. cnf on non-Windows systems. See Section 4.6.6,
“mysqgl _config_editor — MySQL Configuration Utility”.

182

Perl Installation Notes

The MYSQL_TEST_TRACE DEBUGand MYSQL_TRACE TRACE CRASH variables control the test
protocol trace client plugin, if MySQL is built with that plugin enabled. For more information, see Using
the Test Protocol Trace Plugin.

The UMASK and UVASK DI R variables, despite their names, are used as modes, not masks:

» If UMASK is set, mysql d uses ($UMASK | 0600) as the mode for file creation, so that newly
created files have a mode in the range from 0600 to 0666 (all values octal).

» If UMASK DI Ris set, nysql d uses ($UMASK DI R | 0700) as the base mode for directory
creation, which then is AND-ed with ~(~$UMASK & 0666) , so that newly created directories have
a mode in the range from 0700 to 0777 (all values octal). The AND operation may remove read and
write permissions from the directory mode, but not execute permissions.

MySQL assumes that the value for UVASK or UVASK DI Ris in octal if it starts with a zero.

2.12 Perl Installation Notes

The Perl DBI module provides a generic interface for database access. You can write a DBl script
that works with many different database engines without change. To use DBI , you must install the DBI
module, as well as a DataBase Driver (DBD) module for each type of database server you want to
access. For MySQL, this driver is the DBD: : mysqgl module.

Perl, and the DBD: : My SQL module for DBl must be installed if you want to run the MySQL benchmark
scripts; see Section 8.12.2, “The MySQL Benchmark Suite”.

necessary modules from http://search.cpan.org for Unix, or by using the
ActiveState ppmprogram on Windows. The following sections describe how to

Note
@ Perl support is not included with MySQL distributions. You can obtain the
do this.

The DBI /DBD interface requires Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not work if you
have an older version of Perl. You should use DBD: : mysql 4.009 or higher. Although earlier versions
are available, they do not support the full functionality of MySQL 5.7.

2.12.1 Installing Perl on Unix

MySQL Perl support requires that you have installed MySQL client programming support (libraries and
header files). Most installation methods install the necessary files. If you install MySQL from RPM files
on Linux, be sure to install the developer RPM as well. The client programs are in the client RPM, but

client programming support is in the developer RPM.

The files you need for Perl support can be obtained from the CPAN (Comprehensive Perl Archive
Network) at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shel | > perl -MCPAN -e shell
cpan> install DBl
cpan> install DBD::nysql

The DBD: : nysql installation runs a number of tests. These tests attempt to connect to the local
MySQL server using the default user name and password. (The default user name is your login name
on Unix, and ODBC on Windows. The default password is “no password.”) If you cannot connect to
the server with those values (for example, if your account has a password), the tests fail. You can use
force install DBD::nysql toignore the failed tests.

DBI requires the Dat a: : Dunper module. It may be installed; if not, you should install it before
installing DBI .

183

http://search.cpan.org
http://search.cpan.org

Installing ActiveState Perl on Windows

It is also possible to download the module distributions in the form of compressed t ar archives and
build the modules manually. For example, to unpack and build a DBI distribution, use a procedure such
as this:

1. Unpack the distribution into the current directory:

shell > gunzip < DBl -VERSION.tar.gz | tar xvf -
This command creates a directory named DBI - VERSI ON\.

2. Change location into the top-level directory of the unpacked distribution:

shel | > cd DBl - VERSI ON

3. Build the distribution and compile everything:

shel | > perl Makefile.PL
shel | > nmake

shel | > make test

shel | > make instal

The make test command is important because it verifies that the module is working. Note that when
you run that command during the DBD: : nysql installation to exercise the interface code, the MySQL
server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD: : mysql distribution whenever you install a new
release of MySQL. This ensures that the latest versions of the MySQL client libraries are installed
correctly.

If you do not have access rights to install Perl modules in the system directory or if you want to install
local Perl modules, the following reference may be useful: http://servers.digitaldaze.com/extensions/
perl/modules.html#modules

Look under the heading “Installing New Modules that Require Locally Installed Modules.”
2.12.2 Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

2. Open a console window.

3. If necessary, setthe HTTP_pr oxy variable. For example, you might try a setting like this:

C.\> set HTTP_proxy=my. proxy.com 3128

4. Start the PPM program:

C:\> C\perl\bin\ppmp

5. If you have not previously done so, install DBI :

ppm> instal | DB

6. If this succeeds, run the following command:

ppn® install DBD- nysq

184

http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://www.activestate.com/Products/ActivePerl/

Problems Using the Perl DBI /DBD Interface

This procedure should work with ActiveState Perl 5.6 or newer.

If you cannot get the procedure to work, you should install the ODBC driver instead and connect to the
MySQL server through ODBC:

use DBI;
$dbh= DBI - >connect (" DBI : ODBC: $dsn", $user, $password) ||
die "Got error $DBIl::errstr when connecting to $dsn\n";

2.12.3 Problems Using the Perl DBI /DBD Interface

If Perl reports that it cannot find the . . / mysql / nysql . so module, the problem is probably that Perl
cannot locate the | i brmysql cl i ent . so shared library. You should be able to fix this problem by one
of the following methods:

» Copylibnysqgl client. so tothe directory where your other shared libraries are located (probably
fusr/libor/lib).

Modify the - L options used to compile DBD: : nysql to reflect the actual location of
i brysqgl client. so.

» On Linux, you can add the path name of the directory where | i bnysql cl i ent . so is located to the
[etc/ld.so.conf file.

* Add the path name of the directory where | i brysqgl cl i ent . so is located to the LD RUN_PATH
environment variable. Some systems use LD LI BRARY_PATH instead.

Note that you may also need to modify the - L options if there are other libraries that the linker fails to
find. For example, if the linker cannot find | i bc because itisin/ | i b and the link command specifies -
L/ usr/1ib, changethe-L optionto-L/1iboradd-L/Iib tothe existing link command.

If you get the following errors from DBD: : nmysql , you are probably using gcc (or using an old binary
compiled with gcc):

/usr/bin/perl: can't resolve synbol '__ noddi 3'
/usr/bin/perl: can't resolve synbol '__divdi 3
Add - L/usr/lib/gcc-lib/... -Igcc tothe link command when the nysql . so library gets built

(check the output from nake for nysql . so when you compile the Perl client). The - L option should
specify the path name of the directory where | i bgcc. a is located on your system.

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this
case, you can solve the mismatch by compiling both with gcc.

185

186

Chapter 3 Tutorial

Table of Contents

3.1 Connecting to and Disconnecting from the SEIVErcciiiiiiiiiiii e 187
G 01 (=Y T O U= 4T PPN 188
3.3 Creating and USIiNg @ Databasecoiuiiiiiiiiiiii e 191
3.3.1 Creating and Selecting a Databasecoeiuiiiiiiiiiiii i 192
3.3.2 Creating @ TabIe ...oouiii i 193
3.3.3 Loading Data into @ Tableccouiiiiiiii e 194
3.3.4 Retrieving Information from a Tablecooiiiii i 195
3.4 Getting Information About Databases and Tablescccoooiiiiiiiiiii e, 208
3.5 Using mysql in BatCh MOEcoouniiiiiiii e e e e e e aens 209
3.6 Examples of COMMON QUETIESc.uiiiiieiiii e e e et e e e e e e e e e e e e e e e e et e e eaneeeeas 211
3.6.1 The Maximum Value for @ COIUMNoiiiiiiiie e 211
3.6.2 The Row Holding the Maximum of a Certain Columncccooeviiiiiie i, 211
3.6.3 Maximum Of ColUMN PEF GIOUP ...u.eveueiiiieiieee e e e e e e e e e e e e e et e e e ana s 212
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Columncccveeennnn. 212
3.6.5 Using User-Defined Variablescooiiiiiiiiiiii e 213
3.6.6 USING FOrEIgN KBYS ...iviiiiiiiiiii ittt et e e e e e e e e e e e e e e e e ean s 213
3.6.7 Searching 0N TWO KEYSuoiiiiiiiiiiieii e e e e e e e e e e aan s 215
3.6.8 Calculating ViSitsS PEI DAYciiuniiiiiieiii it e e e e e e e e e eeen 215
3.6.9 USiNg AUTO | NCREMENTciiiiiiiiiiieseeeeeeeeetitiseseeeeaeasstsnn s s seeeeeaasssssnanaaaeeesanssnnnnaaaes 216
3.7 Using MySQL With APACNEcouiiiiiiii e e e 218

This chapter provides a tutorial introduction to MySQL by showing how to use the nysql client
program to create and use a simple database. nysql (sometimes referred to as the “terminal monitor”
or just “monitor”) is an interactive program that enables you to connect to a MySQL server, run
gueries, and view the results. nysqgl may also be used in batch mode: you place your queries in a file
beforehand, then tell nysql to execute the contents of the file. Both ways of using nysql are covered
here.

To see a list of options provided by nysql , invoke it with the - - hel p option:

shel | > nysqgl --help

This chapter assumes that mysqgl is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the
administrator, you need to consult the relevant portions of this manual, such as Chapter 5, MySQL
Server Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only
in accessing an existing database, you may want to skip over the sections that describe how to create
the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you will usually need to provide a MySQL user name when you invoke nmysq|l
and, most likely, a password. If the server runs on a machine other than the one where you log in,

you will also need to specify a host name. Contact your administrator to find out what connection
parameters you should use to connect (that is, what host, user name, and password to use). Once you
know the proper parameters, you should be able to connect like this:

187

Entering Queries

shel | > nysgl -h host -u user -p
Ent er password: ***xxxxx

host and user represent the host name where your MySQL server is running and the user name of
your MySQL account. Substitute appropriate values for your setup. The ** ****** represents your
password; enter it when nmysql displays the Ent er passwor d: prompt.

If that works, you should see some introductory information followed by a nysql > prompt:

shel | > nysqgl -h host -u user -p

Ent er password: ***xx**x*

Wl come to the MySQL nonitor. Conmands end with ; or \g

Your MySQL connection id is 25338 to server version: 5.7.5-standard

Type 'help;' or "\h' for help. Type '\c' to clear the buffer
nmysql >
The mysql > prompt tells you that mysql is ready for you to enter commands.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

shel |l > nmysqgl -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't
connect to local MySQ. server through socket '/tnp/nysqgl.sock' (2),itmeans
that the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator
or see the section of Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating
system.

For help with other problems often encountered when trying to log in, see Section C.5.2, “Common
Errors When Using MySQL Programs”.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that
server by invoking mysql without any options:

shel | > nysq

After you have connected successfully, you can disconnect any time by typing QUI T (or \ q) at the
mysql > prompt:

nysql > QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate
this by the nysql > prompt.

3.2 Entering Queries

Make sure that you are connected to the server, as discussed in the previous section. Doing so does
not in itself select any database to work with, but that is okay. At this point, it is more important to find
out a little about how to issue queries than to jump right in creating tables, loading data into them, and
retrieving data from them. This section describes the basic principles of entering commands, using
several queries you can try out to familiarize yourself with how nysql works.

188

Entering Queries

Here is a simple command that asks the server to tell you its version number and the current date.
Type it in as shown here following the nysql > prompt and press Enter:

nmysql > SELECT VERSI ON(), CURRENT_DATE;

ooccccocsoocoos ooccccocsoocoaos +
| VERSI ON\() | CURRENT_DATE |
ooccccocsoocoos ooccccocsoocoaos +
| 5.7.1-m4-10g | 2012-12-25 |
ooccccocsoocoos ooccccocsoocoaos +
1 rowin set (0.01 sec)

mysql >

This query illustrates several things about mysql :

» A command normally consists of an SQL statement followed by a semicolon. (There are some
exceptions where a semicolon may be omitted. QUI T, mentioned earlier, is one of them. We'll get to
others later.)

* When you issue a command, nysql sends it to the server for execution and displays the results,
then prints another mysql > prompt to indicate that it is ready for another command.

* nysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

* nysqgl shows how many rows were returned and how long the query took to execute, which gives
you a rough idea of server performance. These values are imprecise because they represent wall
clock time (not CPU or machine time), and because they are affected by factors such as server load
and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining
examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

nmysql > SELECT VERSI ON(), CURRENT_DATE;
nysqgl > sel ect version(), current_date;
nysql > SeLeCt VErSi On(), current_DATE;

Here is another query. It demonstrates that you can use nysql as a simple calculator:

nysql > SELECT SIN(PI()/4), (4+1)*5;

oo B, +
| SINCPI()/4) | (4+1)*5 |
oo B, +
| 0.70710678118655 | 25 |
oo B, +

1 rowin set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter
multiple statements on a single line. Just end each one with a semicolon:

nysql > SELECT VERSI ON(); SELECT NOW);

fococcccoco-oc +
| VERSI ON() |
fococcccoco-oc +
| 5.6.1-m-1o0g |
fococcccoco-oc +
1 rowin set (0.00 sec)
fococ—cccoco-—coooo-oc +
| NOA() I
fococ—cccoco-—coooo-oc +
| 2010-08-06 12:17:13 |
fococ—cccoco-—coooo-oc +

1 rowin set (0.00 sec)

189

Entering Queries

A command need not be given all on a single line, so lengthy commands that require several lines are
not a problem. nysql determines where your statement ends by looking for the terminating semicolon,
not by looking for the end of the input line. (In other words, nmysql accepts free-format input: it collects
input lines but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

nmysql > SELECT

-> USER()

->

-> CURRENT_DATE;
moccccosooccoos omocccocosoocoos +
| USER() | CURRENT_DATE |
moccccosooccoos omocccocosoocoos +
| jon@ocal host | 2010- 08-06 |
moccccosooccoos omocccocosoocoos +

In this example, notice how the prompt changes from nysql > to - > after you enter the first line of a
multiple-line query. This is how nysgl indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what nysql is waiting for.

If you decide you do not want to execute a command that you are in the process of entering, cancel it
by typing \ c:

nmysql > SELECT
-> USER()
->\c
nysql >

Here, too, notice the prompt. It switches back to nysql > after you type \ c, providing feedback to
indicate that mysql is ready for a new command.

The following table shows each of the prompts you may see and summarizes what they mean about
the state that nysql isin.

Prompt |Meaning

mysqgl > |Ready for new command.

-> Waiting for next line of multiple-line command.

' > Waiting for next line, waiting for completion of a string that began with a single quote (*').

"> Waiting for next line, waiting for completion of a string that began with a double quote (“").
T > Waiting for next line, waiting for completion of an identifier that began with a backtick (").

[*> Waiting for next line, waiting for completion of a comment that began with / *.

Multiple-line statements commonly occur by accident when you intend to issue a command on a single
line, but forget the terminating semicolon. In this case, mysql waits for more input:

nmysql > SELECT USER()
->

If this happens to you (you think you've entered a statement but the only response is a - > prompt),
most likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you
might sit there for a while before realizing what you need to do. Enter a semicolon to complete the
statement, and nysql executes it:

nysql > SELECT USER()

190

Creating and Using a Database

The ' > and " > prompts occur during string collection (another way of saying that MySQL is waiting for
completion of a string). In MySQL, you can write strings surrounded by either “ " or characters (for
example, ' hel | o' or "goodbye"), and nmysqgl lets you enter strings that span multiple lines. When
you see a' > or " > prompt, it means that you have entered a line containing a string that begins with a
“ " or " " quote character, but have not yet entered the matching quote that terminates the string. This
often indicates that you have inadvertently left out a quote character. For example:

nysqgl > SELECT * FROM ny_t abl e WHERE nane = 'Smth AND age < 30;
">

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the ' > prompt. It tells you that

nysgl expects to see the rest of an unterminated string. (Do you see the error in the statement? The

string ' Smi t h is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the command. However, you cannot just
type \ c in this case, because nysql interprets it as part of the string that it is collecting. Instead, enter
the closing quote character (so nysql knows you've finished the string), then type \ c:

nysqgl > SELECT * FROM ny_t abl e WHERE nane = 'Smth AND age < 30;
"> '"\c
nysql >

The prompt changes back to mysql >, indicating that nysql is ready for a new command.

The ™ > prompt is similar to the ' > and " > prompts, but indicates that you have begun but not
completed a backtick-quoted identifier.

It is important to know what the ' >, " >, and * > prompts signify, because if you mistakenly enter

an unterminated string, any further lines you type appear to be ignored by mysql —including a line
containing QUI T. This can be quite confusing, especially if you do not know that you need to supply the
terminating quote before you can cancel the current command.

3.3 Creating and Using a Database

Once you know how to enter commands, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track
of various types of information about them. You can do so by creating tables to hold your data and
loading them with the desired information. Then you can answer different sorts of questions about
your animals by retrieving data from the tables. This section shows you how to perform the following
operations:

» Create a database
* Create a table

Load data into the table

Retrieve data from the table in various ways
» Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations
in which a similar type of database might be used. For example, a database like this could be used by
a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie

191

Creating and Selecting a Database

distribution containing some of the queries and sample data used in the following sections can be
obtained from the MySQL Web site. It is available in both compressed t ar file and Zip formats at http://
dev.mysqgl.com/doc/.

Use the SHOWSstatement to find out what databases currently exist on the server:

nysql > SHOW DATABASES;

 EE LT +
| Dat abase |
 EE LT +
| nmysql I
| test |
| tnp I
 EE LT +

The nysql database describes user access privileges. The t est database often is available as a
workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOWN DATABASES
does not show databases that you have no privileges for if you do not have the SHOW DATABASES
privilege. See Section 13.7.5.13, “SHOW DATABASES Syntax”.

If the t est database exists, try to access it:

nmysql > USE test
Dat abase changed

USE, like QUI T, does not require a semicolon. (You can terminate such statements with a semicolon
if you like; it does no harm.) The USE statement is special in another way, too: it must be given on a
single line.

You can use the t est database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that
you want to call yours nenager i e. The administrator needs to execute a command like this:

nysqgl > GRANT ALL ON nenagerie.* TO 'your_nysqgl _nane' @your_client_host";

where your _nysql _nane is the MySQL user name assigned to you and your _cl i ent _host is the
host from which you connect to the server.

3.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin
using it. Otherwise, you need to create it yourself:

nysql > CREATE DATABASE nenageri e;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer

to your database as nenageri e, not as Menager i e, MENAGERI E, or some other variant. This is

also true for table names. (Under Windows, this restriction does not apply, although you must refer to
databases and tables using the same lettercase throughout a given query. However, for a variety of
reasons, the recommended best practice is always to use the same lettercase that was used when the
database was created.)

for user 'nonty' @l ocal host' to database 'nenagerie' when

Note
@ If you get an error such as ERROR 1044 (42000): Access denied
attempting to create a database, this means that your user account does not

192

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

Creating a Table

have the necessary privileges to do so. Discuss this with the administrator or
see Section 6.2, “The MySQL Access Privilege System”.

Creating a database does not select it for use; you must do that explicitly. To make nenager i e the
current database, use this command:

nmysql > USE nenageri e
Dat abase changed

Your database needs to be created only once, but you must select it for use each time you begin a
nysgl session. You can do this by issuing a USE statement as shown in the example. Alternatively,
you can select the database on the command line when you invoke nmysql . Just specify its name after
any connection parameters that you might need to provide. For example:

shel | > nysqgl -h host -u user -p nenagerie
Ent er password: ***xxxxx

Important

A nenager i e in the command just shown is not your password. If you want
to supply your password on the command line after the - p option, you must
do so with no intervening space (for example, as - pnmypasswor d, not as - p
nypasswor d). However, putting your password on the command line is not
recommended, because doing so exposes it to snooping by other users logged
in on your machine.

Note
@ You can see at any time which database is currently selected using SELECT
DATABASE() .

3.3.2 Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

nmysql > SHOW TABLES
Enpty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and
what columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very
interesting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some
basic descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age
changes as time passes, which means you'd have to update your records often. Instead, it is better
to store a fixed value such as date of birth. Then, whenever you need age, you can calculate it as
the difference between the current date and the birth date. MySQL provides functions for doing date
arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:

* You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If
you think this type of query is somewhat silly, note that it is the same question you might ask in the
context of a business database to identify clients to whom you need to send out birthday greetings in
the current week or month, for that computer-assisted personal touch.)

* You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

193

Loading Data into a Table

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

nysqgl > CREATE TABLE pet (nane VARCHAR(20), owner VARCHAR(20),
-> speci es VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the nane, owner , and speci es columns because the column values
vary in length. The lengths in those column definitions need not all be the same, and need not be 20.
You can normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you
make a poor choice and it turns out later that you need a longer field, MySQL provides an ALTER
TABLE statement.

Several types of values can be chosen to represent sex in animal records, suchas' m and' f', or
perhaps ' nal €' and' f ermral €' . Itis simplest to use the single characters ' ni and ' f' .

The use of the DATE data type for the bi r t h and deat h columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

nmysql > SHOW TABLES;

P S +
| Tables in nenagerie |
P S +
| pet I
P S +

To verify that your table was created the way you expected, use a DESCRI BE statement:

nmysql > DESCRI BE pet ;

o - - o - e o - oo +------ +----- o - o - +
| Field | Type | Null | Key | Default | Extra |
o - - o - e o - oo +------ +----- o - o - +
nanme	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NuULL	
death	date	YES		NULL	
o - - o - e o - oo +------ +----- o - o - +

You can use DESCRI BE any time, for example, if you forget the names of the columns in your table or
what types they have.

For more information about MySQL data types, see Chapter 11, Data Types.

3.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and | NSERT statements are useful
for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates
in" YYYY- MVt DD format; this may be different from what you are used to.)

name owner species sex |birth death
Fluffy Harold cat f 1993-02-04
Claws Gwen cat m 1994-03-17
Buffy Harold dog f 1989-05-13
Fang Benny dog m 1990-08-27

194

Retrieving Information from a Table

name owner species sex |birth death
Bowser Diane dog 1979-08-31 1995-07-29
Chirpy Gwen bird 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny shake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a single
statement.

You could create a text file pet . t xt containing one record per line, with values separated by tabs,
and given in the order in which the columns were listed in the CREATE TABLE statement. For missing
values (such as unknown sexes or death dates for animals that are still living), you can use NULL
values. To represent these in your text file, use \ N (backslash, capital-N). For example, the record for
Whistler the bird would look like this (where the whitespace between values is a single tab character):

Wi st | er Gnen bird \'N 1997-12- 09 \'N

To load the text file pet . t xt into the pet table, use this statement:

nysql > LOAD DATA LOCAL | NFILE '/path/pet.txt' |NTO TABLE pet;
If you created the file on Windows with an editor that uses \ r\ n as a line terminator, you should use

this statement instead:

nmysqgl > LOAD DATA LOCAL | NFILE '/path/pet.txt' |NTO TABLE pet
-> LINES TERM NATED BY "\r\n';

(On an Apple machine running OS X, you would likely want to use LI NES TERM NATED BY "\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA
statement if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to
read the file pet . t xt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled
by default. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”, for information on how to
change this.

