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ABSTRACT 
 
Here we demonstrate a model that combines Tweets following significant earthquakes with basic 
site and earthquake characteristics to produce a rapid estimate of the ground shaking intensity. 
We used all geo-tagged Tweets around the world containing the keyword “earthquake” or 
“tsunami” in several languages that occurred in the first 10 minutes following Japanese 
earthquakes of magnitude 6 or greater from 2011 to 2012. Using different regression models, we 
found relevant features and the best model by minimizing the mean squared error between model 
predictions and historical estimates of shaking intensity. We found that the model with lowest 
error was based on a combination of earthquake- and Tweet-based features, such as local site 
conditions, source-to-site distance, and number of Tweets within a certain radius. Ground 
shaking intensity estimates from our model are comparable with historical recordings and 
conventional estimates provided, for example, by the United States Geological Survey 
ShakeMaps. Therefore Tweets may be a useful additional data source following significant 
earthquakes, especially in regions without an extensive network of recording stations.  
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ABSTRACT 
 
Here we demonstrate a model that combines Tweets following significant earthquakes with basic site and 
earthquake characteristics to produce a rapid estimate of the ground shaking intensity. We used all geo-tagged 
Tweets around the world containing the keyword “earthquake” or “tsunami” in several languages that occurred in 
the first 10 minutes following Japanese earthquakes of magnitude 6 or greater from 2011 to 2012. Using different 
regression models, we found relevant features and the best model by minimizing the mean squared error between 
model predictions and historical estimates of shaking intensity. We found that the model with lowest error was 
based on a combination of earthquake- and Tweet-based features, such as local site conditions, source-to-site 
distance, and number of Tweets within a certain radius. Ground shaking intensity estimates from our model are 
comparable with historical recordings and conventional estimates provided, for example, by the United States 
Geological Survey ShakeMaps. Therefore Tweets may be a useful additional data source following significant 
earthquakes, especially in regions without an extensive network of recording stations.  
 

Introduction 
 
The ability to rapidly estimate the distribution of shaking intensity across a large area following a 
significant earthquake is essential for efficient emergency response, loss estimation, and 
communication to the public [1,2]. Decision makers need accurate information as quickly as 
possible about the spatial distribution of damage so they can quickly send aid to appropriate 
locations. Previous study shows the importance of having accurate shaking intensity estimates 
for post-earthquake response, such as estimating the amount of international aid needed or 
prioritizing building inspections. However, getting information quickly is often challenging, 
especially if the area in which the earthquake occurred has few strong motion recording 
instruments.  
 Currently, ShakeMaps produced by the United States Geological Survey (USGS) 
represent the state-of-the-art in rapid shaking intensity estimation [1]. When an earthquake 
happens, a ShakeMap is typically produced in a matter of minutes using a combination of 
recordings, a simple ground motion prediction equation (GMPE), and geological site correction 
factors. As time progresses, the ShakeMap is continually updated as new information becomes 
available, including “did you feel it?” data, which are qualitative first-hand accounts of the 
earthquake collected via online surveys [3,4]. While this qualitative information is extremely 
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informative, it can take anywhere from hours to days to weeks to collect and is therefore not 
typically included in very early shaking intensity estimates. 
 Other sources for this type of information are rapidly growing, particularly Twitter, 
which is a service that enables everyone to create and share ideas and information instantly, 
without barriers online in real-time. Twitter has reached more than 255 million active users 
worldwide, and including regions of high seismicity like the United States, Japan, Indonesia, 
Mexico, and the Philippines [5]. Researchers have recognized the potential of Tweets for 
improving earthquake response [6], and the USGS is investigating using Tweets for rapid 
earthquake detection [7]. Other event detection algorithms can estimate the location of the 
earthquake epicenter from Tweets [8] and suggest that Tweets within 10 minutes following an 
earthquake can provide a good approximation of the impacted area [9]. While these studies show 
great potential for using Tweets in earthquake detection and quickly identifying impacted areas, 
they do not provide a quantitative description of shaking intensity. Quantitative shaking intensity 
(measured on the Modified Mercalli Intensity scale, i.e. MMI) is instead provided via 
ShakeMaps, which do not yet include data from Tweets. 
 Here, we use Tweets that occurred in the 10 minutes following an earthquake along with 
simple earthquake characteristics to produce an early estimate of the shaking intensity across a 
region. We use three different learning algorithms, including linear, elastic net, and k-nearest 
neighbors regression, to find a model that minimizes the error between historical observations 
and our predicted value. The prediction is based on Tweet features like number of Tweets and 
length of Tweet in characters within certain radii of a location, simple earthquake characteristics 
like source-to-site distance and local site conditions. Using only these simple features, our model 
is able to predict shaking intensity with reasonable accuracy relative to the historical recordings, 
indicating that Tweets may aid in early intensity estimates and could potentially reduce 
uncertainty in existing models. The intent of this model is to show that Tweets contain relevant 
information that could be of use to refine current estimates following a significant earthquake, 
and is in no way intended as a replacement for current ShakeMaps. 
 

