Computer Networks 53 (2009) 1830-1845

Contents lists available at ScienceDirect

et

Computer Networks ik

journal homepage: www.elsevier.com/locate/comnet

Wikipedia workload analysis for decentralized hosting ™

Guido Urdaneta *!, Guillaume Pierre, Maarten van Steen

VU University, Dept. of Computer Science, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 17 July 2008

Received in revised form 23 December 2008
Accepted 22 February 2009

Available online 6 March 2009

We study an access trace containing a sample of Wikipedia’s traffic over a 107-day period
aiming to identify appropriate replication and distribution strategies in a fully decentral-
ized hosting environment. We perform a global analysis of the whole trace, and a detailed
analysis of the requests directed to the English edition of Wikipedia. In our study, we clas-
sify client requests and examine aspects such as the number of read and save operations,
significant load variations and requests for nonexisting pages. We also review proposed
decentralized wiki architectures and discuss how they would handle Wikipedia’s work-
load. We conclude that decentralized architectures must focus on applying techniques to

Responsible Editor: C. Westphal

Kwez:ﬁ;gz analysis efficiently handle read operations while maintaining consistency and dealing with typical
Wikipedia issues on decentralized systems such as churn, unbalanced loads and malicious participat-
Decentralized hosting ing nodes.

P2P © 2009 Elsevier B.V. All rights reserved.

1. Introduction

Despite numerous pessimistic predictions, Wikipedia is
a blatant success. As of December 2007, Wikipedia con-
tains approximately 9.25 million articles in 253 languages,
and is considered one of the ten most visited web sites on
the Internet [3]. Its uninterrupted popularity growth has
forced its operators to upgrade the hosting architecture
from a single server to a distributed architecture with more
than 350 servers at three locations on different continents
[9]. Although Wikipedia is by far the largest system of its
kind, many other wikis are being developed as a support
for various collaborative tasks [20].

The popularity of wiki-based applications, together
with their fundamentally collaborative nature, has driven
several research efforts to host them in a peer-to-peer

* A preliminary version of this paper was published in the local
conference of the Dutch ASCI Graduate School [33]. The version presented
here uses a more recent data set, includes a validation of the data set, and
several additional analyses.

* Corresponding author. Tel.: +31 20 5987754.
E-mail addresses: g.urdaneta@few.vu.nl (G. Urdaneta), gpierre@
cs.vu.nl (G. Pierre), steen@cs.vu.nl (M. van Steen).
T Supported by the Programme Alban, the European Union Programme of
High Level Scholarships for Latin America, scholarship No. E05D052447VE.

1389-1286/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2009.02.019

fashion [11,21,22,27,32,35]. Unlike a traditional central-
ized solution, in a decentralized system the web site is
hosted by a dispersed set of nodes where there is no cen-
tral control point that has full knowledge about the entire
system. The motivations for hosting a wiki in a decentral-
ized fashion vary from scalability and reduced operational
costs considerations to the desire to provide additional
functionality such as offline page edition.

We observe, however, that none of these efforts had the
opportunity to extensively study the proposed system
behavior under a realistic workload. Although wikis con-
ceptually provide very simple functionality, the read/write
nature of the traffic addressed to them and certain ad-
vanced functionalities make it remarkably difficult to host
wikis in a decentralized fashion. Achieving good perfor-
mance and scalability in this type of environment relies
upon the appropriate combination of techniques such as
distribution, replication and caching [23]. The optimal
application of these techniques depends greatly on certain
properties of each individual hosted item. For example, the
popularity distribution of the hosted documents gives an
indication of which are more important and thus better
candidates for massive replication or placement in power-
ful servers; the frequency of save operations for a docu-
ment or, more properly, its save/read ratio, may be used

mailto:g.urdaneta@few.vu.nl
mailto:gpierre@ cs.vu.nl
mailto:gpierre@ cs.vu.nl
mailto:steen@cs.vu.nl
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845 1831

in the calculation of an appropriate replication factor; the
presence of unexpected load variations related to real-
world news or phenomena like the Slashdot effect [2]
may indicate the need for special algorithms to handle
such situations; requests for nonexisting items may re-
quire special measures since the node handling such a re-
quest in a decentralized environment does not necessarily
know whether the item exists or not.

To illustrate the difficulty of decentralized wiki hosting,
and to provide guidelines for future research on the topic,
we obtained and studied an access trace containing a 10%
sample of the total Wikipedia.org traffic over a 107-day
period. Studying the workload as a whole and classifying
the different request types handled by the site allows us
to validate assumptions on the parts of the load that are
critical for overall performance. We also analyzed the
workload of the English-language Wikipedia on a per-doc-
ument basis.

We analyze all these generic properties that affect the
performance of a decentralized system, but we also take
into account the effect of features specific to wikis, such
as the fact that wiki pages can be read in different for-
mats; that older versions of pages must remain available;
and the use of mechanisms such as transclusion, which
require reading multiple pages from the storage system
to produce the final page in the format requested by the
user.

The contribution of this work is twofold. First, to our
knowledge, our study is the first to give insight on the
functioning of a collaborative web site, where almost all
of the content is created and updated by external users
and not the operators. Previous Web workload analyses fo-
cused on other types of Web sites such as e-commerce
sites [6], P2P file sharing systems [15], static Web sites
[8,7,4] and multimedia delivery systems [16,31,12]. Sec-
ond, we derive guidelines from our study that highlight a
few do’s and don’ts in the design of architectures for host-
ing some of the large wikis on the Internet.

The rest of the paper is organized as follows. Section 2
gives an overview of the Wikipedia operation. Section 3 de-
scribes the information available in the trace. Section 4
presents a general analysis of Wikipedia as a whole. Sec-
tion 5 presents a detailed analysis of the English Wikipedia.
Section 6 discusses how previously-proposed decentral-
ized wiki systems would behave under a Wikipedia-like
workload. Finally, Section 7 discusses other related work,
and Section 8 serves as our conclusion.

2. Wikipedia operation

Wikipedia is composed of a number of wikis [20]. Each
wiki is typically associated with a different language edi-
tion and has a separate DNS name. For example, en.wiki-
pedia.org refers to the English-language edition of
Wikipedia, and fr.wikipedia.org to the French-lan-
guage edition. In addition to Wikipedia, the Wikimedia
Foundation, which is responsible for the hosting of Wikipe-
dia, uses the same infrastructure to host other related wiki
projects, such as Wiktionary (a dictionary) and WikiNews
(a news site).

Read Update Control Search
Requests

Requests Requests Requests

Centralized
Wiki Engine

Read || Update
Logic || Logic

Page Management

Special User
Pages Management
User/IP
Blocking

Control

Search

Search
Index

S~

Database
(Control)

Database
(Pages)

| | Index |

Creation

Fig. 1. Wikipedia architecture. The width of arrows roughly denotes the
fraction of requests of each type.

As is shown in Fig. 1, the functionality of Wikipedia can
be divided into three parts: page management, control and
search. The page management part is the most important
since most of the information provided by Wikipedia such
as encyclopedic articles, user information, and discussions
is in the form of wiki pages. Each page has a unique iden-
tifier consisting of a character string and an integer repre-
senting a name space. Pages can be created, read, and
modified by any user. However, a page update does not re-
sult in the modification of an existing database record, but
in the creation of a new record next to the previous ver-
sion. It is therefore straightforward for a user to get a list
of all editions of a page, read old versions as well as revert-
ing a page to a previous state. Privileged users have the op-
tion to rename, delete, and protect pages from being
edited. Part of the load generated by page read operations
issued by anonymous (not logged-in) users is handled by a
group of external cache servers, with a reported hit-rate of
85% for wiki pages and 98% for media files [9].