When you want to add new records one at a time, the | NSERT statement is useful. In its simplest
form, you supply values for each column, in the order in which the columns were listed in the CREATE
TABLE statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new
record using an | NSERT statement like this:

nysql > | NSERT | NTO pet
-> VALUES (' Puffball','Diane',"' hanster','f','1999-03-30", NULL);

String and date values are specified as quoted strings here. Also, with | NSERT, you can insert NULL
directly to represent a missing value. You do not use \ N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load
your records initially using several | NSERT statements rather than a single LOAD DATA statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what _to_sel ect

195

Retrieving Information from a Table

FROM whi ch_t abl e
WHERE conditions_to_satisfy;

what to_sel ect indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” whi ch_t abl e indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, condi ti ons_t o_sat i sfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:

nysql > SELECT * FROM pet ;

Fommmmemaao D - Fommmmmes E - Fommmmmmeaa o o mmmeaa o +
| nane | owner | species | sex | birth | death |
Fommmmemaao D - Fommmmmes E - Fommmmmmeaa o o mmmeaa o +
Fluffy	Harold	cat	f	1993-02-04	NULL
daws	Gaen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gven	bird	f	1998-09-11	NULL
Wiistler	Gven	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hanster	f	1999-03-30	NULL
Fommmmemaao D - Fommmmmes E - Fommmmmmeaa o o mmmeaa o +

This form of SELECT is useful if you want to review your entire table, for example, after you've just
loaded it with your initial data set. For example, you may happen to think that the birth date for Bowser
doesn't seem quite right. Consulting your original pedigree papers, you find that the correct birth year
should be 1989, not 1979.

There are at least two ways to fix this:

 Edit the file pet . t xt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

nmysql > DELETE FROM pet ;
nysql > LOAD DATA LOCAL | NFILE 'pet.txt' |NTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

» Fix only the erroneous record with an UPDATE statement:

nysql > UPDATE pet SET birth = '1989-08-31' WHERE nane = ' Bowser';
The UPDATE changes only the record in question and does not require you to reload the table.
3.3.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WVHERE clause
from the SELECT statement. But typically you don't want to see the entire table, particularly when it
becomes large. Instead, you're usually more interested in answering a particular question, in which
case you specify some constraints on the information you want. Let's look at some selection queries in
terms of questions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that
you made to Bowser's birth date, select Bowser's record like this:

nmysql > SELECT * FROM pet WHERE nanme = ' Bowser';
D T 4o T +o-ema - D R D R +

| nane | owner | species | sex | birth | death

196

Retrieving Information from a Table

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as ' bowser ',
' BOASER' , and so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which
animals were born during or after 1998, test the bi rt h column:

nysqgl > SELECT * FROM pet WHERE birth >= '1998-1-1";

fooococcoaos fmooc=os moococo==o oo coa fmocccoocooos fmooc=os +
| nane | owner | species | sex | birth | death |
fooococcoaos fmooc=os moococo==o oo coa fmocccoocooos fmooc=os +
| Chirpy | Geen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hanster | f | 1999-03-30 | NULL |
fooococcoaos fmooc=os moococo==o oo coa fmocccoocooos fmooc=os +

S S - F E - Fommmmmmeaaa S - +
| nane | owner | species | sex | birth | death |
S S - F E - Fommmmmmeaaa S - +
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
S S - F E - Fommmmmmeaaa S - +

The preceding query uses the AND logical operator. There is also an OR operator:

nmysql > SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';

S S S S S S +
| nane | owner | species | sex | birth | death |
S S S S S S +
Chirpy	Grven	bird	f	1998-09-11	NULL
Whistler	Gven	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
S S S S S S +

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both
operators, it is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

nmysql > SELECT * FROM pet WHERE (specie
-> OR (species = '"dog'" AND sex =

- wn

| Claws | Gnen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |

3.3.4.3 Selecting Particular Columns
If you do not want to see entire rows from your table, just name the columns in which you are

interested, separated by commas. For example, if you want to know when your animals were born,
select the nane and bi rt h columns:

nmysql > SELECT nane, birth FROM pet;

S S R +
| nane | birth |
S S R +
| Fluffy | 1993-02-04 |
| Caws | 1994-03-17 |

197

Retrieving Information from a Table

Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
docoooooooo dhcoooooooooo +

To find out who owns pets, use this query:

nysqgl > SELECT owner FROM pet;

Notice that the query simply retrieves the owner column from each record, and some of them appear
more than once. To minimize the output, retrieve each unique output record just once by adding the
keyword DI STI NCT:

nysql > SELECT DI STI NCT owner FROM pet ;

You can use a VVHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

nysql > SELECT nane, species, birth FROM pet
-> WHERE species = 'dog’ OR species = 'cat';

D Fommemema Fommmmmmeaa - +
| nane | species | birth |
D Fommemema Fommmmmmeaa - +
Fluffy	cat	1993-02-04
daws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
D Fommemema Fommmmmmeaa - +

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular
order. It is often easier to examine query output when the rows are sorted in some meaningful way. To
sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

nmysql > SELECT nane, birth FROM pet ORDER BY birth;

198

Retrieving Information from a Table

| name | birth |
Hemm o a Fommmmmeeaaaa +
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Caws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
Hemm o a Fommmmmeeaaaa +

On character type columns, sorting—like all other comparison operations—is normally performed in a
case-insensitive fashion. This means that the order is undefined for columns that are identical except
for their case. You can force a case-sensitive sort for a column by using Bl NARY like so: ORDER BY
Bl NARY col nane.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order,
add the DESC keyword to the name of the column you are sorting by:

nysql > SELECT nane, birth FROM pet ORDER BY birth DESC;

Fommmmemaaa Fommmmmmeaaa +
| nane | birth |
Fommmmemaaa Fommmmmmeaaa +
Puffball	1999-03-30
Chirpy	1998-09-11
Wiistler	1997-12-09
Slim	1996-04-29
daws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
Fommmmemaaa Fommmmmmeaaa +

You can sort on multiple columns, and you can sort different columns in different directions. For
example, to sort by type of animal in ascending order, then by birth date within animal type in
descending order (youngest animals first), use the following query:

nysql > SELECT nane, species, birth FROM pet
-> ORDER BY species, birth DESC,

mocoooo=oc mocoooo=o mocomoo=o==o +
| nane | species | birth |
mocoooo=oc mocoooo=o mocomoo=o==o +
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
daws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hanster	1999-03-30
Slim	snake	1996-04-29
mocoooo=oc mocoooo=o mocomoo=o==o +

The DESC keyword applies only to the column name immediately preceding it (bi r t h); it does not
affect the speci es column sort order.

3.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, use the TI MESTAMPDI FF() function. Its
arguments are the unit in which you want the result expressed, and the two date for which to take the

199

Retrieving Information from a Table

difference. The following query shows, for each pet, the birth date, the current date, and the age in
years. An alias (age) is used to make the final output column label more meaningful.

nmysql > SELECT nane, birth, CURDATE(),
-> TI MESTAWPDI FF(YEAR, bi rt h, CURDATE()) AS age

-> FROM pet ;
temmmeeaaa - Fommmmeeaaaa - Fommmmeeaaaa - +e-m - - - +
| name | birth | CURDATE() | age |
temmmeeaaa - Fommmmeeaaaa - Fommmmeeaaaa - +e-m - - - +
Fluffy	1993-02-04	2003-08-19	10
Caws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
temmmeeaaa - Fommmmeeaaaa - Fommmmeeaaaa - +e-m - - - +

The query works, but the result could be scanned more easily if the rows were presented in some
order. This can be done by adding an ORDER BY nane clause to sort the output by name:

nysqgl > SELECT nane, birth, CURDATE(),
-> TI MESTAMPDI FF(YEAR, bi rt h, CURDATE()) AS age
-> FROM pet ORDER BY nane;

Fommmmmmaao Fommmmmmeaa - Fommmmmmeaa - +o-mm-- +
| nane | birth | CURDATE() | age |
Fommmmmmaao Fommmmmmeaa - Fommmmmmeaa - +o-mm-- +
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
daws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
Fommmmmmaao Fommmmmmeaa - Fommmmmmeaa - +o-mm-- +

To sort the output by age rather than namne, just use a different ORDER BY clause:

nmysql > SELECT nane, birth, CURDATE(),
-> TI MESTAMPDI FF(YEAR, bi rt h, CURDATE()) AS age
-> FROM pet ORDER BY age;

fmoococcoos fmocccoocooos fmocccoocooos G ooesa +
| nane | birth | CURDATE() | age |
fmoococcoos fmocccoocooos fmocccoocooos G ooesa +
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Caws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
fmoococcoos fmocccoocooos fmocccoocooos G ooesa +

A similar query can be used to determine age at death for animals that have died. You determine
which animals these are by checking whether the deat h value is NULL. Then, for those with non-NULL
values, compute the difference between the deat h and bi rt h values:

nmysql > SELECT nane, birth, death,
-> TI MESTAWPDI FF(YEAR, birt h, deat h) AS age
-> FROM pet WHERE death IS NOT NULL ORDER BY age;

200

Retrieving Information from a Table

1989-08-31 | 1995-07-29 | 5|
------------ s ooononononodmacnoads

The query uses deat h | S NOT NULL rather than deat h <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed later. See
Section 3.3.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation,
year and day are irrelevant; you simply want to extract the month part of the bi r t h column.

MySQL provides several functions for extracting parts of dates, such as YEAR() , MONTH() , and
DAYOFMONTH() . MONTH() is the appropriate function here. To see how it works, run a simple query
that displays the value of both bi rt h and MONTH(bi rt h) :

nysqgl > SELECT nane, birth, MONTH(birth) FROM pet;

P EEEEEEEE e cccmmosooos LT +
| nane | birth | MONTH(birth) |
P EEEEEEEE e cccmmosooos LT +
Fluffy	1993-02-04	2
daws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
P EEEEEEEE e cccmmosooos LT +

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

nysqgl > SELECT nane, birth FROM pet WHERE MONTH(birth) = 5;

Hommem - [+
| nane | birth |
Hommem - [+
| Buffy | 1989-05-13 |
Hommem - [+

There is a small complication if the current month is December. You cannot merely add one to the
month number (12) and look for animals born in month 13, because there is no such month. Instead,
you look for animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date.
If you add a month to the value of CURDATE() , then extract the month part with MONTH() , the result
produces the month in which to look for birthdays:

nysql > SELECT nane, birth FROM pet
-> WHERE MONTH(bi rth) = MONTH(DATE_ADD(CURDATE(), | NTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to O if it is currently 12:

nysqgl > SELECT nane, birth FROM pet
-> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns a number between 1 and 12. And MOD(sonet hi ng, 12) returns a number between
0 and 11. So the addition has to be after the MOD() , otherwise we would go from November (11) to
January (1).

3.3.4.6 Working with NULL Values

201

Retrieving Information from a Table

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing
unknown value” and it is treated somewhat differently from other values.

To test for NULL, usethe | S NULL and | S NOT NULL operators, as shown here:

mysql > SELECT 1 IS NULL, 1 IS NOT NULL
frmccccosooss fmccccoocoosooss +

| 1 1S NULL | 1 IS NOT NULL |

You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate
this for yourself, try the following query:

nysql > SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL

frmzc======= frmc========= frmzc======= frmzc======= +
| 1 =NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
frmzc======= frmc========= frmzc======= frmzc======= +
| NULL | NULL | NULL | NULL |
frmzc======= frmc========= frmzc======= frmzc======= +

Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any
meaningful results from such comparisons.

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a
boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using deat h 1S NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASCand last if
you do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an
empty string into a column defined as NOT NULL, but this is not the case. These are in fact values,
whereas NULL means “not having a value.” You can test this easily enough by using | S [NOT] NULL

as shown:

mysql > SELECT O IS NULL, O IS NOT NULL, '' IS NULL, '' IS NOT NULL;
dmosooccoo=o dimccocccoococo=o dmocccozooooo dimccocccoococcoos +

| OIS NULL | O IS NOT NULL | "" IS NULL | "' IS NOT NULL |
dmosooccoo=o dimccocccoococo=o dmocccozooooo dimccocccoococcoos +

[0 | 1| 0 | 1|
dmosooccoo=o dimccocccoococo=o dmocccozooooo dimccocccoococcoos +

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Section C.5.5.3, “Problems with NULL Values”.

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on
extended regular expressions similar to those used by Unix utilities such as vi , gr ep, and sed.

SQL pattern matching enables you to use “ " to match any single character and “% to match an
arbitrary number of characters (including zero characters). In MySQL, SQL patterns are case-
insensitive by default. Some examples are shown here. You do not use = or <> when you use SQL
patterns; use the LI KE or NOT LI KE comparison operators instead.

To find names beginning with “b”:

202

Retrieving Information from a Table

nmysql > SELECT * FROM pet WHERE nane LIKE ' b% ;

fooccoooo fooccoooo fooccooooo foooocoo ooccoccocoooo ooccoccocooos +
| nane | owner | species | sex | birth | death |
fooccoooo fooccoooo fooccooooo foooocoo ooccoccocoooo ooccoccocooos +
| Buffy | Harold | dog | f | 1989-05-13 | NULL |

| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
fooccoooo fooccoooo fooccooooo foooocoo ooccoccocoooo ooccoccocooos +
To find names ending with “f y:

nmysql > SELECT * FROM pet WHERE nanme LIKE '%y';

+emmm - - o Hemmm - oo Hemmmmeo - +emm - - - Femmmmmeaao o +emmm - - - +

| name | owner | species | sex | birth | death |
+emmm - - o Hemmm - oo Hemmmmeo - +emm - - - Femmmmmeaao o +emmm - - - +

| Fluffy | Harold | cat | f | 1993-02-04 | NULL |

| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+emmm - - o Hemmm - oo Hemmmmeo - +emm - - - Femmmmmeaao o +emmm - - - +

To find names containing a “w’

nysqgl > SELECT * FROM pet WHERE nane LI KE ' %% ;

e S S S S R +
| nane | owner | species | sex | birth | death |
e S S S S R +
daws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gven	bird	NULL	1997-12-09	NULL
e S S S S R +

w on

To find names containing exactly five characters, use five instances of the pattern character:

oocoooc oocooo=o mocoooo=o oooo=o mocomoo=o==o ooco=oc +
| nane | owner | species | sex | birth | death |
oocoooc oocooo=o mocoooo=o oooo=o mocomoo=o==o ooco=oc +
| daws | Gaen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
oocoooc oocooo=o mocoooo=o oooo=o mocomoo=o==o ooco=oc +

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLI KE and
NOT RLI KE, which are synonyms).

The following list describes some characteristics of extended regular expressions:

e “. " matches any single character.

» Acharacter class “[. . .] " matches any character within the brackets. For example, “[abc]”
matches “a”, “b”, or “c”. To name a range of characters, use a dash. “[a- z] ” matches any letter,
whereas “[0- 9] ” matches any digit.

» “*" matches zero or more instances of the thing preceding it. For example, “x* " matches any
number of “x” characters, “[0- 9] *” matches any number of digits, and “. *” matches any number of
anything.

» A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This
differs from a LI KE pattern match, which succeeds only if the pattern matches the entire value.)

» To anchor a pattern so that it must match the beginning or end of the value being tested, use “*” at
the beginning or “$” at the end of the pattern.

To demonstrate how extended regular expressions work, the LI KE queries shown previously are
rewritten here to use REGEXP.

203

Retrieving Information from a Table

To find names beginning with “b”, use “*” to match the beginning of the name:

nmysql > SELECT * FROM pet WHERE name REGEXP ' “b';

S S S S S S +
| nane | owner | species | sex | birth | death |
S S S S S S +
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
S S S S S S +

If you really want to force a REGEXP comparison to be case sensitive, use the Bl NARY keyword to
make one of the strings a binary string. This query matches only lowercase “b” at the beginning of a
name:

nysql > SELECT * FROM pet WHERE nanme REGEXP Bl NARY ' ~b';

To find names ending with “f y”, use “$” to match the end of the name:

nysql > SELECT * FROM pet WHERE nane REGEXP 'fy$';

TS e TS S e S S S S SRS S S S S CE S +
| nanme | owner | species | sex | birth | death |
TS e TS S e S S S S SRS S S S S CE S +
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
TS e TS S e S S S S SRS S S S S CE S +

To find names containing a “w’, use this query:

nmysqgl > SELECT * FROM pet WHERE nane REGEXP 'Ww ;

fmoococcoaos G ooc=os fmoscooo=o G ooesa fmocccoocooos fmocccoocooos +
| nane | owner | species | sex | birth | death |
fmoococcoaos G ooc=os fmoscooo=o G ooesa fmocccoocooos fmocccoocooos +
Caws	Gnen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gven	bird	NULL	1997-12-09	NULL
fmoococcoaos G ooc=os fmoscooo=o G ooesa fmocccoocooos fmocccoocooos +

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in
the previous query to put a wildcard on either side of the pattern to get it to match the entire value like it
would be if you used an SQL pattern.

To find names containing exactly five characters, use “*" and “$” to match the beginning and end of the

name, and five instances of “. ” in between:

mysql > SELECT * FROM pet WHERE name REGEXP 'A..... $';

oo ccos oocccooo ooccocooo S oocccoocooos oo ccos +
| name | owner | species | sex | birth | death |
oo ccos oocccooo ooccocooo S oocccoocooos oo ccos +
| Claws | Gnen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
oo ccos oocccooo ooccocooo S oocccoocooos oo ccos +

You could also write the previous query using the { n} (“repeat-n-times”) operator:

nysqgl > SELECT * FROM pet WHERE nane REGEXP '~.{5}$';

+omemma D Fommeeema +o-mm-- Fommmmmmeaa - +ooemma +
| nane | owner | species | sex | birth | death |
+omemma D Fommeeema +o-mm-- Fommmmmmeaa - +ooemma +
| Claws | Grnen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+omemma D Fommeeema +o-mm-- Fommmmmmeaa - +ooemma +

Section 12.5.2, “Regular Expressions”, provides more information about the syntax for regular
expressions.

204

Retrieving Information from a Table

3.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a
table?” For example, you might want to know how many pets you have, or how many pets each owner
has, or you might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to
count your animals looks like this:

nmysql > SELECT COUNT(*) FROM pet;

focooooooos +
| COUNT(*) |
focooooooos +
| 9 |
focooooooos +

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to
find out how many pets each owner has:

nmysqgl > SELECT owner, COUNT(*) FROM pet GROUP BY owner;

fmoccooos fmoococcoos +
| owner | COUNT(*) |
fmoccooos fmoococcoos +
Benny	2
Diane	2
Gnen	3
Harold	2
fmoccooos fmoococcoos +

The preceding query uses GROUP BY to group all records for each owner . The use of COUNT()
in conjunction with GROUP BY is useful for characterizing your data under various groupings. The
following examples show different ways to perform animal census operations.

Number of animals per species:

nmysql > SELECT species, COUNT(*) FROM pet GROUP BY speci es;

ooccocosao moccoccoas +
| species | COUNT(*) |
ooccocosao moccoccoas +
| bird | 2 |
| cat | 2 |
| dog I 3 |
| hanmster | 1|
| snake | 1]
ooccocosao moccoccoas +

Number of animals per sex:

nysqgl > SELECT sex, COUNT(*) FROM pet GROUP BY sex;

ooooos S e e +
| sex | COUNT(*) |
ooooos S e e +
| NULL | 1|
| f I 4 |
[m | 4 |
ooooos S e e +

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

nysqgl > SELECT speci es, sex, COUNT(*) FROM pet GROUP BY species, sex;

205

Retrieving Information from a Table

bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f I 1	
dog	m	2
hamster	f	1
snake	m	1
foo- oo 4o 4oioo oo +

You need not retrieve an entire table when you use COUNT() . For example, the previous query, when
performed just on dogs and cats, looks like this:

nysql > SELECT speci es, sex, COUNT(*) FROM pet
-> WHERE species = 'dog’ OR species = 'cat'
-> GROUP BY species, sex;

| species | sex | COUNT(*) |
Femmmmees Fe-mm-- Femmmmmmaao +
| cat | f | 1]
| cat | m | 1]
| dog | f | 1]
| dog | m | 2 |
Femmmmees Fe-mm-- Femmmmmmaao +

Or, if you wanted the number of animals per sex only for animals whose sex is known:

nysqgl > SELECT speci es, sex, COUNT(*) FROM pet
-> WHERE sex |'S NOT NULL
-> GROUP BY species, sex;

| species | sex | COUNT(*) |
foocmmoooo ommooo Foccmncoooo +
bird	f	1
cat	f	1
cat	m	1
dog	f I 1]	
dog	m	2
hanster	f	1
snake	m	1
foocmmoooo ommooo Foccmncoooo +

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present
that names those same columns. Otherwise, the following occurs:

e Ifthe ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:

nmysql > SET sql _node = ' ONLY_FULL_GROUP_BY' ;
Query OK, O rows affected (0.00 sec)

nmysql > SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): M xing of GROUP col umms (M N(), MAX(), COUNT()...)
with no GROUP colums is illegal if there is no GROUP BY cl ause

« IfONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single
group, but the value selected for each named column is indeterminate. The server is free to select
the value from any row:

nysqgl > SET sql _node = "";
Query OK, 0 rows affected (0.00 sec)

nysqgl > SELECT owner, COUNT(*) FROM pet;

206

Retrieving Information from a Table

1 rowin set (0.00 sec)

See also Section 12.17.3, “MySQL Extensions to GROUP BY".

3.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs to contain the following information:

* The pet name so that you know which animal each event pertains to.
» A date so that you know when the event occurred.

A field to describe the event.

» An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

nysqgl > CREATE TABLE event (nane VARCHAR(20), date DATE,
-> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file
containing the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male
Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male
Buffy 1994-06-19 litter 3 puppies, 3 female
Chirpy 1999-03-21 vet needed beak straightened
Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy
Claws 1998-03-17 birthday Gave him a new flea collar
Whistler 1998-12-09 birthday First birthday

Load the records like this:

nmysqgl > LOAD DATA LOCAL | NFILE 'event.txt' |NTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be
able to perform retrievals on the records in the event table; the principles are the same. But when is
the event table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate
her age on that date you need her birth date, which is stored in the pet table. This means the query
requires both tables:

nysqgl > SELECT pet . nane,

207

Getting Information About Databases and Tables

-> (YEAR(date)- YEAR(birth)) - (RICGHT(date, 5) <RI GHT(birth,5)) AS age,
-> remark

-> FROM pet | NNER JO N event

-> ON pet.nanme = event. nane

-> WHERE event.type = "litter"';

4 kittens, 3 female, 1 male |
5 puppies, 2 female, 3 male |
3 puppies, 3 fenale |

There are several things to note about this query:
» The FROMclause joins two tables because the query needs to pull information from both of them.

* When combining (joining) information from multiple tables, you need to specify how records in one
table can be matched to records in the other. This is easy because they both have a nane column.
The query uses an ON clause to match up records in the two tables based on the nane values.

The query uses an | NNER JO Nto combine the tables. An | NNER JO N permits rows from either
table to appear in the result if and only if both tables meet the conditions specified in the ON clause.
In this example, the ON clause specifies that the nanme column in the pet table must match the nane
column in the event table. If a name appears in one table but not the other, the row will not appear
in the result because the condition in the ON clause fails.

