
Computing in the
national curriculum
A guide for secondary teachers

COMPUTING AT SCHOOL
E D U C AT E • E N G A G E • E N C O U R A G E
In collaboration with BCS, The Chartered Institute for IT

FUNDED BY

Computing in the
national curriculum

A guide for secondary teachers

2

Computing at School and NAACE would like to acknowledge the following organisations for
their support in the development and publication of this guide:

The Raspberry Pi Foundation
The Department for Education
The University of Hertfordshire Schools of Computer Science and Education
Rising Stars UK Ltd.

Text © Computing at School.
Published 2014.

Author: Peter Kemp
Consultants for Computing at School: Mark Dorling, Simon Humphreys,
Stephen Hunt, Colin Jackson
Consultants for NAACE: Miles Berry, Amanda Jackson (Havering Education Services)

Text design, typesetting and cover design: Burville-Riley Partnership
Photography: Ron Coello

With thanks to the students and teachers of Yavneh College, Borehamwood and
Hertswood Academy, Borehamwood.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License.

British Library Cataloguing in Publication Data.
A CIP record for this book is available from the British Library.

ISBN: 978-1-78339-376-3

Printed by Newnorth Print, Ltd. Bedford.

Computers are now part of everyday life and, for
most of us, technology is essential to our lives,
at home and at work. ‘Computational thinking’ is
a skill that all pupils must learn if they are to be
ready for the workplace and able to participate
effectively in the digital world.

The new national curriculum for computing has
been developed to equip young people in England
with the foundational skills, knowledge and
understanding of computing they will need for the
rest of their lives. Through the new programme
of study for computing, they will learn how
computers and computer systems work, they will
design and build programs, they will develop their
ideas using technology, and create a range of
digital content.

But what does all this mean in practice for
secondary schools? How should school leaders
be planning for the new curriculum and how can
teachers develop the additional skills they will
need? What qualifications routes are available to
computing students at KS4 and where might they
lead? This guide has been written especially for
secondary teachers. It aims to demystify precise
but perhaps unfamiliar language used in the
programme of study. It will enable teachers to get
to grips with the new requirements quickly and
to build on current practice. It includes help for
schools with planning and gives guidance on how
best to develop teachers’ skills.

The new national curriculum for computing
provides schools with an exciting new opportunity
to reinvigorate teaching and learning in this
important area of the curriculum. We hope this
guide will help you on your way.

To find out more about Computing At School,
please visit us at www.computingatschool.org.uk/
secondary. You will also find an eBook version of
this guide there, which can be freely shared with
colleagues.

Foreword

Simon Peyton-Jones
Chairman, Computing At School

http://www.computingatschool.org.uk/secondary
http://www.computingatschool.org.uk/secondary

Contents
Introduction 4
 The three main strands within computing 4
 The new programme of study 5
Getting started 6
Subject knowledge 8
 Key stage 3 8
 Key stage 4 16
Planning 18
Resourcing 20
 Programming languages 20
 Hardware 20
 Software 21
Teaching 22
 Computing without computers 22
 Teaching programming 22
 Inclusion 23
 Gifted and talented pupils 24
 Informal learning 24
Assessment 25
 Formative assessment 25
 Summative assessment 26
Concluding remarks 27
Glossary 28
Resources 30
 Background 30
 Subject knowledge 30
 Extended learning and competitions 31
 Teaching resources 31
Support 32

4

Introduction
INTRODUCTION

In September 2014, computing is replacing ICT as
a national curriculum subject at all key stages.
Computing is concerned with how computers and
computer systems work, how they are designed
and programmed, how to apply computational
thinking, and how to make best use of
information technology. It aims to give pupils a
broad education that encourages creativity and
equips them with the knowledge and skills to
understand and change the world.

Computing brings new challenges and
opportunities that should excite and empower
pupils and teachers. Some of these changes
may require you to update existing skills and
knowledge. However, there is also a lot of
material that should already be familiar.

This guide is intended to support teachers from
a broad range of backgrounds. It also aims to
provide a starting point for school leadership
teams who are looking to understand the best
ways to go about delivering computing in the
landscape of a changing curriculum, taking into
account progression into and out of secondary
education.

The three main strands
within computing
The Royal Society has identified three distinct
strands within computing, each of which is
complementary to the others: computer science
(CS), information technology (IT) and digital
literacy (DL). (See https://royalsociety.org/
education/policy/computing-in-schools/report/
for further details.) Each component is essential in
preparing pupils to thrive in an increasingly digital
world.

Computer science is the scientific and practical
study of computation: what can be computed,
how to compute it, and how computation may be
applied to the solution of problems.

Information technology is concerned with how
computers and telecommunications equipment
work, and how they may be applied to the
storage, retrieval, transmission and manipulation
of data.

Digital literacy is the ability to effectively,
responsibly, safely and critically navigate, evaluate
and create digital artefacts using a range of digital
technologies.

The creation of digital artefacts will be integral
to much of the learning of computing. Digital
artefacts can take many forms, including digital
images, computer programs, spreadsheets, 3D
animations and this booklet.

digital
literacy

information
technology

computer
science

https://royalsociety.org/education/policy/computing-in-schools/report/
https://royalsociety.org/education/policy/computing-in-schools/report/

5

INTRODUCTION

The new programme
of study
The focus of the new programme of study
moves towards programming and other aspects
of computer science. Programming has been
part of the ICT national curriculum for some
time but has frequently been overlooked or
treated superficially. However, there is more to
computer science than programming. Computer
science incorporates techniques and methods for
solving problems and advancing knowledge, and
includes a distinct way of thinking and working
that sets it apart from other disciplines. The role
of programming in computer science is similar
to that of practical work in other sciences – it
provides motivation and a context within which
ideas are brought to life.

Computational thinking is core to the programme
of study. It is the process of recognising aspects of
computation in the world that surrounds us, and
applying tools and techniques from computing to
understand and reason about both natural and
artificial systems and processes. Computational
thinking provides a powerful framework for
studying computing, with wide application
beyond computing itself. It allows pupils to tackle
problems, to break them down into solvable
chunks and to devise algorithms to solve them.

In summary, computational thinking involves:
• decomposition
• pattern recognition
• abstraction
• pattern generalisation
• algorithm design.

To illustrate these concepts, let’s look at how a
Snakes and Ladders computer game might be
made.

Decomposition is breaking a problem down into
its components, each of which can be tackled
individually and further decomposed.

For example, Snakes and Ladders needs a
model that captures a board, the snakes and
ladders on the board, player counters, a six-
sided dice, and the rules that describe when
and how to move counters.

Pattern recognition is looking for similarities in the
behaviours and states of the system you are trying
to model.

For example, you might specify in the game
that every time a counter meets the top of a
snake it goes to the bottom of that snake, and
to complete a game the player’s counter must
land on square 100.

Abstraction helps you only use the detail
absolutely necessary for the functioning of the
system.

For example, Snakes and Ladders might model
a snake as two sets of coordinates, ignoring
the colour of the snake or the fact that a real
snake would need to eat!

Pattern generalisation allows us to define
concepts in their simplest form and to re-use the
definition for all instances of that concept.

For example, all the snakes in our game could
be stored as just two sets of coordinates: one
for the top and one for the bottom.

An algorithm is a precise method for solving a
given problem.

In this case, the method comprises the steps
of rolling a dice, moving a counter, ascending
a ladder, changing turns, detecting when the
game has finished, etc.

Algorithms are not just used by computers. For
instance, the algorithm for repair a puncture on
your bike might be: take off the wheel, remove the
tyre, remove the inner tube, find the hole, patch
it, replace the inner tube, replace the tyre, put the
wheel back on.

As teachers, we are competent and confident
users of technology in our own personal and
professional lives. Few of us have sought to
understand how our computers work, or how to
program a computer. Many of us are unsure how
to teach these things to our pupils.

Now, with help from the web, from new
publications and resources, from online
communities and from our colleagues (and pupils),
it is time to give it a go.

6

Getting started

There is flexibility in the way you can deliver the
computing programme of study but you should
plan to cover the whole curriculum – and in many
areas to go beyond it.

In the programme of study document, the
curriculum for each key stage is expressed as a
series of bullet points. The order of these points
does not denote their significance, nor should
it influence the sequence of your teaching. The
amount of time given to any one aspect is up to
you. However, it would be unwise to ignore one
strand or give too much emphasis to one aspect to
the detriment of the others. How you deliver the
course content remains in your hands.1

The introduction to the programme of study
clearly identifies the three strands within
computing.

The core of computing is computer science,
in which pupils are taught the principles of
information and computation, how digital systems
work, and how to put this knowledge to use
through programming. Building on this knowledge
and understanding, pupils are equipped to use
information technology to create programs,
systems and a range of content. Computing also
ensures that pupils become digitally literate – able
to use, and express themselves and develop their
ideas through, information and communication
technology – at a level suitable for the future
workplace and as active participants in a digital
world.2

The aims of computing as a whole also reflect the
distinction between the three strands.
• [All pupils] can understand and apply the

fundamental principles and concepts of
computer science, including abstraction, logic,
algorithms and data representation (CS)

• [All pupils] can analyse problems in
computational terms, and have repeated
practical experience of writing computer
programs in order to solve such problems (CS)

• [All pupils] can evaluate and apply information
technology, including new or unfamiliar
technologies, analytically to solve problems (IT)

• [All pupils] are responsible, competent,
confident and creative users of information and
communication technology. (DL)

GETTING STARTED

The first two of these aims illustrate that
computer science has two distinct, but related,
aspects. There’s a focus on the ideas and
principles that underpin computation, and how
digital technology works, and this sits alongside
the experience of programming – almost certainly
the best way for pupils to learn how to apply
computer science.