Pages are written using a markup language called
“wikitext.” One important aspect of this language is that
it allows for the creation of parameterized pages called
templates and the inclusion of one page into another. For
example, there is a template with an information box for
soccer players that takes parameters such as name, nation-
ality and current club. This template is rarely requested by
end-users directly, but it is included in the articles of many
soccer players and is thus frequently requested in an indi-
rect way. A page can also be configured to redirect all its
read requests to another page, similar to a symbolic link.
Redirection is implemented by rendering the content of
the target page when the master page is requested. One
consequence of these features is that there is not a one-
to-one correspondence between the HTML pages that
users typically read and the wikitext pages stored in the
database.

The search part allows users to enter keywords and re-
ceive lists of links to related wiki pages as a result. This
part of the system is isolated from the rest of the applica-

1832 G. Urdaneta et al./ Computer Networks 53 (2009) 1830-1845

tion in that it does not access the centralized database, but
instead accesses a separate index file generated periodi-
cally from the text of the pages.

Finally, the control part groups the rest of the function-
alities. It encompasses features such as user management,
which allows users to authenticate to the system and have
their user names stored in public page history logs instead
of their IP addresses; user/IP address blocking, which al-
lows administrators to prevent page updates from certain
IP addresses or user accounts; and special pages, which
are not created by users, but generated by the execution
of server-side logic and provide information about the
database or specific functions such as uploading static files
to be referenced in wiki pages.

3. Wikipedia traces

To conduct our study of the Wikipedia workload, we
were provided by the Wikimedia Foundation with a sam-
ple of 10% of all requests directed to all the wiki projects
they operate. The sample used in our study was generated
by Wikipedia’s frontend proxy caches, and contains 20.6
billion HTTP requests corresponding to the period from
September 19th, 2007 to January 2nd, 2008. Each request
in our trace is characterized by a unique ID, a timestamp,
the requested URL, and a field that indicates if the request
resulted in a save operation. Each Wikipedia request in the
studied period has a 10% probability of being included in
our trace. As a consequence, no bias is introduced at the re-
quest level. However, aggregate information related to spe-
cific pages may be inaccurate due to the sampling and user
actions such as page removal and creation. We quantify the
impact of this inaccuracy in Section 5, where we analyze
the English Wikipedia at the page level.

For privacy reasons, the trace given to us by the Wiki-
media Foundation does not contain any direct or indirect
means to identify users, such as client IP address or session
cookie. Our study therefore focusses on server-side infor-
mation. The only client-side data available is update infor-
mation present in public snapshots of the Wikipedia
database. For some of our analyses, we used a snapshot
of the English Wikipedia database, dated January 3rd,
2008 [14].

4. Global analysis

From the URL included in the trace it is possible to
determine the targeted wiki project and the type of opera-
tion issued by the client. Table 1 shows the different types
of requests addressed to Wikipedia, and their relative
frequency.

We can see that most of the traffic is generated by the
action of end-users issuing read operations to wiki pages.
Since it is common for pages to reference multiple up-
loaded images and static files, these two types of requests
account for more than 64% of all requests. We can also see
that page editions (at 0.03%) are very infrequent compared
to page reads, and image uploads are even less frequent
(0.002%). It is thus clear that a high degree of caching or
replication can be used to improve performance. It should

also be noted that a nontrivial number of page requests are
for formats different from the default HTML, which sug-
gests that in some cases replicating the wikitext instead
of, or in addition to the final HTML, would produce further
performance improvements.

Not all wikis in Wikipedia are equally popular or
equally used. Table 2 shows the distribution of request
load by the wiki projects as well as the ratio of HTML read
requests to save requests. Although the trace has refer-
ences to more than 800 wikis with more than 2000 re-
quests in our sample (many of them nonexisting), almost
half of the total traffic is directed to the English Wikipedia,
and about 90% of the traffic is concentrated in the 10 most
popular wikis. This shows that a strategy of using a sepa-
rate database for each wiki cannot efficiently solve the sca-
lability issues since there is a large imbalance in the load.
This also justifies a more comprehensive study of the Eng-
lish Wikipedia in order to gain a deeper understanding of
the issues that affect global Wikipedia performance. We
can also see that the read/save ratio varies significantly
for the different language editions of Wikipedia. This
shows that factors such as culture, size, and geographical
distribution of the user base influence the workload and
thus have an effect on how strategies should be selected
to improve performance.

Our next analysis examines the usage of the most pop-
ular wikis. Fig. 2 shows the request rate for the four most
popular Wikipedias during a two-week period. The work-
load follows typical time-of-day and day-of-week patterns.
However, the load variations differ for each wiki. For exam-
ple, within a single day the request rate is expected to
change by a factor of about 2.3 in the English Wikipedia
and by a factor that can be as high as 19 in the German
Wikipedia. On the other hand, we did not observe any flash
crowds that may affect the normal daily behavior.

5. English Wikipedia

We now focus on the English edition of Wikipedia to
conduct a more in-depth workload analysis. The data we
consider in this section includes all the requests in the
trace directed to a wiki page in the English Wikipedia. In
this study requests for uploaded images, special pages, sta-
tic files, or other types of objects are not included. Requests
to pages that specify an invalid page name are included
and analyzed in Section 5.5.

There are two main reasons why we focus on wiki
pages. First, they can be updated by ordinary users at any
time, so they introduce a nontrivial consistency problem
in a decentralized replicated scenario. Second, they are di-
rectly or indirectly responsible for the vast majority of the
Wikipedia traffic. As we have seen in Table 1, static files
and uploaded images are requested more frequently than
pages, but this is explained by the fact that wiki pages of-
ten reference several images and static files. Static files are
rarely updated, if ever, so they do not represent a special
difficulty in a decentralized environment. Uploaded media
files can be updated by users, but in practice this occurs
very rarely, so they can, in general, be regarded as static
files or as read-only wiki pages.

G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845 1833
Table 1
Wikipedia request types, and their frequencies expressed in fractions of the total number of requests (numbers do not add up to 100% due to rounding error).
Description Frequency
(%)
Requests for static files. These are usually files used in the rendering of wiki pages, such as CSS and Javascript files as well as generic images 24.04
such as bullets
Requests for user-uploaded media files, typically images 21.88
Requests for thumbnails of user-uploaded images 18.70
Requests for the current version of a wiki page using the default HTML rendering 13.15
Requests for the current version of a wiki page using a different format, such as printer-friendly versions or raw wikitext 8.50
Requests related to cache maintenance 5.18
Requests in which a page name is specified, but the information retrieved is independent from the page’s wikitext. For example, Wikipedia ~ 4.49
allows obtaining the Javascript or CSS used in the rendering of a specified page without obtaining the page itself
Requests that produce search results in a standardized format known as OpenSearch 1.31
Requests for special pages other than full-text search or upload. Some of these special pages result in the retrieval of wiki pages. However, 0.88
the names of the wiki pages involved cannot be obtained from the trace
Keyword search requests handled by the search component of the wiki engine 0.81
Requests directed to a web service API. Most of these requests result in the retrieval of wiki pages, but in many cases it is not possible to 0.14
determine the names of the pages involved
Requests for the edition history of a page 0.06
Requests for a specific version of a page. It may be a diff operation, in which case two versions are compared 0.06
Requests that result in a page update or creation 0.03
Requests for a static HTML version of Wikipedia that is available as an alternative to the normal one. The static version is updated 0.01

periodically but is never guaranteed to have the most current version of a page
Requests for possible uploads of media files. They can refer to new files, updates of existing files or retrieval of a form that allows the user to ~ 0.002
send an actual upload request. It is impossible to determine the name of the uploaded file from our traces nor if it is an actual upload

Other types of request

0.75

Table 2
Distribution of load and read/save ratios across different wiki projects.