» Because the nane column occurs in both tables, you must be specific about which table you mean
when referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself,
if you want to compare records in a table to other records in that same table. For example, to find
breeding pairs among your pets, you can join the pet table with itself to produce candidate pairs of
males and females of like species:

nysqgl > SELECT pl.nane, pl.sex, p2.nane, p2.sex, pl.species
-> FROM pet AS pl I NNER JO N pet AS p2
-> ON pl.species = p2.species AND pl.sex = 'f' AND p2.sex = 'm;

oooomo=o oooooe oooomo=o oooooe foooomo=oo +
| nane | sex | nane | sex | species |
oooomo=o oooooe oooomo=o oooooe foooomo=oo +
Fluffy	f	daws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
oooomo=o oooooe oooomo=o oooooe foooomo=oo +

In this query, we specify aliases for the table name to refer to the columns and keep straight which
instance of the table each column reference is associated with.

3.4 Getting Information About Databases and Tables

What if you forget the name of a database or table, or what the structure of a given table is (for
example, what its columns are called)? MySQL addresses this problem through several statements
that provide information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To
find out which database is currently selected, use the DATABASE() function:

nysql > SELECT DATABASE()

fmocccoocooos +
| DATABASE() |
fmocccoocooos +
| menagerie |
fmocccoocooos +

208

Using nysqgl in Batch Mode

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the
name of a table), use this command:

nmysql > SHOW TABLES;

P S +
| Tabl es_i n_nenageri e

P S +
| event |
| pet I
P S +

The name of the column in the output produced by this statement is always Tabl es_i n_db_nane,
where db_nane is the name of the database. See Section 13.7.5.36, “SHOW TABLES Syntax”, for more
information.

If you want to find out about the structure of a table, the DESCRI BE statement is useful; it displays
information about each of a table's columns:

nysql > DESCRI BE pet

e mmoooo=o fecccomosoooon mcmoe oo e mmoooo=o e cmoooo +
| Field | Type | Null | Key | Default | Extra

e mmoooo=o fecccomosoooon mcmoe oo e mmoooo=o e cmoooo +
| nane | varchar(20) | YES | | NULL | |
| owner | varchar(20) | YES | | NULL |

species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NuLL	
death	date	YES		NULL	
e mmoooo=o fecccomosoooon mcmoe oo e mmoooo=o e cmoooo +

Fi el d indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Def aul t specifies
the column's default value. Ext r a displays special information about columns: If a column was created
with the AUTO | NCREMENT option, the value will be aut o_i ncr enent rather than empty.

DESCis a short form of DESCRI BE. See Section 13.8.1, “DESCRI BE Syntax”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOWV
CREATE TABLE statement. See Section 13.7.5.10, “SHOW CREATE TABLE Syntax”.

If you have indexes on a table, SHOW | NDEX FROM t bl _nane produces information about them. See
Section 13.7.5.21, “SHOW | NDEX Syntax”, for more about this statement.

3.5 Using nysqgl in Batch Mode

In the previous sections, you used nysql interactively to enter queries and view the results. You can
also run nysqgl in batch mode. To do this, put the commands you want to run in a file, then tell mysq|
to read its input from the file:

shel |l > nysql < batch-file

If you are running nysql under Windows and have some special characters in the file that cause
problems, you can do this:

C\> nysqgl -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

209

Using nysqgl in Batch Mode

shel |l > nysqgl -h host -u user -p < batch-file
Ent er password: ***xx**x*

When you use nysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use
the - - f or ce command-line option.

Why use a script? Here are a few reasons:

« If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid
retyping it each time you execute it.

* You can generate new queries from existing ones that are similar by copying and editing script files.

» Batch mode can also be useful while you're developing a query, particularly for multiple-line
commands or multiple-statement sequences of commands. If you make a mistake, you don't have to
retype everything. Just edit your script to correct the error, then tell nysql to execute it again.

« If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

shel | > nysqgl < batch-file | nore

* You can catch the output in a file for further processing:

shell > nmysql < batch-file > nysql. out
» You can distribute your script to other people so that they can also run the commands.

» Some situations do not allow for interactive use, for example, when you run a query from a cr on job.
In this case, you must use batch mode.

The default output format is different (more concise) when you run nysql in batch mode than when
you use it interactively. For example, the output of SELECT DI STI NCT speci es FROM pet looks
like this when mysqgl is run interactively:

F +
| species

F +
| bird |
| cat |
| dog |
| hanster |
| snake |
F +

In batch mode, the output looks like this instead:

speci es
bird
cat

dog
hanst er
snake

If you want to get the interactive output format in batch mode, use nysql -t. To echo to the output
the commands that are executed, use nysql -vvv.

You can also use scripts from the nysql prompt by using the sour ce command or\ . command:

210

Examples of Common Queries

nmysql > source fil enane;
nmysql> \. filenane

See Section 4.5.1.5, “Executing SQL Statements from a Text File”, for more information.

3.6 Examples of Common Queries

Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain
traders (dealers). Supposing that each trader has a single fixed price per article, then (arti cl e,
deal er) is a primary key for the records.

Start the command-line tool mysql and select a database:

shel | > nysqgl your-dat abase- nane
(In most MySQL installations, you can use the database named t est).

You can create and populate the example table with these statements:

CREATE TABLE shop (
article |NT(4) UNSIGNED ZEROFI LL DEFAULT ' 0000' NOT NULL,
deal er CHAR(20) DEFAULT ' NOT NULL,
price DOUBLE(16, 2) DEFAULT ' 0. 00" NOT NULL,
PRI MARY KEY(article, dealer));

I NSERT | NTO shop VALUES
(1,'"A,3.45),(1,'B',3.99),(2,"A,10.99),(3,'B ,1.45),
(3,'C,1.69),(3,'D,1.25),(4,'D,19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop;

F S - S - +
| article | dealer | price |
F S - S - +
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
F S - S - +

3.6.1 The Maximum Value for a Column

“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;

moococo==o +
| article |
moococo==o +
I 4 |
moococo==o +

3.6.2 The Row Holding the Maximum of a Certain Column
Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

211

Maximum of Column per Group

SELECT article, dealer, price
FROM shop
WHERE pri ce=(SELECT MAX(price) FROM shop);

fooccooooo fooccoooo oooccooo +
| article | dealer | price |
fooccooooo fooccoooo oooccooo +
| 0004 | D | 19.95 |
fooccooooo fooccoooo oooccooo +

Other solutions are to use a LEFT JO Nor to sort all rows descending by price and get only the first
row using the MySQL-specific LI M T clause:

SELECT sl.article, sl.dealer, sl.price
FROM shop s1

LEFT JO N shop s2 ON sl.price < s2.price
VWHERE s2.article |I'S NULL;

SELECT article, dealer, price

FROM shop
ORDER BY price DESC
LIMT 1;
Note
@ If there were several most expensive articles, each with a price of 19.95, the

LI M T solution would show only one of them.

3.6.3 Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article;

fmocoooo=o ooco=oc +
| article | price |
fmocoooo=o ooco=oc +
0001	3.99
0002	10.99
0003	1.69
0004	19.95
fmocoooo=o ooco=oc +

3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE pri ce=(SELECT MAX(s2.price)
FROM shop s2
WHERE sl.article = s2.article);

fmocooo==o fooco—o=o oooo=oc +
| article | dealer | price |
fmocooo==o fooco—o=o oooo=oc +
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
fmocooo==o fooco—o=o oooo=oc +

212

Using User-Defined Variables

The preceding example uses a correlated subquery, which can be inefficient (see Section 13.2.10.7,
“Correlated Subqueries”). Other possibilities for solving the problem are to use an uncorrelated
subquery in the FROMclause or a LEFT JO N.

Uncorrelated subquery:

SELECT sl.article, dealer, sl.price
FROM shop s1
JA N (
SELECT article, MAX(price) AS price
FROM shop
GROUP BY article) AS s2
ON sl.article = s2.article AND sl.price = s2.price;

LEFT JON:

SELECT sl.article, sl.dealer, sl. price

FROM shop s1

LEFT JO N shop s2 ON sl.article = s2.article AND sl.price < s2.price
WHERE s2.article |'S NULL;

The LEFT JO Nworks on the basis that when s1. pri ce is at its maximum value, there is no
s2. pri ce with a greater value and the s2 rows values will be NULL. See Section 13.2.9.2, “JO N
Syntax”.

3.6.5 Using User-Defined Variables

You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See Section 9.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

nysqgl > SELECT @i n_price: =M N(price), @uax_price: =MAX(pri ce) FROM shop;
nysqgl > SELECT * FROM shop WHERE price=@ri n_price OR price=@max_pri ce;

[T - Fommmem - Hommem - +

| article | dealer | price |

[T - Fommmem - Hommem - +

| 0003 | D | 1.25 |

[0004 | D | 19.95 |

[T - Fommmem - Hommem - +
Note

@ It is also possible to store the name of a database object such as a table or a

column in a user variable and then to use this variable in an SQL statement;
however, this requires the use of a prepared statement. See Section 13.5, “SQL
Syntax for Prepared Statements”, for more information.

3.6.6 Using Foreign Keys

In MySQL, | nnoDB tables support checking of foreign key constraints. See Section 14.2, “The | nnoDB
Storage Engine”, and Section 1.8.2.4, “Foreign Key Differences”.

A foreign key constraint is not required merely to join two tables. For storage engines other than

I nnoDB, it is possible when defining a column to use a REFERENCES t bl _nane(col _nane) clause,
which has no actual effect, and serves only as a memo or comment to you that the column which

you are currently defining is intended to refer to a column in another table. It is extremely important to
realize when using this syntax that:

» MySQL does not perform any sort of CHECK to make sure that col _nane actually exists in
t bl _nane (or even thatt bl _nane itself exists).

213

Using Foreign Keys

» MySQL does not perform any sort of action on t bl _nane such as deleting rows in response to
actions taken on rows in the table which you are defining; in other words, this syntax induces no
ON DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON
UPDATE clause as part of the REFERENCES clause, it is also ignored.)

» This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
id SMALLI NT UNSI GNED NOT NULL AUTO_| NCREMENT,
name CHAR(60) NOT NULL,
PRI MARY KEY (i d)

)

CREATE TABLE shirt (
id SMALLI NT UNSI GNED NOT NULL AUTO_| NCREMENT,
style ENUM't-shirt', 'polo', 'dress') NOT NULL,
color ENUM'red', 'blue', 'orange', 'white', 'black') NOT NULL,
owner SMALLI NT UNSI GNED NOT NULL REFERENCES person(id),
PRI MARY KEY (i d)

NE

I NSERT | NTO person VALUES (NULL, 'Antonio Paz');
SELECT @ast := LAST_I NSERT_I D();

I NSERT | NTO shirt VALUES

(NULL, 'polo', 'blue', @ast),

(NULL, 'dress', 'white', @ast),

(NULL, "t-shirt', 'blue', @ast);

I NSERT | NTO person VALUES (NULL, 'Lilliana Angel ovska');
SELECT @ast := LAST_I NSERT_I D();

I NSERT | NTO shirt VALUES

(NULL, 'dress', 'orange', @ast),

(NULL, 'polo', 'red, @ast),

(NULL, 'dress', 'blue', @ast),

(NULL, "t-shirt', "white', @ast);

SELECT * FROM person;

e +
| id | name |
e +
| 1| Antonio Paz |
| 2| Lilliana Angel ovska |
e +

SELECT * FROM shirt;

S S S +
| id | style | color | owner |
S S S +
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7] t-shirt	white	2	
S S S +

SELECT s.* FROM person p INNER JON shirt s
ON s.owner = p.id

WHERE p. nanme LIKE 'Lilliana%
AND s.color <> 'white';

214

Searching on Two Keys

| id | style | color | owner |
s R +emmmm - m +
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
s R +emmmm - m +

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOWN CREATE
TABLE or DESCRI BE:

SHOW CREATE TABLE shirt\ G

LEE R EEEEEEEEEEEEEEEEEEEE FOW XX *Hhkkkkkkhokkkkxkkkkkkxxkx

Tabl e: shirt

Create Tabl e: CREATE TABLE “shirt ™ (

“id smallint(5) unsigned NOT NULL auto_increnent,

“style’ enun('t-shirt','polo','dress') NOT NULL,

“color® enun('red','blue','orange','white','black') NOT NULL,
“owner® smallint(5) unsigned NOT NULL,

PR MARY KEY ('id")

) ENG NE=My| SAM DEFAULT CHARSET=| ati nl1

The use of REFERENCES in this way as a comment or “reminder” in a column definition works with
Myl SAMtables.

3.6.7 Searching on Two Keys
An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT fieldl_index, field2_index FROMtest_table
WHERE fieldl_index = "'1" OR field2_index = "'1'

This case is optimized. See Section 8.2.1.4, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNI ON that combines the output of two separate
SELECT statements. See Section 13.2.9.4, “UNI ON Syntax”.

Each SELECT searches only one key and can be optimized:

SELECT fieldl_index, field2_index

FROM test _tabl e WHERE fiel dl_index = '1'
UNI ON
SELECT fieldl_index, field2_index

FROM t est _tabl e WHERE fi el d2_i ndex = '1';

3.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days
per month a user has visited a Web page.

CREATE TABLE t1 (year YEAR(4), nonth INT(2) UNSI GNED ZEROFILL,
day | NT(2) UNSI GNED ZEROFI LL);

I NSERT | NTO t 1 VALUES(2000, 1, 1), (2000, 1, 20), (2000, 1, 30) , (2000, 2, 2) ,
(2000, 2, 23), (2000, 2, 23) ;

The example table contains year-month-day values representing visits by users to the page. To
determine how many different days in each month these visits occur, use this query:

SELECT year, nont h, Bl T_COUNT(BI T_OR(1<<day)) AS days FROM t1
GROUP BY year, nont h;

215

Using AUTO | NCREMVENT

Which returns:

E - S - E - +
| year | nonth | days |
E - S - E - +
| 2000 | 01 | 3|
| 2000 | 02 | 2 |
E - S - E - +

The query calculates how many different days appear in the table for each year/month combination,
with automatic removal of duplicate entries.

3.6.9 Using AUTO | NCRENVENT

The AUTO | NCRENMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE ani mal s (
id MEDI UM NT NOT NULL AUTO_| NCREMENT,
nane CHAR(30) NOT NULL,
PRI MARY KEY (id)

)

I NSERT | NTO ani nal s (nane) VALUES
("dog'),('cat'), (' penguin'),
("lax"), ("whale'), ('ostrich');

SELECT * FROM ani mal s;

Which returns:

cat |
pengui n |
| ax |
whal e |
ostrich |

1
'
'
'
'
'
'

:

+

No value was specified for the AUTO | NCREMENT column, so MySQL assigned sequence numbers
automatically. You can also explicitly assign 0 to the column to generate sequence numbers. If the
column is declared NOT NULL, it is also possible to assign NULL to the column to generate sequence
numbers.

You can retrieve the most recent AUTO | NCREMVENT value with the LAST | NSERT | D() SQL function
orthe nysqgl _insert _id() C API function. These functions are connection-specific, so their return
values are not affected by another connection which is also performing inserts.

Use the smallest integer data type for the AUTO | NCREMVENT column that is large enough to hold the
maximum sequence value you will need. When the column reaches the upper limit of the data type, the
next attempt to generate a sequence number fails. Use the UNSI GNED attribute if possible to allow a
greater range. For example, if you use TI NYI NT, the maximum permissible sequence number is 127.
For TI NYI NT UNSI GNED, the maximum is 255. See Section 11.2.1, “Integer Types (Exact Value) -

| NTEGER, | NT, SMALLI NT, TI NYI NT, MEDI UM NT, Bl G NT” for the ranges of all the integer types.

actually return the AUTO_| NCREMENT key from the first of the inserted rows.
This enables multiple-row inserts to be reproduced correctly on other servers in

Note
@ For a multiple-row insert, LAST_| NSERT_| D() and nysql _i nsert _i d()
a replication setup.

216

Using AUTO | NCREVENT

To start with an AUTO_| NCREMENT value other than 1, set that value with CREATE TABLE or ALTER
TABLE, like this:

mysql > ALTER TABLE tbl AUTO | NCREMENT = 100;
InnoDB Notes

For | nnoDB tables, be careful if you modify the column containing the auto-increment value in the
middle of a sequence of | NSERT statements. For example, if you use an UPDATE statement to put a
new, larger value in the auto-increment column, a subsequent | NSERT could encounter a “Duplicate
entry” error. The test whether an auto-increment value is already present occurs if you do a DELETE
followed by more | NSERT statements, or when you COVM T the transaction, but not after an UPDATE
statement.

MyISAM Notes

e For Myl SAMtables, you can specify AUTO | NCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO | NCREMENT column is calculated as
MAX(aut o_increnent _colum) + 1 WHERE prefix=gi ven- prefi x. This is useful when you
want to put data into ordered groups.

CREATE TABLE ani mal s (
grp ENUM ' fish', ' mammal ', ' bird') NOT NULL,
id MEDI UM NT NOT NULL AUTO_| NCREMENT,
name CHAR(30) NOT NULL,
PRI MARY KEY (grp,id)
) ENG NE=My| SAM

I NSERT | NTO ani nal s (grp, nane) VALUES
(" mammal ', ' dog'), (' manmal ', "' cat'),
("bird,'penguin'),('fish',"lax"), (' manmal',"'whale'),
("bird ,"ostrich');

SELECT * FROM ani mal s ORDER BY grp, i d;

Which returns:

doocooooo dooocodbooococoo +
| grp | id | nane [
doocooooo dooocodbooococoo +
| fish | 1| lax |
| mammal | 1 | dog [
| mammal | 2 | cat [
manmal	3	whale
bird	1	penguin
bird	2	ostrich
doocooooo dooocodbooococoo +

In this case (when the AUTO_| NCREMENT column is part of a multiple-column index),

AUTO | NCREMENT values are reused if you delete the row with the biggest AUTO | NCREMENT value
in any group. This happens even for MyI SAMtables, for which AUTO_| NCREMENT values normally
are not reused.

 If the AUTO | NCREMENT column is part of multiple indexes, MySQL generates sequence values
using the index that begins with the AUTO _| NCREMENT column, if there is one. For example, if the
ani mal s table contained indexes PRI MARY KEY (grp, id) and| NDEX (id), MySQL would
ignore the PRI MARY KEY for generating sequence values. As a result, the table would contain a
single sequence, not a sequence per gr p value.

Further Reading

More information about AUTO | NCREMENT is available here:

217

Using MySQL with Apache

» How to assign the AUTO | NCREMENT attribute to a column: Section 13.1.14, “CREATE TABLE
Syntax”, and Section 13.1.6, “ALTER TABLE Syntax”.

* How AUTO_| NCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode:
Section 5.1.7, “Server SQL Modes”.

» How to use the LAST | NSERT | () function to find the row that contains the most recent
AUTO _| NCREMENT value: Section 12.14, “Information Functions”.

 Setting the AUTO | NCRENMENT value to be used: Section 5.1.4, “Server System Variables”.
* AUTO_|I NCREMENT and replication: Section 16.4.1.1, “Replication and AUTO_| NCREMENT".

» Server-system variables related to AUTO | NCREMENT (aut o_i ncrenent _i ncr enent and
aut o_i ncrenent _of f set) that can be used for replication: Section 5.1.4, “Server System
Variables”.

3.7 Using MySQL with Apache

There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following
into the Apache configuration file:

LogFor mat \
"\ "om\ ", o %Wr%re%evEst, %S, \ "%\ ", \ "% Cont ent - Type}o\", \
\"OAN" \"9% Referer}i\", \"9% User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA I NFILE '/l ocal /access_| og" | NTO TABLE tbl _nane
FI ELDS TERM NATED BY ',' OPTI ONALLY ENCLOSED BY '"' ESCAPED BY "\\'

The named table should be created to have columns that correspond to those that the LogFor nat line
writes to the log file.

218

Chapter 4 MySQL Programs

Table of Contents

4.1 Overview Of MYSQL PrOQIaIMSuuiiiiiiiieiiiiiie ettt ettt e et e e e e e ne s 220
4.2 USING MYSQL PrOQIAIMS ..ottt ittt ettt e e e et e e et et e e e e et e e e e et e e e eeranaeeee 223
4.2.1 InvoKINg MYSQL PrOGramScccuuuuieieiiieteii ettt ettt e et e e et eeana s 223
4.2.2 Connecting to the MySQL SEIVEIoiiiiiiiiiiiii e 224
4.2.3 Specifying Program OPLONSiiiiiiieieiie ettt e e e 227
4.2.4 Setting Environment Variables ... 240
4.3 MySQL Server and Server-Startup PrOgramscoouuuieiiuuiieieiiee et e et e e eeeaens 241
4.3.1 mysqgl d — The MYSQL SEIVET ...ttt e 241
4.3.2 nysql d_saf e — MySQL Server Startup SCHPLcc.uuieiiiiiiiiiiiiiieece e 241
4.3.3 nysql . server — MySQL Server Startup SCHPLccuuveiiiiiieeiiii e 246
4.3.4 nysql d_nul ti — Manage Multiple MySQL SErIVErSccouuviiieiiiiiiieiiiiiieeeeiineeeennnn 247
4.4 MySQL Installation-Related Programscooeuuiiiiiiieiiii et eeeeas 251
4.4.1 conp_err — Compile MySQL Error Message Fileccooooiiiiiiiiiiiiii e, 251
4.4.2 nysql bug — Generate BUg REPOITiiiiiiiiiiiiiii e 252
4.43 nysql _instal | _db — Initialize MySQL Data Dir€CtOryccoveeeeriieeiiiiiieeiiiineeenns 252
4.4.4 nysql _pl ugi n — Configure MySQL Server PIUQINScooviiiiiiiiiiiiiiieceeceie 257
4.45nysql _secure_install ati on — Improve MySQL Installation Security 259
446 nysql _tzinfo_to_sgl — Load the Time Zone Tablescccoovieiiiiiiiiiiiiineciiin, 262
4.4.7 nysql _upgr ade — Check and Upgrade MySQL Tablescciiiiiiiiiiieiiiiinnenennnn, 262
4.5 MYSQL ClENt PrOGIAIMS ..ottt ettt e et e et e et et e e e e et e e e ee e e eentaaaeeees 267
4.5.1 nysql — The MySQL Command-Line TOOIccuuiiiiiiiiiiiiiiiiiceii e 267
4.5.2 nysql adm n — Client for Administering a MySQL Serverccccooeevviiiieiiiiineeeeninnn. 292
4.5.3 nysql check — A Table Maintenance Programc.occeeuuiieeiiiiineeiiiiineeeeiie e 300
4.5.4 nysql dunp — A Database Backup Programccceveeeeiiiiiiiiiieeeii e 307
4.5.5 nysql i nport — A Data Import Programcooeieeiiioiiiieei e 326
4.5.6 nysql show— Display Database, Table, and Column Informationc.....cceuunnnee. 332
4.5.7 nysql sl ap — Load Emulation ClHeNt ... 336
4.6 MySQL Administrative and Utility Programscocouuoioiiiiiioiiii e 344
4.6.1 i nnochecksum— Offline InnoDB File Checksum ULilitycccoooveiiiiiiiiiiinieiinnnn. 344
4.6.2 nyi sam ft dunp — Display Full-Text Index informationccccceiviviiiiiieiiiinnenenn. 350
4.6.3 nyi sanchk — MyISAM Table-Maintenance ULilitycccoooieiiiiiiiiiiiii e, 351
4.6.4 nyi sanm og — Display MyISAM Log File CoNtentscccuuieeiiiiiiieiiiieec e 367
4.6.5 nyi sanpack — Generate Compressed, Read-Only MyISAM Tablesc........ 368
4.6.6 nysql _config_editor — MySQL Configuration ULilitycccccooeiiiiiiiiiiiiinneiinnnnn. 374
4.6.7 nysql bi nl og — Utility for Processing Binary Log Filescccooiiiiiiiiniiiiiini, 380
4.6.8 nysql dunpsl ow— Summarize Slow Query Log Filesccoooiiiiiiiiiiiiiiiiieees 400
4.6.9 nysql hot copy — A Database Backup Programccccooiiiiiiiiiiiiiiineccieeeein 402
4.6.10 nysql _wai t pi d — Kill Process and Wait for Its Terminationccccoeeveeiennnnnnn. 405
4.6.11 nysql _zap — Kill Processes That Match a Patterncccoooveiiiiiiiiiiiiieineees 405
4.7 MySQL Program Development ULIlITIEScoouiuiiiiiiiiieiiii e 406
4.7.1 nysql _confi g — Display Options for Compiling Clientscccccoveviiiiiiiiiineeiininnnn. 406
4.7.2 ny_print _def aul t s — Display Options from Option Filesccccooveiiiiiiiiiiiinnenes 407
4.7.3resol ve_st ack_dunp — Resolve Numeric Stack Trace Dump to Symbols 408
4.8 MISCElIAN@OUS PrOGIAMS ... ittt ettt e et e e e e e e aba s 409
4.8.1 perror — EXplain Error COUEScoouuiiiiiiiiiiiei e 409
4.8.2 repl ace — A String-Replacement ULIlitycooouiiiiiiiiii e 410
4.8.3resol vei p — Resolve Host name to IP Address or Vice Versaccccoeeeevvneeeennnnnn. 410

This chapter provides a brief overview of the MySQL command-line programs provided by Oracle
Corporation. It also discusses the general syntax for specifying options when you run these programs.
Most programs have options that are specific to their own operation, but the option syntax is similar for

219

Overview of MySQL Programs

all of them. Finally, the chapter provides more detailed descriptions of individual programs, including
which options they recognize.