A quick scan of the subject content for KS3 shows
expectations for computer science, IT and digital
literacy. On the next page, the KS3 content has
been adapted opposite to show how it can be
viewed in terms of these three strands.

We will look in more detail at the KS3 and KS4
programmes of study later in the booklet.

1 All schools maintained by a local authority have a statutory
duty to teach the national curriculum programme of study at
key stage 3 and key stage 4 as a minimum.

2 www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study

www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study

7

SUBJECT KNOWLEDGE

KS3

CS

Design, use and evaluate computational abstractions that model the state and behaviour of real-world
problems and physical systems

Understand several key algorithms that reflect computational thinking [for example, algorithms for
sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the
same problem

Use two or more programming languages, at least one of which is textual, to solve a variety of
computational problems; make appropriate use of data structures [for example, lists, tables or
arrays]; design and develop modular programs that use procedures or functions

Understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and
programming; understand how numbers can be represented in binary, and be able to carry out simple
operations on binary numbers [for example, binary addition, and conversion between binary and
decimal]

Understand the hardware and software components that make up computer systems, and how they
communicate with one another and with other systems

Understand how instructions are stored and executed within a computer system; understand how
data of various types (including text, sounds and pictures) can be represented and manipulated
digitally, in the form of binary digits

IT

Undertake creative projects that involve selecting, using, and combining multiple applications,
preferably across a range of devices, to achieve challenging goals, including collecting and analysing
data and meeting the needs of known users

Create, re-use, revise and re-purpose digital artefacts for a given audience, with attention to
trustworthiness, design and usability

DL
Understand a range of ways to use technology safely, respectfully, responsibly and securely, including
protecting their online identity and privacy; recognise inappropriate content, contact and conduct and
know how to report concerns

At first glance, the KS3 subject content appears
to be weighted towards the computer science
strand. In fact, there is considerable overlap
between the three strands, and these labels are
just placeholders, based on where we believe the
principal emphasis lies. The statutory requirements

are intentionally not labelled under any headings in
the programme of study. When planning a scheme
of work it is best to avoid categorising by strand,
for instance, by saying, “Today, we are doing IT”.
Instead, you should aim to devise activities that
include all three strands and cover the content in a
balanced, stimulating and creative way.

There are big changes in assessment, as with
other national curriculum subjects. The old
system of levels has been abolished and is not
being replaced. How your school chooses to
assess, record and report pupils’ mastery of the
curriculum content is your decision. We explore
some options in the Assessment section of the
booklet.

A final thought: every core principle can be taught
or illustrated without relying on the use of a
specific technology – or indeed any technology
at all – and the increasing range of unplugged
activities should be considered as part of a
balanced delivery.

GETTING STARTED

8

SUBJECT KNOWLEDGE

Subject
knowledge

The statements in the programme of study are
brief and, in many cases, very dense. In this
section, we unpack the concepts each statement
refers to.

Key stage 3

Design, use and evaluate computational
abstractions that model the state and
behaviour of real-world problems and
physical systems

Modelling is the process of developing a
representation of a real-world system or situation
that captures the aspects of the situation that are
necessary for a particular purpose, while omitting
the unimportant. The London Underground map,
storyboards for animations and an animation
showing the masses and velocities of planets
orbiting the sun are all examples of models.

Different purposes need different models. For
instance, the well-known (topological) London
Underground map is great for route planning, but
no use for estimating travel times.

Modelling real-world problems and physical
systems can provide engaging projects for pupils.
Work that you have done involving spreadsheets
in the past may provide some examples of
modelling real-world problems.

Computational abstractions are models (often
pieces of code) that include sufficient information
to represent the computational aspects of a
situation without describing absolutely everything.
You can have several layers of abstraction. For
example, you might represent a car as a red
rectangle in a model of a road network. You might
have a more detailed abstraction in a simple game

– adding wheels, a windscreen and the ability
to move. An even more detailed abstraction
would have fuel consumption, engine noise and
suspension. Computational abstraction only
includes the detail necessary for the model you
are building.

By designing and using computational
abstractions, pupils will be able to evaluate them,
looking at how closely they match real life and
how useful they are in making predictions.

Understand several key algorithms
that reflect computational thinking
[for example, algorithms for sorting
and searching]; use logical reasoning
to compare the utility of alternative
algorithms for the same problem

An algorithm is a precise method for solving a
given problem (for example, a recipe for baking
a loaf of bread or instructions for constructing a
flat-pack desk). Some algorithms are written to
be run on a computer, and some are meant to be
carried out by a person. A common misconception
is that algorithms, programs and code are all the
same thing. This isn’t the case. Programs contain
algorithms. Programs are written in programming
languages. Code is a generic term for any set of
statements written in a programming language,
whether or not they constitute a program. An
algorithm can also take the form of steps written
in structured English (pseudocode) or it can be
expressed as a flowchart.

9

SUBJECT KNOWLEDGE

Algorithms help shape the world around us. We
have algorithms to find the best route from A to
B, algorithms that rank pages from a web search,
algorithms that establish our credit rating, and so
on. Algorithms are everywhere!

Often, there are several possible algorithms
to solve the same problem, which differ in
complexity, efficiency or generality. These
may just be different ways of arriving at
the same result (for example, different
procedures for adding together three-
digit numbers). Where the problem is more
complex, different algorithms may lead to
different solutions (for example, different routes
from A to B).

It is important that pupils understand there may
be more than one way to solve a problem, and
that some problems have more than one ‘right’
solution. This can be challenging, but it is an
essential lesson in life. Pupils should be prepared
to evaluate an algorithm using factors such
as correctness (in the sense that it solves the
problem) and speed, but also the quality of the
solutions that it yields.

For example, to find the way out of a maze, one
(simple but slow) algorithm might be to walk
around at random until you find the exit. Another
(more complicated) algorithm would involve
remembering where you had been in order to
avoid going down the same path twice. Another
might be to keep your left hand on the wall and
walk until you find the exit. Each algorithm gives a
different solution to the same problem (a different
route out of the maze). Other qualities might be
taken into consideration: maybe one solution gets
your feet wet and another gets them muddy.

The programme of study requires that pupils
understand several key algorithms, giving
searching and sorting as examples. These
examples are important because the tasks
(searching and sorting) are easy to understand,
but there is a particularly rich variety of
algorithms for solving them, vividly illustrating
the kind of trade-offs discussed above. Pupils can
play the part of a machine executing searching
and sorting algorithms, and they can translate
algorithms into program code.

Searching
Linear and binary searches are the main searches
pupils should learn.

A linear search starts at the beginning of a list and
goes through every item until it finds the one you
are looking for (or you come to the end of the
list without finding the item). A real-life example
of this might be looking for a picture of your
cousin’s wedding in a pile of unordered printed
photographs. You keep flicking through until you
find the photograph, or until you’ve looked at all
the photographs and conclude that the picture
isn’t there.

A binary search is much quicker, but only works
if you have a list of items that have already been
sorted in order. You start with the middle item. If
you find it first time, well done! Otherwise, the
item you are looking for will either be in the top
or bottom half of the list. Go to the middle of
that half and eliminate the other half of the list.
Continue chopping the list in half until you have
found the item – or worked out that the item
you’re looking for is not in the list.

You may find it useful to look at http://
csunplugged.org/searching-algorithms, which
provides lots of non-computer-based searching
activities.

Sorting
There are dozens of competing algorithms for
sorting data. It is important that pupils know that
there are lots of ways of achieving the same result,
and that some methods are more efficient than
others.

http://csunplugged.org/searching-algorithms
http://csunplugged.org/searching-algorithms

10

SUBJECT KNOWLEDGE

Giving pupils physical sorting tasks, and asking
them to record the algorithms they use, can be a
useful way of introducing the subject. There are
some helpful examples at http://csunplugged.org/
sorting-algorithms, which provides lots of non-
computer-based sorting activities. There are also
sorting dance videos available, for example, see
www.youtube.com/watch?v=lyZQPjUT5B4.

Use two or more programming languages,
at least one of which is textual, to solve a
variety of computational problems; make
appropriate use of data structures [for
example, lists, tables or arrays]; design
and develop modular programs that use
procedures or functions

Computer programs, like algorithms, are
comprised of sets of rules or instructions, but
they differ in that they need to be written in a
precise (or formal) language that a computer can
interpret. There are thousands of programming
languages – some are appropriate for teaching
purposes, some are not. Language choice is
discussed in more detail in the Planning section.

The programme of study states that pupils need
to use two or more programming languages. Why
is this necessary? When pupils can use more than
one language they are better able to understand
the concepts behind programming. This allows
them to easily switch to other languages in the
future. Learning to use a programming language
can be compared with learning the grammar of
a foreign language – once you have learned one,
you should more easily pick up another from the
same family.

Pupils may have some experience of programming
from primary school, probably through using a
visual programming language such as Scratch
(http://scratch.mit.edu/).

To solve computational problems, a set of basic
programming concepts need to be mastered,
beginning with sequence, selection and repetition.
An example of these in use might be in creating a
password log-in system.

• Sequence: putting instructions in the right order
to make something happen. For example, “Enter
username; Enter password; Check details”.

• Selection: using conditions to control the flow
of a program. For example, “IF username =

“Sam” and password = “j377y78” THEN display
welcome message ELSE display error message”.

• Repetition: the ability to execute a sequence of
instructions many times until a certain condition
has been met. For example, “WHILE username
incorrect or password incorrect DO ask for
username and password”.