Dataset 
 
The data used for this project primarily came from Twitter and the USGS. We collected data 
over multiple earthquakes to build a set of observations, where each observation corresponds to 
an estimate of shaking intensity from a recording station during an earthquake in Japan and 
associated features from Twitter and the USGS. Therefore the data may contain multiple 
observations from the same earthquake, but at different locations. 
 
Twitter Dataset 
 
We used a dataset of Tweets following significant earthquakes in Japan. First, we compiled a list 
of 86 earthquakes with magnitude greater than 6 that occurred in Japan between 2011 and 2012, 
including an earthquake id, magnitude, epicenter location, and time at start of rupture [10]. Then 
we scraped all geo-tagged Tweets that occurred anywhere in the world in the 10 minutes 
following each of these earthquakes that included the keyword “earthquake” or “tsunami” in 
English, Japanese, Spanish, Turkish, or Tagalog, specifically *quake, terremoto, maremoto, 
gempa,  地震, 大震災, 震災, tsunami, じしん,つなみ, 津波, deprem, zelzele, and lindol. We 
included both original Tweets and Retweets, which are copies of Tweets posted by another user. 



In just the 10 minutes after each of these 86 earthquakes that occurred in Japan, people created 
6.6 million geo-tagged Tweets that used at least one of the earthquake-related keywords. 
 For each earthquake, we observed trends in the Tweets such as an increase in the rate of 
Tweets and constant locations of Tweets. These trends are demonstrated using the 2011 M9.0 
Tohoku earthquake (i.e. earthquake id c0001xgp). The number of geo-tagged Tweets containing 
the earthquake keywords rapidly increased after the start of the event (Figure 1a), with people 
tweeting from across Japan, particularly in urban areas such as around Sendai, Tokyo, and Osaka 
(Figure 1c). By studying the distance between each Tweet and the epicenter as a function of time 
after the earthquake (Figure 1b), we clearly see urban centers: Sendai around 130km from the 
epicenter, the Tokyo region around 300-400km away, and Osaka around 730km away. 
Relatively little Tweet chatter about earthquakes occurred in the first 30 seconds because seismic 
waves from the offshore epicenter had not yet reached mainland Japan. Then, however, people 
started to feel strong shaking and the number of Tweets dramatically increases. 

 
Figure 1.  For the Tohoku (c0001xgp) earthquake: (a) number of geo-tagged Tweets containing 

an earthquake keyword per minute after the event, (b) distance between each Tweet 
and the epicenter as a function of time, and (c) map showing the number of Tweets, 
where the star represents the epicenter location. 

 
Shaking Intensity Dataset 
 
We obtained the true shaking intensity for each Japanese earthquake at all recording stations, as 
reported by the USGS [1]. Shaking intensity is measured according to the Modified Mercalli 
Intensity scale (MMI), which has 12 levels between imperceptible shaking and catastrophic 
destruction. From the 86 Japanese earthquakes described in the Twitter dataset, there was a 
cumulative total of 7,627 observations of intensity from recording stations, where each of these 
observations represents an example in the dataset we used for analysis.  
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Features 
 