4.1 Overview of MySQL Programs

There are many different programs in a MySQL installation. This section provides a brief overview
of them. Later sections provide a more detailed description of each one. Each program's description
indicates its invocation syntax and the options that it supports.

Most MySQL distributions include all of these programs, except for those programs that are platform-
specific. (For example, the server startup scripts are not used on Windows.) The exception is that RPM
distributions are more specialized. There is one RPM for the server, another for client programs, and
so forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading
MySQL, for information on types of distributions and what they contain. It may be that you have a
distribution that does not include all programs and you need to install an additional package.

Each MySQL program takes many different options. Most programs provide a - - hel p option that you
can use to get a description of the program's different options. For example, try mysql - - hel p.

You can override default option values for MySQL programs by specifying options on the command
line or in an option file. See Section 4.2, “Using MySQL Programs”, for general information on invoking
programs and specifying program options.

The MySQL server, nysql d, is the main program that does most of the work in a MySQL installation.
The server is accompanied by several related scripts that assist you in starting and stopping the server:

 mysqld

The SQL daemon (that is, the MySQL server). To use client programs, nysql d must be running,
because clients gain access to databases by connecting to the server. See Section 4.3.1, “nysql d
— The MySQL Server”.

« nysqld_safe

A server startup script. mysqgl d_saf e attempts to start mysql d. See Section 4.3.2, “nysql d_saf e
— MySQL Server Startup Script”.

 nysql . server

A server startup script. This script is used on systems that use System V-style run directories
containing scripts that start system services for particular run levels. It invokes nysqgl d_saf e to start
the MySQL server. See Section 4.3.3, “nysql . ser ver — MySQL Server Startup Script”.

e mysqld_nulti

A server startup script that can start or stop multiple servers installed on the system. See
Section 4.3.4, “nysql d_nul ti — Manage Multiple MySQL Servers”.

Several programs perform setup operations during MySQL installation or upgrading:
e conp_err

This program is used during the MySQL build/installation process. It compiles error message files
from the error source files. See Section 4.4.1, “conp_err — Compile MySQL Error Message File”.

 nysql _install _db

This script creates the MySQL database, initializes the grant tables with default privileges, and sets
up the | nnoDB system tablespace. It is usually executed only once, when first installing MySQL on a
system. See Section 4.4.3, “nysql _i nst al | _db — Initialize MySQL Data Directory”, Section 2.9.1,
“Postinstallation Procedures for Unix-like Systems”, and Section 4.4.3, “nysql _i nstal | _db —
Initialize MySQL Data Directory”.

220

Overview of MySQL Programs

mysql _plugin

This program configures MySQL server plugins. See Section 4.4.4, “nysql _pl ugi n — Configure
MySQL Server Plugins”.

mysqgl secure_installation

This program enables you to improve the security of your MySQL installation. SQL. See
Section 4.4.5, “nysql _secure_instal | ati on — Improve MySQL Installation Security”.

nmysqgl _tzinfo_to_sql

This program loads the time zone tables in the nysql database using the contents of the host

“nysql _tzinfo to_sql — Load the Time Zone Tables”.

mysql _upgr ade

This program is used after a MySQL upgrade operation. It checks tables for incompatibilities and
repairs them if necessary, and updates the grant tables with any changes that have been made in
newer versions of MySQL. See Section 4.4.7, “nysql _upgr ade — Check and Upgrade MySQL
Tables”.

MySQL client programs that connect to the MySQL server:

mysql

The command-line tool for interactively entering SQL statements or executing them from a file in
batch mode. See Section 4.5.1, “nmysql — The MySQL Command-Line Tool".

nysql admi n

A client that performs administrative operations, such as creating or dropping databases, reloading
the grant tables, flushing tables to disk, and reopening log files. mysql admni n can also be used to
retrieve version, process, and status information from the server. See Section 4.5.2, “nysql admi n
— Client for Administering a MySQL Server”.

mysql check

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 4.5.3,
“nysql check — A Table Maintenance Program”.

mysql dunp

A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 4.5.4,
“nysql dunp — A Database Backup Program”.

mysql i mport

A client that imports text files into their respective tables using LOAD DATA | NFI LE. See
Section 4.5.5, “nysql i nport — A Data Import Program”.

nysql show

A client that displays information about databases, tables, columns, and indexes. See Section 4.5.6,
“nysql show— Display Database, Table, and Column Information”.

nmysql sl ap

A client that is designed to emulate client load for a MySQL server and report the timing of each
stage. It works as if multiple clients are accessing the server. See Section 4.5.7, “nysql sl ap —
Load Emulation Client”.

221

Overview of MySQL Programs

MySQL administrative and utility programs:

i nnochecksum

An offline | nnoDB offline file checksum utility. See Section 4.6.1, “i nnochecksum— Offline InnoDB
File Checksum Utility”.

nmyi sam ft dunp

A utility that displays information about full-text indexes in Myl SAMtables. See Section 4.6.2,
“nyi sam ft dunp — Display Full-Text Index information”.

myi santhk

A utility to describe, check, optimize, and repair My| SAMtables. See Section 4.6.3, “nyi santhk —
MyISAM Table-Maintenance Utility”.

nmyi sanl og

A utility that processes the contents of a Myl SAMIog file. See Section 4.6.4, “nyi sam og — Display
MyISAM Log File Contents”.

myi sanpack

A utility that compresses My SAMtables to produce smaller read-only tables. See Section 4.6.5,
“nyi sanpack — Generate Compressed, Read-Only MyISAM Tables”.

nmysqgl _config_editor

A utility that enables you to store authentication credentials in a secure, encrypted login file named
.yl ogi n. cnf . See Section 4.6.6, “nysql _confi g _edi t or — MySQL Configuration Utility”.

nysql bi nl og

A utility for reading statements from a binary log. The log of executed statements contained in the
binary log files can be used to help recover from a crash. See Section 4.6.7, “nysql bi nl og —
Utility for Processing Binary Log Files”.

nmysql dunpsl ow

A utility to read and summarize the contents of a slow query log. See Section 4.6.8,
“nysql dunpsl ow— Summarize Slow Query Log Files”.

mysql hot copy

A utility that quickly makes backups of Myl SAMtables while the server is running. See Section 4.6.9,
“nysql hot copy — A Database Backup Program”.

mysql _wai t pi d

A utility that kills the process with a given process ID. See Section 4.6.10, “nysql _wai t pi d — Kill
Process and Wait for Its Termination”.

mysql _zap

A utility that kills processes that match a pattern. See Section 4.6.11, “nysql _zap — Kill Processes
That Match a Pattern”.

MySQL program-development utilities:

nysqgl _config

A shell script that produces the option values needed when compiling MySQL programs. See
Section 4.7.1, “nysql _confi g — Display Options for Compiling Clients”.

222

Using MySQL Programs

e my_print_defaults

A utility that shows which options are present in option groups of option files. See Section 4.7.2,
“my_print_defaul t s — Display Options from Option Files”.

e resolve_stack_dunp

A utility program that resolves a numeric stack trace dump to symbols. See Section 4.7.3,
“resol ve_stack_dunp — Resolve Numeric Stack Trace Dump to Symbols”.

Miscellaneous utilities:
e perror

A utility that displays the meaning of system or MySQL error codes. See Section 4.8.1, “perr or —
Explain Error Codes”.

» replace

A utility program that performs string replacement in the input text. See Section 4.8.2, “r epl ace — A
String-Replacement Utility”.

* resolveip

A utility program that resolves a host name to an IP address or vice versa. See Section 4.8.3,
“r esol vei p — Resolve Host name to IP Address or Vice Versa”.

Oracle Corporation also provides the MySQL Workbench GUI tool, which is used to administer MySQL
servers and databases, to create, execute, and evaluate queries, and to migrate schemas and data
from other relational database management systems for use with MySQL. Additional GUI tools include
MySQL Notifier for Microsoft Windows and MySQL for Excel.

MySQL client programs that communicate with the server using the MySQL client/server library use the
following environment variables.

Environment Variable |Meaning
MYSQL_UNI X_PCORT The default Unix socket file; used for connections to | ocal host

MYSQL_TCP_PORT The default port number; used for TCP/IP connections
MYSQ._PWD The default password

MYSQL_DEBUG Debug trace options when debugging

TWPDI R The directory where temporary tables and files are created

For a full list of environment variables used by MySQL programs, see Section 2.11, “Environment
Variables”.

Use of MYSQL_PWD s insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

4.2 Using MySQL Programs
4.2.1 Invoking MySQL Programs

To invoke a MySQL program from the command line (that is, from your shell or command prompt),
enter the program name followed by any options or other arguments needed to instruct the program
what you want it to do. The following commands show some sample program invocations. “shel | >”
represents the prompt for your command interpreter; it is not part of what you type. The particular
prompt you see depends on your command interpreter. Typical prompts are $ for sh, ksh, or bash, %
forcsh ort csh, and C: \ > for the Windows conmrand. comor cnd. exe command interpreters.

shel | > nysqgl --user=root test

223

Connecting to the MySQL Server

shel | > nysqgl adm n ext ended- st atus vari abl es
shel | > nysqgl show - - hel p
shel | > nysqgl dunp -u root personnel

Arguments that begin with a single or double dash (-, “- - ") specify program options. Options typically
indicate the type of connection a program should make to the server or affect its operational mode.
Option syntax is described in Section 4.2.3, “Specifying Program Options”.

Nonoption arguments (arguments with no leading dash) provide additional information to the program.
For example, the nysql program interprets the first nonoption argument as a database name, so the
command nysql --user=root test indicates that you want to use the t est database.

Later sections that describe individual programs indicate which options a program supports and
describe the meaning of any additional nonoption arguments.

Some options are common to a number of programs. The most frequently used of these are the - -
host (or - h), --user (or-u), and - - passwor d (or - p) options that specify connection parameters.
They indicate the host where the MySQL server is running, and the user name and password of your
MySQL account. All MySQL client programs understand these options; they enable you to specify
which server to connect to and the account to use on that server. Other connection options are - - por t
(or - P) to specify a TCP/IP port number and - - socket (or - S) to specify a Unix socket file on Unix (or
named pipe name on Windows). For more information on options that specify connection options, see
Section 4.2.2, “Connecting to the MySQL Server”.

You may find it necessary to invoke MySQL programs using the path name to the bi n directory in
which they are installed. This is likely to be the case if you get a “program not found” error whenever
you attempt to run a MySQL program from any directory other than the bi n directory. To make it more
convenient to use MySQL, you can add the path name of the bi n directory to your PATH environment
variable setting. That enables you to run a program by typing only its name, not its entire path name.
For example, if mysql isinstalled in/ usr/ | ocal / mysql / bi n, you can run the program by invoking it
as nysql , and it is not necessary to invoke itas / usr /| ocal / mysql / bi n/ mysql .

Consult the documentation for your command interpreter for instructions on setting your PATH variable.
The syntax for setting environment variables is interpreter-specific. (Some information is given in
Section 4.2.4, “Setting Environment Variables”.) After modifying your PATH setting, open a new console
window on Windows or log in again on Unix so that the setting goes into effect.

4.2.2 Connecting to the MySQL Server

For a client program to be able to connect to the MySQL server, it must use the proper connection
parameters, such as the name of the host where the server is running and the user name and
password of your MySQL account. Each connection parameter has a default value, but you can
override them as necessary using program options specified either on the command line or in an option
file.

The examples here use the nysql client program, but the principles apply to other clients such as
mysql dunp, nysql admi n, or nysgl show.

This command invokes mysql without specifying any connection parameters explicitly:

shel | > nysql

Because there are no parameter options, the default values apply:

» The default host name is | ocal host . On Unix, this has a special meaning, as described later.
e The default user name is ODBC on Windows or your Unix login name on Unix.

* No password is sent if neither - p nor - - passwor d is given.

» Fornysql, the first nonoption argument is taken as the name of the default database. If there is no
such option, nysql does not select a default database.

224

Connecting to the MySQL Server

To specify the host name and user name explicitly, as well as a password, supply appropriate options
on the command line:

shel | > nysqgl --host =l ocal host --user=nynane --password=nypass nydb
shel |l > nysqgl -h | ocal host -u nynanme -pnypass nmydb

For password options, the password value is optional:

* Ifyouuse a-p or--password option and specify the password value, there must be no space
between - p or - - passwor d= and the password following it.

» If youuse a-p or--passwor d option but do not specify the password value, the client program
prompts you to enter the password. The password is not displayed as you enter it. This is more
secure than giving the password on the command line. Other users on your system may be able to
see a password specified on the command line by executing a command such as ps auxw. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

As just mentioned, including the password value on the command line can be a security risk. To avoid
this problem, specify the - - passwor d or - p option without any following password value:

shel | > nysqgl --host=l ocal host --user=nynane --password nydb
shel | > nysqgl -h | ocal host -u nynane -p nydb

When the password option has no password value, the client program prints a prompt and waits for
you to enter the password. (In these examples, nydb is not interpreted as a password because it is
separated from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits
the password to eight characters. That is a problem with the system library, not with MySQL. Internally,
MySQL does not have any limit for the length of the password. To work around the problem, change
your MySQL password to a value that is eight or fewer characters long, or put your password in an
option file.

On Unix, MySQL programs treat the host name | ocal host specially, in a way that is likely different
from what you expect compared to other network-based programs. For connections to | ocal host,
MySQL programs attempt to connect to the local server by using a Unix socket file. This occurs even
ifa--port or- P option is given to specify a port number. To ensure that the client makes a TCP/IP
connection to the local server, use - - host or - h to specify a host name value of 127. 0. 0. 1, or the
IP address or name of the local server. You can also specify the connection protocol explicitly, even for
| ocal host, by using the - - pr ot ocol =TCP option. For example:

shel | > nmysqgl --host=127.0.0.1
shel | > nysqgl --protocol =TCP

The - - pr ot ocol option enables you to establish a particular type of connection even when the other
options would normally default to some other protocol.

If the server is configured to accept IPv6 connections, client can connect over IPv6 using - -
host =: : 1. See Section 5.1.9, “IPv6 Support”.

On Windows, you can force a MySQL client to use a named-pipe connection by specifying the - - pi pe
or - - pr ot ocol =PI PE option, or by specifying . (period) as the host name. If named-pipe connections
are not enabled, an error occurs. Use the - - socket option to specify the name of the pipe if you do
not want to use the default pipe name.

Connections to remote servers always use TCP/IP. This command connects to the server running on
renot e. exanpl e. comusing the default port number (3306):

shel | > nysqgl --host=renote. exanpl e. com

225

Connecting to the MySQL Server

To specify a port number explicitly, use the - - port or - P option:

shel | > nysqgl --host=renote.exanpl e.com --port=13306

You can specify a port number for connections to a local server, too. However, as indicated previously,
connections to | ocal host on Unix will use a socket file by default. You will need to force a TCP/IP
connection as already described or any option that specifies a port number will be ignored.

For this command, the program uses a socket file on Unix and the - - port option is ignored:

shel | > nysqgl --port=13306 --host=I ocal host

To cause the port number to be used, invoke the program in either of these ways:

shel | > nysqgl --port=13306 --host=127.0.0.1
shel | > nysqgl --port=13306 --protocol =TCP

The following list summarizes the options that can be used to control how client programs connect to
the server:

e --host=host _nane,-h host_nane
The host where the server is running. The default value is | ocal host .
e --password[=pass_val],-p[pass_val]

The password of the MySQL account. As described earlier, the password value is optional, but if
given, there must be no space between - p or - - passwor d= and the password following it. The
default is to send no password.

e --pipe,-W

On Windows, connect to the server using a named pipe. The server must be started with the - -
enabl e- nanmed- pi pe option to enable named-pipe connections.

e --port=port_num-P port_num

The port number to use for the connection, for connections made using TCP/IP. The default port
number is 3306.

e --protocol ={ TCP| SOCKET| Pl PE| NEMORY}

This option explicitly specifies a protocol to use for connecting to the server. It is useful when the
other connection parameters normally would cause a protocol to be used other than the one you
want. For example, connections on Unix to | ocal host are made using a Unix socket file by default:

shel | > nysqgl --host =l ocal host

To force a TCP/IP connection to be used instead, specify a - - pr ot ocol option:

shel | > nmysql --host =l ocal host --protocol =TCP

The following table shows the permissible - - pr ot ocol option values and indicates the platforms on
which each value may be used. The values are not case sensitive.

- - prot ocol Connection Protocol Permissible Operating
Value Systems
TCP TCP/IP connection to local or remote server All

226

Specifying Program Options

- - prot ocol Connection Protocol Permissible Operating
Value Systems

SOCKET Unix socket file connection to local server Unix only

Pl PE Named-pipe connection to local or remote server |Windows only

MEMORY Shared-memory connection to local server Windows only

e --shared-nmenory- base- nane=nane

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the - - shar ed- menor y option to enable shared-memory
connections.

e --socket=file _nane,-S file_nane

On Unix, the name of the Unix socket file to use, for connections made using a named pipe to a local
server. The default Unix socket file name is / t np/ mysql . sock.

On Windows, the name of the named pipe to use, for connections to a local server. The default
Windows pipe name is My SQL. The pipe name is not case sensitive.

The server must be started with the - - enabl e- naned- pi pe option to enable named-pipe
connections.

* --ssl|*

Options that begin with - - ss| are used for establishing a secure connection to the server using
SSL, if the server is configured with SSL support. For details, see Section 6.3.11.4, “SSL Command
Options”.

e --uUSer=user_naneg,-u user_nane

The user name of the MySQL account you want to use. The default user name is ODBC on Windows
or your Unix login name on Unix.

It is possible to specify different default values to be used when you make a connection so that you
need not enter them on the command line each time you invoke a client program. This can be done in
a couple of ways:

» You can specify connection parameters in the [cl i ent] section of an option file. The relevant
section of the file might look like this:

[client]

host =host _nane
user =user _nane
passwor d=your _pass

Section 4.2.3.3, “Using Option Files”, discusses option files further.

. You can specify some connection parameters using environment variables. The host can be
specified for nysql using M\YSQL_HOST. The MySQL user name can be specified using USER (this
is for Windows only). The password can be specified using MYSQL_PWD, although this is insecure;
see Section 6.1.2.1, “End-User Guidelines for Password Security”. For a list of variables, see
Section 2.11, “Environment Variables”.

4.2.3 Specifying Program Options

There are several ways to specify options for MySQL programs:

227

Specifying Program Options

« List the options on the command line following the program name. This is common for options that
apply to a specific invocation of the program.

« List the options in an option file that the program reads when it starts. This is common for options
that you want the program to use each time it runs.

« List the options in environment variables (see Section 4.2.4, “Setting Environment Variables”).
This method is useful for options that you want to apply each time the program runs. In practice,
option files are used more commonly for this purpose, but Section 5.3.3, “Running Multiple MySQL
Instances on Unix”, discusses one situation in which environment variables can be very helpful. It
describes a handy technique that uses such variables to specify the TCP/IP port number and Unix
socket file for the server and for client programs.

Options are processed in order, so if an option is specified multiple times, the last occurrence takes
precedence. The following command causes nysql to connect to the server running on | ocal host:

shel | > nysgl -h exanple.com -h | ocal host

If conflicting or related options are given, later options take precedence over earlier options. The
following command runs nysql in “no column names” mode:

shel | > nysqgl --col um-nanes --ski p-col um- nanes

MySQL programs determine which options are given first by examining environment variables, then by
reading option files, and then by checking the command line. This means that environment variables
have the lowest precedence and command-line options the highest.

You can take advantage of the way that MySQL programs process options by specifying default option
values for a program in an option file. That enables you to avoid typing them each time you run the
program while enabling you to override the defaults if necessary by using command-line options.

Note

@ Prior to MySQL 5.7.2, program options could be specified in full or as any
unambiguous prefix. For example, the - - conpr ess option could be given to
nysql dunp as - - conpr, but not as - - conp because the latter is ambiguous.
As of MySQL 5.7.2, option prefixes are no longer supported; only full options
are accepted. This is because prefixes can cause problems when new options
are implemented for programs and a prefix that is currently unambiguous might
become ambiguous in the future.

4.2.3.1 Using Options on the Command Line
Program options specified on the command line follow these rules:
» Options are given after the command name.

« An option argument begins with one dash or two dashes, depending on whether it is a short form or
long form of the option name. Many options have both short and long forms. For example, - ? and - -
hel p are the short and long forms of the option that instructs a MySQL program to display its help
message.

« Option names are case sensitive. - v and - V are both legal and have different meanings. (They are
the corresponding short forms of the - - ver bose and - - ver si on options.)

» Some options take a value following the option name. For example, - h | ocal host or - -
host =l ocal host indicate the MySQL server host to a client program. The option value tells the
program the name of the host where the MySQL server is running.

