
CS3204:

Operating Systems

Lecture 7:

Processes & Threads
Creation, intro to race

conditions

Presenter: Ali R. Butt

Announcements

 Project 1 due Monday Feb 23, 11:59pm
 Project 1 help session slides online

 Reading assignments:
 Chapters 1, 2 – skim. Read carefully 1.5.
 Read carefully Chapter 3.1-3.3
 Read carefully Chapter 6.1-6.4

Project 1 Suggested Timeline

 By now:

 Have read relevant project documentation, set up CVS, built and
run your first kernel, designed your data structures for alarm clock

 Are finishing your Alarm clock

 Basic priority by Feb 13

 Priority Inheritance & Advanced Scheduler will take the
most time to implement & debug, start them in parallel

 Should have design for priority inheritance figured out by Feb 15

 Develop & test fixed-point layer independently by Feb 15

 Due date Feb 23

Thread state

diagram in an

industrial kernel:

Windows XP

 Source: Dave Probert, Windows
Internals – Copyright Microsoft 2003

Initialized

Ready

Terminated Running

Standby

Deferred
Ready

Waiting

KeInitThread

KeTerminateThread

Transition
k stack

swapped

KiUnwaitThread
KiReadyThread

KiQuantumEnd
KiIdleSchedule
KiSwapThread
KiExitDispatcher
NtYieldExecution

Kernel Thread Transition Diagram

DavePr@Microsoft.com

2003/04/06 v0.4b

Idle

processor

or

preemption

KiInsertDeferredReadyList

preemption

preemption

KiRetireDpcList/KiSwapThread/
KiExitDispatcher
KiProcessDeferredReadyList
KiDeferredReadyThread

no avail.

processor

KiSelectNextThread

PspCreateThread
KiReadyThread
KiInsertDeferredReadyList

Affinity

ok

Affinity

not ok

KiSetAffinityThread
KiSetpriorityThread

Ready
process
swapped

KiReadyThread

Windows XP
 Priority scheduler uses 32

priorities

 Scheduling class determines
range in which priority are
adjusted

 Source: Microsoft®
Windows® Internals, Fourth
Edition: Microsoft Windows
Server™

Process creation

 Two common paradigms:

 Cloning vs. spawning

 Cloning: (Unix)

 “fork()” clones current process

 child process then loads new program

 Spawning: (Windows, Pintos)

 “exec()” spawns a new process with new program

 Difference is whether creation of new process also
involves a change in program

fork()
#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

int main(int ac, char *av[])

{

}

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

int main(int ac, char *av[])

{

pid_t child = fork();

if (child < 0)

perror(“fork”), exit(-1);

if (child != 0) {

printf ("I'm the parent %d, my child is %d\n",

getpid(), child);

wait(NULL); /* wait for child (“join”) */

} else {

printf ("I'm the child %d, my parent is %d\n",

getpid(), getppid());

execl("/bin/echo", "echo", "Hello, World", NULL);

}

}

Fork/Exec Model

 Fork():
 Clone most state of parent, including memory

 Inherit some state, e.g. file descriptors

 Important optimization: copy-on-write

Some state is copied lazily
 Keeps program, changes process

 Exec():
 Overlays current process with new executable

 Keeps process, changes program

 Advantage: simple, clean

 Disadvantage: does not optimize common case (fork
followed by exec of child)

The fork()/join() paradigm

 After fork(), parent & child execute
in parallel

 Purpose:
 Launch activity that can be done in

parallel & wait for its completion

 Or simply: launch another program
and wait for its completion (shell does
that)

 Pintos:
 Kernel threads: thread_create (no

thread_join)

 exec(), you’ll do wait() in Project 2

Parent:Parent:

fork()

Parent:Parent:

join()

process

executes

Parent

process

executes

Child

process

executes

Child

process

executes

Child

process

Child

process

exits

OS notifies

CreateProcess()

// Win32

BOOL CreateProcess(

LPCTSTR lpApplicationName,

LPTSTR lpCommandLine,

LPSECURITY_ATTRIBUTES lpProcessAttributes,

LPSECURITY_ATTRIBUTES lpThreadAttributes,

BOOL bInheritHandles,

DWORD dwCreationFlags,

LPVOID lpEnvironment,

LPCTSTR lpCurrentDirectory,

LPSTARTUPINFO lpStartupInfo,

LPPROCESS_INFORMATION lpProcessInformation);

 See also system(3) on Unix systems

 Pintos exec() is CreateProcess(), not like Unix’s exec()

Thread creation APIs

 How are threads embedded in a language?