We considered two classes of features: earthquake-based and Tweet-based. We defined 6 
earthquake-based features including moment magnitude (M), source-to-site distance (R), shear-
wave velocity in the top 30 meters (VS30), community decimal intensity (CDI), latitude, and 
longitude. VS30 captures local site effects that may amplify shaking intensity. CDI is estimated 
using the simple GMPE defined in the baseline model section below and depends on M and R. 
Latitude and longitude are included to capture the site location because shaking intensity is often 
spatially correlated [11]. 
 We supplemented the earthquake-based features with Tweet-based features, which is the 
main contribution of this work. Intuitively, a Twitter user is a noisy sensor because he or she 
may report an earthquake and the Tweet content may provide clues to what he or she 
experienced. Furthermore, all Tweets are time-stamped and all Tweets we considered are marked 
with location (i.e. latitude and longitude).  
 We defined 8 Tweet-based features, each considered within varying radii of a recording 
station, including count of Tweets, average number of tokens, average number of characters, 
average index of first mention of an earthquake keyword, average number of appearances of 
earthquake keywords, average number of exclamation points, average number of dashes, and 
average number of appearances of a selected Japanese keyword. The first 3 Tweet-based features 
capture general information about Tweets, where tokens were defined as a word, punctuation 
mark, or emoticon for alphabet-based languages, but simply each character for East Asian 
languages. The next 5 Tweet-based features are content-specific language markers. Exclamation 
points are often used to show emphasis or strong emotion in alphabet-based languages, and 
similarly dashes are used in East Asian languages. The Japanese keywords were selected by a 
native Japanese speaker as words used to indicate fear and other related earthquake terms, 
including 揺れ, 揺れてる, 避難, 余震, 怖い, 恐い, こわい, 無事, 震度. Each Tweet-based feature was 
considered at 9 different radii from the recording station (1km, 2km, 5km, 10km, 20km, 50km, 
100km, and whole world), resulting in a total of 72 Tweet-based features. We also experimented 
with normalizing the Tweet counts by the average number of Tweets on days without any 
significant earthquakes, but we saw no significant impact on accuracy. 
 Each observation in our dataset corresponds to a single intensity estimate from a 
recording station during an earthquake in Japan. Therefore multiple observations may come from 
the same earthquake, but at different locations. For each observation, we built a feature vector 
with the 78 features described above. Some features are constant for different observations from 
the same earthquake, such as any Tweet-based feature calculated for the whole world, but this 
feature varies for different earthquakes. 
 While we have created a variety of features, not all features are necessarily “relevant” to 
the model and we expect some overfitting if too many features are included compared to the 
number of training observations. For each regression model described in the next section, we 
varied the number of features from one to all. Features with the best scores were selected based 
on cross-correlation between the other features and the desired value [12]. 
 

Models for Shaking Intensity 
 
The goal was to develop one model that can reasonably estimate the shaking intensity for an 



arbitrary location in Japan when given different features. Because shaking intensity is a 
numerical value, we focused on regression models. Our training set consists of actual MMI 
observations at recording stations during historical Japanese earthquakes and the features 
described in the previous section. 
 
Baseline 
 
The baseline approach to calculating the shaking intensity at a location uses a GMPE that is 
empirically fit from a set of historical earthquakes. In this paper, we use a GMPE for community 
decimal intensity (CDI) provided in the documentation for USGS “did you feel it?” post-
earthquake community survey [13]. CDI was designed to quantify simple descriptions of ground 
shaking and is comparable to MMI [14]. The form of this GMPE is  
 
 

€ 

CDI =1.15 +1.01M − 0.00054R −1.72log10 R  (1) 
 
 where M is the moment magnitude and R is the distance between the epicenter and the 
query location. We use this GMPE as the baseline model for simplicity, but it is not a direct 
comparison with early versions of USGS ShakeMaps, which typically include more sophisticated 
GMPEs such as [15] and site correction factors.  
 
Regression Models 
 
Instead of using the provided baseline equation, we demonstrate how to use the features 
described previously to train a new model. We considered three different models including linear 
regression, elastic net regression, and k-Nearest-Neighbors regression (kNN). Linear and elastic 
net regression approximate the desired value (y) as a linear combination of the given 
observations (x). For this application, the desired y-value is the natural logarithm of MMI (log 
MMI), which is consistent with GMPEs that typically model ground motion intensity as a 
lognormal distribution [16]. Elastic net also applies l1- and l2-regularization penalty terms to 
avoid overfitting, where ρ is the mixing parameter of l1 and l2 penalty [17]. Using the l1 penalty 
term, elastic net can perform additional feature selection by zeroing the weights of some features. 
Finally, kNN approximates the desired y-value by computing a distance metric between a given 
observation and all others, finding the k observations with smallest distance to the given 
observation, and then computing a weighted average of the y-values at the k closest neighbors 
[17]. The value of ρ for elastic net and k for kNN was chosen using modified 10-fold cross 
validation discussed in the next section. 
 