» For along option that takes a value, separate the option name and the value by an “=" sign. For a
short option that takes a value, the option value can immediately follow the option letter, or there

228

Specifying Program Options

can be a space between: - hl ocal host and - h | ocal host are equivalent. An exception to this
rule is the option for specifying your MySQL password. This option can be given in long form as - -
passwor d=pass_val oras --passwor d. In the latter case (with no password value given), the
program prompts you for the password. The password option also may be given in short form as -
ppass_val oras - p. However, for the short form, if the password value is given, it must follow the
option letter with no intervening space. The reason for this is that if a space follows the option letter,
the program has no way to tell whether a following argument is supposed to be the password value
or some other kind of argument. Consequently, the following two commands have two completely
different meanings:

shel | > mysqgl -ptest
shel | > mysql -p test

The first command instructs mysgl to use a password value of t est , but specifies no default
database. The second instructs mysql to prompt for the password value and to use t est as the
default database.

» Within option names, dash (“- ") and underscore (“_") may be used interchangeably. For example, - -
ski p-grant-tabl es and - - ski p_grant _t abl es are equivalent. (However, the leading dashes
cannot be given as underscores.)

w ooy

» For options that take a numeric value, the value can be given with a suffix of K, M or G (either
uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 1024°. For example, the following
command tells mysqgl adni n to ping the server 1024 times, sleeping 10 seconds between each ping:

nmysql > nysqgl adm n --count =1K --sl eep=10 pi ng

Option values that contain spaces must be quoted when given on the command line. For example, the
- - execut e (or - e) option can be used with mysql to pass SQL statements to the server. When this
option is used, nysql executes the statements in the option value and exits. The statements must be
enclosed by quotation marks. For example, you can use the following command to obtain a list of user
accounts:

nmysql > nmysql -u root -p --execute="SELECT User, Host FROM nysql . user"
Ent er password: ******

| gigan I
| gigan I
| local host |
n | local host |
| local host |
+

Note that the long form (- - execut €) is followed by an equals sign (=).

If you wish to use quoted values within a statement, you will either need to escape the inner quotation
marks, or use a different type of quotation marks within the statement from those used to quote the
statement itself. The capabilities of your command processor dictate your choices for whether you can
use single or double quotation marks and the syntax for escaping quote characters. For example, if
your command processor supports quoting with single or double quotation marks, you can use double
guotation marks around the statement, and single quotation marks for any quoted values within the
statement.

Multiple SQL statements may be passed in the option value on the command line, separated by
semicolons:

shell > nysgl -u root -p -e "SELECT VERSI O\(); SELECT NON)"
Enter password: ***x**

229

Specifying Program Options

Fomm e e e e e aa +
| VERSI O\() |

Fomm e e e e e aa +

| 5.1.5-al pha-1og

Fomm e e e e e aa +

demmm e e eeemmeeaan +
| NOW() I
demmm e e eeemmeeaan +
| 2006-01-05 21:19: 04

demmm e e eeemmeeaan +

4.2.3.2 Program Option Modifiers

Some options are “boolean” and control behavior that can be turned on or off. For example, the mysq|l
client supports a - - col unm- nanes option that determines whether or not to display a row of column
names at the beginning of query results. By default, this option is enabled. However, you may want
to disable it in some instances, such as when sending the output of mysql into another program that
expects to see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

- - di sabl e- col um- nanes
- - ski p- col um- nanes
- - col um- nanmes=0

The - - di sabl e and - - ski p prefixes and the =0 suffix all have the same effect: They turn the option
off.

The “enabled” form of the option may be specified in any of these ways:

- - col um- nanes
- - enabl e- col utm- nanes
- - col um- nanmes=1

The values ON, TRUE, OFF, and FALSE are also recognized for boolean options (not case sensitive).

If an option is prefixed by - - | oose, a program does not exit with an error if it does not recognize the
option, but instead issues only a warning:

shel | > nysqgl --1o0ose-no-such-option
nysqgl : WARNI NG unknown option '--no-such-option

The - - | oose prefix can be useful when you run programs from multiple installations of MySQL on the
same machine and list options in an option file, An option that may not be recognized by all versions of
a program can be given using the - - | oose prefix (or | oose in an option file). Versions of the program
that recognize the option process it normally, and versions that do not recognize it issue a warning and
ignore it.

nysql d enables a limit to be placed on how large client programs can set dynamic system
variables. To do this, use a - - maxi numprefix with the variable name. For example, - - maxi num
query_cache_si ze=4Mprevents any client from making the query cache size larger than 4MB.

4.2.3.3 Using Option Files

Most MySQL programs can read startup options from option files (also sometimes called configuration

files). Option files provide a convenient way to specify commonly used options so that they need not be
entered on the command line each time you run a program. For the MySQL server, MySQL provides a
number of preconfigured option files.

To determine whether a program reads option files, invoke it with the - - hel p option. (For nysql d, use
--verbose and - - hel p.) If the program reads option files, the help message indicates which files it
looks for and which option groups it recognizes.

230

Specifying Program Options

The . nyl ogi n. cnf file that contains login path options is created by the nysql confi g _editor
utility. See Section 4.6.6, “nysql _confi g _edi t or — MySQL Configuration Utility”. A “login path” is
an option group that permits only a limited set of options: host , user, and passwor d. Client programs
specify which login path to read from . nyl ogi n. cnf using the - - | ogi n- pat h option.

To specify an alternate file name, set the MYSQL_TEST _LOG N_FI LE environment variable.
This variable is used by the nmysql -t est - run. pl testing utility, but also is recognized by
mysql _confi g_editor and by MySQL clients such as nysql , nysql adm n, and so forth.

On Windows, MySQL programs read startup options from the following files, in the specified order (top
items are used first).

File Name Purpose
%PROGRAMDATA Global options
% MySQL\ MySQL

Server 5.7\ny.ini,
%PROGRAMDATA% My SQL
\ MySQL Server

5. 7\ ny. cnf

%N NDI RO ny. i ni , Global options
%N NDI RoA y . cnf

C\ny.ini,C\ny.cnf Global options

I NSTALLDI R\ ny. i ni , Global options

| NSTALLDI R\ nry. cnf

defaults-extra-file The file specified with - - def aul t s-extra-fil e=pat h, if any
YAPPDATA% My SQL Login path options

\'. nyl ogi n. cnf

YPROGRANDAT A%represents the file system directory that contains application data for all users on
the host. This path defaults to C: \ Pr ogr anDat a on Microsoft Windows Vista and greater, and C:
\ Docunents and Settings\All Users\Application Data on older versions of Microsoft
Windows.

%\ NDI R%represents the location of your Windows directory. This is commonly C. \ W NDOAS. You
can determine its exact location from the value of the W NDI R environment variable using the following
command:

C.\> echo %N NDI R%

| NSTALLDI Rrepresents the MySQL installation directory. This is typically C: \ PROGRANMDI R\ My SQL
\MySQL 5.7 Server where PROGRAMDI R represents the programs directory (usually Pr ogr am

Fi | es on English-language versions of Windows), when MySQL 5.7 has been installed using the
installation and configuration wizards. See Section 2.3.3, “Installing MySQL on Microsoft Windows
Using MySQL Installer”.

Y%APPDATA%represents the value of the Windows application data directory. You can determine its
exact location from the value of the APPDATA environment variable using the following command:

C:\> echo %APPDATA%

On Unix, Linux and Mac OS X, MySQL programs read startup options from the following files, in the
specified order (top items are used first).

File Name Purpose
/etc/ny. cnf Global options
/etc/ nysqgl / my. cnf Global options

231

Specifying Program Options

File Name Purpose

SYSCONFDI R/ ny. cnf Global options

$MYSQL_HOVE/ ny. cnf Server-specific options

defaults-extra-file The file specified with - - def aul t s-extra-fil e=pat h, if any
~/ . ny. cnf User-specific options

~/ . nyl ogi n. cnf Login path options

~ represents the current user's home directory (the value of $HOVE).

SYSCONFDI R represents the directory specified with the SYSCONFDI R option to CVake when MySQL
was built. By default, this is the et ¢ directory located under the compiled-in installation directory.

MYSQL_HOVE is an environment variable containing the path to the directory in which the
server-specific my. cnf file resides. If MYSQL_HOVE is not set and you start the server using the
nysql d_saf e program, nysql d_saf e attempts to set MYySQL_ HOVE as follows:

» Let BASEDI Rand DATADI Rrepresent the path names of the MySQL base directory and data
directory, respectively.

 Ifthere isamy. cnf file in DATADI R but not in BASEDI R, nysql d_saf e sets MYSQL_HOVE to
DATADI R.

» Otherwise, if MYSQL_HOVE is not set and there is no my. cnf file in DATADI R, mysql d_saf e sets
MYSQL_HOVE to BASEDI R.

In MySQL 5.7, use of DATADI R as the location for my. cnf is deprecated.

Typically, DATADI Ris / usr /| ocal / mysql / dat a for a binary installation or / usr/ | ocal / var for a
source installation. Note that this is the data directory location that was specified at configuration time,
not the one specified with the - - dat adi r option when nysql d starts. Use of - - dat adi r at runtime
has no effect on where the server looks for option files, because it looks for them before processing
any options.

MySQL looks for option files in the order just described and reads any that exist. If an option file that
you want to use does not exist, create it with a plain text editor.

If multiple instances of a given option are found, the last instance takes precedence. There is one
exception: For nysql d, the first instance of the - - user option is used as a security precaution, to
prevent a user specified in an option file from being overridden on the command line.

Note
3 On Unix platforms, MySQL ignores configuration files that are world-writable.
This is intentional as a security measure.

Any long option that may be given on the command line when running a MySQL program can be given
in an option file as well. To get the list of available options for a program, run it with the - - hel p option.

The syntax for specifying options in an option file is similar to command-line syntax (see

Section 4.2.3.1, “Using Options on the Command Line”). However, in an option file, you omit

the leading two dashes from the option name and you specify only one option per line. For
example, - - qui ck and - - host =l ocal host on the command line should be specified as qui ck
and host =l ocal host on separate lines in an option file. To specify an option of the form - -

| oose-opt _nane in an option file, write it as | oose- opt _nane.

Empty lines in option files are ignored. Nonempty lines can take any of the following forms:
* #coment , ; conment

Comment lines start with “#” or “; . A “#” comment can start in the middle of a line as well.

232

Specifying Program Options

* [group]

gr oup is the name of the program or group for which you want to set options. After a group line, any
option-setting lines apply to the named group until the end of the option file or another group line is
given. Option group names are not case sensitive.

e opt _nane
This is equivalent to - - opt _nane on the command line.
e opt _nanme=val ue

This is equivalent to - - opt _nane=val ue on the command line. In an option file, you can have
spaces around the “=" character, something that is not true on the command line. You can optionally
enclose the value within single quotation marks or double quotation marks, which is useful if the
value contains a “#” comment character.

Leading and trailing spaces are automatically deleted from option names and values.

You can use the escape sequences “\ b”, “\ t 7, “\ n”, "\ r ", “\ \ ", and “\ s” in option values to represent
the backspace, tab, newline, carriage return, backslash, and space characters. The escaping rules in
option files are:

« If a backslash is followed by a valid escape sequence character, the sequence is converted to the
character represented by the sequence. For example, “\ s” is converted to a space.

« If a backslash is not followed by a valid escape sequence character, it remains unchanged. For
example, “\ S” is retained as is.

The preceding rules mean that a literal backslash can be given as “\ \ ", or as “\ " if it is not followed by
a valid escape sequence character.

The rules for escape sequences in option files differ slightly from the rules for escape sequences in
string literals in SQL statements. In the latter context, if “x” is not a valid escape sequence character,
“\ X" becomes “x” rather than “\ x". See Section 9.1.1, “String Literals”.

The escaping rules for option file values are especially pertinent for Windows path names, which use
“\ " as a path name separator. A separator in a Windows path name must be written as “\ \ " if it is
followed by an escape sequence character. It can be written as “\ \ " or “\ " if it is not. Alternatively, “/ "
may be used in Windows path names and will be treated as “\ ”. Suppose that you want to specify a
base directory of C: \ Program Fi | es\ MySQL\ MySQL Server 5.7 in an option file. This can be
done several ways. Some examples:

basedi r="C:\ Program Fi | es\ M\ySQ.\ M\ySQ. Server 5.7"
basedi r="C:\\ Program Fi | es\\ M\ySQ.\\ M\ySQ. Server 5.7"
basedi r="C:/ Program Fi | es/ M\ySQ./ M\ySQ. Server 5.7"
basedi r=C: \\ Program sFi | es\\ MySQ.\\ MySQ.\ sServer\s5.7

If an option group name is the same as a program name, options in the group apply specifically to
that program. For example, the [nysql d] and [nysql] groups apply to the mysql d server and the
nmysql client program, respectively.

The [cl i ent] option group is read by all client programs (but not by mysql d). This enables you to
specify options that apply to all clients. For example, [cl i ent] is the perfect group to use to specify
the password that you use to connect to the server. (But make sure that the option file is readable and
writable only by yourself, so that other people cannot find out your password.) Be sure not to put an
option inthe [cl i ent] group unless it is recognized by all client programs that you use. Programs
that do not understand the option quit after displaying an error message if you try to run them.

Here is a typical global option file:

233

Specifying Program Options

[client]
port =3306
socket =/t np/ nysql . sock

[nysql d]

port =3306

socket =/t np/ nmysql . sock
key_buffer_size=16M
max_al | owed_packet =8M

[nysgl dunp]
qui ck

The preceding option file uses var _nane=val ue syntax for the lines that set the key buffer_size
and nax_al | oned packet variables.

Here is a typical user option file:

[client]
The fol |l owing password will be sent to all standard MySQL clients
passwor d="ny_passwor d"

[nysal]
no- aut o- r ehash
connect _ti meout =2

[mysql hot copy]
interactive-tinmeout

If you want to create option groups that should be read by nmysqgl d servers from a specific MySQL
release series only, you can do this by using groups with names of [nysql d- 5. 6], [nysql d-5. 7],
and so forth. The following group indicates that the - - new option should be used only by MySQL
servers with 5.7.x version numbers:

[mysql d-5. 7]
new

It is possible to use ! i ncl ude directives in option files to include other option files and ! i ncl udedi r
to search specific directories for option files. For example, to include the / honme/ mydi r / nyopt . cnf
file, use the following directive:

l'i ncl ude /hone/ nydir/ nyopt . cnf

To search the / hone/ nydi r directory and read option files found there, use this directive:

l'i ncl udedi r /home/ nydi r

There is no guarantee about the order in which the option files in the directory will be read.

on Unix operating systems must have file names ending in . cnf . On Windows,

Note
@ Currently, any files to be found and included using the ! i ncl udedi r directive
this directive checks for files with the . i ni or. cnf extension.

Write the contents of an included option file like any other option file. That is, it should contain groups of
options, each preceded by a [gr oup] line that indicates the program to which the options apply.

While an included file is being processed, only those options in groups that the current program is
looking for are used. Other groups are ignored. Suppose that a ny. cnf file contains this line:

li ncl ude /hone/ nydir/ nyopt . cnf

234

Specifying Program Options

And suppose that / hone/ nydi r/ myopt . cnf looks like this:

[mysql admi n]
force

[nysql d]
key_buffer_size=16M

If my. cnf is processed by nysql d, only the [nysql d] group in/ hone/ nydi r/ myopt . cnf is used.
If the file is processed by nysql admi n, only the [mysql admi n] group is used. If the file is processed
by any other program, no options in / hone/ nydi r / nyopt . cnf are used.

The !'i ncl udedi r directive is processed similarly except that all option files in the named directory
are read.

4.2.3.4 Command-Line Options that Affect Option-File Handling

Most MySQL programs that support option files handle the following options. They affect option-file
handling, so they must be given on the command line and not in an option file. To work properly, each
of these options must be given before other options, with these exceptions:

e --print-defaul ts may be used immediately after - - defaul ts-fil eor--defaul ts-extra-
file.

* On Windows, if the server is started with the - - def aul ts-fil e and --instal | options, - -
i nstal | must be first. See Section 2.3.5.7, “Starting MySQL as a Windows Service”.

When specifying file names, you should avoid the use of the “~" shell metacharacter because it might
not be interpreted as you expect.

e --defaults-extra-file=file_nane

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. f i | e_nane is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

e --defaults-file=file_nane

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_nane is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

e --defaul ts-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of st r .
For example, the nysql client normally reads the [cl i ent] and [nysql] groups. If the - -

def aul t s- group- suf fi x=_ot her option is given, nysql alsoreadsthe[client_other] and
[mysqgl _ot her] groups.

* --login-pat h=nane

Read options from the named login path in the . myl ogi n. cnf login file. A “login path” is an
option group that permits only a limited set of options: host , user, and passwor d. Think of a
login path as a set of values that indicate the server host and the credentials for authenticating with
the server. To create the login file, use the nysql confi g_edi t or utility. See Section 4.6.6,
“nysqgl _config_editor — MySQL Configuration Utility”.

e --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, - - no- def aul t s can be used to prevent them from being read.

235

Specifying Program Options

The exception is that the . nyl ogi n. cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when - - no- def aul t s
is used. (. nyl ogi n. cnf is created by the nysql confi g_edi t or utility. See Section 4.6.6,
“nysqgl _config_editor — MySQL Configuration Utility”.)

e --print-defaults

Print the program name and all options that it gets from option files.
4.2.3.5 Using Options to Set Program Variables

Many MySQL programs have internal variables that can be set at runtime using the SET statement.
See Section 13.7.4, “SET Syntax”, and Section 5.1.5, “Using System Variables”.

Most of these program variables also can be set at server startup by using the same syntax that
applies to specifying program options. For example, nysql has a max_al | owed_packet variable that
controls the maximum size of its communication buffer. To set the max_al | owed_packet variable for
nmysqgl to a value of 16MB, use either of the following commands:

shel | > nmysqgl --nmax_al | owed_packet =16777216
shel | > nmysqgl --nmax_al | owed_packet =16M

The first command specifies the value in bytes. The second specifies the value in megabytes. For
variables that take a numeric value, the value can be given with a suffix of K, M or G (either uppercase
or lowercase) to indicate a multiplier of 1024, 10242 or 1024°. (For example, when used to set

max_al | oned packet , the suffixes indicate units of kilobytes, megabytes, or gigabytes.)

In an option file, variable settings are given without the leading dashes:

[mysql]
max_al | owed_packet =16777216

Or:

[nysql]
max_al | owed_packet =16M

If you like, underscores in a variable name can be specified as dashes. The following option groups are
equivalent. Both set the size of the server's key buffer to 512MB:

[nysql d]
key_buffer_si ze=512M

[nysql d]
key- buff er-si ze=512M

A variable can be specified by writing it in full or as any unambiguous prefix. For example, the
max_al | oned packet variable can be set for mysql as - - max_a, but not as - - max because the
latter is ambiguous:

shel | > nysqgl --nax=1000000
nysql : anbi guous option '--nmax=1000000" (mex_al |l owed_packet, max_j oi n_si ze)

Be aware that the use of variable prefixes can cause problems in the event that new variables are
implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

236

Specifying Program Options

shel | > nysqgl --max_al | oned_packet =16M
shel | > nysqgl --max_al | oned_packet =16*1024* 1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

nysql > SET GLOBAL nax_al | owed_packet =16M
nmysql > SET GLOBAL nax_al | owed_packet =16*1024*1024;

4.2.3.6 Option Defaults, Options Expecting Values, and the = Sign

By convention, long forms of options that assign a value are written with an equals (=) sign, like this:

shel | > nysqgl --host=tonfisk --user=jon

For options that require a value (that is, not having a default value), the equals sign is not required, and
so the following is also valid:

shel | > nysqgl --host tonfisk --user jon

In both cases, the nysql client attempts to connect to a MySQL server running on the host named
“tonfisk” using an account with the user name “jon”.

Due to this behavior, problems can occasionally arise when no value is provided for an option that
expects one. Consider the following example, where a user connects to a MySQL server running on
hostt onfi sk as userj on:

shel | > nysqgl --host 85.224.35.45 --user jon

Wel come to the MySQL nonitor. Conmands end with ; or \g.
Your MySQL connection id is 3

Server version: 5.7.5 Source distribution

Type 'help;' or '"\h' for help. Type '\c' to clear the buffer.

nysql > SELECT CURRENT USER()

doococccocccoooooo +
| CURRENT USER() |
doococccocccoooooo +
| jon@o [
doococccocccoooooo +

1 rowin set (0.00 sec)

Omitting the required value for one of these option yields an error, such as the one shown here:

shel | > nysqgl --host 85.224.35.45 --user
nysqgl: option '--user' requires an argunent

In this case, nysql was unable to find a value following the - - user option because nothing came
after it on the command line. However, if you omit the value for an option that is not the last option to
be used, you obtain a different error that you may not be expecting:

shel | > nysqgl --host --user jon
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

Because nmysql assumes that any string following - - host on the command line is a host name, - -
host --user isinterpreted as - - host =- - user, and the client attempts to connect to a MySQL
server running on a host named “--user”.

Options having default values always require an equals sign when assigning a value; failing to do
SO causes an error. For example, the MySQL server - - | 0og- er r or option has the default value
host nane. err, where host _nane is the name of the host on which MySQL is running. Assume

237

Specifying Program Options

that you are running MySQL on a computer whose host name is “tonfisk”, and consider the following
invocation of nysql d_saf e:

shel | > nysqgl d_safe &

[1] 11699

shel | > 080112 12:53: 40 nysql d_safe Logging to '/usr/local/mysql/var/tonfisk.err'

080112 12:53:40 nysql d_safe Starting nmysqld daenon wi th databases from /usr/l ocal / nysql /var
shel | >

After shutting down the server, restart it as follows:

shel | > nysql d_safe --log-error &

[1] 11699

shel | > 080112 12:53: 40 nysql d_safe Logging to '/usr/local/mysqgl/var/tonfisk.err'

080112 12:53:40 nysqgl d_safe Starting nysqgl d daenon with databases from/usr/|ocal /nysql/var
shel | >

The result is the same, since - - | 0og- err or is not followed by anything else on the command line,
and it supplies its own default value. (The & character tells the operating system to run MySQL in the
background; it is ignored by MySQL itself.) Now suppose that you wish to log errors to a file named
my-errors.err.You might try starting the server with - - | og- error ny-errors, but this does not
have the intended effect, as shown here:

shel | > nysqgl d_safe --log-error ny-errors &

[1] 31357

shel | > 080111 22:53: 31 nysql d_safe Logging to '/usr/local/nmysql/var/tonfisk.err'

080111 22:53:32 nysqld_safe Starting nysqld daenon with databases from /usr/local /nysql/var
080111 22:53: 34 nysqld_safe nysqgld frompid file /usr/local/nysql/var/tonfisk.pid ended

[1] + Done ./ nysqld_safe --log-error ny-errors

The server attempted to start using / usr/ | ocal / nysql / var/t onfi sk. err as the error log, but
then shut down. Examining the last few lines of this file shows the reason:

shel |l > tail /usr/local/nysql/var/tonfisk.err

2013- 09- 24T15: 36: 22. 278034Z 0 [ERROR] Too many arguments (first extra is 'ny-errors')

2013- 09- 24T15: 36: 22. 278059Z 0 [Note] Use --verbose --help to get a list of available options
2013- 09- 24T15: 36: 22. 278076Z 0 [ERROR] Aborti ng

2013- 09- 24T15: 36: 22. 279704Z 0 [Note] InnoDB: Starting shutdown...