Wiki Frequency (%) HTML read/save ratio
English Wikipedia 45.05 480.0
Wikipedia commons 14.33 N/A
German Wikipedia 7.07 504.7
Japanese Wikipedia 6.19 1081.2
Spanish Wikipedia 4.87 458.8
French Wikipedia 3.42 228.1
Mathematical formulas 2.45 N/A
Italian Wikipedia 2.03 216.2
Portuguese Wikipedia 1.84 346.5
Polish Wikipedia 1.70 363.5
Dutch Wikipedia 1.1 258.7
Others (<1% each) 9.95 Unknown

In this section, unless explicitly stated, when we refer to
the total number of pages, we mean all the requested page
names, including invalid ones. When we refer to existing
pages, we refer to pages that were registered as existing
in the database at some point during the studied period.
This includes pages that were deleted or renamed. When
we denote a number as coming from the database (e.g.
number of updates in the database), we are using data
from the database snapshot and not from the trace.

5.1. Trace validation

Our first analysis studies the validity of our trace. We
claim that the trace is unbiased at the request level, since
all requests have the same probability to appear in the
trace. However, when requests are aggregated to produce
information about specific pages, the sampling and certain
events during the study period may produce inaccuracies.
For example, low-traffic pages may not be represented at
all in the trace, while pages deleted during the study period

may appear as having a certain popularity that no longer
applies.

Fortunately, the trace is not our only source of informa-
tion. We also use a publicly available snapshot of the Eng-
lish Wikipedia database with accurate information about
events such as page creation, deletion and renaming, as
well as the full history of updates for all the valid pages
at the time the snapshot was created.? Since the snapshot
was taken just one day after the end of the study period,
the information we derive from it is very accurate with re-
spect to the trace.

Table 3 summarizes the classes of pages that may de-
serve special attention, and their importance in terms of
the fraction of pages they represent with respect to the to-
tal number of existing pages, and the fraction of requests
they represent with respect to the total number of page re-
quests in the trace. It should be noted that we identify
pages by their name, so our page-level analyses are actu-
ally at the page-name level.

We can see that the impact of these events on our page-
level analyses is limited. Note that, despite their specifici-
ties, these pages do provide accurate information for many
of our analyses. Our analyses measure some variables that
characterize the set of all pages, and allow us to classify
them. The most important variables we study at the page
level are the distribution of popularity in terms of number
of requests and number of save operations, the format in
which pages are read, and the ratio between save and read
operations.

Deleted and newly created pages present no problem
regarding any of these variables apart from the fact that
individual page popularity rankings cannot be used as a
predictor for future popularity.

2 The snapshot does not include the update history for deleted pages.

1834 G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845
1400 1400
1200 1200
ko] °
8 1000 8 1000
9] 9]
(]]
2 800 2 800
[0} [0}
o 600 5 600
E 5
g 400 g 400
o 4
0 0
Mon Wed Fri Sun Tue Thu Sat Mon Wed Mon Wed Fri Sun Tue Thu Sat Mon Wed
Time Time
(a) English (b) German
1400 1400
1200 1200
k] °
5 1000 S 1000
16} o]
[0} [0
@2 800 2 800
10} [0}
L s
w600 W 600
] V)
& &
b 400 @ 400
5 4
0 0
Mon Wed Fri Sun Tue Thu Sat Mon Wed Mon Wed Fri Sun Tue Thu Sat Mon Wed
Time Time
(c) Japanese (d) Spanish
Fig. 2. Usage of the four most popular Wikipedias in the first two weeks of the studied period.
Table 3
Pages with events during the study period that may influence the accuracy of results.
Category Fraction of Fraction of
pages (%) requests (%)
Pages that were created during the study period. The popularity rank derived from the number of requests during 10.94 0.87
the study period cannot be used as an estimate of the future popularity rank for these pages
Pages that were deleted during the study period. Popularity rank in the studied period cannot be used to predict 5.03 2.98
future popularity, which is expected to be very low or null
Pages that were renamed during the study period. In this case, we consider the page as two different pages 0.62 0.52
Pages that were renamed during the study period, with a new redirect page created with the old name. In this case, 0.11 (old 0.21 (old name)
we consider the old page name a single page, and the new name as a new page. This is inaccurate, because the name)
history of save operations stays with the new name, and the nature of the load for the old name may change 0.15 (new 0.52 (new name)
significantly. For example, if a frequently updated page is renamed with a redirect, the new redirect page will name)
probably have fewer updates. The result is that the save/read ratio for the old name will be calculated using two
different workloads
Total 16.85 5.1

Renamed pages represent a negligible portion of the
dataset. However, the little information they provide can
still be useful. First, they contribute to correctly determine
a popularity distribution of page names, which is relevant
in a decentralized setting, where a distributed lookup ser-
vice is needed. Second, what could be perceived as inaccu-
racies in the determination of save/read ratios can be
considered as part of the load variations that pages are
subject to. For example, renaming a page with a redirect
is not very different from simply modifying it to redirect
requests to another page.

Another potential source of inaccuracies is the sam-
pling. Pages with very low traffic may be misrepresented,
mainly because they may not be reported at all in the trace,

but also because they may be overrepresented due to
chance. We can get an indication of how representative
the sample is by comparing the save operations reported
in the trace, with the save operations stored in the data-
base snapshot.

Fig. 3 shows the correlation between the number of
save operations per page reported in the trace and the save
operations registered in the database snapshot during the
studied period. Each point in the graph represents a page,
the thick line represents the median number of saves in
the database for a given number of save requests in the
trace, and the bars represent the 10th and 90th percentiles.
We clearly see that there are only a few outliers, which can
be attributed to, for example, manual intervention and

G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845 1835

1000

100

10 |

p i g "Median _
10/90 Percentiles —+—
Expected e

Number of save requests in the trace

il

1 10

100 1000 10000

Number of save requests in the database

Fig. 3. Correlation between the number of save operations per page reported in the trace and in the database snapshot.

exceptions generated by the backend. The correlation coef-
ficient is 0.81. As expected, the median is a good approxi-
mation to a line with slope 10. We can see that the
variability is reduced as the number of saves increases.
Since read requests are considerably more frequent than
save requests, we can expect the sampling to be even more
accurate in that case. We conclude that the sample is rep-
resentative of the real traffic for virtually all pages, and that
only pages whose influence on the load is negligible may
have a significant probability of being misrepresented.

5.2. Page popularity

Fig. 4 shows the popularity distribution of all referenced
pages in the trace. Pages are ordered by decreasing number
of requests in the studied period. Unlike other types of
websites, where the page popularity distribution closely
follows a Zipf distribution [6,7,18], the popularity distribu-
tion of Wikipedia pages can be described as having three
zones. First, we see that the four most popular pages show
a popularity orders of magnitude higher than any other
page. This is an artifact of the structure of Wikipedia pages:
three of these pages contain CSS or Javascript code in-
cluded in many other HTML-rendered Wikipedia pages
and the other is the main page, which is the most popular
HTML-rendered page for obvious reasons. A second part is
constituted by approximately the next 20,000 pages in
popularity, which roughly follow a Zipf distribution (with
an estimated 8 = 0.53), indicated in the graph. A third part
is constituted by the remaining 28.7 million pages, which
deviate from the model by having lower frequencies than
predicted by the Zipf distribution. The more rapid decline
in pages with 50 or fewer requests might be due to the
sampling, as we saw with pages with few save requests
in Fig. 3.

In Wikipedia, most requests performed by ordinary
users are read operations that normally result in a default

HTML rendering of the requested page. Wikipedia imple-
ments caches for these HTML renderings to reduce the cen-
tralized database load. However, a page can be rendered in
many different formats. Fig. 5 shows the correlation be-
tween the number of reads per page in any format, and
reads that result in the default HTML rendering. Each point
represents a page, and pages where all reads are in the de-
fault HTML format appear on the diagonal. For readability
reasons the graph shows a random sample of 10% of all
pages. It can be seen that for a significant number of pages,
the number of read operations in a non-default format is
considerable. More specifically, 8.1% of the existing pages
with at least one read operation in the trace have more
than 25% of their read operations in a non-default format.
For these pages it would be useful to replicate or cache the
wikitext since it can be used to generate all possible
formats.