A data structure is a way of storing and organising
related data items so that they can be treated as
a single, more abstract, item. Structured data is
an important tool when solving computational
problems. Pupils should be familiar with the idea
of a named variable from KS2 – a small-sized
short-term data store used in a program to store
a single value such as test_score or name. A single
name may also be used to refer to an organised
collection of simple variables (a data structure),
such as an array, a table or a list.

An array is a sequence of data items of fixed
length, in which each item is referred to by its
position. A list is a sequence of data items whose
length can vary over time.

Pupils should be familiar with tables if they have
used spreadsheets. Tables allow data to be
structured and sorted by user-defined labels. For
example, pupils might create a table to record the
food that people ordered in a restaurant.

Note that the mechanisms for structuring data,
and for naming and referencing data structures,
differ from language to language.

Modular design is very important when solving
complex problems as it allows programmers to
decompose problems into manageable chunks
(modules) that can be independently tackled and
tested. These modules are then combined to
make a whole functioning program.

A solution to a problem can be broken down into sub-
problems. These can be called procedures, functions,
methods or subroutines, depending on what they do
and what language they are written in.

Person’s
name Starter Main Dessert Drink

Abby Olives Pasta Chocolate
cake Lemonade

Johannes Garlic
bread Pizza Meringue Sparkling

water

http://csunplugged.org/sorting-algorithms
http://csunplugged.org/sorting-algorithms
www.youtube.com/watch?v=lyZQPjUT5B4
http://scratch.mit.edu/

11

SUBJECT KNOWLEDGE

For example, in our Snakes and Ladders game
we have modules for DISPLAYBOARD and
TAKEATURN. These can be further broken down,
for instance, into:

• function ROLLDICE, which may return a random
number between 1 and 6

• procedure MOVE(2), which may follow the
instructions to move the counter 2 squares.

Understand simple Boolean logic [for
example, AND, OR and NOT] and some of
its uses in circuits and programming

Boolean statements can have one of two values:
TRUE or FALSE. Saying that “6 is greater than 10”
is a FALSE statement. Saying that “4 + 4 is equal
to 8” is TRUE. Pupils should be aware that they
use Boolean logic in their everyday lives. For
example, the statement “It is raining outside” is
either TRUE or FALSE, depending on the weather.

AND, OR and NOT are given as examples of
Boolean operations. I might say:

“4 is an odd number” AND “5 is an odd
number”.

The first part of the statement is FALSE, so the
overall statement is FALSE. But if I were to change
the operator to an OR:

“4 is an odd number” OR “5 is an odd
number”,

the overall statement is now TRUE, as we only
require one part to be TRUE.

If I add a NOT operator, the truth value will be
reversed, so the following is FALSE:

“NOT (5 is an odd number)”.

These operations can be defined using truth tables.
Pupils might be asked to come up with their own
logical statements and test if they are TRUE or
FALSE. You can also combine multiple statements
using AND, OR and NOT operations.

Why are these concepts important for pupils to
understand? Boolean logic is the means by which
computers perform all of their calculations, as
computer chips are built out of electronic circuits
made up of logic ‘gates’. These gates are small
pieces of electronics where the output voltage

depends on whether the voltage is on or off at
the inputs. Their operation can be demonstrated
through software simulations or on paper.

Truth values and Boolean logic are fundamental
to how computer programs work. When pupils
use IF or WHILE statements they will always use
truth values, and often need Boolean logic. For
example:

IF Health < 50 AND Character is touching
enemy THEN Game Over.

It is useful to encourage pupils to plan their
programs and break down the logic involved using
pseudocode or flowcharts.

Understand how numbers can be
represented in binary, and be able to
carry out simple operations on binary
numbers [for example, binary addition,
and conversion between binary and
decimal]

Digital computers store and process all data
(such as text, pictures, video) as sequences of
ones and zeros, for example 10100101. A single
1/0 value is known as a bit.

A sequence of bits may directly represent a
binary (base 2) number. The digits in a binary
number have place values much like the digits
in a decimal number but, in the case of binary,
each place value is a power of two. For example,
1101 in binary is another way of representing the
decimal number 13.

Addition in binary works in the same way as
addition in decimal, except that the maximum any
column can hold is 1 rather than 9.

Binary

8s 4s 2s 1s

 1 1 0 1
1 8 = 8
1 4 = 4
0 2 = 0
1 1 = 1
8 1 4 1 0 1 1 = 13

12

SUBJECT KNOWLEDGE

Understand the hardware and software
components that make up computer
systems, and how they communicate with
one another and with other systems

Computer systems are made up of hardware
and software. Hardware includes the physical
components of the computer such as memory,
graphics cards, display screens and disk drives.
Software involves the computer programs that
run on the hardware, including operating
systems and application programs such as
word processors and games.

Computers function as input, process and
output systems. Data is input, computation
is performed and an output response is given.
For example, when you type in your username
and password, they are checked against
stored values, and the output is either a failure
or success message. Pupils should be aware of
a range of input and output devices, what they
are used for and, at a very basic level, how they
provide an interface between the rich, analogue
real world and the digital domain of the computer.

Computers are often connected through local
networks and the biggest network of them all, the
internet. The internet is a network of networks,
where data of all types is exchanged between
computers across wired and wireless connections.
Connected computers, including smart hardware
such as routers and switches, have numeric IP
(internet protocol) addresses, which are used to
identify where to send data items and where they
have come from. The data items are packaged
up into regular-sized chunks known as packets,
each of which contains information about where
it came from and where it is going. A single
message may be made up of many packets, which
may or may not take the same route through the
network.

There are multiple routes between any two
computers. This makes the internet very robust.
When there is a blocked road, drivers find
alternative roads. The internet is the same – if one
connection is broken, data packets can usually
find alternative routes to their destinations.

The World Wide Web is not the internet. It
is a collection of linked data files. These are
transmitted across the internet and appear
as web pages. The language that defines the
contents of a web page is called HTML. Email and
voice conversations are other types of data sent

across the internet. Networking can be explored
through role-play, with pupils acting out the
functions of the internet and how data is sent
across it.

Understand how instructions are stored
and executed within a computer system;
understand how data of various types
(including text, sounds and pictures) can
be represented and manipulated digitally,
in the form of binary digits

For most modern computers to run programs they
must first load the necessary data and instructions
into their main memory. Getting data and
instructions into the main memory usually requires
them to be copied from secondary storage devices
such as USB memory sticks, DVDs or hard disks.
Once in the main memory, the central processing
unit (CPU) can fetch and execute the instructions,
giving outputs where necessary. The process by
which this happens is called the fetch-execute cycle.

When we give a computer instructions through
a visual or a textual programming language,
these instructions are translated by a compiler
or interpreter into a sequence of simpler

13

SUBJECT KNOWLEDGE

instructions that can be carried out by the CPU.
Most programming languages use English-like
statements that are several steps removed
from CPU instructions – hence the need for the
translation process. Assembly code, however,
is different. Each assembly code instruction
corresponds to one CPU instruction, so it can be
used to illustrate how programming language
statements are implemented in practice. Using
a tool such as the Little Man Computer helps
pupils to see this in action
(www.yorku.ca/sychen/research/LMC/).

All data and instructions required by the computer
are stored as sequences of bits, including text,
images and sounds. Text is stored character by
character using a system such as Unicode. In one
version of Unicode the sequence 0100 0001 (65)
represents ‘A’, 0100 0010 (66) = ‘B’ and 0100 0011
(67) = ‘C’, and so on. Other variants of Unicode
allow a computer to display larger varieties of
characters, including non-Latin alphabets. Pupils
can send each other secret Unicode messages and
try to convert them into text.

Bitmaps may be used to store pictures on a
computer. Bitmaps break an image into a grid of
squares, known as pixels, and use a fixed number
of bits to represent the colour of each pixel. The
more bits allocated to each pixel, the larger the
range of colours, or colour depth, but also the
larger the file size. The more pixels that make
up an image, the higher the resolution of that
image. Pupils could experiment with creating
and manipulating bitmaps using image-editing
programs. You could also encourage them
to create their own bitmaps using paper
or spreadsheets. See, for example,
http://community.computingatschool.org.uk/
resources/8 (note that you need to log in to the
Computing at School community to view this
web page). There is a useful spreadsheet task
for simulating bitmaps at http://kershaw.org/
processing/index.php?js=bitmap.js.

Image formats such as JPEG use
compression techniques to make smaller
files at the expense of some of the ‘finer
detail’ captured in the original bitmap.
There is no need for pupils to understand
how thisis done.

Sound sampling is used to convert sound
waves into a digital data stream. An
analogue sound wave is picked up by a
microphone and sent to an analogue-to-digital

converter. The analogue-to-digital converter
takes samples from the sound wave many times
a second, storing each sample as a binary (digital)
value on the computer.

The more samples taken per second and the more
bits used to store each sample, the closer the
digital representation of a sound can be to the
original waveform. Once in digital form the sound
can be manipulated and played back through a
digital-to-analogue converter, which changes the
binary values back into sound waves. Storage
formats such as MP3 take the sampled sound and
use compression techniques to make smaller files
at the expense of some of the ‘finer detail’ in the
original, digitised sample. There is no need for
pupils to understand how this is done.

Pupils should have access to a variety of tools that
allow them to experiment with different sampling
settings and their effect on the quality and size of
sound files, as well as manipulating and remixing
sound.

Undertake creative projects that involve
selecting, using, and combining multiple
applications, preferably across a range
of devices, to achieve challenging goals,
including collecting and analysing data
and meeting the needs of known users

Pupils should become confident and discerning
users of technology, selecting, using and
combining applications. Projects could mix topics
from computer science, digital literacy and
information technology, allowing pupils to see

www.yorku.ca/sychen/research/LMC/
http://community.computingatschool.org.uk/resources/8
http://community.computingatschool.org.uk/resources/8
http://kershaw.org/processing/index.php?js=bitmap.js
http://kershaw.org/processing/index.php?js=bitmap.js

14

how the three areas relate. For example, creating
a computer game to teach people about the
Norman Invasion could involve coding, creating
the graphics and sound, making a video advert
and producing a promotional poster.