2013- 09- 24T15: 36: 23. 777471Z 0 [Note] I nnoDB: Shutdown conpl eted; |og sequence number 2319086
2013- 09- 24T15: 36: 23. 780134Z 0 [Note] nysql d: Shut down conpl ete

Because the - - | 0g- er r or option supplies a default value, you must use an equals sign to assign a
different value to it, as shown here:

shel | > nysqgl d_safe --log-error=ny-errors &

[1] 31437

shel | > 080111 22:54: 15 nysql d_safe Logging to '/usr/local/nmysql/var/ny-errors.err'

080111 22:54:15 nysqgld_safe Starting nysqld daenon wi th databases from /usr/local /nysql/var

shel | >

Now the server has been started successfully, and is logging errors to the file / usr/ | ocal / nysql /
var/ ny-errors.err.

Similar issues can arise when specifying option values in option files. For example, consider a my. cnf
file that contains the following:

[nysql]

host
user

238

Specifying Program Options

When the nysql client reads this file, these entries are parsed as - - host --user or - - host =- -
user , with the result shown here:

shel | > nysql
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

However, in option files, an equals sign is not assumed. Suppose the ny. cnf file is as shown here:

[nysql]

user jon

Trying to start mysql in this case causes a different error:

shel | > nysql
nysql : unknown option '--user jon'

A similar error would occur if you were to write host t onfi sk in the option file rather than
host =t onf i sk. Instead, you must use the equals sign:

[nysal]

user =j on

Now the login attempt succeeds:

shel | > nysql

Wel come to the MySQL nonitor. Conmmands end with ; or \g.
Your MySQL connection id is 5

Server version: 5.7.5 Source distribution

Type 'help;' or '"\h' for help. Type '\c' to clear the buffer.

nysql > SELECT USER();

moccoococccocoooan +
| USER() |
moccoococccocoooan +
| jon@ocal host |
moccoococccocoooan +

1 rowin set (0.00 sec)

This is not the same behavior as with the command line, where the equals sign is not required:

shel | > nysql --user jon --host tonfisk

Wl come to the MySQL nonitor. Conmands end with ; or \g.
Your MySQL connection id is 6

Server version: 5.7.5 Source distribution

Type 'help;' or '"\h' for help. Type '\c' to clear the buffer.

nmysql > SELECT USER();

Fomm e e e e e e +
| USER() I
Fomm e e e e e e +
| jon@onfisk |
Fomm e e e e e e +

1 rowin set (0.00 sec)

In MySQL 5.7, specifying an option requiring a value without a value in an option file causes the server
to abort with an error. Suppose that my. cnf contains the following:

[nysql d]
| og_error

239

Setting Environment Variables

rel ay_| og
rel ay_| og_i ndex

This causes the server to fail on startup, as shown here:

shel | > nysqgl d_safe &

130924 10: 41: 46 nysqgl d_safe Loggi ng to '/hone/jon/bin/nmysql/var/tonfisk.err'.
130924 10: 41: 46 nysqgl d_safe Starting nysgld daenmon wi th databases from /hone/jon/bin/ mysql/var
130924 10: 41: 47 nysqgl d_safe nmysqld frompid file /home/jon/bin/nysqgl/var/tonfisk.pid ended

The - - | og- err or option does not require an argument; however, the - - r el ay- | og option
requires one, as shown in the error log (which in the absence of a specified value, defaults to
dat adi r/ host nane. err):

shell> tail -n 3 ../var/tonfisk.err

130924 10: 41: 46 nysqgl d_safe Starting nysqgld daemon with databases from /hone/jon/bin/ mysql/var
2013-09- 24T15: 41: 47. 217180Z 0 [ERROR] /homne/jon/ bin/ mysql/libexec/ mysqgld: option '--relay-log' requires an
2013- 09- 24T15: 41: 47. 217479Z 0 [ERROR] Aborti ng

This is a change from previous behavior, where the server would have interpreted the last two lines
in the example my. cnf fileas--rel ay-1 og=rel ay | og i ndex and created a relay log file using
“relay_log_index” as the basename. (Bug #25192)

4.2.4 Setting Environment Variables

Environment variables can be set at the command prompt to affect the current invocation of your
command processor, or set permanently to affect future invocations. To set a variable permanently,
you can set it in a startup file or by using the interface provided by your system for this purpose.
Consult the documentation for your command interpreter for specific details. Section 2.11,
“Environment Variables”, lists all environment variables that affect MySQL program operation.

To specify a value for an environment variable, use the syntax appropriate for your command
processor. For example, on Windows, you can set the USER variable to specify your MySQL account
name. To do so, use this syntax:

SET USER=your _namne

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number
using the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, ksh, bash, zsh, and so on) is as
follows:

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PCORT

The first command sets the variable, and the export command exports the variable to the shell
environment so that its value becomes accessible to MySQL and other processes.

For csh and t csh, use set env to make the shell variable available to the environment:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect
immediately, but the settings persist only until you log out. To have the settings take effect each time
you log in, use the interface provided by your system or place the appropriate command or commands
in a startup file that your command interpreter reads each time it starts.

On Windows, you can set environment variables using the System Control Panel (under Advanced).

On Unix, typical shell startup files are . bashr ¢ or . bash_profil e for bash, or.tcshrc fortcsh.

240

MySQL Server and Server-Startup Programs

Suppose that your MySQL programs are installed in / usr/ | ocal / nysql / bi n and that you want to
make it easy to invoke these programs. To do this, set the value of the PATH environment variable to
include that directory. For example, if your shell is bash, add the following line to your . bashr c file:

PATH=${ PATH} : / usr/ | ocal / nysql / bi n

bash uses different startup files for login and nonlogin shells, so you might want to add the setting to
. bashr c for login shells and to . bash_pr of i | e for nonlogin shells to make sure that PATH is set
regardless.

If your shell is t csh, add the following line to your . t cshr c file:

setenv PATH ${ PATH}:/usr/| ocal / nysql / bin
If the appropriate startup file does not exist in your home directory, create it with a text editor.

After modifying your PATH setting, open a new console window on Windows or log in again on Unix so
that the setting goes into effect.

4.3 MySQL Server and Server-Startup Programs

This section describes mysql d, the MySQL server, and several programs that are used to start the
server.

4.3.1 nysgl d — The MySQL Server

nysql d, also known as MySQL Server, is the main program that does most of the work in a MySQL
installation. MySQL Server manages access to the MySQL data directory that contains databases and
tables. The data directory is also the default location for other information such as log files and status
files.

When MySQL server starts, it listens for network connections from client programs and manages
access to databases on behalf of those clients.

The nysql d program has many options that can be specified at startup. For a complete list of options,
run this command:

shel | > nysqgl d --verbose --help

MySQL Server also has a set of system variables that affect its operation as it runs. System variables
can be set at server startup, and many of them can be changed at runtime to effect dynamic server
reconfiguration. MySQL Server also has a set of status variables that provide information about its
operation. You can monitor these status variables to access runtime performance characteristics.

For a full description of MySQL Server command options, system variables, and status variables, see
Section 5.1, “The MySQL Server”. For information about installing MySQL and setting up the initial
configuration, see Chapter 2, Installing and Upgrading MySQL.

4.3.2nysgl d_saf e — MySQL Server Startup Script

nmysqgl d_saf e is the recommended way to start a nysql d server on Unix. nysql d_saf e adds some
safety features such as restarting the server when an error occurs and logging runtime information to
an error log file. A description of error logging is given later in this section.

nysql d_saf e tries to start an executable named nysql d. To override the default behavior and
specify explicitly the name of the server you want to run, specify a - - mysql d or - - nysqgl d- ver si on
option to nysql d_saf e. You can also use - - | edi r to indicate the directory where nysql d_saf e
should look for the server.

241

nmysql d_saf e — MySQL Server Startup Script

Many of the options to nysql d_saf e are the same as the options to nysql d. See Section 5.1.3,
“Server Command Options”.

Options unknown to nysql d_saf e are passed to nysql d if they are specified on the command line,
but ignored if they are specified in the [mysql d_saf e] group of an option file. See Section 4.2.3.3,

“Using Option Files”.

nysqgl d_saf e reads all options from the [nysql d] , [server], and [nysql d_saf e] sections in
option files. For example, if you specify a [nysql d] section like this, nysql d_saf e will find and use
the - -1 og- err or option:

[nysql d]
| og-error=error.|og

For backward compatibility, nysql d_saf e also reads [saf e_mysql d] sections, although you should
rename such sections to [nysql d_saf e] in MySQL 5.7 installations.

nmysql d_saf e supports the following options. It also reads option files and supports the options
for processing them described at Section 4.2.3.4, “Command-Line Options that Affect Option-File

Handling”.

Table 4.1 nysqgl d_saf e Options

Format

Option File

Description

--basedir=path

basedir

The path to the MySQL installation directory

--core-file-size=size

core-file-size

The size of the core file that mysqld should be able to
create

--datadir=path

datadir

The path to the data directory

--defaults-extra-

defaults-extra-file

Read option file in addition to the usual option files

mysqld=prog_name

file=path

--defaults- defaults-file Read only the given option file

file=file_name

--help Display a help message and exit

--ledir=path ledir Use this option to indicate the path name to the directory
where the server is located

--log- log-error Write the error log to the given file

error=file_name

--malloc-lib=[lib- malloc-lib Alternative malloc library to use for mysqld

name]

-- mysqld The name of the server program (in the ledir directory)

that you want to start

--mysqld-
version=suffix

mysqld-version

This option is similar to the --mysqld option, but you
specify only the suffix for the server program name

--nice=priority nice Use the nice program to set the server's scheduling
priority to the given value

--no-defaults no-defaults Do not read any option files

--open-files- open-files-limit The number of files that mysqld should be able to open

limit=count

--pid-file=file_name

pid-file=file_name

The path name of the process ID file

--plugin-dir=path

plugin-dir=path

The directory where plugins are located

--port=number

port

The port number that the server should use when
listening for TCP/IP connections

242

nmysql d_saf e — MySQL Server Startup Script

Format Option File Description

--skip-kill-mysqld skip-kill-mysqld Do not try to kill stray mysqld processes

--skip-syslog skip-syslog Do not write error messages to syslog; use error log file

--socket=path socket The Unix socket file that the server should use when
listening for local connections

--syslog syslog Write error messages to syslog

--syslog-tag=tag syslog-tag Tag suffix for messages written to syslog

-- timezone Set the TZ time zone environment variable to the given

timezone=timezone option value

--user={user_name| |user Run the mysqld server as the user having the name

user_id} user_name or the numeric user ID user_id

e --help

Display a help message and exit.
- - basedi r=pat h

The path to the MySQL installation directory.
--core-file-size=size

The size of the core file that mysql d should be able to create. The option value is passed to ul i mi t
- C.

- -dat adi r=pat h
The path to the data directory.
--defaults-extra-fil e=path

The name of an option file to be read in addition to the usual option files. This must be the first option
on the command line if it is used. If the file does not exist or is otherwise inaccessible, the server will
exit with an error.

--defaults-file=file_nane

The name of an option file to be read instead of the usual option files. This must be the first option on
the command line if it is used.

--ledir=path

If mysgl d_saf e cannot find the server, use this option to indicate the path name to the directory
where the server is located.

--log-error=file_nane
Write the error log to the given file. See Section 5.2.2, “The Error Log”.
--mall oc-1ib=[1ib_nane]

The name of the library to use for memory allocation instead of the system mal | oc() library. Any
library can be used by specifying its path nhame, but there is a shortcut form to enable use of the

t cmal | oc library that is shipped with binary MySQL distributions for Linux in MySQL 5.7. It is
possible that the shortcut form will not work under certain configurations, in which case you should
specify a path name instead.

The - - mal | oc- | i b option works by modifying the LD PREL OAD environment value to affect
dynamic linking to enable the loader to find the memory-allocation library when nysql d runs:

243

nmysql d_saf e — MySQL Server Startup Script

« If the option is not given, or is given without a value (- - mal | oc- | i b=), LD PRELQAD is not
modified and no attempt is made to use t cnal | oc.

* If the option is given as - - mal | oc- 1 i b=t cmal | oc, nmysql d_saf e looks forat cral | oc library
in/usr/1ib andthen in the MySQL pkgl i bdi r location (for example, / usr/ | ocal / nysql /
I i b or whatever is appropriate). If t mal | oc is found, its path name is added to the beginning of
the LD_PRELOAD value for mysql d. If t cmal | oc is not found, nysql d_saf e aborts with an error.

 Ifthe optionis givenas --mal | oc-11i b=/ pat h/to/ sone/ | i brary, that full path is added to
the beginning of the LD _PRELOAD value. If the full path points to a nonexistent or unreadable file,
mysql d_saf e aborts with an error.

« For cases where nysql d_saf e adds a path name to LD PRELCQAD, it adds the path to the
beginning of any existing value the variable already has.

Linux users can use the | i bt cmal | oc_mi ni nal . so included in binary packages by adding these
lines to the ny. cnf file:

[mysql d_saf e]
mal | oc-1ib=tcmal | oc

Those lines also suffice for users on any platform who have installed at crral | oc package in/ usr/
I i b. To use a specifict crmal | oc library, specify its full path name. Example:

[nysql d_saf e]
mal | oc-1ib=/opt/lib/libtcmalloc_m ni mal.so

- -nysql d=pr og_name

The name of the server program (in the | edi r directory) that you want to start. This option is
needed if you use the MySQL binary distribution but have the data directory outside of the binary
distribution. If mysql d_saf e cannot find the server, use the - - | edi r option to indicate the path
name to the directory where the server is located.

--nysql d-versi on=suffix

This option is similar to the - - mysql d option, but you specify only the suffix for the server

program name. The basename is assumed to be nysql d. For example, if you use - - mysql d-
ver si on=debug, nysql d_saf e starts the nysql d- debug program in the | edi r directory. If the
argument to - - nysql d- ver si on is empty, nysql d_saf e uses nysql d in the | edi r directory.

--nice=priority

Use the ni ce program to set the server's scheduling priority to the given value.
--no-defaults

Do not read any option files. This must be the first option on the command line if it is used.
--open-files-limt=count

The number of files that mysql d should be able to open. The option value is passedtoul i mit -n.
Note that you need to start mysql d_saf e asr oot for this to work properly!

--pid-file=file_nane
The path name of the process ID file.

In MySQL 5.7.2 and later, mysql d_saf e when starting up creates a PID file named
nysql d_saf e. pi d in the MySQL data directory (Bug #16776528).

244

nmysql d_saf e — MySQL Server Startup Script

e --plugin-dir=path
The path name of the plugin directory.
e --port=port_num

The port number that the server should use when listening for TCP/IP connections. The port number
must be 1024 or higher unless the server is started by the r oot system user.

e --skip-kill-nmysqgld
Do not try to kill stray mysql d processes at startup. This option works only on Linux.

e --socket=path

The Unix socket file that the server should use when listening for local connections.
e --syslog,--skip-syslog

- - sysl og causes error messages to be sent to sysl og on systems that support the | ogger
program. - - ski p- sysl og suppresses the use of sys| og; messages are written to an error log file.

When sysl og is used, the daenon. er r syslog priority/facility is used for all log messages.
e --syslog-tag=tag

For logging to sysl| og, messages from nysql d_saf e and nysql d are written with a tag of
nysql d_saf e and nysql d, respectively. To specify a suffix for the tag, use - - sysl og- t ag=t ag,
which modifies the tags to be nysql d_saf e-t ag and nysql d- t ag.

e --timezone=tinezone

Set the TZ time zone environment variable to the given option value. Consult your operating system
documentation for legal time zone specification formats.

e --user={user_nane| user _id}

Run the mysqgl d server as the user having the name user _nane or the numeric user ID user _i d.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

If you execute nysql d_saf e with the - - defaul ts-fil e or--defaul ts-extra-fil e optionto
name an option file, the option must be the first one given on the command line or the option file will not
be used. For example, this command will not use the named option file:

nmysql > nysql d_safe --port=port_num --defaul ts-file=file_nane

Instead, use the following command:

nysqgl > nysql d_safe --defaults-file=file_nane --port=port_num

The nysql d_saf e script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install the
server in slightly different locations. (See Section 2.1.5, “Installation Layouts”.) nysql d_saf e expects
one of the following conditions to be true:

» The server and databases can be found relative to the working directory (the directory from which
nysql d_saf e is invoked). For binary distributions, mysql d_saf e looks under its working directory
for bi n and dat a directories. For source distributions, it looks for | i bexec and var directories. This
condition should be met if you execute nysql d_saf e from your MySQL installation directory (for
example, / usr/ | ocal / nysql for a binary distribution).

245

nysql . server — MySQL Server Startup Script

« If the server and databases cannot be found relative to the working directory, nysqgl d_saf e
attempts to locate them by absolute path names. Typical locations are / usr/ | ocal /| i bexec
and / usr /| ocal / var. The actual locations are determined from the values configured into the
distribution at the time it was built. They should be correct if MySQL is installed in the location
specified at configuration time.

Because nysql d_saf e tries to find the server and databases relative to its own working directory,
you can install a binary distribution of MySQL anywhere, as long as you run nysql d_saf e from the
MySQL installation directory:

shel |l > cd nysqgl _installation_directory
shel | > bin/nysql d_safe &

If nysql d_saf e fails, even when invoked from the MySQL installation directory, you can specify the
--ledir and - - dat adi r options to indicate the directories in which the server and databases are
located on your system.

In MySQL 5.7, nysql d_saf e tries to use the sl eep and dat e system utilities to determine how many
times it has attempted to start this second, and—if these are present and this is greater than 5 times—
is forced to wait 1 full second before starting again. This is intended to prevent excessive CPU usage in
the event of repeated failures. (Bug #11761530, Bug #54035)

When you use nysql d_saf e to start nysql d, nysql d_saf e arranges for error (and notice)
messages from itself and from nmysql d to go to the same destination.

There are several nysql d_saf e options for controlling the destination of these messages:
» --sysl og: Write error messages to sys| og on systems that support the | ogger program.

e --skip-sysl og: Do not write error messages to sysl og. Messages are written to the default error
log file (host _nane. err in the data directory), or to a named file if the - - | og- er r or option is
given.

 --log-error=file_name: Write error messages to the named error file.
If none of these options is given, the default is - - ski p- sysl og.

If --sysl og and - - | og- err or are both given, a warning is issued and - - | og- err or takes
precedence.

When nysql d_saf e writes a message, notices go to the logging destination (sysl og or the error log
file) and st dout . Errors go to the logging destination and st derr .

Normally, you should not edit the nysql d_saf e script. Instead, configure nysql d_saf e by using
command-line options or options in the [mysql d_saf e] section of a my. cnf option file. In rare cases,
it might be necessary to edit mnysql d_saf e to get it to start the server properly. However, if you do
this, your modified version of nysql d_saf e might be overwritten if you upgrade MySQL in the future,
so you should make a copy of your edited version that you can reinstall.

4.3.3 nysqgl . server — MySQL Server Startup Script

MySQL distributions on Unix include a script named nmysql . ser ver . It can be used on systems such
as Linux and Solaris that use System V-style run directories to start and stop system services. It is also
used by the Mac OS X Startup Item for MySQL.

nmysql . server can be found in the support -fil es directory under your MySQL installation
directory or in a MySQL source distribution.

If you use the Linux server RPM package (MySQL- ser ver - VERSI ON. r pm), the mysqgl . server script
will be installed in the / et ¢/ i ni t . d directory with the name nmysql . You need not install it manually.
See Section 2.5.3, “Installing MySQL on Linux Using RPM Packages”, for more information on the
Linux RPM packages.

246

nysql d_nul ti — Manage Multiple MySQL Servers

Some vendors provide RPM packages that install a startup script under a different name such as
mysql d.

If you install MySQL from a source distribution or using a binary distribution format that does not install
nysql . server automatically, you can install it manually. Instructions are provided in Section 2.9.1.2,
“Starting and Stopping MySQL Automatically”.

nysqgl . server reads options from the [nysql . server] and [nysql d] sections of option files. For
backward compatibility, it also reads [nysql _server] sections, although you should rename such
sections to [nysql . server] when using MySQL 5.7.

nysql . server supports the following options.
e --basedir=path
The path to the MySQL installation directory.
e --datadir=path
The path to the MySQL data directory.
e --pid-file=file_nane
The path name of the file in which the server should write its process ID.
e --service-startup-tineout=file_nane

How long in seconds to wait for confirmation of server startup. If the server does not start within this
time, nysql . server exits with an error. The default value is 900. A value of 0 means not to wait at
all for startup. Negative values mean to wait forever (no timeout).

e --use-nysqld_safe
Use nysql d_saf e to start the server. This is the default.
e --user=user_nane

The login user name to use for running nysql d.

4.3.4nysgl d_nmul ti — Manage Multiple MySQL Servers

nysqgl d_mul ti is designed to manage several nysql d processes that listen for connections on
different Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.

nmysqgl d_mul ti searches for groups named [mysql dN] in my. cnf (or in the file named by the - -

def aul t s-fi | e option). N can be any positive integer. This number is referred to in the following
discussion as the option group number, or GNR. Group humbers distinguish option groups from one
another and are used as arguments to nysql d_mul ti to specify which servers you want to start,
stop, or obtain a status report for. Options listed in these groups are the same that you would use in the
[mysqgl d] group used for starting mysql d. (See, for example, Section 2.9.1.2, “Starting and Stopping
MySQL Automatically”.) However, when using multiple servers, it is necessary that each one use its
own value for options such as the Unix socket file and TCP/IP port number. For more information on
which options must be unique per server in a multiple-server environment, see Section 5.3, “Running
Multiple MySQL Instances on One Machine”.

To invoke nysql d_nmnul ti, use the following syntax:

shel | > nysqgl d_nmulti [options] {start|stop|reload|report} [GNR,CG\R] ...]

start,stop,rel oad (stop and restart), and r epor t indicate which operation to perform. You can
perform the designated operation for a single server or multiple servers, depending on the G\R list that

247

nysql d_nmul ti — Manage Multiple MySQL Servers

follows the option name. If there is no list, mysql d_nul ti performs the operation for all servers in the
option file.

Each G\R value represents an option group humber or range of group numbers. The value should be
the number at the end of the group name in the option file. For example, the G\R for a group named

[mysql d17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The
GNR value 10- 13 represents groups [nysql d10] through [mysql d13] . Multiple groups or group
ranges can be specified on the command line, separated by commas. There must be no whitespace
characters (spaces or tabs) in the G\R list; anything after a whitespace character is ignored.

This command starts a single server using option group [nmysql d17] :

shel | > nysqgld_multi start 17

This command stops several servers, using option groups [nysql d8] and [nysql d10] through
[mysqgl d13]:

shel | > nysqgl d_multi stop 8, 10-13

For an example of how you might set up an option file, use this command:

shell > nysqgld_multi --exanple

nysgl d_nmul ti searches for option files as follows:

* With - - no- def aul t s, no option files are read.

e With--defaults-file=file_nane, only the named file is read.

