
CS3204:

Operating Systems

Lecture 7:

Processes & Threads
Creation, intro to race

conditions

Presenter: Ali R. Butt

Announcements

 Project 1 due Monday Feb 23, 11:59pm
 Project 1 help session slides online

 Reading assignments:
 Chapters 1, 2 – skim. Read carefully 1.5.
 Read carefully Chapter 3.1-3.3
 Read carefully Chapter 6.1-6.4

Project 1 Suggested Timeline

 By now:

 Have read relevant project documentation, set up CVS, built and
run your first kernel, designed your data structures for alarm clock

 Are finishing your Alarm clock

 Basic priority by Feb 13

 Priority Inheritance & Advanced Scheduler will take the
most time to implement & debug, start them in parallel

 Should have design for priority inheritance figured out by Feb 15

 Develop & test fixed-point layer independently by Feb 15

 Due date Feb 23

Thread state

diagram in an

industrial kernel:

Windows XP

 Source: Dave Probert, Windows
Internals – Copyright Microsoft 2003

Initialized

Ready

Terminated Running

Standby

Deferred
Ready

Waiting

KeInitThread

KeTerminateThread

Transition
k stack

swapped

KiUnwaitThread
KiReadyThread

KiQuantumEnd
KiIdleSchedule
KiSwapThread
KiExitDispatcher
NtYieldExecution

Kernel Thread Transition Diagram

DavePr@Microsoft.com

2003/04/06 v0.4b

Idle

processor

or

preemption

KiInsertDeferredReadyList

preemption

preemption

KiRetireDpcList/KiSwapThread/
KiExitDispatcher
KiProcessDeferredReadyList
KiDeferredReadyThread

no avail.

processor

KiSelectNextThread

PspCreateThread
KiReadyThread
KiInsertDeferredReadyList

Affinity

ok

Affinity

not ok

KiSetAffinityThread
KiSetpriorityThread

Ready
process
swapped

KiReadyThread

Windows XP
 Priority scheduler uses 32

priorities

 Scheduling class determines
range in which priority are
adjusted

 Source: Microsoft®
Windows® Internals, Fourth
Edition: Microsoft Windows
Server™

Process creation

 Two common paradigms:

 Cloning vs. spawning

 Cloning: (Unix)

 “fork()” clones current process

 child process then loads new program

 Spawning: (Windows, Pintos)

 “exec()” spawns a new process with new program

 Difference is whether creation of new process also
involves a change in program

fork()
#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

int main(int ac, char *av[])

{

}

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

int main(int ac, char *av[])

{

pid_t child = fork();

if (child < 0)

perror(“fork”), exit(-1);

if (child != 0) {

printf ("I'm the parent %d, my child is %d\n",

getpid(), child);

wait(NULL); /* wait for child (“join”) */

} else {

printf ("I'm the child %d, my parent is %d\n",

getpid(), getppid());

execl("/bin/echo", "echo", "Hello, World", NULL);

}

}

Fork/Exec Model

 Fork():
 Clone most state of parent, including memory

 Inherit some state, e.g. file descriptors

 Important optimization: copy-on-write

Some state is copied lazily
 Keeps program, changes process

 Exec():
 Overlays current process with new executable

 Keeps process, changes program

 Advantage: simple, clean

 Disadvantage: does not optimize common case (fork
followed by exec of child)

The fork()/join() paradigm

 After fork(), parent & child execute
in parallel

 Purpose:
 Launch activity that can be done in

parallel & wait for its completion

 Or simply: launch another program
and wait for its completion (shell does
that)

 Pintos:
 Kernel threads: thread_create (no

thread_join)

 exec(), you’ll do wait() in Project 2

Parent:Parent:

fork()

Parent:Parent:

join()

process

executes

Parent

process

executes

Child

process

executes

Child

process

executes

Child

process

Child

process

exits

OS notifies

CreateProcess()

// Win32

BOOL CreateProcess(

LPCTSTR lpApplicationName,

LPTSTR lpCommandLine,

LPSECURITY_ATTRIBUTES lpProcessAttributes,

LPSECURITY_ATTRIBUTES lpThreadAttributes,

BOOL bInheritHandles,

DWORD dwCreationFlags,

LPVOID lpEnvironment,

LPCTSTR lpCurrentDirectory,

LPSTARTUPINFO lpStartupInfo,

LPPROCESS_INFORMATION lpProcessInformation);

 See also system(3) on Unix systems

 Pintos exec() is CreateProcess(), not like Unix’s exec()

Thread creation APIs

 How are threads embedded in a language?