Facilitating creative projects is something most
computing teachers will be familiar with, and you
will probably have examples that can be re-used.
There is no doubt that using real-world problems
that require real-world data sets (see, for instance,
http://data.gov.uk/data/search and
www.bloodhoundssc.com/education) is
motivating and challenging for all pupils.

Pupils should have the opportunity to express
their creativity. Once you have helped them learn
the fundamentals, they should be free to create
solutions with the tools they feel are most suitable
for the task. Where possible, pupils should set
their own challenging goals, creating inventive
and original solutions that push their specific
abilities. They should evaluate the effectiveness
of their solutions in terms of goals and suitability,
and reflect on the process they followed, including
the software they used.

Most pupils will use a range of devices in their
everyday lives. The computing programme of

study provides a framework to experiment with
how these devices can be combined, bringing
together cameras, voice recorders, mobile phones,
tablet computers, laptops, desktop computers
and internet tools through project work.

Create, re-use, revise and re-purpose
digital artefacts for a given audience, with
attention to trustworthiness, design and
usability

All pupils will be using computers to create
digital artefacts. The ability to use web search
engines effectively is essential in finding and
choosing existing artefacts that are available and
appropriate – and a great opportunity for pupils
to practise their Boolean logic!

You should discuss copyright, including ‘all
rights reserved’ and open licensing. Open
licences such as Creative Commons (see http://
creativecommons.org/) allow for re-use and
re-purposing of digital artefacts as long as the
open licence is applied to any modified work.
Pupils might want to look at the implications of
publishing some of their work online under such a
licence, with the potential for global audiences.

SUBJECT KNOWLEDGE

http://data.gov.uk/data/search
http://www.bloodhoundssc.com/education
http://creativecommons.org/
http://creativecommons.org/

15

Pupils’ work should be purposeful, with the aim
of meeting the needs of a given audience. Ideally,
the audience should be a real person or people
with whom the pupil can communicate. Care
should be taken over design and usability,
including accessibility for people with
disabilities and inclusion of people whose
first language is not English. Prototyping
can be used instead of extensive design
documentation. For example, pupils
could create a prototype and make
changes to it following feedback, to help
them move closer to a solution.

Understand a range of ways to
use technology safely, respectfully,
responsibly and securely, including
protecting their online identity and
privacy; recognise inappropriate content,
contact and conduct and know how to
report concerns

People are living more of their lives online. Pupils
need to be aware of the dangers that exist on the
internet from their own personal conduct, from
contact with other people, and from their access
to different types of content. They need to be
aware of their legal and ethical responsibilities,
especially regarding their conduct towards others
and their respect of intellectual property rights.

Pupils should be aware of their online identity and
take steps to protect it. They should understand
what strong passwords are and how they are used
to protect their computers and online data from
threats. Pupils should also be aware of dangers
such as trojans and viruses, and of the increased
risk when using pirated software. They should
understand the importance of keeping their
computers and software up to date, and of using
tools such as virus scanners.

Pupils should understand what constitutes safe
practice when accessing websites and opening
email attachments. They should be familiar with
secure websites that use https; this might be a
good opportunity to teach basic cryptography
such as the Caesar cipher: see http://csunplugged.
org/cryptographic-protocols.

A digital footprint is the data that is stored
about a person’s online activities. It can include
information that people have willingly uploaded
or that others have recorded about them without
their knowledge. All this data may be available

SUBJECT KNOWLEDGE

to people, such as future employers, and pupils
should consider taking steps to limit access to
their personal data.

Pupils should be aware that the internet is not an
anonymous space; their activities can be tracked
through their IP address and browser cookies. On
individual computers, web browser settings such
as internet history can be cleared.

Dangers such as sexting, grooming and
cyberbullying may affect pupils in your school, and
parents are often ill-prepared to deal with these
threats. Pupils may report concerns about their
digital activity to you. Make them aware of the
support available through CEOP (www.ceop.police.
uk/safety-centre/) and ChildLine. There is further
information for you, pupils and parents/carers on
the Thinkuknow website (see
www.thinkuknow.co.uk/).

The overall aim is that pupils become responsible
and resilient users of technology, able to make
confident and safe use of the web and of other
internet-based services, and able to detect and
deal with issues when they arise.

http://csunplugged.org/cryptographic-protocols
http://csunplugged.org/cryptographic-protocols
www.ceop.police.uk/safety-centre/
www.ceop.police.uk/safety-centre/
www.thinkuknow.co.uk/

16

SUBJECT KNOWLEDGE

Key stage 4

All pupils must have the opportunity to
study aspects of information technology
and computer science at sufficient depth
to allow them to progress to higher levels
of study or to a professional career.

All pupils should be taught to:
• develop their capability, creativity and

knowledge in computer science, digital media
and information technology

• develop and apply their analytic, problem-
solving, design, and computational thinking
skills

• understand how changes in technology affect
safety, including new ways to protect their
online privacy and identity, and how to identify
and report a range of concerns.

Schools maintained by local authorities have
a statutory duty to provide pupils with the
opportunity to study computing at KS4; this can
be done through examinable or non-examinable
provision. Care must be taken that KS4 provision
is planned and relevant to pupils. Where a school
is unable to offer any computing qualifications
or a pupil chooses not to pursue a computing
qualification at KS4, the school still needs to
further develop the capability and knowledge
pupils acquired in KS1–KS3, either through
computing classes or through other subjects.

Ideally, pupils should have the opportunity to
specialise in an area of computing such as taking a
qualification in information technology, computer
science or digital media. This parallels the science
curriculum, where pupils have the option to
take joint or single sciences. Qualifications might
be GCSEs or a more professionally oriented
qualification in network management or database
administration. If a school is unable to offer a
range of qualifications, it could aim to provide the
opportunity to study topics from IT, CS and DL.

Computer science is now recognised as a science,
along with biology, chemistry and physics, and
is therefore part of the English Baccalaureate
(EBacc). Several exam boards now offer GCSE
qualifications that cover sufficient computer
science to count towards the EBacc, though not
all of them are called GCSE Computer Science.
These GCSEs, like those in other subjects, offer
opportunities for pupils with a range of abilities
to progress. Schools should aim to help pupils
make informed choices, rather than discriminating
based on factors such as their KS3 scores in
mathematics.

It is important that any qualification offered by
a school should be valued by employers and
higher education institutions, and should support
progression into A-levels, to further and higher
education, or to a professional career.

17

SUBJECT KNOWLEDGE

Whether or not your school offers qualifications,
it is desirable that pupils’ skills in computing
are applied and further developed across the
curriculum. Examples include creating animations
to support geography lessons, learning about
online safety in PSHE, and creating programs
to simulate science experiments or solve
maths problems. Other subjects can provide a
rich source of topics and tasks both for those
preparing for examinations and for non-
examinable provision.

18

PLANNING

Planning
How can we turn the requirements of the
programme of study into engaging lessons?

There are four things to keep in mind.
• The programme of study is a minimum

entitlement – there’s nothing that imposes any
limits on what schools, teachers or pupils cover
in computing.

• The programme of study is not a scheme of
work – it’s up to you, as a school, to determine
how you cover this content, in what order, in
what contexts and with what resources.

• Schemes of work are not lesson plans – that
level of planning comes later, with the ideas for
each unit of work getting translated into the
detail of specific objectives, resources, activities
and assessment.

• There is a far greater focus now on learning
about computers and computation, rather than
on learning how to use technology.

The computing curriculum brings new teaching
opportunities to sit alongside those familiar from
the ICT programme of study. There is an increased
emphasis on computer science; not only on how
to use technology, but on how to make it and how
it works. Planning needs to bring together the
three strands of computing (CS, IT and DL) and
there are many opportunities to have exciting and
creative lessons. This section will help you plan for
the new curriculum in terms of schemes of work
and resourcing.

Discrete or embedded?
Computing is a powerful interdisciplinary
subject that has connections to other subjects
in the curriculum. The new programme of
study is challenging and will require dedicated
time in order to deliver it. However, finding
cross-curricular links can be of real benefit,
especially where they involve pupils applying
computational thinking in other subjects. Also,
while digital literacy is part of computing,
the provision of e-safety education, and the
safeguarding of pupils, is an institution-wide
issue.

National curriculum or national
curriculum ‘plus’?
The curriculum is a minimum entitlement – what
more can you add to enhance your provision?
There are many interesting and exciting ways
in which you could extend and build upon the
programme of study. For example you could
use a school drama production as a source
of inspiration. Your pupils could record the
movements of the actors on stage and use
them to create an animated version of the
production. Or they could design a media-rich
website for the production, containing images,
videos of the play, interviews with the cast
and crew, and so on, and implement it using a
content management system such as WordPress.
Or they could write a program to control the
lighting and sound cues. Or create an inventory
system for props and scenery. Or design an
app that helps actors to rehearse their parts.
You could run a robotics course and talk about
whether computers can ever be conscious. You
could make use of small programmable robots
in your teaching, or set up a school robotics
club or a school team to enter Robocup. You
could get your pupils thinking about Asimov's
Three Laws of Robotics, and about the nature
of consciousness. And about the plausibility (or
otherwise) of claims made about the capabilities
of machines. There are so many possibilities!

Themes?
Using CS, IT and DL as themes is limiting. The
most interesting problems involve elements of
all three. A more engaging approach might be to
utilise themes running through the curriculum.