5.3. Save operations

Now we turn our attention to save operations. Fig. 6
shows pages ranked by the number of save operations in
the trace. We can see that the popularity of save operations
approximately follows a Zipf distribution where we have
computed f to be 0.64.

We note that 44% of the existing pages have at least one
real (not sampled) save operation during the studied peri-
od, and they represent 91% of all page requests in the trace.
This forces us to make a distinction between pure read-
only pages, which are easy to host, and updated pages,
which are more difficult to host in a scalable way and rep-
resent the vast majority of page requests. Moreover, pages
with only a handful of updates in the study period can be
considered unmaintained, and treated similarly to read-
only pages.

Fig. 7 shows the correlation between the number of
read and save operations. Each point represents a page.

1836

1e+09 T T T

G. Urdaneta et al./ Computer Networks 53 (2009) 1830-1845

1e+08

le+0?7

1le+06

100000

10000

1000

Number of requests

100

10

T T T datal
model —

1 . . .
1 10 100

1000 1

0000 100000 1e+06 1le+07 1e+08

Page rank

Fig. 4. Page popularity distribution.

let+07 T T

le+06

100000

10000

1000

100

Number of HTML read requests

100

1000

10000 100000 1le+06 1le+0”7

Number of read requests

Fig. 5. Correlation between the number of all reads per page and page reads in the default HTML format.

All pages with at least one read and one save operation in
the trace are represented in the graph. The line represents
the median number of save operations for pages with a gi-
ven read popularity. We observe that read and save opera-
tions per page are correlated, so popular pages are more
likely to be frequently updated than unpopular pages.
Moreover, we can see that for pages with at least 1000 read
requests in the trace, the median read/save ratio is essen-
tially constant and approximately equal to 1000, with a

slight tendency to grow for the most popular pages. The
variability is significant and there are many exceptions,
but the order of magnitude of the variability is also
constant.

These results suggest that less popular pages would
benefit more from distribution than replication, and that
replication is, in principle, a good strategy for the more
popular pages. Moreover, the essentially constant median
read/save ratio could be used to establish initial default

G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845

1837

10000 T T T T T T T
data
model ——
_}2 1000 4
0
o]
=
o
o]
<
g
T 100 E
0w
[
<]
t
7]
o]
£
2 10 |
1 . . |) " L
1 10 100 1000 10000 100000 1e+06 1e+0/ 1e+08
Page rank {Saves)
Fig. 6. Distribution of page save operations in the trace.
1000 T v e o -~
- Median s—
.. 10/90 Percentiles —+—
0]
]
9
=) 100 | N
o
@
b
-
1]
0]
[
<
§ 10} 1
2 (4]
£
S
=

100

1000 10000 100000 1le+06

Number of read requests

Fig. 7. Correlation between the numbers of page read and save operations.

policies for newly created pages. However, as we will see
in Section 5.6, these considerations do not necessarily ap-
ply to replication of HTML-rendered pages.

5.4. Load variations

As we saw previously, Wikipedia as a whole does not
seem to exhibit significant load variations apart from nor-
mal time-of-day and day-of-week patterns. However, indi-
vidual pages may present spikes of popularity. Such events
can potentially have an important impact on a decentral-
ized hosting infrastructure, since each server may host

only a handful of documents and thus be affected by such
local variation.

We analyzed occurrences where the number of re-
quests that a page receives in a whole day represents at
least a 10-fold increase or decrease with respect to the
previous day. In a decentralized system, such pages would
most probably need to adjust their replication factor or
migrate to more appropriate servers. We ignored cases
where the daily number of requests is less than 100 in
our trace for both the previous and actual day of the event.
Table 4 shows the number of significant load variations
that we observed.

1838

Table 4
Number of increases and decreases in daily number of requests per page by
a factor of at least 10.

Number of events

14,404

Request type Number of pages

13,649

Increases

Decreases 8177 7847

As we can see, significant variations of the popularity of
pages are relatively common, as we noticed on average
133.6 increases per day (14,404 increases in 108 days).
Furthermore, it was uncommon for a page to experience
multiple events of this type in the studied period.

Fig. 8 relates page-level load variations to popularity
and shows the fraction of pages with load variations given
the popularity. We can see that the fraction of pages that
experience load variations is essentially independent of
the initial page popularity and that they cover a wide range
of popularities. Therefore, current popularity cannot be
used to predict future load variations.

5.5. Nonexisting pages

About 3.5% of page requests are addressed to pages that
do not exist in the database. Such requests may result from
simple typing mistakes by end-users. This could, however,
be problematic when using a decentralized hosting infra-
structure, as each request may potentially cause a distrib-
uted lookup operation.

Fig. 9 shows the “popularity” of requested nonexisting
pages. This popularity again approximately follows a Zipf
distribution (with an estimated g = 0.68).

G. Urdaneta et al./ Computer Networks 53 (2009) 1830-1845

The effects of requests to nonexisting pages can there-
fore be largely reduced by using negative caching tech-
niques where frontend servers cache the information that
a page does not exist.

We however also note that certain nonexisting pages
are requested too frequently to be attributed to typing mis-
takes alone. One of the most requested nonexisting page
names is the following (truncated to 255 characters during
the analysis):

Skins-1.5/common/skins-1.5/common/skins-
1.5/common/skins-1.5/common/skins-1.5/com-
mon/skins-1.5/common/skins-1.5/common/
skins-1.5/common/skins-1.5/common/skins-
1.5/common/skins-1.5/common/skins-1.5/com-
mon/skins-1.5/common/skins-1.5/common/
skins-1.5/common/

This type of page name is clearly not produced by a normal
user. It is possible that requests of this type are generated
by faulty processes or malicious users trying to disrupt the
normal operation of Wikipedia.

5.6. Indirect save operations

Our next analysis concerns the effect of pages that are
included in other pages. As we explained above, Wikipedia
allows one page to include the content of another page
with the inclusion and redirection features. One important
implication of these features is that save operations to in-
cluded or redirected pages affect the consistency of repli-
cated or cached HTML renderings of their master pages.
This means that an otherwise read-only page can become
a frequently updated page if it includes a frequently up-

M**\N\N L

"
1 ;

T

@

[+]

)

c

(1]

Q

-

&

-

)

8 o}

w

o

]

-

w

(1]

s

% 0.01 ¢t f

=

s J*

3 F

n

[]

o

@

[«3

s 0.001 '

- 10 100

=]

-

1000

Number of read requests

10000 100000 le+06

Fig. 8. Fraction of pages with load variations ranked by popularity.

G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845

1839

let06 T T T

100000

10000

1000

100

Number of requessts

T T T T

data
model ——

1 . . .
1 10 100

1000

10000 100000 1e+06 1et+0/7 1e+08

Page rank

Fig. 9. “Popularity” distribution of nonexisting pages.

dated template page. For example, in an extreme case, the
user discussion page “User_talk:Hu12” has a read/save ra-
tio of 8.5 if we consider only direct save operations. How-
ever, if we take into account indirect save operations, this
ratio drops to just 0.14, meaning that it is updated more of-
ten than read.

We try to determine the impact of indirect update oper-
ations on the ability of pages to be cached or replicated. To
do this, we examine the inclusion and redirection maps
available in the database snapshot and determine the indi-
rect number of saves on the master pages. This method is
not fully accurate, since the inclusion and redirection maps
can change as the result of save operations. However,

inclusion and redirection maps are not expected to change
significantly during a 3.5-month period.

To quantify the impact of indirect saves, we compute
the cache hitrate of an infinite size cache for HTML ver-
sions of pages. The cache hitrate is defined as the quotient
between the number of requests that successfully read the
cache versus the number of requests that either use the
cache successfully or cause it to be reloaded. In our case,
we use the expression 51, where H is the number of read
operations in HTML format, D is the number of direct up-
dates and I the number of indirect updates.