Error metric 
 
We used mean-squared error (MSE) between the true and predicted MMI (not log MMI) for all 
observations as a metric to select the best model and compare against the baseline. To compute 
MSE, we used a modified 10-fold cross validation approach. Normally, 10-fold cross validation 
randomly splits the observations into 10 subsets, trains the model on all but one subset, tests on 
the held-out subset, and is repeated 10 times. However, our dataset contains multiple 
observations from the same earthquake but at different locations, which are highly correlated to 
one another. Thus normal cross validation would be inappropriate because observations from the 



same earthquake might be used to both train and test the model. So we implement a modified 
approach that divides the set of earthquakes into 10 subsets, trains on all observations except 
those from earthquakes in the held-out subset, tests on observations from earthquakes in the 
held-out subset, and is repeated 10 times. The final error of a model is the average of all MSE 
values over all 10 folds. 
 

Results 
 
We used the generated features for all observations along with the three regression models for 
two experiments. First, we selected and validated our models by comparing the testing error of 
predicted MMI with actual observations from stations in Japan. The goal was to find the choice 
of features and model that best estimated historical recordings. Second, we extrapolated the 
model to other locations to produce an estimated MMI map 10 minutes after three case study 
earthquakes. This MMI map can provide an early estimate of shaking intensity as well as 
supplement existing USGS ShakeMap estimates of MMI at sites far away from recording 
stations. The goal was to provide a realistic estimate of MMI at all locations impacted by an 
earthquake, even where there are no recording stations. 
 
Model Selection and Validation 
 
To choose a model that best estimates historical MMI observations, we varied the model, model 
parameters, and features. We considered the baseline model, linear regression, elastic net 
regression, and kNN-regression. As for model parameters, for linear we varied no parameters, 
for elastic net we varied ρ (the mixing parameter of l1 and l2-regularization) between 0 and 1, 
and for kNN we varied k (the number of neighbors) between 2 and 80. For features, we used 
three sets for comparison: tweet-based features only, earthquake-based features only, and 
combined tweet- and earthquake-based features. We also considered selecting between 1 and all 
features for each set. For each model, choice of parameter, and target number of features, we 
selected features and fit the models using the python package sklearn [18].  
 The baseline model (simple GMPE only) had the highest error, models using only Tweet-
based features had relatively large error compared to models using only earthquake-based 
features, and models using a combination of earthquake-based and Tweet-based features, i.e., 
selecting from all features, generally performed best (Figure 2a). We found that elastic net 
regression using all features performed best over the whole dataset with a mean-squared error of 
0.99 using modified 10-fold cross validation. This result indicates a reasonable estimate of the 
MMI because MMI values range from 1 to 12. Furthermore, our model showed a significant 
reduction over the baseline model (MSE of 0.99 vs. 5.57, respectively).  

 From modified cross validation, we found the best choice of elastic net model included 
24 features and ρ=0.5. As the number of features increased, we observed a reduction in testing 
error, leading eventually to overfitting (Figure 2b). The step-like behavior indicates that 
additional features are set with zero weights until enough are added to make a step in error. For 
the chosen model, the exact weights on the selected features vary depending on the cross 
validation fold. However, we find that all models are magnitude-independent. Specifically, most 
folds have the following features with non-zero weights: number of Tweets at radii of 5km, 
10km, 20km, 50km, 100km, and 1000km, number of characters at radius 100km, source-to-site 
distance (R), and VS30. 



 

 
Figure 2.   (a) Mean-squared error in the MMI value (on a scale of 1 to 12) for the baseline, 

linear regression, elastic net regression, and kNN-regression models using modified 
10-fold cross validation, and trained using earthquake- and Tweet-based features (i.e. 
All Features), earthquake-based features only, or Tweet-based features only. (b) 
Variation in training and test error with increasing features for elastic net regression 
with all features where the mixing parameter, ρ, equals 0.5.  

 
Since the best model overall, which selects from both Tweet- and earthquake-based 

features, has a lower error than the best model using only tweet-based features and the best 
model using only earthquake-based features (MSE=0.99 versus 1.39 and 1.88, respectively), we 
conclude that combining Tweets and earthquake-based data leads to the best estimate. 
Furthermore, by examining the selected features, we see that readily available Tweet count-based 
features provided useful information. In other words, knowing the sheer number of people 
tweeting at a location about earthquakes aids in predicting how intensely an earthquake impacted 
a region. Furthermore, the number of relevant Tweet around a location has more predictive 
power than magnitude according to our model.  
 
Predicted MMI Maps 
 
We used the elastic net regression model and corresponding features to estimate MMI maps for 
three historical events: 

• M9.0, March 2011 Tohoku earthquake (c0001xgp), which had observations from 1194 
recording stations. This earthquake represents an extreme case to test the limits of our 
model as well as a well-studied event for validation. 

