Blog Archive

Showing posts with label OCO-2. Show all posts
Showing posts with label OCO-2. Show all posts

Monday, August 11, 2014

NASA Carbon Counter [the Orbiting Carbon Observatory-2 (OCO-2)] Reaches Final Orbit, Returns Data

from JPL, NASA, August 11, 2014
NASA's OCO-2 spacecraft collected
NASA's OCO-2 spacecraft collected "first light" data Aug. 6 over New Guinea. OCO-2's spectrometers recorded the bar code-like spectra, or chemical signatures, of molecular oxygen or carbon dioxide in the atmosphere. The backdrop is a simulation of carbon dioxide created from GEOS-5 model data. Credit: NASA/JPL-Caltech/NASA GSFC
› Hi-res image

Just over a month after launch, the Orbiting Carbon Observatory-2 (OCO-2) -- NASA's first spacecraft dedicated to studying atmospheric carbon dioxide -- has maneuvered into its final operating orbit and produced its first science data, confirming the health of its science instrument.
Atmospheric carbon dioxide is the leading human-produced greenhouse gas responsible for warming our world. It is a critical natural component of Earth's carbon cycle. OCO-2 will produce the most detailed picture to date of sources of carbon dioxide, as well as their natural "sinks" -- places on Earth's surface where carbon dioxide is removed from the atmosphere. The observatory will study how these sources and sinks are distributed around the globe and how they change over time.
Following launch from California's Vandenberg Air Force Base on July 2, OCO-2 underwent a series of steps to configure the observatory for in-flight operations. Mission controllers established two-way communications with the observatory, stabilized its orientation in space and deployed its solar arrays to provide electrical power. The OCO-2 team then performed a checkout of OCO-2's systems to ensure they were functioning properly.
Through the month of July, a series of propulsive burns was executed to maneuver the observatory into its final 438-mile (705-kilometer), near-polar orbit at the head of the international Afternoon Constellation, or "A-Train," of Earth-observing satellites. It arrived there on Aug. 3. Operations are now being conducted with the observatory in an orbit that crosses the equator at 1:36 p.m. local time.
The A-Train, the first multi-satellite, formation-flying "super observatory" to record the health of Earth's atmosphere and surface environment, collects an unprecedented quantity of nearly simultaneous climate and weather measurements. OCO-2 is now followed by the Japanese GCOM-W1 satellite, and then by NASA's Aqua, CALIPSO, CloudSat and Aura spacecraft, respectively -- all of which fly over the same point on Earth within 16 minutes of each other.
With OCO-2 in its final orbit, mission controllers began cooling the observatory's three-spectrometer instrument to its operating temperatures. The spectrometer's optical components must be cooled to near 21 degrees Fahrenheit (minus 6 degrees Celsius) to bring them into focus and limit the amount of heat they radiate. The instrument's detectors must be even cooler, near minus 243 degrees Fahrenheit (minus 153 degrees Celsius), to maximize their sensitivity.
With the instrument's optical system and detectors near their stable operating temperatures, the OCO-2 team collected "first light" test data on Aug. 6 as the observatory flew over central Papua New Guinea. The data were transmitted from OCO-2 to a ground station in Alaska, then to NASA's Goddard Space Flight Center in Greenbelt, Maryland, for initial decoding, and then to NASA's Jet Propulsion Laboratory in Pasadena, California, for further processing. The test provided the OCO-2 team with its first opportunity to see whether the instrument had reached orbit with the same performance it had demonstrated before launch.
As OCO-2 flies over Earth's sunlit hemisphere, each spectrometer collects a "frame" three times each second, for a total of about 9,000 frames from each orbit. Each frame is divided into eight spectra, or chemical signatures, that record the amount of molecular oxygen or carbon dioxide over adjacent ground footprints. Each footprint is about 1.3 miles (2.25 kilometers) long and a few hundred yards (meters) wide. When displayed as an image, the eight spectra appear like bar codes -- bright bands of light broken by sharp dark lines. The dark lines indicate absorption by molecular oxygen or carbon dioxide.
"The initial data from OCO-2 appear exactly as expected -- the spectral lines are well resolved, sharp and deep," said OCO-2 chief architect and calibration lead Randy Pollock of JPL. "We still have a lot of work to do to go from having a working instrument to having a well-calibrated and scientifically useful instrument, but this was an important milestone on this journey."
Over the next several weeks, the OCO-2 team will conduct a series of calibration activities to characterize fully the performance of the instrument and observatory. In parallel, OCO-2 will routinely record and return up to 1 million science observations each day. These data will be used initially to test the ground processing system and verify its products. The team will begin delivering calibrated OCO-2 spectra data to NASA's Goddard Earth Sciences Data and Information Services Center for distribution to the global science community and other interested parties before the end of the year. The team will also deliver estimates of carbon dioxide to that same center for distribution in early 2015.
OCO-2 is a NASA Earth System Science Pathfinder Program mission managed by JPL for NASA's Science Mission Directorate in Washington. Orbital Sciences Corporation in Dulles, Virginia, built the spacecraft bus and provides mission operations under JPL's leadership. The science instrument was built by JPL, based on the instrument design co-developed for the original OCO mission by Hamilton Sundstrand in Pomona, California. NASA's Launch Services Program at NASA's Kennedy Space Center in Florida was responsible for launch management.
NASA monitors Earth's vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.
For more information, visit:  http://www.nasa.gov/oco2  http://oco.jpl.nasa.gov