Fig. 10 shows pages ranked by their HTML cache hitrate
both taking and without taking into account the effect of

HTML Cache Hit Rate

I'ncludi'hg Indirect Saves
Ignoring Indirect Saves

o L . s

o] 1e+068 2Ze+06 3Fe+08 4e+068 Het+06 Be+06 Ze+06

Page rank

8e+06 Ye+06

Fig. 10. Distribution of HTML cache hit-rate.

1840 G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845

indirect saves. We see that if indirect saves are ignored,
approximately 41% of pages have an HTML cache hitrate
of 90% or more. Indirect updates make this fraction drop
to approximately 37%.

Our conclusion is that indirect save operations can have
an impact on caching and replication of master pages.
Thus, it is important to minimize this impact by imple-
menting policies such as protecting popular templates
from being updated by unprivileged users, and by adopting
separate policies for replicating wikitext and rendered ver-
sions of pages.

5.7. 0Old page versions

From the point of view of data storage, a page consists
of the current version of its content, the content of all pre-
vious versions, and some metadata such as update restric-
tions. From the database snapshot, we estimate that old
versions account for approximately 95% of the total storage
space. However, they are rarely accessed, as shown by Ta-
ble 1, and are read-only by definition.

This definition of a page is not convenient for load bal-
ancing, since the cost of moving a page would increase
every time the page receives an update, to the point that
after a certain number of updates, load balancing would
stop being a viable solution.

A possible solution to this problem would be to assume
that old versions are separate documents from the current
version of the page, and that every time a page is updated,
a new unpopular read-only document is introduced into
the system. Thus, old versions of pages are easy to host
on computers with low bandwidth and potentially spare
disk space, such as ADSL-connected personal computers.

5.8. Discussion

Our study of the Wikipedia workload provides impor-
tant insights relevant for hosting Wikipedia in a decentral-
ized and collaborative environment. We have centered our
detailed analysis on a number of essential page character-
istics: frequency of requests, the format in which pages are

Table 5

read, the frequency of direct save operations, the frequency
of indirect save operations, and relevant ratios between
these variables. These variables together should determine
the policies for distributing and replicating pages, which
includes both the original wikitext source format and ren-
dered HTML formats.

There are several factors that make it difficult to auto-
matically determine policies. First, one must decide
whether to replicate pages, or to try to place them on the
most appropriate nodes. Second, one may need to select
separate policies for the wikitext and rendered versions
of a page, since direct save operations affect the consis-
tency of both versions, while indirect updates affect only
rendered versions. Third, all variables should be considered
in combination to decide the policies, which may result in
difficult tradeoffs. For example, an unmaintained page that
is very popular in HTML mode and receives many indirect
updates is in the situation where it should benefit from
HTML replication, but this replication may introduce scala-
bility problems due to the high indirect update rate. At the
same time, the wikitext source could be easily replicated,
and this could be used to generate the HTML, but at a sig-
nificant cost in terms of performance with respect to a pre-
viously rendered replica.

In addition, a decentralized system must be ready to
take emergency action under unexpected load variations
on specific pages that may result from real-world events
external to the system, and should efficiently handle inva-
lid requests, including some that might try to disrupt the
normal operation of the system.

In Table 5 we attempt to classify Wikipedia pages
according to their workload, and give some guidelines for
setting policies for each type of page. We classify pages
according to three metrics: HTML cache hitrate, direct
save/read ratio, and fraction of reads in HTML format. To-
gether with page popularity, we believe that these metrics
are the most relevant to select appropriate hosting policies
at the page level. For simplicity, we classify pages as having
a “high” or “low” values for each metric. Although the cut-
off values are chosen rather arbitrarily, we believe our clas-
sification is sufficient for providing general guidelines.

Wikipedia page characterization according to the workload. The cutoff values we use are: 85% or more is considered a high cache hit ratio, 15% or more is a high
save/read ratio, and 75% or more reads in HTML is a high HTML fraction. Popularity is used to determine the strength of the policies.

HTML cache S/R HTML %Pages % Commentary

hit-rate ratio fraction Requests

Low Low Low 6.5 0.2 Replication of wikitext should be the preferred policy for these pages. Popularity should
determine the replication degree

Low Low High 47.3 0.8 This type of page benefits mainly from load balancing of HTML replicas. Popularity should
determine how aggressive the system should try to find appropriate nodes for these pages

Low High Low 1.5 0.0 These pages benefit mainly from load balancing. Replication of wikitext should be only for fault
tolerance, and HTML replicas do should not be used. Popularity should indicate how aggressively
the system should try to find appropriate nodes for these pages

Low High High 1.7 0.0 These pages benefit mainly from load balancing. Replication should be only for fault tolerance.
HTML caches could be colocated with the wikitext replicas to make consistency easier. Popularity
should indicate how aggressively the system should try to find appropriate nodes

High Low Low 0.3 20.2 These pages benefit from a high degree of replication of wikitext or alternate formats. There may
be little need for HTML replicas, but they may exist and be colocated with wikitext replicas to
make consistency easier. Popularity should determine the replication degree

High Low High 42.8 75.2 These pages benefit from a high degree of HTML caching. Popularity should determine the

replication degree for rendered replicas. Wikitext replication may be used, but mostly for fault

tolerance

G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845 1841

We can distinguish two important sets of pages. The
most important is by far the set of cacheable pages, which
represent 43.1% of all pages and 95.7% of requests. These
pages are relatively easy to host since they can be easily
replicated in the appropriate format. Popularity can be
used to determine the appropriate replication degree. The
second important group of pages consists of pages for
which caching makes no sense due to a low number of read
operations with respect to the number of updates. In these
cases, the system should rely on a load-balancing algo-
rithm to place each page in the most appropriate node,
with replication only for fault tolerance. These pages repre-
sent almost half of all pages, but only a small fraction of the
requests. Therefore, they are good candidates for hosting in
personal computers with ADSL connections.

Determining how much to rely on replication and how
much on load balancing is complicated by the fact that
the studied variables can take many more than just two
values and may require nontrivial monitoring strategies
that take into account the cyclic nature of the traffic. A
decentralized solution should solve these problems and
automatically determine the appropriate parameters for
each page. Classifying pages and determining per-page
strategies has already been shown to be a solvable, yet
nontrivial problem [26].

A decentralized solution must also satisfy a number of
functional requirements such as efficiently detecting if a
page exists or not, and implementing relationships among
pages such as categories, which allow encyclopedic articles
to specify topics they cover, and edition protection, which
allows an administrator to protect a page and its included
pages from being updated. In addition, it should deal with
extra-functional issues such as security and privacy.

The problem of detecting if a page exists or not, given its
name, is crucial for two reasons. First, Wikipedia function-
ality requires links to nonexisting pages to be rendered in a
different color than links to valid pages. Second, this is, with
little modification, the same problem as locating the node
where a page resides in order to forward requests to it.

The problem of implementing relationships among
pages in a decentralized way is complicated by the fact
that the relationships must be kept in a consistent state
in the presence of updates and partial failures. Solving this
problem in a decentralized environment is similar to
implementing consistency for replicas, which is a problem
that must be solved both to improve performance and to
achieve fault tolerance.

However, the most difficult challenge faced by a decen-
tralized and collaborative system for hosting Wikipedia is
solving all the aforementioned problems in an environ-
ment where mutually untrusted parties participate, while
at the same time guaranteeing fair resource usage for par-
ticipants, and privacy for regular Wikipedia users who
have nothing to do with the hosting of the system.

6. Implications for decentralized wikis
Several decentralized wiki engines have been proposed

recently with a varied set of goals that include scalability,
cost reduction and offline operation, among others. How-

ever, none of them has been tested with a workload from
a real-world site. Although not all of these systems were
designed to sustain such a demanding workload as Wiki-
pedia, we discuss these systems here, together with the ex-
pected performance they may have under a Wikipedia-like
workload.