• M7.1, April 2011 earthquake (c0002ksa), which had observations from 922 recording 
stations. This earthquake represents a more likely event where the actual shaking 
intensity was well recorded. 

• M6.4, July 2011 earthquake (c000531r), which had observations from only 9 recording 
stations. This earthquake represents a case where additional data such as from Tweets is 
particularly relevant. 
First, we considered the Tohoku earthquake (Figure 3). By visual inspection, the elastic 

net regression model using both Tweet- and earthquake-based features produced the MMI map 
most representative of the USGS ShakeMap. This Shakemap is particularly robust because it was 
updated over 5 months as more recordings, human reports of intensity (“did you feel it?” data), 
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and fault models were incorporated. By comparing the MMI map produced using only 
earthquake-based features to both Tweet- and earthquake-based features, we saw that the Tweet-
based features effectively scaled the entire MMI map obtained using earthquake-based features 
only (Figure 3a,c). For example, a similar spatial pattern in Western Japan exists for both, but 
with different intensities. This scaling is particularly important for high intensity events where 
existing models break down, but people, as captured by Tweets, add valuable information. In 
comparison, Tweet-based features alone, particularly as shown here without being normalized 
based on population or normal Twitter activity, were poor predictors of shaking intensity. Thus, 
compared to the baseline model and models using only earthquake- or Tweet-based features, the 
proposed method captured spatial variation and reduced error across a region. 

 
Figure 3. Estimated MMI maps for the Tohoku earthquake (c0001xgp) by (a) elastic net 

regression using earthquake-based features only, (b) elastic net regression using 
Tweet-based features only, (c) elastic net regression using both earthquake- and 
Tweet-based features, (d) baseline model, and (e) USGS ShakeMap. 

 
Second, we compared MMI estimates from the baseline model, best elastic net regression 

model, and USGS ShakeMap for all three case study earthquakes (Figures 3 and 4). As expected 
from the MSE results, the baseline model typically missed the local variations in intensity 
present in ShakeMaps. We saw that in all three events, our best elastic net regression model 
accurately captured some local effects, such as the North to South streak of higher MMI seen in 
Figure 3a,c,e and Figure 4b,c,e that coincides with the Kitikami River basin, marked by both 
lower VS30 values (which amplifies shaking intensity) and more people (i.e. more Tweets). The 
MMI maps using our best elastic net regression were reasonably representative of the 
ShakeMaps for Tohoku and c0002ska, which include many observations of MMI from 
recordings stations and thus have relatively low uncertainty. The c000531r earthquake was an 
event with few observations from recording stations, so the Shakemap more closely resembles 
the baseline model. In contrast, our elastic net model showed more local variations in intensity 
because we included VS30 in addition to Tweet-based features. 
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Figure 4.  Estimated MMI maps using different models for different earthquake events. Each 

row represents an earthquake event and each column represent a different model. 
Elastic Net model is calculated with Tweet-based and earthquake-based features. 

 
Conclusions 

 
We have presented a regression model using Tweets that occurred in the 10 minutes following an 
earthquake coupled with simple earthquake characteristics to estimate the shaking intensity 
(MMI) at particular sites in Japan. The key contribution of our work was to explore Tweets as an 
additional data source for estimating shaking intensity that is available almost immediately after 
an earthquake and can supplement existing methods. We have shown that counts of geo-tagged 
Tweets at different radii around a particular site are good predictors of shaking intensity when 
used in combination with earthquake-based features such as VS30 and source-to-site distance. In 
practice, this is important because additional data sources such as on-the-ground inspections by 
engineers, measurements from recording stations not connected to the internet, and online 
surveys such as “did you feel it?” may not be available before some decisions about relief aid 
need to be made. While we have estimated MMI values across a region using only simple 
earthquake characteristics and Tweet-based features for illustration, this data could potentially be 
combined with existing data sources, such as initial measurements from recording stations, for a 
more refined shaking intensity estimate with lower uncertainty. Finally, while we have shown 
results for Japan as a case study, our results depend neither on an earthquake fault model nor on 
results from pre-existing earthquake recording stations, so with some tuning of the model based 
on baseline Twitter activity, this approach could be applied to other regions. The approach has 
significant potential for regions that may not have an extensive network of existing earthquake 
recording stations but have many active Twitter users. 
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