Sunday, July 20, 2014

NASA JPL Orbiting Carbon Observatory-2 satellite (OCO-2) can track CO2 back to its source, help refine model resolution to regions



Carbon in Smoke PlumesScientists will use measurements from the Orbiting Carbon Observatory-2 to track atmospheric carbon dioxide to sources such as these wildfires in Siberia, whose smoke plumes quickly carry the greenhouse gas worldwide. The fires were imaged on May 18, 2014, by NASA's Moderate Resolution Imaging Spectrometer instrument on the Terra satellite. Image credit: NASA/LANCE/EOSDIS Rapid Response 
› Larger image

NASA's JPL, July 18, 2014
NASA's Orbiting Carbon Observatory-2, which launched on July 2, 2014, will soon be providing about 100,000 high-quality measurements each day of carbon dioxide concentrations from around the globe. Atmospheric scientists are excited about that. But to understand the processes that control the amount of the greenhouse gas in the atmosphere, they need to know more than just where carbon dioxide is now. They need to know where it has been. It takes more than great data to figure that out.
"In a sense, you're trying to go backward in time and space," said David Baker, a scientist at Colorado State University in Fort Collins. "You're reversing the flow of the winds to determine when and where the input of carbon at the Earth's surface had to be to give you the measurements you see now."
Harry Potter used a magical time turner to travel to the past. Atmospheric scientists use a type of computer model called a chemical transport model. It combines the atmospheric processes found in a climate model with additional information on important chemical compounds, including their reactions, their sources on Earth's surface and the processes that remove them from the air, known as sinks.
Baker used the example of a forest fire to explain how a chemical transport model works. "Where the fire is, at that point in time, you get a pulse of carbon dioxide in the atmosphere from the burning carbon in wood. The model's winds blow it along, and mixing processes dilute it through the atmosphere. It gradually gets mixed into a wider and wider plume that eventually gets blown around the world."
Some models can be run backward in time -- from a point in the plume back to the fire, in other words -- to search for the sources of airborne carbon dioxide. The reactions and processes that must be modeled are so complex that researchers often cycle their chemical transport models backward and forward through the same time period dozens of times, adjusting the model as each set of results reveals new clues. "You basically start crawling toward a solution," Baker said. "You may not be crawling straight toward the best answer, but you course-correct along the way."
Lesley Ott, a climate modeler at NASA's Goddard Space Flight Center, Greenbelt, Maryland, noted that simulating carbon dioxide's atmospheric transport correctly is a prerequisite for improving the way global climate models simulate the carbon cycle and how it will change with our changing climate. "If you get the transport piece right, then you can understand the piece about sources and sinks," she said. "More and better-quality data from OCO-2 are going to create better characterization of global carbon."
Baker noted that the volume of data provided by OCO-2 will improve knowledge of carbon processes on a finer scale than is currently possible. "With all that coverage, we'll be able to resolve what's going on at the regional scale," Baker said, referring to areas the size of Texas or France. "That will help us understand better how the forests and oceans take up carbon. There are various competing processes, and right now we're not sure which ones are most important."
Ott pointed out that improving the way global climate models represent carbon dioxide provides benefits far beyond the scientific research community. "Trying to figure out what national and international responses to climate change should be is really hard," she said. "Politicians need answers quickly. Right now we have to trust a very small number of carbon dioxide observations. We're going to have a lot better coverage because so much more data is coming, and we may be able to see in better detail features of the carbon cycle that were missed before." Taking those OCO-2 data backward in time may be the next step forward on the road to understanding and adapting to climate change.
To learn more about the OCO-2 mission, visit these websites: http://www.nasa.gov/oco2 , http://oco.jpl.nasa.gov