6.1. DistriWiki

One of the earliest decentralized wiki engines is Distri-
Wiki [21]. DistriWiki is based on the JXTA platform, which
provides generic peer-to-peer functionality such as search-
ing, caching and discovery. In this system each node main-
tains a cache of document meta-data. Each time a
document is created or updated, an advertisement is
broadcast through the whole system. These cached meta-
data facilitate the search for a node that contains the re-
quested page.

As discussed previously, caching is an essential feature
of a hosting system for Wikipedia, whose workload con-
sists mostly of cacheable requests. However, it is unclear
if DistriWiki’s caching algorithms allow for caching of the
pages themselves. This means that the node(s) responsible
for some of the most requested pages of Wikipedia would
have to serve each request, in addition to the background
workload such as processing advertisements for each page
update in the system. Concurrent updates are handled by
timestamping all updates and letting users handle conflicts
manually. Similarly, no algorithm is provided for efficiently
handling churn, page relationships such as transclusion, or
requests to nonexisting pages.

Finally, the main characteristic that precludes this sys-
tem from being suitable for hosting Wikipedia or any other
large-scale web site, is that it requires all users, even those
who only read pages, to participate in the P2P network and
use a specialized user interface application instead of a
standard web browser.

6.2. XWiki Concerto

The XWiki Concerto system [11] is a P2P version of
XWiki, an open-source wiki engine. In this system, the
whole set of wiki pages is fully replicated to all participat-
ing nodes. Updates are propagated throughout the system
using a gossiping protocol [13], and merged using the
Woot algorithm [25]. Woot has many characteristics suit-
able for a P2P environment: it is fully decentralized, scal-
able and can guarantee that all replicas eventually
converge to the same state.

XWiki Concerto aims at supporting three use cases: (1)
massive collaboration where pages can be edited by large
numbers of people, similarly to Wikipedia; (2) discon-
nected work where any participating node should continue
offering the Wiki, including update functionality; and (3)
opportunistic collaboration where a set of disconnected
nodes should be able to create on-the-fly ad-hoc networks
by connecting themselves.

Although the design choice of full state replication
across all nodes is essential to support disconnected oper-
ation, it has important consequences in supporting the
Wikipedia-like use-case: replicating large data sets in a dy-

1842 G. Urdaneta et al./ Computer Networks 53 (2009) 1830-1845

namic environment where nodes can join and leave has
been shown to have scalability problems [10]. Creating a
replica of Wikipedia’s data set (including the full history
of previous operations addressed to each page) to a newly
joined peer would require dozens of gigabytes of data
transfer before the replica becomes usable. Similarly,
decentralized update propagation is an interesting idea,
but it implies that expensive merge operations will be is-
sued in bursts to any particular node. Wikipedia receives
several page updates per second which, if processed in
bursts, may have a significant performance impact on the
peers.

On the other hand, full page replication makes it easy to
deal with challenges such as unequal page popularity, page
relationships and nonexisting pages, which can be difficult
to solve in architectures based on data distribution.

Although XWiki Concerto may struggle to handle a
demanding workload such as Wikipedia, it looks more sui-
ted to corporate environments that may require alternative
operation modes such as offline operation, with moder-
ately sized data sets that can be fully replicated in a rea-
sonable time.

A number of extensions to XWiki Concerto have been
proposed, such as Wooki [35] and Swooki [30]. These sys-
tems propose improved algorithms to merge conflicting
concurrent updates. As such, these systems provide inter-
esting features such as concurrency awareness, which al-
lows users to know whether a page is the result of an
automatic merge by the system or not, and highlights the
parts of a page that are subject to concurrency mismatches
[5]. However, these systems use a similar architecture as
XWiki Concerto, so they would exhibit similar strengths
and weaknesses as XWiki Concerto for hosting a Wikipe-
dia-like workload.

6.3. Piki

Piki [22] is a P2P wiki engine based on the FreePastry
DHT [1]. In Piki, each wiki page falls under the responsibil-
ity of the DHT node whose ID in the DHT ID space is
numerically closest to a hash of the page’s name. To pro-
vide fault tolerance, each page is replicated to other
numerically close nodes in the ID space. Piki handles con-
current updates using a master-slave approach where all
updates to a page are handled by the primary owner of that
page. This allows implementing concurrency semantics
equivalent to those of Wikipedia. Piki improves these
semantics by sending the issuer of a conflicting update
not just the content of the newer version, as Wikipedia
does, but the results of a merge of its update with the new-
er version. Piki also supports full-text search by storing in-
verted indexes in the DHT, and a form of semantic linking
between pages.

Storing wiki pages in a DHT with replication for avail-
ability but no form of caching may create a number of dif-
ficulties under a Wikipedia-like workload. First, if the
number of nodes is moderately large, the latency intro-
duced by the logarithmic DHT lookups may be too high
for an interactive application such as a web site. This may
be particularly true for pages that make heavy use of trans-
clusion, where a distinct distributed lookup is necessary for

each transcluded element of a given page. Second, under
churn, multiple nodes in the DHT may temporarily but
simultaneously consider themselves the master for any
particular page, possibly leading to inconsistent states.
Third, the unbalanced page popularity distribution will
most likely result in the nodes responsible for the most
popular pages being saturated with requests while the rest
of the system observes a low load. Note that load balancing
within a DHT is considered a difficult problem for which a
number of specific solutions exist [19]. Finally, similarly
to DistriWiki, Piki requires a special user interface applica-
tion to read pages from the system, which discards its
application for a popular web site like Wikipedia.

6.4. Plantikow et al.

Plantikow et al. propose using a transactional replicated
DHT with range query capabilities to implement a P2P wiki
[27]. In this system, each page is stored in a cell composed
by a number of DHT nodes according to the hash value of
the page. The system uses techniques such as hybrid opti-
mistic concurrency control, two-phase commit and read-
only multiversioning to guarantee ACID properties even
under churn and concurrent conflicting updates. This al-
lows the system to support concurrency semantics essen-
tially equivalent to Wikipedia’s. In addition, this system
exploits the range query capabilities of their DHT [28] to
support relationships among pages.

The system, as defined at this point, is essentially a
backend that, if coupled with a naive frontend system,
may have problems dealing with the unbalanced load.
The underlying DHT will automatically balance load but,
as discussed in Section 5.4, significant load variations on
individual pages may create continuous shifting of page
data from one cell to the other.

In [29], the authors use a caching web server to render
pages. They notice that the bottleneck is this frontend,
rather than the backend, and suggest using multiple fron-
tends to alleviate this problem, which is consistent with
the findings of our workload analysis. However, they do
not discuss any mechanisms to keep these caches consis-
tent under direct and indirect update operations.

We note that this system is the only one to explicitly
address churn, by storing data within cells composed of
multiple nodes. However, while this creates stability in
the DHT structure even in the case of churn, the data stored
in the DHT still has to be replicated to new nodes each time
they (re-)join the system.

6.5. Urdaneta et al.

We recently proposed a decentralized architecture for
collaborative Wikipedia hosting [32]. In this design,
pages are distributed over a network of collaborators that
contribute their computing and networking resources to
help host Wikipedia. A load-balancing algorithm tries to
place pages on the most appropriate nodes and a
distributed hash table is used to locate pages by name.
Regular Wikipedia users use a normal web browser and
do not necessarily participate in the collaborative hosting
system.

G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845 1843

Pages are replicated for fault tolerance and we use a
gossiping anti-entropy protocol to maintain consistency.
Concurrent updates are handled using a simple tie-break-
ing rule such as last writer wins, which violates Wikipe-
dia’s concurrency semantics, but is expected to work well
in most cases in a read-mostly system like Wikipedia.

Regular users access the system through trusted nodes
to prevent bogus responses from malicious nodes. Updates
are signed by trusted frontends to ensure that malicious
nodes cannot change their contents without honest nodes
noticing.