Pupil-centred?
Encouraging pupils to learn what they need to
know by working with the tools and creating
the digital artefacts that excite them most is a

19

PLANNING

good way to get them engaged. Building a set
of differentiated modular projects for pupils
to choose from will allow them to match the
curriculum to their own interests and to map
their progress against any criteria you provide.
Alternatively, you could give a half-termly briefing
and let pupils define their own learning goals
through enquiry-based learning. You can then plan
out a unit to meet the needs and interests of the
class.

Progression
Pupils will arrive at KS3 with differing knowledge
and experiences of computing, so early
assessment and intervention may be needed. KS3
is a stepping stone for future qualifications and
careers. Planning needs to cover all parts of the
curriculum in sufficient depth so that pupils can
make informed choices about their future.

As pupils move through KS3, planning should take
account of the fact that many computing concepts
take time to master. Computational thinking and
programming must be practised and key ideas,
such as algorithmic problem solving, need to be
revisited again and again. For further information
about progression, see the Assessment section of
this booklet.

Pupils in your classes will have a range of
programming and digital creating abilities.
However able they might appear, they have a lot
more to learn. Can your planning support topics
beyond the curriculum, as well as encouraging and
supporting pupils beyond school?

Assessment
Your school might have an assessment
framework that would influence the structure of
a computing course. How will your methods of
assessment influence the topics and tasks you set?
(Assessment is covered in more detail later in this
booklet.)

Timings
As with mathematics or history, schools need to
provide weekly computing lessons so that pupils
can develop and practise their computational
thinking across the whole of KS3.

We recommend you do not try to fit provision
into less time for two main reasons. First, pupils
need time and regular practice to acquire the
skills, knowledge and experiences they require
to understand computing and to make informed
choices about their future. Second, you will be

unable to support pupils who are learning the
subject independently outside school.

Schemes of work
There are several options available for creating
computing schemes of work (SoWs).
• Top down, starting from the programme of

study itself.
The programme of study gives a clear list of
the content that should be covered at KS3
(remember, you are free to add to this content).
Starting from the programme of study makes
it relatively easy to translate the curriculum
content into learning outcomes because it’s
clear what needs to be covered.

• Bottom up, starting with ideas for units of work,
perhaps project-based.
Using ideas and themes for units can provide a
structure, making it easier to ensure progression
and continuity in each year. Whichever themes
you select, the topics will need to be revisited in
each year of the course. There should be a clear
sense of what pupils have already experienced
and what subsequent steps in learning are likely
to involve.

• Off the shelf, using a commercial, free or crowd-
sourced scheme, which can be adapted as
necessary.
Whether you choose to plan your own scheme,
or to adapt an existing scheme, we recommend
that you look at resources and lesson ideas
available through other routes first. Use an
existing plan as a starting point and then edit it
so that it draws on the expertise and enthusiasm
of colleagues and works well for your pupils.

• A more pupil-centred, enquiry-led approach.
A scheme of work in this context might just
suggest possible projects, resources and a
consistent approach to monitoring achievement
and curriculum coverage.

Collaborating on documents is made easier with
the internet, so there is no need to plan on your
own. Joining with a like-minded colleague through
a teaching school alliance or a local authority,
or in informal groups via Twitter or other social
networks, will allow you to draw on others’
insights and experience, and your contribution
may impact on pupils’ learning beyond your own
school. The Computing at School community is an
ideal place to start – either online or through its
network of local hubs: see
http://www.computingatschool.org.uk/index.
php?id=regions.

http://www.computingatschool.org.uk/index.php?id=regions
http://www.computingatschool.org.uk/index.php?id=regions

20

RESOURCING

Resourcing
Programming languages

Each of the major programming languages used at
KS3 has strong arguments to its use as a medium
of instruction. Teaching programming should aim
to give pupils the underlying skills of sequence,
selection, repetition, etc. and not just the ability
to use a particular programming language.

Which programming language
should I use?
Consider the following when deciding which
language to use when teaching programming.
• How well do I know the language? You need to

support pupils from the least to the most able.
Choosing a language you know well or can learn
quickly makes you better prepared to handle
questions and fix problems, and to signpost
extra help for the most able pupils.

• Are there high-quality resources and a
community to support teaching and learning?
Can you effectively teach the curriculum in
the way you want to, and seek help if needed?
Finding pre-made and differentiated resources
will make it easier to support your class and help
you plan/adapt great lessons.

• Can pupils easily access the language at school
and at home? Installing programming languages
at school can be problematic. Your network
managers may prefer certain products and it is
a good idea to discuss your preferred language
with them. You will almost certainly have pupils
who want to do more programming at home. Is
there a free, portable and/or web-based version
of the language you are using, so they can
develop their interest?

There are a broad range of languages available
and you must pick at least one that is textual.
• Visual languages such as Scratch and Kodu are

an excellent starting point, but be aware that
many pupils may have experience of these from
primary school.

• General-purpose textual languages such as
Python, Visual Basic.NET and Java allow for a
wide range of project work, including graphics,
apps and games.

• The formula language of spreadsheets is a
textual programming language (albeit a limited
one) that provides some insight into functional
programming. Most spreadsheets offer a textual

scripting language such as VBA or JavaScript to
create more complex functionality.

• Several languages (such as Logo) control the
behaviour of a turtle or robot while at the same
time introducing the idea of a textual language.
Many general-purpose languages also offer this
functionality.

• Javascript is a fully featured programming
language and can be used to teach
programming. HTML and CSS are examples
of specialised and declarative text-based
markup languages that cannot be used to solve
computational problems.

Hardware

Most school computer labs can provide the
hardware and software necessary to deliver the
new curriculum. See www.computingatschool.
org.uk/data/uploads/CASInfrastructure.pdf
for detailed requirements. Taking apart old
computers can aid pupils’ understanding of
hardware – check with your IT department to see
if they have any spare. Be aware of health and
safety considerations and ensure you undertake a
risk assessment for such activities.

Small computers such as the Raspberry Pi can
provide an excellent teaching tool. Pupils can
see individual hardware components and the
Raspberry Pi offers access to operating system
functionality such as the command line
that might be restricted in school
computer labs. The command
line allows pupils to give the
computer textual commands
and to query details such
as network settings. Some
basics of networking can be
taught using a router, cables
and a Pi (see www.ocr.org.
uk/qualifications/by-subject/
computing/raspberry-pi/ for this
exercise and other teaching resources). You
should carefully consider how you will incorporate
small computers such as the Raspberry Pi into
your teaching, and the extra costs involved in
connecting a monitor, keyboard, mouse and
power supply.

The curriculum suggests that pupils should use
a range of devices, which may include digital
cameras, online servers and sound recorders (and
potentially pupils’ own digital devices such as
mobile phones and tablets).

http://www.computingatschool.org.uk/data/uploads/CASInfrastructure.pdf
http://www.computingatschool.org.uk/data/uploads/CASInfrastructure.pdf
http://www.ocr.org.uk/qualifications/by-subject/computing/raspberry-pi/
http://www.ocr.org.uk/qualifications/by-subject/computing/raspberry-pi/
http://www.ocr.org.uk/qualifications/by-subject/computing/raspberry-pi/

21

RESOURCING

Software

There are many IT tools to support delivery of
the computing curriculum, such as office and
design software suites, software development
environments, animation tools, simulators and
emulators. Consider their suitability for the
course. Will they do what you need them to? Are
they easy to use? How will they affect your pupils’
chances of gaining qualifications or employment?
Will all pupils be able to access them away from
school?

Finally, do not forget the unplugged approach.
Many of the concepts and principles of computer
science can be taught without using any hardware
or software at all!

22

Teaching

Seymour Papert (1928–) is seen by many as the
pioneer of computing in schools. He is probably
best known as the co-developer of the Logo
programming language in the late 1960s.

Logo introduced turtle graphics, in which a
computer-controlled robot ‘turtle’, equipped with
a pen, moves, turns and draws to make shapes on
paper. Papert saw Logo as more than a programming
language; he believed it was a powerful tool for
pupils to develop their thinking skills.

I began to see how children who had learned
to program computers could use very concrete
computer models to think about thinking
and to learn about learning and in doing so,
enhance their powers as psychologists and as
epistemologists.3

Inspired by his work with Logo was Papert’s theory
of learning: constructionism. Put simply, this is
the theory that people learn best through making
things for other people.

Pupils learn more when they write about a topic
than when they read about it, especially if they
know that you, and perhaps others, will be
reading what they write. It seems likely that this is
true of every aspect of computing.

• Pupils will learn computer science more
effectively by writing programs and creating
theory questions to teach others.

• Pupils will learn to use information technology
more effectively if they’re doing something
creative, such as making a presentation, website
or video, especially if this is to be shown to
others.

• Pupils will develop a richer digital literacy if
they document what they know and learn for
others through blog posts, audio recordings or
screencasts.

When teaching the computing curriculum, look for
practical, creative projects for pupils to work on
individually or in groups, ideally bringing together
computer science, information technology and
digital literacy topics. The projects you set are
more likely to be motivating if they’re linked to
your pupils’ own interests. These might allow for

cross-curricular work, projects on school life, or
interests beyond school.

Also, look for a real audience for pupils’ work,
whether they’re presenting to one another,
writing for a public blog, creating software or
digital content for younger pupils, or planning to
upload their work for others to see, via Scratch
or through school GitHub and YouTube accounts
(pupils need to be 13 before they can register to
use GitHub and YouTube independently).

Project work is sometimes taught in a very formal
way, with one particular model of the system life
cycle (the waterfall model) being rigidly adhered
to. The waterfall model has its strengths, not
least of which is the structure it provides to
the inexperienced and the less able. However,
it also has significant weaknesses, and it does
not guarantee success. Experienced developers
tend to adopt more flexible approaches, where
multiple prototypes are designed, created, tested,
evaluated and improved. Introducing this way of
working will help prepare pupils for their future
professional lives.