 POSIX Threads Standard (in C)
 pthread_create(), pthread_join()
 Uses function pointer

 Java/C#
 Thread.start(), Thread.join()
 Java: Using “Runnable” instance
 C#: Uses “ThreadStart” delegate

 C++
 No standard has emerged as of yet
 see ISO C++ Strategic Plan for Multithreading

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1815.html

Example pthread_create/join
static void * test_single(void *arg)

{

// this function is executed by each thread, in parallel

}

/* Test the memory allocator with NTHREADS concurrent threads. */

pthread_t threads[NTHREADS];

int i;

for (i = 0; i < NTHREADS; i++)

if (pthread_create(threads + i, (const pthread_attr_t*)NULL,

test_single, (void*)i) == -1)

{ printf("error creating pthread\n"); exit(-1); }

/* Wait for threads to finish. */

for (i = 0; i < NTHREADS; i++)

pthread_join(threads[i], NULL);

Use Default Attributes –

could set stack addr/size

here

2nd arg could receive exit

status of thread

Java Threads Example

public class JavaThreads {

public static void main(String []av) throws Exception {

Thread [] t = new Thread[5];

for (int i = 0; i < t.length; i++) {

final int tnum = i;

Runnable runnable = new Runnable() {

public void run() {

System.out.println("Thread #"+tnum);

}

};

t[i] = new Thread(runnable);

t[i].start();

}

for (int i = 0; i < t.length; i++)

t[i].join();

System.out.println("all done");

}

}

Threads implements Runnable –

could have subclassed Thread &

overridden run()

Thread.join() can throw

InterruptedException – can be

used to interrupt thread waiting to

join via Thread.interrupt

Why is taking C++ so long?

 Java didn’t – and got it wrong.
 Took years to fix

 What’s the problem?
 Compiler must know about concurrency to not reorder operations

past implicit synchronization points

 See also Pintos Reference Guide A.3.5 Memory Barriers

 See Boehm [PLDI 2005]: Threads cannot be implemented as a
library

lock (&l);

flag = true;

unlock (&l);

lock (&l);

unlock (&l);

flag = true;

http://courses.cs.vt.edu/~cs3204/fall2006/gback/pintos/doc/pintos_6.html
http://doi.acm.org/10.1145/1065010.1065042
http://doi.acm.org/10.1145/1065010.1065042

Processes & Threads (Summary)

 Had looked at APIs with which to create processes/threads

 Spawning vs. cloning

 “fork/join” paradigm (will be implemented in Project 2)

 Various embeddings of threading APIs in languages
(C/POSIX threads, Java, C#)

Type-safe arithmetic types in C

typedef struct

static inline complex_t

complex_add(complex_t x, complex_t y)

{

}

typedef struct

{

double re;

double im;

} complex_t;

static inline complex_t

complex_add(complex_t x, complex_t y)

{

return (complex_t){ x.re + y.re, x.im + y.im };

}

static inline double

complex_real(complex_t x)

{

}

static inline double

complex_imaginary(complex_t x)

{

}

static inline double

complex_abs(complex_t x)

{

return sqrt(x.re * x.re + x.im * x.im);

}

static inline double

complex_real(complex_t x)

{

return x.re;

}

static inline double

complex_imaginary(complex_t x)

{

return x.im;

}

static inline double

complex_abs(complex_t x)

{

return sqrt(x.re * x.re + x.im * x.im);

}

Pitfall: typedef int fixed_point_t;

fixed_point_t x;

int y;

x = y; // no compile error

Race Conditions

“Too Much Milk” Problem

Person A

Look in the fridge: Out of Milk

Leave for Wawa

Arrive at Wawa

Buy milk

Arrive home

Person B

Look in fridge: Out of Milk

Leave for Wawa

Arrive at Wawa

Buy milk

Arrive home

 Don’t buy too much milk

 Any person can be distracted at any time

A possible solution?

Thread A

If (noMilk) {

if (noNote) {

leave note

buy milk

remove note

}

}

Thread B

If (noMilk) {

if (noNote) {

leave note

buy milk

remove note

}

}

 Does this method work?

Another possible solution?

Thread A

leave noteA

if (noNoteB) {

if (noMilk) {

buy milk;

}

}

Remove noteA

Thread B

leave noteB

if (noNoteA) {

if (noMilk) {

buy milk;

}

}

Remove noteB

 Does this method work?