The system has good resistance to churn as the DHT is
used only as an index, and not as a storage system, while
the load-balancing algorithm ensures that pages are copied
only to nodes that can handle the copy operation without
getting overloaded, which is better than in a DHT, where
data must be migrated to nodes at specific locations in
the ID space regardless of that node’s load and capacity.

This system has two important weaknesses with regard
to the Wikipedia workload. First, frontend nodes do not
have any caching capability and use a DHT to locate wiki
pages, which may result in unacceptable high latency for
rendering pages. Second, it does not define any mechanism
to efficiently support relationships among pages; hence,
they must be solved with separate DHT lookups, which,
while deterministic and logarithmic, may be too slow for
interactive applications, especially if security techniques
such as redundant routing are used.

A further weakness of this system is that, while it de-
fines a security policy based on digital signatures and a re-
stricted role for untrusted nodes, it does not define
algorithms to prevent malicious nodes from lying in the
load balancing protocol.

The advantages of this proposal are its load balancing
approach, and its extreme scalability while maintaining
(weak) consistency. As mentioned, it can also effectively
handle churn.

7. Related work on workload analysis

Many previous studies have characterized different
types of web workloads. However, to the best of our
knowledge our study is the first one to study the work-
load of a major collaborative web site such as Wikipedia.
Almeida et al. [4] analyze the workload of four web sites
and study temporal and spatial locality. They show that
temporal locality can be characterized using the stack dis-
tance metric, while spatial locality can be modeled using
the notion of self-similarity. Arlitt and Williamson [7]
study the workload of six web sites and identify a number
of invariants that apply to all the studied data sets such
as lookup success rate, mean transfer size, size distribu-
tion, inter-reference times, and concentration of refer-
ence, among others. Bent et al. [8] study the properties
of a large number of web sites hosted by a major ISP.
They find that the workload contains a high degree of
uncacheable requests, related to the widespread use of
cookies; that most sites do not use HTTP 1.1 cache-con-
trol features, and that most sites would benefit from the
use of a content delivery network. Arlitt et al. [6] analyze

a five-day workload from a large e-commerce site. They
characterize user requests and sessions and determine
their impact on scalability. They find that horizontal sca-
lability is not always an adequate mechanism for scaling
the system, but that system-level and application-level
QoS mechanisms are required in overload conditions.
Note that these workloads differ from Wikipedia’s in that
almost all Wikipedia content is dynamic and updated by
end-users.

Various analyses have been conducted to study Wikipe-
dia from publicly available database dumps. Vof3 [34] stud-
ied four language editions of Wikipedia and measured
numerous statistics such as size distribution of articles,
number of distinct authors per article, number of articles
per author, distribution of links among pages, and growth
in several variables such as database size and number of
articles. Ortega and Gonzalez Barahona [24] analyzed user
contributions in the English Wikipedia and found that a
small percentage of authors are responsible for most of
the contributions. Wilkinson and Huberman [36] studied
the relationship between quality and cooperation in Wiki-
pedia articles and found that high-quality articles (denoted
as “featured” in Wikipedia) are distinguished from the rest
by a larger number of edits and distinct editors, following a
pattern where edits begat edits. Hu et al. [17] propose
three models for automatically deriving article quality in
Wikipedia. The models are based on interaction data be-
tween articles and their contributors. While these studies
are important to understand the update behavior of Wiki-
pedia users, one cannot ignore the fact that most Wikipe-
dia users simply read the encyclopedia without editing it.
Our study differs from these in that we use a unique trace
that contains a sample of the full Wikipedia traffic includ-
ing read requests in addition to the information available
in database dumps.

8. Conclusion

Our study of the Wikipedia workload has given us
important insight for the design of a peer-to-peer architec-
ture for hosting Wikipedia. The main issues such an archi-
tecture has to deal with are a large and heterogeneous data
set with an unbalanced read-mostly load, page relation-
ships that make updates to a page affect the rendering of
other pages, churn, malicious nodes, and, to a lesser extent,
concurrent conflicting updates.

Our analysis has shown that the focus of any architec-
ture for handling the Wikipedia workload must be on opti-
mizing how frontend nodes efficiently handle read
requests for wiki pages and their embedded files, which
represent more than 90% of all requests (95% if we ignore
cache maintenance requests), with a theoretical cache hit
ratio of more than 98% for wiki page content and virtually
100% for embedded media and static files. However, cur-
rent decentralized proposals tend to focus on efficiently
decentralizing the backend using distributed hash tables
or other mechanisms, or handling concurrent updates,
which represent no more than 0.03% of the load. In this
sense, the existing Wikipedia architecture based on dis-
tributed web caching and invalidations is better suited

1844 G. Urdaneta et al./ Computer Networks 53 (2009) 1830-1845

for the job than the current proposed decentralized
schemes.

We conclude that future decentralized wiki engines will
have to concentrate on automatically selecting replication,
caching and distribution policies for each document with
consistency protocols that take into account page relation-
ships. They will also have to be prepared to deal with
churn, unexpected load changes per document, and mali-
cious nodes in order to be considered as serious alterna-
tives for hosting large wikis like Wikipedia.

Acknowledgments

We wish to thank the Wikimedia Foundation, especially
Gerard Meijssen and Tim Starling, for making their access
trace available for our study.

References

[1] FreePastry, <http://www.freepastry.org>.

[2] S. Adler, The Slashdot Effect: An Analysis of Three Internet
Publications, <http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.
html>.

[3] Alexa Internet, Alexa Web Search - Top 500, 2007, <http://
www.alexa.com/site/ds/top_sites?ts_mode=global>.

[4] Virgilio Almeida, Azer Bestavros, Mark Crovella, Adriana de Oliveira,

Characterizing reference locality in the WWW, in: Proceedings of the

IEEE Conference on Parallel and Distributed Information Systems

(PDIS), Miami Beach, FL, 1996.

Sawsan Alshattnawi, Gérome Canals, Pascal Molli, Concurrency

awareness in a P2P wiki system, in: Proceedings of the

International Symposium on Collaborative Technologies and

Systems, May 2008.

Martin F. Arlitt, Diwakar Krishnamurthy, Jerry Rolia, Characterizing

the scalability of a large web-based shopping system, ACM

Transactions on Internet Technology 1 (1) (2001) 44-69.

Martin F. Arlitt, Carey L. Williamson, Web server workload

characterization: the search for invariants, in: Proceedings of the

1996 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS), New York, NY,

USA, ACM Press, 1996, pp. 126-137.

Leeann Bent, Michael Rabinovich, Geoffrey M. Voelker, Zhen Xiao,

Characterization of a large web site population with implications for

content delivery, in: Proceedings of the 13th International

Conference on World Wide Web (WWW), New York, NY, USA,

ACM Press, 2004, pp. 522-533.

Mark Bergsma, Wikimedia Architecture, 2007, <http://www.nedworks.

org/~mark/presentations/san/Wikimedia%20architecture.pdf>.

[10] Charles Blake, Rodrigo Rodrigues, High availability, scalable storage,
dynamic peer networks: pick two, in: Proceedings of the Ninth
Conference on Hot Topics in Operating Systems (HOTOS), Berkeley,
CA, USENIX, 2003, pp. 1-6.

[11] Gérome Canals, Pascal Molli, Julien Maire, Stéphane Lauriére, Esther
Pacitti, Mounir Tlili, XWiki Concerto: A P2P wiki system supporting
disconnected work, in: Proceedings of the Fifth International
Conference on Cooperative Design, Visualization and Engineering,
September 2008.

[12] Ludmila Cherkasova, Minaxi Gupta, Analysis of enterprise media
server workloads: access patterns, locality, content evolution, and
rates of change, IEEE/ACM Transactions on Networking 12 (5) (2004)
781-794.