Computing without
computers
It is tempting to use computers for almost
everything in computing lessons. However,
providing activities such as role-play and creative
writing, and using pencil and paper, can help
clarify topics that can later be reinforced through
computer use. For example, you could act out
a binary search. The pupils can then discuss
the algorithm used and try to implement it. CS
Unplugged (www.csunplugged.org) and CS4FN
(www.cs4fn.org) both have a range of resources
for engaging pupils in active non-computer-based
tasks.

Teaching programming

For some pupils, the fact that there are often
several possible answers to a problem can
be daunting. Others aren’t used to the ‘rapid
fail – correct – fail better’ model of computer
programming. Aim to create a classroom
environment of mutual respect, and acceptance
that people learn through their mistakes. It is not
unusual for professional programmers to spend
over 50% of their time locating and fixing mistakes
in their programs. This can be very challenging

TEACHING

3 Papert, S., Mindstorms: Children, Computers, and Powerful Ideas,
(Basic Books, 1993), page 21.

23

TEACHING

for the novice, and it is important to teach
pupils techniques for locating and correcting the
mistakes they have made. This is not the same as
testing, which can tell us that the program does
not do what we intended, but cannot tell us why.

When pupils begin programming, they often
need assistance in debugging. This can quickly
become chaotic if their default is to immediately
ask the teacher for help. One way to alleviate this
problem is to implement a ‘brain, buddy, book (or
internet), then teacher’ model, where pupils can
only seek help from the teacher once they have
exhausted the other routes of support.

There are lots of websites to teach programming,
but you might find that making a custom support
site or video will help your pupils progress at
their own pace. Encourage pupils to show their
understanding by explaining their code line by line
to one another. This is sometimes called rubber
ducking or rubber duck debugging: see www.
c2.com/cgi/wiki?RubberDucking.

You will not know (and do not need to know)
the answers to all the questions raised by pupils
in a computing classroom. It is important that
pupils see you using strategies to debug program
code, to find answers and to model different
possible solutions. As a teacher, you know how
to structure and enable learning, and in the
computing classroom it is important for you to
research ways to support your pupils’ learning.
One method is to purposely insert mistakes in
your code and ask pupils to use the techniques
you have taught them to find those mistakes.

Let your pupils explore. Much learning happens
through guided exploration. Giving pupils the
basic instructions to change the colour of text
or create simple graphics will allow them to
customise tasks and put their stamp on their

work, even when you are only asking for simple
functionality such as working out the average of
some numbers.

Inclusion

The digital age has seen the web, interactive
whiteboards, virtual learning environments, video
conferencing, blogs, wikis, podcasts, video and
mobile devices have a transformative impact on
both learning and teaching. Using technology
draws on and enhances pupils’ digital skills,
and has opened up subject areas previously
unavailable to many pupils.

The following section is based on Naace/CAS
joint guidance: see http://naacecasjointguidance.
wikispaces.com/Terminology.

The digital divide
Pupils in your school probably come from a
range of backgrounds, with access to digital
technology influenced by social, cultural and
economic factors. Computing can be used as a
vehicle for social mobility, with those who excel
in the subject being in high demand across large
parts of the economy. When selecting resources
and technologies to deliver computing, take care
to ensure that all pupils have the opportunity
to study outside the classroom and become
independent learners. Ways to provide access
include running after-school clubs, having
computers and software in libraries, and using
licensing agreements or open source software so
that resources can be used at home.

Gender
Computing can appeal to pupils of both genders.
Take care to counter stereotypes within school
(and society in general) that computing is a
male-only field. There are many organisations
supporting women in technology, for example,
see http://casinclude.org.uk/ and
www.entrepreneurfirst.org.uk. Highlight the
positive contributions of female role models
such as Ada Lovelace, Grace Hopper, Jeannette
Wing and Dame Wendy Hall. Lesson examples
and project topics should be carefully considered
to appeal to both genders. Be wary of pursuing
activities that appeal to one gender or another –
for instance, certain types of computer game.

Assistive technology
Computing can be made accessible to pupils
with special educational needs or disabilities

http://www.c2.com/cgi/wiki?RubberDucking
http://www.c2.com/cgi/wiki?RubberDucking
http://naacecasjointguidance.wikispaces.com/Terminology
http://naacecasjointguidance.wikispaces.com/Terminology
http://casinclude.org.uk/
http://www.entrepreneurfirst.org.uk

24

TEACHING

(SEND) through the use of assistive technologies,
including hardware and software. Examples
include adapted mice or keyboards, Braille
displays, screen readers and adjusted system
settings for dyslexia. These technologies can also
be applied to other subjects, allowing access
across the curriculum. When pupils are designing
digital artefacts they should consider building in
support for SEND users, for example through the
use of colour schemes, layouts and support for
screen readers.

English as an additional language
Computing offers a range of tools for EAL pupils.
Many software products and websites used in
the classroom have in-built internationalisation
settings to allow pupils to use them in their first
language. Machine translation of documents and
websites may also be used, although the accuracy
of translation cannot be relied upon.

Gifted and talented pupils

Computing is a subject where pupils often
voluntarily spend a significant amount of time
outside school learning independently. It may be
difficult for you to stay ahead of your pupils in
all aspects of computing, and pupils may show
knowledge and skills beyond that expected by a
scheme of work. For example, pupils might be
using 3D animation software at home, something
not typically covered in lessons.

As a teacher, it is important that you encourage
pupils who are displaying exceptional and esoteric
skills to share their knowledge with others. You
can seek out advice from subject support groups
such as CAS and Naace on how to guide them. For
example, you might advise a programmer with
an interest in maths to look at extended tasks
on Project Euler (http://projecteuler.net/), or
to teach themselves a functional programming
language (see www.haskell.org/haskellwiki/Learn_
Haskell_in_10_minutes). Your role in this situation
is to structure and facilitate pupil learning,
guiding the pupil to relevant material and
external support.

Gifted and talented pupils should not be rushed
through the curriculum. There is plenty of
opportunity to develop depth and enrich their
learning of a particular topic. This might include
looking at more efficient algorithms to solve a
task, or looking at how the task could be solved
using different technologies.

Informal learning

There are ample opportunities both locally and
online for pupils to learn more about computing.
Much of the software and support material for
becoming a successful digital creator is available
free on the web; some commercial software
offers complimentary pupil licences. The web
hosts multiple communities where pupils and
developers share digital artefacts and learning.
Examples include YouTube and the curated MIT
ScratchEd (http://scratch.mit.edu/educators/).
ScratchEd is a support community for educators
using Scratch with their pupils. Note that owing to
COPPA legislation, pupils need to be 13 to register
to use many American-based online communities
(for more information, see www.coppa.org/).

There are opportunities across England for
digital creators to meet each other face to face,
through events such as Raspberry Jam, Young
Rewired State and Coder Dojos. There are also
competitions open to pupils, including the
University of Manchester Animation competition,
Kodu Kup, Robocup Junior and the Informatics
Olympiad (see the Resources section under
Extended learning and competitions for more
information).

After-school clubs are an excellent way of
harnessing extra enthusiasm in your pupils. They
provide an opportunity for pupils to continue
programming or to work on particular projects.

http://projecteuler.net/
http://www.haskell.org/haskellwiki/Learn_Haskell_in_10_minutes
http://www.haskell.org/haskellwiki/Learn_Haskell_in_10_minutes
http://scratch.mit.edu/educators/
http://www.coppa.org/

25

ASSESSMENT

Assessment
Formative assessment

There are several challenges to assessing
computing.

• Work delivered through projects can be open-
ended, with pupils achieving very different but
relevant outcomes.

• If pupils work collaboratively, how do you assess
an individual’s contribution?

Despite these challenges, it is possible to use
assessment for learning (AfL) techniques that
you’re familiar with from other subjects to assess
computing.

Self-assessment
Effective digital creators are independent learners.
Part of the process of becoming an independent
learner is being able to assess your own progress
and evaluate your work. Self-assessment goes
hand in hand with pupils setting their own goals.
Reporting self-assessment can take the form of a
learning journal, blog or screencast.

Peer assessment
Building on the idea of constructionism and
making digital artefacts for other people, peer
assessment provides discussion and feedback,
helping the creator and assessor to understand
what a finished product would look like, and how
to improve it. Peer assessment can happen in the
classroom but it also takes place online, through
communities such as YouTube and Scratch. Pair
programming and code reviews are industry
techniques that can be used in the classroom.

Target setting
Setting challenging targets can help pupils
recognise areas for development, an important
step in becoming an independent learner. Make
sure that targets are realistic, manageable and
fully evaluated.

Open questioning
The theory elements of computing run the risk
of being taught in a ‘tell and recall’ way, with
pupils being passive receivers of information.
Open questioning (“Why?” and “How?”) allows
pupils to understand the implications of theory.
Programming and IT project tasks can be assessed

by asking questions such as, “Why did you choose
to do it this way and not another?” and “Can you
explain how this works?”. For more information,
see the assessment guidance from Naace at
www.naace.co.uk/curriculum/assessment.

KWL
Asking pupils to state what they already know,
what they want to learn and what they have
learned provides a perfect platform for pupil self-
assessment and target setting. It can also inform
your future lesson planning.

Technology-enhanced learning
Using technology-enhanced learning can be
particularly effective in AfL. Here are a couple of
examples.