» Otherwise, option files in the standard list of locations are read, including any file named by the - -
defaul ts-extra-file=file_name option, if one is given. (If the option is given multiple times,
the last value is used.)

Option files read are searched for [mysql d_nmul ti] and [mysql dN] option groups. The
[mysqgl d_mul ti] group can be used for options to nysql d_mul ti itself. [mysql dN] groups can be
used for options passed to specific mysql d instances.

The [nysql d] or [nysql d_saf e] groups can be used for common options read by all instances
of nysql d or mysql d_saf e. You can specify a--defaul t s-fil e=fil e_nane option to use a
different configuration file for that instance, in which case the [nysql d] or [nysql d_saf e] groups
from that file will be used for that instance.

nmysql d_nmul ti supports the following options.
e --help
Display a help message and exit.
e --exanple
Display a sample option file.
e --log=file_nane
Specify the name of the log file. If the file exists, log output is appended to it.
e --mysql adm n=prog_nane
The nysql admni n binary to be used to stop servers.

e --nysql d=prog_nane

248

nysql d_nul ti — Manage Multiple MySQL Servers

The nysql d binary to be used. Note that you can specify nysql d_saf e as the value for this option
also. If you use nysql d_saf e to start the server, you can include the nysql d or | edi r options

in the corresponding [nysql dN] option group. These options indicate the name of the server that
nysql d_saf e should start and the path name of the directory where the server is located. (See the
descriptions for these options in Section 4.3.2, “nysql d_saf e — MySQL Server Startup Script”.)
Example:

[mysql d38]
nysql d = nysql d- debug
ledir = /opt/local/nysql/libexec

e --no-log
Print log information to st dout rather than to the log file. By default, output goes to the log file.
e --password=password

The password of the MySQL account to use when invoking nysql admni n. Note that the password
value is not optional for this option, unlike for other MySQL programs.

e --silent
Silent mode; disable warnings.
e --tcp-ip

Connect to each MySQL server through the TCP/IP port instead of the Unix socket file. (If a socket
file is missing, the server might still be running, but accessible only through the TCP/IP port.) By
default, connections are made using the Unix socket file. This option affects st op and r epor t
operations.

s --user=user_nane
The user name of the MySQL account to use when invoking mysql admi n.
* --verbose
Be more verbose.
e --version
Display version information and exit.
Some notes about nysql d_nul ti :

* Most important: Before using nysql d_nul ti be sure that you understand the meanings of the
options that are passed to the nysql d servers and why you would want to have separate nysql d
processes. Beware of the dangers of using multiple mysql d servers with the same data directory.
Use separate data directories, unless you know what you are doing. Starting multiple servers with
the same data directory does not give you extra performance in a threaded system. See Section 5.3,
“Running Multiple MySQL Instances on One Machine”.

Important

Unix account that the specific mysql d process is started as. Do not use
the Unix r oot account for this, unless you know what you are doing. See

A Make sure that the data directory for each server is fully accessible to the
Section 6.1.5, “How to Run MySQL as a Normal User”.

* Make sure that the MySQL account used for stopping the nysql d servers (with the nysql admni n
program) has the same user name and password for each server. Also, make sure that the account

249

nysql d_nmul ti — Manage Multiple MySQL Servers

has the SHUTDOVN privilege. If the servers that you want to manage have different user names or
passwords for the administrative accounts, you might want to create an account on each server that
has the same user name and password. For example, you might set up a common nul ti _adm n
account by executing the following commands for each server:

shell > nmysql -u root -S /tnp/nysqgl.sock -p
Ent er password:
nysql > GRANT SHUTDOWN ON *. *
-> TO 'multi_admin' @Il ocal host' | DENTIFIED BY 'multipass';

See Section 6.2, “The MySQL Access Privilege System”. You have to do this for each nysql d
server. Change the connection parameters appropriately when connecting to each one. Note that
the host name part of the account name must permit you to connect as mul t i _admi n from the host
where you want to run nmysql d_nul ti .

» The Unix socket file and the TCP/IP port number must be different for every nmysql d. (Alternatively, if
the host has multiple network addresses, you can use - - bi nd- addr ess to cause different servers
to listen to different interfaces.)

» The --pi d-fil e option is very important if you are using nysql d_saf e to start nysql d (for
example, - - nysql d=nysql d_saf e) Every nysql d should have its own process ID file. The
advantage of using nysql d_saf e instead of nysql d is that mysql d_saf e monitors its nysql d
process and restarts it if the process terminates due to a signal sent using ki I | - 9 or for other
reasons, such as a segmentation fault. Please note that the nysql d_saf e script might require
that you start it from a certain place. This means that you might have to change location to a
certain directory before running nysql d_rmul ti . If you have problems starting, please see the
nysql d_saf e script. Check especially the lines:

MY_PWD="pwd"
Check if we are starting this relative (for the binary rel ease)
if test -d $MY_PWD/ dat a/ nysqgl -a \

-f ./share/ nysql/english/errnsg.sys -a \

-x ./bin/nysqgld

The test performed by these lines should be successful, or you might encounter problems. See
Section 4.3.2, “nysql d_saf e — MySQL Server Startup Script”.

* You might want to use the - - user option for mysql d, but to do this you need to run the
nysql d_mul ti script as the Unix superuser (r oot). Having the option in the option file doesn't
matter; you just get a warning if you are not the superuser and the nysql d processes are started
under your own Unix account.

The following example shows how you might set up an option file for use with nysql d_nul ti . The
order in which the mysql d programs are started or stopped depends on the order in which they appear
in the option file. Group nhumbers need not form an unbroken sequence. The first and fifth [mysql dN|
groups were intentionally omitted from the example to illustrate that you can have “gaps” in the option
file. This gives you more flexibility.

This file should probably be in your hone dir (~/.ny.cnf)
or /etc/ny.cnf
Version 2.1 by Jani Tol onen

[nmysqld_multi]

nysql d = /usr/ | ocal /bin/ nysqgl d_saf e
nysqgl admi n = /usr/ | ocal /bi n/ nysqgl admi n
user = multi_admn

password = mul ti pass

[nysql d2]

socket = /tnp/ nysql . sock2

250

MySQL Installation-Related Programs

port
pid-file
dat adi r

| anguage
user

[nysql d3]
socket
por t
pid-file
dat adi r

| anguage
user

[nysql d4]
socket
por t
pid-file
dat adi r

| anguage
user

[nysql d6]
socket
por t
pid-file
dat adi r

| anguage
user

3307

[usr /| ocal / mysql / var 2/ host nane. pi d2
/usr /| ocal / mysql / var 2

/usr /| ocal / share/ nmysql / engl i sh

j ohn

/tmp/ mysql . sock3

3308

[usr /| ocal / mysql / var 3/ host namne. pi d3
lusr /| ocal / mysql / var 3

[usr /| ocal / share/ nysql / swedi sh
nont y

[t mp/ mysql . sock4

3309

[usr /| ocal / mysql / var 4/ host nane. pi d4
/usr /| ocal / mysql / var 4

/usr /| ocal / share/ mysql / est oni a

tonu

/tmp/ mysql . sock6

3311

lusr/| ocal / mysql / var 6/ host nane. pi dé
lusr /| ocal / mysql / var 6

/usr /| ocal / share/ nysql / j apanese

j ani

See Section 4.2.3.3, “Using Option Files”.

4.4 MySQL Installation-Related Programs
The programs in this section are used when installing or upgrading MySQL.
4.4.1 conmp_err — Compile MySQL Error Message File
conp_err creates the err nsg. sys file that is used by nysql d to determine the error messages

to display for different error codes. conp_er r normally is run automatically when MySQL is built. It
compiles the er r nsg. sys file from the plaintext file located at sql / shar e/ errnsg. t xt in MySQL

source distributions.

conp_err also generates mysql d_error. h, nysql d_ernane. h,and sql _st at e. h header files.

For more information about how error messages are defined, see the MySQL Internals Manual.

Invoke conp_err like this:

shel | > conp_err [options]

conp_err supports the following options.

e --help,-?

Display a help message and exit.

e --charset=path,-C path

The character set directory. The defaultis . ./ sqgl / shar e/ char set s.
e --debug=debug_options,-# debug_options

Write a debugging log. A typical debug_opti ons stringisd: t: O fil e_nane. The default is

d:t: O /tnp/conp_err.trace.

251

http://dev.mysql.com/doc/internals/en

mysql bug — Generate Bug Report

e --debug-info,-T

Print some debugging information when the program exits.
e --header file=file_nane,-H file_nane

The name of the error header file. The defaultis nysql d_error. h.
e --in file=file_name,-F file_name

The name of the input file. The defaultis ../ sql / share/ errnmsg. t xt.
e --nanme_file=file_name,-N file_nane

The name of the error name file. The default is mysql d_er nane. h.
e --out_dir=path,-D path

The name of the output base directory. The defaultis . ./ sql / share/ .
o --out_file=file_nane,-O file_nane

The name of the output file. The default is er r nsg. sys.
e --statefile=file nanme,-S file_nane

The name for the SQLSTATE header file. The defaultis sql _st at e. h.
e --version,-V

Display version information and exit.

4.4.2 nysgl bug — Generate Bug Report

This program is obsolete.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

4.4.3nysgl i nstall db— Initialize MySQL Data Directory

nmysql _i nstall _db initializes the MySQL data directory and creates the system tables that it
contains, if they do not exist. It also initializes the system tablespace and related data structures
needed to manage | nnoDB tables. nysql _i nstal | _db is a Perl script and can be used on any
system with Perl installed.

As of MySQL 5.7.4, MySQL deployments installed using RPM packages are secure by default and
have these characteristics:

» The installation process creates a single r oot account, ' root' @ | ocal host "', automatically
generates a random password for this account, and marks the password expired.

« The initial random r oot password is written to the . nysql _secr et file in the home directory of the
effective user running the script. . mysql _secr et is created with mode 600 to be accessible only to
the system user for whom it is created.

If . mysqgl secret already exists, the new password information is appended to it. Each password
entry includes a timestamp so that in the event of multiple install operations it is possible to
determine the password associated with each one.

» No anonymous-user MySQL accounts are created.

* Not est database is created.

252

http://bugs.mysql.com/

nysgl i nstall _db — Initialize MySQL Data Directory

As a result of these actions, it is necessary after installation to start the server, connect as r oot
using the password written to the . nysql _secr et file, and select a new r oot password. Until
this is done, r oot cannot do anything else. To change the password, you can use the SET
PASSWORD statement (for example, with the nysqgl client). You can also use nysql admi n or
nmysql _secure_installation.

For information about overriding some of the characteristics just described, see the description of the
- - ski p-random passwor ds option.

On Unix platforms, mysql _i nstal | _db creates a default option file named ny. cnf in the base
installation directory. This file is created from a template included in the distribution package named
nmy- def aul t. cnf. You can find the template in or under the base installation directory. When
started using nmysql d_saf e, the server uses my. cnf file by default. If my. cnf already exists,
nmysqgl _i nstall _db assumes it to be in use and writes a new file named ny- new. cnf instead.

With one exception, the settings in the default option file are commented and have no effect.

The exception is that the file changes the sgl _node system variable from its default of

NO _ENG NE_SUBSTI TUTI ONto also include STRI CT_TRANS_ TABLES. This setting produces a
server configuration that results in errors rather than warnings for bad data in operations that modify
transactional tables. See Section 5.1.7, “Server SQL Modes”.

As of MySQL 5.7.2, when nysql _i nst al | _db invokes the server to initialize the nysq|

database, the server assigns every user table row a nonempty pl ugi n column value. The value is
"nysql _native_password' unlessthe default authentication_pl ugi n system variable is
set otherwise.

To invoke nysql _i nstal | _db, use the following syntax:

shel | > nysqgl _install _db [options]

Because the MySQL server, nysql d, must access the data directory when it runs later, you should
either run mysqgl i nstal | _db from the same system account that will be used for running nmysql d or
run it as r oot and use the - - user option to indicate the user name that mysql d will run as. It might
be necessary to specify other options such as - - basedi r or--datadir ifnmysql install _db
does not use the correct locations for the installation directory or data directory. For example:

shel | > scripts/nysql _install _db --user=nysqgl \
- -basedi r=/ opt/ mysql / mysql \
--dat adi r=/ opt/ nysql / mysql / dat a

Note

@ After mysqgl i nstall db sets upthe | nnoDB system tablespace, changes to
some tablespace characteristics require setting up a whole new instance. This
includes the file name of the first file in the system tablespace and the number
of undo logs. If you do not want to use the default values, make sure that the
settings for the i nnodb_data file pathandinnodb |og file_ size
configuration parameters are in place in the MySQL configuration file before
running nysql i nstal | _db. Also make sure to specify as necessary other
parameters that affect the creation and location of | nnoDB files, such as
i nnodb_data_hone_di r andi nnodb_| og_group_hone_dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the - - def aul t s-
extra-fil e option whenyourunnysql install _db.

Note
@ If you have set a custom TMPDI R environment variable when performing the
installation, and the specified directory is not accessible, mysqgl _instal |l _db

253

nysgl i nstall _db — Initialize MySQL Data Directory

may fail. If so, unset TMPDI R or set TMPDI R to point to the system temporary
directory (usually / t np).

nysgl _i nstal | _db supports the following options, which can be specified on the command line or in

the [nysql _install

_db] group of an option file. (Options that are common to nysql d can also be

specified in the [nysql d] group.) Other options are passed to nysql d. For information about option
files, see Section 4.2.3.3, “Using Option Files”.

Table 4.2 nysqgl i nstall _db Options

user=user_name

Format Option File Description IntroducedRemoved
--basedir=path |basedir The MySQL base directory

--builddir=path |builddir The build directory (for out-of-source builds)
--Cross- cross-bootstrap |For internal use

bootstrap

--datadir=path |datadir The MySQL data directory

--defaults-extra- Read option file in addition to the usual
file=file_name option files

--defaults- Read only the given option file

file=file_name

--force force Run even if DNS does not work

--help help Display help message and exit

--ldata=path Idata Synonym for --datadir

--no-defaults Do not read any option files

--random- random- Generate random root password 5.7.4
passwords passwords

--rpm rpm For internal use

--skip-name- skip-name- Use IP addresses rather than host names in
resolve resolve grant tables

--skip-random- |skip-random- Do not generate random root password 5.7.4
passwords passwords

--srcdir=path srcdir For internal use

-- user System login user under which to execute

--verbose verbose Verbose mode
--windows windows For internal use
e --help

Display a help message and exit.

e --basedir=path

The path to the MySQL installation directory.

--bui l ddi r=path

For use with - - sr cdi r and out-of-source builds. Set this to the location of the directory where the
built files reside.

e --cross-bootstrap

For internal use. This option is used for building system tables on one host intended for another.

254

nysgl i nstall _db — Initialize MySQL Data Directory

--dat adi r=pat h, - -| dat a=pat h

The path to the MySQL data directory. Only the last component of the path name is created if it does
not exist; the parent directory must already exist or an error occurs.

--defaults-extra-file=file_nane

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. f i | e_nane is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

--defaults-file=file_nane

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

--force

Cause nysqgl _i nstal | _db to run even if DNS does not work. Grant table entries normally created
using host names will use IP addresses instead.

--no-defaul ts

Do not read any option files. If program startup fails due to reading unknown options from an option
file, - - no- def aul t s can be used to prevent them from being read.

- -random passwor ds

Note
@ This option was removed in MySQL 5.7.4 and replaced with - - ski p-
random passwor ds.

On Unix platforms, this option provides for more secure MySQL installation. Invoking
nysql i nstall _db with--random passwor ds causes it to perform the following actions in
addition to its normal operation:

e The installation process creates a random password, assigns it to the initial MySQL r oot
accounts, and sets the “password expired” flag for those accounts.

e The initial random r oot password is written to the . mysql _secr et file in the directory named
by the HOVE environment variable. Depending on operating system, using a command such
as sudo may cause the value of HOVE to refer to the home directory of the r oot system user.
. mysql _secr et is created with mode 600 to be accessible only to the system user for whom it is
created.

If . mysqgl _secret already exists, the new password information is appended to it. Each
password entry includes a timestamp so that in the event of multiple install operations it is possible
to determine the password associated with each one.

* No anonymous-user MySQL accounts are created.

As a result of these actions, it is necessary after installation to start the server, connect as r oot
using the password written to the . mysqgl _secr et file, and select a new r oot password. Until this
is done, r oot cannot do anything else. This must be done for each r oot account you intend to use.
To change the password, you can use the SET PASSWORD statement (for example, with the nysql
client). You can also use mysql adni n or nysql _secure_instal |l ation.

New install operations (not upgrades) using RPM packages and Solaris PKG packages invoke
nysql _i nstal | _db with the - - random passwor ds option. (Install operations using RPMs for
Unbreakable Linux Network are unaffected because they do not use nysql _i nstal | _db.)

255

nysgl i nstall _db — Initialize MySQL Data Directory

For install operations using a binary . t ar . gz distribution or a source distribution, you can invoke
nysql i nstall _db with the - -random passwor ds option manually to make your MySQL
installation more secure. This is recommended, particularly for sites with sensitive data.

--rpm

For internal use. This option is used during the MySQL installation process for install operations
performed using RPM packages.

- -ski p- nane-resol ve

Use IP addresses rather than host names when creating grant table entries. This option can be
useful if your DNS does not work.

- - ski p-random passwor ds

As of MySQL 5.7.4, MySQL deployments produced using nysql i nstal | _db are secure by
default. When invoked without the - - ski p- r andom passwor ds option, nysql _i nstal | _db uses
these default deployment characteristics:

The installation process creates a single r oot account, ' root' @ | ocal host ', automatically
generates a random password for this account, and marks the password expired.

The initial random r oot password is written to the . nysql _secr et file in the home directory of
the effective user running the script. . nysql _secr et is created with mode 600 to be accessible
only to the system user for whom it is created.

If . nysqgl _secr et already exists, the new password information is appended to it. Each
password entry includes a timestamp so that in the event of multiple install operations it is possible
to determine the password associated with each one.

« No anonymous-user MySQL accounts are created.
* Notest database is created.

As a result of these actions, it is necessary after installation to start the server, connect as r oot
using the password written to the . mysql _secr et file, and select a new r oot password. Until
this is done, r oot cannot do anything else. To change the password, you can use the SET
PASSWORD statement (for example, with the mysql client). You can also use nysql admi n or
nysql _secure_installation.

To produce a MySQL deployment that is not secure by default, you must explicitly specify the
- - ski p-random passwor ds option when you invoke nysql _i nstal | _db. With this option,
nysql _i nstal |l _db performs the following actions:

* Installation creates a single r oot account, ' root' @1 ocal host ', that has no password.

« Atest database is created that is accessible by any user.

Note
@ As of MySQL 5.7.4, nysql _i nstal | _db no longer creates anonymous-user
accounts, even with - - ski p- random passwor ds.

The - - ski p- random passwor ds option was added in MySQL 5.7.4. It replaces the - - random
passwor ds option.

--srcdir=path

For internal use. This option specifies the directory under which nysql i nstal | _db looks for
support files such as the error message file and the file for populating the help tables.

256

mysql _pl ugi n — Configure MySQL Server Plugins

e --user=user_nane

The system (login) user name to use for running nysql d. Files and directories created by nysql d
will be owned by this user. You must be r oot to use this option. By default, mysql d runs using your
current login name and files and directories that it creates will be owned by you.

* --verbose
Verbose mode. Print more information about what the program does.
* --w ndows

For internal use. This option is used for creating Windows distributions. This is a deprecated alias for
--cross-bootstrap

4.4.4 nysgl pl ugi n — Configure MySQL Server Plugins

The nysql _pl ugi n utility enables MySQL administrators to manage which plugins a MySQL server
loads. It provides an alternative to manually specifying the - - pl ugi n- | oad option at server startup or
using the | NSTALL PLUG Nand UNI NSTALL PLUG N statements at runtime.

Depending on whether mysql _pl ugi n is invoked to enable or disable plugins, it inserts or deletes
rows in the mysql . pl ugi n table that serves as a plugin registry. (To perform this operation,

nysql _pl ugi n invokes the MySQL server in bootstrap mode. This means that the server must

not already be running.) For normal server startups, the server loads and enables plugins listed in
nysql . pl ugi n automatically. For additional control over plugin activation, use - - pl ugi n_nane
options named for specific plugins, as described in Section 5.1.8.1, “Installing and Uninstalling Plugins”.

Each invocation of nysql _pl ugi n reads a configuration file to determine how to configure the plugins
contained in a single plugin library object file. To invoke nmysql _pl ugi n, use this syntax:

nysql _plugin [options] plugin { ENABLE| DI SABLE}

pl ugi n is the name of the plugin to configure. ENABLE or DI SABLE (not case sensitive) specify
whether to enable or disable components of the plugin library named in the configuration file. The order
of the pl ugi n and ENABLE or DI SABLE arguments does not matter.

For example, to configure components of a plugin library file named nypl ugi ns. so on Linux or
nypl ugi ns. dl I on Windows, specify a pl ugi n value of mypl ugi ns. Suppose that this plugin
library contains three plugins, pl ugi n1, pl ugi n2, and pl ugi n3, all of which should be configured
under mysql _pl ugi n control. By convention, configuration files have a suffix of . i ni and the
same basename as the plugin library, so the default configuration file name for this plugin library is
nypl ugi ns. i ni . The configuration file contents look like this:

nypl ugi ns
pl ugi n1
pl ugi n2
pl ugi n3

The first line in the mypl ugi ns. i ni file is the name of the library object file, without any extension
such as . soor. dl | . The remaining lines are the names of the components to be enabled or disabled.
Each value in the file should be on a separate line. Lines on which the first character is ' #' are taken
as comments and ignored.

To enable the plugins listed in the configuration file, invoke nmysql _pl ugi n this way:

shel | > nysql _pl ugi n nypl ugi ns ENABLE

To disable the plugins, use DI SABLE rather than ENABLE.

257

mysql _pl ugi n — Configure MySQL Server Plugins

An error occurs if nysql _pl ugi n cannot find the configuration file or plugin library file, or if
nysql _pl ugi n cannot start the MySQL server.

nmysql _pl ugi n supports the following options, which can be specified on the command line or in
the [nysql d] group of any option file. For options specified in a [mysql d] group, nysqgl _pl ugin
recognizes the - - basedi r, - -dat adi r, and - - pl ugi n- di r options and ignores others. For
information about option files, see Section 4.2.3.3, “Using Option Files”.

Table 4.3 nysqgl _pl ugi n Options

Format Option File Description

--basedir=path basedir=path The server base directory
--datadir=path datadir=path The server data directory

--help Display help message and exit
--my-print- my-print- The path to my_print_defaults
defaults=path defaults=path

--mysqld=path mysqld=path The path to the server

--no-defaults no-defaults Do not read configuration file
--plugin-dir=path plugin-dir=path The directory where plugins are located
--plugin- plugin-ini=file_name |The plugin configuration file
ini=file_name

--print-defaults print-defaults Show configuration file defaults
--verbose Verbose mode

--version Display version information and exit
e --help,-?