[13] P.Th. Eugster, R. Guerraoui, S.B. Handurukande, P. Kouznetsov, A.-M.
Kermarrec, Lightweight probabilistic broadcast, ACM Transactions
on Computer Systems (TOCS) 21 (4) (2003) 341-374.

[14] Wikimedia Foundation, Wikimedia Dump Service, 2007, <http://
download.wikimedia.org/>.

[15] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D.
Gribble, Henry M. Levy, John Zahorjan, Measurement, modeling, and
analysis of a peer-to-peer file-sharing workload, in: Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP),
New York, NY, USA, ACM Press, 2003, pp. 314-329.

[16] Lei Guo, Songqing Chen, Zhen Xiao, Xiaodong Zhang, Analysis of
multimedia workloads with implications for internet streaming, in:

[5

[6

(7

(8

[9

Proceedings of the 14th International Conference on World
Wide Web (WWW), New York, NY, USA, ACM, 2005, pp. 519-
528.

[17] Meiqun Hu, Ee-Peng Lim, Aixin Sun, Hady Wirawan Lauw, Ba-Quy
Vuong, Measuring article quality in Wikipedia: models and
evaluation, in: Proceedings of the 16th ACM Conference on
Conference on Information and Knowledge Management (CIKM),
New York, NY, USA, ACM, 2007, pp. 243-252.

[18] Frank T. Johnsen, Trude Hafsoe, Carsten Griwodz, Analysis of server
workload and client interactions in a news-on-demand streaming
system, in: Proceedings of the Eighth IEEE International Symposium
on Multimedia (ISM), Washington, DC, USA, IEEE Computer Society,
2006, pp. 724-727.

[19] David R. Karger, Matthias Ruhl, Simple efficient load-balancing
algorithms for peer-to-peer systems, Theory of Computing Systems
39 (6) (2006) 787-804.

[20] Bo Leuf, Ward Cunningham, The Wiki Way: Collaboration
and Sharing on the Internet, Addison-Wesley Professional, 2001.
April.

[21] Joseph C. Morris, DistriWiki: a distributed peer-to-peer wiki
network, in: Proceedings of the 2007 International Symposium
on Wikis (WikiSym), New York, NY, USA, ACM, 2007, pp. 69-74.

[22] Patrick Mukherjee, Christof Leng, Andy Schuerr, Piki - a peer-to-peer
based wiki engine, in: Proceedings of the Eighth International
Conference on Peer-to-Peer Computing (P2P), Los Alamitos, CA,
USA, IEEE Computer Society, 2008, pp. 185-186.

[23] B. Clifford Neuman, Scale in distributed systems, in: T.L. Casavant,
M. Singhal (Eds.), Readings in Distributed Computing Systems, Los
Alamitos, CA, IEEE Computer Society, 1994, pp. 463-489.

[24] Felipe Ortega, Jesus M. Gonzalez Barahona, Quantitative analysis of
the Wikipedia community of users, in: Proceedings of the 2007
International Symposium on Wikis (WikiSym), New York, NY, USA,
ACM, 2007, pp. 75-86.

[25] Gérald Oster, Pascal Urso, Pascal Molli, Abdessamad Imine, Data
consistency for P2P collaborative editing, in: Proceedings of the
2006 20th Anniversary Conference on Computer Supported
Cooperative Work (CSCW), New York, NY, USA, ACM, 2006, pp.
259-268.

[26] Guillaume Pierre, Maarten van Steen, Andrew S. Tanenbaum,
Dynamically selecting optimal distribution strategies for web
documents, IEEE Transactions on Computers 51 (6) (2002) 637-
651.

[27] Stefan Plantikow, Alexander Reinefeld, Florian Schintke,
Transactions for distributed wikis on structured overlays, in:
Proceedings of the 18th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management, October 2007.

[28] Thorsten Schiitt, Florian Schintke, Alexander Reinefeld.
Chord#: structured overlay network for non-uniform load
distribution, Technical Report ZR-05-40, Zuse Institute Berlin,
August 2005.

[29] T. Schntt, M. Moser, S. Plantikow, F. Schintke, A. Reinefeld, A
transactional scalable distributed data store: Wikipedia on a DHT,
in: First IEEE International Scalable Computing Challenge (SCALE),
Los Alamitos, CA, USA, IEE Computer Society, 2008.

[30] Hala Skaf-Molli, Charbel Rahhal, Molli Pascal. Peer-to-peer semantic
wiki. Technical Report 6468, INRIA, November 2008.

[31] Kunwadee Sripanidkulchai, Bruce Maggs, Hui Zhang, An analysis of
live streaming workloads on the internet, in: Proceedings of the
Fourth ACM SIGCOMM Conference on Internet Measurement (IMC),
New York, NY, USA, ACM Press, 2004, pp. 41-54.

[32] Guido Urdaneta, Guillaume Pierre, Maarten van Steen, A
decentralized wiki engine for collaborative Wikipedia hosting, in:
Proceedings of the Third International Conference on Web
Information Systems and Technologies (WEBIST), March 2007, pp.
156-163.

[33] Guido Urdaneta, Guillaume Pierre, Maarten van Steen. Wikipedia
workload analysis, in: Proceedings of the 14th Annual Conference of
the Advanced School for Computing and Imaging (ASCI), Heijen, The
Netherlands, June 2008.

[34] Jakob VoB, Measuring Wikipedia, in: Proceedings 10th International
Conference of the International Society for Scientometrics and
Informetrics, 2005.

[35] Stéphane Weiss, Pascal Urso, Pascal Molli. Wooki: a P2P wiki-
based collaborative writing tool, Technical Report 6226, INRIA, June
2007.

[36] Dennis M. Wilkinson, Bernardo A. Huberman, Cooperation and
quality in Wikipedia, in: Proceedings of the 2007 International
Symposium on Wikis (WikiSym), New York, NY, USA, ACM, 2007, pp.
157-164.

http://www.freepastry.org
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html
http://www.alexa.com/site/ds/top_sites?ts_mode=global
http://www.alexa.com/site/ds/top_sites?ts_mode=global
http://www.nedworks.org/~mark/presentations/san/Wikimedia%20architecture.pdf
http://www.nedworks.org/~mark/presentations/san/Wikimedia%20architecture.pdf
http://download.wikimedia.org/
http://download.wikimedia.org/

G. Urdaneta et al./Computer Networks 53 (2009) 1830-1845

Guido Urdaneta is a PhD student in the
Computer Systems group at VU University
Amsterdam. His research interests focus on
large-scale distributed systems. Urdaneta
holds an MSc degree in Applied Computing
from the University of Zulia, Venezuela.

Guillaume Pierre is an assistant professor in
the Computer Systems group at VU University
Amsterdam. His research interests focus on
large-scale distributed systems. Pierre has an
MSc and a PhD in Computer Science from the
University of Evry-val d’Essonne, France. He is
the treasurer of EuroSys, the European Pro-
fessional Society on Computer Systems, and
an editorial board member for IEEE DSOnline.

1845

Maarten van Steen is full professor at VU
University Amsterdam. His research concen-
trates on large-scale distributed systems, with
an emphasis on decentralized solutions,
notably epidemic-inspired peer-to-peer sys-
tems. Application areas for such solutions
include Web-based systems and large-scale
wireless ad-hoc networks. He holds an MSc in
Applied Mathematics from Twente University
and a PhD in Computer Science from Leiden
University, both from The Netherlands.

	Wikipedia workload analysis for decentralized hosting
	Introduction
	Wikipedia operation
	Wikipedia traces
	Global analysis
	English Wikipedia
	Trace validation
	Page popularity
	Save operations
	Load variations
	Nonexisting pages
	Indirect save operations
	Old page versions
	Discussion

	Implications for decentralized wikis
	DistriWiki
	XWiki Concerto
	Piki
	Plantikow et?al.
	Urdaneta et?al.

	Related work on workload analysis
	Conclusion
	Acknowledgments
	References