Blogs and online communities: by publishing
work in open or school-specific communities,
pupils can share practice, create work for an
audience and peer assess. Most virtual learning
environments will have the ability to implement
this within your school, and online communities
such as YouTube and Scratch allow for wider
audiences. Assessing work through blogs and
online communities also links well with several
of the key points around digital literacy. Pupils
should think carefully about allowing completely
open comments on their work – they need to be
resilient if adverse comments are received and
your role may be to support them.

Machine assessment: platforms exist to teach and
automatically assess some aspects of computing.
For example, OCR has built a computing MOOC for
their GCSE: see www.cambridgegcsecomputing.
org/. Commercial websites and virtual learning
environments may provide tools to create self-
marking tests.

http://www.naace.co.uk/curriculum/assessment
http://www.cambridgegcsecomputing.org/
http://www.cambridgegcsecomputing.org/

26

ASSESSMENT

Summative assessment

The levels from the previous ICT curriculum have
been removed, leaving assessment at KS3 to the
responsibility of individual schools.

By the end of each key stage, pupils are expected
to know, apply and understand the matters, skills
and processes specified in the relevant programme
of study.

The programme of study should form the basis
of any assessment scheme. An obvious solution
is to gather evidence from individual pupils as to
whether they have met the requirements through
a portfolio or record of achievement. This doesn’t
need to be too onerous a task. For example, as
a pupil demonstrates mastery of a particular
point, the evidence could be collected on a blog
and their progress recorded by the teacher in the
school assessment system.

There are a number of frameworks available for
assessing computing. One such is the Progression
Pathways Assessment Framework (KS1 to KS3)
published by Computing at School (community.
computingatschool.org.uk/resources/1692). This
framework provides guidance on what to look
for at different stages in the development of
knowledge under a range of subject headings. An
alternative framework is Assessing Attainment
in Computing (community.computingatschool.
org.uk/resources/2078) which takes a slightly
different approach. It is up to you whether to
adopt a published framework or to devise one of
your own.

It makes sense to split the programme of
study into individual clauses that can be easily
understood by teachers, pupils and parents or
carers, and against which progress can be tracked.
To demonstrate progress, pupils could take a
‘snapshot’ showing the parts of the programme
of study that have been met, along with the
evidence. This could be compared with another
‘snapshot’ from a later date.

Achievement of each part of the programme
of study could be rewarded with an item such
as a badge. Mozilla’s OpenBadges system
(http://openbadges.org/) offers a potential
digital solution. DigitalMe breaks down the
criteria for awarding a badge into skills,
knowledge, behaviours and evidence: see
www.digitalme.co.uk/badges.

Here is an example of how this might work in
practice.

Understand how … text … can be represented
… digitally, in the form of binary digits

Skills – convert from Unicode to text; convert
from text to Unicode; be able to predict the
Unicode value of a character given another
character close to it in the alphabet.
Knowledge – know the need for coding
systems; know why Unicode is used; know
there are different types of Unicode; know
how binary is used to represent a capital letter
in the English alphabet.
Behaviours – ability to work in pairs to create
Unicode messages; peer assessment of work.
Evidence – three messages decoded from
Unicode into text; one message written in
Unicode; completed worksheet on Unicode.

The example above is matched to a clause
from Assessing Attainment in Computing. This
assessment framework is derived directly from
the programme of study, organised as eight bands
across KS1–KS3 for CS, IT and DL. It builds on
Computing at School's primary national curriculum
guidance.

A similar approach can be followed if using the
Progression Pathways Assessment Framework
(KS1 to KS3) published by Computing at School. On
the right-hand side of the web page, there is a PDF
document available for download that explains
how the assessment framework can be used
with digital badges. An alternative version shows
progression under the CS, IT and DL strands.

community.computingatschool.org.uk/resources/1692
community.computingatschool.org.uk/resources/1692
community.computingatschool.org.uk/resources/2078
community.computingatschool.org.uk/resources/2078
http://openbadges.org/
http://www.digitalme.co.uk/badges

27

CONCLUDING REMARKS

Concluding
remarks
Understanding how computers work and
being able to use them creatively gives pupils
the power to shape the world around them.
The new computing curriculum offers a firm
foundation in this exciting and important subject.
Computing gives pupils the opportunity to access
technologies and ideas previously unavailable,
helping them to make informed choices about
their futures.

Computing can be a hugely fun and rewarding
subject for teachers and pupils. Some of the ideas
might be new to you and, at first, daunting. But
treat this as an opportunity to learn and teach the
concepts that are shaping the modern world. You
may start to see the world differently, developing
your knowledge of computing and skills in
creating digital artefacts. Through computational
thinking you will start to think like a computer
scientist. And you are not alone. There are
thousands of people across the country – and
some great support networks and communities –
wanting to help bring the computing curriculum
to life. Together, we can bring about a generation
of computational thinkers and digital creators.

28

GLOSSARY

Glossary
abstraction (process) – the act of selecting and
capturing relevant information about a thing,
a system or a problem.

abstraction (product) – a representation of a
thing, a system or a problem that contains only
selected (relevant) details about it; for example,
a diagram is an abstraction.

algorithm – a set of unambiguous rules or
instructions to achieve a particular objective.

array – a data structure comprising a collection
of values of the same type, accessible through an
index.

assembly code – a human-readable programming
language in which each instruction corresponds to
a single executable instruction for a CPU.

binary – a method of encoding data using two
symbols, 1 and 0.

binary number – a number written in the base 2
number system.

bit – a basic unit of data that stores one binary
value, 1 or 0.

bitmap – a collection of pixels forming an image.

Boolean – a data type with only two values, TRUE
or FALSE.

browser cookie – a small piece of text recording
activity about websites you visit, stored on your
computer.

circuit – a grouping of electronic components that
allow for operations to be performed.

code – any set of instructions expressed in a
programming language.

coding – the act of writing computer programs in
a programming language.

colour depth – the number of different colours
that may be used in an image, dictated by the
number of bits used to represent the colour of
each pixel.

compiler – a program that converts programs
written in one language (source code) into
equivalent programs written in a different
language (often in the form of instructions that a
processor can execute).

computational thinking – a philosophy that
underpins computing through decomposition,
pattern recognition, abstraction, pattern
generalisation and algorithm design.

CPU – central processing unit; the device within a
computer that executes instructions.

data structure – a particular way to store and
organise data within a computer program.

debugging – the process of finding and correcting
errors in programs.

decimal – the base 10 number system.

decomposition – breaking a problem or system
down into its components.

digital – using discrete binary values.

digital artefact – digital content made by a human
with intent and skill.

digital creator – a person who makes digital
artefacts.

digital media – media encoded in a computer
readable form.

hardware – the physical components that make
up a computer.

HTML – hypertext mark-up language; the language
used to create web pages.

input (noun) – an input is a data value passed
from the outside world to a computer.

input (verb) – to input is to send data from the
outside world into a computer system.

internet – a network of interconnected networks.

interpreter – a program that converts instructions
written in one language into equivalent
instructions in another language, and executes
each instruction as soon as it is translated.

29

GLOSSARY

IP address – Internet Protocol address; a unique
numeric value that is assigned to a computer or
other device connected to the internet so that it
may be identified and located.

lists – a data structure for storing ordered values.

model – a representation of (some part of) a
problem or a system.

modelling – the act of creating a model.

modular design – the practice of designing a
system or program as a set of independent
but interacting units (modules) that may be
implemented and tested separately before
bringing them together to solve the overall
problem.

network – more precisely, a computer network;
a collection of computational devices (personal
computers, phones, servers, switches, routers,
and so on) connected to one another by cables
or by wireless media, and arranged so that data
may be sent between devices either directly or via
other devices.

operating system – a set of programs that manage
the functioning of, and other programs’ access to,
hardware.

output (noun) – a response from a system.

output (verb) – to generate an output.

packet – more precisely, a network packet. A
formatted unit of data for transmission across a
network. Each packet contains part of a message
plus some additional data, including where it is
from and where it is going.

pixel – the smallest controllable element of
picture/display.

process (noun) – a process is a running program.

process (verb) – the act of using data to perform a
calculation or other operation.

program – a set of instructions that the computer
executes in order to achieve a particular objective.

programming – the craft of analysing problems
and designing, writing, testing and maintaining
programs to solve them.

programming language – formal language used to
give a computer instructions.

repetition – the process of repeating a task a set
number of times or until a condition is met.

resolution – a measurement of the number of
pixels needed to display an image.

router – more precisely, a network router. A
router is a device that connects networks to one
another (typically one or more local area networks
(LANs) to a wide area network (WAN)), and directs
packets between networks. A home broadband
router performs the functions of a switch while
allowing computers to connect to the internet.

selection – using conditions to control the flow of
a program.

sequence (noun) – an ordered set of instructions.

sequence (verb) – to arrange a set of instructions
in a particular order.

server – a computer or program dedicated to a
particular set of tasks that provides services to
other computers or programs on a network.

software – the programs that run on the
hardware/computer system.

switch – more precisely, a network switch. This is
a device that connects multiple computers to one
another on a single local area network (LAN), and
directs packets from machine to machine.

table – a data type storing organised sets of data
under column headings.

Unicode – a standardised system for representing
individual characters as sequences of bits.

variable – a data store used in a program.

web browser – a computer program to view
websites.

World Wide Web – a service made of connected
hypertext documents linked together across the
internet.

30

RESOURCES

Resources

Here is a small selection of resources for
computing at KS3 and KS4. A much more complete
curated list can be found at http://community.
computingatschool.org.uk/resources/1787.

Background

Computing at School Working Group,
Computer Science: A Curriculum for Schools
(Computing at School, 2012), available at:
www.computingatschool.org.uk/data/uploads/
ComputingCurric.pdf.

Helsper, E.J. and Eynon, R., ‘Digital Natives: Where
is the Evidence?’ British Educational Research,
(2010) 36(3), 503–520.