Display a help message and exit.
e --basedir=path,-b path
The server base directory.
e --datadir=path,-d path
The server data directory.
e --ny-print-defaults=path,-b path
The path to the ny_pri nt _def aul t s program.
e --nysqld=path,-b path
The path to the nysql d server.
e --no-defaults,-p

Do not read values from the configuration file. This option enables an administrator to skip reading
defaults from the configuration file.

With nysqgl _pl ugi n, this option need not be given first on the command line, unlike most other
MySQL programs that support - - no- def aul t s.

e --plugin-dir=path,-p path
The server plugin directory.

e --plugin-ini=file_nane,-i file_nane

258

nysqgl secure_installati on— Improve MySQL Installation Security

The nysql _pl ugi n configuration file. Relative path names are interpreted relative to the current
directory. If this option is not given, the default is pl ugi n. i ni in the plugin directory, where pl ugi n
is the pl ugi n argument on the command line.

e --print-defaults,-P

Display the default values from the configuration file. This option causes nysql _pl ugi n to print the
defaults for - - basedi r, - - dat adi r, and - - pl ugi n- di r if they are found in the configuration file.
If no value for a variable is found, nothing is shown.

With nysql _pl ugi n, this option need not be given first on the command line, unlike most other
MySQL programs that support - - pri nt - def aul t s.

e --verbose,-v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

e --version,-V
Display version information and exit.

4.4.5nysgl _secure_install ati on—Improve MySQL Installation
Security

This program enables you to improve the security of your MySQL installation in the following ways:

* You can set a password for r oot accounts.

* You can remove r oot accounts that are accessible from outside the local host.

 You can remove anonymous-user accounts.

* You can remove the t est database (which by default can be accessed by all users, even
anonymous users), and privileges that permit anyone to access databases with names that start with
test .

nysql _secure_install ati on helps you implement security recommendations similar to those
described at Section 2.9.2, “Securing the Initial MySQL Accounts”.

As of MySQL 5.7.2, nysqgl _secure_install ationisan executable binary available on all
platforms. Before 5.7.2, it was a script available for Unix and Unix-like systems.

Normal usage is to connect to the local MySQL server; invoke nysql _secure_instal |l ation
without arguments:

shel | > nmysqgl _secure_installation
When executed, nysql _secure_instal | ati on prompts you to determine which actions to perform.
As of MySQL 5.7.2, nysql _secure_i nstal | ati on supports these additional features:

e Theval i dat e_passwor d plugin can be used for password strength checking. If the plugin is not
installed, mysqgl secure_install ati on prompts the user whether to install it. Any passwords
entered later are checked using the plugin if it is enabled.

* Most of the usual MySQL client options such as - - host and - - port can be used on the command
line and in option files. For example, to connect to the local server over IPv6 using port 3307, use
this command:

259

nysqgl secure_installati on— Improve MySQL Installation Security

shel | > nmysql _secure_installation

--host=::1 --port=3307

nmysqgl secure_install ation supports the following options, which can be specified on the
command line or in the [nysqgl _secure_installation] and[client] groups of an option file.
For information about option files, see Section 4.2.3.3, “Using Option Files”.

Table 4.4 nysql _secure_instal | ati on Options

Format Option File Description Introduced
--defaults-extra- Read option file in addition to the usual option files |5.7.2
file=file_name
--defaults- Read only the given option file 5.7.2
file=file_name
--defaults-group- Option group suffix value 5.7.2
suffix=str
--help Display help message and exit 5.7.2
--host host Host to connect to (IP address or hostname) 5.7.2
--no-defaults Do not read any option files 5.7.2
-- password Accepted but always ignored. Whenever 5.7.2
password=password mysql_secure_installation is invoked, the user is
prompted for a password, regardless.
--port=port_num |port The TCP/IP port number to use for the connection |5.7.2
--print-defaults Print defaults 5.7.2
--protocol=type protocol The connection protocol to use 5.7.2
--socket=path socket For connections to localhost 5.7.2
--ssl ssl Enable SSL for connection 5.7.2
--ssl- ssl-ca The path to a file that contains a list of trusted SSL |5.7.2
ca=file_name CAs
--ssl- ssl-capath The path to a directory that contains trusted SSL |5.7.2
capath=dir_name CA certificates in PEM format
--ssl- ssl-cert The name of the SSL certificate file to use for 5.7.2
cert=file_name establishing a secure connection
--ssl- ssl-cipher A list of allowable ciphers to use for SSL 5.7.2
cipher=cipher_list encryption
--ssl- ssl-crl The path to a file that contains certificate 5.7.2
crl=file_name revocation lists
--ssl- ssl-crlpath The path to a directory that contains certificate 5.7.2
crlpath=dir_name revocation list files
--ssl- ssl-key The name of the SSL key file to use for 5.7.2
key=file_name establishing a secure connection
--ssl-verify-server- | ssl-verify-server- | The server's Common Name value in its certificate |5.7.2
cert cert is verified against the host name used when
connecting to the server
--use-default use-default Execute with no user interactivity 574
-- user MySQL user name to use when connecting to 5.7.2

user=user_name

server

* --help,-?

Display a help message and exit.

260

nysqgl secure_installati on— Improve MySQL Installation Security

--defaults-extra-file=file_nane

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. f i | e_nane is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

--defaults-file=file_nane

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_nane is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

--defaul ts-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix
of st r. For example, mysql secure_installationnormallyreadsthe[client] and
[mysql secure_installation] groups. If the - - def aul t s- gr oup- suf fi x=_ot her
option is given, nysql secure_install ati on alsoreadsthe[client_ other] and

[mysql secure_installation_other] groups.

- - host =host _nane, -h host _nane
Connect to the MySQL server on the given host.
--no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, - - no- def aul t s can be used to prevent them from being read.

The exception is that the . nyl ogi n. cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when - - no- def aul t s
is used. (. nyl ogi n. cnf is created by the nysql confi g_edi t or utility. See Section 4.6.6,
“nmysqgl _confi g _editor — MySQL Configuration Utility”.)

- - passwor d=password, - p password

This option is accepted but ignored. Whether or not this option is used,
nysql _secure_instal | ati on always prompts the user for a password.

--port=port_num-P port_num

The TCP/IP port number to use for the connection.
--print-defaults

Print the program name and all options that it gets from option files.
- - pr ot ocol ={ TCP| SOCKET| PI PE| MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

--socket=path,-S path

For connections to | ocal host , the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

--ss|*

Options that begin with - - ss| specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.11.4, “SSL Command Options”.

261

nysgl tzinfo to _sql — Load the Time Zone Tables

e --use-default

Execute noninteractively. This option can be used for unattended installation operations. This option
was added in MySQL 5.7.4.

e ~--user=user_nane, -u user_nane

The MySQL user name to use when connecting to the server.

446 nysgl tzinfo to sql — Load the Time Zone Tables

The nmysql _tzinfo_to_sql program loads the time zone tables in the nysql database. It is used

systems are Linux, FreeBSD, Solaris, and Mac OS X. One likely location for these files is the / usr/
shar e/ zonei nf o directory (/ usr/ shar e/ | i b/ zonei nf o on Solaris). If your system does not
have a zoneinfo database, you can use the downloadable package described in Section 10.6, “MySQL
Server Time Zone Support”.

nmysqgl _tzinfo_to_sqgl can be invoked several ways:

shel | > nysql _tzinfo_to_sqgl tz_dir
shel |l > nysqgl _tzinfo_to_sql tz file tz_nane
shel | > nysqgl _tzinfo_to_sql --leap tz_file

For the first invocation syntax, pass the zoneinfo directory path name to nysql tzinfo_to_sql and
send the output into the nysql program. For example:

shel | > nysqgl _tzinfo_to_sqgl /usr/share/zoneinfo | nysqgl -u root nysql

nysql _tzinfo_to_sqgl reads your system's time zone files and generates SQL statements from
them. nmysqgl processes those statements to load the time zone tables.

The second syntax causes nysql _tzinfo_to_sql toload a single time zone filetz_fi | e that
corresponds to a time zone name t z_nane:

shel |l > nysqgl _tzinfo_to_sql tz_file tz_name | mysgl -u root nysql

If your time zone needs to account for leap seconds, invoke nysql tzinfo to_sql using the third
syntax, which initializes the leap second information.t z_fi | e is the name of your time zone file:
shel |l > nysqgl _tzinfo to sql --leap tz file | mysqgl -u root nysql

After running nmysql _tzi nfo_to_sql, itis best to restart the server so that it does not continue to
use any previously cached time zone data.

4.4.7 nysgl upgrade — Check and Upgrade MySQL Tables

nysqgl _upgr ade examines all tables in all databases for incompatibilities with the current version of
MySQL Server. nysql _upgr ade also upgrades the system tables so that you can take advantage of
new privileges or capabilities that might have been added.

nmysql _upgr ade should be executed each time you upgrade MySQL.
Important

A If you upgrade to MySQL 5.7.2 or later from a version older than 5.7.2, a
change to the nysql . user table requires a special sequence of steps to

perform an upgrade using nysql _upgr ade. For details, see Section 2.10.1.2,
“Upgrading from MySQL 5.6 to 5.7".

262

nysgl _upgr ade — Check and Upgrade MySQL Tables

If mysql _upgr ade finds that a table has a possible incompatibility, it performs a table check and,
if problems are found, attempts a table repair. If the table cannot be repaired, see Section 2.10.4,
“Rebuilding or Repairing Tables or Indexes” for manual table repair strategies.

with administrator privileges. You can do this by running a Command Prompt
as Administrator and running the command. Failure to do so may result in the

Note
@ On Windows Server 2008, Vista, and newer, you must run nysql _upgr ade
upgrade failing to execute correctly.

Caution

A You should always back up your current MySQL installation before performing
an upgrade. See Section 7.2, “Database Backup Methods”.

Some upgrade incompatibilities may require special handling before

you upgrade your MySQL installation and run mysql _upgr ade. See
Section 2.10.1, “Upgrading MySQL”", for instructions on determining whether
any such incompatibilities apply to your installation and how to handle them.

To use nysqgl _upgr ade, make sure that the server is running, and then invoke it like this:

shel | > nysql _upgrade [options]

After running nysql _upgr ade, stop the server and restart it so that any changes made to the system
tables take effect.

nysqgl _upgr ade executes the following commands to check and repair tables and to upgrade the
system tables:

nmysql check --all-databases --check-upgrade --auto-repair
nmysql < fix_priv_tables
nmysql check --all-databases --check-upgrade --fix-db-nanmes --fix-tabl e-nanmes

Notes about the preceding commands:

* Because nysql _upgr ade invokes nysqgl check with the - - al | - dat abases option, it processes
all tables in all databases, which might take a long time to complete. Each table is locked and
therefore unavailable to other sessions while it is being processed. Check and repair operations can
be time-consuming, particularly for large tables.

» For details about what checks the - - check- upgr ade option entails, see the description of the FOR
UPGRADE option of the CHECK TABLE statement (see Section 13.7.2.2, “CHECK TABLE Syntax”).

e fix_priv_tabl es represents a script generated internally by nysql _upgr ade that contains SQL
statements to upgrade the tables in the mysql database.

All checked and repaired tables are marked with the current MySQL version number. This ensures that
next time you run nysql _upgr ade with the same version of the server, it can tell whether there is any
need to check or repair the table again.

nysgl _upgr ade also saves the MySQL version number in a file named nysql _upgrade_i nfoin
the data directory. This is used to quickly check whether all tables have been checked for this release
so that table-checking can be skipped. To ignore this file and perform the check regardless, use the - -
f or ce option.

If you install MySQL from RPM packages on Linux, you must install the server and client RPMs.
nysql _upgr ade is included in the server RPM but requires the client RPM because the latter includes
nysql check. (See Section 2.5.3, “Installing MySQL on Linux Using RPM Packages”.)

263

nysgl _upgr ade — Check and Upgrade MySQL Tables

As of MySQL 5.7.2, nysqgl _upgr ade checks user table rows and, for any row with an empty pl ugi n
column, sets that columnto ' mysqgl native password' or' nmysqgl ol d _password' depending
on the hash format of the Passwor d column value.

nysgl _upgr ade does not upgrade the contents of the help tables. For upgrade instructions, see
Section 5.1.10, “Server-Side Help”.

nysql _upgr ade runs by default as the MySQL r oot user. If the r oot password is expired when you
run mysql _upgr ade, you will see a message that your password is expired and that nysql _upgr ade

failed as a result. To correct this, reset the r oot password to unexpire it and run nysql _upgr ade

again:

shel |l > nysql -u root -p

Ent er password:

* Kk k %k

<- enter root password here

nysqgl > SET PASSWORD = PASSWORD(' r oot - password') ;

nysql > qui t

shel | > nysql _upgr ade

nysql _upgr ade supports the following options, which can be specified on the command line or
inthe [mysql upgrade] and[client] groups of an option file. Other options are passed to
nysql check. For example, it might be necessary to specify the - - passwor d[=passwor d] option.
For information about option files, see Section 4.2.3.3, “Using Option Files”.

Table 4.5 nysqgl _upgr ade Options

and exit.

Format Option File Description IntroducedRemoved

--basedir basedir Not used; exists only for compatibility with 5.7.2
some very old applications

--character- character-sets- |Directory where character sets are.

sets-dir=path dir

--compress compress Use compression in server/client protocol.

--datadir=path |datadir Not used; exists only for compatibility with 5.7.2
some very old applications

--debug[=#] debug If this is a non-debug version, catch error

--debug-check

debug-check

--debug-check Check memory and open file
usage at exit.

--default- default- The authentication plugin to use
auth=plugin auth=plugin

--default- default- Set the default character set.
character- character-set

set=name

--defaults-extra-
file=file_name

Read option file in addition to the usual
option files

--defaults-
file=file_name

Read only the given option file

--defaults-
group-suffix=str

Option group suffix value

--force force Force execution even if mysgl_upgrade
has already been executed for the current
version of MySQL.

--help help Display a help message and exit

--host=name host Connect to host.

264

nysgl _upgr ade — Check and Upgrade MySQL Tables

Format Option File Description IntroducedRemoved
--no-defaults Do not read any option files
-- password Password to use when connecting to server.
password[=name] If password is not given it's solicited on the
tty.
--plugin- plugin-dir=path |The directory where plugins are located
dir=path
--port=# port Port number to use for connection or 0 for

default to, in order of preference, my.cnf,
$MYSQL_TCP_PORT, /etc/services, built-in
default (3306).

--print-defaults Print defaults

-- protocol The connection protocol (TCP=default,
protocol=name socket, pipe, memory)

--socket=name |socket Socket file to use for connection.

--tmpdir=path |tmpdir Directory for temporary files

--user=name user User for login if not current user.

--verbose verbose Show more information about the process
--version-check |version-check |Check for proper server version 5.7.2
--write-binlog write-binlog Enables binary logging of all commands

including mysglcheck.

e --help
Display a short help message and exit.
e --basedir=path
The path to the MySQL installation directory. This option was removed in MySQL 5.7.2.
e --datadir=path
The path to the data directory. This option was removed in MySQL 5.7.2.
e --debug=debug_options, -# debug options

Write a debugging log. A typical debug_opt i ons stringisd: t: O, fi | e_namne. The default is
d:t: QO /tmp/ nysql _upgrade. trace.

e --debug-check

Print some debugging information when the program exits.
e --debug-info,-T

Print debugging information and memory and CPU usage statistics when the program exits.
e --default-auth=plugin

The client-side authentication plugin to use. See Section 6.3.8, “Pluggable Authentication”.
e --defaults-extra-file=file_nane

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. f i | e_nane is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

265

nysgl _upgr ade — Check and Upgrade MySQL Tables

--defaults-file=file_nane

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_nane is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

--defaul ts-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of st r.
For example, nysql _upgr ade normally readsthe [client] and [nmysql upgrade] groups.

If the - - def aul t s- gr oup- suf fi x=_ot her option is given, nysqgl _upgr ade also reads the

[client other] and[nysql upgrade_ ot her] groups.

--force

Ignore the nysql _upgr ade_i nf o file and force execution of mysql check even if
mysql _upgr ade has already been executed for the current version of MySQL.

--no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, - - no- def aul t s can be used to prevent them from being read.

The exception is that the . nyl ogi n. cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when - - no- def aul t s
is used. (. nyl ogi n. cnf is created by the nysql confi g_edi t or utility. See Section 4.6.6,
“nysqgl _config_editor — MySQL Configuration Utility”.)

--plugi n-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the - -
def aul t - aut h option is used to specify an authentication plugin but mysql _upgr ade does not
find it. See Section 6.3.8, “Pluggable Authentication”.

--print-defaults

Print the program name and all options that it gets from option files.
--tnpdir=path,-t path

The path name of the directory to use for creating temporary files.
--upgrade-systemtables,-s

Upgrade only the system tables, do not upgrade data.
--user=user_nane,-u user_nane

The MySQL user name to use when connecting to the server. The default user name is r oot .
--verbose

Verbose mode. Print more information about what the program does.
--version-check, -k

Check the version of the server to which nysql _upgr ade is connecting to verify that it is the same
as the version for which mysql _upgr ade was built. If not, nysql _upgr ade exits. This option is
enabled by default; to disable the check, use - - ski p- ver si on- check. This option was added in
MySQL 5.7.2.

--write-binlog

266

MySQL Client Programs

Binary logging by nysql _upgr ade is disabled by default, and you must invoke the program
explicitly with - - wr i t e- bi nl og if you want its actions to be written to the binary log.

Running nysql _upgr ade is not recommended with a MySQL Server that is running with global
transaction identifiers enabled (Bug #13833710). This is because enabling GTIDs means that any
updates which mysqgl _upgr ade might need to perform on system tables using a nontransactional
storage engine such as Myl SAMto fail. See Section 16.1.3.4, “Restrictions on Replication with
GTIDs”, for more information.

4.5 MySQL Client Programs

This section describes client programs that connect to the MySQL server.

45.1 nysgl — The MySQL Command-Line Tool

nysqgl is a simple SQL shell with input line editing capabilities. It supports interactive and
noninteractive use. When used interactively, query results are presented in an ASCIlI-table format.
When used noninteractively (for example, as a filter), the result is presented in tab-separated format.
The output format can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the - - qui ck option.
This forces nmysql to retrieve results from the server a row at a time rather than retrieving the
entire result set and buffering it in memory before displaying it. This is done by returning the
result set using the nysql use_resul t () C API function in the client/server library rather than
nmysqgl _store_result().

Using nysql is very easy. Invoke it from the prompt of your command interpreter as follows:

shel | > nysqgl db_nane

Or:

shel | > nysqgl --user=user_nane --password=your_password db_nane
Then type an SQL statement, end it with “; ”, \ g, or \ Gand press Enter.

Typing Control+C interrupts the current statement if there is one, or cancels any partial input line
otherwise.

You can execute SQL statements in a script file (batch file) like this:

shel | > nysqgl db_name < script.sql > output.tab

On Unix, the nysql client logs statements executed interactively to a history file. See Section 4.5.1.3,
“mysql Logging”.

45.1.1 nysql Options

nmysql supports the following options, which can be specified on the command line or in the [mysql]
and [cl i ent] groups of an option file. For information about option files, see Section 4.2.3.3, “Using

Option Files”.

Table 4.6 nysgl Options

Format Option File Description Introduced
--auto-rehash auto-rehash Enable automatic rehashing

--auto-vertical- auto-vertical- Enable automatic vertical result set display

output output

--batch batch Don't use history file

267

nysgl — The MySQL Command-Line Tool

Format Option File Description Introduced
--binary-mode binary-mode Disable \r\n - to - \n translation and treatment of \O
as end-of-query
--bind- bind-address Use the specified network interface to connect to
address=ip_address the MySQL Server
--character-sets- |character-sets-dir |Set the default character set
dir=path
--column-names |column-names Write column names in results
--column-type-info | column-type-info |Display result set metadata
--comments comments Whether to retain or strip comments in statements
sent to the server
--compress compress Compress all information sent between the client
and the server
--connect-expired- Indicate to server that client can handle expired- |5.7.2

password

password sandbox mode.

connect_timeout=y

connect_timeout
alue

The number of seconds before connection timeout

database=dbname

database

The database to use

debug

debug[=debug_options]

Write a debugging log

--debug-check

debug-check

Print debugging information when the program
exits

--debug-info debug-info Print debugging information, memory and CPU
statistics when the program exits

--default- default- The authentication plugin to use

auth=plugin auth=plugin

--default- default-character- |Use charset_name as the default character set

character- set

set=charset_name

--defaults-extra-
file=file_name

Read option file in addition to the usual option files

--defaults-
file=file_name

Read only the given option file

--defaults-group-
suffix=str

Option group suffix value

--delimiter=str

delimiter

Set the statement delimiter

--enable-cleartext-
plugin

enable-cleartext-
plugin

Enable cleartext authentication plugin

-- execute Execute the statement and quit
execute=statemen

--force force Continue even if an SQL error occurs

--help Display help message and exit

-- histignore Patterns specifying which statements to ignore for
histignore=pattern | list logging

--host=host_name |host Connect to the MySQL server on the given host
--html html Produce HTML output

268

nmysgl — The

MySQL Command-Line Tool

Format

Option File

Description

Introduced

--ignore-spaces

ignore-spaces

Ignore spaces after function names

--init- init-command SQL statement to execute after connecting
command=str

--line-numbers line-numbers Write line numbers for errors

--local-infile[={0] |local-infile Enable or disable for LOCAL capability for LOAD

1}]

DATA INFILE

--login-
path=name

Read login path options from .mylogin.cnf

max_allowed_pack

max_allowed_pack
et=value

d@he maximum packet length to send to or receive
from the server

max_join_size=val

max_join_size
Lie

The automatic limit for rows in a join when using --
safe-updates

--named-
commands

named-
commands

Enable named mysqgl commands

net_buffer_length=

net_buffer_length
value

The buffer size for TCP/IP and socket
communication

--no-auto-rehash

Disable automatic rehashing

--no-beep

no-beep

Do not beep when errors occur

--no-defaults

Do not read any option files

--one-database

one-database

Ignore statements except those for the default
database named on the command line

pager[=command]

pager

Use the given command for paging query output

password[=passwg

password
rd]

The password to use when connecting to the
server

--pipe

On Windows, connect to server using a named
pipe

--plugin-dir=path

plugin-dir=path

The directory where plugins are located

--port=port_num |port The TCP/IP port number to use for the connection
--print-defaults Print defaults
-- prompt Set the prompt to the specified format

prompt=format_str

--protocol=type protocol The connection protocol to use

--quick quick Do not cache each query result

--raw raw Write column values without escape conversion
--reconnect reconnect If the connection to the server is lost, automatically

try to reconnect

--safe-updates

safe-updates

Allow only UPDATE and DELETE statements that
specify key values

--secure-auth

secure-auth

Do not send passwords to the server in old
(pre-4.1.1) format

select_limit=value

select_limit

The automatic limit for SELECT statements when
using --safe-updates

--server-
public-key-
path=file_name

server-public-key-
path=file_name

Path name to file containing RSA public key

269

nysgl — The MySQL Command-Line Tool

Format Option File Description Introduced

--show-warnings |show-warnings Show warnings after each s