 POSIX Threads Standard (in C)
 pthread_create(), pthread_join()
 Uses function pointer

 Java/C#
 Thread.start(), Thread.join()
 Java: Using “Runnable” instance
 C#: Uses “ThreadStart” delegate

 C++
 No standard has emerged as of yet
 see ISO C++ Strategic Plan for Multithreading

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1815.html

Example pthread_create/join
static void * test_single(void *arg)

{

// this function is executed by each thread, in parallel

}

/* Test the memory allocator with NTHREADS concurrent threads. */

pthread_t threads[NTHREADS];

int i;

for (i = 0; i < NTHREADS; i++)

if (pthread_create(threads + i, (const pthread_attr_t*)NULL,

test_single, (void*)i) == -1)

{ printf("error creating pthread\n"); exit(-1); }

/* Wait for threads to finish. */

for (i = 0; i < NTHREADS; i++)

pthread_join(threads[i], NULL);

Use Default Attributes –

could set stack addr/size

here

2nd arg could receive exit

status of thread

Java Threads Example

public class JavaThreads {

public static void main(String []av) throws Exception {

Thread [] t = new Thread[5];

for (int i = 0; i < t.length; i++) {

final int tnum = i;

Runnable runnable = new Runnable() {

public void run() {

System.out.println("Thread #"+tnum);

}

};

t[i] = new Thread(runnable);

t[i].start();

}

for (int i = 0; i < t.length; i++)

t[i].join();

System.out.println("all done");

}

}

Threads implements Runnable –

could have subclassed Thread &

overridden run()

Thread.join() can throw

InterruptedException – can be

used to interrupt thread waiting to

join via Thread.interrupt

Why is taking C++ so long?

 Java didn’t – and got it wrong.
 Took years to fix

 What’s the problem?
 Compiler must know about concurrency to not reorder operations

past implicit synchronization points

 See also Pintos Reference Guide A.3.5 Memory Barriers

 See Boehm [PLDI 2005]: Threads cannot be implemented as a
library

lock (&l);

flag = true;

unlock (&l);

lock (&l);

unlock (&l);

flag = true;

http://courses.cs.vt.edu/~cs3204/fall2006/gback/pintos/doc/pintos_6.html
http://doi.acm.org/10.1145/1065010.1065042
http://doi.acm.org/10.1145/1065010.1065042

Processes & Threads (Summary)

 Had looked at APIs with which to create processes/threads

 Spawning vs. cloning

 “fork/join” paradigm (will be implemented in Project 2)

 Various embeddings of threading APIs in languages
(C/POSIX threads, Java, C#)

Type-safe arithmetic types in C

typedef struct

static inline complex_t

complex_add(complex_t x, complex_t y)

{

}

typedef struct

{

double re;

double im;

} complex_t;

static inline complex_t

complex_add(complex_t x, complex_t y)

{

return (complex_t){ x.re + y.re, x.im + y.im };

}

static inline double

complex_real(complex_t x)

{

}

static inline double

complex_imaginary(complex_t x)

{

}

static inline double

complex_abs(complex_t x)

{

return sqrt(x.re * x.re + x.im * x.im);

}

static inline double

complex_real(complex_t x)

{

return x.re;

}

static inline double

complex_imaginary(complex_t x)

{

return x.im;

}

static inline double

complex_abs(complex_t x)

{

return sqrt(x.re * x.re + x.im * x.im);

}

Pitfall: typedef int fixed_point_t;

fixed_point_t x;

int y;

x = y; // no compile error

Race Conditions

“Too Much Milk” Problem

Person A

Look in the fridge: Out of Milk

Leave for Wawa

Arrive at Wawa

Buy milk

Arrive home

Person B

Look in fridge: Out of Milk

Leave for Wawa

Arrive at Wawa

Buy milk

Arrive home

 Don’t buy too much milk

 Any person can be distracted at any time

A possible solution?

Thread A

If (noMilk) {

if (noNote) {

leave note

buy milk

remove note

}

}

Thread B

If (noMilk) {

if (noNote) {

leave note

buy milk

remove note

}

}

 Does this method work?

Another possible solution?

Thread A

leave noteA

if (noNoteB) {

if (noMilk) {

buy milk;

}

}

Remove noteA

Thread B

leave noteB

if (noNoteA) {

if (noMilk) {

buy milk;

}

}

Remove noteB

 Does this method work?