Papert, S., Mindstorms: Children, Computers, and
Powerful Ideas (Basic Books, 1993).

The Royal Society, Shut Down or Restart? The Way
Forward for Computing in UK Schools (London,
2012), available at: http://royalsociety.org/
uploadedFiles/Royal_Society_Content/education/
policy/computing-in-schools/2012-01-12-
computing-in-Schools.pdf.

Rushkoff, D., Program or be Programmed: Ten
Commands for a Digital Age (OR Books, 2009).

Teaching Agency, Subject Knowledge
Requirements for Entry into Computer Science
Teacher Training (London, 2012), available
at: http://academy.bcs.org/sites/academy.
bcs.org/files/subject%20knowledge%20
requirements%20for%20entry%20into%20
cs%20teacher%20training.pdf.

Subject knowledge

Bentley, P.J., Digitized: The Science of Computers
and How it Shapes our World (Oxford University
Press, 2012).

Berners-Lee, T., ‘Answers for Young People’,
available at: www.w3.org/People/Berners-Lee/
Kids.html.

Brennan, K. and Resnick, M., New Frameworks
for Studying and Assessing the Development of
Computational Thinking (2012), available at:
http://web.media.mit.edu/~kbrennan/files/
Brennan_Resnick_AERA2012_CT.pdf.

Computing at School, The Raspberry Pi Education
Manual (Computing at School, 2012), available at:
http://pi.cs.man.ac.uk/download/Raspberry_Pi_
Education_Manual.pdf.

Kemp, P. et. al. (2011–) A-level Computing
(Wikibooks), available at: https://en.wikibooks.
org/wiki/A-level_Computing/AQA.

O’Byrne, S. and Rouse, G., OCR Computing for
GCSE (Hodder Education, 2012).

http://community.computingatschool.org.uk/resources/1787
http://community.computingatschool.org.uk/resources/1787
http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-computing-in-Schools.pdf
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-computing-in-Schools.pdf
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-computing-in-Schools.pdf
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-computing-in-Schools.pdf
http://academy.bcs.org/sites/academy.bcs.org/files/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf
http://academy.bcs.org/sites/academy.bcs.org/files/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf
http://academy.bcs.org/sites/academy.bcs.org/files/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf
http://academy.bcs.org/sites/academy.bcs.org/files/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf
http://www.w3.org/People/Berners-Lee/Kids.html
http://www.w3.org/People/Berners-Lee/Kids.html
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://pi.cs.man.ac.uk/download/Raspberry_Pi_Education_Manual.pdf
http://pi.cs.man.ac.uk/download/Raspberry_Pi_Education_Manual.pdf
https://en.wikibooks.org/wiki/A-level_Computing/AQA
https://en.wikibooks.org/wiki/A-level_Computing/AQA

31

RESOURCES

Extended learning
and competitions
The British Informatics Olympiad: a computer
programming competition for pupils under 19.
Finals of the competition take place in Cambridge:
see www.olympiad.org.uk.

CoderDojo: organisation promoting computer
programming and technology; locations spread
across the UK: see www.coderdojo.com.

Make Things Do Stuff: campaign and website
providing pupils with links to clubs, communities,
competitions and events; provides online projects:
see www.makethingsdostuff.co.uk.

RaspberryJam: monthly meeting for Raspberry Pi
enthusiasts of all ages; locations spread across the
UK: see www.raspberryjam.org.uk.

UK Schools Computer Animation Competition:
run by the University of Manchester, open to
UK pupils aged 7–19: see http://animation14.
cs.manchester.ac.uk (note the web address
changes each year).

Young Rewired State: organisation promoting
computer programming through online
networking and free camps of varying lengths for
pupils aged 18 and under; locations spread across
the UK: see www.youngrewiredstate.org.

Teaching resources

New Zealand-based Computer Science (CS)
Unplugged produce an excellent collection of
resources exploring computer science ideas
through classroom-based, rather than computer-
based, activities: see http://csunplugged.org/.

Computing at School (CAS) hosts a large resource
bank of plans, resources and activities. CAS is free
to join: see www.computingatschool.org.uk.

Naace (the ICT association) and CAS have
developed joint guidance on the new computing
curriculum: see http://naacecasjointguidance.
wikispaces.com/home.

A group of teachers and teacher trainers convened
by the NCTL worked together to curate resources
for initial teacher training for the computing
curriculum, many of which may be useful for CPD
and classroom use: see https://sites.google.com/
site/primaryictitt/.

The 2008 Royal Institution Christmas Lectures
were given by computer scientist Chris Bishop.
These can be watched at www.richannel.org/
christmas-lectures/2008/2008-chris-bishop.

Excellent resources are available for teaching with
MIT’s Scratch programming toolkit, together with
an online support community, on the ScratchEd
site: see http://scratched.media.mit.edu/.

Resources for teaching safe, respectful and
responsible use of technology are widely
available. Good starting points for exploring
these topics are www.childnet.com/teachers-
and-professionals and www.thinkuknow.co.uk/
teachers/.

http://www.olympiad.org.uk
http://www.coderdojo.com
www.makethingsdostuff.co.uk
http://www.raspberryjam.org.uk
http://animation14.cs.manchester.ac.uk
http://animation14.cs.manchester.ac.uk
http://www.youngrewiredstate.org
http://csunplugged.org/
http://www.computingatschool.org.uk
http://naacecasjointguidance.wikispaces.com/home
http://naacecasjointguidance.wikispaces.com/home
https://sites.google.com/site/primaryictitt/
https://sites.google.com/site/primaryictitt/
www.richannel.org/christmas-lectures/2008/2008-chris-bishop
www.richannel.org/christmas-lectures/2008/2008-chris-bishop
http://scratched.media.mit.edu/
http://www.childnet.com/teachers-and-professionals
http://www.childnet.com/teachers-and-professionals
http://www.thinkuknow.co.uk/teachers/
http://www.thinkuknow.co.uk/teachers/

32

SUPPORT

Support
Computing at School (CAS), as the subject
association for computer science, has been a
key influence on the development of the new
computing curriculum. CAS has a vibrant support
community, including members from industry and
from all phases of education. There’s a dedicated
forum for members in secondary education, and
many local and regional events, including training.
See www.computingatschool.org.uk for more
information or to join (free membership).

Naace is the ICT association concerned
with advancing education through the use
of technology, both within and beyond the
computing curriculum. Naace members share a
vision for the role of technology in transforming
learning and teaching. Its members include
teachers, school leaders, advisors and consultants
working within and across all phases of UK
education. Membership requires an annual
subscription but many resources are available for
free. See www.naace.co.uk/.

CAS has worked in collaboration with the British
Computer Society (BCS) to establish a Network
of Teaching Excellence in Computer Science.
The network coordinates and provides training
opportunities for serving and trainee teachers.
The initiative is supported by the DfE, CPHC
(Council of Professors and Heads of Computing),
Microsoft and Google. The programme aims to
build a high-quality, sustainable CPD infrastructure
at low cost by nurturing long-term collaboration
between employers, universities, professional
bodies, schools and teachers. See
www.computingatschool.org.uk/index.
php?id=noe.

Many local authorities and CLCs (City Learning
Centres) provide support and advice for schools
and teachers on all aspects of the curriculum,
including computing. Contact your local advisors
or consultants for details of events and support in
your area.

The Science Learning Centres offer CPD and
other support to teachers and other school
staff working in STEM disciplines including
computing and ICT. Their national portal is at
www.sciencelearningcentres.org.uk, and training
opportunities may be found by searching there
or by following links to the five regional Science
Learning Consortia.

Twitter is a great informal source of ideas
and advice once you’ve built up a useful list of
contacts. The CAS Twitter account: @compatsch,
its followers: https://twitter.com/CompAtSch/ and
those it follows: https://twitter.com/CompAtSch/
following may be helpful in developing your own
personal learning network.

Facebook has groups for computing
teachers teaching KS3: www.facebook.com/
groups/254185994653238/ and teaching GCSE:
www.facebook.com/groups/411684088866398/.

http://www.computingatschool.org.uk
http://www.naace.co.uk/
http://www.computingatschool.org.uk/index.php?id=noe
http://www.computingatschool.org.uk/index.php?id=noe
http://www.sciencelearningcentres.org.uk
https://twitter.com/CompAtSch/
https://twitter.com/CompAtSch/following
https://twitter.com/CompAtSch/following
http://www.facebook.com/groups/254185994653238/
http://www.facebook.com/groups/254185994653238/
http://www.facebook.com/groups/411684088866398/

Computing At School promotes the teaching of
computing in schools. Our aim is to support all
teachers and all schools, and to develop excellence
in the teaching of computing in their classrooms.
We provide resources, training, local conferences
and workshops, regional hub meetings, online
community forums and so much more! Computing
At School is free to join. Sign up and find out about
events in your area by visiting us at
www.computingatschool.org.uk/secondary.

This work is licensed under a Creative Commons
Attribution-Non-Commercial-ShareAlike 3.0 Unported Licence.

Naace promotes the appropriate use of
computing to support learning, teaching and
school organisation. Our aim is to support and
challenge all teachers and schools and also
those who provide services to schools. Naace
has existed as an advocate in this area for 30
years and makes a small charge for annual
membership.

Visit www.naace.co.uk/membership to join
and to find out more about the ICT Quality Mark
and Third Millennium Learning Award.

COMPUTING AT SCHOOL
E D U C AT E • E N G A G E • E N C O U R A G E
In collaboration with BCS, The Chartered Institute for IT

An eBook version of this guide,
which can be freely shared with
colleagues, is available at:
www.computingatschool.org.uk/secondary

